blk-mq: fix race between timeout and CPU hotplug
[firefly-linux-kernel-4.4.55.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23 #include <linux/crash_dump.h>
24
25 #include <trace/events/block.h>
26
27 #include <linux/blk-mq.h>
28 #include "blk.h"
29 #include "blk-mq.h"
30 #include "blk-mq-tag.h"
31
32 static DEFINE_MUTEX(all_q_mutex);
33 static LIST_HEAD(all_q_list);
34
35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
36
37 /*
38  * Check if any of the ctx's have pending work in this hardware queue
39  */
40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
41 {
42         unsigned int i;
43
44         for (i = 0; i < hctx->ctx_map.size; i++)
45                 if (hctx->ctx_map.map[i].word)
46                         return true;
47
48         return false;
49 }
50
51 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
52                                               struct blk_mq_ctx *ctx)
53 {
54         return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
55 }
56
57 #define CTX_TO_BIT(hctx, ctx)   \
58         ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
59
60 /*
61  * Mark this ctx as having pending work in this hardware queue
62  */
63 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
64                                      struct blk_mq_ctx *ctx)
65 {
66         struct blk_align_bitmap *bm = get_bm(hctx, ctx);
67
68         if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
69                 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
70 }
71
72 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
73                                       struct blk_mq_ctx *ctx)
74 {
75         struct blk_align_bitmap *bm = get_bm(hctx, ctx);
76
77         clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
78 }
79
80 static int blk_mq_queue_enter(struct request_queue *q, gfp_t gfp)
81 {
82         while (true) {
83                 int ret;
84
85                 if (percpu_ref_tryget_live(&q->mq_usage_counter))
86                         return 0;
87
88                 if (!(gfp & __GFP_WAIT))
89                         return -EBUSY;
90
91                 ret = wait_event_interruptible(q->mq_freeze_wq,
92                                 !q->mq_freeze_depth || blk_queue_dying(q));
93                 if (blk_queue_dying(q))
94                         return -ENODEV;
95                 if (ret)
96                         return ret;
97         }
98 }
99
100 static void blk_mq_queue_exit(struct request_queue *q)
101 {
102         percpu_ref_put(&q->mq_usage_counter);
103 }
104
105 static void blk_mq_usage_counter_release(struct percpu_ref *ref)
106 {
107         struct request_queue *q =
108                 container_of(ref, struct request_queue, mq_usage_counter);
109
110         wake_up_all(&q->mq_freeze_wq);
111 }
112
113 void blk_mq_freeze_queue_start(struct request_queue *q)
114 {
115         bool freeze;
116
117         spin_lock_irq(q->queue_lock);
118         freeze = !q->mq_freeze_depth++;
119         spin_unlock_irq(q->queue_lock);
120
121         if (freeze) {
122                 percpu_ref_kill(&q->mq_usage_counter);
123                 blk_mq_run_hw_queues(q, false);
124         }
125 }
126 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
127
128 static void blk_mq_freeze_queue_wait(struct request_queue *q)
129 {
130         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
131 }
132
133 /*
134  * Guarantee no request is in use, so we can change any data structure of
135  * the queue afterward.
136  */
137 void blk_mq_freeze_queue(struct request_queue *q)
138 {
139         blk_mq_freeze_queue_start(q);
140         blk_mq_freeze_queue_wait(q);
141 }
142 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
143
144 void blk_mq_unfreeze_queue(struct request_queue *q)
145 {
146         bool wake;
147
148         spin_lock_irq(q->queue_lock);
149         wake = !--q->mq_freeze_depth;
150         WARN_ON_ONCE(q->mq_freeze_depth < 0);
151         spin_unlock_irq(q->queue_lock);
152         if (wake) {
153                 percpu_ref_reinit(&q->mq_usage_counter);
154                 wake_up_all(&q->mq_freeze_wq);
155         }
156 }
157 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
158
159 void blk_mq_wake_waiters(struct request_queue *q)
160 {
161         struct blk_mq_hw_ctx *hctx;
162         unsigned int i;
163
164         queue_for_each_hw_ctx(q, hctx, i)
165                 if (blk_mq_hw_queue_mapped(hctx))
166                         blk_mq_tag_wakeup_all(hctx->tags, true);
167
168         /*
169          * If we are called because the queue has now been marked as
170          * dying, we need to ensure that processes currently waiting on
171          * the queue are notified as well.
172          */
173         wake_up_all(&q->mq_freeze_wq);
174 }
175
176 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
177 {
178         return blk_mq_has_free_tags(hctx->tags);
179 }
180 EXPORT_SYMBOL(blk_mq_can_queue);
181
182 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
183                                struct request *rq, unsigned int rw_flags)
184 {
185         if (blk_queue_io_stat(q))
186                 rw_flags |= REQ_IO_STAT;
187
188         INIT_LIST_HEAD(&rq->queuelist);
189         /* csd/requeue_work/fifo_time is initialized before use */
190         rq->q = q;
191         rq->mq_ctx = ctx;
192         rq->cmd_flags |= rw_flags;
193         /* do not touch atomic flags, it needs atomic ops against the timer */
194         rq->cpu = -1;
195         INIT_HLIST_NODE(&rq->hash);
196         RB_CLEAR_NODE(&rq->rb_node);
197         rq->rq_disk = NULL;
198         rq->part = NULL;
199         rq->start_time = jiffies;
200 #ifdef CONFIG_BLK_CGROUP
201         rq->rl = NULL;
202         set_start_time_ns(rq);
203         rq->io_start_time_ns = 0;
204 #endif
205         rq->nr_phys_segments = 0;
206 #if defined(CONFIG_BLK_DEV_INTEGRITY)
207         rq->nr_integrity_segments = 0;
208 #endif
209         rq->special = NULL;
210         /* tag was already set */
211         rq->errors = 0;
212
213         rq->cmd = rq->__cmd;
214
215         rq->extra_len = 0;
216         rq->sense_len = 0;
217         rq->resid_len = 0;
218         rq->sense = NULL;
219
220         INIT_LIST_HEAD(&rq->timeout_list);
221         rq->timeout = 0;
222
223         rq->end_io = NULL;
224         rq->end_io_data = NULL;
225         rq->next_rq = NULL;
226
227         ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
228 }
229
230 static struct request *
231 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
232 {
233         struct request *rq;
234         unsigned int tag;
235
236         tag = blk_mq_get_tag(data);
237         if (tag != BLK_MQ_TAG_FAIL) {
238                 rq = data->hctx->tags->rqs[tag];
239
240                 if (blk_mq_tag_busy(data->hctx)) {
241                         rq->cmd_flags = REQ_MQ_INFLIGHT;
242                         atomic_inc(&data->hctx->nr_active);
243                 }
244
245                 rq->tag = tag;
246                 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
247                 return rq;
248         }
249
250         return NULL;
251 }
252
253 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
254                 bool reserved)
255 {
256         struct blk_mq_ctx *ctx;
257         struct blk_mq_hw_ctx *hctx;
258         struct request *rq;
259         struct blk_mq_alloc_data alloc_data;
260         int ret;
261
262         ret = blk_mq_queue_enter(q, gfp);
263         if (ret)
264                 return ERR_PTR(ret);
265
266         ctx = blk_mq_get_ctx(q);
267         hctx = q->mq_ops->map_queue(q, ctx->cpu);
268         blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
269                         reserved, ctx, hctx);
270
271         rq = __blk_mq_alloc_request(&alloc_data, rw);
272         if (!rq && (gfp & __GFP_WAIT)) {
273                 __blk_mq_run_hw_queue(hctx);
274                 blk_mq_put_ctx(ctx);
275
276                 ctx = blk_mq_get_ctx(q);
277                 hctx = q->mq_ops->map_queue(q, ctx->cpu);
278                 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
279                                 hctx);
280                 rq =  __blk_mq_alloc_request(&alloc_data, rw);
281                 ctx = alloc_data.ctx;
282         }
283         blk_mq_put_ctx(ctx);
284         if (!rq) {
285                 blk_mq_queue_exit(q);
286                 return ERR_PTR(-EWOULDBLOCK);
287         }
288         return rq;
289 }
290 EXPORT_SYMBOL(blk_mq_alloc_request);
291
292 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
293                                   struct blk_mq_ctx *ctx, struct request *rq)
294 {
295         const int tag = rq->tag;
296         struct request_queue *q = rq->q;
297
298         if (rq->cmd_flags & REQ_MQ_INFLIGHT)
299                 atomic_dec(&hctx->nr_active);
300         rq->cmd_flags = 0;
301
302         clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
303         blk_mq_put_tag(hctx, tag, &ctx->last_tag);
304         blk_mq_queue_exit(q);
305 }
306
307 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
308 {
309         struct blk_mq_ctx *ctx = rq->mq_ctx;
310
311         ctx->rq_completed[rq_is_sync(rq)]++;
312         __blk_mq_free_request(hctx, ctx, rq);
313
314 }
315 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
316
317 void blk_mq_free_request(struct request *rq)
318 {
319         struct blk_mq_hw_ctx *hctx;
320         struct request_queue *q = rq->q;
321
322         hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
323         blk_mq_free_hctx_request(hctx, rq);
324 }
325 EXPORT_SYMBOL_GPL(blk_mq_free_request);
326
327 inline void __blk_mq_end_request(struct request *rq, int error)
328 {
329         blk_account_io_done(rq);
330
331         if (rq->end_io) {
332                 rq->end_io(rq, error);
333         } else {
334                 if (unlikely(blk_bidi_rq(rq)))
335                         blk_mq_free_request(rq->next_rq);
336                 blk_mq_free_request(rq);
337         }
338 }
339 EXPORT_SYMBOL(__blk_mq_end_request);
340
341 void blk_mq_end_request(struct request *rq, int error)
342 {
343         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
344                 BUG();
345         __blk_mq_end_request(rq, error);
346 }
347 EXPORT_SYMBOL(blk_mq_end_request);
348
349 static void __blk_mq_complete_request_remote(void *data)
350 {
351         struct request *rq = data;
352
353         rq->q->softirq_done_fn(rq);
354 }
355
356 static void blk_mq_ipi_complete_request(struct request *rq)
357 {
358         struct blk_mq_ctx *ctx = rq->mq_ctx;
359         bool shared = false;
360         int cpu;
361
362         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
363                 rq->q->softirq_done_fn(rq);
364                 return;
365         }
366
367         cpu = get_cpu();
368         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
369                 shared = cpus_share_cache(cpu, ctx->cpu);
370
371         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
372                 rq->csd.func = __blk_mq_complete_request_remote;
373                 rq->csd.info = rq;
374                 rq->csd.flags = 0;
375                 smp_call_function_single_async(ctx->cpu, &rq->csd);
376         } else {
377                 rq->q->softirq_done_fn(rq);
378         }
379         put_cpu();
380 }
381
382 void __blk_mq_complete_request(struct request *rq)
383 {
384         struct request_queue *q = rq->q;
385
386         if (!q->softirq_done_fn)
387                 blk_mq_end_request(rq, rq->errors);
388         else
389                 blk_mq_ipi_complete_request(rq);
390 }
391
392 /**
393  * blk_mq_complete_request - end I/O on a request
394  * @rq:         the request being processed
395  *
396  * Description:
397  *      Ends all I/O on a request. It does not handle partial completions.
398  *      The actual completion happens out-of-order, through a IPI handler.
399  **/
400 void blk_mq_complete_request(struct request *rq)
401 {
402         struct request_queue *q = rq->q;
403
404         if (unlikely(blk_should_fake_timeout(q)))
405                 return;
406         if (!blk_mark_rq_complete(rq))
407                 __blk_mq_complete_request(rq);
408 }
409 EXPORT_SYMBOL(blk_mq_complete_request);
410
411 int blk_mq_request_started(struct request *rq)
412 {
413         return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
414 }
415 EXPORT_SYMBOL_GPL(blk_mq_request_started);
416
417 void blk_mq_start_request(struct request *rq)
418 {
419         struct request_queue *q = rq->q;
420
421         trace_block_rq_issue(q, rq);
422
423         rq->resid_len = blk_rq_bytes(rq);
424         if (unlikely(blk_bidi_rq(rq)))
425                 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
426
427         blk_add_timer(rq);
428
429         /*
430          * Ensure that ->deadline is visible before set the started
431          * flag and clear the completed flag.
432          */
433         smp_mb__before_atomic();
434
435         /*
436          * Mark us as started and clear complete. Complete might have been
437          * set if requeue raced with timeout, which then marked it as
438          * complete. So be sure to clear complete again when we start
439          * the request, otherwise we'll ignore the completion event.
440          */
441         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
442                 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
443         if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
444                 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
445
446         if (q->dma_drain_size && blk_rq_bytes(rq)) {
447                 /*
448                  * Make sure space for the drain appears.  We know we can do
449                  * this because max_hw_segments has been adjusted to be one
450                  * fewer than the device can handle.
451                  */
452                 rq->nr_phys_segments++;
453         }
454 }
455 EXPORT_SYMBOL(blk_mq_start_request);
456
457 static void __blk_mq_requeue_request(struct request *rq)
458 {
459         struct request_queue *q = rq->q;
460
461         trace_block_rq_requeue(q, rq);
462
463         if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
464                 if (q->dma_drain_size && blk_rq_bytes(rq))
465                         rq->nr_phys_segments--;
466         }
467 }
468
469 void blk_mq_requeue_request(struct request *rq)
470 {
471         __blk_mq_requeue_request(rq);
472
473         BUG_ON(blk_queued_rq(rq));
474         blk_mq_add_to_requeue_list(rq, true);
475 }
476 EXPORT_SYMBOL(blk_mq_requeue_request);
477
478 static void blk_mq_requeue_work(struct work_struct *work)
479 {
480         struct request_queue *q =
481                 container_of(work, struct request_queue, requeue_work);
482         LIST_HEAD(rq_list);
483         struct request *rq, *next;
484         unsigned long flags;
485
486         spin_lock_irqsave(&q->requeue_lock, flags);
487         list_splice_init(&q->requeue_list, &rq_list);
488         spin_unlock_irqrestore(&q->requeue_lock, flags);
489
490         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
491                 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
492                         continue;
493
494                 rq->cmd_flags &= ~REQ_SOFTBARRIER;
495                 list_del_init(&rq->queuelist);
496                 blk_mq_insert_request(rq, true, false, false);
497         }
498
499         while (!list_empty(&rq_list)) {
500                 rq = list_entry(rq_list.next, struct request, queuelist);
501                 list_del_init(&rq->queuelist);
502                 blk_mq_insert_request(rq, false, false, false);
503         }
504
505         /*
506          * Use the start variant of queue running here, so that running
507          * the requeue work will kick stopped queues.
508          */
509         blk_mq_start_hw_queues(q);
510 }
511
512 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
513 {
514         struct request_queue *q = rq->q;
515         unsigned long flags;
516
517         /*
518          * We abuse this flag that is otherwise used by the I/O scheduler to
519          * request head insertation from the workqueue.
520          */
521         BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
522
523         spin_lock_irqsave(&q->requeue_lock, flags);
524         if (at_head) {
525                 rq->cmd_flags |= REQ_SOFTBARRIER;
526                 list_add(&rq->queuelist, &q->requeue_list);
527         } else {
528                 list_add_tail(&rq->queuelist, &q->requeue_list);
529         }
530         spin_unlock_irqrestore(&q->requeue_lock, flags);
531 }
532 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
533
534 void blk_mq_cancel_requeue_work(struct request_queue *q)
535 {
536         cancel_work_sync(&q->requeue_work);
537 }
538 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
539
540 void blk_mq_kick_requeue_list(struct request_queue *q)
541 {
542         kblockd_schedule_work(&q->requeue_work);
543 }
544 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
545
546 void blk_mq_abort_requeue_list(struct request_queue *q)
547 {
548         unsigned long flags;
549         LIST_HEAD(rq_list);
550
551         spin_lock_irqsave(&q->requeue_lock, flags);
552         list_splice_init(&q->requeue_list, &rq_list);
553         spin_unlock_irqrestore(&q->requeue_lock, flags);
554
555         while (!list_empty(&rq_list)) {
556                 struct request *rq;
557
558                 rq = list_first_entry(&rq_list, struct request, queuelist);
559                 list_del_init(&rq->queuelist);
560                 rq->errors = -EIO;
561                 blk_mq_end_request(rq, rq->errors);
562         }
563 }
564 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
565
566 static inline bool is_flush_request(struct request *rq,
567                 struct blk_flush_queue *fq, unsigned int tag)
568 {
569         return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
570                         fq->flush_rq->tag == tag);
571 }
572
573 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
574 {
575         struct request *rq = tags->rqs[tag];
576         /* mq_ctx of flush rq is always cloned from the corresponding req */
577         struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx);
578
579         if (!is_flush_request(rq, fq, tag))
580                 return rq;
581
582         return fq->flush_rq;
583 }
584 EXPORT_SYMBOL(blk_mq_tag_to_rq);
585
586 struct blk_mq_timeout_data {
587         unsigned long next;
588         unsigned int next_set;
589 };
590
591 void blk_mq_rq_timed_out(struct request *req, bool reserved)
592 {
593         struct blk_mq_ops *ops = req->q->mq_ops;
594         enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
595
596         /*
597          * We know that complete is set at this point. If STARTED isn't set
598          * anymore, then the request isn't active and the "timeout" should
599          * just be ignored. This can happen due to the bitflag ordering.
600          * Timeout first checks if STARTED is set, and if it is, assumes
601          * the request is active. But if we race with completion, then
602          * we both flags will get cleared. So check here again, and ignore
603          * a timeout event with a request that isn't active.
604          */
605         if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
606                 return;
607
608         if (ops->timeout)
609                 ret = ops->timeout(req, reserved);
610
611         switch (ret) {
612         case BLK_EH_HANDLED:
613                 __blk_mq_complete_request(req);
614                 break;
615         case BLK_EH_RESET_TIMER:
616                 blk_add_timer(req);
617                 blk_clear_rq_complete(req);
618                 break;
619         case BLK_EH_NOT_HANDLED:
620                 break;
621         default:
622                 printk(KERN_ERR "block: bad eh return: %d\n", ret);
623                 break;
624         }
625 }
626
627 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
628                 struct request *rq, void *priv, bool reserved)
629 {
630         struct blk_mq_timeout_data *data = priv;
631
632         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
633                 /*
634                  * If a request wasn't started before the queue was
635                  * marked dying, kill it here or it'll go unnoticed.
636                  */
637                 if (unlikely(blk_queue_dying(rq->q))) {
638                         rq->errors = -EIO;
639                         blk_mq_complete_request(rq);
640                 }
641                 return;
642         }
643         if (rq->cmd_flags & REQ_NO_TIMEOUT)
644                 return;
645
646         if (time_after_eq(jiffies, rq->deadline)) {
647                 if (!blk_mark_rq_complete(rq))
648                         blk_mq_rq_timed_out(rq, reserved);
649         } else if (!data->next_set || time_after(data->next, rq->deadline)) {
650                 data->next = rq->deadline;
651                 data->next_set = 1;
652         }
653 }
654
655 static void blk_mq_rq_timer(unsigned long priv)
656 {
657         struct request_queue *q = (struct request_queue *)priv;
658         struct blk_mq_timeout_data data = {
659                 .next           = 0,
660                 .next_set       = 0,
661         };
662         struct blk_mq_hw_ctx *hctx;
663         int i;
664
665         queue_for_each_hw_ctx(q, hctx, i) {
666                 /*
667                  * If not software queues are currently mapped to this
668                  * hardware queue, there's nothing to check
669                  */
670                 if (!blk_mq_hw_queue_mapped(hctx))
671                         continue;
672
673                 blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
674         }
675
676         if (data.next_set) {
677                 data.next = blk_rq_timeout(round_jiffies_up(data.next));
678                 mod_timer(&q->timeout, data.next);
679         } else {
680                 queue_for_each_hw_ctx(q, hctx, i) {
681                         /* the hctx may be unmapped, so check it here */
682                         if (blk_mq_hw_queue_mapped(hctx))
683                                 blk_mq_tag_idle(hctx);
684                 }
685         }
686 }
687
688 /*
689  * Reverse check our software queue for entries that we could potentially
690  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
691  * too much time checking for merges.
692  */
693 static bool blk_mq_attempt_merge(struct request_queue *q,
694                                  struct blk_mq_ctx *ctx, struct bio *bio)
695 {
696         struct request *rq;
697         int checked = 8;
698
699         list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
700                 int el_ret;
701
702                 if (!checked--)
703                         break;
704
705                 if (!blk_rq_merge_ok(rq, bio))
706                         continue;
707
708                 el_ret = blk_try_merge(rq, bio);
709                 if (el_ret == ELEVATOR_BACK_MERGE) {
710                         if (bio_attempt_back_merge(q, rq, bio)) {
711                                 ctx->rq_merged++;
712                                 return true;
713                         }
714                         break;
715                 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
716                         if (bio_attempt_front_merge(q, rq, bio)) {
717                                 ctx->rq_merged++;
718                                 return true;
719                         }
720                         break;
721                 }
722         }
723
724         return false;
725 }
726
727 /*
728  * Process software queues that have been marked busy, splicing them
729  * to the for-dispatch
730  */
731 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
732 {
733         struct blk_mq_ctx *ctx;
734         int i;
735
736         for (i = 0; i < hctx->ctx_map.size; i++) {
737                 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
738                 unsigned int off, bit;
739
740                 if (!bm->word)
741                         continue;
742
743                 bit = 0;
744                 off = i * hctx->ctx_map.bits_per_word;
745                 do {
746                         bit = find_next_bit(&bm->word, bm->depth, bit);
747                         if (bit >= bm->depth)
748                                 break;
749
750                         ctx = hctx->ctxs[bit + off];
751                         clear_bit(bit, &bm->word);
752                         spin_lock(&ctx->lock);
753                         list_splice_tail_init(&ctx->rq_list, list);
754                         spin_unlock(&ctx->lock);
755
756                         bit++;
757                 } while (1);
758         }
759 }
760
761 /*
762  * Run this hardware queue, pulling any software queues mapped to it in.
763  * Note that this function currently has various problems around ordering
764  * of IO. In particular, we'd like FIFO behaviour on handling existing
765  * items on the hctx->dispatch list. Ignore that for now.
766  */
767 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
768 {
769         struct request_queue *q = hctx->queue;
770         struct request *rq;
771         LIST_HEAD(rq_list);
772         LIST_HEAD(driver_list);
773         struct list_head *dptr;
774         int queued;
775
776         WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
777
778         if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
779                 return;
780
781         hctx->run++;
782
783         /*
784          * Touch any software queue that has pending entries.
785          */
786         flush_busy_ctxs(hctx, &rq_list);
787
788         /*
789          * If we have previous entries on our dispatch list, grab them
790          * and stuff them at the front for more fair dispatch.
791          */
792         if (!list_empty_careful(&hctx->dispatch)) {
793                 spin_lock(&hctx->lock);
794                 if (!list_empty(&hctx->dispatch))
795                         list_splice_init(&hctx->dispatch, &rq_list);
796                 spin_unlock(&hctx->lock);
797         }
798
799         /*
800          * Start off with dptr being NULL, so we start the first request
801          * immediately, even if we have more pending.
802          */
803         dptr = NULL;
804
805         /*
806          * Now process all the entries, sending them to the driver.
807          */
808         queued = 0;
809         while (!list_empty(&rq_list)) {
810                 struct blk_mq_queue_data bd;
811                 int ret;
812
813                 rq = list_first_entry(&rq_list, struct request, queuelist);
814                 list_del_init(&rq->queuelist);
815
816                 bd.rq = rq;
817                 bd.list = dptr;
818                 bd.last = list_empty(&rq_list);
819
820                 ret = q->mq_ops->queue_rq(hctx, &bd);
821                 switch (ret) {
822                 case BLK_MQ_RQ_QUEUE_OK:
823                         queued++;
824                         continue;
825                 case BLK_MQ_RQ_QUEUE_BUSY:
826                         list_add(&rq->queuelist, &rq_list);
827                         __blk_mq_requeue_request(rq);
828                         break;
829                 default:
830                         pr_err("blk-mq: bad return on queue: %d\n", ret);
831                 case BLK_MQ_RQ_QUEUE_ERROR:
832                         rq->errors = -EIO;
833                         blk_mq_end_request(rq, rq->errors);
834                         break;
835                 }
836
837                 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
838                         break;
839
840                 /*
841                  * We've done the first request. If we have more than 1
842                  * left in the list, set dptr to defer issue.
843                  */
844                 if (!dptr && rq_list.next != rq_list.prev)
845                         dptr = &driver_list;
846         }
847
848         if (!queued)
849                 hctx->dispatched[0]++;
850         else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
851                 hctx->dispatched[ilog2(queued) + 1]++;
852
853         /*
854          * Any items that need requeuing? Stuff them into hctx->dispatch,
855          * that is where we will continue on next queue run.
856          */
857         if (!list_empty(&rq_list)) {
858                 spin_lock(&hctx->lock);
859                 list_splice(&rq_list, &hctx->dispatch);
860                 spin_unlock(&hctx->lock);
861         }
862 }
863
864 /*
865  * It'd be great if the workqueue API had a way to pass
866  * in a mask and had some smarts for more clever placement.
867  * For now we just round-robin here, switching for every
868  * BLK_MQ_CPU_WORK_BATCH queued items.
869  */
870 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
871 {
872         if (hctx->queue->nr_hw_queues == 1)
873                 return WORK_CPU_UNBOUND;
874
875         if (--hctx->next_cpu_batch <= 0) {
876                 int cpu = hctx->next_cpu, next_cpu;
877
878                 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
879                 if (next_cpu >= nr_cpu_ids)
880                         next_cpu = cpumask_first(hctx->cpumask);
881
882                 hctx->next_cpu = next_cpu;
883                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
884
885                 return cpu;
886         }
887
888         return hctx->next_cpu;
889 }
890
891 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
892 {
893         if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
894             !blk_mq_hw_queue_mapped(hctx)))
895                 return;
896
897         if (!async) {
898                 int cpu = get_cpu();
899                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
900                         __blk_mq_run_hw_queue(hctx);
901                         put_cpu();
902                         return;
903                 }
904
905                 put_cpu();
906         }
907
908         kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
909                         &hctx->run_work, 0);
910 }
911
912 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
913 {
914         struct blk_mq_hw_ctx *hctx;
915         int i;
916
917         queue_for_each_hw_ctx(q, hctx, i) {
918                 if ((!blk_mq_hctx_has_pending(hctx) &&
919                     list_empty_careful(&hctx->dispatch)) ||
920                     test_bit(BLK_MQ_S_STOPPED, &hctx->state))
921                         continue;
922
923                 blk_mq_run_hw_queue(hctx, async);
924         }
925 }
926 EXPORT_SYMBOL(blk_mq_run_hw_queues);
927
928 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
929 {
930         cancel_delayed_work(&hctx->run_work);
931         cancel_delayed_work(&hctx->delay_work);
932         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
933 }
934 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
935
936 void blk_mq_stop_hw_queues(struct request_queue *q)
937 {
938         struct blk_mq_hw_ctx *hctx;
939         int i;
940
941         queue_for_each_hw_ctx(q, hctx, i)
942                 blk_mq_stop_hw_queue(hctx);
943 }
944 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
945
946 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
947 {
948         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
949
950         blk_mq_run_hw_queue(hctx, false);
951 }
952 EXPORT_SYMBOL(blk_mq_start_hw_queue);
953
954 void blk_mq_start_hw_queues(struct request_queue *q)
955 {
956         struct blk_mq_hw_ctx *hctx;
957         int i;
958
959         queue_for_each_hw_ctx(q, hctx, i)
960                 blk_mq_start_hw_queue(hctx);
961 }
962 EXPORT_SYMBOL(blk_mq_start_hw_queues);
963
964 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
965 {
966         struct blk_mq_hw_ctx *hctx;
967         int i;
968
969         queue_for_each_hw_ctx(q, hctx, i) {
970                 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
971                         continue;
972
973                 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
974                 blk_mq_run_hw_queue(hctx, async);
975         }
976 }
977 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
978
979 static void blk_mq_run_work_fn(struct work_struct *work)
980 {
981         struct blk_mq_hw_ctx *hctx;
982
983         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
984
985         __blk_mq_run_hw_queue(hctx);
986 }
987
988 static void blk_mq_delay_work_fn(struct work_struct *work)
989 {
990         struct blk_mq_hw_ctx *hctx;
991
992         hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
993
994         if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
995                 __blk_mq_run_hw_queue(hctx);
996 }
997
998 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
999 {
1000         if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1001                 return;
1002
1003         kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1004                         &hctx->delay_work, msecs_to_jiffies(msecs));
1005 }
1006 EXPORT_SYMBOL(blk_mq_delay_queue);
1007
1008 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1009                                     struct request *rq, bool at_head)
1010 {
1011         struct blk_mq_ctx *ctx = rq->mq_ctx;
1012
1013         trace_block_rq_insert(hctx->queue, rq);
1014
1015         if (at_head)
1016                 list_add(&rq->queuelist, &ctx->rq_list);
1017         else
1018                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1019
1020         blk_mq_hctx_mark_pending(hctx, ctx);
1021 }
1022
1023 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1024                 bool async)
1025 {
1026         struct request_queue *q = rq->q;
1027         struct blk_mq_hw_ctx *hctx;
1028         struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1029
1030         current_ctx = blk_mq_get_ctx(q);
1031         if (!cpu_online(ctx->cpu))
1032                 rq->mq_ctx = ctx = current_ctx;
1033
1034         hctx = q->mq_ops->map_queue(q, ctx->cpu);
1035
1036         spin_lock(&ctx->lock);
1037         __blk_mq_insert_request(hctx, rq, at_head);
1038         spin_unlock(&ctx->lock);
1039
1040         if (run_queue)
1041                 blk_mq_run_hw_queue(hctx, async);
1042
1043         blk_mq_put_ctx(current_ctx);
1044 }
1045
1046 static void blk_mq_insert_requests(struct request_queue *q,
1047                                      struct blk_mq_ctx *ctx,
1048                                      struct list_head *list,
1049                                      int depth,
1050                                      bool from_schedule)
1051
1052 {
1053         struct blk_mq_hw_ctx *hctx;
1054         struct blk_mq_ctx *current_ctx;
1055
1056         trace_block_unplug(q, depth, !from_schedule);
1057
1058         current_ctx = blk_mq_get_ctx(q);
1059
1060         if (!cpu_online(ctx->cpu))
1061                 ctx = current_ctx;
1062         hctx = q->mq_ops->map_queue(q, ctx->cpu);
1063
1064         /*
1065          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1066          * offline now
1067          */
1068         spin_lock(&ctx->lock);
1069         while (!list_empty(list)) {
1070                 struct request *rq;
1071
1072                 rq = list_first_entry(list, struct request, queuelist);
1073                 list_del_init(&rq->queuelist);
1074                 rq->mq_ctx = ctx;
1075                 __blk_mq_insert_request(hctx, rq, false);
1076         }
1077         spin_unlock(&ctx->lock);
1078
1079         blk_mq_run_hw_queue(hctx, from_schedule);
1080         blk_mq_put_ctx(current_ctx);
1081 }
1082
1083 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1084 {
1085         struct request *rqa = container_of(a, struct request, queuelist);
1086         struct request *rqb = container_of(b, struct request, queuelist);
1087
1088         return !(rqa->mq_ctx < rqb->mq_ctx ||
1089                  (rqa->mq_ctx == rqb->mq_ctx &&
1090                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1091 }
1092
1093 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1094 {
1095         struct blk_mq_ctx *this_ctx;
1096         struct request_queue *this_q;
1097         struct request *rq;
1098         LIST_HEAD(list);
1099         LIST_HEAD(ctx_list);
1100         unsigned int depth;
1101
1102         list_splice_init(&plug->mq_list, &list);
1103
1104         list_sort(NULL, &list, plug_ctx_cmp);
1105
1106         this_q = NULL;
1107         this_ctx = NULL;
1108         depth = 0;
1109
1110         while (!list_empty(&list)) {
1111                 rq = list_entry_rq(list.next);
1112                 list_del_init(&rq->queuelist);
1113                 BUG_ON(!rq->q);
1114                 if (rq->mq_ctx != this_ctx) {
1115                         if (this_ctx) {
1116                                 blk_mq_insert_requests(this_q, this_ctx,
1117                                                         &ctx_list, depth,
1118                                                         from_schedule);
1119                         }
1120
1121                         this_ctx = rq->mq_ctx;
1122                         this_q = rq->q;
1123                         depth = 0;
1124                 }
1125
1126                 depth++;
1127                 list_add_tail(&rq->queuelist, &ctx_list);
1128         }
1129
1130         /*
1131          * If 'this_ctx' is set, we know we have entries to complete
1132          * on 'ctx_list'. Do those.
1133          */
1134         if (this_ctx) {
1135                 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1136                                        from_schedule);
1137         }
1138 }
1139
1140 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1141 {
1142         init_request_from_bio(rq, bio);
1143
1144         if (blk_do_io_stat(rq))
1145                 blk_account_io_start(rq, 1);
1146 }
1147
1148 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1149 {
1150         return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1151                 !blk_queue_nomerges(hctx->queue);
1152 }
1153
1154 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1155                                          struct blk_mq_ctx *ctx,
1156                                          struct request *rq, struct bio *bio)
1157 {
1158         if (!hctx_allow_merges(hctx)) {
1159                 blk_mq_bio_to_request(rq, bio);
1160                 spin_lock(&ctx->lock);
1161 insert_rq:
1162                 __blk_mq_insert_request(hctx, rq, false);
1163                 spin_unlock(&ctx->lock);
1164                 return false;
1165         } else {
1166                 struct request_queue *q = hctx->queue;
1167
1168                 spin_lock(&ctx->lock);
1169                 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1170                         blk_mq_bio_to_request(rq, bio);
1171                         goto insert_rq;
1172                 }
1173
1174                 spin_unlock(&ctx->lock);
1175                 __blk_mq_free_request(hctx, ctx, rq);
1176                 return true;
1177         }
1178 }
1179
1180 struct blk_map_ctx {
1181         struct blk_mq_hw_ctx *hctx;
1182         struct blk_mq_ctx *ctx;
1183 };
1184
1185 static struct request *blk_mq_map_request(struct request_queue *q,
1186                                           struct bio *bio,
1187                                           struct blk_map_ctx *data)
1188 {
1189         struct blk_mq_hw_ctx *hctx;
1190         struct blk_mq_ctx *ctx;
1191         struct request *rq;
1192         int rw = bio_data_dir(bio);
1193         struct blk_mq_alloc_data alloc_data;
1194
1195         if (unlikely(blk_mq_queue_enter(q, GFP_KERNEL))) {
1196                 bio_endio(bio, -EIO);
1197                 return NULL;
1198         }
1199
1200         ctx = blk_mq_get_ctx(q);
1201         hctx = q->mq_ops->map_queue(q, ctx->cpu);
1202
1203         if (rw_is_sync(bio->bi_rw))
1204                 rw |= REQ_SYNC;
1205
1206         trace_block_getrq(q, bio, rw);
1207         blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1208                         hctx);
1209         rq = __blk_mq_alloc_request(&alloc_data, rw);
1210         if (unlikely(!rq)) {
1211                 __blk_mq_run_hw_queue(hctx);
1212                 blk_mq_put_ctx(ctx);
1213                 trace_block_sleeprq(q, bio, rw);
1214
1215                 ctx = blk_mq_get_ctx(q);
1216                 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1217                 blk_mq_set_alloc_data(&alloc_data, q,
1218                                 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1219                 rq = __blk_mq_alloc_request(&alloc_data, rw);
1220                 ctx = alloc_data.ctx;
1221                 hctx = alloc_data.hctx;
1222         }
1223
1224         hctx->queued++;
1225         data->hctx = hctx;
1226         data->ctx = ctx;
1227         return rq;
1228 }
1229
1230 /*
1231  * Multiple hardware queue variant. This will not use per-process plugs,
1232  * but will attempt to bypass the hctx queueing if we can go straight to
1233  * hardware for SYNC IO.
1234  */
1235 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1236 {
1237         const int is_sync = rw_is_sync(bio->bi_rw);
1238         const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1239         struct blk_map_ctx data;
1240         struct request *rq;
1241
1242         blk_queue_bounce(q, &bio);
1243
1244         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1245                 bio_endio(bio, -EIO);
1246                 return;
1247         }
1248
1249         rq = blk_mq_map_request(q, bio, &data);
1250         if (unlikely(!rq))
1251                 return;
1252
1253         if (unlikely(is_flush_fua)) {
1254                 blk_mq_bio_to_request(rq, bio);
1255                 blk_insert_flush(rq);
1256                 goto run_queue;
1257         }
1258
1259         /*
1260          * If the driver supports defer issued based on 'last', then
1261          * queue it up like normal since we can potentially save some
1262          * CPU this way.
1263          */
1264         if (is_sync && !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1265                 struct blk_mq_queue_data bd = {
1266                         .rq = rq,
1267                         .list = NULL,
1268                         .last = 1
1269                 };
1270                 int ret;
1271
1272                 blk_mq_bio_to_request(rq, bio);
1273
1274                 /*
1275                  * For OK queue, we are done. For error, kill it. Any other
1276                  * error (busy), just add it to our list as we previously
1277                  * would have done
1278                  */
1279                 ret = q->mq_ops->queue_rq(data.hctx, &bd);
1280                 if (ret == BLK_MQ_RQ_QUEUE_OK)
1281                         goto done;
1282                 else {
1283                         __blk_mq_requeue_request(rq);
1284
1285                         if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1286                                 rq->errors = -EIO;
1287                                 blk_mq_end_request(rq, rq->errors);
1288                                 goto done;
1289                         }
1290                 }
1291         }
1292
1293         if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1294                 /*
1295                  * For a SYNC request, send it to the hardware immediately. For
1296                  * an ASYNC request, just ensure that we run it later on. The
1297                  * latter allows for merging opportunities and more efficient
1298                  * dispatching.
1299                  */
1300 run_queue:
1301                 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1302         }
1303 done:
1304         blk_mq_put_ctx(data.ctx);
1305 }
1306
1307 /*
1308  * Single hardware queue variant. This will attempt to use any per-process
1309  * plug for merging and IO deferral.
1310  */
1311 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1312 {
1313         const int is_sync = rw_is_sync(bio->bi_rw);
1314         const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1315         unsigned int use_plug, request_count = 0;
1316         struct blk_map_ctx data;
1317         struct request *rq;
1318
1319         /*
1320          * If we have multiple hardware queues, just go directly to
1321          * one of those for sync IO.
1322          */
1323         use_plug = !is_flush_fua && !is_sync;
1324
1325         blk_queue_bounce(q, &bio);
1326
1327         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1328                 bio_endio(bio, -EIO);
1329                 return;
1330         }
1331
1332         if (use_plug && !blk_queue_nomerges(q) &&
1333             blk_attempt_plug_merge(q, bio, &request_count))
1334                 return;
1335
1336         rq = blk_mq_map_request(q, bio, &data);
1337         if (unlikely(!rq))
1338                 return;
1339
1340         if (unlikely(is_flush_fua)) {
1341                 blk_mq_bio_to_request(rq, bio);
1342                 blk_insert_flush(rq);
1343                 goto run_queue;
1344         }
1345
1346         /*
1347          * A task plug currently exists. Since this is completely lockless,
1348          * utilize that to temporarily store requests until the task is
1349          * either done or scheduled away.
1350          */
1351         if (use_plug) {
1352                 struct blk_plug *plug = current->plug;
1353
1354                 if (plug) {
1355                         blk_mq_bio_to_request(rq, bio);
1356                         if (list_empty(&plug->mq_list))
1357                                 trace_block_plug(q);
1358                         else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1359                                 blk_flush_plug_list(plug, false);
1360                                 trace_block_plug(q);
1361                         }
1362                         list_add_tail(&rq->queuelist, &plug->mq_list);
1363                         blk_mq_put_ctx(data.ctx);
1364                         return;
1365                 }
1366         }
1367
1368         if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1369                 /*
1370                  * For a SYNC request, send it to the hardware immediately. For
1371                  * an ASYNC request, just ensure that we run it later on. The
1372                  * latter allows for merging opportunities and more efficient
1373                  * dispatching.
1374                  */
1375 run_queue:
1376                 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1377         }
1378
1379         blk_mq_put_ctx(data.ctx);
1380 }
1381
1382 /*
1383  * Default mapping to a software queue, since we use one per CPU.
1384  */
1385 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1386 {
1387         return q->queue_hw_ctx[q->mq_map[cpu]];
1388 }
1389 EXPORT_SYMBOL(blk_mq_map_queue);
1390
1391 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1392                 struct blk_mq_tags *tags, unsigned int hctx_idx)
1393 {
1394         struct page *page;
1395
1396         if (tags->rqs && set->ops->exit_request) {
1397                 int i;
1398
1399                 for (i = 0; i < tags->nr_tags; i++) {
1400                         if (!tags->rqs[i])
1401                                 continue;
1402                         set->ops->exit_request(set->driver_data, tags->rqs[i],
1403                                                 hctx_idx, i);
1404                         tags->rqs[i] = NULL;
1405                 }
1406         }
1407
1408         while (!list_empty(&tags->page_list)) {
1409                 page = list_first_entry(&tags->page_list, struct page, lru);
1410                 list_del_init(&page->lru);
1411                 __free_pages(page, page->private);
1412         }
1413
1414         kfree(tags->rqs);
1415
1416         blk_mq_free_tags(tags);
1417 }
1418
1419 static size_t order_to_size(unsigned int order)
1420 {
1421         return (size_t)PAGE_SIZE << order;
1422 }
1423
1424 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1425                 unsigned int hctx_idx)
1426 {
1427         struct blk_mq_tags *tags;
1428         unsigned int i, j, entries_per_page, max_order = 4;
1429         size_t rq_size, left;
1430
1431         tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1432                                 set->numa_node,
1433                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1434         if (!tags)
1435                 return NULL;
1436
1437         INIT_LIST_HEAD(&tags->page_list);
1438
1439         tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1440                                  GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1441                                  set->numa_node);
1442         if (!tags->rqs) {
1443                 blk_mq_free_tags(tags);
1444                 return NULL;
1445         }
1446
1447         /*
1448          * rq_size is the size of the request plus driver payload, rounded
1449          * to the cacheline size
1450          */
1451         rq_size = round_up(sizeof(struct request) + set->cmd_size,
1452                                 cache_line_size());
1453         left = rq_size * set->queue_depth;
1454
1455         for (i = 0; i < set->queue_depth; ) {
1456                 int this_order = max_order;
1457                 struct page *page;
1458                 int to_do;
1459                 void *p;
1460
1461                 while (left < order_to_size(this_order - 1) && this_order)
1462                         this_order--;
1463
1464                 do {
1465                         page = alloc_pages_node(set->numa_node,
1466                                 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1467                                 this_order);
1468                         if (page)
1469                                 break;
1470                         if (!this_order--)
1471                                 break;
1472                         if (order_to_size(this_order) < rq_size)
1473                                 break;
1474                 } while (1);
1475
1476                 if (!page)
1477                         goto fail;
1478
1479                 page->private = this_order;
1480                 list_add_tail(&page->lru, &tags->page_list);
1481
1482                 p = page_address(page);
1483                 entries_per_page = order_to_size(this_order) / rq_size;
1484                 to_do = min(entries_per_page, set->queue_depth - i);
1485                 left -= to_do * rq_size;
1486                 for (j = 0; j < to_do; j++) {
1487                         tags->rqs[i] = p;
1488                         if (set->ops->init_request) {
1489                                 if (set->ops->init_request(set->driver_data,
1490                                                 tags->rqs[i], hctx_idx, i,
1491                                                 set->numa_node)) {
1492                                         tags->rqs[i] = NULL;
1493                                         goto fail;
1494                                 }
1495                         }
1496
1497                         p += rq_size;
1498                         i++;
1499                 }
1500         }
1501
1502         return tags;
1503
1504 fail:
1505         blk_mq_free_rq_map(set, tags, hctx_idx);
1506         return NULL;
1507 }
1508
1509 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1510 {
1511         kfree(bitmap->map);
1512 }
1513
1514 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1515 {
1516         unsigned int bpw = 8, total, num_maps, i;
1517
1518         bitmap->bits_per_word = bpw;
1519
1520         num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1521         bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1522                                         GFP_KERNEL, node);
1523         if (!bitmap->map)
1524                 return -ENOMEM;
1525
1526         total = nr_cpu_ids;
1527         for (i = 0; i < num_maps; i++) {
1528                 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1529                 total -= bitmap->map[i].depth;
1530         }
1531
1532         return 0;
1533 }
1534
1535 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1536 {
1537         struct request_queue *q = hctx->queue;
1538         struct blk_mq_ctx *ctx;
1539         LIST_HEAD(tmp);
1540
1541         /*
1542          * Move ctx entries to new CPU, if this one is going away.
1543          */
1544         ctx = __blk_mq_get_ctx(q, cpu);
1545
1546         spin_lock(&ctx->lock);
1547         if (!list_empty(&ctx->rq_list)) {
1548                 list_splice_init(&ctx->rq_list, &tmp);
1549                 blk_mq_hctx_clear_pending(hctx, ctx);
1550         }
1551         spin_unlock(&ctx->lock);
1552
1553         if (list_empty(&tmp))
1554                 return NOTIFY_OK;
1555
1556         ctx = blk_mq_get_ctx(q);
1557         spin_lock(&ctx->lock);
1558
1559         while (!list_empty(&tmp)) {
1560                 struct request *rq;
1561
1562                 rq = list_first_entry(&tmp, struct request, queuelist);
1563                 rq->mq_ctx = ctx;
1564                 list_move_tail(&rq->queuelist, &ctx->rq_list);
1565         }
1566
1567         hctx = q->mq_ops->map_queue(q, ctx->cpu);
1568         blk_mq_hctx_mark_pending(hctx, ctx);
1569
1570         spin_unlock(&ctx->lock);
1571
1572         blk_mq_run_hw_queue(hctx, true);
1573         blk_mq_put_ctx(ctx);
1574         return NOTIFY_OK;
1575 }
1576
1577 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1578 {
1579         struct request_queue *q = hctx->queue;
1580         struct blk_mq_tag_set *set = q->tag_set;
1581
1582         if (set->tags[hctx->queue_num])
1583                 return NOTIFY_OK;
1584
1585         set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1586         if (!set->tags[hctx->queue_num])
1587                 return NOTIFY_STOP;
1588
1589         hctx->tags = set->tags[hctx->queue_num];
1590         return NOTIFY_OK;
1591 }
1592
1593 static int blk_mq_hctx_notify(void *data, unsigned long action,
1594                               unsigned int cpu)
1595 {
1596         struct blk_mq_hw_ctx *hctx = data;
1597
1598         if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1599                 return blk_mq_hctx_cpu_offline(hctx, cpu);
1600         else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1601                 return blk_mq_hctx_cpu_online(hctx, cpu);
1602
1603         return NOTIFY_OK;
1604 }
1605
1606 static void blk_mq_exit_hctx(struct request_queue *q,
1607                 struct blk_mq_tag_set *set,
1608                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1609 {
1610         unsigned flush_start_tag = set->queue_depth;
1611
1612         blk_mq_tag_idle(hctx);
1613
1614         if (set->ops->exit_request)
1615                 set->ops->exit_request(set->driver_data,
1616                                        hctx->fq->flush_rq, hctx_idx,
1617                                        flush_start_tag + hctx_idx);
1618
1619         if (set->ops->exit_hctx)
1620                 set->ops->exit_hctx(hctx, hctx_idx);
1621
1622         blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1623         blk_free_flush_queue(hctx->fq);
1624         kfree(hctx->ctxs);
1625         blk_mq_free_bitmap(&hctx->ctx_map);
1626 }
1627
1628 static void blk_mq_exit_hw_queues(struct request_queue *q,
1629                 struct blk_mq_tag_set *set, int nr_queue)
1630 {
1631         struct blk_mq_hw_ctx *hctx;
1632         unsigned int i;
1633
1634         queue_for_each_hw_ctx(q, hctx, i) {
1635                 if (i == nr_queue)
1636                         break;
1637                 blk_mq_exit_hctx(q, set, hctx, i);
1638         }
1639 }
1640
1641 static void blk_mq_free_hw_queues(struct request_queue *q,
1642                 struct blk_mq_tag_set *set)
1643 {
1644         struct blk_mq_hw_ctx *hctx;
1645         unsigned int i;
1646
1647         queue_for_each_hw_ctx(q, hctx, i)
1648                 free_cpumask_var(hctx->cpumask);
1649 }
1650
1651 static int blk_mq_init_hctx(struct request_queue *q,
1652                 struct blk_mq_tag_set *set,
1653                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1654 {
1655         int node;
1656         unsigned flush_start_tag = set->queue_depth;
1657
1658         node = hctx->numa_node;
1659         if (node == NUMA_NO_NODE)
1660                 node = hctx->numa_node = set->numa_node;
1661
1662         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1663         INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1664         spin_lock_init(&hctx->lock);
1665         INIT_LIST_HEAD(&hctx->dispatch);
1666         hctx->queue = q;
1667         hctx->queue_num = hctx_idx;
1668         hctx->flags = set->flags;
1669
1670         blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1671                                         blk_mq_hctx_notify, hctx);
1672         blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1673
1674         hctx->tags = set->tags[hctx_idx];
1675
1676         /*
1677          * Allocate space for all possible cpus to avoid allocation at
1678          * runtime
1679          */
1680         hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1681                                         GFP_KERNEL, node);
1682         if (!hctx->ctxs)
1683                 goto unregister_cpu_notifier;
1684
1685         if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1686                 goto free_ctxs;
1687
1688         hctx->nr_ctx = 0;
1689
1690         if (set->ops->init_hctx &&
1691             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1692                 goto free_bitmap;
1693
1694         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1695         if (!hctx->fq)
1696                 goto exit_hctx;
1697
1698         if (set->ops->init_request &&
1699             set->ops->init_request(set->driver_data,
1700                                    hctx->fq->flush_rq, hctx_idx,
1701                                    flush_start_tag + hctx_idx, node))
1702                 goto free_fq;
1703
1704         return 0;
1705
1706  free_fq:
1707         kfree(hctx->fq);
1708  exit_hctx:
1709         if (set->ops->exit_hctx)
1710                 set->ops->exit_hctx(hctx, hctx_idx);
1711  free_bitmap:
1712         blk_mq_free_bitmap(&hctx->ctx_map);
1713  free_ctxs:
1714         kfree(hctx->ctxs);
1715  unregister_cpu_notifier:
1716         blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1717
1718         return -1;
1719 }
1720
1721 static int blk_mq_init_hw_queues(struct request_queue *q,
1722                 struct blk_mq_tag_set *set)
1723 {
1724         struct blk_mq_hw_ctx *hctx;
1725         unsigned int i;
1726
1727         /*
1728          * Initialize hardware queues
1729          */
1730         queue_for_each_hw_ctx(q, hctx, i) {
1731                 if (blk_mq_init_hctx(q, set, hctx, i))
1732                         break;
1733         }
1734
1735         if (i == q->nr_hw_queues)
1736                 return 0;
1737
1738         /*
1739          * Init failed
1740          */
1741         blk_mq_exit_hw_queues(q, set, i);
1742
1743         return 1;
1744 }
1745
1746 static void blk_mq_init_cpu_queues(struct request_queue *q,
1747                                    unsigned int nr_hw_queues)
1748 {
1749         unsigned int i;
1750
1751         for_each_possible_cpu(i) {
1752                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1753                 struct blk_mq_hw_ctx *hctx;
1754
1755                 memset(__ctx, 0, sizeof(*__ctx));
1756                 __ctx->cpu = i;
1757                 spin_lock_init(&__ctx->lock);
1758                 INIT_LIST_HEAD(&__ctx->rq_list);
1759                 __ctx->queue = q;
1760
1761                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1762                 if (!cpu_online(i))
1763                         continue;
1764
1765                 hctx = q->mq_ops->map_queue(q, i);
1766
1767                 /*
1768                  * Set local node, IFF we have more than one hw queue. If
1769                  * not, we remain on the home node of the device
1770                  */
1771                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1772                         hctx->numa_node = cpu_to_node(i);
1773         }
1774 }
1775
1776 static void blk_mq_map_swqueue(struct request_queue *q)
1777 {
1778         unsigned int i;
1779         struct blk_mq_hw_ctx *hctx;
1780         struct blk_mq_ctx *ctx;
1781
1782         queue_for_each_hw_ctx(q, hctx, i) {
1783                 cpumask_clear(hctx->cpumask);
1784                 hctx->nr_ctx = 0;
1785         }
1786
1787         /*
1788          * Map software to hardware queues
1789          */
1790         queue_for_each_ctx(q, ctx, i) {
1791                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1792                 if (!cpu_online(i))
1793                         continue;
1794
1795                 hctx = q->mq_ops->map_queue(q, i);
1796                 cpumask_set_cpu(i, hctx->cpumask);
1797                 ctx->index_hw = hctx->nr_ctx;
1798                 hctx->ctxs[hctx->nr_ctx++] = ctx;
1799         }
1800
1801         queue_for_each_hw_ctx(q, hctx, i) {
1802                 struct blk_mq_ctxmap *map = &hctx->ctx_map;
1803
1804                 /*
1805                  * If no software queues are mapped to this hardware queue,
1806                  * disable it and free the request entries.
1807                  */
1808                 if (!hctx->nr_ctx) {
1809                         struct blk_mq_tag_set *set = q->tag_set;
1810
1811                         if (set->tags[i]) {
1812                                 blk_mq_free_rq_map(set, set->tags[i], i);
1813                                 set->tags[i] = NULL;
1814                                 hctx->tags = NULL;
1815                         }
1816                         continue;
1817                 }
1818
1819                 /*
1820                  * Set the map size to the number of mapped software queues.
1821                  * This is more accurate and more efficient than looping
1822                  * over all possibly mapped software queues.
1823                  */
1824                 map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1825
1826                 /*
1827                  * Initialize batch roundrobin counts
1828                  */
1829                 hctx->next_cpu = cpumask_first(hctx->cpumask);
1830                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1831         }
1832 }
1833
1834 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1835 {
1836         struct blk_mq_hw_ctx *hctx;
1837         struct request_queue *q;
1838         bool shared;
1839         int i;
1840
1841         if (set->tag_list.next == set->tag_list.prev)
1842                 shared = false;
1843         else
1844                 shared = true;
1845
1846         list_for_each_entry(q, &set->tag_list, tag_set_list) {
1847                 blk_mq_freeze_queue(q);
1848
1849                 queue_for_each_hw_ctx(q, hctx, i) {
1850                         if (shared)
1851                                 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1852                         else
1853                                 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1854                 }
1855                 blk_mq_unfreeze_queue(q);
1856         }
1857 }
1858
1859 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1860 {
1861         struct blk_mq_tag_set *set = q->tag_set;
1862
1863         mutex_lock(&set->tag_list_lock);
1864         list_del_init(&q->tag_set_list);
1865         blk_mq_update_tag_set_depth(set);
1866         mutex_unlock(&set->tag_list_lock);
1867 }
1868
1869 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1870                                      struct request_queue *q)
1871 {
1872         q->tag_set = set;
1873
1874         mutex_lock(&set->tag_list_lock);
1875         list_add_tail(&q->tag_set_list, &set->tag_list);
1876         blk_mq_update_tag_set_depth(set);
1877         mutex_unlock(&set->tag_list_lock);
1878 }
1879
1880 /*
1881  * It is the actual release handler for mq, but we do it from
1882  * request queue's release handler for avoiding use-after-free
1883  * and headache because q->mq_kobj shouldn't have been introduced,
1884  * but we can't group ctx/kctx kobj without it.
1885  */
1886 void blk_mq_release(struct request_queue *q)
1887 {
1888         struct blk_mq_hw_ctx *hctx;
1889         unsigned int i;
1890
1891         /* hctx kobj stays in hctx */
1892         queue_for_each_hw_ctx(q, hctx, i)
1893                 kfree(hctx);
1894
1895         kfree(q->queue_hw_ctx);
1896
1897         /* ctx kobj stays in queue_ctx */
1898         free_percpu(q->queue_ctx);
1899 }
1900
1901 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1902 {
1903         struct request_queue *uninit_q, *q;
1904
1905         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1906         if (!uninit_q)
1907                 return ERR_PTR(-ENOMEM);
1908
1909         q = blk_mq_init_allocated_queue(set, uninit_q);
1910         if (IS_ERR(q))
1911                 blk_cleanup_queue(uninit_q);
1912
1913         return q;
1914 }
1915 EXPORT_SYMBOL(blk_mq_init_queue);
1916
1917 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
1918                                                   struct request_queue *q)
1919 {
1920         struct blk_mq_hw_ctx **hctxs;
1921         struct blk_mq_ctx __percpu *ctx;
1922         unsigned int *map;
1923         int i;
1924
1925         ctx = alloc_percpu(struct blk_mq_ctx);
1926         if (!ctx)
1927                 return ERR_PTR(-ENOMEM);
1928
1929         hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1930                         set->numa_node);
1931
1932         if (!hctxs)
1933                 goto err_percpu;
1934
1935         map = blk_mq_make_queue_map(set);
1936         if (!map)
1937                 goto err_map;
1938
1939         for (i = 0; i < set->nr_hw_queues; i++) {
1940                 int node = blk_mq_hw_queue_to_node(map, i);
1941
1942                 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1943                                         GFP_KERNEL, node);
1944                 if (!hctxs[i])
1945                         goto err_hctxs;
1946
1947                 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1948                                                 node))
1949                         goto err_hctxs;
1950
1951                 atomic_set(&hctxs[i]->nr_active, 0);
1952                 hctxs[i]->numa_node = node;
1953                 hctxs[i]->queue_num = i;
1954         }
1955
1956         /*
1957          * Init percpu_ref in atomic mode so that it's faster to shutdown.
1958          * See blk_register_queue() for details.
1959          */
1960         if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
1961                             PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1962                 goto err_hctxs;
1963
1964         setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1965         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30000);
1966
1967         q->nr_queues = nr_cpu_ids;
1968         q->nr_hw_queues = set->nr_hw_queues;
1969         q->mq_map = map;
1970
1971         q->queue_ctx = ctx;
1972         q->queue_hw_ctx = hctxs;
1973
1974         q->mq_ops = set->ops;
1975         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1976
1977         if (!(set->flags & BLK_MQ_F_SG_MERGE))
1978                 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1979
1980         q->sg_reserved_size = INT_MAX;
1981
1982         INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1983         INIT_LIST_HEAD(&q->requeue_list);
1984         spin_lock_init(&q->requeue_lock);
1985
1986         if (q->nr_hw_queues > 1)
1987                 blk_queue_make_request(q, blk_mq_make_request);
1988         else
1989                 blk_queue_make_request(q, blk_sq_make_request);
1990
1991         /*
1992          * Do this after blk_queue_make_request() overrides it...
1993          */
1994         q->nr_requests = set->queue_depth;
1995
1996         if (set->ops->complete)
1997                 blk_queue_softirq_done(q, set->ops->complete);
1998
1999         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2000
2001         if (blk_mq_init_hw_queues(q, set))
2002                 goto err_hctxs;
2003
2004         mutex_lock(&all_q_mutex);
2005         list_add_tail(&q->all_q_node, &all_q_list);
2006         mutex_unlock(&all_q_mutex);
2007
2008         blk_mq_add_queue_tag_set(set, q);
2009
2010         blk_mq_map_swqueue(q);
2011
2012         return q;
2013
2014 err_hctxs:
2015         kfree(map);
2016         for (i = 0; i < set->nr_hw_queues; i++) {
2017                 if (!hctxs[i])
2018                         break;
2019                 free_cpumask_var(hctxs[i]->cpumask);
2020                 kfree(hctxs[i]);
2021         }
2022 err_map:
2023         kfree(hctxs);
2024 err_percpu:
2025         free_percpu(ctx);
2026         return ERR_PTR(-ENOMEM);
2027 }
2028 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2029
2030 void blk_mq_free_queue(struct request_queue *q)
2031 {
2032         struct blk_mq_tag_set   *set = q->tag_set;
2033
2034         blk_mq_del_queue_tag_set(q);
2035
2036         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2037         blk_mq_free_hw_queues(q, set);
2038
2039         percpu_ref_exit(&q->mq_usage_counter);
2040
2041         kfree(q->mq_map);
2042
2043         q->mq_map = NULL;
2044
2045         mutex_lock(&all_q_mutex);
2046         list_del_init(&q->all_q_node);
2047         mutex_unlock(&all_q_mutex);
2048 }
2049
2050 /* Basically redo blk_mq_init_queue with queue frozen */
2051 static void blk_mq_queue_reinit(struct request_queue *q)
2052 {
2053         WARN_ON_ONCE(!q->mq_freeze_depth);
2054
2055         blk_mq_sysfs_unregister(q);
2056
2057         blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
2058
2059         /*
2060          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2061          * we should change hctx numa_node according to new topology (this
2062          * involves free and re-allocate memory, worthy doing?)
2063          */
2064
2065         blk_mq_map_swqueue(q);
2066
2067         blk_mq_sysfs_register(q);
2068 }
2069
2070 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2071                                       unsigned long action, void *hcpu)
2072 {
2073         struct request_queue *q;
2074
2075         /*
2076          * Before new mappings are established, hotadded cpu might already
2077          * start handling requests. This doesn't break anything as we map
2078          * offline CPUs to first hardware queue. We will re-init the queue
2079          * below to get optimal settings.
2080          */
2081         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
2082             action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
2083                 return NOTIFY_OK;
2084
2085         mutex_lock(&all_q_mutex);
2086
2087         /*
2088          * We need to freeze and reinit all existing queues.  Freezing
2089          * involves synchronous wait for an RCU grace period and doing it
2090          * one by one may take a long time.  Start freezing all queues in
2091          * one swoop and then wait for the completions so that freezing can
2092          * take place in parallel.
2093          */
2094         list_for_each_entry(q, &all_q_list, all_q_node)
2095                 blk_mq_freeze_queue_start(q);
2096         list_for_each_entry(q, &all_q_list, all_q_node) {
2097                 blk_mq_freeze_queue_wait(q);
2098
2099                 /*
2100                  * timeout handler can't touch hw queue during the
2101                  * reinitialization
2102                  */
2103                 del_timer_sync(&q->timeout);
2104         }
2105
2106         list_for_each_entry(q, &all_q_list, all_q_node)
2107                 blk_mq_queue_reinit(q);
2108
2109         list_for_each_entry(q, &all_q_list, all_q_node)
2110                 blk_mq_unfreeze_queue(q);
2111
2112         mutex_unlock(&all_q_mutex);
2113         return NOTIFY_OK;
2114 }
2115
2116 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2117 {
2118         int i;
2119
2120         for (i = 0; i < set->nr_hw_queues; i++) {
2121                 set->tags[i] = blk_mq_init_rq_map(set, i);
2122                 if (!set->tags[i])
2123                         goto out_unwind;
2124         }
2125
2126         return 0;
2127
2128 out_unwind:
2129         while (--i >= 0)
2130                 blk_mq_free_rq_map(set, set->tags[i], i);
2131
2132         return -ENOMEM;
2133 }
2134
2135 /*
2136  * Allocate the request maps associated with this tag_set. Note that this
2137  * may reduce the depth asked for, if memory is tight. set->queue_depth
2138  * will be updated to reflect the allocated depth.
2139  */
2140 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2141 {
2142         unsigned int depth;
2143         int err;
2144
2145         depth = set->queue_depth;
2146         do {
2147                 err = __blk_mq_alloc_rq_maps(set);
2148                 if (!err)
2149                         break;
2150
2151                 set->queue_depth >>= 1;
2152                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2153                         err = -ENOMEM;
2154                         break;
2155                 }
2156         } while (set->queue_depth);
2157
2158         if (!set->queue_depth || err) {
2159                 pr_err("blk-mq: failed to allocate request map\n");
2160                 return -ENOMEM;
2161         }
2162
2163         if (depth != set->queue_depth)
2164                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2165                                                 depth, set->queue_depth);
2166
2167         return 0;
2168 }
2169
2170 /*
2171  * Alloc a tag set to be associated with one or more request queues.
2172  * May fail with EINVAL for various error conditions. May adjust the
2173  * requested depth down, if if it too large. In that case, the set
2174  * value will be stored in set->queue_depth.
2175  */
2176 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2177 {
2178         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2179
2180         if (!set->nr_hw_queues)
2181                 return -EINVAL;
2182         if (!set->queue_depth)
2183                 return -EINVAL;
2184         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2185                 return -EINVAL;
2186
2187         if (!set->ops->queue_rq || !set->ops->map_queue)
2188                 return -EINVAL;
2189
2190         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2191                 pr_info("blk-mq: reduced tag depth to %u\n",
2192                         BLK_MQ_MAX_DEPTH);
2193                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2194         }
2195
2196         /*
2197          * If a crashdump is active, then we are potentially in a very
2198          * memory constrained environment. Limit us to 1 queue and
2199          * 64 tags to prevent using too much memory.
2200          */
2201         if (is_kdump_kernel()) {
2202                 set->nr_hw_queues = 1;
2203                 set->queue_depth = min(64U, set->queue_depth);
2204         }
2205
2206         set->tags = kmalloc_node(set->nr_hw_queues *
2207                                  sizeof(struct blk_mq_tags *),
2208                                  GFP_KERNEL, set->numa_node);
2209         if (!set->tags)
2210                 return -ENOMEM;
2211
2212         if (blk_mq_alloc_rq_maps(set))
2213                 goto enomem;
2214
2215         mutex_init(&set->tag_list_lock);
2216         INIT_LIST_HEAD(&set->tag_list);
2217
2218         return 0;
2219 enomem:
2220         kfree(set->tags);
2221         set->tags = NULL;
2222         return -ENOMEM;
2223 }
2224 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2225
2226 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2227 {
2228         int i;
2229
2230         for (i = 0; i < set->nr_hw_queues; i++) {
2231                 if (set->tags[i])
2232                         blk_mq_free_rq_map(set, set->tags[i], i);
2233         }
2234
2235         kfree(set->tags);
2236         set->tags = NULL;
2237 }
2238 EXPORT_SYMBOL(blk_mq_free_tag_set);
2239
2240 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2241 {
2242         struct blk_mq_tag_set *set = q->tag_set;
2243         struct blk_mq_hw_ctx *hctx;
2244         int i, ret;
2245
2246         if (!set || nr > set->queue_depth)
2247                 return -EINVAL;
2248
2249         ret = 0;
2250         queue_for_each_hw_ctx(q, hctx, i) {
2251                 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2252                 if (ret)
2253                         break;
2254         }
2255
2256         if (!ret)
2257                 q->nr_requests = nr;
2258
2259         return ret;
2260 }
2261
2262 void blk_mq_disable_hotplug(void)
2263 {
2264         mutex_lock(&all_q_mutex);
2265 }
2266
2267 void blk_mq_enable_hotplug(void)
2268 {
2269         mutex_unlock(&all_q_mutex);
2270 }
2271
2272 static int __init blk_mq_init(void)
2273 {
2274         blk_mq_cpu_init();
2275
2276         hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2277
2278         return 0;
2279 }
2280 subsys_initcall(blk_mq_init);