x86/efi: Fix kernel panic when CONFIG_DEBUG_VIRTUAL is enabled
[firefly-linux-kernel-4.4.55.git] / arch / x86 / mm / pageattr.c
1 /*
2  * Copyright 2002 Andi Kleen, SuSE Labs.
3  * Thanks to Ben LaHaise for precious feedback.
4  */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/interrupt.h>
11 #include <linux/seq_file.h>
12 #include <linux/debugfs.h>
13 #include <linux/pfn.h>
14 #include <linux/percpu.h>
15 #include <linux/gfp.h>
16 #include <linux/pci.h>
17 #include <linux/vmalloc.h>
18
19 #include <asm/e820.h>
20 #include <asm/processor.h>
21 #include <asm/tlbflush.h>
22 #include <asm/sections.h>
23 #include <asm/setup.h>
24 #include <asm/uaccess.h>
25 #include <asm/pgalloc.h>
26 #include <asm/proto.h>
27 #include <asm/pat.h>
28
29 /*
30  * The current flushing context - we pass it instead of 5 arguments:
31  */
32 struct cpa_data {
33         unsigned long   *vaddr;
34         pgd_t           *pgd;
35         pgprot_t        mask_set;
36         pgprot_t        mask_clr;
37         int             numpages;
38         int             flags;
39         unsigned long   pfn;
40         unsigned        force_split : 1;
41         int             curpage;
42         struct page     **pages;
43 };
44
45 /*
46  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
47  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
48  * entries change the page attribute in parallel to some other cpu
49  * splitting a large page entry along with changing the attribute.
50  */
51 static DEFINE_SPINLOCK(cpa_lock);
52
53 #define CPA_FLUSHTLB 1
54 #define CPA_ARRAY 2
55 #define CPA_PAGES_ARRAY 4
56
57 #ifdef CONFIG_PROC_FS
58 static unsigned long direct_pages_count[PG_LEVEL_NUM];
59
60 void update_page_count(int level, unsigned long pages)
61 {
62         /* Protect against CPA */
63         spin_lock(&pgd_lock);
64         direct_pages_count[level] += pages;
65         spin_unlock(&pgd_lock);
66 }
67
68 static void split_page_count(int level)
69 {
70         direct_pages_count[level]--;
71         direct_pages_count[level - 1] += PTRS_PER_PTE;
72 }
73
74 void arch_report_meminfo(struct seq_file *m)
75 {
76         seq_printf(m, "DirectMap4k:    %8lu kB\n",
77                         direct_pages_count[PG_LEVEL_4K] << 2);
78 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
79         seq_printf(m, "DirectMap2M:    %8lu kB\n",
80                         direct_pages_count[PG_LEVEL_2M] << 11);
81 #else
82         seq_printf(m, "DirectMap4M:    %8lu kB\n",
83                         direct_pages_count[PG_LEVEL_2M] << 12);
84 #endif
85         if (direct_gbpages)
86                 seq_printf(m, "DirectMap1G:    %8lu kB\n",
87                         direct_pages_count[PG_LEVEL_1G] << 20);
88 }
89 #else
90 static inline void split_page_count(int level) { }
91 #endif
92
93 #ifdef CONFIG_X86_64
94
95 static inline unsigned long highmap_start_pfn(void)
96 {
97         return __pa_symbol(_text) >> PAGE_SHIFT;
98 }
99
100 static inline unsigned long highmap_end_pfn(void)
101 {
102         return __pa_symbol(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
103 }
104
105 #endif
106
107 #ifdef CONFIG_DEBUG_PAGEALLOC
108 # define debug_pagealloc 1
109 #else
110 # define debug_pagealloc 0
111 #endif
112
113 static inline int
114 within(unsigned long addr, unsigned long start, unsigned long end)
115 {
116         return addr >= start && addr < end;
117 }
118
119 /*
120  * Flushing functions
121  */
122
123 /**
124  * clflush_cache_range - flush a cache range with clflush
125  * @vaddr:      virtual start address
126  * @size:       number of bytes to flush
127  *
128  * clflushopt is an unordered instruction which needs fencing with mfence or
129  * sfence to avoid ordering issues.
130  */
131 void clflush_cache_range(void *vaddr, unsigned int size)
132 {
133         unsigned long clflush_mask = boot_cpu_data.x86_clflush_size - 1;
134         void *vend = vaddr + size;
135         void *p;
136
137         mb();
138
139         for (p = (void *)((unsigned long)vaddr & ~clflush_mask);
140              p < vend; p += boot_cpu_data.x86_clflush_size)
141                 clflushopt(p);
142
143         mb();
144 }
145 EXPORT_SYMBOL_GPL(clflush_cache_range);
146
147 static void __cpa_flush_all(void *arg)
148 {
149         unsigned long cache = (unsigned long)arg;
150
151         /*
152          * Flush all to work around Errata in early athlons regarding
153          * large page flushing.
154          */
155         __flush_tlb_all();
156
157         if (cache && boot_cpu_data.x86 >= 4)
158                 wbinvd();
159 }
160
161 static void cpa_flush_all(unsigned long cache)
162 {
163         BUG_ON(irqs_disabled());
164
165         on_each_cpu(__cpa_flush_all, (void *) cache, 1);
166 }
167
168 static void __cpa_flush_range(void *arg)
169 {
170         /*
171          * We could optimize that further and do individual per page
172          * tlb invalidates for a low number of pages. Caveat: we must
173          * flush the high aliases on 64bit as well.
174          */
175         __flush_tlb_all();
176 }
177
178 static void cpa_flush_range(unsigned long start, int numpages, int cache)
179 {
180         unsigned int i, level;
181         unsigned long addr;
182
183         BUG_ON(irqs_disabled());
184         WARN_ON(PAGE_ALIGN(start) != start);
185
186         on_each_cpu(__cpa_flush_range, NULL, 1);
187
188         if (!cache)
189                 return;
190
191         /*
192          * We only need to flush on one CPU,
193          * clflush is a MESI-coherent instruction that
194          * will cause all other CPUs to flush the same
195          * cachelines:
196          */
197         for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
198                 pte_t *pte = lookup_address(addr, &level);
199
200                 /*
201                  * Only flush present addresses:
202                  */
203                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
204                         clflush_cache_range((void *) addr, PAGE_SIZE);
205         }
206 }
207
208 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
209                             int in_flags, struct page **pages)
210 {
211         unsigned int i, level;
212         unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
213
214         BUG_ON(irqs_disabled());
215
216         on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
217
218         if (!cache || do_wbinvd)
219                 return;
220
221         /*
222          * We only need to flush on one CPU,
223          * clflush is a MESI-coherent instruction that
224          * will cause all other CPUs to flush the same
225          * cachelines:
226          */
227         for (i = 0; i < numpages; i++) {
228                 unsigned long addr;
229                 pte_t *pte;
230
231                 if (in_flags & CPA_PAGES_ARRAY)
232                         addr = (unsigned long)page_address(pages[i]);
233                 else
234                         addr = start[i];
235
236                 pte = lookup_address(addr, &level);
237
238                 /*
239                  * Only flush present addresses:
240                  */
241                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
242                         clflush_cache_range((void *)addr, PAGE_SIZE);
243         }
244 }
245
246 /*
247  * Certain areas of memory on x86 require very specific protection flags,
248  * for example the BIOS area or kernel text. Callers don't always get this
249  * right (again, ioremap() on BIOS memory is not uncommon) so this function
250  * checks and fixes these known static required protection bits.
251  */
252 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
253                                    unsigned long pfn)
254 {
255         pgprot_t forbidden = __pgprot(0);
256
257         /*
258          * The BIOS area between 640k and 1Mb needs to be executable for
259          * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
260          */
261 #ifdef CONFIG_PCI_BIOS
262         if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
263                 pgprot_val(forbidden) |= _PAGE_NX;
264 #endif
265
266         /*
267          * The kernel text needs to be executable for obvious reasons
268          * Does not cover __inittext since that is gone later on. On
269          * 64bit we do not enforce !NX on the low mapping
270          */
271         if (within(address, (unsigned long)_text, (unsigned long)_etext))
272                 pgprot_val(forbidden) |= _PAGE_NX;
273
274         /*
275          * The .rodata section needs to be read-only. Using the pfn
276          * catches all aliases.
277          */
278         if (within(pfn, __pa_symbol(__start_rodata) >> PAGE_SHIFT,
279                    __pa_symbol(__end_rodata) >> PAGE_SHIFT))
280                 pgprot_val(forbidden) |= _PAGE_RW;
281
282 #if defined(CONFIG_X86_64) && defined(CONFIG_DEBUG_RODATA)
283         /*
284          * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
285          * kernel text mappings for the large page aligned text, rodata sections
286          * will be always read-only. For the kernel identity mappings covering
287          * the holes caused by this alignment can be anything that user asks.
288          *
289          * This will preserve the large page mappings for kernel text/data
290          * at no extra cost.
291          */
292         if (kernel_set_to_readonly &&
293             within(address, (unsigned long)_text,
294                    (unsigned long)__end_rodata_hpage_align)) {
295                 unsigned int level;
296
297                 /*
298                  * Don't enforce the !RW mapping for the kernel text mapping,
299                  * if the current mapping is already using small page mapping.
300                  * No need to work hard to preserve large page mappings in this
301                  * case.
302                  *
303                  * This also fixes the Linux Xen paravirt guest boot failure
304                  * (because of unexpected read-only mappings for kernel identity
305                  * mappings). In this paravirt guest case, the kernel text
306                  * mapping and the kernel identity mapping share the same
307                  * page-table pages. Thus we can't really use different
308                  * protections for the kernel text and identity mappings. Also,
309                  * these shared mappings are made of small page mappings.
310                  * Thus this don't enforce !RW mapping for small page kernel
311                  * text mapping logic will help Linux Xen parvirt guest boot
312                  * as well.
313                  */
314                 if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
315                         pgprot_val(forbidden) |= _PAGE_RW;
316         }
317 #endif
318
319         prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
320
321         return prot;
322 }
323
324 /*
325  * Lookup the page table entry for a virtual address in a specific pgd.
326  * Return a pointer to the entry and the level of the mapping.
327  */
328 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
329                              unsigned int *level)
330 {
331         pud_t *pud;
332         pmd_t *pmd;
333
334         *level = PG_LEVEL_NONE;
335
336         if (pgd_none(*pgd))
337                 return NULL;
338
339         pud = pud_offset(pgd, address);
340         if (pud_none(*pud))
341                 return NULL;
342
343         *level = PG_LEVEL_1G;
344         if (pud_large(*pud) || !pud_present(*pud))
345                 return (pte_t *)pud;
346
347         pmd = pmd_offset(pud, address);
348         if (pmd_none(*pmd))
349                 return NULL;
350
351         *level = PG_LEVEL_2M;
352         if (pmd_large(*pmd) || !pmd_present(*pmd))
353                 return (pte_t *)pmd;
354
355         *level = PG_LEVEL_4K;
356
357         return pte_offset_kernel(pmd, address);
358 }
359
360 /*
361  * Lookup the page table entry for a virtual address. Return a pointer
362  * to the entry and the level of the mapping.
363  *
364  * Note: We return pud and pmd either when the entry is marked large
365  * or when the present bit is not set. Otherwise we would return a
366  * pointer to a nonexisting mapping.
367  */
368 pte_t *lookup_address(unsigned long address, unsigned int *level)
369 {
370         return lookup_address_in_pgd(pgd_offset_k(address), address, level);
371 }
372 EXPORT_SYMBOL_GPL(lookup_address);
373
374 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
375                                   unsigned int *level)
376 {
377         if (cpa->pgd)
378                 return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
379                                                address, level);
380
381         return lookup_address(address, level);
382 }
383
384 /*
385  * Lookup the PMD entry for a virtual address. Return a pointer to the entry
386  * or NULL if not present.
387  */
388 pmd_t *lookup_pmd_address(unsigned long address)
389 {
390         pgd_t *pgd;
391         pud_t *pud;
392
393         pgd = pgd_offset_k(address);
394         if (pgd_none(*pgd))
395                 return NULL;
396
397         pud = pud_offset(pgd, address);
398         if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
399                 return NULL;
400
401         return pmd_offset(pud, address);
402 }
403
404 /*
405  * This is necessary because __pa() does not work on some
406  * kinds of memory, like vmalloc() or the alloc_remap()
407  * areas on 32-bit NUMA systems.  The percpu areas can
408  * end up in this kind of memory, for instance.
409  *
410  * This could be optimized, but it is only intended to be
411  * used at inititalization time, and keeping it
412  * unoptimized should increase the testing coverage for
413  * the more obscure platforms.
414  */
415 phys_addr_t slow_virt_to_phys(void *__virt_addr)
416 {
417         unsigned long virt_addr = (unsigned long)__virt_addr;
418         phys_addr_t phys_addr;
419         unsigned long offset;
420         enum pg_level level;
421         unsigned long pmask;
422         pte_t *pte;
423
424         pte = lookup_address(virt_addr, &level);
425         BUG_ON(!pte);
426         pmask = page_level_mask(level);
427         offset = virt_addr & ~pmask;
428         phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
429         return (phys_addr | offset);
430 }
431 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
432
433 /*
434  * Set the new pmd in all the pgds we know about:
435  */
436 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
437 {
438         /* change init_mm */
439         set_pte_atomic(kpte, pte);
440 #ifdef CONFIG_X86_32
441         if (!SHARED_KERNEL_PMD) {
442                 struct page *page;
443
444                 list_for_each_entry(page, &pgd_list, lru) {
445                         pgd_t *pgd;
446                         pud_t *pud;
447                         pmd_t *pmd;
448
449                         pgd = (pgd_t *)page_address(page) + pgd_index(address);
450                         pud = pud_offset(pgd, address);
451                         pmd = pmd_offset(pud, address);
452                         set_pte_atomic((pte_t *)pmd, pte);
453                 }
454         }
455 #endif
456 }
457
458 static int
459 try_preserve_large_page(pte_t *kpte, unsigned long address,
460                         struct cpa_data *cpa)
461 {
462         unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn;
463         pte_t new_pte, old_pte, *tmp;
464         pgprot_t old_prot, new_prot, req_prot;
465         int i, do_split = 1;
466         enum pg_level level;
467
468         if (cpa->force_split)
469                 return 1;
470
471         spin_lock(&pgd_lock);
472         /*
473          * Check for races, another CPU might have split this page
474          * up already:
475          */
476         tmp = _lookup_address_cpa(cpa, address, &level);
477         if (tmp != kpte)
478                 goto out_unlock;
479
480         switch (level) {
481         case PG_LEVEL_2M:
482 #ifdef CONFIG_X86_64
483         case PG_LEVEL_1G:
484 #endif
485                 psize = page_level_size(level);
486                 pmask = page_level_mask(level);
487                 break;
488         default:
489                 do_split = -EINVAL;
490                 goto out_unlock;
491         }
492
493         /*
494          * Calculate the number of pages, which fit into this large
495          * page starting at address:
496          */
497         nextpage_addr = (address + psize) & pmask;
498         numpages = (nextpage_addr - address) >> PAGE_SHIFT;
499         if (numpages < cpa->numpages)
500                 cpa->numpages = numpages;
501
502         /*
503          * We are safe now. Check whether the new pgprot is the same:
504          * Convert protection attributes to 4k-format, as cpa->mask* are set
505          * up accordingly.
506          */
507         old_pte = *kpte;
508         old_prot = req_prot = pgprot_large_2_4k(pte_pgprot(old_pte));
509
510         pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
511         pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
512
513         /*
514          * req_prot is in format of 4k pages. It must be converted to large
515          * page format: the caching mode includes the PAT bit located at
516          * different bit positions in the two formats.
517          */
518         req_prot = pgprot_4k_2_large(req_prot);
519
520         /*
521          * Set the PSE and GLOBAL flags only if the PRESENT flag is
522          * set otherwise pmd_present/pmd_huge will return true even on
523          * a non present pmd. The canon_pgprot will clear _PAGE_GLOBAL
524          * for the ancient hardware that doesn't support it.
525          */
526         if (pgprot_val(req_prot) & _PAGE_PRESENT)
527                 pgprot_val(req_prot) |= _PAGE_PSE | _PAGE_GLOBAL;
528         else
529                 pgprot_val(req_prot) &= ~(_PAGE_PSE | _PAGE_GLOBAL);
530
531         req_prot = canon_pgprot(req_prot);
532
533         /*
534          * old_pte points to the large page base address. So we need
535          * to add the offset of the virtual address:
536          */
537         pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
538         cpa->pfn = pfn;
539
540         new_prot = static_protections(req_prot, address, pfn);
541
542         /*
543          * We need to check the full range, whether
544          * static_protection() requires a different pgprot for one of
545          * the pages in the range we try to preserve:
546          */
547         addr = address & pmask;
548         pfn = pte_pfn(old_pte);
549         for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
550                 pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
551
552                 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
553                         goto out_unlock;
554         }
555
556         /*
557          * If there are no changes, return. maxpages has been updated
558          * above:
559          */
560         if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
561                 do_split = 0;
562                 goto out_unlock;
563         }
564
565         /*
566          * We need to change the attributes. Check, whether we can
567          * change the large page in one go. We request a split, when
568          * the address is not aligned and the number of pages is
569          * smaller than the number of pages in the large page. Note
570          * that we limited the number of possible pages already to
571          * the number of pages in the large page.
572          */
573         if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
574                 /*
575                  * The address is aligned and the number of pages
576                  * covers the full page.
577                  */
578                 new_pte = pfn_pte(pte_pfn(old_pte), new_prot);
579                 __set_pmd_pte(kpte, address, new_pte);
580                 cpa->flags |= CPA_FLUSHTLB;
581                 do_split = 0;
582         }
583
584 out_unlock:
585         spin_unlock(&pgd_lock);
586
587         return do_split;
588 }
589
590 static int
591 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
592                    struct page *base)
593 {
594         pte_t *pbase = (pte_t *)page_address(base);
595         unsigned long pfn, pfninc = 1;
596         unsigned int i, level;
597         pte_t *tmp;
598         pgprot_t ref_prot;
599
600         spin_lock(&pgd_lock);
601         /*
602          * Check for races, another CPU might have split this page
603          * up for us already:
604          */
605         tmp = _lookup_address_cpa(cpa, address, &level);
606         if (tmp != kpte) {
607                 spin_unlock(&pgd_lock);
608                 return 1;
609         }
610
611         paravirt_alloc_pte(&init_mm, page_to_pfn(base));
612         ref_prot = pte_pgprot(pte_clrhuge(*kpte));
613
614         /* promote PAT bit to correct position */
615         if (level == PG_LEVEL_2M)
616                 ref_prot = pgprot_large_2_4k(ref_prot);
617
618 #ifdef CONFIG_X86_64
619         if (level == PG_LEVEL_1G) {
620                 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
621                 /*
622                  * Set the PSE flags only if the PRESENT flag is set
623                  * otherwise pmd_present/pmd_huge will return true
624                  * even on a non present pmd.
625                  */
626                 if (pgprot_val(ref_prot) & _PAGE_PRESENT)
627                         pgprot_val(ref_prot) |= _PAGE_PSE;
628                 else
629                         pgprot_val(ref_prot) &= ~_PAGE_PSE;
630         }
631 #endif
632
633         /*
634          * Set the GLOBAL flags only if the PRESENT flag is set
635          * otherwise pmd/pte_present will return true even on a non
636          * present pmd/pte. The canon_pgprot will clear _PAGE_GLOBAL
637          * for the ancient hardware that doesn't support it.
638          */
639         if (pgprot_val(ref_prot) & _PAGE_PRESENT)
640                 pgprot_val(ref_prot) |= _PAGE_GLOBAL;
641         else
642                 pgprot_val(ref_prot) &= ~_PAGE_GLOBAL;
643
644         /*
645          * Get the target pfn from the original entry:
646          */
647         pfn = pte_pfn(*kpte);
648         for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
649                 set_pte(&pbase[i], pfn_pte(pfn, canon_pgprot(ref_prot)));
650
651         if (virt_addr_valid(address)) {
652                 unsigned long pfn = PFN_DOWN(__pa(address));
653
654                 if (pfn_range_is_mapped(pfn, pfn + 1))
655                         split_page_count(level);
656         }
657
658         /*
659          * Install the new, split up pagetable.
660          *
661          * We use the standard kernel pagetable protections for the new
662          * pagetable protections, the actual ptes set above control the
663          * primary protection behavior:
664          */
665         __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
666
667         /*
668          * Intel Atom errata AAH41 workaround.
669          *
670          * The real fix should be in hw or in a microcode update, but
671          * we also probabilistically try to reduce the window of having
672          * a large TLB mixed with 4K TLBs while instruction fetches are
673          * going on.
674          */
675         __flush_tlb_all();
676         spin_unlock(&pgd_lock);
677
678         return 0;
679 }
680
681 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
682                             unsigned long address)
683 {
684         struct page *base;
685
686         if (!debug_pagealloc)
687                 spin_unlock(&cpa_lock);
688         base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
689         if (!debug_pagealloc)
690                 spin_lock(&cpa_lock);
691         if (!base)
692                 return -ENOMEM;
693
694         if (__split_large_page(cpa, kpte, address, base))
695                 __free_page(base);
696
697         return 0;
698 }
699
700 static bool try_to_free_pte_page(pte_t *pte)
701 {
702         int i;
703
704         for (i = 0; i < PTRS_PER_PTE; i++)
705                 if (!pte_none(pte[i]))
706                         return false;
707
708         free_page((unsigned long)pte);
709         return true;
710 }
711
712 static bool try_to_free_pmd_page(pmd_t *pmd)
713 {
714         int i;
715
716         for (i = 0; i < PTRS_PER_PMD; i++)
717                 if (!pmd_none(pmd[i]))
718                         return false;
719
720         free_page((unsigned long)pmd);
721         return true;
722 }
723
724 static bool try_to_free_pud_page(pud_t *pud)
725 {
726         int i;
727
728         for (i = 0; i < PTRS_PER_PUD; i++)
729                 if (!pud_none(pud[i]))
730                         return false;
731
732         free_page((unsigned long)pud);
733         return true;
734 }
735
736 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
737 {
738         pte_t *pte = pte_offset_kernel(pmd, start);
739
740         while (start < end) {
741                 set_pte(pte, __pte(0));
742
743                 start += PAGE_SIZE;
744                 pte++;
745         }
746
747         if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
748                 pmd_clear(pmd);
749                 return true;
750         }
751         return false;
752 }
753
754 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
755                               unsigned long start, unsigned long end)
756 {
757         if (unmap_pte_range(pmd, start, end))
758                 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
759                         pud_clear(pud);
760 }
761
762 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
763 {
764         pmd_t *pmd = pmd_offset(pud, start);
765
766         /*
767          * Not on a 2MB page boundary?
768          */
769         if (start & (PMD_SIZE - 1)) {
770                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
771                 unsigned long pre_end = min_t(unsigned long, end, next_page);
772
773                 __unmap_pmd_range(pud, pmd, start, pre_end);
774
775                 start = pre_end;
776                 pmd++;
777         }
778
779         /*
780          * Try to unmap in 2M chunks.
781          */
782         while (end - start >= PMD_SIZE) {
783                 if (pmd_large(*pmd))
784                         pmd_clear(pmd);
785                 else
786                         __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
787
788                 start += PMD_SIZE;
789                 pmd++;
790         }
791
792         /*
793          * 4K leftovers?
794          */
795         if (start < end)
796                 return __unmap_pmd_range(pud, pmd, start, end);
797
798         /*
799          * Try again to free the PMD page if haven't succeeded above.
800          */
801         if (!pud_none(*pud))
802                 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
803                         pud_clear(pud);
804 }
805
806 static void unmap_pud_range(pgd_t *pgd, unsigned long start, unsigned long end)
807 {
808         pud_t *pud = pud_offset(pgd, start);
809
810         /*
811          * Not on a GB page boundary?
812          */
813         if (start & (PUD_SIZE - 1)) {
814                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
815                 unsigned long pre_end   = min_t(unsigned long, end, next_page);
816
817                 unmap_pmd_range(pud, start, pre_end);
818
819                 start = pre_end;
820                 pud++;
821         }
822
823         /*
824          * Try to unmap in 1G chunks?
825          */
826         while (end - start >= PUD_SIZE) {
827
828                 if (pud_large(*pud))
829                         pud_clear(pud);
830                 else
831                         unmap_pmd_range(pud, start, start + PUD_SIZE);
832
833                 start += PUD_SIZE;
834                 pud++;
835         }
836
837         /*
838          * 2M leftovers?
839          */
840         if (start < end)
841                 unmap_pmd_range(pud, start, end);
842
843         /*
844          * No need to try to free the PUD page because we'll free it in
845          * populate_pgd's error path
846          */
847 }
848
849 static void unmap_pgd_range(pgd_t *root, unsigned long addr, unsigned long end)
850 {
851         pgd_t *pgd_entry = root + pgd_index(addr);
852
853         unmap_pud_range(pgd_entry, addr, end);
854
855         if (try_to_free_pud_page((pud_t *)pgd_page_vaddr(*pgd_entry)))
856                 pgd_clear(pgd_entry);
857 }
858
859 static int alloc_pte_page(pmd_t *pmd)
860 {
861         pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
862         if (!pte)
863                 return -1;
864
865         set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
866         return 0;
867 }
868
869 static int alloc_pmd_page(pud_t *pud)
870 {
871         pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
872         if (!pmd)
873                 return -1;
874
875         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
876         return 0;
877 }
878
879 static void populate_pte(struct cpa_data *cpa,
880                          unsigned long start, unsigned long end,
881                          unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
882 {
883         pte_t *pte;
884
885         pte = pte_offset_kernel(pmd, start);
886
887         while (num_pages-- && start < end) {
888
889                 /* deal with the NX bit */
890                 if (!(pgprot_val(pgprot) & _PAGE_NX))
891                         cpa->pfn &= ~_PAGE_NX;
892
893                 set_pte(pte, pfn_pte(cpa->pfn >> PAGE_SHIFT, pgprot));
894
895                 start    += PAGE_SIZE;
896                 cpa->pfn += PAGE_SIZE;
897                 pte++;
898         }
899 }
900
901 static int populate_pmd(struct cpa_data *cpa,
902                         unsigned long start, unsigned long end,
903                         unsigned num_pages, pud_t *pud, pgprot_t pgprot)
904 {
905         unsigned int cur_pages = 0;
906         pmd_t *pmd;
907         pgprot_t pmd_pgprot;
908
909         /*
910          * Not on a 2M boundary?
911          */
912         if (start & (PMD_SIZE - 1)) {
913                 unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
914                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
915
916                 pre_end   = min_t(unsigned long, pre_end, next_page);
917                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
918                 cur_pages = min_t(unsigned int, num_pages, cur_pages);
919
920                 /*
921                  * Need a PTE page?
922                  */
923                 pmd = pmd_offset(pud, start);
924                 if (pmd_none(*pmd))
925                         if (alloc_pte_page(pmd))
926                                 return -1;
927
928                 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
929
930                 start = pre_end;
931         }
932
933         /*
934          * We mapped them all?
935          */
936         if (num_pages == cur_pages)
937                 return cur_pages;
938
939         pmd_pgprot = pgprot_4k_2_large(pgprot);
940
941         while (end - start >= PMD_SIZE) {
942
943                 /*
944                  * We cannot use a 1G page so allocate a PMD page if needed.
945                  */
946                 if (pud_none(*pud))
947                         if (alloc_pmd_page(pud))
948                                 return -1;
949
950                 pmd = pmd_offset(pud, start);
951
952                 set_pmd(pmd, __pmd(cpa->pfn | _PAGE_PSE |
953                                    massage_pgprot(pmd_pgprot)));
954
955                 start     += PMD_SIZE;
956                 cpa->pfn  += PMD_SIZE;
957                 cur_pages += PMD_SIZE >> PAGE_SHIFT;
958         }
959
960         /*
961          * Map trailing 4K pages.
962          */
963         if (start < end) {
964                 pmd = pmd_offset(pud, start);
965                 if (pmd_none(*pmd))
966                         if (alloc_pte_page(pmd))
967                                 return -1;
968
969                 populate_pte(cpa, start, end, num_pages - cur_pages,
970                              pmd, pgprot);
971         }
972         return num_pages;
973 }
974
975 static int populate_pud(struct cpa_data *cpa, unsigned long start, pgd_t *pgd,
976                         pgprot_t pgprot)
977 {
978         pud_t *pud;
979         unsigned long end;
980         int cur_pages = 0;
981         pgprot_t pud_pgprot;
982
983         end = start + (cpa->numpages << PAGE_SHIFT);
984
985         /*
986          * Not on a Gb page boundary? => map everything up to it with
987          * smaller pages.
988          */
989         if (start & (PUD_SIZE - 1)) {
990                 unsigned long pre_end;
991                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
992
993                 pre_end   = min_t(unsigned long, end, next_page);
994                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
995                 cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
996
997                 pud = pud_offset(pgd, start);
998
999                 /*
1000                  * Need a PMD page?
1001                  */
1002                 if (pud_none(*pud))
1003                         if (alloc_pmd_page(pud))
1004                                 return -1;
1005
1006                 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1007                                          pud, pgprot);
1008                 if (cur_pages < 0)
1009                         return cur_pages;
1010
1011                 start = pre_end;
1012         }
1013
1014         /* We mapped them all? */
1015         if (cpa->numpages == cur_pages)
1016                 return cur_pages;
1017
1018         pud = pud_offset(pgd, start);
1019         pud_pgprot = pgprot_4k_2_large(pgprot);
1020
1021         /*
1022          * Map everything starting from the Gb boundary, possibly with 1G pages
1023          */
1024         while (end - start >= PUD_SIZE) {
1025                 set_pud(pud, __pud(cpa->pfn | _PAGE_PSE |
1026                                    massage_pgprot(pud_pgprot)));
1027
1028                 start     += PUD_SIZE;
1029                 cpa->pfn  += PUD_SIZE;
1030                 cur_pages += PUD_SIZE >> PAGE_SHIFT;
1031                 pud++;
1032         }
1033
1034         /* Map trailing leftover */
1035         if (start < end) {
1036                 int tmp;
1037
1038                 pud = pud_offset(pgd, start);
1039                 if (pud_none(*pud))
1040                         if (alloc_pmd_page(pud))
1041                                 return -1;
1042
1043                 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1044                                    pud, pgprot);
1045                 if (tmp < 0)
1046                         return cur_pages;
1047
1048                 cur_pages += tmp;
1049         }
1050         return cur_pages;
1051 }
1052
1053 /*
1054  * Restrictions for kernel page table do not necessarily apply when mapping in
1055  * an alternate PGD.
1056  */
1057 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1058 {
1059         pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1060         pud_t *pud = NULL;      /* shut up gcc */
1061         pgd_t *pgd_entry;
1062         int ret;
1063
1064         pgd_entry = cpa->pgd + pgd_index(addr);
1065
1066         /*
1067          * Allocate a PUD page and hand it down for mapping.
1068          */
1069         if (pgd_none(*pgd_entry)) {
1070                 pud = (pud_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
1071                 if (!pud)
1072                         return -1;
1073
1074                 set_pgd(pgd_entry, __pgd(__pa(pud) | _KERNPG_TABLE));
1075         }
1076
1077         pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1078         pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1079
1080         ret = populate_pud(cpa, addr, pgd_entry, pgprot);
1081         if (ret < 0) {
1082                 unmap_pgd_range(cpa->pgd, addr,
1083                                 addr + (cpa->numpages << PAGE_SHIFT));
1084                 return ret;
1085         }
1086
1087         cpa->numpages = ret;
1088         return 0;
1089 }
1090
1091 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1092                                int primary)
1093 {
1094         if (cpa->pgd)
1095                 return populate_pgd(cpa, vaddr);
1096
1097         /*
1098          * Ignore all non primary paths.
1099          */
1100         if (!primary)
1101                 return 0;
1102
1103         /*
1104          * Ignore the NULL PTE for kernel identity mapping, as it is expected
1105          * to have holes.
1106          * Also set numpages to '1' indicating that we processed cpa req for
1107          * one virtual address page and its pfn. TBD: numpages can be set based
1108          * on the initial value and the level returned by lookup_address().
1109          */
1110         if (within(vaddr, PAGE_OFFSET,
1111                    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1112                 cpa->numpages = 1;
1113                 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1114                 return 0;
1115         } else {
1116                 WARN(1, KERN_WARNING "CPA: called for zero pte. "
1117                         "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1118                         *cpa->vaddr);
1119
1120                 return -EFAULT;
1121         }
1122 }
1123
1124 static int __change_page_attr(struct cpa_data *cpa, int primary)
1125 {
1126         unsigned long address;
1127         int do_split, err;
1128         unsigned int level;
1129         pte_t *kpte, old_pte;
1130
1131         if (cpa->flags & CPA_PAGES_ARRAY) {
1132                 struct page *page = cpa->pages[cpa->curpage];
1133                 if (unlikely(PageHighMem(page)))
1134                         return 0;
1135                 address = (unsigned long)page_address(page);
1136         } else if (cpa->flags & CPA_ARRAY)
1137                 address = cpa->vaddr[cpa->curpage];
1138         else
1139                 address = *cpa->vaddr;
1140 repeat:
1141         kpte = _lookup_address_cpa(cpa, address, &level);
1142         if (!kpte)
1143                 return __cpa_process_fault(cpa, address, primary);
1144
1145         old_pte = *kpte;
1146         if (!pte_val(old_pte))
1147                 return __cpa_process_fault(cpa, address, primary);
1148
1149         if (level == PG_LEVEL_4K) {
1150                 pte_t new_pte;
1151                 pgprot_t new_prot = pte_pgprot(old_pte);
1152                 unsigned long pfn = pte_pfn(old_pte);
1153
1154                 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1155                 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1156
1157                 new_prot = static_protections(new_prot, address, pfn);
1158
1159                 /*
1160                  * Set the GLOBAL flags only if the PRESENT flag is
1161                  * set otherwise pte_present will return true even on
1162                  * a non present pte. The canon_pgprot will clear
1163                  * _PAGE_GLOBAL for the ancient hardware that doesn't
1164                  * support it.
1165                  */
1166                 if (pgprot_val(new_prot) & _PAGE_PRESENT)
1167                         pgprot_val(new_prot) |= _PAGE_GLOBAL;
1168                 else
1169                         pgprot_val(new_prot) &= ~_PAGE_GLOBAL;
1170
1171                 /*
1172                  * We need to keep the pfn from the existing PTE,
1173                  * after all we're only going to change it's attributes
1174                  * not the memory it points to
1175                  */
1176                 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
1177                 cpa->pfn = pfn;
1178                 /*
1179                  * Do we really change anything ?
1180                  */
1181                 if (pte_val(old_pte) != pte_val(new_pte)) {
1182                         set_pte_atomic(kpte, new_pte);
1183                         cpa->flags |= CPA_FLUSHTLB;
1184                 }
1185                 cpa->numpages = 1;
1186                 return 0;
1187         }
1188
1189         /*
1190          * Check, whether we can keep the large page intact
1191          * and just change the pte:
1192          */
1193         do_split = try_preserve_large_page(kpte, address, cpa);
1194         /*
1195          * When the range fits into the existing large page,
1196          * return. cp->numpages and cpa->tlbflush have been updated in
1197          * try_large_page:
1198          */
1199         if (do_split <= 0)
1200                 return do_split;
1201
1202         /*
1203          * We have to split the large page:
1204          */
1205         err = split_large_page(cpa, kpte, address);
1206         if (!err) {
1207                 /*
1208                  * Do a global flush tlb after splitting the large page
1209                  * and before we do the actual change page attribute in the PTE.
1210                  *
1211                  * With out this, we violate the TLB application note, that says
1212                  * "The TLBs may contain both ordinary and large-page
1213                  *  translations for a 4-KByte range of linear addresses. This
1214                  *  may occur if software modifies the paging structures so that
1215                  *  the page size used for the address range changes. If the two
1216                  *  translations differ with respect to page frame or attributes
1217                  *  (e.g., permissions), processor behavior is undefined and may
1218                  *  be implementation-specific."
1219                  *
1220                  * We do this global tlb flush inside the cpa_lock, so that we
1221                  * don't allow any other cpu, with stale tlb entries change the
1222                  * page attribute in parallel, that also falls into the
1223                  * just split large page entry.
1224                  */
1225                 flush_tlb_all();
1226                 goto repeat;
1227         }
1228
1229         return err;
1230 }
1231
1232 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1233
1234 static int cpa_process_alias(struct cpa_data *cpa)
1235 {
1236         struct cpa_data alias_cpa;
1237         unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1238         unsigned long vaddr;
1239         int ret;
1240
1241         if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1242                 return 0;
1243
1244         /*
1245          * No need to redo, when the primary call touched the direct
1246          * mapping already:
1247          */
1248         if (cpa->flags & CPA_PAGES_ARRAY) {
1249                 struct page *page = cpa->pages[cpa->curpage];
1250                 if (unlikely(PageHighMem(page)))
1251                         return 0;
1252                 vaddr = (unsigned long)page_address(page);
1253         } else if (cpa->flags & CPA_ARRAY)
1254                 vaddr = cpa->vaddr[cpa->curpage];
1255         else
1256                 vaddr = *cpa->vaddr;
1257
1258         if (!(within(vaddr, PAGE_OFFSET,
1259                     PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1260
1261                 alias_cpa = *cpa;
1262                 alias_cpa.vaddr = &laddr;
1263                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1264
1265                 ret = __change_page_attr_set_clr(&alias_cpa, 0);
1266                 if (ret)
1267                         return ret;
1268         }
1269
1270 #ifdef CONFIG_X86_64
1271         /*
1272          * If the primary call didn't touch the high mapping already
1273          * and the physical address is inside the kernel map, we need
1274          * to touch the high mapped kernel as well:
1275          */
1276         if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1277             within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
1278                 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1279                                                __START_KERNEL_map - phys_base;
1280                 alias_cpa = *cpa;
1281                 alias_cpa.vaddr = &temp_cpa_vaddr;
1282                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1283
1284                 /*
1285                  * The high mapping range is imprecise, so ignore the
1286                  * return value.
1287                  */
1288                 __change_page_attr_set_clr(&alias_cpa, 0);
1289         }
1290 #endif
1291
1292         return 0;
1293 }
1294
1295 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1296 {
1297         int ret, numpages = cpa->numpages;
1298
1299         while (numpages) {
1300                 /*
1301                  * Store the remaining nr of pages for the large page
1302                  * preservation check.
1303                  */
1304                 cpa->numpages = numpages;
1305                 /* for array changes, we can't use large page */
1306                 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1307                         cpa->numpages = 1;
1308
1309                 if (!debug_pagealloc)
1310                         spin_lock(&cpa_lock);
1311                 ret = __change_page_attr(cpa, checkalias);
1312                 if (!debug_pagealloc)
1313                         spin_unlock(&cpa_lock);
1314                 if (ret)
1315                         return ret;
1316
1317                 if (checkalias) {
1318                         ret = cpa_process_alias(cpa);
1319                         if (ret)
1320                                 return ret;
1321                 }
1322
1323                 /*
1324                  * Adjust the number of pages with the result of the
1325                  * CPA operation. Either a large page has been
1326                  * preserved or a single page update happened.
1327                  */
1328                 BUG_ON(cpa->numpages > numpages);
1329                 numpages -= cpa->numpages;
1330                 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
1331                         cpa->curpage++;
1332                 else
1333                         *cpa->vaddr += cpa->numpages * PAGE_SIZE;
1334
1335         }
1336         return 0;
1337 }
1338
1339 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1340                                     pgprot_t mask_set, pgprot_t mask_clr,
1341                                     int force_split, int in_flag,
1342                                     struct page **pages)
1343 {
1344         struct cpa_data cpa;
1345         int ret, cache, checkalias;
1346         unsigned long baddr = 0;
1347
1348         memset(&cpa, 0, sizeof(cpa));
1349
1350         /*
1351          * Check, if we are requested to change a not supported
1352          * feature:
1353          */
1354         mask_set = canon_pgprot(mask_set);
1355         mask_clr = canon_pgprot(mask_clr);
1356         if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1357                 return 0;
1358
1359         /* Ensure we are PAGE_SIZE aligned */
1360         if (in_flag & CPA_ARRAY) {
1361                 int i;
1362                 for (i = 0; i < numpages; i++) {
1363                         if (addr[i] & ~PAGE_MASK) {
1364                                 addr[i] &= PAGE_MASK;
1365                                 WARN_ON_ONCE(1);
1366                         }
1367                 }
1368         } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1369                 /*
1370                  * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1371                  * No need to cehck in that case
1372                  */
1373                 if (*addr & ~PAGE_MASK) {
1374                         *addr &= PAGE_MASK;
1375                         /*
1376                          * People should not be passing in unaligned addresses:
1377                          */
1378                         WARN_ON_ONCE(1);
1379                 }
1380                 /*
1381                  * Save address for cache flush. *addr is modified in the call
1382                  * to __change_page_attr_set_clr() below.
1383                  */
1384                 baddr = *addr;
1385         }
1386
1387         /* Must avoid aliasing mappings in the highmem code */
1388         kmap_flush_unused();
1389
1390         vm_unmap_aliases();
1391
1392         cpa.vaddr = addr;
1393         cpa.pages = pages;
1394         cpa.numpages = numpages;
1395         cpa.mask_set = mask_set;
1396         cpa.mask_clr = mask_clr;
1397         cpa.flags = 0;
1398         cpa.curpage = 0;
1399         cpa.force_split = force_split;
1400
1401         if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1402                 cpa.flags |= in_flag;
1403
1404         /* No alias checking for _NX bit modifications */
1405         checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1406
1407         ret = __change_page_attr_set_clr(&cpa, checkalias);
1408
1409         /*
1410          * Check whether we really changed something:
1411          */
1412         if (!(cpa.flags & CPA_FLUSHTLB))
1413                 goto out;
1414
1415         /*
1416          * No need to flush, when we did not set any of the caching
1417          * attributes:
1418          */
1419         cache = !!pgprot2cachemode(mask_set);
1420
1421         /*
1422          * On success we use CLFLUSH, when the CPU supports it to
1423          * avoid the WBINVD. If the CPU does not support it and in the
1424          * error case we fall back to cpa_flush_all (which uses
1425          * WBINVD):
1426          */
1427         if (!ret && cpu_has_clflush) {
1428                 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
1429                         cpa_flush_array(addr, numpages, cache,
1430                                         cpa.flags, pages);
1431                 } else
1432                         cpa_flush_range(baddr, numpages, cache);
1433         } else
1434                 cpa_flush_all(cache);
1435
1436 out:
1437         return ret;
1438 }
1439
1440 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1441                                        pgprot_t mask, int array)
1442 {
1443         return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1444                 (array ? CPA_ARRAY : 0), NULL);
1445 }
1446
1447 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1448                                          pgprot_t mask, int array)
1449 {
1450         return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1451                 (array ? CPA_ARRAY : 0), NULL);
1452 }
1453
1454 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1455                                        pgprot_t mask)
1456 {
1457         return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1458                 CPA_PAGES_ARRAY, pages);
1459 }
1460
1461 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1462                                          pgprot_t mask)
1463 {
1464         return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1465                 CPA_PAGES_ARRAY, pages);
1466 }
1467
1468 int _set_memory_uc(unsigned long addr, int numpages)
1469 {
1470         /*
1471          * for now UC MINUS. see comments in ioremap_nocache()
1472          * If you really need strong UC use ioremap_uc(), but note
1473          * that you cannot override IO areas with set_memory_*() as
1474          * these helpers cannot work with IO memory.
1475          */
1476         return change_page_attr_set(&addr, numpages,
1477                                     cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1478                                     0);
1479 }
1480
1481 int set_memory_uc(unsigned long addr, int numpages)
1482 {
1483         int ret;
1484
1485         /*
1486          * for now UC MINUS. see comments in ioremap_nocache()
1487          */
1488         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1489                               _PAGE_CACHE_MODE_UC_MINUS, NULL);
1490         if (ret)
1491                 goto out_err;
1492
1493         ret = _set_memory_uc(addr, numpages);
1494         if (ret)
1495                 goto out_free;
1496
1497         return 0;
1498
1499 out_free:
1500         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1501 out_err:
1502         return ret;
1503 }
1504 EXPORT_SYMBOL(set_memory_uc);
1505
1506 static int _set_memory_array(unsigned long *addr, int addrinarray,
1507                 enum page_cache_mode new_type)
1508 {
1509         enum page_cache_mode set_type;
1510         int i, j;
1511         int ret;
1512
1513         for (i = 0; i < addrinarray; i++) {
1514                 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1515                                         new_type, NULL);
1516                 if (ret)
1517                         goto out_free;
1518         }
1519
1520         /* If WC, set to UC- first and then WC */
1521         set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1522                                 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1523
1524         ret = change_page_attr_set(addr, addrinarray,
1525                                    cachemode2pgprot(set_type), 1);
1526
1527         if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1528                 ret = change_page_attr_set_clr(addr, addrinarray,
1529                                                cachemode2pgprot(
1530                                                 _PAGE_CACHE_MODE_WC),
1531                                                __pgprot(_PAGE_CACHE_MASK),
1532                                                0, CPA_ARRAY, NULL);
1533         if (ret)
1534                 goto out_free;
1535
1536         return 0;
1537
1538 out_free:
1539         for (j = 0; j < i; j++)
1540                 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1541
1542         return ret;
1543 }
1544
1545 int set_memory_array_uc(unsigned long *addr, int addrinarray)
1546 {
1547         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1548 }
1549 EXPORT_SYMBOL(set_memory_array_uc);
1550
1551 int set_memory_array_wc(unsigned long *addr, int addrinarray)
1552 {
1553         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WC);
1554 }
1555 EXPORT_SYMBOL(set_memory_array_wc);
1556
1557 int set_memory_array_wt(unsigned long *addr, int addrinarray)
1558 {
1559         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WT);
1560 }
1561 EXPORT_SYMBOL_GPL(set_memory_array_wt);
1562
1563 int _set_memory_wc(unsigned long addr, int numpages)
1564 {
1565         int ret;
1566         unsigned long addr_copy = addr;
1567
1568         ret = change_page_attr_set(&addr, numpages,
1569                                    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1570                                    0);
1571         if (!ret) {
1572                 ret = change_page_attr_set_clr(&addr_copy, numpages,
1573                                                cachemode2pgprot(
1574                                                 _PAGE_CACHE_MODE_WC),
1575                                                __pgprot(_PAGE_CACHE_MASK),
1576                                                0, 0, NULL);
1577         }
1578         return ret;
1579 }
1580
1581 int set_memory_wc(unsigned long addr, int numpages)
1582 {
1583         int ret;
1584
1585         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1586                 _PAGE_CACHE_MODE_WC, NULL);
1587         if (ret)
1588                 return ret;
1589
1590         ret = _set_memory_wc(addr, numpages);
1591         if (ret)
1592                 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1593
1594         return ret;
1595 }
1596 EXPORT_SYMBOL(set_memory_wc);
1597
1598 int _set_memory_wt(unsigned long addr, int numpages)
1599 {
1600         return change_page_attr_set(&addr, numpages,
1601                                     cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1602 }
1603
1604 int set_memory_wt(unsigned long addr, int numpages)
1605 {
1606         int ret;
1607
1608         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1609                               _PAGE_CACHE_MODE_WT, NULL);
1610         if (ret)
1611                 return ret;
1612
1613         ret = _set_memory_wt(addr, numpages);
1614         if (ret)
1615                 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1616
1617         return ret;
1618 }
1619 EXPORT_SYMBOL_GPL(set_memory_wt);
1620
1621 int _set_memory_wb(unsigned long addr, int numpages)
1622 {
1623         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1624         return change_page_attr_clear(&addr, numpages,
1625                                       __pgprot(_PAGE_CACHE_MASK), 0);
1626 }
1627
1628 int set_memory_wb(unsigned long addr, int numpages)
1629 {
1630         int ret;
1631
1632         ret = _set_memory_wb(addr, numpages);
1633         if (ret)
1634                 return ret;
1635
1636         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1637         return 0;
1638 }
1639 EXPORT_SYMBOL(set_memory_wb);
1640
1641 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1642 {
1643         int i;
1644         int ret;
1645
1646         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1647         ret = change_page_attr_clear(addr, addrinarray,
1648                                       __pgprot(_PAGE_CACHE_MASK), 1);
1649         if (ret)
1650                 return ret;
1651
1652         for (i = 0; i < addrinarray; i++)
1653                 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1654
1655         return 0;
1656 }
1657 EXPORT_SYMBOL(set_memory_array_wb);
1658
1659 int set_memory_x(unsigned long addr, int numpages)
1660 {
1661         if (!(__supported_pte_mask & _PAGE_NX))
1662                 return 0;
1663
1664         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1665 }
1666 EXPORT_SYMBOL(set_memory_x);
1667
1668 int set_memory_nx(unsigned long addr, int numpages)
1669 {
1670         if (!(__supported_pte_mask & _PAGE_NX))
1671                 return 0;
1672
1673         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1674 }
1675 EXPORT_SYMBOL(set_memory_nx);
1676
1677 int set_memory_ro(unsigned long addr, int numpages)
1678 {
1679         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1680 }
1681
1682 int set_memory_rw(unsigned long addr, int numpages)
1683 {
1684         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1685 }
1686
1687 int set_memory_np(unsigned long addr, int numpages)
1688 {
1689         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1690 }
1691
1692 int set_memory_4k(unsigned long addr, int numpages)
1693 {
1694         return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1695                                         __pgprot(0), 1, 0, NULL);
1696 }
1697
1698 int set_pages_uc(struct page *page, int numpages)
1699 {
1700         unsigned long addr = (unsigned long)page_address(page);
1701
1702         return set_memory_uc(addr, numpages);
1703 }
1704 EXPORT_SYMBOL(set_pages_uc);
1705
1706 static int _set_pages_array(struct page **pages, int addrinarray,
1707                 enum page_cache_mode new_type)
1708 {
1709         unsigned long start;
1710         unsigned long end;
1711         enum page_cache_mode set_type;
1712         int i;
1713         int free_idx;
1714         int ret;
1715
1716         for (i = 0; i < addrinarray; i++) {
1717                 if (PageHighMem(pages[i]))
1718                         continue;
1719                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1720                 end = start + PAGE_SIZE;
1721                 if (reserve_memtype(start, end, new_type, NULL))
1722                         goto err_out;
1723         }
1724
1725         /* If WC, set to UC- first and then WC */
1726         set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1727                                 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1728
1729         ret = cpa_set_pages_array(pages, addrinarray,
1730                                   cachemode2pgprot(set_type));
1731         if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1732                 ret = change_page_attr_set_clr(NULL, addrinarray,
1733                                                cachemode2pgprot(
1734                                                 _PAGE_CACHE_MODE_WC),
1735                                                __pgprot(_PAGE_CACHE_MASK),
1736                                                0, CPA_PAGES_ARRAY, pages);
1737         if (ret)
1738                 goto err_out;
1739         return 0; /* Success */
1740 err_out:
1741         free_idx = i;
1742         for (i = 0; i < free_idx; i++) {
1743                 if (PageHighMem(pages[i]))
1744                         continue;
1745                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1746                 end = start + PAGE_SIZE;
1747                 free_memtype(start, end);
1748         }
1749         return -EINVAL;
1750 }
1751
1752 int set_pages_array_uc(struct page **pages, int addrinarray)
1753 {
1754         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1755 }
1756 EXPORT_SYMBOL(set_pages_array_uc);
1757
1758 int set_pages_array_wc(struct page **pages, int addrinarray)
1759 {
1760         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WC);
1761 }
1762 EXPORT_SYMBOL(set_pages_array_wc);
1763
1764 int set_pages_array_wt(struct page **pages, int addrinarray)
1765 {
1766         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WT);
1767 }
1768 EXPORT_SYMBOL_GPL(set_pages_array_wt);
1769
1770 int set_pages_wb(struct page *page, int numpages)
1771 {
1772         unsigned long addr = (unsigned long)page_address(page);
1773
1774         return set_memory_wb(addr, numpages);
1775 }
1776 EXPORT_SYMBOL(set_pages_wb);
1777
1778 int set_pages_array_wb(struct page **pages, int addrinarray)
1779 {
1780         int retval;
1781         unsigned long start;
1782         unsigned long end;
1783         int i;
1784
1785         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1786         retval = cpa_clear_pages_array(pages, addrinarray,
1787                         __pgprot(_PAGE_CACHE_MASK));
1788         if (retval)
1789                 return retval;
1790
1791         for (i = 0; i < addrinarray; i++) {
1792                 if (PageHighMem(pages[i]))
1793                         continue;
1794                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1795                 end = start + PAGE_SIZE;
1796                 free_memtype(start, end);
1797         }
1798
1799         return 0;
1800 }
1801 EXPORT_SYMBOL(set_pages_array_wb);
1802
1803 int set_pages_x(struct page *page, int numpages)
1804 {
1805         unsigned long addr = (unsigned long)page_address(page);
1806
1807         return set_memory_x(addr, numpages);
1808 }
1809 EXPORT_SYMBOL(set_pages_x);
1810
1811 int set_pages_nx(struct page *page, int numpages)
1812 {
1813         unsigned long addr = (unsigned long)page_address(page);
1814
1815         return set_memory_nx(addr, numpages);
1816 }
1817 EXPORT_SYMBOL(set_pages_nx);
1818
1819 int set_pages_ro(struct page *page, int numpages)
1820 {
1821         unsigned long addr = (unsigned long)page_address(page);
1822
1823         return set_memory_ro(addr, numpages);
1824 }
1825
1826 int set_pages_rw(struct page *page, int numpages)
1827 {
1828         unsigned long addr = (unsigned long)page_address(page);
1829
1830         return set_memory_rw(addr, numpages);
1831 }
1832
1833 #ifdef CONFIG_DEBUG_PAGEALLOC
1834
1835 static int __set_pages_p(struct page *page, int numpages)
1836 {
1837         unsigned long tempaddr = (unsigned long) page_address(page);
1838         struct cpa_data cpa = { .vaddr = &tempaddr,
1839                                 .pgd = NULL,
1840                                 .numpages = numpages,
1841                                 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1842                                 .mask_clr = __pgprot(0),
1843                                 .flags = 0};
1844
1845         /*
1846          * No alias checking needed for setting present flag. otherwise,
1847          * we may need to break large pages for 64-bit kernel text
1848          * mappings (this adds to complexity if we want to do this from
1849          * atomic context especially). Let's keep it simple!
1850          */
1851         return __change_page_attr_set_clr(&cpa, 0);
1852 }
1853
1854 static int __set_pages_np(struct page *page, int numpages)
1855 {
1856         unsigned long tempaddr = (unsigned long) page_address(page);
1857         struct cpa_data cpa = { .vaddr = &tempaddr,
1858                                 .pgd = NULL,
1859                                 .numpages = numpages,
1860                                 .mask_set = __pgprot(0),
1861                                 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1862                                 .flags = 0};
1863
1864         /*
1865          * No alias checking needed for setting not present flag. otherwise,
1866          * we may need to break large pages for 64-bit kernel text
1867          * mappings (this adds to complexity if we want to do this from
1868          * atomic context especially). Let's keep it simple!
1869          */
1870         return __change_page_attr_set_clr(&cpa, 0);
1871 }
1872
1873 void __kernel_map_pages(struct page *page, int numpages, int enable)
1874 {
1875         if (PageHighMem(page))
1876                 return;
1877         if (!enable) {
1878                 debug_check_no_locks_freed(page_address(page),
1879                                            numpages * PAGE_SIZE);
1880         }
1881
1882         /*
1883          * The return value is ignored as the calls cannot fail.
1884          * Large pages for identity mappings are not used at boot time
1885          * and hence no memory allocations during large page split.
1886          */
1887         if (enable)
1888                 __set_pages_p(page, numpages);
1889         else
1890                 __set_pages_np(page, numpages);
1891
1892         /*
1893          * We should perform an IPI and flush all tlbs,
1894          * but that can deadlock->flush only current cpu:
1895          */
1896         __flush_tlb_all();
1897
1898         arch_flush_lazy_mmu_mode();
1899 }
1900
1901 #ifdef CONFIG_HIBERNATION
1902
1903 bool kernel_page_present(struct page *page)
1904 {
1905         unsigned int level;
1906         pte_t *pte;
1907
1908         if (PageHighMem(page))
1909                 return false;
1910
1911         pte = lookup_address((unsigned long)page_address(page), &level);
1912         return (pte_val(*pte) & _PAGE_PRESENT);
1913 }
1914
1915 #endif /* CONFIG_HIBERNATION */
1916
1917 #endif /* CONFIG_DEBUG_PAGEALLOC */
1918
1919 int kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
1920                             unsigned numpages, unsigned long page_flags)
1921 {
1922         int retval = -EINVAL;
1923
1924         struct cpa_data cpa = {
1925                 .vaddr = &address,
1926                 .pfn = pfn,
1927                 .pgd = pgd,
1928                 .numpages = numpages,
1929                 .mask_set = __pgprot(0),
1930                 .mask_clr = __pgprot(0),
1931                 .flags = 0,
1932         };
1933
1934         if (!(__supported_pte_mask & _PAGE_NX))
1935                 goto out;
1936
1937         if (!(page_flags & _PAGE_NX))
1938                 cpa.mask_clr = __pgprot(_PAGE_NX);
1939
1940         cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
1941
1942         retval = __change_page_attr_set_clr(&cpa, 0);
1943         __flush_tlb_all();
1944
1945 out:
1946         return retval;
1947 }
1948
1949 void kernel_unmap_pages_in_pgd(pgd_t *root, unsigned long address,
1950                                unsigned numpages)
1951 {
1952         unmap_pgd_range(root, address, address + (numpages << PAGE_SHIFT));
1953 }
1954
1955 /*
1956  * The testcases use internal knowledge of the implementation that shouldn't
1957  * be exposed to the rest of the kernel. Include these directly here.
1958  */
1959 #ifdef CONFIG_CPA_DEBUG
1960 #include "pageattr-test.c"
1961 #endif