cfq-iosched: Do not merge queues of BE and IDLE classes
[firefly-linux-kernel-4.4.55.git] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/jiffies.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15 #include <linux/blktrace_api.h>
16 #include "blk-cgroup.h"
17
18 /*
19  * tunables
20  */
21 /* max queue in one round of service */
22 static const int cfq_quantum = 8;
23 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
24 /* maximum backwards seek, in KiB */
25 static const int cfq_back_max = 16 * 1024;
26 /* penalty of a backwards seek */
27 static const int cfq_back_penalty = 2;
28 static const int cfq_slice_sync = HZ / 10;
29 static int cfq_slice_async = HZ / 25;
30 static const int cfq_slice_async_rq = 2;
31 static int cfq_slice_idle = HZ / 125;
32 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33 static const int cfq_hist_divisor = 4;
34
35 /*
36  * offset from end of service tree
37  */
38 #define CFQ_IDLE_DELAY          (HZ / 5)
39
40 /*
41  * below this threshold, we consider thinktime immediate
42  */
43 #define CFQ_MIN_TT              (2)
44
45 #define CFQ_SLICE_SCALE         (5)
46 #define CFQ_HW_QUEUE_MIN        (5)
47 #define CFQ_SERVICE_SHIFT       12
48
49 #define CFQQ_SEEK_THR           (sector_t)(8 * 100)
50 #define CFQQ_CLOSE_THR          (sector_t)(8 * 1024)
51 #define CFQQ_SECT_THR_NONROT    (sector_t)(2 * 32)
52 #define CFQQ_SEEKY(cfqq)        (hweight32(cfqq->seek_history) > 32/8)
53
54 #define RQ_CIC(rq)              \
55         ((struct cfq_io_context *) (rq)->elevator_private)
56 #define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elevator_private2)
57
58 static struct kmem_cache *cfq_pool;
59 static struct kmem_cache *cfq_ioc_pool;
60
61 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
62 static struct completion *ioc_gone;
63 static DEFINE_SPINLOCK(ioc_gone_lock);
64
65 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
66 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
67 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
68
69 #define sample_valid(samples)   ((samples) > 80)
70 #define rb_entry_cfqg(node)     rb_entry((node), struct cfq_group, rb_node)
71
72 /*
73  * Most of our rbtree usage is for sorting with min extraction, so
74  * if we cache the leftmost node we don't have to walk down the tree
75  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
76  * move this into the elevator for the rq sorting as well.
77  */
78 struct cfq_rb_root {
79         struct rb_root rb;
80         struct rb_node *left;
81         unsigned count;
82         unsigned total_weight;
83         u64 min_vdisktime;
84         struct rb_node *active;
85 };
86 #define CFQ_RB_ROOT     (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
87                         .count = 0, .min_vdisktime = 0, }
88
89 /*
90  * Per process-grouping structure
91  */
92 struct cfq_queue {
93         /* reference count */
94         atomic_t ref;
95         /* various state flags, see below */
96         unsigned int flags;
97         /* parent cfq_data */
98         struct cfq_data *cfqd;
99         /* service_tree member */
100         struct rb_node rb_node;
101         /* service_tree key */
102         unsigned long rb_key;
103         /* prio tree member */
104         struct rb_node p_node;
105         /* prio tree root we belong to, if any */
106         struct rb_root *p_root;
107         /* sorted list of pending requests */
108         struct rb_root sort_list;
109         /* if fifo isn't expired, next request to serve */
110         struct request *next_rq;
111         /* requests queued in sort_list */
112         int queued[2];
113         /* currently allocated requests */
114         int allocated[2];
115         /* fifo list of requests in sort_list */
116         struct list_head fifo;
117
118         /* time when queue got scheduled in to dispatch first request. */
119         unsigned long dispatch_start;
120         unsigned int allocated_slice;
121         unsigned int slice_dispatch;
122         /* time when first request from queue completed and slice started. */
123         unsigned long slice_start;
124         unsigned long slice_end;
125         long slice_resid;
126
127         /* pending metadata requests */
128         int meta_pending;
129         /* number of requests that are on the dispatch list or inside driver */
130         int dispatched;
131
132         /* io prio of this group */
133         unsigned short ioprio, org_ioprio;
134         unsigned short ioprio_class, org_ioprio_class;
135
136         pid_t pid;
137
138         u32 seek_history;
139         sector_t last_request_pos;
140
141         struct cfq_rb_root *service_tree;
142         struct cfq_queue *new_cfqq;
143         struct cfq_group *cfqg;
144         struct cfq_group *orig_cfqg;
145         /* Sectors dispatched in current dispatch round */
146         unsigned long nr_sectors;
147 };
148
149 /*
150  * First index in the service_trees.
151  * IDLE is handled separately, so it has negative index
152  */
153 enum wl_prio_t {
154         BE_WORKLOAD = 0,
155         RT_WORKLOAD = 1,
156         IDLE_WORKLOAD = 2,
157 };
158
159 /*
160  * Second index in the service_trees.
161  */
162 enum wl_type_t {
163         ASYNC_WORKLOAD = 0,
164         SYNC_NOIDLE_WORKLOAD = 1,
165         SYNC_WORKLOAD = 2
166 };
167
168 /* This is per cgroup per device grouping structure */
169 struct cfq_group {
170         /* group service_tree member */
171         struct rb_node rb_node;
172
173         /* group service_tree key */
174         u64 vdisktime;
175         unsigned int weight;
176         bool on_st;
177
178         /* number of cfqq currently on this group */
179         int nr_cfqq;
180
181         /* Per group busy queus average. Useful for workload slice calc. */
182         unsigned int busy_queues_avg[2];
183         /*
184          * rr lists of queues with requests, onle rr for each priority class.
185          * Counts are embedded in the cfq_rb_root
186          */
187         struct cfq_rb_root service_trees[2][3];
188         struct cfq_rb_root service_tree_idle;
189
190         unsigned long saved_workload_slice;
191         enum wl_type_t saved_workload;
192         enum wl_prio_t saved_serving_prio;
193         struct blkio_group blkg;
194 #ifdef CONFIG_CFQ_GROUP_IOSCHED
195         struct hlist_node cfqd_node;
196         atomic_t ref;
197 #endif
198 };
199
200 /*
201  * Per block device queue structure
202  */
203 struct cfq_data {
204         struct request_queue *queue;
205         /* Root service tree for cfq_groups */
206         struct cfq_rb_root grp_service_tree;
207         struct cfq_group root_group;
208
209         /*
210          * The priority currently being served
211          */
212         enum wl_prio_t serving_prio;
213         enum wl_type_t serving_type;
214         unsigned long workload_expires;
215         struct cfq_group *serving_group;
216         bool noidle_tree_requires_idle;
217
218         /*
219          * Each priority tree is sorted by next_request position.  These
220          * trees are used when determining if two or more queues are
221          * interleaving requests (see cfq_close_cooperator).
222          */
223         struct rb_root prio_trees[CFQ_PRIO_LISTS];
224
225         unsigned int busy_queues;
226
227         int rq_in_driver;
228         int rq_in_flight[2];
229
230         /*
231          * queue-depth detection
232          */
233         int rq_queued;
234         int hw_tag;
235         /*
236          * hw_tag can be
237          * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
238          *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
239          *  0 => no NCQ
240          */
241         int hw_tag_est_depth;
242         unsigned int hw_tag_samples;
243
244         /*
245          * idle window management
246          */
247         struct timer_list idle_slice_timer;
248         struct work_struct unplug_work;
249
250         struct cfq_queue *active_queue;
251         struct cfq_io_context *active_cic;
252
253         /*
254          * async queue for each priority case
255          */
256         struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
257         struct cfq_queue *async_idle_cfqq;
258
259         sector_t last_position;
260
261         /*
262          * tunables, see top of file
263          */
264         unsigned int cfq_quantum;
265         unsigned int cfq_fifo_expire[2];
266         unsigned int cfq_back_penalty;
267         unsigned int cfq_back_max;
268         unsigned int cfq_slice[2];
269         unsigned int cfq_slice_async_rq;
270         unsigned int cfq_slice_idle;
271         unsigned int cfq_latency;
272         unsigned int cfq_group_isolation;
273
274         struct list_head cic_list;
275
276         /*
277          * Fallback dummy cfqq for extreme OOM conditions
278          */
279         struct cfq_queue oom_cfqq;
280
281         unsigned long last_delayed_sync;
282
283         /* List of cfq groups being managed on this device*/
284         struct hlist_head cfqg_list;
285         struct rcu_head rcu;
286 };
287
288 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
289
290 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
291                                             enum wl_prio_t prio,
292                                             enum wl_type_t type)
293 {
294         if (!cfqg)
295                 return NULL;
296
297         if (prio == IDLE_WORKLOAD)
298                 return &cfqg->service_tree_idle;
299
300         return &cfqg->service_trees[prio][type];
301 }
302
303 enum cfqq_state_flags {
304         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
305         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
306         CFQ_CFQQ_FLAG_must_dispatch,    /* must be allowed a dispatch */
307         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
308         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
309         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
310         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
311         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
312         CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
313         CFQ_CFQQ_FLAG_coop,             /* cfqq is shared */
314         CFQ_CFQQ_FLAG_split_coop,       /* shared cfqq will be splitted */
315         CFQ_CFQQ_FLAG_deep,             /* sync cfqq experienced large depth */
316         CFQ_CFQQ_FLAG_wait_busy,        /* Waiting for next request */
317 };
318
319 #define CFQ_CFQQ_FNS(name)                                              \
320 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
321 {                                                                       \
322         (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
323 }                                                                       \
324 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
325 {                                                                       \
326         (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
327 }                                                                       \
328 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
329 {                                                                       \
330         return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
331 }
332
333 CFQ_CFQQ_FNS(on_rr);
334 CFQ_CFQQ_FNS(wait_request);
335 CFQ_CFQQ_FNS(must_dispatch);
336 CFQ_CFQQ_FNS(must_alloc_slice);
337 CFQ_CFQQ_FNS(fifo_expire);
338 CFQ_CFQQ_FNS(idle_window);
339 CFQ_CFQQ_FNS(prio_changed);
340 CFQ_CFQQ_FNS(slice_new);
341 CFQ_CFQQ_FNS(sync);
342 CFQ_CFQQ_FNS(coop);
343 CFQ_CFQQ_FNS(split_coop);
344 CFQ_CFQQ_FNS(deep);
345 CFQ_CFQQ_FNS(wait_busy);
346 #undef CFQ_CFQQ_FNS
347
348 #ifdef CONFIG_DEBUG_CFQ_IOSCHED
349 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
350         blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
351                         cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
352                         blkg_path(&(cfqq)->cfqg->blkg), ##args);
353
354 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)                          \
355         blk_add_trace_msg((cfqd)->queue, "%s " fmt,                     \
356                                 blkg_path(&(cfqg)->blkg), ##args);      \
357
358 #else
359 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
360         blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
361 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)          do {} while (0);
362 #endif
363 #define cfq_log(cfqd, fmt, args...)     \
364         blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
365
366 /* Traverses through cfq group service trees */
367 #define for_each_cfqg_st(cfqg, i, j, st) \
368         for (i = 0; i <= IDLE_WORKLOAD; i++) \
369                 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
370                         : &cfqg->service_tree_idle; \
371                         (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
372                         (i == IDLE_WORKLOAD && j == 0); \
373                         j++, st = i < IDLE_WORKLOAD ? \
374                         &cfqg->service_trees[i][j]: NULL) \
375
376
377 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
378 {
379         if (cfq_class_idle(cfqq))
380                 return IDLE_WORKLOAD;
381         if (cfq_class_rt(cfqq))
382                 return RT_WORKLOAD;
383         return BE_WORKLOAD;
384 }
385
386
387 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
388 {
389         if (!cfq_cfqq_sync(cfqq))
390                 return ASYNC_WORKLOAD;
391         if (!cfq_cfqq_idle_window(cfqq))
392                 return SYNC_NOIDLE_WORKLOAD;
393         return SYNC_WORKLOAD;
394 }
395
396 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
397                                         struct cfq_data *cfqd,
398                                         struct cfq_group *cfqg)
399 {
400         if (wl == IDLE_WORKLOAD)
401                 return cfqg->service_tree_idle.count;
402
403         return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
404                 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
405                 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
406 }
407
408 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
409                                         struct cfq_group *cfqg)
410 {
411         return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
412                 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
413 }
414
415 static void cfq_dispatch_insert(struct request_queue *, struct request *);
416 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
417                                        struct io_context *, gfp_t);
418 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
419                                                 struct io_context *);
420
421 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
422                                             bool is_sync)
423 {
424         return cic->cfqq[is_sync];
425 }
426
427 static inline void cic_set_cfqq(struct cfq_io_context *cic,
428                                 struct cfq_queue *cfqq, bool is_sync)
429 {
430         cic->cfqq[is_sync] = cfqq;
431 }
432
433 /*
434  * We regard a request as SYNC, if it's either a read or has the SYNC bit
435  * set (in which case it could also be direct WRITE).
436  */
437 static inline bool cfq_bio_sync(struct bio *bio)
438 {
439         return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
440 }
441
442 /*
443  * scheduler run of queue, if there are requests pending and no one in the
444  * driver that will restart queueing
445  */
446 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
447 {
448         if (cfqd->busy_queues) {
449                 cfq_log(cfqd, "schedule dispatch");
450                 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
451         }
452 }
453
454 static int cfq_queue_empty(struct request_queue *q)
455 {
456         struct cfq_data *cfqd = q->elevator->elevator_data;
457
458         return !cfqd->rq_queued;
459 }
460
461 /*
462  * Scale schedule slice based on io priority. Use the sync time slice only
463  * if a queue is marked sync and has sync io queued. A sync queue with async
464  * io only, should not get full sync slice length.
465  */
466 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
467                                  unsigned short prio)
468 {
469         const int base_slice = cfqd->cfq_slice[sync];
470
471         WARN_ON(prio >= IOPRIO_BE_NR);
472
473         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
474 }
475
476 static inline int
477 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
478 {
479         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
480 }
481
482 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
483 {
484         u64 d = delta << CFQ_SERVICE_SHIFT;
485
486         d = d * BLKIO_WEIGHT_DEFAULT;
487         do_div(d, cfqg->weight);
488         return d;
489 }
490
491 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
492 {
493         s64 delta = (s64)(vdisktime - min_vdisktime);
494         if (delta > 0)
495                 min_vdisktime = vdisktime;
496
497         return min_vdisktime;
498 }
499
500 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
501 {
502         s64 delta = (s64)(vdisktime - min_vdisktime);
503         if (delta < 0)
504                 min_vdisktime = vdisktime;
505
506         return min_vdisktime;
507 }
508
509 static void update_min_vdisktime(struct cfq_rb_root *st)
510 {
511         u64 vdisktime = st->min_vdisktime;
512         struct cfq_group *cfqg;
513
514         if (st->active) {
515                 cfqg = rb_entry_cfqg(st->active);
516                 vdisktime = cfqg->vdisktime;
517         }
518
519         if (st->left) {
520                 cfqg = rb_entry_cfqg(st->left);
521                 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
522         }
523
524         st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
525 }
526
527 /*
528  * get averaged number of queues of RT/BE priority.
529  * average is updated, with a formula that gives more weight to higher numbers,
530  * to quickly follows sudden increases and decrease slowly
531  */
532
533 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
534                                         struct cfq_group *cfqg, bool rt)
535 {
536         unsigned min_q, max_q;
537         unsigned mult  = cfq_hist_divisor - 1;
538         unsigned round = cfq_hist_divisor / 2;
539         unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
540
541         min_q = min(cfqg->busy_queues_avg[rt], busy);
542         max_q = max(cfqg->busy_queues_avg[rt], busy);
543         cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
544                 cfq_hist_divisor;
545         return cfqg->busy_queues_avg[rt];
546 }
547
548 static inline unsigned
549 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
550 {
551         struct cfq_rb_root *st = &cfqd->grp_service_tree;
552
553         return cfq_target_latency * cfqg->weight / st->total_weight;
554 }
555
556 static inline void
557 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
558 {
559         unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
560         if (cfqd->cfq_latency) {
561                 /*
562                  * interested queues (we consider only the ones with the same
563                  * priority class in the cfq group)
564                  */
565                 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
566                                                 cfq_class_rt(cfqq));
567                 unsigned sync_slice = cfqd->cfq_slice[1];
568                 unsigned expect_latency = sync_slice * iq;
569                 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
570
571                 if (expect_latency > group_slice) {
572                         unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
573                         /* scale low_slice according to IO priority
574                          * and sync vs async */
575                         unsigned low_slice =
576                                 min(slice, base_low_slice * slice / sync_slice);
577                         /* the adapted slice value is scaled to fit all iqs
578                          * into the target latency */
579                         slice = max(slice * group_slice / expect_latency,
580                                     low_slice);
581                 }
582         }
583         cfqq->slice_start = jiffies;
584         cfqq->slice_end = jiffies + slice;
585         cfqq->allocated_slice = slice;
586         cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
587 }
588
589 /*
590  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
591  * isn't valid until the first request from the dispatch is activated
592  * and the slice time set.
593  */
594 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
595 {
596         if (cfq_cfqq_slice_new(cfqq))
597                 return 0;
598         if (time_before(jiffies, cfqq->slice_end))
599                 return 0;
600
601         return 1;
602 }
603
604 /*
605  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
606  * We choose the request that is closest to the head right now. Distance
607  * behind the head is penalized and only allowed to a certain extent.
608  */
609 static struct request *
610 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
611 {
612         sector_t s1, s2, d1 = 0, d2 = 0;
613         unsigned long back_max;
614 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
615 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
616         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
617
618         if (rq1 == NULL || rq1 == rq2)
619                 return rq2;
620         if (rq2 == NULL)
621                 return rq1;
622
623         if (rq_is_sync(rq1) && !rq_is_sync(rq2))
624                 return rq1;
625         else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
626                 return rq2;
627         if (rq_is_meta(rq1) && !rq_is_meta(rq2))
628                 return rq1;
629         else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
630                 return rq2;
631
632         s1 = blk_rq_pos(rq1);
633         s2 = blk_rq_pos(rq2);
634
635         /*
636          * by definition, 1KiB is 2 sectors
637          */
638         back_max = cfqd->cfq_back_max * 2;
639
640         /*
641          * Strict one way elevator _except_ in the case where we allow
642          * short backward seeks which are biased as twice the cost of a
643          * similar forward seek.
644          */
645         if (s1 >= last)
646                 d1 = s1 - last;
647         else if (s1 + back_max >= last)
648                 d1 = (last - s1) * cfqd->cfq_back_penalty;
649         else
650                 wrap |= CFQ_RQ1_WRAP;
651
652         if (s2 >= last)
653                 d2 = s2 - last;
654         else if (s2 + back_max >= last)
655                 d2 = (last - s2) * cfqd->cfq_back_penalty;
656         else
657                 wrap |= CFQ_RQ2_WRAP;
658
659         /* Found required data */
660
661         /*
662          * By doing switch() on the bit mask "wrap" we avoid having to
663          * check two variables for all permutations: --> faster!
664          */
665         switch (wrap) {
666         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
667                 if (d1 < d2)
668                         return rq1;
669                 else if (d2 < d1)
670                         return rq2;
671                 else {
672                         if (s1 >= s2)
673                                 return rq1;
674                         else
675                                 return rq2;
676                 }
677
678         case CFQ_RQ2_WRAP:
679                 return rq1;
680         case CFQ_RQ1_WRAP:
681                 return rq2;
682         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
683         default:
684                 /*
685                  * Since both rqs are wrapped,
686                  * start with the one that's further behind head
687                  * (--> only *one* back seek required),
688                  * since back seek takes more time than forward.
689                  */
690                 if (s1 <= s2)
691                         return rq1;
692                 else
693                         return rq2;
694         }
695 }
696
697 /*
698  * The below is leftmost cache rbtree addon
699  */
700 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
701 {
702         /* Service tree is empty */
703         if (!root->count)
704                 return NULL;
705
706         if (!root->left)
707                 root->left = rb_first(&root->rb);
708
709         if (root->left)
710                 return rb_entry(root->left, struct cfq_queue, rb_node);
711
712         return NULL;
713 }
714
715 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
716 {
717         if (!root->left)
718                 root->left = rb_first(&root->rb);
719
720         if (root->left)
721                 return rb_entry_cfqg(root->left);
722
723         return NULL;
724 }
725
726 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
727 {
728         rb_erase(n, root);
729         RB_CLEAR_NODE(n);
730 }
731
732 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
733 {
734         if (root->left == n)
735                 root->left = NULL;
736         rb_erase_init(n, &root->rb);
737         --root->count;
738 }
739
740 /*
741  * would be nice to take fifo expire time into account as well
742  */
743 static struct request *
744 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
745                   struct request *last)
746 {
747         struct rb_node *rbnext = rb_next(&last->rb_node);
748         struct rb_node *rbprev = rb_prev(&last->rb_node);
749         struct request *next = NULL, *prev = NULL;
750
751         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
752
753         if (rbprev)
754                 prev = rb_entry_rq(rbprev);
755
756         if (rbnext)
757                 next = rb_entry_rq(rbnext);
758         else {
759                 rbnext = rb_first(&cfqq->sort_list);
760                 if (rbnext && rbnext != &last->rb_node)
761                         next = rb_entry_rq(rbnext);
762         }
763
764         return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
765 }
766
767 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
768                                       struct cfq_queue *cfqq)
769 {
770         /*
771          * just an approximation, should be ok.
772          */
773         return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
774                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
775 }
776
777 static inline s64
778 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
779 {
780         return cfqg->vdisktime - st->min_vdisktime;
781 }
782
783 static void
784 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
785 {
786         struct rb_node **node = &st->rb.rb_node;
787         struct rb_node *parent = NULL;
788         struct cfq_group *__cfqg;
789         s64 key = cfqg_key(st, cfqg);
790         int left = 1;
791
792         while (*node != NULL) {
793                 parent = *node;
794                 __cfqg = rb_entry_cfqg(parent);
795
796                 if (key < cfqg_key(st, __cfqg))
797                         node = &parent->rb_left;
798                 else {
799                         node = &parent->rb_right;
800                         left = 0;
801                 }
802         }
803
804         if (left)
805                 st->left = &cfqg->rb_node;
806
807         rb_link_node(&cfqg->rb_node, parent, node);
808         rb_insert_color(&cfqg->rb_node, &st->rb);
809 }
810
811 static void
812 cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
813 {
814         struct cfq_rb_root *st = &cfqd->grp_service_tree;
815         struct cfq_group *__cfqg;
816         struct rb_node *n;
817
818         cfqg->nr_cfqq++;
819         if (cfqg->on_st)
820                 return;
821
822         /*
823          * Currently put the group at the end. Later implement something
824          * so that groups get lesser vtime based on their weights, so that
825          * if group does not loose all if it was not continously backlogged.
826          */
827         n = rb_last(&st->rb);
828         if (n) {
829                 __cfqg = rb_entry_cfqg(n);
830                 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
831         } else
832                 cfqg->vdisktime = st->min_vdisktime;
833
834         __cfq_group_service_tree_add(st, cfqg);
835         cfqg->on_st = true;
836         st->total_weight += cfqg->weight;
837 }
838
839 static void
840 cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
841 {
842         struct cfq_rb_root *st = &cfqd->grp_service_tree;
843
844         if (st->active == &cfqg->rb_node)
845                 st->active = NULL;
846
847         BUG_ON(cfqg->nr_cfqq < 1);
848         cfqg->nr_cfqq--;
849
850         /* If there are other cfq queues under this group, don't delete it */
851         if (cfqg->nr_cfqq)
852                 return;
853
854         cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
855         cfqg->on_st = false;
856         st->total_weight -= cfqg->weight;
857         if (!RB_EMPTY_NODE(&cfqg->rb_node))
858                 cfq_rb_erase(&cfqg->rb_node, st);
859         cfqg->saved_workload_slice = 0;
860         blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
861 }
862
863 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
864 {
865         unsigned int slice_used;
866
867         /*
868          * Queue got expired before even a single request completed or
869          * got expired immediately after first request completion.
870          */
871         if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
872                 /*
873                  * Also charge the seek time incurred to the group, otherwise
874                  * if there are mutiple queues in the group, each can dispatch
875                  * a single request on seeky media and cause lots of seek time
876                  * and group will never know it.
877                  */
878                 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
879                                         1);
880         } else {
881                 slice_used = jiffies - cfqq->slice_start;
882                 if (slice_used > cfqq->allocated_slice)
883                         slice_used = cfqq->allocated_slice;
884         }
885
886         cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
887                                 cfqq->nr_sectors);
888         return slice_used;
889 }
890
891 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
892                                 struct cfq_queue *cfqq)
893 {
894         struct cfq_rb_root *st = &cfqd->grp_service_tree;
895         unsigned int used_sl, charge_sl;
896         int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
897                         - cfqg->service_tree_idle.count;
898
899         BUG_ON(nr_sync < 0);
900         used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
901
902         if (!cfq_cfqq_sync(cfqq) && !nr_sync)
903                 charge_sl = cfqq->allocated_slice;
904
905         /* Can't update vdisktime while group is on service tree */
906         cfq_rb_erase(&cfqg->rb_node, st);
907         cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
908         __cfq_group_service_tree_add(st, cfqg);
909
910         /* This group is being expired. Save the context */
911         if (time_after(cfqd->workload_expires, jiffies)) {
912                 cfqg->saved_workload_slice = cfqd->workload_expires
913                                                 - jiffies;
914                 cfqg->saved_workload = cfqd->serving_type;
915                 cfqg->saved_serving_prio = cfqd->serving_prio;
916         } else
917                 cfqg->saved_workload_slice = 0;
918
919         cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
920                                         st->min_vdisktime);
921         blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
922                                                 cfqq->nr_sectors);
923 }
924
925 #ifdef CONFIG_CFQ_GROUP_IOSCHED
926 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
927 {
928         if (blkg)
929                 return container_of(blkg, struct cfq_group, blkg);
930         return NULL;
931 }
932
933 void
934 cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
935 {
936         cfqg_of_blkg(blkg)->weight = weight;
937 }
938
939 static struct cfq_group *
940 cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
941 {
942         struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
943         struct cfq_group *cfqg = NULL;
944         void *key = cfqd;
945         int i, j;
946         struct cfq_rb_root *st;
947         struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
948         unsigned int major, minor;
949
950         cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
951         if (cfqg || !create)
952                 goto done;
953
954         cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
955         if (!cfqg)
956                 goto done;
957
958         cfqg->weight = blkcg->weight;
959         for_each_cfqg_st(cfqg, i, j, st)
960                 *st = CFQ_RB_ROOT;
961         RB_CLEAR_NODE(&cfqg->rb_node);
962
963         /*
964          * Take the initial reference that will be released on destroy
965          * This can be thought of a joint reference by cgroup and
966          * elevator which will be dropped by either elevator exit
967          * or cgroup deletion path depending on who is exiting first.
968          */
969         atomic_set(&cfqg->ref, 1);
970
971         /* Add group onto cgroup list */
972         sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
973         blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
974                                         MKDEV(major, minor));
975
976         /* Add group on cfqd list */
977         hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
978
979 done:
980         return cfqg;
981 }
982
983 /*
984  * Search for the cfq group current task belongs to. If create = 1, then also
985  * create the cfq group if it does not exist. request_queue lock must be held.
986  */
987 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
988 {
989         struct cgroup *cgroup;
990         struct cfq_group *cfqg = NULL;
991
992         rcu_read_lock();
993         cgroup = task_cgroup(current, blkio_subsys_id);
994         cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
995         if (!cfqg && create)
996                 cfqg = &cfqd->root_group;
997         rcu_read_unlock();
998         return cfqg;
999 }
1000
1001 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1002 {
1003         /* Currently, all async queues are mapped to root group */
1004         if (!cfq_cfqq_sync(cfqq))
1005                 cfqg = &cfqq->cfqd->root_group;
1006
1007         cfqq->cfqg = cfqg;
1008         /* cfqq reference on cfqg */
1009         atomic_inc(&cfqq->cfqg->ref);
1010 }
1011
1012 static void cfq_put_cfqg(struct cfq_group *cfqg)
1013 {
1014         struct cfq_rb_root *st;
1015         int i, j;
1016
1017         BUG_ON(atomic_read(&cfqg->ref) <= 0);
1018         if (!atomic_dec_and_test(&cfqg->ref))
1019                 return;
1020         for_each_cfqg_st(cfqg, i, j, st)
1021                 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1022         kfree(cfqg);
1023 }
1024
1025 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1026 {
1027         /* Something wrong if we are trying to remove same group twice */
1028         BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1029
1030         hlist_del_init(&cfqg->cfqd_node);
1031
1032         /*
1033          * Put the reference taken at the time of creation so that when all
1034          * queues are gone, group can be destroyed.
1035          */
1036         cfq_put_cfqg(cfqg);
1037 }
1038
1039 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1040 {
1041         struct hlist_node *pos, *n;
1042         struct cfq_group *cfqg;
1043
1044         hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1045                 /*
1046                  * If cgroup removal path got to blk_group first and removed
1047                  * it from cgroup list, then it will take care of destroying
1048                  * cfqg also.
1049                  */
1050                 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1051                         cfq_destroy_cfqg(cfqd, cfqg);
1052         }
1053 }
1054
1055 /*
1056  * Blk cgroup controller notification saying that blkio_group object is being
1057  * delinked as associated cgroup object is going away. That also means that
1058  * no new IO will come in this group. So get rid of this group as soon as
1059  * any pending IO in the group is finished.
1060  *
1061  * This function is called under rcu_read_lock(). key is the rcu protected
1062  * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1063  * read lock.
1064  *
1065  * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1066  * it should not be NULL as even if elevator was exiting, cgroup deltion
1067  * path got to it first.
1068  */
1069 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1070 {
1071         unsigned long  flags;
1072         struct cfq_data *cfqd = key;
1073
1074         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1075         cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1076         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1077 }
1078
1079 #else /* GROUP_IOSCHED */
1080 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1081 {
1082         return &cfqd->root_group;
1083 }
1084 static inline void
1085 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1086         cfqq->cfqg = cfqg;
1087 }
1088
1089 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1090 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1091
1092 #endif /* GROUP_IOSCHED */
1093
1094 /*
1095  * The cfqd->service_trees holds all pending cfq_queue's that have
1096  * requests waiting to be processed. It is sorted in the order that
1097  * we will service the queues.
1098  */
1099 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1100                                  bool add_front)
1101 {
1102         struct rb_node **p, *parent;
1103         struct cfq_queue *__cfqq;
1104         unsigned long rb_key;
1105         struct cfq_rb_root *service_tree;
1106         int left;
1107         int new_cfqq = 1;
1108         int group_changed = 0;
1109
1110 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1111         if (!cfqd->cfq_group_isolation
1112             && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1113             && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1114                 /* Move this cfq to root group */
1115                 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1116                 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1117                         cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1118                 cfqq->orig_cfqg = cfqq->cfqg;
1119                 cfqq->cfqg = &cfqd->root_group;
1120                 atomic_inc(&cfqd->root_group.ref);
1121                 group_changed = 1;
1122         } else if (!cfqd->cfq_group_isolation
1123                    && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1124                 /* cfqq is sequential now needs to go to its original group */
1125                 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1126                 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1127                         cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1128                 cfq_put_cfqg(cfqq->cfqg);
1129                 cfqq->cfqg = cfqq->orig_cfqg;
1130                 cfqq->orig_cfqg = NULL;
1131                 group_changed = 1;
1132                 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1133         }
1134 #endif
1135
1136         service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1137                                                 cfqq_type(cfqq));
1138         if (cfq_class_idle(cfqq)) {
1139                 rb_key = CFQ_IDLE_DELAY;
1140                 parent = rb_last(&service_tree->rb);
1141                 if (parent && parent != &cfqq->rb_node) {
1142                         __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1143                         rb_key += __cfqq->rb_key;
1144                 } else
1145                         rb_key += jiffies;
1146         } else if (!add_front) {
1147                 /*
1148                  * Get our rb key offset. Subtract any residual slice
1149                  * value carried from last service. A negative resid
1150                  * count indicates slice overrun, and this should position
1151                  * the next service time further away in the tree.
1152                  */
1153                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1154                 rb_key -= cfqq->slice_resid;
1155                 cfqq->slice_resid = 0;
1156         } else {
1157                 rb_key = -HZ;
1158                 __cfqq = cfq_rb_first(service_tree);
1159                 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1160         }
1161
1162         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1163                 new_cfqq = 0;
1164                 /*
1165                  * same position, nothing more to do
1166                  */
1167                 if (rb_key == cfqq->rb_key &&
1168                     cfqq->service_tree == service_tree)
1169                         return;
1170
1171                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1172                 cfqq->service_tree = NULL;
1173         }
1174
1175         left = 1;
1176         parent = NULL;
1177         cfqq->service_tree = service_tree;
1178         p = &service_tree->rb.rb_node;
1179         while (*p) {
1180                 struct rb_node **n;
1181
1182                 parent = *p;
1183                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1184
1185                 /*
1186                  * sort by key, that represents service time.
1187                  */
1188                 if (time_before(rb_key, __cfqq->rb_key))
1189                         n = &(*p)->rb_left;
1190                 else {
1191                         n = &(*p)->rb_right;
1192                         left = 0;
1193                 }
1194
1195                 p = n;
1196         }
1197
1198         if (left)
1199                 service_tree->left = &cfqq->rb_node;
1200
1201         cfqq->rb_key = rb_key;
1202         rb_link_node(&cfqq->rb_node, parent, p);
1203         rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1204         service_tree->count++;
1205         if ((add_front || !new_cfqq) && !group_changed)
1206                 return;
1207         cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1208 }
1209
1210 static struct cfq_queue *
1211 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1212                      sector_t sector, struct rb_node **ret_parent,
1213                      struct rb_node ***rb_link)
1214 {
1215         struct rb_node **p, *parent;
1216         struct cfq_queue *cfqq = NULL;
1217
1218         parent = NULL;
1219         p = &root->rb_node;
1220         while (*p) {
1221                 struct rb_node **n;
1222
1223                 parent = *p;
1224                 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1225
1226                 /*
1227                  * Sort strictly based on sector.  Smallest to the left,
1228                  * largest to the right.
1229                  */
1230                 if (sector > blk_rq_pos(cfqq->next_rq))
1231                         n = &(*p)->rb_right;
1232                 else if (sector < blk_rq_pos(cfqq->next_rq))
1233                         n = &(*p)->rb_left;
1234                 else
1235                         break;
1236                 p = n;
1237                 cfqq = NULL;
1238         }
1239
1240         *ret_parent = parent;
1241         if (rb_link)
1242                 *rb_link = p;
1243         return cfqq;
1244 }
1245
1246 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1247 {
1248         struct rb_node **p, *parent;
1249         struct cfq_queue *__cfqq;
1250
1251         if (cfqq->p_root) {
1252                 rb_erase(&cfqq->p_node, cfqq->p_root);
1253                 cfqq->p_root = NULL;
1254         }
1255
1256         if (cfq_class_idle(cfqq))
1257                 return;
1258         if (!cfqq->next_rq)
1259                 return;
1260
1261         cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1262         __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1263                                       blk_rq_pos(cfqq->next_rq), &parent, &p);
1264         if (!__cfqq) {
1265                 rb_link_node(&cfqq->p_node, parent, p);
1266                 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1267         } else
1268                 cfqq->p_root = NULL;
1269 }
1270
1271 /*
1272  * Update cfqq's position in the service tree.
1273  */
1274 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1275 {
1276         /*
1277          * Resorting requires the cfqq to be on the RR list already.
1278          */
1279         if (cfq_cfqq_on_rr(cfqq)) {
1280                 cfq_service_tree_add(cfqd, cfqq, 0);
1281                 cfq_prio_tree_add(cfqd, cfqq);
1282         }
1283 }
1284
1285 /*
1286  * add to busy list of queues for service, trying to be fair in ordering
1287  * the pending list according to last request service
1288  */
1289 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1290 {
1291         cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1292         BUG_ON(cfq_cfqq_on_rr(cfqq));
1293         cfq_mark_cfqq_on_rr(cfqq);
1294         cfqd->busy_queues++;
1295
1296         cfq_resort_rr_list(cfqd, cfqq);
1297 }
1298
1299 /*
1300  * Called when the cfqq no longer has requests pending, remove it from
1301  * the service tree.
1302  */
1303 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1304 {
1305         cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1306         BUG_ON(!cfq_cfqq_on_rr(cfqq));
1307         cfq_clear_cfqq_on_rr(cfqq);
1308
1309         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1310                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1311                 cfqq->service_tree = NULL;
1312         }
1313         if (cfqq->p_root) {
1314                 rb_erase(&cfqq->p_node, cfqq->p_root);
1315                 cfqq->p_root = NULL;
1316         }
1317
1318         cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1319         BUG_ON(!cfqd->busy_queues);
1320         cfqd->busy_queues--;
1321 }
1322
1323 /*
1324  * rb tree support functions
1325  */
1326 static void cfq_del_rq_rb(struct request *rq)
1327 {
1328         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1329         const int sync = rq_is_sync(rq);
1330
1331         BUG_ON(!cfqq->queued[sync]);
1332         cfqq->queued[sync]--;
1333
1334         elv_rb_del(&cfqq->sort_list, rq);
1335
1336         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1337                 /*
1338                  * Queue will be deleted from service tree when we actually
1339                  * expire it later. Right now just remove it from prio tree
1340                  * as it is empty.
1341                  */
1342                 if (cfqq->p_root) {
1343                         rb_erase(&cfqq->p_node, cfqq->p_root);
1344                         cfqq->p_root = NULL;
1345                 }
1346         }
1347 }
1348
1349 static void cfq_add_rq_rb(struct request *rq)
1350 {
1351         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1352         struct cfq_data *cfqd = cfqq->cfqd;
1353         struct request *__alias, *prev;
1354
1355         cfqq->queued[rq_is_sync(rq)]++;
1356
1357         /*
1358          * looks a little odd, but the first insert might return an alias.
1359          * if that happens, put the alias on the dispatch list
1360          */
1361         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1362                 cfq_dispatch_insert(cfqd->queue, __alias);
1363
1364         if (!cfq_cfqq_on_rr(cfqq))
1365                 cfq_add_cfqq_rr(cfqd, cfqq);
1366
1367         /*
1368          * check if this request is a better next-serve candidate
1369          */
1370         prev = cfqq->next_rq;
1371         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1372
1373         /*
1374          * adjust priority tree position, if ->next_rq changes
1375          */
1376         if (prev != cfqq->next_rq)
1377                 cfq_prio_tree_add(cfqd, cfqq);
1378
1379         BUG_ON(!cfqq->next_rq);
1380 }
1381
1382 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1383 {
1384         elv_rb_del(&cfqq->sort_list, rq);
1385         cfqq->queued[rq_is_sync(rq)]--;
1386         cfq_add_rq_rb(rq);
1387 }
1388
1389 static struct request *
1390 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1391 {
1392         struct task_struct *tsk = current;
1393         struct cfq_io_context *cic;
1394         struct cfq_queue *cfqq;
1395
1396         cic = cfq_cic_lookup(cfqd, tsk->io_context);
1397         if (!cic)
1398                 return NULL;
1399
1400         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1401         if (cfqq) {
1402                 sector_t sector = bio->bi_sector + bio_sectors(bio);
1403
1404                 return elv_rb_find(&cfqq->sort_list, sector);
1405         }
1406
1407         return NULL;
1408 }
1409
1410 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1411 {
1412         struct cfq_data *cfqd = q->elevator->elevator_data;
1413
1414         cfqd->rq_in_driver++;
1415         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1416                                                 cfqd->rq_in_driver);
1417
1418         cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1419 }
1420
1421 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1422 {
1423         struct cfq_data *cfqd = q->elevator->elevator_data;
1424
1425         WARN_ON(!cfqd->rq_in_driver);
1426         cfqd->rq_in_driver--;
1427         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1428                                                 cfqd->rq_in_driver);
1429 }
1430
1431 static void cfq_remove_request(struct request *rq)
1432 {
1433         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1434
1435         if (cfqq->next_rq == rq)
1436                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1437
1438         list_del_init(&rq->queuelist);
1439         cfq_del_rq_rb(rq);
1440
1441         cfqq->cfqd->rq_queued--;
1442         if (rq_is_meta(rq)) {
1443                 WARN_ON(!cfqq->meta_pending);
1444                 cfqq->meta_pending--;
1445         }
1446 }
1447
1448 static int cfq_merge(struct request_queue *q, struct request **req,
1449                      struct bio *bio)
1450 {
1451         struct cfq_data *cfqd = q->elevator->elevator_data;
1452         struct request *__rq;
1453
1454         __rq = cfq_find_rq_fmerge(cfqd, bio);
1455         if (__rq && elv_rq_merge_ok(__rq, bio)) {
1456                 *req = __rq;
1457                 return ELEVATOR_FRONT_MERGE;
1458         }
1459
1460         return ELEVATOR_NO_MERGE;
1461 }
1462
1463 static void cfq_merged_request(struct request_queue *q, struct request *req,
1464                                int type)
1465 {
1466         if (type == ELEVATOR_FRONT_MERGE) {
1467                 struct cfq_queue *cfqq = RQ_CFQQ(req);
1468
1469                 cfq_reposition_rq_rb(cfqq, req);
1470         }
1471 }
1472
1473 static void
1474 cfq_merged_requests(struct request_queue *q, struct request *rq,
1475                     struct request *next)
1476 {
1477         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1478         /*
1479          * reposition in fifo if next is older than rq
1480          */
1481         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1482             time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1483                 list_move(&rq->queuelist, &next->queuelist);
1484                 rq_set_fifo_time(rq, rq_fifo_time(next));
1485         }
1486
1487         if (cfqq->next_rq == next)
1488                 cfqq->next_rq = rq;
1489         cfq_remove_request(next);
1490 }
1491
1492 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1493                            struct bio *bio)
1494 {
1495         struct cfq_data *cfqd = q->elevator->elevator_data;
1496         struct cfq_io_context *cic;
1497         struct cfq_queue *cfqq;
1498
1499         /*
1500          * Disallow merge of a sync bio into an async request.
1501          */
1502         if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1503                 return false;
1504
1505         /*
1506          * Lookup the cfqq that this bio will be queued with. Allow
1507          * merge only if rq is queued there.
1508          */
1509         cic = cfq_cic_lookup(cfqd, current->io_context);
1510         if (!cic)
1511                 return false;
1512
1513         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1514         return cfqq == RQ_CFQQ(rq);
1515 }
1516
1517 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1518                                    struct cfq_queue *cfqq)
1519 {
1520         if (cfqq) {
1521                 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1522                                 cfqd->serving_prio, cfqd->serving_type);
1523                 cfqq->slice_start = 0;
1524                 cfqq->dispatch_start = jiffies;
1525                 cfqq->allocated_slice = 0;
1526                 cfqq->slice_end = 0;
1527                 cfqq->slice_dispatch = 0;
1528                 cfqq->nr_sectors = 0;
1529
1530                 cfq_clear_cfqq_wait_request(cfqq);
1531                 cfq_clear_cfqq_must_dispatch(cfqq);
1532                 cfq_clear_cfqq_must_alloc_slice(cfqq);
1533                 cfq_clear_cfqq_fifo_expire(cfqq);
1534                 cfq_mark_cfqq_slice_new(cfqq);
1535
1536                 del_timer(&cfqd->idle_slice_timer);
1537         }
1538
1539         cfqd->active_queue = cfqq;
1540 }
1541
1542 /*
1543  * current cfqq expired its slice (or was too idle), select new one
1544  */
1545 static void
1546 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1547                     bool timed_out)
1548 {
1549         cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1550
1551         if (cfq_cfqq_wait_request(cfqq))
1552                 del_timer(&cfqd->idle_slice_timer);
1553
1554         cfq_clear_cfqq_wait_request(cfqq);
1555         cfq_clear_cfqq_wait_busy(cfqq);
1556
1557         /*
1558          * If this cfqq is shared between multiple processes, check to
1559          * make sure that those processes are still issuing I/Os within
1560          * the mean seek distance.  If not, it may be time to break the
1561          * queues apart again.
1562          */
1563         if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1564                 cfq_mark_cfqq_split_coop(cfqq);
1565
1566         /*
1567          * store what was left of this slice, if the queue idled/timed out
1568          */
1569         if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1570                 cfqq->slice_resid = cfqq->slice_end - jiffies;
1571                 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1572         }
1573
1574         cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1575
1576         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1577                 cfq_del_cfqq_rr(cfqd, cfqq);
1578
1579         cfq_resort_rr_list(cfqd, cfqq);
1580
1581         if (cfqq == cfqd->active_queue)
1582                 cfqd->active_queue = NULL;
1583
1584         if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1585                 cfqd->grp_service_tree.active = NULL;
1586
1587         if (cfqd->active_cic) {
1588                 put_io_context(cfqd->active_cic->ioc);
1589                 cfqd->active_cic = NULL;
1590         }
1591 }
1592
1593 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1594 {
1595         struct cfq_queue *cfqq = cfqd->active_queue;
1596
1597         if (cfqq)
1598                 __cfq_slice_expired(cfqd, cfqq, timed_out);
1599 }
1600
1601 /*
1602  * Get next queue for service. Unless we have a queue preemption,
1603  * we'll simply select the first cfqq in the service tree.
1604  */
1605 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1606 {
1607         struct cfq_rb_root *service_tree =
1608                 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1609                                         cfqd->serving_type);
1610
1611         if (!cfqd->rq_queued)
1612                 return NULL;
1613
1614         /* There is nothing to dispatch */
1615         if (!service_tree)
1616                 return NULL;
1617         if (RB_EMPTY_ROOT(&service_tree->rb))
1618                 return NULL;
1619         return cfq_rb_first(service_tree);
1620 }
1621
1622 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1623 {
1624         struct cfq_group *cfqg;
1625         struct cfq_queue *cfqq;
1626         int i, j;
1627         struct cfq_rb_root *st;
1628
1629         if (!cfqd->rq_queued)
1630                 return NULL;
1631
1632         cfqg = cfq_get_next_cfqg(cfqd);
1633         if (!cfqg)
1634                 return NULL;
1635
1636         for_each_cfqg_st(cfqg, i, j, st)
1637                 if ((cfqq = cfq_rb_first(st)) != NULL)
1638                         return cfqq;
1639         return NULL;
1640 }
1641
1642 /*
1643  * Get and set a new active queue for service.
1644  */
1645 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1646                                               struct cfq_queue *cfqq)
1647 {
1648         if (!cfqq)
1649                 cfqq = cfq_get_next_queue(cfqd);
1650
1651         __cfq_set_active_queue(cfqd, cfqq);
1652         return cfqq;
1653 }
1654
1655 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1656                                           struct request *rq)
1657 {
1658         if (blk_rq_pos(rq) >= cfqd->last_position)
1659                 return blk_rq_pos(rq) - cfqd->last_position;
1660         else
1661                 return cfqd->last_position - blk_rq_pos(rq);
1662 }
1663
1664 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1665                                struct request *rq)
1666 {
1667         return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1668 }
1669
1670 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1671                                     struct cfq_queue *cur_cfqq)
1672 {
1673         struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1674         struct rb_node *parent, *node;
1675         struct cfq_queue *__cfqq;
1676         sector_t sector = cfqd->last_position;
1677
1678         if (RB_EMPTY_ROOT(root))
1679                 return NULL;
1680
1681         /*
1682          * First, if we find a request starting at the end of the last
1683          * request, choose it.
1684          */
1685         __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1686         if (__cfqq)
1687                 return __cfqq;
1688
1689         /*
1690          * If the exact sector wasn't found, the parent of the NULL leaf
1691          * will contain the closest sector.
1692          */
1693         __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1694         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1695                 return __cfqq;
1696
1697         if (blk_rq_pos(__cfqq->next_rq) < sector)
1698                 node = rb_next(&__cfqq->p_node);
1699         else
1700                 node = rb_prev(&__cfqq->p_node);
1701         if (!node)
1702                 return NULL;
1703
1704         __cfqq = rb_entry(node, struct cfq_queue, p_node);
1705         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1706                 return __cfqq;
1707
1708         return NULL;
1709 }
1710
1711 /*
1712  * cfqd - obvious
1713  * cur_cfqq - passed in so that we don't decide that the current queue is
1714  *            closely cooperating with itself.
1715  *
1716  * So, basically we're assuming that that cur_cfqq has dispatched at least
1717  * one request, and that cfqd->last_position reflects a position on the disk
1718  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1719  * assumption.
1720  */
1721 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1722                                               struct cfq_queue *cur_cfqq)
1723 {
1724         struct cfq_queue *cfqq;
1725
1726         if (cfq_class_idle(cur_cfqq))
1727                 return NULL;
1728         if (!cfq_cfqq_sync(cur_cfqq))
1729                 return NULL;
1730         if (CFQQ_SEEKY(cur_cfqq))
1731                 return NULL;
1732
1733         /*
1734          * Don't search priority tree if it's the only queue in the group.
1735          */
1736         if (cur_cfqq->cfqg->nr_cfqq == 1)
1737                 return NULL;
1738
1739         /*
1740          * We should notice if some of the queues are cooperating, eg
1741          * working closely on the same area of the disk. In that case,
1742          * we can group them together and don't waste time idling.
1743          */
1744         cfqq = cfqq_close(cfqd, cur_cfqq);
1745         if (!cfqq)
1746                 return NULL;
1747
1748         /* If new queue belongs to different cfq_group, don't choose it */
1749         if (cur_cfqq->cfqg != cfqq->cfqg)
1750                 return NULL;
1751
1752         /*
1753          * It only makes sense to merge sync queues.
1754          */
1755         if (!cfq_cfqq_sync(cfqq))
1756                 return NULL;
1757         if (CFQQ_SEEKY(cfqq))
1758                 return NULL;
1759
1760         /*
1761          * Do not merge queues of different priority classes
1762          */
1763         if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1764                 return NULL;
1765
1766         return cfqq;
1767 }
1768
1769 /*
1770  * Determine whether we should enforce idle window for this queue.
1771  */
1772
1773 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1774 {
1775         enum wl_prio_t prio = cfqq_prio(cfqq);
1776         struct cfq_rb_root *service_tree = cfqq->service_tree;
1777
1778         BUG_ON(!service_tree);
1779         BUG_ON(!service_tree->count);
1780
1781         /* We never do for idle class queues. */
1782         if (prio == IDLE_WORKLOAD)
1783                 return false;
1784
1785         /* We do for queues that were marked with idle window flag. */
1786         if (cfq_cfqq_idle_window(cfqq) &&
1787            !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1788                 return true;
1789
1790         /*
1791          * Otherwise, we do only if they are the last ones
1792          * in their service tree.
1793          */
1794         if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1795                 return 1;
1796         cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1797                         service_tree->count);
1798         return 0;
1799 }
1800
1801 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1802 {
1803         struct cfq_queue *cfqq = cfqd->active_queue;
1804         struct cfq_io_context *cic;
1805         unsigned long sl;
1806
1807         /*
1808          * SSD device without seek penalty, disable idling. But only do so
1809          * for devices that support queuing, otherwise we still have a problem
1810          * with sync vs async workloads.
1811          */
1812         if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1813                 return;
1814
1815         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1816         WARN_ON(cfq_cfqq_slice_new(cfqq));
1817
1818         /*
1819          * idle is disabled, either manually or by past process history
1820          */
1821         if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1822                 return;
1823
1824         /*
1825          * still active requests from this queue, don't idle
1826          */
1827         if (cfqq->dispatched)
1828                 return;
1829
1830         /*
1831          * task has exited, don't wait
1832          */
1833         cic = cfqd->active_cic;
1834         if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1835                 return;
1836
1837         /*
1838          * If our average think time is larger than the remaining time
1839          * slice, then don't idle. This avoids overrunning the allotted
1840          * time slice.
1841          */
1842         if (sample_valid(cic->ttime_samples) &&
1843             (cfqq->slice_end - jiffies < cic->ttime_mean)) {
1844                 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
1845                                 cic->ttime_mean);
1846                 return;
1847         }
1848
1849         cfq_mark_cfqq_wait_request(cfqq);
1850
1851         sl = cfqd->cfq_slice_idle;
1852
1853         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1854         cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1855 }
1856
1857 /*
1858  * Move request from internal lists to the request queue dispatch list.
1859  */
1860 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1861 {
1862         struct cfq_data *cfqd = q->elevator->elevator_data;
1863         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1864
1865         cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1866
1867         cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1868         cfq_remove_request(rq);
1869         cfqq->dispatched++;
1870         elv_dispatch_sort(q, rq);
1871
1872         cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
1873         cfqq->nr_sectors += blk_rq_sectors(rq);
1874 }
1875
1876 /*
1877  * return expired entry, or NULL to just start from scratch in rbtree
1878  */
1879 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1880 {
1881         struct request *rq = NULL;
1882
1883         if (cfq_cfqq_fifo_expire(cfqq))
1884                 return NULL;
1885
1886         cfq_mark_cfqq_fifo_expire(cfqq);
1887
1888         if (list_empty(&cfqq->fifo))
1889                 return NULL;
1890
1891         rq = rq_entry_fifo(cfqq->fifo.next);
1892         if (time_before(jiffies, rq_fifo_time(rq)))
1893                 rq = NULL;
1894
1895         cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1896         return rq;
1897 }
1898
1899 static inline int
1900 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1901 {
1902         const int base_rq = cfqd->cfq_slice_async_rq;
1903
1904         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1905
1906         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1907 }
1908
1909 /*
1910  * Must be called with the queue_lock held.
1911  */
1912 static int cfqq_process_refs(struct cfq_queue *cfqq)
1913 {
1914         int process_refs, io_refs;
1915
1916         io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1917         process_refs = atomic_read(&cfqq->ref) - io_refs;
1918         BUG_ON(process_refs < 0);
1919         return process_refs;
1920 }
1921
1922 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1923 {
1924         int process_refs, new_process_refs;
1925         struct cfq_queue *__cfqq;
1926
1927         /* Avoid a circular list and skip interim queue merges */
1928         while ((__cfqq = new_cfqq->new_cfqq)) {
1929                 if (__cfqq == cfqq)
1930                         return;
1931                 new_cfqq = __cfqq;
1932         }
1933
1934         process_refs = cfqq_process_refs(cfqq);
1935         /*
1936          * If the process for the cfqq has gone away, there is no
1937          * sense in merging the queues.
1938          */
1939         if (process_refs == 0)
1940                 return;
1941
1942         /*
1943          * Merge in the direction of the lesser amount of work.
1944          */
1945         new_process_refs = cfqq_process_refs(new_cfqq);
1946         if (new_process_refs >= process_refs) {
1947                 cfqq->new_cfqq = new_cfqq;
1948                 atomic_add(process_refs, &new_cfqq->ref);
1949         } else {
1950                 new_cfqq->new_cfqq = cfqq;
1951                 atomic_add(new_process_refs, &cfqq->ref);
1952         }
1953 }
1954
1955 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1956                                 struct cfq_group *cfqg, enum wl_prio_t prio)
1957 {
1958         struct cfq_queue *queue;
1959         int i;
1960         bool key_valid = false;
1961         unsigned long lowest_key = 0;
1962         enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1963
1964         for (i = 0; i <= SYNC_WORKLOAD; ++i) {
1965                 /* select the one with lowest rb_key */
1966                 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
1967                 if (queue &&
1968                     (!key_valid || time_before(queue->rb_key, lowest_key))) {
1969                         lowest_key = queue->rb_key;
1970                         cur_best = i;
1971                         key_valid = true;
1972                 }
1973         }
1974
1975         return cur_best;
1976 }
1977
1978 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
1979 {
1980         unsigned slice;
1981         unsigned count;
1982         struct cfq_rb_root *st;
1983         unsigned group_slice;
1984
1985         if (!cfqg) {
1986                 cfqd->serving_prio = IDLE_WORKLOAD;
1987                 cfqd->workload_expires = jiffies + 1;
1988                 return;
1989         }
1990
1991         /* Choose next priority. RT > BE > IDLE */
1992         if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
1993                 cfqd->serving_prio = RT_WORKLOAD;
1994         else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
1995                 cfqd->serving_prio = BE_WORKLOAD;
1996         else {
1997                 cfqd->serving_prio = IDLE_WORKLOAD;
1998                 cfqd->workload_expires = jiffies + 1;
1999                 return;
2000         }
2001
2002         /*
2003          * For RT and BE, we have to choose also the type
2004          * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2005          * expiration time
2006          */
2007         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2008         count = st->count;
2009
2010         /*
2011          * check workload expiration, and that we still have other queues ready
2012          */
2013         if (count && !time_after(jiffies, cfqd->workload_expires))
2014                 return;
2015
2016         /* otherwise select new workload type */
2017         cfqd->serving_type =
2018                 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2019         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2020         count = st->count;
2021
2022         /*
2023          * the workload slice is computed as a fraction of target latency
2024          * proportional to the number of queues in that workload, over
2025          * all the queues in the same priority class
2026          */
2027         group_slice = cfq_group_slice(cfqd, cfqg);
2028
2029         slice = group_slice * count /
2030                 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2031                       cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2032
2033         if (cfqd->serving_type == ASYNC_WORKLOAD) {
2034                 unsigned int tmp;
2035
2036                 /*
2037                  * Async queues are currently system wide. Just taking
2038                  * proportion of queues with-in same group will lead to higher
2039                  * async ratio system wide as generally root group is going
2040                  * to have higher weight. A more accurate thing would be to
2041                  * calculate system wide asnc/sync ratio.
2042                  */
2043                 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2044                 tmp = tmp/cfqd->busy_queues;
2045                 slice = min_t(unsigned, slice, tmp);
2046
2047                 /* async workload slice is scaled down according to
2048                  * the sync/async slice ratio. */
2049                 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2050         } else
2051                 /* sync workload slice is at least 2 * cfq_slice_idle */
2052                 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2053
2054         slice = max_t(unsigned, slice, CFQ_MIN_TT);
2055         cfq_log(cfqd, "workload slice:%d", slice);
2056         cfqd->workload_expires = jiffies + slice;
2057         cfqd->noidle_tree_requires_idle = false;
2058 }
2059
2060 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2061 {
2062         struct cfq_rb_root *st = &cfqd->grp_service_tree;
2063         struct cfq_group *cfqg;
2064
2065         if (RB_EMPTY_ROOT(&st->rb))
2066                 return NULL;
2067         cfqg = cfq_rb_first_group(st);
2068         st->active = &cfqg->rb_node;
2069         update_min_vdisktime(st);
2070         return cfqg;
2071 }
2072
2073 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2074 {
2075         struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2076
2077         cfqd->serving_group = cfqg;
2078
2079         /* Restore the workload type data */
2080         if (cfqg->saved_workload_slice) {
2081                 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2082                 cfqd->serving_type = cfqg->saved_workload;
2083                 cfqd->serving_prio = cfqg->saved_serving_prio;
2084         } else
2085                 cfqd->workload_expires = jiffies - 1;
2086
2087         choose_service_tree(cfqd, cfqg);
2088 }
2089
2090 /*
2091  * Select a queue for service. If we have a current active queue,
2092  * check whether to continue servicing it, or retrieve and set a new one.
2093  */
2094 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2095 {
2096         struct cfq_queue *cfqq, *new_cfqq = NULL;
2097
2098         cfqq = cfqd->active_queue;
2099         if (!cfqq)
2100                 goto new_queue;
2101
2102         if (!cfqd->rq_queued)
2103                 return NULL;
2104
2105         /*
2106          * We were waiting for group to get backlogged. Expire the queue
2107          */
2108         if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2109                 goto expire;
2110
2111         /*
2112          * The active queue has run out of time, expire it and select new.
2113          */
2114         if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2115                 /*
2116                  * If slice had not expired at the completion of last request
2117                  * we might not have turned on wait_busy flag. Don't expire
2118                  * the queue yet. Allow the group to get backlogged.
2119                  *
2120                  * The very fact that we have used the slice, that means we
2121                  * have been idling all along on this queue and it should be
2122                  * ok to wait for this request to complete.
2123                  */
2124                 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2125                     && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2126                         cfqq = NULL;
2127                         goto keep_queue;
2128                 } else
2129                         goto expire;
2130         }
2131
2132         /*
2133          * The active queue has requests and isn't expired, allow it to
2134          * dispatch.
2135          */
2136         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2137                 goto keep_queue;
2138
2139         /*
2140          * If another queue has a request waiting within our mean seek
2141          * distance, let it run.  The expire code will check for close
2142          * cooperators and put the close queue at the front of the service
2143          * tree.  If possible, merge the expiring queue with the new cfqq.
2144          */
2145         new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2146         if (new_cfqq) {
2147                 if (!cfqq->new_cfqq)
2148                         cfq_setup_merge(cfqq, new_cfqq);
2149                 goto expire;
2150         }
2151
2152         /*
2153          * No requests pending. If the active queue still has requests in
2154          * flight or is idling for a new request, allow either of these
2155          * conditions to happen (or time out) before selecting a new queue.
2156          */
2157         if (timer_pending(&cfqd->idle_slice_timer) ||
2158             (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2159                 cfqq = NULL;
2160                 goto keep_queue;
2161         }
2162
2163 expire:
2164         cfq_slice_expired(cfqd, 0);
2165 new_queue:
2166         /*
2167          * Current queue expired. Check if we have to switch to a new
2168          * service tree
2169          */
2170         if (!new_cfqq)
2171                 cfq_choose_cfqg(cfqd);
2172
2173         cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2174 keep_queue:
2175         return cfqq;
2176 }
2177
2178 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2179 {
2180         int dispatched = 0;
2181
2182         while (cfqq->next_rq) {
2183                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2184                 dispatched++;
2185         }
2186
2187         BUG_ON(!list_empty(&cfqq->fifo));
2188
2189         /* By default cfqq is not expired if it is empty. Do it explicitly */
2190         __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2191         return dispatched;
2192 }
2193
2194 /*
2195  * Drain our current requests. Used for barriers and when switching
2196  * io schedulers on-the-fly.
2197  */
2198 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2199 {
2200         struct cfq_queue *cfqq;
2201         int dispatched = 0;
2202
2203         while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2204                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2205
2206         cfq_slice_expired(cfqd, 0);
2207         BUG_ON(cfqd->busy_queues);
2208
2209         cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2210         return dispatched;
2211 }
2212
2213 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2214         struct cfq_queue *cfqq)
2215 {
2216         /* the queue hasn't finished any request, can't estimate */
2217         if (cfq_cfqq_slice_new(cfqq))
2218                 return 1;
2219         if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2220                 cfqq->slice_end))
2221                 return 1;
2222
2223         return 0;
2224 }
2225
2226 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2227 {
2228         unsigned int max_dispatch;
2229
2230         /*
2231          * Drain async requests before we start sync IO
2232          */
2233         if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2234                 return false;
2235
2236         /*
2237          * If this is an async queue and we have sync IO in flight, let it wait
2238          */
2239         if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2240                 return false;
2241
2242         max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2243         if (cfq_class_idle(cfqq))
2244                 max_dispatch = 1;
2245
2246         /*
2247          * Does this cfqq already have too much IO in flight?
2248          */
2249         if (cfqq->dispatched >= max_dispatch) {
2250                 /*
2251                  * idle queue must always only have a single IO in flight
2252                  */
2253                 if (cfq_class_idle(cfqq))
2254                         return false;
2255
2256                 /*
2257                  * We have other queues, don't allow more IO from this one
2258                  */
2259                 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
2260                         return false;
2261
2262                 /*
2263                  * Sole queue user, no limit
2264                  */
2265                 if (cfqd->busy_queues == 1)
2266                         max_dispatch = -1;
2267                 else
2268                         /*
2269                          * Normally we start throttling cfqq when cfq_quantum/2
2270                          * requests have been dispatched. But we can drive
2271                          * deeper queue depths at the beginning of slice
2272                          * subjected to upper limit of cfq_quantum.
2273                          * */
2274                         max_dispatch = cfqd->cfq_quantum;
2275         }
2276
2277         /*
2278          * Async queues must wait a bit before being allowed dispatch.
2279          * We also ramp up the dispatch depth gradually for async IO,
2280          * based on the last sync IO we serviced
2281          */
2282         if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2283                 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2284                 unsigned int depth;
2285
2286                 depth = last_sync / cfqd->cfq_slice[1];
2287                 if (!depth && !cfqq->dispatched)
2288                         depth = 1;
2289                 if (depth < max_dispatch)
2290                         max_dispatch = depth;
2291         }
2292
2293         /*
2294          * If we're below the current max, allow a dispatch
2295          */
2296         return cfqq->dispatched < max_dispatch;
2297 }
2298
2299 /*
2300  * Dispatch a request from cfqq, moving them to the request queue
2301  * dispatch list.
2302  */
2303 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2304 {
2305         struct request *rq;
2306
2307         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2308
2309         if (!cfq_may_dispatch(cfqd, cfqq))
2310                 return false;
2311
2312         /*
2313          * follow expired path, else get first next available
2314          */
2315         rq = cfq_check_fifo(cfqq);
2316         if (!rq)
2317                 rq = cfqq->next_rq;
2318
2319         /*
2320          * insert request into driver dispatch list
2321          */
2322         cfq_dispatch_insert(cfqd->queue, rq);
2323
2324         if (!cfqd->active_cic) {
2325                 struct cfq_io_context *cic = RQ_CIC(rq);
2326
2327                 atomic_long_inc(&cic->ioc->refcount);
2328                 cfqd->active_cic = cic;
2329         }
2330
2331         return true;
2332 }
2333
2334 /*
2335  * Find the cfqq that we need to service and move a request from that to the
2336  * dispatch list
2337  */
2338 static int cfq_dispatch_requests(struct request_queue *q, int force)
2339 {
2340         struct cfq_data *cfqd = q->elevator->elevator_data;
2341         struct cfq_queue *cfqq;
2342
2343         if (!cfqd->busy_queues)
2344                 return 0;
2345
2346         if (unlikely(force))
2347                 return cfq_forced_dispatch(cfqd);
2348
2349         cfqq = cfq_select_queue(cfqd);
2350         if (!cfqq)
2351                 return 0;
2352
2353         /*
2354          * Dispatch a request from this cfqq, if it is allowed
2355          */
2356         if (!cfq_dispatch_request(cfqd, cfqq))
2357                 return 0;
2358
2359         cfqq->slice_dispatch++;
2360         cfq_clear_cfqq_must_dispatch(cfqq);
2361
2362         /*
2363          * expire an async queue immediately if it has used up its slice. idle
2364          * queue always expire after 1 dispatch round.
2365          */
2366         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2367             cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2368             cfq_class_idle(cfqq))) {
2369                 cfqq->slice_end = jiffies + 1;
2370                 cfq_slice_expired(cfqd, 0);
2371         }
2372
2373         cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2374         return 1;
2375 }
2376
2377 /*
2378  * task holds one reference to the queue, dropped when task exits. each rq
2379  * in-flight on this queue also holds a reference, dropped when rq is freed.
2380  *
2381  * Each cfq queue took a reference on the parent group. Drop it now.
2382  * queue lock must be held here.
2383  */
2384 static void cfq_put_queue(struct cfq_queue *cfqq)
2385 {
2386         struct cfq_data *cfqd = cfqq->cfqd;
2387         struct cfq_group *cfqg, *orig_cfqg;
2388
2389         BUG_ON(atomic_read(&cfqq->ref) <= 0);
2390
2391         if (!atomic_dec_and_test(&cfqq->ref))
2392                 return;
2393
2394         cfq_log_cfqq(cfqd, cfqq, "put_queue");
2395         BUG_ON(rb_first(&cfqq->sort_list));
2396         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2397         cfqg = cfqq->cfqg;
2398         orig_cfqg = cfqq->orig_cfqg;
2399
2400         if (unlikely(cfqd->active_queue == cfqq)) {
2401                 __cfq_slice_expired(cfqd, cfqq, 0);
2402                 cfq_schedule_dispatch(cfqd);
2403         }
2404
2405         BUG_ON(cfq_cfqq_on_rr(cfqq));
2406         kmem_cache_free(cfq_pool, cfqq);
2407         cfq_put_cfqg(cfqg);
2408         if (orig_cfqg)
2409                 cfq_put_cfqg(orig_cfqg);
2410 }
2411
2412 /*
2413  * Must always be called with the rcu_read_lock() held
2414  */
2415 static void
2416 __call_for_each_cic(struct io_context *ioc,
2417                     void (*func)(struct io_context *, struct cfq_io_context *))
2418 {
2419         struct cfq_io_context *cic;
2420         struct hlist_node *n;
2421
2422         hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2423                 func(ioc, cic);
2424 }
2425
2426 /*
2427  * Call func for each cic attached to this ioc.
2428  */
2429 static void
2430 call_for_each_cic(struct io_context *ioc,
2431                   void (*func)(struct io_context *, struct cfq_io_context *))
2432 {
2433         rcu_read_lock();
2434         __call_for_each_cic(ioc, func);
2435         rcu_read_unlock();
2436 }
2437
2438 static void cfq_cic_free_rcu(struct rcu_head *head)
2439 {
2440         struct cfq_io_context *cic;
2441
2442         cic = container_of(head, struct cfq_io_context, rcu_head);
2443
2444         kmem_cache_free(cfq_ioc_pool, cic);
2445         elv_ioc_count_dec(cfq_ioc_count);
2446
2447         if (ioc_gone) {
2448                 /*
2449                  * CFQ scheduler is exiting, grab exit lock and check
2450                  * the pending io context count. If it hits zero,
2451                  * complete ioc_gone and set it back to NULL
2452                  */
2453                 spin_lock(&ioc_gone_lock);
2454                 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2455                         complete(ioc_gone);
2456                         ioc_gone = NULL;
2457                 }
2458                 spin_unlock(&ioc_gone_lock);
2459         }
2460 }
2461
2462 static void cfq_cic_free(struct cfq_io_context *cic)
2463 {
2464         call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2465 }
2466
2467 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2468 {
2469         unsigned long flags;
2470
2471         BUG_ON(!cic->dead_key);
2472
2473         spin_lock_irqsave(&ioc->lock, flags);
2474         radix_tree_delete(&ioc->radix_root, cic->dead_key);
2475         hlist_del_rcu(&cic->cic_list);
2476         spin_unlock_irqrestore(&ioc->lock, flags);
2477
2478         cfq_cic_free(cic);
2479 }
2480
2481 /*
2482  * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2483  * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2484  * and ->trim() which is called with the task lock held
2485  */
2486 static void cfq_free_io_context(struct io_context *ioc)
2487 {
2488         /*
2489          * ioc->refcount is zero here, or we are called from elv_unregister(),
2490          * so no more cic's are allowed to be linked into this ioc.  So it
2491          * should be ok to iterate over the known list, we will see all cic's
2492          * since no new ones are added.
2493          */
2494         __call_for_each_cic(ioc, cic_free_func);
2495 }
2496
2497 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2498 {
2499         struct cfq_queue *__cfqq, *next;
2500
2501         if (unlikely(cfqq == cfqd->active_queue)) {
2502                 __cfq_slice_expired(cfqd, cfqq, 0);
2503                 cfq_schedule_dispatch(cfqd);
2504         }
2505
2506         /*
2507          * If this queue was scheduled to merge with another queue, be
2508          * sure to drop the reference taken on that queue (and others in
2509          * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
2510          */
2511         __cfqq = cfqq->new_cfqq;
2512         while (__cfqq) {
2513                 if (__cfqq == cfqq) {
2514                         WARN(1, "cfqq->new_cfqq loop detected\n");
2515                         break;
2516                 }
2517                 next = __cfqq->new_cfqq;
2518                 cfq_put_queue(__cfqq);
2519                 __cfqq = next;
2520         }
2521
2522         cfq_put_queue(cfqq);
2523 }
2524
2525 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2526                                          struct cfq_io_context *cic)
2527 {
2528         struct io_context *ioc = cic->ioc;
2529
2530         list_del_init(&cic->queue_list);
2531
2532         /*
2533          * Make sure key == NULL is seen for dead queues
2534          */
2535         smp_wmb();
2536         cic->dead_key = (unsigned long) cic->key;
2537         cic->key = NULL;
2538
2539         if (ioc->ioc_data == cic)
2540                 rcu_assign_pointer(ioc->ioc_data, NULL);
2541
2542         if (cic->cfqq[BLK_RW_ASYNC]) {
2543                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2544                 cic->cfqq[BLK_RW_ASYNC] = NULL;
2545         }
2546
2547         if (cic->cfqq[BLK_RW_SYNC]) {
2548                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2549                 cic->cfqq[BLK_RW_SYNC] = NULL;
2550         }
2551 }
2552
2553 static void cfq_exit_single_io_context(struct io_context *ioc,
2554                                        struct cfq_io_context *cic)
2555 {
2556         struct cfq_data *cfqd = cic->key;
2557
2558         if (cfqd) {
2559                 struct request_queue *q = cfqd->queue;
2560                 unsigned long flags;
2561
2562                 spin_lock_irqsave(q->queue_lock, flags);
2563
2564                 /*
2565                  * Ensure we get a fresh copy of the ->key to prevent
2566                  * race between exiting task and queue
2567                  */
2568                 smp_read_barrier_depends();
2569                 if (cic->key)
2570                         __cfq_exit_single_io_context(cfqd, cic);
2571
2572                 spin_unlock_irqrestore(q->queue_lock, flags);
2573         }
2574 }
2575
2576 /*
2577  * The process that ioc belongs to has exited, we need to clean up
2578  * and put the internal structures we have that belongs to that process.
2579  */
2580 static void cfq_exit_io_context(struct io_context *ioc)
2581 {
2582         call_for_each_cic(ioc, cfq_exit_single_io_context);
2583 }
2584
2585 static struct cfq_io_context *
2586 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2587 {
2588         struct cfq_io_context *cic;
2589
2590         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2591                                                         cfqd->queue->node);
2592         if (cic) {
2593                 cic->last_end_request = jiffies;
2594                 INIT_LIST_HEAD(&cic->queue_list);
2595                 INIT_HLIST_NODE(&cic->cic_list);
2596                 cic->dtor = cfq_free_io_context;
2597                 cic->exit = cfq_exit_io_context;
2598                 elv_ioc_count_inc(cfq_ioc_count);
2599         }
2600
2601         return cic;
2602 }
2603
2604 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2605 {
2606         struct task_struct *tsk = current;
2607         int ioprio_class;
2608
2609         if (!cfq_cfqq_prio_changed(cfqq))
2610                 return;
2611
2612         ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2613         switch (ioprio_class) {
2614         default:
2615                 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2616         case IOPRIO_CLASS_NONE:
2617                 /*
2618                  * no prio set, inherit CPU scheduling settings
2619                  */
2620                 cfqq->ioprio = task_nice_ioprio(tsk);
2621                 cfqq->ioprio_class = task_nice_ioclass(tsk);
2622                 break;
2623         case IOPRIO_CLASS_RT:
2624                 cfqq->ioprio = task_ioprio(ioc);
2625                 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2626                 break;
2627         case IOPRIO_CLASS_BE:
2628                 cfqq->ioprio = task_ioprio(ioc);
2629                 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2630                 break;
2631         case IOPRIO_CLASS_IDLE:
2632                 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2633                 cfqq->ioprio = 7;
2634                 cfq_clear_cfqq_idle_window(cfqq);
2635                 break;
2636         }
2637
2638         /*
2639          * keep track of original prio settings in case we have to temporarily
2640          * elevate the priority of this queue
2641          */
2642         cfqq->org_ioprio = cfqq->ioprio;
2643         cfqq->org_ioprio_class = cfqq->ioprio_class;
2644         cfq_clear_cfqq_prio_changed(cfqq);
2645 }
2646
2647 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2648 {
2649         struct cfq_data *cfqd = cic->key;
2650         struct cfq_queue *cfqq;
2651         unsigned long flags;
2652
2653         if (unlikely(!cfqd))
2654                 return;
2655
2656         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2657
2658         cfqq = cic->cfqq[BLK_RW_ASYNC];
2659         if (cfqq) {
2660                 struct cfq_queue *new_cfqq;
2661                 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2662                                                 GFP_ATOMIC);
2663                 if (new_cfqq) {
2664                         cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2665                         cfq_put_queue(cfqq);
2666                 }
2667         }
2668
2669         cfqq = cic->cfqq[BLK_RW_SYNC];
2670         if (cfqq)
2671                 cfq_mark_cfqq_prio_changed(cfqq);
2672
2673         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2674 }
2675
2676 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2677 {
2678         call_for_each_cic(ioc, changed_ioprio);
2679         ioc->ioprio_changed = 0;
2680 }
2681
2682 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2683                           pid_t pid, bool is_sync)
2684 {
2685         RB_CLEAR_NODE(&cfqq->rb_node);
2686         RB_CLEAR_NODE(&cfqq->p_node);
2687         INIT_LIST_HEAD(&cfqq->fifo);
2688
2689         atomic_set(&cfqq->ref, 0);
2690         cfqq->cfqd = cfqd;
2691
2692         cfq_mark_cfqq_prio_changed(cfqq);
2693
2694         if (is_sync) {
2695                 if (!cfq_class_idle(cfqq))
2696                         cfq_mark_cfqq_idle_window(cfqq);
2697                 cfq_mark_cfqq_sync(cfqq);
2698         }
2699         cfqq->pid = pid;
2700 }
2701
2702 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2703 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2704 {
2705         struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2706         struct cfq_data *cfqd = cic->key;
2707         unsigned long flags;
2708         struct request_queue *q;
2709
2710         if (unlikely(!cfqd))
2711                 return;
2712
2713         q = cfqd->queue;
2714
2715         spin_lock_irqsave(q->queue_lock, flags);
2716
2717         if (sync_cfqq) {
2718                 /*
2719                  * Drop reference to sync queue. A new sync queue will be
2720                  * assigned in new group upon arrival of a fresh request.
2721                  */
2722                 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2723                 cic_set_cfqq(cic, NULL, 1);
2724                 cfq_put_queue(sync_cfqq);
2725         }
2726
2727         spin_unlock_irqrestore(q->queue_lock, flags);
2728 }
2729
2730 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2731 {
2732         call_for_each_cic(ioc, changed_cgroup);
2733         ioc->cgroup_changed = 0;
2734 }
2735 #endif  /* CONFIG_CFQ_GROUP_IOSCHED */
2736
2737 static struct cfq_queue *
2738 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2739                      struct io_context *ioc, gfp_t gfp_mask)
2740 {
2741         struct cfq_queue *cfqq, *new_cfqq = NULL;
2742         struct cfq_io_context *cic;
2743         struct cfq_group *cfqg;
2744
2745 retry:
2746         cfqg = cfq_get_cfqg(cfqd, 1);
2747         cic = cfq_cic_lookup(cfqd, ioc);
2748         /* cic always exists here */
2749         cfqq = cic_to_cfqq(cic, is_sync);
2750
2751         /*
2752          * Always try a new alloc if we fell back to the OOM cfqq
2753          * originally, since it should just be a temporary situation.
2754          */
2755         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2756                 cfqq = NULL;
2757                 if (new_cfqq) {
2758                         cfqq = new_cfqq;
2759                         new_cfqq = NULL;
2760                 } else if (gfp_mask & __GFP_WAIT) {
2761                         spin_unlock_irq(cfqd->queue->queue_lock);
2762                         new_cfqq = kmem_cache_alloc_node(cfq_pool,
2763                                         gfp_mask | __GFP_ZERO,
2764                                         cfqd->queue->node);
2765                         spin_lock_irq(cfqd->queue->queue_lock);
2766                         if (new_cfqq)
2767                                 goto retry;
2768                 } else {
2769                         cfqq = kmem_cache_alloc_node(cfq_pool,
2770                                         gfp_mask | __GFP_ZERO,
2771                                         cfqd->queue->node);
2772                 }
2773
2774                 if (cfqq) {
2775                         cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2776                         cfq_init_prio_data(cfqq, ioc);
2777                         cfq_link_cfqq_cfqg(cfqq, cfqg);
2778                         cfq_log_cfqq(cfqd, cfqq, "alloced");
2779                 } else
2780                         cfqq = &cfqd->oom_cfqq;
2781         }
2782
2783         if (new_cfqq)
2784                 kmem_cache_free(cfq_pool, new_cfqq);
2785
2786         return cfqq;
2787 }
2788
2789 static struct cfq_queue **
2790 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2791 {
2792         switch (ioprio_class) {
2793         case IOPRIO_CLASS_RT:
2794                 return &cfqd->async_cfqq[0][ioprio];
2795         case IOPRIO_CLASS_BE:
2796                 return &cfqd->async_cfqq[1][ioprio];
2797         case IOPRIO_CLASS_IDLE:
2798                 return &cfqd->async_idle_cfqq;
2799         default:
2800                 BUG();
2801         }
2802 }
2803
2804 static struct cfq_queue *
2805 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2806               gfp_t gfp_mask)
2807 {
2808         const int ioprio = task_ioprio(ioc);
2809         const int ioprio_class = task_ioprio_class(ioc);
2810         struct cfq_queue **async_cfqq = NULL;
2811         struct cfq_queue *cfqq = NULL;
2812
2813         if (!is_sync) {
2814                 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2815                 cfqq = *async_cfqq;
2816         }
2817
2818         if (!cfqq)
2819                 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2820
2821         /*
2822          * pin the queue now that it's allocated, scheduler exit will prune it
2823          */
2824         if (!is_sync && !(*async_cfqq)) {
2825                 atomic_inc(&cfqq->ref);
2826                 *async_cfqq = cfqq;
2827         }
2828
2829         atomic_inc(&cfqq->ref);
2830         return cfqq;
2831 }
2832
2833 /*
2834  * We drop cfq io contexts lazily, so we may find a dead one.
2835  */
2836 static void
2837 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2838                   struct cfq_io_context *cic)
2839 {
2840         unsigned long flags;
2841
2842         WARN_ON(!list_empty(&cic->queue_list));
2843
2844         spin_lock_irqsave(&ioc->lock, flags);
2845
2846         BUG_ON(ioc->ioc_data == cic);
2847
2848         radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2849         hlist_del_rcu(&cic->cic_list);
2850         spin_unlock_irqrestore(&ioc->lock, flags);
2851
2852         cfq_cic_free(cic);
2853 }
2854
2855 static struct cfq_io_context *
2856 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2857 {
2858         struct cfq_io_context *cic;
2859         unsigned long flags;
2860         void *k;
2861
2862         if (unlikely(!ioc))
2863                 return NULL;
2864
2865         rcu_read_lock();
2866
2867         /*
2868          * we maintain a last-hit cache, to avoid browsing over the tree
2869          */
2870         cic = rcu_dereference(ioc->ioc_data);
2871         if (cic && cic->key == cfqd) {
2872                 rcu_read_unlock();
2873                 return cic;
2874         }
2875
2876         do {
2877                 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2878                 rcu_read_unlock();
2879                 if (!cic)
2880                         break;
2881                 /* ->key must be copied to avoid race with cfq_exit_queue() */
2882                 k = cic->key;
2883                 if (unlikely(!k)) {
2884                         cfq_drop_dead_cic(cfqd, ioc, cic);
2885                         rcu_read_lock();
2886                         continue;
2887                 }
2888
2889                 spin_lock_irqsave(&ioc->lock, flags);
2890                 rcu_assign_pointer(ioc->ioc_data, cic);
2891                 spin_unlock_irqrestore(&ioc->lock, flags);
2892                 break;
2893         } while (1);
2894
2895         return cic;
2896 }
2897
2898 /*
2899  * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2900  * the process specific cfq io context when entered from the block layer.
2901  * Also adds the cic to a per-cfqd list, used when this queue is removed.
2902  */
2903 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2904                         struct cfq_io_context *cic, gfp_t gfp_mask)
2905 {
2906         unsigned long flags;
2907         int ret;
2908
2909         ret = radix_tree_preload(gfp_mask);
2910         if (!ret) {
2911                 cic->ioc = ioc;
2912                 cic->key = cfqd;
2913
2914                 spin_lock_irqsave(&ioc->lock, flags);
2915                 ret = radix_tree_insert(&ioc->radix_root,
2916                                                 (unsigned long) cfqd, cic);
2917                 if (!ret)
2918                         hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2919                 spin_unlock_irqrestore(&ioc->lock, flags);
2920
2921                 radix_tree_preload_end();
2922
2923                 if (!ret) {
2924                         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2925                         list_add(&cic->queue_list, &cfqd->cic_list);
2926                         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2927                 }
2928         }
2929
2930         if (ret)
2931                 printk(KERN_ERR "cfq: cic link failed!\n");
2932
2933         return ret;
2934 }
2935
2936 /*
2937  * Setup general io context and cfq io context. There can be several cfq
2938  * io contexts per general io context, if this process is doing io to more
2939  * than one device managed by cfq.
2940  */
2941 static struct cfq_io_context *
2942 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2943 {
2944         struct io_context *ioc = NULL;
2945         struct cfq_io_context *cic;
2946
2947         might_sleep_if(gfp_mask & __GFP_WAIT);
2948
2949         ioc = get_io_context(gfp_mask, cfqd->queue->node);
2950         if (!ioc)
2951                 return NULL;
2952
2953         cic = cfq_cic_lookup(cfqd, ioc);
2954         if (cic)
2955                 goto out;
2956
2957         cic = cfq_alloc_io_context(cfqd, gfp_mask);
2958         if (cic == NULL)
2959                 goto err;
2960
2961         if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2962                 goto err_free;
2963
2964 out:
2965         smp_read_barrier_depends();
2966         if (unlikely(ioc->ioprio_changed))
2967                 cfq_ioc_set_ioprio(ioc);
2968
2969 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2970         if (unlikely(ioc->cgroup_changed))
2971                 cfq_ioc_set_cgroup(ioc);
2972 #endif
2973         return cic;
2974 err_free:
2975         cfq_cic_free(cic);
2976 err:
2977         put_io_context(ioc);
2978         return NULL;
2979 }
2980
2981 static void
2982 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2983 {
2984         unsigned long elapsed = jiffies - cic->last_end_request;
2985         unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2986
2987         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2988         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2989         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2990 }
2991
2992 static void
2993 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2994                        struct request *rq)
2995 {
2996         sector_t sdist = 0;
2997         sector_t n_sec = blk_rq_sectors(rq);
2998         if (cfqq->last_request_pos) {
2999                 if (cfqq->last_request_pos < blk_rq_pos(rq))
3000                         sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3001                 else
3002                         sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3003         }
3004
3005         cfqq->seek_history <<= 1;
3006         if (blk_queue_nonrot(cfqd->queue))
3007                 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3008         else
3009                 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3010 }
3011
3012 /*
3013  * Disable idle window if the process thinks too long or seeks so much that
3014  * it doesn't matter
3015  */
3016 static void
3017 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3018                        struct cfq_io_context *cic)
3019 {
3020         int old_idle, enable_idle;
3021
3022         /*
3023          * Don't idle for async or idle io prio class
3024          */
3025         if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3026                 return;
3027
3028         enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3029
3030         if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3031                 cfq_mark_cfqq_deep(cfqq);
3032
3033         if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3034             (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3035                 enable_idle = 0;
3036         else if (sample_valid(cic->ttime_samples)) {
3037                 if (cic->ttime_mean > cfqd->cfq_slice_idle)
3038                         enable_idle = 0;
3039                 else
3040                         enable_idle = 1;
3041         }
3042
3043         if (old_idle != enable_idle) {
3044                 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3045                 if (enable_idle)
3046                         cfq_mark_cfqq_idle_window(cfqq);
3047                 else
3048                         cfq_clear_cfqq_idle_window(cfqq);
3049         }
3050 }
3051
3052 /*
3053  * Check if new_cfqq should preempt the currently active queue. Return 0 for
3054  * no or if we aren't sure, a 1 will cause a preempt.
3055  */
3056 static bool
3057 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3058                    struct request *rq)
3059 {
3060         struct cfq_queue *cfqq;
3061
3062         cfqq = cfqd->active_queue;
3063         if (!cfqq)
3064                 return false;
3065
3066         if (cfq_class_idle(new_cfqq))
3067                 return false;
3068
3069         if (cfq_class_idle(cfqq))
3070                 return true;
3071
3072         /*
3073          * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3074          */
3075         if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3076                 return false;
3077
3078         /*
3079          * if the new request is sync, but the currently running queue is
3080          * not, let the sync request have priority.
3081          */
3082         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3083                 return true;
3084
3085         if (new_cfqq->cfqg != cfqq->cfqg)
3086                 return false;
3087
3088         if (cfq_slice_used(cfqq))
3089                 return true;
3090
3091         /* Allow preemption only if we are idling on sync-noidle tree */
3092         if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3093             cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3094             new_cfqq->service_tree->count == 2 &&
3095             RB_EMPTY_ROOT(&cfqq->sort_list))
3096                 return true;
3097
3098         /*
3099          * So both queues are sync. Let the new request get disk time if
3100          * it's a metadata request and the current queue is doing regular IO.
3101          */
3102         if (rq_is_meta(rq) && !cfqq->meta_pending)
3103                 return true;
3104
3105         /*
3106          * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3107          */
3108         if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3109                 return true;
3110
3111         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3112                 return false;
3113
3114         /*
3115          * if this request is as-good as one we would expect from the
3116          * current cfqq, let it preempt
3117          */
3118         if (cfq_rq_close(cfqd, cfqq, rq))
3119                 return true;
3120
3121         return false;
3122 }
3123
3124 /*
3125  * cfqq preempts the active queue. if we allowed preempt with no slice left,
3126  * let it have half of its nominal slice.
3127  */
3128 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3129 {
3130         cfq_log_cfqq(cfqd, cfqq, "preempt");
3131         cfq_slice_expired(cfqd, 1);
3132
3133         /*
3134          * Put the new queue at the front of the of the current list,
3135          * so we know that it will be selected next.
3136          */
3137         BUG_ON(!cfq_cfqq_on_rr(cfqq));
3138
3139         cfq_service_tree_add(cfqd, cfqq, 1);
3140
3141         cfqq->slice_end = 0;
3142         cfq_mark_cfqq_slice_new(cfqq);
3143 }
3144
3145 /*
3146  * Called when a new fs request (rq) is added (to cfqq). Check if there's
3147  * something we should do about it
3148  */
3149 static void
3150 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3151                 struct request *rq)
3152 {
3153         struct cfq_io_context *cic = RQ_CIC(rq);
3154
3155         cfqd->rq_queued++;
3156         if (rq_is_meta(rq))
3157                 cfqq->meta_pending++;
3158
3159         cfq_update_io_thinktime(cfqd, cic);
3160         cfq_update_io_seektime(cfqd, cfqq, rq);
3161         cfq_update_idle_window(cfqd, cfqq, cic);
3162
3163         cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3164
3165         if (cfqq == cfqd->active_queue) {
3166                 /*
3167                  * Remember that we saw a request from this process, but
3168                  * don't start queuing just yet. Otherwise we risk seeing lots
3169                  * of tiny requests, because we disrupt the normal plugging
3170                  * and merging. If the request is already larger than a single
3171                  * page, let it rip immediately. For that case we assume that
3172                  * merging is already done. Ditto for a busy system that
3173                  * has other work pending, don't risk delaying until the
3174                  * idle timer unplug to continue working.
3175                  */
3176                 if (cfq_cfqq_wait_request(cfqq)) {
3177                         if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3178                             cfqd->busy_queues > 1) {
3179                                 del_timer(&cfqd->idle_slice_timer);
3180                                 cfq_clear_cfqq_wait_request(cfqq);
3181                                 __blk_run_queue(cfqd->queue);
3182                         } else
3183                                 cfq_mark_cfqq_must_dispatch(cfqq);
3184                 }
3185         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3186                 /*
3187                  * not the active queue - expire current slice if it is
3188                  * idle and has expired it's mean thinktime or this new queue
3189                  * has some old slice time left and is of higher priority or
3190                  * this new queue is RT and the current one is BE
3191                  */
3192                 cfq_preempt_queue(cfqd, cfqq);
3193                 __blk_run_queue(cfqd->queue);
3194         }
3195 }
3196
3197 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3198 {
3199         struct cfq_data *cfqd = q->elevator->elevator_data;
3200         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3201
3202         cfq_log_cfqq(cfqd, cfqq, "insert_request");
3203         cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3204
3205         rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3206         list_add_tail(&rq->queuelist, &cfqq->fifo);
3207         cfq_add_rq_rb(rq);
3208
3209         cfq_rq_enqueued(cfqd, cfqq, rq);
3210 }
3211
3212 /*
3213  * Update hw_tag based on peak queue depth over 50 samples under
3214  * sufficient load.
3215  */
3216 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3217 {
3218         struct cfq_queue *cfqq = cfqd->active_queue;
3219
3220         if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3221                 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3222
3223         if (cfqd->hw_tag == 1)
3224                 return;
3225
3226         if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3227             cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3228                 return;
3229
3230         /*
3231          * If active queue hasn't enough requests and can idle, cfq might not
3232          * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3233          * case
3234          */
3235         if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3236             cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3237             CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3238                 return;
3239
3240         if (cfqd->hw_tag_samples++ < 50)
3241                 return;
3242
3243         if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3244                 cfqd->hw_tag = 1;
3245         else
3246                 cfqd->hw_tag = 0;
3247 }
3248
3249 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3250 {
3251         struct cfq_io_context *cic = cfqd->active_cic;
3252
3253         /* If there are other queues in the group, don't wait */
3254         if (cfqq->cfqg->nr_cfqq > 1)
3255                 return false;
3256
3257         if (cfq_slice_used(cfqq))
3258                 return true;
3259
3260         /* if slice left is less than think time, wait busy */
3261         if (cic && sample_valid(cic->ttime_samples)
3262             && (cfqq->slice_end - jiffies < cic->ttime_mean))
3263                 return true;
3264
3265         /*
3266          * If think times is less than a jiffy than ttime_mean=0 and above
3267          * will not be true. It might happen that slice has not expired yet
3268          * but will expire soon (4-5 ns) during select_queue(). To cover the
3269          * case where think time is less than a jiffy, mark the queue wait
3270          * busy if only 1 jiffy is left in the slice.
3271          */
3272         if (cfqq->slice_end - jiffies == 1)
3273                 return true;
3274
3275         return false;
3276 }
3277
3278 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3279 {
3280         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3281         struct cfq_data *cfqd = cfqq->cfqd;
3282         const int sync = rq_is_sync(rq);
3283         unsigned long now;
3284
3285         now = jiffies;
3286         cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
3287
3288         cfq_update_hw_tag(cfqd);
3289
3290         WARN_ON(!cfqd->rq_in_driver);
3291         WARN_ON(!cfqq->dispatched);
3292         cfqd->rq_in_driver--;
3293         cfqq->dispatched--;
3294
3295         cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3296
3297         if (sync) {
3298                 RQ_CIC(rq)->last_end_request = now;
3299                 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3300                         cfqd->last_delayed_sync = now;
3301         }
3302
3303         /*
3304          * If this is the active queue, check if it needs to be expired,
3305          * or if we want to idle in case it has no pending requests.
3306          */
3307         if (cfqd->active_queue == cfqq) {
3308                 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3309
3310                 if (cfq_cfqq_slice_new(cfqq)) {
3311                         cfq_set_prio_slice(cfqd, cfqq);
3312                         cfq_clear_cfqq_slice_new(cfqq);
3313                 }
3314
3315                 /*
3316                  * Should we wait for next request to come in before we expire
3317                  * the queue.
3318                  */
3319                 if (cfq_should_wait_busy(cfqd, cfqq)) {
3320                         cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3321                         cfq_mark_cfqq_wait_busy(cfqq);
3322                         cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3323                 }
3324
3325                 /*
3326                  * Idling is not enabled on:
3327                  * - expired queues
3328                  * - idle-priority queues
3329                  * - async queues
3330                  * - queues with still some requests queued
3331                  * - when there is a close cooperator
3332                  */
3333                 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3334                         cfq_slice_expired(cfqd, 1);
3335                 else if (sync && cfqq_empty &&
3336                          !cfq_close_cooperator(cfqd, cfqq)) {
3337                         cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3338                         /*
3339                          * Idling is enabled for SYNC_WORKLOAD.
3340                          * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3341                          * only if we processed at least one !rq_noidle request
3342                          */
3343                         if (cfqd->serving_type == SYNC_WORKLOAD
3344                             || cfqd->noidle_tree_requires_idle
3345                             || cfqq->cfqg->nr_cfqq == 1)
3346                                 cfq_arm_slice_timer(cfqd);
3347                 }
3348         }
3349
3350         if (!cfqd->rq_in_driver)
3351                 cfq_schedule_dispatch(cfqd);
3352 }
3353
3354 /*
3355  * we temporarily boost lower priority queues if they are holding fs exclusive
3356  * resources. they are boosted to normal prio (CLASS_BE/4)
3357  */
3358 static void cfq_prio_boost(struct cfq_queue *cfqq)
3359 {
3360         if (has_fs_excl()) {
3361                 /*
3362                  * boost idle prio on transactions that would lock out other
3363                  * users of the filesystem
3364                  */
3365                 if (cfq_class_idle(cfqq))
3366                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
3367                 if (cfqq->ioprio > IOPRIO_NORM)
3368                         cfqq->ioprio = IOPRIO_NORM;
3369         } else {
3370                 /*
3371                  * unboost the queue (if needed)
3372                  */
3373                 cfqq->ioprio_class = cfqq->org_ioprio_class;
3374                 cfqq->ioprio = cfqq->org_ioprio;
3375         }
3376 }
3377
3378 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3379 {
3380         if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3381                 cfq_mark_cfqq_must_alloc_slice(cfqq);
3382                 return ELV_MQUEUE_MUST;
3383         }
3384
3385         return ELV_MQUEUE_MAY;
3386 }
3387
3388 static int cfq_may_queue(struct request_queue *q, int rw)
3389 {
3390         struct cfq_data *cfqd = q->elevator->elevator_data;
3391         struct task_struct *tsk = current;
3392         struct cfq_io_context *cic;
3393         struct cfq_queue *cfqq;
3394
3395         /*
3396          * don't force setup of a queue from here, as a call to may_queue
3397          * does not necessarily imply that a request actually will be queued.
3398          * so just lookup a possibly existing queue, or return 'may queue'
3399          * if that fails
3400          */
3401         cic = cfq_cic_lookup(cfqd, tsk->io_context);
3402         if (!cic)
3403                 return ELV_MQUEUE_MAY;
3404
3405         cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3406         if (cfqq) {
3407                 cfq_init_prio_data(cfqq, cic->ioc);
3408                 cfq_prio_boost(cfqq);
3409
3410                 return __cfq_may_queue(cfqq);
3411         }
3412
3413         return ELV_MQUEUE_MAY;
3414 }
3415
3416 /*
3417  * queue lock held here
3418  */
3419 static void cfq_put_request(struct request *rq)
3420 {
3421         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3422
3423         if (cfqq) {
3424                 const int rw = rq_data_dir(rq);
3425
3426                 BUG_ON(!cfqq->allocated[rw]);
3427                 cfqq->allocated[rw]--;
3428
3429                 put_io_context(RQ_CIC(rq)->ioc);
3430
3431                 rq->elevator_private = NULL;
3432                 rq->elevator_private2 = NULL;
3433
3434                 cfq_put_queue(cfqq);
3435         }
3436 }
3437
3438 static struct cfq_queue *
3439 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3440                 struct cfq_queue *cfqq)
3441 {
3442         cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3443         cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3444         cfq_mark_cfqq_coop(cfqq->new_cfqq);
3445         cfq_put_queue(cfqq);
3446         return cic_to_cfqq(cic, 1);
3447 }
3448
3449 /*
3450  * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3451  * was the last process referring to said cfqq.
3452  */
3453 static struct cfq_queue *
3454 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3455 {
3456         if (cfqq_process_refs(cfqq) == 1) {
3457                 cfqq->pid = current->pid;
3458                 cfq_clear_cfqq_coop(cfqq);
3459                 cfq_clear_cfqq_split_coop(cfqq);
3460                 return cfqq;
3461         }
3462
3463         cic_set_cfqq(cic, NULL, 1);
3464         cfq_put_queue(cfqq);
3465         return NULL;
3466 }
3467 /*
3468  * Allocate cfq data structures associated with this request.
3469  */
3470 static int
3471 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3472 {
3473         struct cfq_data *cfqd = q->elevator->elevator_data;
3474         struct cfq_io_context *cic;
3475         const int rw = rq_data_dir(rq);
3476         const bool is_sync = rq_is_sync(rq);
3477         struct cfq_queue *cfqq;
3478         unsigned long flags;
3479
3480         might_sleep_if(gfp_mask & __GFP_WAIT);
3481
3482         cic = cfq_get_io_context(cfqd, gfp_mask);
3483
3484         spin_lock_irqsave(q->queue_lock, flags);
3485
3486         if (!cic)
3487                 goto queue_fail;
3488
3489 new_queue:
3490         cfqq = cic_to_cfqq(cic, is_sync);
3491         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3492                 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3493                 cic_set_cfqq(cic, cfqq, is_sync);
3494         } else {
3495                 /*
3496                  * If the queue was seeky for too long, break it apart.
3497                  */
3498                 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3499                         cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3500                         cfqq = split_cfqq(cic, cfqq);
3501                         if (!cfqq)
3502                                 goto new_queue;
3503                 }
3504
3505                 /*
3506                  * Check to see if this queue is scheduled to merge with
3507                  * another, closely cooperating queue.  The merging of
3508                  * queues happens here as it must be done in process context.
3509                  * The reference on new_cfqq was taken in merge_cfqqs.
3510                  */
3511                 if (cfqq->new_cfqq)
3512                         cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3513         }
3514
3515         cfqq->allocated[rw]++;
3516         atomic_inc(&cfqq->ref);
3517
3518         spin_unlock_irqrestore(q->queue_lock, flags);
3519
3520         rq->elevator_private = cic;
3521         rq->elevator_private2 = cfqq;
3522         return 0;
3523
3524 queue_fail:
3525         if (cic)
3526                 put_io_context(cic->ioc);
3527
3528         cfq_schedule_dispatch(cfqd);
3529         spin_unlock_irqrestore(q->queue_lock, flags);
3530         cfq_log(cfqd, "set_request fail");
3531         return 1;
3532 }
3533
3534 static void cfq_kick_queue(struct work_struct *work)
3535 {
3536         struct cfq_data *cfqd =
3537                 container_of(work, struct cfq_data, unplug_work);
3538         struct request_queue *q = cfqd->queue;
3539
3540         spin_lock_irq(q->queue_lock);
3541         __blk_run_queue(cfqd->queue);
3542         spin_unlock_irq(q->queue_lock);
3543 }
3544
3545 /*
3546  * Timer running if the active_queue is currently idling inside its time slice
3547  */
3548 static void cfq_idle_slice_timer(unsigned long data)
3549 {
3550         struct cfq_data *cfqd = (struct cfq_data *) data;
3551         struct cfq_queue *cfqq;
3552         unsigned long flags;
3553         int timed_out = 1;
3554
3555         cfq_log(cfqd, "idle timer fired");
3556
3557         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3558
3559         cfqq = cfqd->active_queue;
3560         if (cfqq) {
3561                 timed_out = 0;
3562
3563                 /*
3564                  * We saw a request before the queue expired, let it through
3565                  */
3566                 if (cfq_cfqq_must_dispatch(cfqq))
3567                         goto out_kick;
3568
3569                 /*
3570                  * expired
3571                  */
3572                 if (cfq_slice_used(cfqq))
3573                         goto expire;
3574
3575                 /*
3576                  * only expire and reinvoke request handler, if there are
3577                  * other queues with pending requests
3578                  */
3579                 if (!cfqd->busy_queues)
3580                         goto out_cont;
3581
3582                 /*
3583                  * not expired and it has a request pending, let it dispatch
3584                  */
3585                 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3586                         goto out_kick;
3587
3588                 /*
3589                  * Queue depth flag is reset only when the idle didn't succeed
3590                  */
3591                 cfq_clear_cfqq_deep(cfqq);
3592         }
3593 expire:
3594         cfq_slice_expired(cfqd, timed_out);
3595 out_kick:
3596         cfq_schedule_dispatch(cfqd);
3597 out_cont:
3598         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3599 }
3600
3601 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3602 {
3603         del_timer_sync(&cfqd->idle_slice_timer);
3604         cancel_work_sync(&cfqd->unplug_work);
3605 }
3606
3607 static void cfq_put_async_queues(struct cfq_data *cfqd)
3608 {
3609         int i;
3610
3611         for (i = 0; i < IOPRIO_BE_NR; i++) {
3612                 if (cfqd->async_cfqq[0][i])
3613                         cfq_put_queue(cfqd->async_cfqq[0][i]);
3614                 if (cfqd->async_cfqq[1][i])
3615                         cfq_put_queue(cfqd->async_cfqq[1][i]);
3616         }
3617
3618         if (cfqd->async_idle_cfqq)
3619                 cfq_put_queue(cfqd->async_idle_cfqq);
3620 }
3621
3622 static void cfq_cfqd_free(struct rcu_head *head)
3623 {
3624         kfree(container_of(head, struct cfq_data, rcu));
3625 }
3626
3627 static void cfq_exit_queue(struct elevator_queue *e)
3628 {
3629         struct cfq_data *cfqd = e->elevator_data;
3630         struct request_queue *q = cfqd->queue;
3631
3632         cfq_shutdown_timer_wq(cfqd);
3633
3634         spin_lock_irq(q->queue_lock);
3635
3636         if (cfqd->active_queue)
3637                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3638
3639         while (!list_empty(&cfqd->cic_list)) {
3640                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3641                                                         struct cfq_io_context,
3642                                                         queue_list);
3643
3644                 __cfq_exit_single_io_context(cfqd, cic);
3645         }
3646
3647         cfq_put_async_queues(cfqd);
3648         cfq_release_cfq_groups(cfqd);
3649         blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3650
3651         spin_unlock_irq(q->queue_lock);
3652
3653         cfq_shutdown_timer_wq(cfqd);
3654
3655         /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3656         call_rcu(&cfqd->rcu, cfq_cfqd_free);
3657 }
3658
3659 static void *cfq_init_queue(struct request_queue *q)
3660 {
3661         struct cfq_data *cfqd;
3662         int i, j;
3663         struct cfq_group *cfqg;
3664         struct cfq_rb_root *st;
3665
3666         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3667         if (!cfqd)
3668                 return NULL;
3669
3670         /* Init root service tree */
3671         cfqd->grp_service_tree = CFQ_RB_ROOT;
3672
3673         /* Init root group */
3674         cfqg = &cfqd->root_group;
3675         for_each_cfqg_st(cfqg, i, j, st)
3676                 *st = CFQ_RB_ROOT;
3677         RB_CLEAR_NODE(&cfqg->rb_node);
3678
3679         /* Give preference to root group over other groups */
3680         cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3681
3682 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3683         /*
3684          * Take a reference to root group which we never drop. This is just
3685          * to make sure that cfq_put_cfqg() does not try to kfree root group
3686          */
3687         atomic_set(&cfqg->ref, 1);
3688         blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3689                                         0);
3690 #endif
3691         /*
3692          * Not strictly needed (since RB_ROOT just clears the node and we
3693          * zeroed cfqd on alloc), but better be safe in case someone decides
3694          * to add magic to the rb code
3695          */
3696         for (i = 0; i < CFQ_PRIO_LISTS; i++)
3697                 cfqd->prio_trees[i] = RB_ROOT;
3698
3699         /*
3700          * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3701          * Grab a permanent reference to it, so that the normal code flow
3702          * will not attempt to free it.
3703          */
3704         cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3705         atomic_inc(&cfqd->oom_cfqq.ref);
3706         cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3707
3708         INIT_LIST_HEAD(&cfqd->cic_list);
3709
3710         cfqd->queue = q;
3711
3712         init_timer(&cfqd->idle_slice_timer);
3713         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3714         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3715
3716         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3717
3718         cfqd->cfq_quantum = cfq_quantum;
3719         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3720         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3721         cfqd->cfq_back_max = cfq_back_max;
3722         cfqd->cfq_back_penalty = cfq_back_penalty;
3723         cfqd->cfq_slice[0] = cfq_slice_async;
3724         cfqd->cfq_slice[1] = cfq_slice_sync;
3725         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3726         cfqd->cfq_slice_idle = cfq_slice_idle;
3727         cfqd->cfq_latency = 1;
3728         cfqd->cfq_group_isolation = 0;
3729         cfqd->hw_tag = -1;
3730         /*
3731          * we optimistically start assuming sync ops weren't delayed in last
3732          * second, in order to have larger depth for async operations.
3733          */
3734         cfqd->last_delayed_sync = jiffies - HZ;
3735         INIT_RCU_HEAD(&cfqd->rcu);
3736         return cfqd;
3737 }
3738
3739 static void cfq_slab_kill(void)
3740 {
3741         /*
3742          * Caller already ensured that pending RCU callbacks are completed,
3743          * so we should have no busy allocations at this point.
3744          */
3745         if (cfq_pool)
3746                 kmem_cache_destroy(cfq_pool);
3747         if (cfq_ioc_pool)
3748                 kmem_cache_destroy(cfq_ioc_pool);
3749 }
3750
3751 static int __init cfq_slab_setup(void)
3752 {
3753         cfq_pool = KMEM_CACHE(cfq_queue, 0);
3754         if (!cfq_pool)
3755                 goto fail;
3756
3757         cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3758         if (!cfq_ioc_pool)
3759                 goto fail;
3760
3761         return 0;
3762 fail:
3763         cfq_slab_kill();
3764         return -ENOMEM;
3765 }
3766
3767 /*
3768  * sysfs parts below -->
3769  */
3770 static ssize_t
3771 cfq_var_show(unsigned int var, char *page)
3772 {
3773         return sprintf(page, "%d\n", var);
3774 }
3775
3776 static ssize_t
3777 cfq_var_store(unsigned int *var, const char *page, size_t count)
3778 {
3779         char *p = (char *) page;
3780
3781         *var = simple_strtoul(p, &p, 10);
3782         return count;
3783 }
3784
3785 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
3786 static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
3787 {                                                                       \
3788         struct cfq_data *cfqd = e->elevator_data;                       \
3789         unsigned int __data = __VAR;                                    \
3790         if (__CONV)                                                     \
3791                 __data = jiffies_to_msecs(__data);                      \
3792         return cfq_var_show(__data, (page));                            \
3793 }
3794 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3795 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3796 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3797 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3798 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3799 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3800 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3801 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3802 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3803 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3804 SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
3805 #undef SHOW_FUNCTION
3806
3807 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
3808 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3809 {                                                                       \
3810         struct cfq_data *cfqd = e->elevator_data;                       \
3811         unsigned int __data;                                            \
3812         int ret = cfq_var_store(&__data, (page), count);                \
3813         if (__data < (MIN))                                             \
3814                 __data = (MIN);                                         \
3815         else if (__data > (MAX))                                        \
3816                 __data = (MAX);                                         \
3817         if (__CONV)                                                     \
3818                 *(__PTR) = msecs_to_jiffies(__data);                    \
3819         else                                                            \
3820                 *(__PTR) = __data;                                      \
3821         return ret;                                                     \
3822 }
3823 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3824 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3825                 UINT_MAX, 1);
3826 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3827                 UINT_MAX, 1);
3828 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3829 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3830                 UINT_MAX, 0);
3831 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3832 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3833 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3834 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3835                 UINT_MAX, 0);
3836 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3837 STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
3838 #undef STORE_FUNCTION
3839
3840 #define CFQ_ATTR(name) \
3841         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3842
3843 static struct elv_fs_entry cfq_attrs[] = {
3844         CFQ_ATTR(quantum),
3845         CFQ_ATTR(fifo_expire_sync),
3846         CFQ_ATTR(fifo_expire_async),
3847         CFQ_ATTR(back_seek_max),
3848         CFQ_ATTR(back_seek_penalty),
3849         CFQ_ATTR(slice_sync),
3850         CFQ_ATTR(slice_async),
3851         CFQ_ATTR(slice_async_rq),
3852         CFQ_ATTR(slice_idle),
3853         CFQ_ATTR(low_latency),
3854         CFQ_ATTR(group_isolation),
3855         __ATTR_NULL
3856 };
3857
3858 static struct elevator_type iosched_cfq = {
3859         .ops = {
3860                 .elevator_merge_fn =            cfq_merge,
3861                 .elevator_merged_fn =           cfq_merged_request,
3862                 .elevator_merge_req_fn =        cfq_merged_requests,
3863                 .elevator_allow_merge_fn =      cfq_allow_merge,
3864                 .elevator_dispatch_fn =         cfq_dispatch_requests,
3865                 .elevator_add_req_fn =          cfq_insert_request,
3866                 .elevator_activate_req_fn =     cfq_activate_request,
3867                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
3868                 .elevator_queue_empty_fn =      cfq_queue_empty,
3869                 .elevator_completed_req_fn =    cfq_completed_request,
3870                 .elevator_former_req_fn =       elv_rb_former_request,
3871                 .elevator_latter_req_fn =       elv_rb_latter_request,
3872                 .elevator_set_req_fn =          cfq_set_request,
3873                 .elevator_put_req_fn =          cfq_put_request,
3874                 .elevator_may_queue_fn =        cfq_may_queue,
3875                 .elevator_init_fn =             cfq_init_queue,
3876                 .elevator_exit_fn =             cfq_exit_queue,
3877                 .trim =                         cfq_free_io_context,
3878         },
3879         .elevator_attrs =       cfq_attrs,
3880         .elevator_name =        "cfq",
3881         .elevator_owner =       THIS_MODULE,
3882 };
3883
3884 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3885 static struct blkio_policy_type blkio_policy_cfq = {
3886         .ops = {
3887                 .blkio_unlink_group_fn =        cfq_unlink_blkio_group,
3888                 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3889         },
3890 };
3891 #else
3892 static struct blkio_policy_type blkio_policy_cfq;
3893 #endif
3894
3895 static int __init cfq_init(void)
3896 {
3897         /*
3898          * could be 0 on HZ < 1000 setups
3899          */
3900         if (!cfq_slice_async)
3901                 cfq_slice_async = 1;
3902         if (!cfq_slice_idle)
3903                 cfq_slice_idle = 1;
3904
3905         if (cfq_slab_setup())
3906                 return -ENOMEM;
3907
3908         elv_register(&iosched_cfq);
3909         blkio_policy_register(&blkio_policy_cfq);
3910
3911         return 0;
3912 }
3913
3914 static void __exit cfq_exit(void)
3915 {
3916         DECLARE_COMPLETION_ONSTACK(all_gone);
3917         blkio_policy_unregister(&blkio_policy_cfq);
3918         elv_unregister(&iosched_cfq);
3919         ioc_gone = &all_gone;
3920         /* ioc_gone's update must be visible before reading ioc_count */
3921         smp_wmb();
3922
3923         /*
3924          * this also protects us from entering cfq_slab_kill() with
3925          * pending RCU callbacks
3926          */
3927         if (elv_ioc_count_read(cfq_ioc_count))
3928                 wait_for_completion(&all_gone);
3929         cfq_slab_kill();
3930 }
3931
3932 module_init(cfq_init);
3933 module_exit(cfq_exit);
3934
3935 MODULE_AUTHOR("Jens Axboe");
3936 MODULE_LICENSE("GPL");
3937 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");