efi: x86: make efi_lookup_mapped_addr() a common function
[firefly-linux-kernel-4.4.55.git] / arch / x86 / platform / efi / efi.c
1 /*
2  * Common EFI (Extensible Firmware Interface) support functions
3  * Based on Extensible Firmware Interface Specification version 1.0
4  *
5  * Copyright (C) 1999 VA Linux Systems
6  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
7  * Copyright (C) 1999-2002 Hewlett-Packard Co.
8  *      David Mosberger-Tang <davidm@hpl.hp.com>
9  *      Stephane Eranian <eranian@hpl.hp.com>
10  * Copyright (C) 2005-2008 Intel Co.
11  *      Fenghua Yu <fenghua.yu@intel.com>
12  *      Bibo Mao <bibo.mao@intel.com>
13  *      Chandramouli Narayanan <mouli@linux.intel.com>
14  *      Huang Ying <ying.huang@intel.com>
15  *
16  * Copied from efi_32.c to eliminate the duplicated code between EFI
17  * 32/64 support code. --ying 2007-10-26
18  *
19  * All EFI Runtime Services are not implemented yet as EFI only
20  * supports physical mode addressing on SoftSDV. This is to be fixed
21  * in a future version.  --drummond 1999-07-20
22  *
23  * Implemented EFI runtime services and virtual mode calls.  --davidm
24  *
25  * Goutham Rao: <goutham.rao@intel.com>
26  *      Skip non-WB memory and ignore empty memory ranges.
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/efi.h>
34 #include <linux/efi-bgrt.h>
35 #include <linux/export.h>
36 #include <linux/bootmem.h>
37 #include <linux/slab.h>
38 #include <linux/memblock.h>
39 #include <linux/spinlock.h>
40 #include <linux/uaccess.h>
41 #include <linux/time.h>
42 #include <linux/io.h>
43 #include <linux/reboot.h>
44 #include <linux/bcd.h>
45
46 #include <asm/setup.h>
47 #include <asm/efi.h>
48 #include <asm/time.h>
49 #include <asm/cacheflush.h>
50 #include <asm/tlbflush.h>
51 #include <asm/x86_init.h>
52 #include <asm/rtc.h>
53
54 #define EFI_DEBUG       1
55
56 #define EFI_MIN_RESERVE 5120
57
58 #define EFI_DUMMY_GUID \
59         EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9)
60
61 static efi_char16_t efi_dummy_name[6] = { 'D', 'U', 'M', 'M', 'Y', 0 };
62
63 struct efi_memory_map memmap;
64
65 static struct efi efi_phys __initdata;
66 static efi_system_table_t efi_systab __initdata;
67
68 unsigned long x86_efi_facility;
69
70 static __initdata efi_config_table_type_t arch_tables[] = {
71 #ifdef CONFIG_X86_UV
72         {UV_SYSTEM_TABLE_GUID, "UVsystab", &efi.uv_systab},
73 #endif
74         {NULL_GUID, NULL, 0},
75 };
76
77 /*
78  * Returns 1 if 'facility' is enabled, 0 otherwise.
79  */
80 int efi_enabled(int facility)
81 {
82         return test_bit(facility, &x86_efi_facility) != 0;
83 }
84 EXPORT_SYMBOL(efi_enabled);
85
86 static bool __initdata disable_runtime = false;
87 static int __init setup_noefi(char *arg)
88 {
89         disable_runtime = true;
90         return 0;
91 }
92 early_param("noefi", setup_noefi);
93
94 int add_efi_memmap;
95 EXPORT_SYMBOL(add_efi_memmap);
96
97 static int __init setup_add_efi_memmap(char *arg)
98 {
99         add_efi_memmap = 1;
100         return 0;
101 }
102 early_param("add_efi_memmap", setup_add_efi_memmap);
103
104 static bool efi_no_storage_paranoia;
105
106 static int __init setup_storage_paranoia(char *arg)
107 {
108         efi_no_storage_paranoia = true;
109         return 0;
110 }
111 early_param("efi_no_storage_paranoia", setup_storage_paranoia);
112
113
114 static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
115 {
116         unsigned long flags;
117         efi_status_t status;
118
119         spin_lock_irqsave(&rtc_lock, flags);
120         status = efi_call_virt2(get_time, tm, tc);
121         spin_unlock_irqrestore(&rtc_lock, flags);
122         return status;
123 }
124
125 static efi_status_t virt_efi_set_time(efi_time_t *tm)
126 {
127         unsigned long flags;
128         efi_status_t status;
129
130         spin_lock_irqsave(&rtc_lock, flags);
131         status = efi_call_virt1(set_time, tm);
132         spin_unlock_irqrestore(&rtc_lock, flags);
133         return status;
134 }
135
136 static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled,
137                                              efi_bool_t *pending,
138                                              efi_time_t *tm)
139 {
140         unsigned long flags;
141         efi_status_t status;
142
143         spin_lock_irqsave(&rtc_lock, flags);
144         status = efi_call_virt3(get_wakeup_time,
145                                 enabled, pending, tm);
146         spin_unlock_irqrestore(&rtc_lock, flags);
147         return status;
148 }
149
150 static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
151 {
152         unsigned long flags;
153         efi_status_t status;
154
155         spin_lock_irqsave(&rtc_lock, flags);
156         status = efi_call_virt2(set_wakeup_time,
157                                 enabled, tm);
158         spin_unlock_irqrestore(&rtc_lock, flags);
159         return status;
160 }
161
162 static efi_status_t virt_efi_get_variable(efi_char16_t *name,
163                                           efi_guid_t *vendor,
164                                           u32 *attr,
165                                           unsigned long *data_size,
166                                           void *data)
167 {
168         return efi_call_virt5(get_variable,
169                               name, vendor, attr,
170                               data_size, data);
171 }
172
173 static efi_status_t virt_efi_get_next_variable(unsigned long *name_size,
174                                                efi_char16_t *name,
175                                                efi_guid_t *vendor)
176 {
177         return efi_call_virt3(get_next_variable,
178                               name_size, name, vendor);
179 }
180
181 static efi_status_t virt_efi_set_variable(efi_char16_t *name,
182                                           efi_guid_t *vendor,
183                                           u32 attr,
184                                           unsigned long data_size,
185                                           void *data)
186 {
187         return efi_call_virt5(set_variable,
188                               name, vendor, attr,
189                               data_size, data);
190 }
191
192 static efi_status_t virt_efi_query_variable_info(u32 attr,
193                                                  u64 *storage_space,
194                                                  u64 *remaining_space,
195                                                  u64 *max_variable_size)
196 {
197         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
198                 return EFI_UNSUPPORTED;
199
200         return efi_call_virt4(query_variable_info, attr, storage_space,
201                               remaining_space, max_variable_size);
202 }
203
204 static efi_status_t virt_efi_get_next_high_mono_count(u32 *count)
205 {
206         return efi_call_virt1(get_next_high_mono_count, count);
207 }
208
209 static void virt_efi_reset_system(int reset_type,
210                                   efi_status_t status,
211                                   unsigned long data_size,
212                                   efi_char16_t *data)
213 {
214         efi_call_virt4(reset_system, reset_type, status,
215                        data_size, data);
216 }
217
218 static efi_status_t virt_efi_update_capsule(efi_capsule_header_t **capsules,
219                                             unsigned long count,
220                                             unsigned long sg_list)
221 {
222         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
223                 return EFI_UNSUPPORTED;
224
225         return efi_call_virt3(update_capsule, capsules, count, sg_list);
226 }
227
228 static efi_status_t virt_efi_query_capsule_caps(efi_capsule_header_t **capsules,
229                                                 unsigned long count,
230                                                 u64 *max_size,
231                                                 int *reset_type)
232 {
233         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
234                 return EFI_UNSUPPORTED;
235
236         return efi_call_virt4(query_capsule_caps, capsules, count, max_size,
237                               reset_type);
238 }
239
240 static efi_status_t __init phys_efi_set_virtual_address_map(
241         unsigned long memory_map_size,
242         unsigned long descriptor_size,
243         u32 descriptor_version,
244         efi_memory_desc_t *virtual_map)
245 {
246         efi_status_t status;
247
248         efi_call_phys_prelog();
249         status = efi_call_phys4(efi_phys.set_virtual_address_map,
250                                 memory_map_size, descriptor_size,
251                                 descriptor_version, virtual_map);
252         efi_call_phys_epilog();
253         return status;
254 }
255
256 static efi_status_t __init phys_efi_get_time(efi_time_t *tm,
257                                              efi_time_cap_t *tc)
258 {
259         unsigned long flags;
260         efi_status_t status;
261
262         spin_lock_irqsave(&rtc_lock, flags);
263         efi_call_phys_prelog();
264         status = efi_call_phys2(efi_phys.get_time, virt_to_phys(tm),
265                                 virt_to_phys(tc));
266         efi_call_phys_epilog();
267         spin_unlock_irqrestore(&rtc_lock, flags);
268         return status;
269 }
270
271 int efi_set_rtc_mmss(unsigned long nowtime)
272 {
273         efi_status_t    status;
274         efi_time_t      eft;
275         efi_time_cap_t  cap;
276         struct rtc_time tm;
277
278         status = efi.get_time(&eft, &cap);
279         if (status != EFI_SUCCESS) {
280                 pr_err("Oops: efitime: can't read time!\n");
281                 return -1;
282         }
283
284         rtc_time_to_tm(nowtime, &tm);
285         if (!rtc_valid_tm(&tm)) {
286                 eft.year = tm.tm_year + 1900;
287                 eft.month = tm.tm_mon + 1;
288                 eft.day = tm.tm_mday;
289                 eft.minute = tm.tm_min;
290                 eft.second = tm.tm_sec;
291                 eft.nanosecond = 0;
292         } else {
293                 printk(KERN_ERR
294                        "%s: Invalid EFI RTC value: write of %lx to EFI RTC failed\n",
295                        __FUNCTION__, nowtime);
296                 return -1;
297         }
298
299         status = efi.set_time(&eft);
300         if (status != EFI_SUCCESS) {
301                 pr_err("Oops: efitime: can't write time!\n");
302                 return -1;
303         }
304         return 0;
305 }
306
307 unsigned long efi_get_time(void)
308 {
309         efi_status_t status;
310         efi_time_t eft;
311         efi_time_cap_t cap;
312
313         status = efi.get_time(&eft, &cap);
314         if (status != EFI_SUCCESS)
315                 pr_err("Oops: efitime: can't read time!\n");
316
317         return mktime(eft.year, eft.month, eft.day, eft.hour,
318                       eft.minute, eft.second);
319 }
320
321 /*
322  * Tell the kernel about the EFI memory map.  This might include
323  * more than the max 128 entries that can fit in the e820 legacy
324  * (zeropage) memory map.
325  */
326
327 static void __init do_add_efi_memmap(void)
328 {
329         void *p;
330
331         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
332                 efi_memory_desc_t *md = p;
333                 unsigned long long start = md->phys_addr;
334                 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
335                 int e820_type;
336
337                 switch (md->type) {
338                 case EFI_LOADER_CODE:
339                 case EFI_LOADER_DATA:
340                 case EFI_BOOT_SERVICES_CODE:
341                 case EFI_BOOT_SERVICES_DATA:
342                 case EFI_CONVENTIONAL_MEMORY:
343                         if (md->attribute & EFI_MEMORY_WB)
344                                 e820_type = E820_RAM;
345                         else
346                                 e820_type = E820_RESERVED;
347                         break;
348                 case EFI_ACPI_RECLAIM_MEMORY:
349                         e820_type = E820_ACPI;
350                         break;
351                 case EFI_ACPI_MEMORY_NVS:
352                         e820_type = E820_NVS;
353                         break;
354                 case EFI_UNUSABLE_MEMORY:
355                         e820_type = E820_UNUSABLE;
356                         break;
357                 default:
358                         /*
359                          * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
360                          * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
361                          * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
362                          */
363                         e820_type = E820_RESERVED;
364                         break;
365                 }
366                 e820_add_region(start, size, e820_type);
367         }
368         sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
369 }
370
371 int __init efi_memblock_x86_reserve_range(void)
372 {
373         struct efi_info *e = &boot_params.efi_info;
374         unsigned long pmap;
375
376 #ifdef CONFIG_X86_32
377         /* Can't handle data above 4GB at this time */
378         if (e->efi_memmap_hi) {
379                 pr_err("Memory map is above 4GB, disabling EFI.\n");
380                 return -EINVAL;
381         }
382         pmap =  e->efi_memmap;
383 #else
384         pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
385 #endif
386         memmap.phys_map         = (void *)pmap;
387         memmap.nr_map           = e->efi_memmap_size /
388                                   e->efi_memdesc_size;
389         memmap.desc_size        = e->efi_memdesc_size;
390         memmap.desc_version     = e->efi_memdesc_version;
391
392         memblock_reserve(pmap, memmap.nr_map * memmap.desc_size);
393
394         efi.memmap = &memmap;
395
396         return 0;
397 }
398
399 #if EFI_DEBUG
400 static void __init print_efi_memmap(void)
401 {
402         efi_memory_desc_t *md;
403         void *p;
404         int i;
405
406         for (p = memmap.map, i = 0;
407              p < memmap.map_end;
408              p += memmap.desc_size, i++) {
409                 md = p;
410                 pr_info("mem%02u: type=%u, attr=0x%llx, "
411                         "range=[0x%016llx-0x%016llx) (%lluMB)\n",
412                         i, md->type, md->attribute, md->phys_addr,
413                         md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
414                         (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
415         }
416 }
417 #endif  /*  EFI_DEBUG  */
418
419 void __init efi_reserve_boot_services(void)
420 {
421         void *p;
422
423         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
424                 efi_memory_desc_t *md = p;
425                 u64 start = md->phys_addr;
426                 u64 size = md->num_pages << EFI_PAGE_SHIFT;
427
428                 if (md->type != EFI_BOOT_SERVICES_CODE &&
429                     md->type != EFI_BOOT_SERVICES_DATA)
430                         continue;
431                 /* Only reserve where possible:
432                  * - Not within any already allocated areas
433                  * - Not over any memory area (really needed, if above?)
434                  * - Not within any part of the kernel
435                  * - Not the bios reserved area
436                 */
437                 if ((start+size >= __pa_symbol(_text)
438                                 && start <= __pa_symbol(_end)) ||
439                         !e820_all_mapped(start, start+size, E820_RAM) ||
440                         memblock_is_region_reserved(start, size)) {
441                         /* Could not reserve, skip it */
442                         md->num_pages = 0;
443                         memblock_dbg("Could not reserve boot range "
444                                         "[0x%010llx-0x%010llx]\n",
445                                                 start, start+size-1);
446                 } else
447                         memblock_reserve(start, size);
448         }
449 }
450
451 void __init efi_unmap_memmap(void)
452 {
453         clear_bit(EFI_MEMMAP, &x86_efi_facility);
454         if (memmap.map) {
455                 early_iounmap(memmap.map, memmap.nr_map * memmap.desc_size);
456                 memmap.map = NULL;
457         }
458 }
459
460 void __init efi_free_boot_services(void)
461 {
462         void *p;
463
464         if (!efi_is_native())
465                 return;
466
467         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
468                 efi_memory_desc_t *md = p;
469                 unsigned long long start = md->phys_addr;
470                 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
471
472                 if (md->type != EFI_BOOT_SERVICES_CODE &&
473                     md->type != EFI_BOOT_SERVICES_DATA)
474                         continue;
475
476                 /* Could not reserve boot area */
477                 if (!size)
478                         continue;
479
480                 free_bootmem_late(start, size);
481         }
482
483         efi_unmap_memmap();
484 }
485
486 static int __init efi_systab_init(void *phys)
487 {
488         if (efi_enabled(EFI_64BIT)) {
489                 efi_system_table_64_t *systab64;
490                 u64 tmp = 0;
491
492                 systab64 = early_ioremap((unsigned long)phys,
493                                          sizeof(*systab64));
494                 if (systab64 == NULL) {
495                         pr_err("Couldn't map the system table!\n");
496                         return -ENOMEM;
497                 }
498
499                 efi_systab.hdr = systab64->hdr;
500                 efi_systab.fw_vendor = systab64->fw_vendor;
501                 tmp |= systab64->fw_vendor;
502                 efi_systab.fw_revision = systab64->fw_revision;
503                 efi_systab.con_in_handle = systab64->con_in_handle;
504                 tmp |= systab64->con_in_handle;
505                 efi_systab.con_in = systab64->con_in;
506                 tmp |= systab64->con_in;
507                 efi_systab.con_out_handle = systab64->con_out_handle;
508                 tmp |= systab64->con_out_handle;
509                 efi_systab.con_out = systab64->con_out;
510                 tmp |= systab64->con_out;
511                 efi_systab.stderr_handle = systab64->stderr_handle;
512                 tmp |= systab64->stderr_handle;
513                 efi_systab.stderr = systab64->stderr;
514                 tmp |= systab64->stderr;
515                 efi_systab.runtime = (void *)(unsigned long)systab64->runtime;
516                 tmp |= systab64->runtime;
517                 efi_systab.boottime = (void *)(unsigned long)systab64->boottime;
518                 tmp |= systab64->boottime;
519                 efi_systab.nr_tables = systab64->nr_tables;
520                 efi_systab.tables = systab64->tables;
521                 tmp |= systab64->tables;
522
523                 early_iounmap(systab64, sizeof(*systab64));
524 #ifdef CONFIG_X86_32
525                 if (tmp >> 32) {
526                         pr_err("EFI data located above 4GB, disabling EFI.\n");
527                         return -EINVAL;
528                 }
529 #endif
530         } else {
531                 efi_system_table_32_t *systab32;
532
533                 systab32 = early_ioremap((unsigned long)phys,
534                                          sizeof(*systab32));
535                 if (systab32 == NULL) {
536                         pr_err("Couldn't map the system table!\n");
537                         return -ENOMEM;
538                 }
539
540                 efi_systab.hdr = systab32->hdr;
541                 efi_systab.fw_vendor = systab32->fw_vendor;
542                 efi_systab.fw_revision = systab32->fw_revision;
543                 efi_systab.con_in_handle = systab32->con_in_handle;
544                 efi_systab.con_in = systab32->con_in;
545                 efi_systab.con_out_handle = systab32->con_out_handle;
546                 efi_systab.con_out = systab32->con_out;
547                 efi_systab.stderr_handle = systab32->stderr_handle;
548                 efi_systab.stderr = systab32->stderr;
549                 efi_systab.runtime = (void *)(unsigned long)systab32->runtime;
550                 efi_systab.boottime = (void *)(unsigned long)systab32->boottime;
551                 efi_systab.nr_tables = systab32->nr_tables;
552                 efi_systab.tables = systab32->tables;
553
554                 early_iounmap(systab32, sizeof(*systab32));
555         }
556
557         efi.systab = &efi_systab;
558
559         /*
560          * Verify the EFI Table
561          */
562         if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
563                 pr_err("System table signature incorrect!\n");
564                 return -EINVAL;
565         }
566         if ((efi.systab->hdr.revision >> 16) == 0)
567                 pr_err("Warning: System table version "
568                        "%d.%02d, expected 1.00 or greater!\n",
569                        efi.systab->hdr.revision >> 16,
570                        efi.systab->hdr.revision & 0xffff);
571
572         return 0;
573 }
574
575 static int __init efi_runtime_init(void)
576 {
577         efi_runtime_services_t *runtime;
578
579         /*
580          * Check out the runtime services table. We need to map
581          * the runtime services table so that we can grab the physical
582          * address of several of the EFI runtime functions, needed to
583          * set the firmware into virtual mode.
584          */
585         runtime = early_ioremap((unsigned long)efi.systab->runtime,
586                                 sizeof(efi_runtime_services_t));
587         if (!runtime) {
588                 pr_err("Could not map the runtime service table!\n");
589                 return -ENOMEM;
590         }
591         /*
592          * We will only need *early* access to the following
593          * two EFI runtime services before set_virtual_address_map
594          * is invoked.
595          */
596         efi_phys.get_time = (efi_get_time_t *)runtime->get_time;
597         efi_phys.set_virtual_address_map =
598                 (efi_set_virtual_address_map_t *)
599                 runtime->set_virtual_address_map;
600         /*
601          * Make efi_get_time can be called before entering
602          * virtual mode.
603          */
604         efi.get_time = phys_efi_get_time;
605         early_iounmap(runtime, sizeof(efi_runtime_services_t));
606
607         return 0;
608 }
609
610 static int __init efi_memmap_init(void)
611 {
612         /* Map the EFI memory map */
613         memmap.map = early_ioremap((unsigned long)memmap.phys_map,
614                                    memmap.nr_map * memmap.desc_size);
615         if (memmap.map == NULL) {
616                 pr_err("Could not map the memory map!\n");
617                 return -ENOMEM;
618         }
619         memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
620
621         if (add_efi_memmap)
622                 do_add_efi_memmap();
623
624         return 0;
625 }
626
627 void __init efi_init(void)
628 {
629         efi_char16_t *c16;
630         char vendor[100] = "unknown";
631         int i = 0;
632         void *tmp;
633
634 #ifdef CONFIG_X86_32
635         if (boot_params.efi_info.efi_systab_hi ||
636             boot_params.efi_info.efi_memmap_hi) {
637                 pr_info("Table located above 4GB, disabling EFI.\n");
638                 return;
639         }
640         efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
641 #else
642         efi_phys.systab = (efi_system_table_t *)
643                           (boot_params.efi_info.efi_systab |
644                           ((__u64)boot_params.efi_info.efi_systab_hi<<32));
645 #endif
646
647         if (efi_systab_init(efi_phys.systab))
648                 return;
649
650         set_bit(EFI_SYSTEM_TABLES, &x86_efi_facility);
651
652         /*
653          * Show what we know for posterity
654          */
655         c16 = tmp = early_ioremap(efi.systab->fw_vendor, 2);
656         if (c16) {
657                 for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
658                         vendor[i] = *c16++;
659                 vendor[i] = '\0';
660         } else
661                 pr_err("Could not map the firmware vendor!\n");
662         early_iounmap(tmp, 2);
663
664         pr_info("EFI v%u.%.02u by %s\n",
665                 efi.systab->hdr.revision >> 16,
666                 efi.systab->hdr.revision & 0xffff, vendor);
667
668         if (efi_config_init(arch_tables))
669                 return;
670
671         set_bit(EFI_CONFIG_TABLES, &x86_efi_facility);
672
673         /*
674          * Note: We currently don't support runtime services on an EFI
675          * that doesn't match the kernel 32/64-bit mode.
676          */
677
678         if (!efi_is_native())
679                 pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n");
680         else {
681                 if (disable_runtime || efi_runtime_init())
682                         return;
683                 set_bit(EFI_RUNTIME_SERVICES, &x86_efi_facility);
684         }
685
686         if (efi_memmap_init())
687                 return;
688
689         set_bit(EFI_MEMMAP, &x86_efi_facility);
690
691 #ifdef CONFIG_X86_32
692         if (efi_is_native()) {
693                 x86_platform.get_wallclock = efi_get_time;
694                 x86_platform.set_wallclock = efi_set_rtc_mmss;
695         }
696 #endif
697
698 #if EFI_DEBUG
699         print_efi_memmap();
700 #endif
701 }
702
703 void __init efi_late_init(void)
704 {
705         efi_bgrt_init();
706 }
707
708 void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
709 {
710         u64 addr, npages;
711
712         addr = md->virt_addr;
713         npages = md->num_pages;
714
715         memrange_efi_to_native(&addr, &npages);
716
717         if (executable)
718                 set_memory_x(addr, npages);
719         else
720                 set_memory_nx(addr, npages);
721 }
722
723 static void __init runtime_code_page_mkexec(void)
724 {
725         efi_memory_desc_t *md;
726         void *p;
727
728         /* Make EFI runtime service code area executable */
729         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
730                 md = p;
731
732                 if (md->type != EFI_RUNTIME_SERVICES_CODE)
733                         continue;
734
735                 efi_set_executable(md, true);
736         }
737 }
738
739 void efi_memory_uc(u64 addr, unsigned long size)
740 {
741         unsigned long page_shift = 1UL << EFI_PAGE_SHIFT;
742         u64 npages;
743
744         npages = round_up(size, page_shift) / page_shift;
745         memrange_efi_to_native(&addr, &npages);
746         set_memory_uc(addr, npages);
747 }
748
749 /*
750  * This function will switch the EFI runtime services to virtual mode.
751  * Essentially, look through the EFI memmap and map every region that
752  * has the runtime attribute bit set in its memory descriptor and update
753  * that memory descriptor with the virtual address obtained from ioremap().
754  * This enables the runtime services to be called without having to
755  * thunk back into physical mode for every invocation.
756  */
757 void __init efi_enter_virtual_mode(void)
758 {
759         efi_memory_desc_t *md, *prev_md = NULL;
760         efi_status_t status;
761         unsigned long size;
762         u64 end, systab, start_pfn, end_pfn;
763         void *p, *va, *new_memmap = NULL;
764         int count = 0;
765
766         efi.systab = NULL;
767
768         /*
769          * We don't do virtual mode, since we don't do runtime services, on
770          * non-native EFI
771          */
772
773         if (!efi_is_native()) {
774                 efi_unmap_memmap();
775                 return;
776         }
777
778         /* Merge contiguous regions of the same type and attribute */
779         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
780                 u64 prev_size;
781                 md = p;
782
783                 if (!prev_md) {
784                         prev_md = md;
785                         continue;
786                 }
787
788                 if (prev_md->type != md->type ||
789                     prev_md->attribute != md->attribute) {
790                         prev_md = md;
791                         continue;
792                 }
793
794                 prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
795
796                 if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
797                         prev_md->num_pages += md->num_pages;
798                         md->type = EFI_RESERVED_TYPE;
799                         md->attribute = 0;
800                         continue;
801                 }
802                 prev_md = md;
803         }
804
805         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
806                 md = p;
807                 if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
808                     md->type != EFI_BOOT_SERVICES_CODE &&
809                     md->type != EFI_BOOT_SERVICES_DATA)
810                         continue;
811
812                 size = md->num_pages << EFI_PAGE_SHIFT;
813                 end = md->phys_addr + size;
814
815                 start_pfn = PFN_DOWN(md->phys_addr);
816                 end_pfn = PFN_UP(end);
817                 if (pfn_range_is_mapped(start_pfn, end_pfn)) {
818                         va = __va(md->phys_addr);
819
820                         if (!(md->attribute & EFI_MEMORY_WB))
821                                 efi_memory_uc((u64)(unsigned long)va, size);
822                 } else
823                         va = efi_ioremap(md->phys_addr, size,
824                                          md->type, md->attribute);
825
826                 md->virt_addr = (u64) (unsigned long) va;
827
828                 if (!va) {
829                         pr_err("ioremap of 0x%llX failed!\n",
830                                (unsigned long long)md->phys_addr);
831                         continue;
832                 }
833
834                 systab = (u64) (unsigned long) efi_phys.systab;
835                 if (md->phys_addr <= systab && systab < end) {
836                         systab += md->virt_addr - md->phys_addr;
837                         efi.systab = (efi_system_table_t *) (unsigned long) systab;
838                 }
839                 new_memmap = krealloc(new_memmap,
840                                       (count + 1) * memmap.desc_size,
841                                       GFP_KERNEL);
842                 memcpy(new_memmap + (count * memmap.desc_size), md,
843                        memmap.desc_size);
844                 count++;
845         }
846
847         BUG_ON(!efi.systab);
848
849         status = phys_efi_set_virtual_address_map(
850                 memmap.desc_size * count,
851                 memmap.desc_size,
852                 memmap.desc_version,
853                 (efi_memory_desc_t *)__pa(new_memmap));
854
855         if (status != EFI_SUCCESS) {
856                 pr_alert("Unable to switch EFI into virtual mode "
857                          "(status=%lx)!\n", status);
858                 panic("EFI call to SetVirtualAddressMap() failed!");
859         }
860
861         /*
862          * Now that EFI is in virtual mode, update the function
863          * pointers in the runtime service table to the new virtual addresses.
864          *
865          * Call EFI services through wrapper functions.
866          */
867         efi.runtime_version = efi_systab.hdr.revision;
868         efi.get_time = virt_efi_get_time;
869         efi.set_time = virt_efi_set_time;
870         efi.get_wakeup_time = virt_efi_get_wakeup_time;
871         efi.set_wakeup_time = virt_efi_set_wakeup_time;
872         efi.get_variable = virt_efi_get_variable;
873         efi.get_next_variable = virt_efi_get_next_variable;
874         efi.set_variable = virt_efi_set_variable;
875         efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
876         efi.reset_system = virt_efi_reset_system;
877         efi.set_virtual_address_map = NULL;
878         efi.query_variable_info = virt_efi_query_variable_info;
879         efi.update_capsule = virt_efi_update_capsule;
880         efi.query_capsule_caps = virt_efi_query_capsule_caps;
881         if (__supported_pte_mask & _PAGE_NX)
882                 runtime_code_page_mkexec();
883
884         kfree(new_memmap);
885
886         /* clean DUMMY object */
887         efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
888                          EFI_VARIABLE_NON_VOLATILE |
889                          EFI_VARIABLE_BOOTSERVICE_ACCESS |
890                          EFI_VARIABLE_RUNTIME_ACCESS,
891                          0, NULL);
892 }
893
894 /*
895  * Convenience functions to obtain memory types and attributes
896  */
897 u32 efi_mem_type(unsigned long phys_addr)
898 {
899         efi_memory_desc_t *md;
900         void *p;
901
902         if (!efi_enabled(EFI_MEMMAP))
903                 return 0;
904
905         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
906                 md = p;
907                 if ((md->phys_addr <= phys_addr) &&
908                     (phys_addr < (md->phys_addr +
909                                   (md->num_pages << EFI_PAGE_SHIFT))))
910                         return md->type;
911         }
912         return 0;
913 }
914
915 u64 efi_mem_attributes(unsigned long phys_addr)
916 {
917         efi_memory_desc_t *md;
918         void *p;
919
920         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
921                 md = p;
922                 if ((md->phys_addr <= phys_addr) &&
923                     (phys_addr < (md->phys_addr +
924                                   (md->num_pages << EFI_PAGE_SHIFT))))
925                         return md->attribute;
926         }
927         return 0;
928 }
929
930 /*
931  * Some firmware has serious problems when using more than 50% of the EFI
932  * variable store, i.e. it triggers bugs that can brick machines. Ensure that
933  * we never use more than this safe limit.
934  *
935  * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable
936  * store.
937  */
938 efi_status_t efi_query_variable_store(u32 attributes, unsigned long size)
939 {
940         efi_status_t status;
941         u64 storage_size, remaining_size, max_size;
942
943         if (!(attributes & EFI_VARIABLE_NON_VOLATILE))
944                 return 0;
945
946         status = efi.query_variable_info(attributes, &storage_size,
947                                          &remaining_size, &max_size);
948         if (status != EFI_SUCCESS)
949                 return status;
950
951         /*
952          * Some firmware implementations refuse to boot if there's insufficient
953          * space in the variable store. We account for that by refusing the
954          * write if permitting it would reduce the available space to under
955          * 5KB. This figure was provided by Samsung, so should be safe.
956          */
957         if ((remaining_size - size < EFI_MIN_RESERVE) &&
958                 !efi_no_storage_paranoia) {
959
960                 /*
961                  * Triggering garbage collection may require that the firmware
962                  * generate a real EFI_OUT_OF_RESOURCES error. We can force
963                  * that by attempting to use more space than is available.
964                  */
965                 unsigned long dummy_size = remaining_size + 1024;
966                 void *dummy = kzalloc(dummy_size, GFP_ATOMIC);
967
968                 if (!dummy)
969                         return EFI_OUT_OF_RESOURCES;
970
971                 status = efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
972                                           EFI_VARIABLE_NON_VOLATILE |
973                                           EFI_VARIABLE_BOOTSERVICE_ACCESS |
974                                           EFI_VARIABLE_RUNTIME_ACCESS,
975                                           dummy_size, dummy);
976
977                 if (status == EFI_SUCCESS) {
978                         /*
979                          * This should have failed, so if it didn't make sure
980                          * that we delete it...
981                          */
982                         efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
983                                          EFI_VARIABLE_NON_VOLATILE |
984                                          EFI_VARIABLE_BOOTSERVICE_ACCESS |
985                                          EFI_VARIABLE_RUNTIME_ACCESS,
986                                          0, dummy);
987                 }
988
989                 kfree(dummy);
990
991                 /*
992                  * The runtime code may now have triggered a garbage collection
993                  * run, so check the variable info again
994                  */
995                 status = efi.query_variable_info(attributes, &storage_size,
996                                                  &remaining_size, &max_size);
997
998                 if (status != EFI_SUCCESS)
999                         return status;
1000
1001                 /*
1002                  * There still isn't enough room, so return an error
1003                  */
1004                 if (remaining_size - size < EFI_MIN_RESERVE)
1005                         return EFI_OUT_OF_RESOURCES;
1006         }
1007
1008         return EFI_SUCCESS;
1009 }
1010 EXPORT_SYMBOL_GPL(efi_query_variable_store);