a57f2426059d3a19f9dc23c9e56deaa3b5ae7dc2
[oota-llvm.git] / docs / LangRef.html
1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2                       "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4 <head>
5   <title>LLVM Assembly Language Reference Manual</title>
6   <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7   <meta name="author" content="Chris Lattner">
8   <meta name="description" 
9   content="LLVM Assembly Language Reference Manual.">
10   <link rel="stylesheet" href="llvm.css" type="text/css">
11 </head>
12
13 <body>
14
15 <div class="doc_title"> LLVM Language Reference Manual </div>
16 <ol>
17   <li><a href="#abstract">Abstract</a></li>
18   <li><a href="#introduction">Introduction</a></li>
19   <li><a href="#identifiers">Identifiers</a></li>
20   <li><a href="#highlevel">High Level Structure</a>
21     <ol>
22       <li><a href="#modulestructure">Module Structure</a></li>
23       <li><a href="#linkage">Linkage Types</a></li>
24       <li><a href="#callingconv">Calling Conventions</a></li>
25       <li><a href="#globalvars">Global Variables</a></li>
26       <li><a href="#functionstructure">Functions</a></li>
27       <li><a href="#aliasstructure">Aliases</a>
28       <li><a href="#paramattrs">Parameter Attributes</a></li>
29       <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
30       <li><a href="#datalayout">Data Layout</a></li>
31     </ol>
32   </li>
33   <li><a href="#typesystem">Type System</a>
34     <ol>
35       <li><a href="#t_primitive">Primitive Types</a>    
36         <ol>
37           <li><a href="#t_classifications">Type Classifications</a></li>
38         </ol>
39       </li>
40       <li><a href="#t_derived">Derived Types</a>
41         <ol>
42           <li><a href="#t_array">Array Type</a></li>
43           <li><a href="#t_function">Function Type</a></li>
44           <li><a href="#t_pointer">Pointer Type</a></li>
45           <li><a href="#t_struct">Structure Type</a></li>
46           <li><a href="#t_pstruct">Packed Structure Type</a></li>
47           <li><a href="#t_vector">Vector Type</a></li>
48           <li><a href="#t_opaque">Opaque Type</a></li>
49         </ol>
50       </li>
51     </ol>
52   </li>
53   <li><a href="#constants">Constants</a>
54     <ol>
55       <li><a href="#simpleconstants">Simple Constants</a>
56       <li><a href="#aggregateconstants">Aggregate Constants</a>
57       <li><a href="#globalconstants">Global Variable and Function Addresses</a>
58       <li><a href="#undefvalues">Undefined Values</a>
59       <li><a href="#constantexprs">Constant Expressions</a>
60     </ol>
61   </li>
62   <li><a href="#othervalues">Other Values</a>
63     <ol>
64       <li><a href="#inlineasm">Inline Assembler Expressions</a>
65     </ol>
66   </li>
67   <li><a href="#instref">Instruction Reference</a>
68     <ol>
69       <li><a href="#terminators">Terminator Instructions</a>
70         <ol>
71           <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
72           <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
73           <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
74           <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
75           <li><a href="#i_unwind">'<tt>unwind</tt>'  Instruction</a></li>
76           <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
77         </ol>
78       </li>
79       <li><a href="#binaryops">Binary Operations</a>
80         <ol>
81           <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
82           <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
83           <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
84           <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
85           <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
86           <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
87           <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
88           <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
89           <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
90         </ol>
91       </li>
92       <li><a href="#bitwiseops">Bitwise Binary Operations</a>
93         <ol>
94           <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
95           <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
96           <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
97           <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
98           <li><a href="#i_or">'<tt>or</tt>'  Instruction</a></li>
99           <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
100         </ol>
101       </li>
102       <li><a href="#vectorops">Vector Operations</a>
103         <ol>
104           <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
105           <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
106           <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
107         </ol>
108       </li>
109       <li><a href="#memoryops">Memory Access and Addressing Operations</a>
110         <ol>
111           <li><a href="#i_malloc">'<tt>malloc</tt>'   Instruction</a></li>
112           <li><a href="#i_free">'<tt>free</tt>'     Instruction</a></li>
113           <li><a href="#i_alloca">'<tt>alloca</tt>'   Instruction</a></li>
114          <li><a href="#i_load">'<tt>load</tt>'     Instruction</a></li>
115          <li><a href="#i_store">'<tt>store</tt>'    Instruction</a></li>
116          <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
117         </ol>
118       </li>
119       <li><a href="#convertops">Conversion Operations</a>
120         <ol>
121           <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
122           <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
123           <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
124           <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
125           <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
126           <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
127           <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
128           <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
129           <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
130           <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
131           <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
132           <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
133         </ol>
134       <li><a href="#otherops">Other Operations</a>
135         <ol>
136           <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
137           <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
138           <li><a href="#i_phi">'<tt>phi</tt>'   Instruction</a></li>
139           <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
140           <li><a href="#i_call">'<tt>call</tt>'  Instruction</a></li>
141           <li><a href="#i_va_arg">'<tt>va_arg</tt>'  Instruction</a></li>
142         </ol>
143       </li>
144     </ol>
145   </li>
146   <li><a href="#intrinsics">Intrinsic Functions</a>
147     <ol>
148       <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
149         <ol>
150           <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
151           <li><a href="#int_va_end">'<tt>llvm.va_end</tt>'   Intrinsic</a></li>
152           <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>'  Intrinsic</a></li>
153         </ol>
154       </li>
155       <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
156         <ol>
157           <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
158           <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
159           <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
160         </ol>
161       </li>
162       <li><a href="#int_codegen">Code Generator Intrinsics</a>
163         <ol>
164           <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
165           <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>'   Intrinsic</a></li>
166           <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
167           <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
168           <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
169           <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
170           <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
171         </ol>
172       </li>
173       <li><a href="#int_libc">Standard C Library Intrinsics</a>
174         <ol>
175           <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
176           <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
177           <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
178           <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
179           <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
180         </ol>
181       </li>
182       <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
183         <ol>
184           <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
185           <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
186           <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
187           <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
188           <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
189           <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
190         </ol>
191       </li>
192       <li><a href="#int_debugger">Debugger intrinsics</a></li>
193       <li><a href="#int_eh">Exception Handling intrinsics</a></li>
194       <li><a href="#int_general">General intrinsics</a></li>
195         <ol>
196           <li><a href="#int_var_annotation">'<tt>llvm.var.annotation</tt>' 
197                                                               Intrinsic</a></li>
198           </ol>
199       </li>
200     </ol>
201   </li>
202 </ol>
203
204 <div class="doc_author">
205   <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
206             and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
207 </div>
208
209 <!-- *********************************************************************** -->
210 <div class="doc_section"> <a name="abstract">Abstract </a></div>
211 <!-- *********************************************************************** -->
212
213 <div class="doc_text">
214 <p>This document is a reference manual for the LLVM assembly language. 
215 LLVM is an SSA based representation that provides type safety,
216 low-level operations, flexibility, and the capability of representing
217 'all' high-level languages cleanly.  It is the common code
218 representation used throughout all phases of the LLVM compilation
219 strategy.</p>
220 </div>
221
222 <!-- *********************************************************************** -->
223 <div class="doc_section"> <a name="introduction">Introduction</a> </div>
224 <!-- *********************************************************************** -->
225
226 <div class="doc_text">
227
228 <p>The LLVM code representation is designed to be used in three
229 different forms: as an in-memory compiler IR, as an on-disk bitcode
230 representation (suitable for fast loading by a Just-In-Time compiler),
231 and as a human readable assembly language representation.  This allows
232 LLVM to provide a powerful intermediate representation for efficient
233 compiler transformations and analysis, while providing a natural means
234 to debug and visualize the transformations.  The three different forms
235 of LLVM are all equivalent.  This document describes the human readable
236 representation and notation.</p>
237
238 <p>The LLVM representation aims to be light-weight and low-level
239 while being expressive, typed, and extensible at the same time.  It
240 aims to be a "universal IR" of sorts, by being at a low enough level
241 that high-level ideas may be cleanly mapped to it (similar to how
242 microprocessors are "universal IR's", allowing many source languages to
243 be mapped to them).  By providing type information, LLVM can be used as
244 the target of optimizations: for example, through pointer analysis, it
245 can be proven that a C automatic variable is never accessed outside of
246 the current function... allowing it to be promoted to a simple SSA
247 value instead of a memory location.</p>
248
249 </div>
250
251 <!-- _______________________________________________________________________ -->
252 <div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
253
254 <div class="doc_text">
255
256 <p>It is important to note that this document describes 'well formed'
257 LLVM assembly language.  There is a difference between what the parser
258 accepts and what is considered 'well formed'.  For example, the
259 following instruction is syntactically okay, but not well formed:</p>
260
261 <div class="doc_code">
262 <pre>
263 %x = <a href="#i_add">add</a> i32 1, %x
264 </pre>
265 </div>
266
267 <p>...because the definition of <tt>%x</tt> does not dominate all of
268 its uses. The LLVM infrastructure provides a verification pass that may
269 be used to verify that an LLVM module is well formed.  This pass is
270 automatically run by the parser after parsing input assembly and by
271 the optimizer before it outputs bitcode.  The violations pointed out
272 by the verifier pass indicate bugs in transformation passes or input to
273 the parser.</p>
274 </div>
275
276 <!-- Describe the typesetting conventions here. --> </div>
277
278 <!-- *********************************************************************** -->
279 <div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
280 <!-- *********************************************************************** -->
281
282 <div class="doc_text">
283
284 <p>LLVM uses three different forms of identifiers, for different
285 purposes:</p>
286
287 <ol>
288   <li>Named values are represented as a string of characters with a '%' prefix.
289   For example, %foo, %DivisionByZero, %a.really.long.identifier.  The actual
290   regular expression used is '<tt>%[a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
291   Identifiers which require other characters in their names can be surrounded
292   with quotes.  In this way, anything except a <tt>&quot;</tt> character can be used
293   in a name.</li>
294
295   <li>Unnamed values are represented as an unsigned numeric value with a '%'
296   prefix.  For example, %12, %2, %44.</li>
297
298   <li>Constants, which are described in a <a href="#constants">section about
299   constants</a>, below.</li>
300 </ol>
301
302 <p>LLVM requires that values start with a '%' sign for two reasons: Compilers
303 don't need to worry about name clashes with reserved words, and the set of
304 reserved words may be expanded in the future without penalty.  Additionally,
305 unnamed identifiers allow a compiler to quickly come up with a temporary
306 variable without having to avoid symbol table conflicts.</p>
307
308 <p>Reserved words in LLVM are very similar to reserved words in other
309 languages. There are keywords for different opcodes 
310 ('<tt><a href="#i_add">add</a></tt>', 
311  '<tt><a href="#i_bitcast">bitcast</a></tt>', 
312  '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
313 href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
314 and others.  These reserved words cannot conflict with variable names, because
315 none of them start with a '%' character.</p>
316
317 <p>Here is an example of LLVM code to multiply the integer variable
318 '<tt>%X</tt>' by 8:</p>
319
320 <p>The easy way:</p>
321
322 <div class="doc_code">
323 <pre>
324 %result = <a href="#i_mul">mul</a> i32 %X, 8
325 </pre>
326 </div>
327
328 <p>After strength reduction:</p>
329
330 <div class="doc_code">
331 <pre>
332 %result = <a href="#i_shl">shl</a> i32 %X, i8 3
333 </pre>
334 </div>
335
336 <p>And the hard way:</p>
337
338 <div class="doc_code">
339 <pre>
340 <a href="#i_add">add</a> i32 %X, %X           <i>; yields {i32}:%0</i>
341 <a href="#i_add">add</a> i32 %0, %0           <i>; yields {i32}:%1</i>
342 %result = <a href="#i_add">add</a> i32 %1, %1
343 </pre>
344 </div>
345
346 <p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
347 important lexical features of LLVM:</p>
348
349 <ol>
350
351   <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
352   line.</li>
353
354   <li>Unnamed temporaries are created when the result of a computation is not
355   assigned to a named value.</li>
356
357   <li>Unnamed temporaries are numbered sequentially</li>
358
359 </ol>
360
361 <p>...and it also shows a convention that we follow in this document.  When
362 demonstrating instructions, we will follow an instruction with a comment that
363 defines the type and name of value produced.  Comments are shown in italic
364 text.</p>
365
366 </div>
367
368 <!-- *********************************************************************** -->
369 <div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
370 <!-- *********************************************************************** -->
371
372 <!-- ======================================================================= -->
373 <div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
374 </div>
375
376 <div class="doc_text">
377
378 <p>LLVM programs are composed of "Module"s, each of which is a
379 translation unit of the input programs.  Each module consists of
380 functions, global variables, and symbol table entries.  Modules may be
381 combined together with the LLVM linker, which merges function (and
382 global variable) definitions, resolves forward declarations, and merges
383 symbol table entries. Here is an example of the "hello world" module:</p>
384
385 <div class="doc_code">
386 <pre><i>; Declare the string constant as a global constant...</i>
387 <a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
388  href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00"          <i>; [13 x i8]*</i>
389
390 <i>; External declaration of the puts function</i>
391 <a href="#functionstructure">declare</a> i32 @puts(i8 *)                                            <i>; i32(i8 *)* </i>
392
393 <i>; Definition of main function</i>
394 define i32 @main() {                                                 <i>; i32()* </i>
395         <i>; Convert [13x i8 ]* to i8  *...</i>
396         %cast210 = <a
397  href="#i_getelementptr">getelementptr</a> [13 x i8 ]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
398
399         <i>; Call puts function to write out the string to stdout...</i>
400         <a
401  href="#i_call">call</a> i32 @puts(i8 * %cast210)                              <i>; i32</i>
402         <a
403  href="#i_ret">ret</a> i32 0<br>}<br>
404 </pre>
405 </div>
406
407 <p>This example is made up of a <a href="#globalvars">global variable</a>
408 named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
409 function, and a <a href="#functionstructure">function definition</a>
410 for "<tt>main</tt>".</p>
411
412 <p>In general, a module is made up of a list of global values,
413 where both functions and global variables are global values.  Global values are
414 represented by a pointer to a memory location (in this case, a pointer to an
415 array of char, and a pointer to a function), and have one of the following <a
416 href="#linkage">linkage types</a>.</p>
417
418 </div>
419
420 <!-- ======================================================================= -->
421 <div class="doc_subsection">
422   <a name="linkage">Linkage Types</a>
423 </div>
424
425 <div class="doc_text">
426
427 <p>
428 All Global Variables and Functions have one of the following types of linkage:
429 </p>
430
431 <dl>
432
433   <dt><tt><b><a name="linkage_internal">internal</a></b></tt> </dt>
434
435   <dd>Global values with internal linkage are only directly accessible by
436   objects in the current module.  In particular, linking code into a module with
437   an internal global value may cause the internal to be renamed as necessary to
438   avoid collisions.  Because the symbol is internal to the module, all
439   references can be updated.  This corresponds to the notion of the
440   '<tt>static</tt>' keyword in C.
441   </dd>
442
443   <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
444
445   <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
446   the same name when linkage occurs.  This is typically used to implement 
447   inline functions, templates, or other code which must be generated in each 
448   translation unit that uses it.  Unreferenced <tt>linkonce</tt> globals are 
449   allowed to be discarded.
450   </dd>
451
452   <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
453
454   <dd>"<tt>weak</tt>" linkage is exactly the same as <tt>linkonce</tt> linkage,
455   except that unreferenced <tt>weak</tt> globals may not be discarded.  This is
456   used for globals that may be emitted in multiple translation units, but that
457   are not guaranteed to be emitted into every translation unit that uses them.
458   One example of this are common globals in C, such as "<tt>int X;</tt>" at 
459   global scope.
460   </dd>
461
462   <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
463
464   <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
465   pointer to array type.  When two global variables with appending linkage are
466   linked together, the two global arrays are appended together.  This is the
467   LLVM, typesafe, equivalent of having the system linker append together
468   "sections" with identical names when .o files are linked.
469   </dd>
470
471   <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
472   <dd>The semantics of this linkage follow the ELF model: the symbol is weak
473     until linked, if not linked, the symbol becomes null instead of being an
474     undefined reference.
475   </dd>
476
477   <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
478
479   <dd>If none of the above identifiers are used, the global is externally
480   visible, meaning that it participates in linkage and can be used to resolve
481   external symbol references.
482   </dd>
483 </dl>
484
485   <p>
486   The next two types of linkage are targeted for Microsoft Windows platform
487   only. They are designed to support importing (exporting) symbols from (to)
488   DLLs.
489   </p>
490
491   <dl>
492   <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
493
494   <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
495     or variable via a global pointer to a pointer that is set up by the DLL
496     exporting the symbol. On Microsoft Windows targets, the pointer name is
497     formed by combining <code>_imp__</code> and the function or variable name.
498   </dd>
499
500   <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
501
502   <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
503     pointer to a pointer in a DLL, so that it can be referenced with the
504     <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
505     name is formed by combining <code>_imp__</code> and the function or variable
506     name.
507   </dd>
508
509 </dl>
510
511 <p><a name="linkage_external"></a>For example, since the "<tt>.LC0</tt>"
512 variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
513 variable and was linked with this one, one of the two would be renamed,
514 preventing a collision.  Since "<tt>main</tt>" and "<tt>puts</tt>" are
515 external (i.e., lacking any linkage declarations), they are accessible
516 outside of the current module.</p>
517 <p>It is illegal for a function <i>declaration</i>
518 to have any linkage type other than "externally visible", <tt>dllimport</tt>,
519 or <tt>extern_weak</tt>.</p>
520 <p>Aliases can have only <tt>external</tt>, <tt>internal</tt> and <tt>weak</tt>
521 linkages.
522 </div>
523
524 <!-- ======================================================================= -->
525 <div class="doc_subsection">
526   <a name="callingconv">Calling Conventions</a>
527 </div>
528
529 <div class="doc_text">
530
531 <p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
532 and <a href="#i_invoke">invokes</a> can all have an optional calling convention
533 specified for the call.  The calling convention of any pair of dynamic
534 caller/callee must match, or the behavior of the program is undefined.  The
535 following calling conventions are supported by LLVM, and more may be added in
536 the future:</p>
537
538 <dl>
539   <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
540
541   <dd>This calling convention (the default if no other calling convention is
542   specified) matches the target C calling conventions.  This calling convention
543   supports varargs function calls and tolerates some mismatch in the declared
544   prototype and implemented declaration of the function (as does normal C). 
545   </dd>
546
547   <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
548
549   <dd>This calling convention attempts to make calls as fast as possible
550   (e.g. by passing things in registers).  This calling convention allows the
551   target to use whatever tricks it wants to produce fast code for the target,
552   without having to conform to an externally specified ABI.  Implementations of
553   this convention should allow arbitrary tail call optimization to be supported.
554   This calling convention does not support varargs and requires the prototype of
555   all callees to exactly match the prototype of the function definition.
556   </dd>
557
558   <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
559
560   <dd>This calling convention attempts to make code in the caller as efficient
561   as possible under the assumption that the call is not commonly executed.  As
562   such, these calls often preserve all registers so that the call does not break
563   any live ranges in the caller side.  This calling convention does not support
564   varargs and requires the prototype of all callees to exactly match the
565   prototype of the function definition.
566   </dd>
567
568   <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
569
570   <dd>Any calling convention may be specified by number, allowing
571   target-specific calling conventions to be used.  Target specific calling
572   conventions start at 64.
573   </dd>
574 </dl>
575
576 <p>More calling conventions can be added/defined on an as-needed basis, to
577 support pascal conventions or any other well-known target-independent
578 convention.</p>
579
580 </div>
581
582 <!-- ======================================================================= -->
583 <div class="doc_subsection">
584   <a name="visibility">Visibility Styles</a>
585 </div>
586
587 <div class="doc_text">
588
589 <p>
590 All Global Variables and Functions have one of the following visibility styles:
591 </p>
592
593 <dl>
594   <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
595
596   <dd>On ELF, default visibility means that the declaration is visible to other
597     modules and, in shared libraries, means that the declared entity may be
598     overridden. On Darwin, default visibility means that the declaration is
599     visible to other modules. Default visibility corresponds to "external
600     linkage" in the language.
601   </dd>
602
603   <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
604
605   <dd>Two declarations of an object with hidden visibility refer to the same
606     object if they are in the same shared object. Usually, hidden visibility
607     indicates that the symbol will not be placed into the dynamic symbol table,
608     so no other module (executable or shared library) can reference it
609     directly.
610   </dd>
611
612   <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
613
614   <dd>On ELF, protected visibility indicates that the symbol will be placed in
615   the dynamic symbol table, but that references within the defining module will
616   bind to the local symbol. That is, the symbol cannot be overridden by another
617   module.
618   </dd>
619 </dl>
620
621 </div>
622
623 <!-- ======================================================================= -->
624 <div class="doc_subsection">
625   <a name="globalvars">Global Variables</a>
626 </div>
627
628 <div class="doc_text">
629
630 <p>Global variables define regions of memory allocated at compilation time
631 instead of run-time.  Global variables may optionally be initialized, may have
632 an explicit section to be placed in, and may have an optional explicit alignment
633 specified.  A variable may be defined as "thread_local", which means that it
634 will not be shared by threads (each thread will have a separated copy of the
635 variable).  A variable may be defined as a global "constant," which indicates
636 that the contents of the variable will <b>never</b> be modified (enabling better
637 optimization, allowing the global data to be placed in the read-only section of
638 an executable, etc).  Note that variables that need runtime initialization
639 cannot be marked "constant" as there is a store to the variable.</p>
640
641 <p>
642 LLVM explicitly allows <em>declarations</em> of global variables to be marked
643 constant, even if the final definition of the global is not.  This capability
644 can be used to enable slightly better optimization of the program, but requires
645 the language definition to guarantee that optimizations based on the
646 'constantness' are valid for the translation units that do not include the
647 definition.
648 </p>
649
650 <p>As SSA values, global variables define pointer values that are in
651 scope (i.e. they dominate) all basic blocks in the program.  Global
652 variables always define a pointer to their "content" type because they
653 describe a region of memory, and all memory objects in LLVM are
654 accessed through pointers.</p>
655
656 <p>LLVM allows an explicit section to be specified for globals.  If the target
657 supports it, it will emit globals to the section specified.</p>
658
659 <p>An explicit alignment may be specified for a global.  If not present, or if
660 the alignment is set to zero, the alignment of the global is set by the target
661 to whatever it feels convenient.  If an explicit alignment is specified, the 
662 global is forced to have at least that much alignment.  All alignments must be
663 a power of 2.</p>
664
665 <p>For example, the following defines a global with an initializer, section,
666    and alignment:</p>
667
668 <div class="doc_code">
669 <pre>
670 @G = constant float 1.0, section "foo", align 4
671 </pre>
672 </div>
673
674 </div>
675
676
677 <!-- ======================================================================= -->
678 <div class="doc_subsection">
679   <a name="functionstructure">Functions</a>
680 </div>
681
682 <div class="doc_text">
683
684 <p>LLVM function definitions consist of the "<tt>define</tt>" keyord, 
685 an optional <a href="#linkage">linkage type</a>, an optional 
686 <a href="#visibility">visibility style</a>, an optional 
687 <a href="#callingconv">calling convention</a>, a return type, an optional
688 <a href="#paramattrs">parameter attribute</a> for the return type, a function 
689 name, a (possibly empty) argument list (each with optional 
690 <a href="#paramattrs">parameter attributes</a>), an optional section, an
691 optional alignment, an opening curly brace, a list of basic blocks, and a
692 closing curly brace.  
693
694 LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
695 optional <a href="#linkage">linkage type</a>, an optional
696 <a href="#visibility">visibility style</a>, an optional 
697 <a href="#callingconv">calling convention</a>, a return type, an optional
698 <a href="#paramattrs">parameter attribute</a> for the return type, a function 
699 name, a possibly empty list of arguments, and an optional alignment.</p>
700
701 <p>A function definition contains a list of basic blocks, forming the CFG for
702 the function.  Each basic block may optionally start with a label (giving the
703 basic block a symbol table entry), contains a list of instructions, and ends
704 with a <a href="#terminators">terminator</a> instruction (such as a branch or
705 function return).</p>
706
707 <p>The first basic block in a function is special in two ways: it is immediately
708 executed on entrance to the function, and it is not allowed to have predecessor
709 basic blocks (i.e. there can not be any branches to the entry block of a
710 function).  Because the block can have no predecessors, it also cannot have any
711 <a href="#i_phi">PHI nodes</a>.</p>
712
713 <p>LLVM allows an explicit section to be specified for functions.  If the target
714 supports it, it will emit functions to the section specified.</p>
715
716 <p>An explicit alignment may be specified for a function.  If not present, or if
717 the alignment is set to zero, the alignment of the function is set by the target
718 to whatever it feels convenient.  If an explicit alignment is specified, the
719 function is forced to have at least that much alignment.  All alignments must be
720 a power of 2.</p>
721
722 </div>
723
724
725 <!-- ======================================================================= -->
726 <div class="doc_subsection">
727   <a name="aliasstructure">Aliases</a>
728 </div>
729 <div class="doc_text">
730   <p>Aliases act as "second name" for the aliasee value (which can be either
731   function or global variable or bitcast of global value). Aliases may have an
732   optional <a href="#linkage">linkage type</a>, and an
733   optional <a href="#visibility">visibility style</a>.</p>
734
735   <h5>Syntax:</h5>
736
737 <div class="doc_code">
738 <pre>
739 @&lt;Name&gt; = [Linkage] [Visibility] alias &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
740 </pre>
741 </div>
742
743 </div>
744
745
746
747 <!-- ======================================================================= -->
748 <div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
749 <div class="doc_text">
750   <p>The return type and each parameter of a function type may have a set of
751   <i>parameter attributes</i> associated with them. Parameter attributes are
752   used to communicate additional information about the result or parameters of
753   a function. Parameter attributes are considered to be part of the function
754   type so two functions types that differ only by the parameter attributes 
755   are different function types.</p>
756
757   <p>Parameter attributes are simple keywords that follow the type specified. If
758   multiple parameter attributes are needed, they are space separated. For 
759   example:</p>
760
761 <div class="doc_code">
762 <pre>
763 %someFunc = i16 (i8 sext %someParam) zext
764 %someFunc = i16 (i8 zext %someParam) zext
765 </pre>
766 </div>
767
768   <p>Note that the two function types above are unique because the parameter has
769   a different attribute (sext in the first one, zext in the second). Also note
770   that the attribute for the function result (zext) comes immediately after the
771   argument list.</p>
772
773   <p>Currently, only the following parameter attributes are defined:</p>
774   <dl>
775     <dt><tt>zext</tt></dt>
776     <dd>This indicates that the parameter should be zero extended just before
777     a call to this function.</dd>
778     <dt><tt>sext</tt></dt>
779     <dd>This indicates that the parameter should be sign extended just before
780     a call to this function.</dd>
781     <dt><tt>inreg</tt></dt>
782     <dd>This indicates that the parameter should be placed in register (if
783     possible) during assembling function call. Support for this attribute is
784     target-specific</dd>
785     <dt><tt>sret</tt></dt>
786     <dd>This indicates that the parameter specifies the address of a structure
787     that is the return value of the function in the source program.</dd>
788     <dt><tt>noalias</tt></dt>
789     <dd>This indicates that the parameter not alias any other object or any 
790     other "noalias" objects during the function call.
791     <dt><tt>noreturn</tt></dt>
792     <dd>This function attribute indicates that the function never returns. This
793     indicates to LLVM that every call to this function should be treated as if
794     an <tt>unreachable</tt> instruction immediately followed the call.</dd> 
795     <dt><tt>nounwind</tt></dt>
796     <dd>This function attribute indicates that the function type does not use
797     the unwind instruction and does not allow stack unwinding to propagate
798     through it.</dd>
799   </dl>
800
801 </div>
802
803 <!-- ======================================================================= -->
804 <div class="doc_subsection">
805   <a name="moduleasm">Module-Level Inline Assembly</a>
806 </div>
807
808 <div class="doc_text">
809 <p>
810 Modules may contain "module-level inline asm" blocks, which corresponds to the
811 GCC "file scope inline asm" blocks.  These blocks are internally concatenated by
812 LLVM and treated as a single unit, but may be separated in the .ll file if
813 desired.  The syntax is very simple:
814 </p>
815
816 <div class="doc_code">
817 <pre>
818 module asm "inline asm code goes here"
819 module asm "more can go here"
820 </pre>
821 </div>
822
823 <p>The strings can contain any character by escaping non-printable characters.
824    The escape sequence used is simply "\xx" where "xx" is the two digit hex code
825    for the number.
826 </p>
827
828 <p>
829   The inline asm code is simply printed to the machine code .s file when
830   assembly code is generated.
831 </p>
832 </div>
833
834 <!-- ======================================================================= -->
835 <div class="doc_subsection">
836   <a name="datalayout">Data Layout</a>
837 </div>
838
839 <div class="doc_text">
840 <p>A module may specify a target specific data layout string that specifies how
841 data is to be laid out in memory. The syntax for the data layout is simply:</p>
842 <pre>    target datalayout = "<i>layout specification</i>"</pre>
843 <p>The <i>layout specification</i> consists of a list of specifications 
844 separated by the minus sign character ('-').  Each specification starts with a 
845 letter and may include other information after the letter to define some 
846 aspect of the data layout.  The specifications accepted are as follows: </p>
847 <dl>
848   <dt><tt>E</tt></dt>
849   <dd>Specifies that the target lays out data in big-endian form. That is, the
850   bits with the most significance have the lowest address location.</dd>
851   <dt><tt>e</tt></dt>
852   <dd>Specifies that hte target lays out data in little-endian form. That is,
853   the bits with the least significance have the lowest address location.</dd>
854   <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
855   <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and 
856   <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
857   alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
858   too.</dd>
859   <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
860   <dd>This specifies the alignment for an integer type of a given bit
861   <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
862   <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
863   <dd>This specifies the alignment for a vector type of a given bit 
864   <i>size</i>.</dd>
865   <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
866   <dd>This specifies the alignment for a floating point type of a given bit 
867   <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
868   (double).</dd>
869   <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
870   <dd>This specifies the alignment for an aggregate type of a given bit
871   <i>size</i>.</dd>
872 </dl>
873 <p>When constructing the data layout for a given target, LLVM starts with a
874 default set of specifications which are then (possibly) overriden by the
875 specifications in the <tt>datalayout</tt> keyword. The default specifications
876 are given in this list:</p>
877 <ul>
878   <li><tt>E</tt> - big endian</li>
879   <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
880   <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
881   <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
882   <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
883   <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
884   <li><tt>i64:32:64</tt> - i64 has abi alignment of 32-bits but preferred
885   alignment of 64-bits</li>
886   <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
887   <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
888   <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
889   <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
890   <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
891 </ul>
892 <p>When llvm is determining the alignment for a given type, it uses the 
893 following rules:
894 <ol>
895   <li>If the type sought is an exact match for one of the specifications, that
896   specification is used.</li>
897   <li>If no match is found, and the type sought is an integer type, then the
898   smallest integer type that is larger than the bitwidth of the sought type is
899   used. If none of the specifications are larger than the bitwidth then the the
900   largest integer type is used. For example, given the default specifications
901   above, the i7 type will use the alignment of i8 (next largest) while both
902   i65 and i256 will use the alignment of i64 (largest specified).</li>
903   <li>If no match is found, and the type sought is a vector type, then the
904   largest vector type that is smaller than the sought vector type will be used
905   as a fall back.  This happens because <128 x double> can be implemented in 
906   terms of 64 <2 x double>, for example.</li>
907 </ol>
908 </div>
909
910 <!-- *********************************************************************** -->
911 <div class="doc_section"> <a name="typesystem">Type System</a> </div>
912 <!-- *********************************************************************** -->
913
914 <div class="doc_text">
915
916 <p>The LLVM type system is one of the most important features of the
917 intermediate representation.  Being typed enables a number of
918 optimizations to be performed on the IR directly, without having to do
919 extra analyses on the side before the transformation.  A strong type
920 system makes it easier to read the generated code and enables novel
921 analyses and transformations that are not feasible to perform on normal
922 three address code representations.</p>
923
924 </div>
925
926 <!-- ======================================================================= -->
927 <div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
928 <div class="doc_text">
929 <p>The primitive types are the fundamental building blocks of the LLVM
930 system. The current set of primitive types is as follows:</p>
931
932 <table class="layout">
933   <tr class="layout">
934     <td class="left">
935       <table>
936         <tbody>
937         <tr><th>Type</th><th>Description</th></tr>
938         <tr><td><tt><a name="t_void">void</a></tt></td><td>No value</td></tr>
939         <tr><td><tt>label</tt></td><td>Branch destination</td></tr>
940         </tbody>
941       </table>
942     </td>
943     <td class="right">
944       <table>
945         <tbody>
946           <tr><th>Type</th><th>Description</th></tr>
947           <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
948          <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
949         </tbody>
950       </table>
951     </td>
952   </tr>
953 </table>
954 </div>
955
956 <!-- _______________________________________________________________________ -->
957 <div class="doc_subsubsection"> <a name="t_classifications">Type
958 Classifications</a> </div>
959 <div class="doc_text">
960 <p>These different primitive types fall into a few useful
961 classifications:</p>
962
963 <table border="1" cellspacing="0" cellpadding="4">
964   <tbody>
965     <tr><th>Classification</th><th>Types</th></tr>
966     <tr>
967       <td><a name="t_integer">integer</a></td>
968       <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
969     </tr>
970     <tr>
971       <td><a name="t_floating">floating point</a></td>
972       <td><tt>float, double</tt></td>
973     </tr>
974     <tr>
975       <td><a name="t_firstclass">first class</a></td>
976       <td><tt>i1, ..., float, double, <br/>
977           <a href="#t_pointer">pointer</a>,<a href="#t_vector">vector</a></tt>
978       </td>
979     </tr>
980   </tbody>
981 </table>
982
983 <p>The <a href="#t_firstclass">first class</a> types are perhaps the
984 most important.  Values of these types are the only ones which can be
985 produced by instructions, passed as arguments, or used as operands to
986 instructions.  This means that all structures and arrays must be
987 manipulated either by pointer or by component.</p>
988 </div>
989
990 <!-- ======================================================================= -->
991 <div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
992
993 <div class="doc_text">
994
995 <p>The real power in LLVM comes from the derived types in the system. 
996 This is what allows a programmer to represent arrays, functions,
997 pointers, and other useful types.  Note that these derived types may be
998 recursive: For example, it is possible to have a two dimensional array.</p>
999
1000 </div>
1001
1002 <!-- _______________________________________________________________________ -->
1003 <div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1004
1005 <div class="doc_text">
1006
1007 <h5>Overview:</h5>
1008 <p>The integer type is a very simple derived type that simply specifies an
1009 arbitrary bit width for the integer type desired. Any bit width from 1 bit to
1010 2^23-1 (about 8 million) can be specified.</p>
1011
1012 <h5>Syntax:</h5>
1013
1014 <pre>
1015   iN
1016 </pre>
1017
1018 <p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1019 value.</p>
1020
1021 <h5>Examples:</h5>
1022 <table class="layout">
1023   <tr class="layout">
1024     <td class="left">
1025       <tt>i1</tt><br/>
1026       <tt>i4</tt><br/>
1027       <tt>i8</tt><br/>
1028       <tt>i16</tt><br/>
1029       <tt>i32</tt><br/>
1030       <tt>i42</tt><br/>
1031       <tt>i64</tt><br/>
1032       <tt>i1942652</tt><br/>
1033     </td>
1034     <td class="left">
1035       A boolean integer of 1 bit<br/>
1036       A nibble sized integer of 4 bits.<br/>
1037       A byte sized integer of 8 bits.<br/>
1038       A half word sized integer of 16 bits.<br/>
1039       A word sized integer of 32 bits.<br/>
1040       An integer whose bit width is the answer. <br/>
1041       A double word sized integer of 64 bits.<br/>
1042       A really big integer of over 1 million bits.<br/>
1043     </td>
1044   </tr>
1045 </table>
1046 </div>
1047
1048 <!-- _______________________________________________________________________ -->
1049 <div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
1050
1051 <div class="doc_text">
1052
1053 <h5>Overview:</h5>
1054
1055 <p>The array type is a very simple derived type that arranges elements
1056 sequentially in memory.  The array type requires a size (number of
1057 elements) and an underlying data type.</p>
1058
1059 <h5>Syntax:</h5>
1060
1061 <pre>
1062   [&lt;# elements&gt; x &lt;elementtype&gt;]
1063 </pre>
1064
1065 <p>The number of elements is a constant integer value; elementtype may
1066 be any type with a size.</p>
1067
1068 <h5>Examples:</h5>
1069 <table class="layout">
1070   <tr class="layout">
1071     <td class="left">
1072       <tt>[40 x i32 ]</tt><br/>
1073       <tt>[41 x i32 ]</tt><br/>
1074       <tt>[40 x i8]</tt><br/>
1075     </td>
1076     <td class="left">
1077       Array of 40 32-bit integer values.<br/>
1078       Array of 41 32-bit integer values.<br/>
1079       Array of 40 8-bit integer values.<br/>
1080     </td>
1081   </tr>
1082 </table>
1083 <p>Here are some examples of multidimensional arrays:</p>
1084 <table class="layout">
1085   <tr class="layout">
1086     <td class="left">
1087       <tt>[3 x [4 x i32]]</tt><br/>
1088       <tt>[12 x [10 x float]]</tt><br/>
1089       <tt>[2 x [3 x [4 x i16]]]</tt><br/>
1090     </td>
1091     <td class="left">
1092       3x4 array of 32-bit integer values.<br/>
1093       12x10 array of single precision floating point values.<br/>
1094       2x3x4 array of 16-bit integer  values.<br/>
1095     </td>
1096   </tr>
1097 </table>
1098
1099 <p>Note that 'variable sized arrays' can be implemented in LLVM with a zero 
1100 length array.  Normally, accesses past the end of an array are undefined in
1101 LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1102 As a special case, however, zero length arrays are recognized to be variable
1103 length.  This allows implementation of 'pascal style arrays' with the  LLVM
1104 type "{ i32, [0 x float]}", for example.</p>
1105
1106 </div>
1107
1108 <!-- _______________________________________________________________________ -->
1109 <div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
1110 <div class="doc_text">
1111 <h5>Overview:</h5>
1112 <p>The function type can be thought of as a function signature.  It
1113 consists of a return type and a list of formal parameter types. 
1114 Function types are usually used to build virtual function tables
1115 (which are structures of pointers to functions), for indirect function
1116 calls, and when defining a function.</p>
1117 <p>
1118 The return type of a function type cannot be an aggregate type.
1119 </p>
1120 <h5>Syntax:</h5>
1121 <pre>  &lt;returntype&gt; (&lt;parameter list&gt;)<br></pre>
1122 <p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
1123 specifiers.  Optionally, the parameter list may include a type <tt>...</tt>,
1124 which indicates that the function takes a variable number of arguments.
1125 Variable argument functions can access their arguments with the <a
1126  href="#int_varargs">variable argument handling intrinsic</a> functions.</p>
1127 <h5>Examples:</h5>
1128 <table class="layout">
1129   <tr class="layout">
1130     <td class="left"><tt>i32 (i32)</tt></td>
1131     <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
1132     </td>
1133   </tr><tr class="layout">
1134     <td class="left"><tt>float&nbsp;(i16&nbsp;sext,&nbsp;i32&nbsp;*)&nbsp;*
1135     </tt></td>
1136     <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes 
1137       an <tt>i16</tt> that should be sign extended and a 
1138       <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning 
1139       <tt>float</tt>.
1140     </td>
1141   </tr><tr class="layout">
1142     <td class="left"><tt>i32 (i8*, ...)</tt></td>
1143     <td class="left">A vararg function that takes at least one 
1144       <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C), 
1145       which returns an integer.  This is the signature for <tt>printf</tt> in 
1146       LLVM.
1147     </td>
1148   </tr>
1149 </table>
1150
1151 </div>
1152 <!-- _______________________________________________________________________ -->
1153 <div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
1154 <div class="doc_text">
1155 <h5>Overview:</h5>
1156 <p>The structure type is used to represent a collection of data members
1157 together in memory.  The packing of the field types is defined to match
1158 the ABI of the underlying processor.  The elements of a structure may
1159 be any type that has a size.</p>
1160 <p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1161 and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1162 field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1163 instruction.</p>
1164 <h5>Syntax:</h5>
1165 <pre>  { &lt;type list&gt; }<br></pre>
1166 <h5>Examples:</h5>
1167 <table class="layout">
1168   <tr class="layout">
1169     <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1170     <td class="left">A triple of three <tt>i32</tt> values</td>
1171   </tr><tr class="layout">
1172     <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1173     <td class="left">A pair, where the first element is a <tt>float</tt> and the
1174       second element is a <a href="#t_pointer">pointer</a> to a
1175       <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1176       an <tt>i32</tt>.</td>
1177   </tr>
1178 </table>
1179 </div>
1180
1181 <!-- _______________________________________________________________________ -->
1182 <div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1183 </div>
1184 <div class="doc_text">
1185 <h5>Overview:</h5>
1186 <p>The packed structure type is used to represent a collection of data members
1187 together in memory.  There is no padding between fields.  Further, the alignment
1188 of a packed structure is 1 byte.  The elements of a packed structure may
1189 be any type that has a size.</p>
1190 <p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1191 and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1192 field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1193 instruction.</p>
1194 <h5>Syntax:</h5>
1195 <pre>  &lt; { &lt;type list&gt; } &gt; <br></pre>
1196 <h5>Examples:</h5>
1197 <table class="layout">
1198   <tr class="layout">
1199     <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1200     <td class="left">A triple of three <tt>i32</tt> values</td>
1201   </tr><tr class="layout">
1202   <td class="left"><tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}&nbsp;&gt;</tt></td>
1203     <td class="left">A pair, where the first element is a <tt>float</tt> and the
1204       second element is a <a href="#t_pointer">pointer</a> to a
1205       <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1206       an <tt>i32</tt>.</td>
1207   </tr>
1208 </table>
1209 </div>
1210
1211 <!-- _______________________________________________________________________ -->
1212 <div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
1213 <div class="doc_text">
1214 <h5>Overview:</h5>
1215 <p>As in many languages, the pointer type represents a pointer or
1216 reference to another object, which must live in memory.</p>
1217 <h5>Syntax:</h5>
1218 <pre>  &lt;type&gt; *<br></pre>
1219 <h5>Examples:</h5>
1220 <table class="layout">
1221   <tr class="layout">
1222     <td class="left">
1223       <tt>[4x i32]*</tt><br/>
1224       <tt>i32 (i32 *) *</tt><br/>
1225     </td>
1226     <td class="left">
1227       A <a href="#t_pointer">pointer</a> to <a href="#t_array">array</a> of
1228       four <tt>i32</tt> values<br/>
1229       A <a href="#t_pointer">pointer</a> to a <a
1230       href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
1231       <tt>i32</tt>.<br/>
1232     </td>
1233   </tr>
1234 </table>
1235 </div>
1236
1237 <!-- _______________________________________________________________________ -->
1238 <div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
1239 <div class="doc_text">
1240
1241 <h5>Overview:</h5>
1242
1243 <p>A vector type is a simple derived type that represents a vector
1244 of elements.  Vector types are used when multiple primitive data 
1245 are operated in parallel using a single instruction (SIMD). 
1246 A vector type requires a size (number of
1247 elements) and an underlying primitive data type.  Vectors must have a power
1248 of two length (1, 2, 4, 8, 16 ...).  Vector types are
1249 considered <a href="#t_firstclass">first class</a>.</p>
1250
1251 <h5>Syntax:</h5>
1252
1253 <pre>
1254   &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1255 </pre>
1256
1257 <p>The number of elements is a constant integer value; elementtype may
1258 be any integer or floating point type.</p>
1259
1260 <h5>Examples:</h5>
1261
1262 <table class="layout">
1263   <tr class="layout">
1264     <td class="left">
1265       <tt>&lt;4 x i32&gt;</tt><br/>
1266       <tt>&lt;8 x float&gt;</tt><br/>
1267       <tt>&lt;2 x i64&gt;</tt><br/>
1268     </td>
1269     <td class="left">
1270       Vector of 4 32-bit integer values.<br/>
1271       Vector of 8 floating-point values.<br/>
1272       Vector of 2 64-bit integer values.<br/>
1273     </td>
1274   </tr>
1275 </table>
1276 </div>
1277
1278 <!-- _______________________________________________________________________ -->
1279 <div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1280 <div class="doc_text">
1281
1282 <h5>Overview:</h5>
1283
1284 <p>Opaque types are used to represent unknown types in the system.  This
1285 corresponds (for example) to the C notion of a foward declared structure type.
1286 In LLVM, opaque types can eventually be resolved to any type (not just a
1287 structure type).</p>
1288
1289 <h5>Syntax:</h5>
1290
1291 <pre>
1292   opaque
1293 </pre>
1294
1295 <h5>Examples:</h5>
1296
1297 <table class="layout">
1298   <tr class="layout">
1299     <td class="left">
1300       <tt>opaque</tt>
1301     </td>
1302     <td class="left">
1303       An opaque type.<br/>
1304     </td>
1305   </tr>
1306 </table>
1307 </div>
1308
1309
1310 <!-- *********************************************************************** -->
1311 <div class="doc_section"> <a name="constants">Constants</a> </div>
1312 <!-- *********************************************************************** -->
1313
1314 <div class="doc_text">
1315
1316 <p>LLVM has several different basic types of constants.  This section describes
1317 them all and their syntax.</p>
1318
1319 </div>
1320
1321 <!-- ======================================================================= -->
1322 <div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
1323
1324 <div class="doc_text">
1325
1326 <dl>
1327   <dt><b>Boolean constants</b></dt>
1328
1329   <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
1330   constants of the <tt><a href="#t_primitive">i1</a></tt> type.
1331   </dd>
1332
1333   <dt><b>Integer constants</b></dt>
1334
1335   <dd>Standard integers (such as '4') are constants of the <a
1336   href="#t_integer">integer</a> type.  Negative numbers may be used with 
1337   integer types.
1338   </dd>
1339
1340   <dt><b>Floating point constants</b></dt>
1341
1342   <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1343   exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
1344   notation (see below).  Floating point constants must have a <a
1345   href="#t_floating">floating point</a> type. </dd>
1346
1347   <dt><b>Null pointer constants</b></dt>
1348
1349   <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
1350   and must be of <a href="#t_pointer">pointer type</a>.</dd>
1351
1352 </dl>
1353
1354 <p>The one non-intuitive notation for constants is the optional hexadecimal form
1355 of floating point constants.  For example, the form '<tt>double
1356 0x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
1357 4.5e+15</tt>'.  The only time hexadecimal floating point constants are required
1358 (and the only time that they are generated by the disassembler) is when a 
1359 floating point constant must be emitted but it cannot be represented as a 
1360 decimal floating point number.  For example, NaN's, infinities, and other 
1361 special values are represented in their IEEE hexadecimal format so that 
1362 assembly and disassembly do not cause any bits to change in the constants.</p>
1363
1364 </div>
1365
1366 <!-- ======================================================================= -->
1367 <div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1368 </div>
1369
1370 <div class="doc_text">
1371 <p>Aggregate constants arise from aggregation of simple constants
1372 and smaller aggregate constants.</p>
1373
1374 <dl>
1375   <dt><b>Structure constants</b></dt>
1376
1377   <dd>Structure constants are represented with notation similar to structure
1378   type definitions (a comma separated list of elements, surrounded by braces
1379   (<tt>{}</tt>)).  For example: "<tt>{ i32 4, float 17.0, i32* %G }</tt>",
1380   where "<tt>%G</tt>" is declared as "<tt>@G = external global i32</tt>".  Structure constants
1381   must have <a href="#t_struct">structure type</a>, and the number and
1382   types of elements must match those specified by the type.
1383   </dd>
1384
1385   <dt><b>Array constants</b></dt>
1386
1387   <dd>Array constants are represented with notation similar to array type
1388   definitions (a comma separated list of elements, surrounded by square brackets
1389   (<tt>[]</tt>)).  For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>".  Array
1390   constants must have <a href="#t_array">array type</a>, and the number and
1391   types of elements must match those specified by the type.
1392   </dd>
1393
1394   <dt><b>Vector constants</b></dt>
1395
1396   <dd>Vector constants are represented with notation similar to vector type
1397   definitions (a comma separated list of elements, surrounded by
1398   less-than/greater-than's (<tt>&lt;&gt;</tt>)).  For example: "<tt>&lt; i32 42,
1399   i32 11, i32 74, i32 100 &gt;</tt>".  Vector constants must have <a
1400   href="#t_vector">vector type</a>, and the number and types of elements must
1401   match those specified by the type.
1402   </dd>
1403
1404   <dt><b>Zero initialization</b></dt>
1405
1406   <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1407   value to zero of <em>any</em> type, including scalar and aggregate types.
1408   This is often used to avoid having to print large zero initializers (e.g. for
1409   large arrays) and is always exactly equivalent to using explicit zero
1410   initializers.
1411   </dd>
1412 </dl>
1413
1414 </div>
1415
1416 <!-- ======================================================================= -->
1417 <div class="doc_subsection">
1418   <a name="globalconstants">Global Variable and Function Addresses</a>
1419 </div>
1420
1421 <div class="doc_text">
1422
1423 <p>The addresses of <a href="#globalvars">global variables</a> and <a
1424 href="#functionstructure">functions</a> are always implicitly valid (link-time)
1425 constants.  These constants are explicitly referenced when the <a
1426 href="#identifiers">identifier for the global</a> is used and always have <a
1427 href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1428 file:</p>
1429
1430 <div class="doc_code">
1431 <pre>
1432 @X = global i32 17
1433 @Y = global i32 42
1434 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1435 </pre>
1436 </div>
1437
1438 </div>
1439
1440 <!-- ======================================================================= -->
1441 <div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
1442 <div class="doc_text">
1443   <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has 
1444   no specific value.  Undefined values may be of any type and be used anywhere 
1445   a constant is permitted.</p>
1446
1447   <p>Undefined values indicate to the compiler that the program is well defined
1448   no matter what value is used, giving the compiler more freedom to optimize.
1449   </p>
1450 </div>
1451
1452 <!-- ======================================================================= -->
1453 <div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1454 </div>
1455
1456 <div class="doc_text">
1457
1458 <p>Constant expressions are used to allow expressions involving other constants
1459 to be used as constants.  Constant expressions may be of any <a
1460 href="#t_firstclass">first class</a> type and may involve any LLVM operation
1461 that does not have side effects (e.g. load and call are not supported).  The
1462 following is the syntax for constant expressions:</p>
1463
1464 <dl>
1465   <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1466   <dd>Truncate a constant to another type. The bit size of CST must be larger 
1467   than the bit size of TYPE. Both types must be integers.</dd>
1468
1469   <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1470   <dd>Zero extend a constant to another type. The bit size of CST must be 
1471   smaller or equal to the bit size of TYPE.  Both types must be integers.</dd>
1472
1473   <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1474   <dd>Sign extend a constant to another type. The bit size of CST must be 
1475   smaller or equal to the bit size of TYPE.  Both types must be integers.</dd>
1476
1477   <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1478   <dd>Truncate a floating point constant to another floating point type. The 
1479   size of CST must be larger than the size of TYPE. Both types must be 
1480   floating point.</dd>
1481
1482   <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1483   <dd>Floating point extend a constant to another type. The size of CST must be 
1484   smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1485
1486   <dt><b><tt>fp2uint ( CST to TYPE )</tt></b></dt>
1487   <dd>Convert a floating point constant to the corresponding unsigned integer
1488   constant. TYPE must be an integer type. CST must be floating point. If the 
1489   value won't fit in the integer type, the results are undefined.</dd>
1490
1491   <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
1492   <dd>Convert a floating point constant to the corresponding signed integer
1493   constant. TYPE must be an integer type. CST must be floating point. If the 
1494   value won't fit in the integer type, the results are undefined.</dd>
1495
1496   <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
1497   <dd>Convert an unsigned integer constant to the corresponding floating point
1498   constant. TYPE must be floating point. CST must be of integer type. If the
1499   value won't fit in the floating point type, the results are undefined.</dd>
1500
1501   <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
1502   <dd>Convert a signed integer constant to the corresponding floating point
1503   constant. TYPE must be floating point. CST must be of integer type. If the
1504   value won't fit in the floating point type, the results are undefined.</dd>
1505
1506   <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1507   <dd>Convert a pointer typed constant to the corresponding integer constant
1508   TYPE must be an integer type. CST must be of pointer type. The CST value is
1509   zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1510
1511   <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1512   <dd>Convert a integer constant to a pointer constant.  TYPE must be a
1513   pointer type.  CST must be of integer type. The CST value is zero extended, 
1514   truncated, or unchanged to make it fit in a pointer size. This one is 
1515   <i>really</i> dangerous!</dd>
1516
1517   <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
1518   <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1519   identical (same number of bits). The conversion is done as if the CST value
1520   was stored to memory and read back as TYPE. In other words, no bits change 
1521   with this operator, just the type.  This can be used for conversion of
1522   vector types to any other type, as long as they have the same bit width. For
1523   pointers it is only valid to cast to another pointer type.
1524   </dd>
1525
1526   <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1527
1528   <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1529   constants.  As with the <a href="#i_getelementptr">getelementptr</a>
1530   instruction, the index list may have zero or more indexes, which are required
1531   to make sense for the type of "CSTPTR".</dd>
1532
1533   <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1534
1535   <dd>Perform the <a href="#i_select">select operation</a> on
1536   constants.</dd>
1537
1538   <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1539   <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1540
1541   <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1542   <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
1543
1544   <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1545
1546   <dd>Perform the <a href="#i_extractelement">extractelement
1547   operation</a> on constants.
1548
1549   <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1550
1551   <dd>Perform the <a href="#i_insertelement">insertelement
1552     operation</a> on constants.</dd>
1553
1554
1555   <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1556
1557   <dd>Perform the <a href="#i_shufflevector">shufflevector
1558     operation</a> on constants.</dd>
1559
1560   <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1561
1562   <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may 
1563   be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
1564   binary</a> operations.  The constraints on operands are the same as those for
1565   the corresponding instruction (e.g. no bitwise operations on floating point
1566   values are allowed).</dd>
1567 </dl>
1568 </div>
1569
1570 <!-- *********************************************************************** -->
1571 <div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1572 <!-- *********************************************************************** -->
1573
1574 <!-- ======================================================================= -->
1575 <div class="doc_subsection">
1576 <a name="inlineasm">Inline Assembler Expressions</a>
1577 </div>
1578
1579 <div class="doc_text">
1580
1581 <p>
1582 LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1583 Module-Level Inline Assembly</a>) through the use of a special value.  This
1584 value represents the inline assembler as a string (containing the instructions
1585 to emit), a list of operand constraints (stored as a string), and a flag that 
1586 indicates whether or not the inline asm expression has side effects.  An example
1587 inline assembler expression is:
1588 </p>
1589
1590 <div class="doc_code">
1591 <pre>
1592 i32 (i32) asm "bswap $0", "=r,r"
1593 </pre>
1594 </div>
1595
1596 <p>
1597 Inline assembler expressions may <b>only</b> be used as the callee operand of
1598 a <a href="#i_call"><tt>call</tt> instruction</a>.  Thus, typically we have:
1599 </p>
1600
1601 <div class="doc_code">
1602 <pre>
1603 %X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
1604 </pre>
1605 </div>
1606
1607 <p>
1608 Inline asms with side effects not visible in the constraint list must be marked
1609 as having side effects.  This is done through the use of the
1610 '<tt>sideeffect</tt>' keyword, like so:
1611 </p>
1612
1613 <div class="doc_code">
1614 <pre>
1615 call void asm sideeffect "eieio", ""()
1616 </pre>
1617 </div>
1618
1619 <p>TODO: The format of the asm and constraints string still need to be
1620 documented here.  Constraints on what can be done (e.g. duplication, moving, etc
1621 need to be documented).
1622 </p>
1623
1624 </div>
1625
1626 <!-- *********************************************************************** -->
1627 <div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1628 <!-- *********************************************************************** -->
1629
1630 <div class="doc_text">
1631
1632 <p>The LLVM instruction set consists of several different
1633 classifications of instructions: <a href="#terminators">terminator
1634 instructions</a>, <a href="#binaryops">binary instructions</a>,
1635 <a href="#bitwiseops">bitwise binary instructions</a>, <a
1636  href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1637 instructions</a>.</p>
1638
1639 </div>
1640
1641 <!-- ======================================================================= -->
1642 <div class="doc_subsection"> <a name="terminators">Terminator
1643 Instructions</a> </div>
1644
1645 <div class="doc_text">
1646
1647 <p>As mentioned <a href="#functionstructure">previously</a>, every
1648 basic block in a program ends with a "Terminator" instruction, which
1649 indicates which block should be executed after the current block is
1650 finished. These terminator instructions typically yield a '<tt>void</tt>'
1651 value: they produce control flow, not values (the one exception being
1652 the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
1653 <p>There are six different terminator instructions: the '<a
1654  href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1655 instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
1656 the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1657  href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1658  href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
1659
1660 </div>
1661
1662 <!-- _______________________________________________________________________ -->
1663 <div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1664 Instruction</a> </div>
1665 <div class="doc_text">
1666 <h5>Syntax:</h5>
1667 <pre>  ret &lt;type&gt; &lt;value&gt;       <i>; Return a value from a non-void function</i>
1668   ret void                 <i>; Return from void function</i>
1669 </pre>
1670 <h5>Overview:</h5>
1671 <p>The '<tt>ret</tt>' instruction is used to return control flow (and a
1672 value) from a function back to the caller.</p>
1673 <p>There are two forms of the '<tt>ret</tt>' instruction: one that
1674 returns a value and then causes control flow, and one that just causes
1675 control flow to occur.</p>
1676 <h5>Arguments:</h5>
1677 <p>The '<tt>ret</tt>' instruction may return any '<a
1678  href="#t_firstclass">first class</a>' type.  Notice that a function is
1679 not <a href="#wellformed">well formed</a> if there exists a '<tt>ret</tt>'
1680 instruction inside of the function that returns a value that does not
1681 match the return type of the function.</p>
1682 <h5>Semantics:</h5>
1683 <p>When the '<tt>ret</tt>' instruction is executed, control flow
1684 returns back to the calling function's context.  If the caller is a "<a
1685  href="#i_call"><tt>call</tt></a>" instruction, execution continues at
1686 the instruction after the call.  If the caller was an "<a
1687  href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
1688 at the beginning of the "normal" destination block.  If the instruction
1689 returns a value, that value shall set the call or invoke instruction's
1690 return value.</p>
1691 <h5>Example:</h5>
1692 <pre>  ret i32 5                       <i>; Return an integer value of 5</i>
1693   ret void                        <i>; Return from a void function</i>
1694 </pre>
1695 </div>
1696 <!-- _______________________________________________________________________ -->
1697 <div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
1698 <div class="doc_text">
1699 <h5>Syntax:</h5>
1700 <pre>  br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br>  br label &lt;dest&gt;          <i>; Unconditional branch</i>
1701 </pre>
1702 <h5>Overview:</h5>
1703 <p>The '<tt>br</tt>' instruction is used to cause control flow to
1704 transfer to a different basic block in the current function.  There are
1705 two forms of this instruction, corresponding to a conditional branch
1706 and an unconditional branch.</p>
1707 <h5>Arguments:</h5>
1708 <p>The conditional branch form of the '<tt>br</tt>' instruction takes a
1709 single '<tt>i1</tt>' value and two '<tt>label</tt>' values.  The
1710 unconditional form of the '<tt>br</tt>' instruction takes a single 
1711 '<tt>label</tt>' value as a target.</p>
1712 <h5>Semantics:</h5>
1713 <p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
1714 argument is evaluated.  If the value is <tt>true</tt>, control flows
1715 to the '<tt>iftrue</tt>' <tt>label</tt> argument.  If "cond" is <tt>false</tt>,
1716 control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
1717 <h5>Example:</h5>
1718 <pre>Test:<br>  %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br>  br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br>  <a
1719  href="#i_ret">ret</a> i32 1<br>IfUnequal:<br>  <a href="#i_ret">ret</a> i32 0<br></pre>
1720 </div>
1721 <!-- _______________________________________________________________________ -->
1722 <div class="doc_subsubsection">
1723    <a name="i_switch">'<tt>switch</tt>' Instruction</a>
1724 </div>
1725
1726 <div class="doc_text">
1727 <h5>Syntax:</h5>
1728
1729 <pre>
1730   switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
1731 </pre>
1732
1733 <h5>Overview:</h5>
1734
1735 <p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
1736 several different places.  It is a generalization of the '<tt>br</tt>'
1737 instruction, allowing a branch to occur to one of many possible
1738 destinations.</p>
1739
1740
1741 <h5>Arguments:</h5>
1742
1743 <p>The '<tt>switch</tt>' instruction uses three parameters: an integer
1744 comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
1745 an array of pairs of comparison value constants and '<tt>label</tt>'s.  The
1746 table is not allowed to contain duplicate constant entries.</p>
1747
1748 <h5>Semantics:</h5>
1749
1750 <p>The <tt>switch</tt> instruction specifies a table of values and
1751 destinations. When the '<tt>switch</tt>' instruction is executed, this
1752 table is searched for the given value.  If the value is found, control flow is
1753 transfered to the corresponding destination; otherwise, control flow is
1754 transfered to the default destination.</p>
1755
1756 <h5>Implementation:</h5>
1757
1758 <p>Depending on properties of the target machine and the particular
1759 <tt>switch</tt> instruction, this instruction may be code generated in different
1760 ways.  For example, it could be generated as a series of chained conditional
1761 branches or with a lookup table.</p>
1762
1763 <h5>Example:</h5>
1764
1765 <pre>
1766  <i>; Emulate a conditional br instruction</i>
1767  %Val = <a href="#i_zext">zext</a> i1 %value to i32
1768  switch i32 %Val, label %truedest [i32 0, label %falsedest ]
1769
1770  <i>; Emulate an unconditional br instruction</i>
1771  switch i32 0, label %dest [ ]
1772
1773  <i>; Implement a jump table:</i>
1774  switch i32 %val, label %otherwise [ i32 0, label %onzero 
1775                                       i32 1, label %onone 
1776                                       i32 2, label %ontwo ]
1777 </pre>
1778 </div>
1779
1780 <!-- _______________________________________________________________________ -->
1781 <div class="doc_subsubsection">
1782   <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
1783 </div>
1784
1785 <div class="doc_text">
1786
1787 <h5>Syntax:</h5>
1788
1789 <pre>
1790   &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] &lt;ptr to function ty&gt; %&lt;function ptr val&gt;(&lt;function args&gt;) 
1791                 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
1792 </pre>
1793
1794 <h5>Overview:</h5>
1795
1796 <p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
1797 function, with the possibility of control flow transfer to either the
1798 '<tt>normal</tt>' label or the
1799 '<tt>exception</tt>' label.  If the callee function returns with the
1800 "<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
1801 "normal" label.  If the callee (or any indirect callees) returns with the "<a
1802 href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
1803 continued at the dynamically nearest "exception" label.</p>
1804
1805 <h5>Arguments:</h5>
1806
1807 <p>This instruction requires several arguments:</p>
1808
1809 <ol>
1810   <li>
1811     The optional "cconv" marker indicates which <a href="#callingconv">calling
1812     convention</a> the call should use.  If none is specified, the call defaults
1813     to using C calling conventions.
1814   </li>
1815   <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
1816   function value being invoked.  In most cases, this is a direct function
1817   invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
1818   an arbitrary pointer to function value.
1819   </li>
1820
1821   <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
1822   function to be invoked. </li>
1823
1824   <li>'<tt>function args</tt>': argument list whose types match the function
1825   signature argument types.  If the function signature indicates the function
1826   accepts a variable number of arguments, the extra arguments can be
1827   specified. </li>
1828
1829   <li>'<tt>normal label</tt>': the label reached when the called function
1830   executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
1831
1832   <li>'<tt>exception label</tt>': the label reached when a callee returns with
1833   the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
1834
1835 </ol>
1836
1837 <h5>Semantics:</h5>
1838
1839 <p>This instruction is designed to operate as a standard '<tt><a
1840 href="#i_call">call</a></tt>' instruction in most regards.  The primary
1841 difference is that it establishes an association with a label, which is used by
1842 the runtime library to unwind the stack.</p>
1843
1844 <p>This instruction is used in languages with destructors to ensure that proper
1845 cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
1846 exception.  Additionally, this is important for implementation of
1847 '<tt>catch</tt>' clauses in high-level languages that support them.</p>
1848
1849 <h5>Example:</h5>
1850 <pre>
1851   %retval = invoke i32 %Test(i32 15) to label %Continue
1852               unwind label %TestCleanup              <i>; {i32}:retval set</i>
1853   %retval = invoke <a href="#callingconv">coldcc</a> i32 %Test(i32 15) to label %Continue
1854               unwind label %TestCleanup              <i>; {i32}:retval set</i>
1855 </pre>
1856 </div>
1857
1858
1859 <!-- _______________________________________________________________________ -->
1860
1861 <div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
1862 Instruction</a> </div>
1863
1864 <div class="doc_text">
1865
1866 <h5>Syntax:</h5>
1867 <pre>
1868   unwind
1869 </pre>
1870
1871 <h5>Overview:</h5>
1872
1873 <p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
1874 at the first callee in the dynamic call stack which used an <a
1875 href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call.  This is
1876 primarily used to implement exception handling.</p>
1877
1878 <h5>Semantics:</h5>
1879
1880 <p>The '<tt>unwind</tt>' intrinsic causes execution of the current function to
1881 immediately halt.  The dynamic call stack is then searched for the first <a
1882 href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack.  Once found,
1883 execution continues at the "exceptional" destination block specified by the
1884 <tt>invoke</tt> instruction.  If there is no <tt>invoke</tt> instruction in the
1885 dynamic call chain, undefined behavior results.</p>
1886 </div>
1887
1888 <!-- _______________________________________________________________________ -->
1889
1890 <div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
1891 Instruction</a> </div>
1892
1893 <div class="doc_text">
1894
1895 <h5>Syntax:</h5>
1896 <pre>
1897   unreachable
1898 </pre>
1899
1900 <h5>Overview:</h5>
1901
1902 <p>The '<tt>unreachable</tt>' instruction has no defined semantics.  This
1903 instruction is used to inform the optimizer that a particular portion of the
1904 code is not reachable.  This can be used to indicate that the code after a
1905 no-return function cannot be reached, and other facts.</p>
1906
1907 <h5>Semantics:</h5>
1908
1909 <p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
1910 </div>
1911
1912
1913
1914 <!-- ======================================================================= -->
1915 <div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
1916 <div class="doc_text">
1917 <p>Binary operators are used to do most of the computation in a
1918 program.  They require two operands, execute an operation on them, and
1919 produce a single value.  The operands might represent 
1920 multiple data, as is the case with the <a href="#t_vector">vector</a> data type. 
1921 The result value of a binary operator is not
1922 necessarily the same type as its operands.</p>
1923 <p>There are several different binary operators:</p>
1924 </div>
1925 <!-- _______________________________________________________________________ -->
1926 <div class="doc_subsubsection"> <a name="i_add">'<tt>add</tt>'
1927 Instruction</a> </div>
1928 <div class="doc_text">
1929 <h5>Syntax:</h5>
1930 <pre>  &lt;result&gt; = add &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
1931 </pre>
1932 <h5>Overview:</h5>
1933 <p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
1934 <h5>Arguments:</h5>
1935 <p>The two arguments to the '<tt>add</tt>' instruction must be either <a
1936  href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> values.
1937  This instruction can also take <a href="#t_vector">vector</a> versions of the values.
1938 Both arguments must have identical types.</p>
1939 <h5>Semantics:</h5>
1940 <p>The value produced is the integer or floating point sum of the two
1941 operands.</p>
1942 <h5>Example:</h5>
1943 <pre>  &lt;result&gt; = add i32 4, %var          <i>; yields {i32}:result = 4 + %var</i>
1944 </pre>
1945 </div>
1946 <!-- _______________________________________________________________________ -->
1947 <div class="doc_subsubsection"> <a name="i_sub">'<tt>sub</tt>'
1948 Instruction</a> </div>
1949 <div class="doc_text">
1950 <h5>Syntax:</h5>
1951 <pre>  &lt;result&gt; = sub &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
1952 </pre>
1953 <h5>Overview:</h5>
1954 <p>The '<tt>sub</tt>' instruction returns the difference of its two
1955 operands.</p>
1956 <p>Note that the '<tt>sub</tt>' instruction is used to represent the '<tt>neg</tt>'
1957 instruction present in most other intermediate representations.</p>
1958 <h5>Arguments:</h5>
1959 <p>The two arguments to the '<tt>sub</tt>' instruction must be either <a
1960  href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
1961 values. 
1962 This instruction can also take <a href="#t_vector">vector</a> versions of the values.
1963 Both arguments must have identical types.</p>
1964 <h5>Semantics:</h5>
1965 <p>The value produced is the integer or floating point difference of
1966 the two operands.</p>
1967 <h5>Example:</h5>
1968 <pre>
1969   &lt;result&gt; = sub i32 4, %var          <i>; yields {i32}:result = 4 - %var</i>
1970   &lt;result&gt; = sub i32 0, %val          <i>; yields {i32}:result = -%var</i>
1971 </pre>
1972 </div>
1973 <!-- _______________________________________________________________________ -->
1974 <div class="doc_subsubsection"> <a name="i_mul">'<tt>mul</tt>'
1975 Instruction</a> </div>
1976 <div class="doc_text">
1977 <h5>Syntax:</h5>
1978 <pre>  &lt;result&gt; = mul &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
1979 </pre>
1980 <h5>Overview:</h5>
1981 <p>The  '<tt>mul</tt>' instruction returns the product of its two
1982 operands.</p>
1983 <h5>Arguments:</h5>
1984 <p>The two arguments to the '<tt>mul</tt>' instruction must be either <a
1985  href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
1986 values. 
1987 This instruction can also take <a href="#t_vector">vector</a> versions of the values.
1988 Both arguments must have identical types.</p>
1989 <h5>Semantics:</h5>
1990 <p>The value produced is the integer or floating point product of the
1991 two operands.</p>
1992 <p>Because the operands are the same width, the result of an integer
1993 multiplication is the same whether the operands should be deemed unsigned or
1994 signed.</p>
1995 <h5>Example:</h5>
1996 <pre>  &lt;result&gt; = mul i32 4, %var          <i>; yields {i32}:result = 4 * %var</i>
1997 </pre>
1998 </div>
1999 <!-- _______________________________________________________________________ -->
2000 <div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2001 </a></div>
2002 <div class="doc_text">
2003 <h5>Syntax:</h5>
2004 <pre>  &lt;result&gt; = udiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
2005 </pre>
2006 <h5>Overview:</h5>
2007 <p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2008 operands.</p>
2009 <h5>Arguments:</h5>
2010 <p>The two arguments to the '<tt>udiv</tt>' instruction must be 
2011 <a href="#t_integer">integer</a> values. Both arguments must have identical 
2012 types. This instruction can also take <a href="#t_vector">vector</a> versions 
2013 of the values in which case the elements must be integers.</p>
2014 <h5>Semantics:</h5>
2015 <p>The value produced is the unsigned integer quotient of the two operands. This
2016 instruction always performs an unsigned division operation, regardless of 
2017 whether the arguments are unsigned or not.</p>
2018 <h5>Example:</h5>
2019 <pre>  &lt;result&gt; = udiv i32 4, %var          <i>; yields {i32}:result = 4 / %var</i>
2020 </pre>
2021 </div>
2022 <!-- _______________________________________________________________________ -->
2023 <div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2024 </a> </div>
2025 <div class="doc_text">
2026 <h5>Syntax:</h5>
2027 <pre>  &lt;result&gt; = sdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
2028 </pre>
2029 <h5>Overview:</h5>
2030 <p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2031 operands.</p>
2032 <h5>Arguments:</h5>
2033 <p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2034 <a href="#t_integer">integer</a> values.  Both arguments must have identical 
2035 types. This instruction can also take <a href="#t_vector">vector</a> versions 
2036 of the values in which case the elements must be integers.</p>
2037 <h5>Semantics:</h5>
2038 <p>The value produced is the signed integer quotient of the two operands. This
2039 instruction always performs a signed division operation, regardless of whether
2040 the arguments are signed or not.</p>
2041 <h5>Example:</h5>
2042 <pre>  &lt;result&gt; = sdiv i32 4, %var          <i>; yields {i32}:result = 4 / %var</i>
2043 </pre>
2044 </div>
2045 <!-- _______________________________________________________________________ -->
2046 <div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
2047 Instruction</a> </div>
2048 <div class="doc_text">
2049 <h5>Syntax:</h5>
2050 <pre>  &lt;result&gt; = fdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
2051 </pre>
2052 <h5>Overview:</h5>
2053 <p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
2054 operands.</p>
2055 <h5>Arguments:</h5>
2056 <p>The two arguments to the '<tt>fdiv</tt>' instruction must be
2057 <a href="#t_floating">floating point</a> values.  Both arguments must have
2058 identical types.  This instruction can also take <a href="#t_vector">vector</a>
2059 versions of floating point values.</p>
2060 <h5>Semantics:</h5>
2061 <p>The value produced is the floating point quotient of the two operands.</p>
2062 <h5>Example:</h5>
2063 <pre>  &lt;result&gt; = fdiv float 4.0, %var          <i>; yields {float}:result = 4.0 / %var</i>
2064 </pre>
2065 </div>
2066 <!-- _______________________________________________________________________ -->
2067 <div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2068 </div>
2069 <div class="doc_text">
2070 <h5>Syntax:</h5>
2071 <pre>  &lt;result&gt; = urem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
2072 </pre>
2073 <h5>Overview:</h5>
2074 <p>The '<tt>urem</tt>' instruction returns the remainder from the
2075 unsigned division of its two arguments.</p>
2076 <h5>Arguments:</h5>
2077 <p>The two arguments to the '<tt>urem</tt>' instruction must be
2078 <a href="#t_integer">integer</a> values. Both arguments must have identical
2079 types.</p>
2080 <h5>Semantics:</h5>
2081 <p>This instruction returns the unsigned integer <i>remainder</i> of a division.
2082 This instruction always performs an unsigned division to get the remainder,
2083 regardless of whether the arguments are unsigned or not.</p>
2084 <h5>Example:</h5>
2085 <pre>  &lt;result&gt; = urem i32 4, %var          <i>; yields {i32}:result = 4 % %var</i>
2086 </pre>
2087
2088 </div>
2089 <!-- _______________________________________________________________________ -->
2090 <div class="doc_subsubsection"> <a name="i_srem">'<tt>srem</tt>'
2091 Instruction</a> </div>
2092 <div class="doc_text">
2093 <h5>Syntax:</h5>
2094 <pre>  &lt;result&gt; = srem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
2095 </pre>
2096 <h5>Overview:</h5>
2097 <p>The '<tt>srem</tt>' instruction returns the remainder from the
2098 signed division of its two operands.</p>
2099 <h5>Arguments:</h5>
2100 <p>The two arguments to the '<tt>srem</tt>' instruction must be 
2101 <a href="#t_integer">integer</a> values.  Both arguments must have identical 
2102 types.</p>
2103 <h5>Semantics:</h5>
2104 <p>This instruction returns the <i>remainder</i> of a division (where the result
2105 has the same sign as the dividend, <tt>var1</tt>), not the <i>modulo</i> 
2106 operator (where the result has the same sign as the divisor, <tt>var2</tt>) of 
2107 a value.  For more information about the difference, see <a
2108  href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
2109 Math Forum</a>. For a table of how this is implemented in various languages,
2110 please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
2111 Wikipedia: modulo operation</a>.</p>
2112 <h5>Example:</h5>
2113 <pre>  &lt;result&gt; = srem i32 4, %var          <i>; yields {i32}:result = 4 % %var</i>
2114 </pre>
2115
2116 </div>
2117 <!-- _______________________________________________________________________ -->
2118 <div class="doc_subsubsection"> <a name="i_frem">'<tt>frem</tt>'
2119 Instruction</a> </div>
2120 <div class="doc_text">
2121 <h5>Syntax:</h5>
2122 <pre>  &lt;result&gt; = frem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
2123 </pre>
2124 <h5>Overview:</h5>
2125 <p>The '<tt>frem</tt>' instruction returns the remainder from the
2126 division of its two operands.</p>
2127 <h5>Arguments:</h5>
2128 <p>The two arguments to the '<tt>frem</tt>' instruction must be
2129 <a href="#t_floating">floating point</a> values.  Both arguments must have 
2130 identical types.</p>
2131 <h5>Semantics:</h5>
2132 <p>This instruction returns the <i>remainder</i> of a division.</p>
2133 <h5>Example:</h5>
2134 <pre>  &lt;result&gt; = frem float 4.0, %var          <i>; yields {float}:result = 4.0 % %var</i>
2135 </pre>
2136 </div>
2137
2138 <!-- ======================================================================= -->
2139 <div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2140 Operations</a> </div>
2141 <div class="doc_text">
2142 <p>Bitwise binary operators are used to do various forms of
2143 bit-twiddling in a program.  They are generally very efficient
2144 instructions and can commonly be strength reduced from other
2145 instructions.  They require two operands, execute an operation on them,
2146 and produce a single value.  The resulting value of the bitwise binary
2147 operators is always the same type as its first operand.</p>
2148 </div>
2149
2150 <!-- _______________________________________________________________________ -->
2151 <div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2152 Instruction</a> </div>
2153 <div class="doc_text">
2154 <h5>Syntax:</h5>
2155 <pre>  &lt;result&gt; = shl &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
2156 </pre>
2157 <h5>Overview:</h5>
2158 <p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2159 the left a specified number of bits.</p>
2160 <h5>Arguments:</h5>
2161 <p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
2162  href="#t_integer">integer</a> type.</p>
2163 <h5>Semantics:</h5>
2164 <p>The value produced is <tt>var1</tt> * 2<sup><tt>var2</tt></sup>.</p>
2165 <h5>Example:</h5><pre>
2166   &lt;result&gt; = shl i32 4, %var   <i>; yields {i32}: 4 &lt;&lt; %var</i>
2167   &lt;result&gt; = shl i32 4, 2      <i>; yields {i32}: 16</i>
2168   &lt;result&gt; = shl i32 1, 10     <i>; yields {i32}: 1024</i>
2169 </pre>
2170 </div>
2171 <!-- _______________________________________________________________________ -->
2172 <div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2173 Instruction</a> </div>
2174 <div class="doc_text">
2175 <h5>Syntax:</h5>
2176 <pre>  &lt;result&gt; = lshr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
2177 </pre>
2178
2179 <h5>Overview:</h5>
2180 <p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first 
2181 operand shifted to the right a specified number of bits with zero fill.</p>
2182
2183 <h5>Arguments:</h5>
2184 <p>Both arguments to the '<tt>lshr</tt>' instruction must be the same 
2185 <a href="#t_integer">integer</a> type.</p>
2186
2187 <h5>Semantics:</h5>
2188 <p>This instruction always performs a logical shift right operation. The most
2189 significant bits of the result will be filled with zero bits after the 
2190 shift.</p>
2191
2192 <h5>Example:</h5>
2193 <pre>
2194   &lt;result&gt; = lshr i32 4, 1   <i>; yields {i32}:result = 2</i>
2195   &lt;result&gt; = lshr i32 4, 2   <i>; yields {i32}:result = 1</i>
2196   &lt;result&gt; = lshr i8  4, 3   <i>; yields {i8}:result = 0</i>
2197   &lt;result&gt; = lshr i8 -2, 1   <i>; yields {i8}:result = 0x7FFFFFFF </i>
2198 </pre>
2199 </div>
2200
2201 <!-- _______________________________________________________________________ -->
2202 <div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2203 Instruction</a> </div>
2204 <div class="doc_text">
2205
2206 <h5>Syntax:</h5>
2207 <pre>  &lt;result&gt; = ashr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
2208 </pre>
2209
2210 <h5>Overview:</h5>
2211 <p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first 
2212 operand shifted to the right a specified number of bits with sign extension.</p>
2213
2214 <h5>Arguments:</h5>
2215 <p>Both arguments to the '<tt>ashr</tt>' instruction must be the same 
2216 <a href="#t_integer">integer</a> type.</p>
2217
2218 <h5>Semantics:</h5>
2219 <p>This instruction always performs an arithmetic shift right operation, 
2220 The most significant bits of the result will be filled with the sign bit 
2221 of <tt>var1</tt>.</p>
2222
2223 <h5>Example:</h5>
2224 <pre>
2225   &lt;result&gt; = ashr i32 4, 1   <i>; yields {i32}:result = 2</i>
2226   &lt;result&gt; = ashr i32 4, 2   <i>; yields {i32}:result = 1</i>
2227   &lt;result&gt; = ashr i8  4, 3   <i>; yields {i8}:result = 0</i>
2228   &lt;result&gt; = ashr i8 -2, 1   <i>; yields {i8}:result = -1</i>
2229 </pre>
2230 </div>
2231
2232 <!-- _______________________________________________________________________ -->
2233 <div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2234 Instruction</a> </div>
2235 <div class="doc_text">
2236 <h5>Syntax:</h5>
2237 <pre>  &lt;result&gt; = and &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
2238 </pre>
2239 <h5>Overview:</h5>
2240 <p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2241 its two operands.</p>
2242 <h5>Arguments:</h5>
2243 <p>The two arguments to the '<tt>and</tt>' instruction must be <a
2244  href="#t_integer">integer</a> values.  Both arguments must have
2245 identical types.</p>
2246 <h5>Semantics:</h5>
2247 <p>The truth table used for the '<tt>and</tt>' instruction is:</p>
2248 <p> </p>
2249 <div style="align: center">
2250 <table border="1" cellspacing="0" cellpadding="4">
2251   <tbody>
2252     <tr>
2253       <td>In0</td>
2254       <td>In1</td>
2255       <td>Out</td>
2256     </tr>
2257     <tr>
2258       <td>0</td>
2259       <td>0</td>
2260       <td>0</td>
2261     </tr>
2262     <tr>
2263       <td>0</td>
2264       <td>1</td>
2265       <td>0</td>
2266     </tr>
2267     <tr>
2268       <td>1</td>
2269       <td>0</td>
2270       <td>0</td>
2271     </tr>
2272     <tr>
2273       <td>1</td>
2274       <td>1</td>
2275       <td>1</td>
2276     </tr>
2277   </tbody>
2278 </table>
2279 </div>
2280 <h5>Example:</h5>
2281 <pre>  &lt;result&gt; = and i32 4, %var         <i>; yields {i32}:result = 4 &amp; %var</i>
2282   &lt;result&gt; = and i32 15, 40          <i>; yields {i32}:result = 8</i>
2283   &lt;result&gt; = and i32 4, 8            <i>; yields {i32}:result = 0</i>
2284 </pre>
2285 </div>
2286 <!-- _______________________________________________________________________ -->
2287 <div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
2288 <div class="doc_text">
2289 <h5>Syntax:</h5>
2290 <pre>  &lt;result&gt; = or &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
2291 </pre>
2292 <h5>Overview:</h5>
2293 <p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2294 or of its two operands.</p>
2295 <h5>Arguments:</h5>
2296 <p>The two arguments to the '<tt>or</tt>' instruction must be <a
2297  href="#t_integer">integer</a> values.  Both arguments must have
2298 identical types.</p>
2299 <h5>Semantics:</h5>
2300 <p>The truth table used for the '<tt>or</tt>' instruction is:</p>
2301 <p> </p>
2302 <div style="align: center">
2303 <table border="1" cellspacing="0" cellpadding="4">
2304   <tbody>
2305     <tr>
2306       <td>In0</td>
2307       <td>In1</td>
2308       <td>Out</td>
2309     </tr>
2310     <tr>
2311       <td>0</td>
2312       <td>0</td>
2313       <td>0</td>
2314     </tr>
2315     <tr>
2316       <td>0</td>
2317       <td>1</td>
2318       <td>1</td>
2319     </tr>
2320     <tr>
2321       <td>1</td>
2322       <td>0</td>
2323       <td>1</td>
2324     </tr>
2325     <tr>
2326       <td>1</td>
2327       <td>1</td>
2328       <td>1</td>
2329     </tr>
2330   </tbody>
2331 </table>
2332 </div>
2333 <h5>Example:</h5>
2334 <pre>  &lt;result&gt; = or i32 4, %var         <i>; yields {i32}:result = 4 | %var</i>
2335   &lt;result&gt; = or i32 15, 40          <i>; yields {i32}:result = 47</i>
2336   &lt;result&gt; = or i32 4, 8            <i>; yields {i32}:result = 12</i>
2337 </pre>
2338 </div>
2339 <!-- _______________________________________________________________________ -->
2340 <div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2341 Instruction</a> </div>
2342 <div class="doc_text">
2343 <h5>Syntax:</h5>
2344 <pre>  &lt;result&gt; = xor &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
2345 </pre>
2346 <h5>Overview:</h5>
2347 <p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2348 or of its two operands.  The <tt>xor</tt> is used to implement the
2349 "one's complement" operation, which is the "~" operator in C.</p>
2350 <h5>Arguments:</h5>
2351 <p>The two arguments to the '<tt>xor</tt>' instruction must be <a
2352  href="#t_integer">integer</a> values.  Both arguments must have
2353 identical types.</p>
2354 <h5>Semantics:</h5>
2355 <p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
2356 <p> </p>
2357 <div style="align: center">
2358 <table border="1" cellspacing="0" cellpadding="4">
2359   <tbody>
2360     <tr>
2361       <td>In0</td>
2362       <td>In1</td>
2363       <td>Out</td>
2364     </tr>
2365     <tr>
2366       <td>0</td>
2367       <td>0</td>
2368       <td>0</td>
2369     </tr>
2370     <tr>
2371       <td>0</td>
2372       <td>1</td>
2373       <td>1</td>
2374     </tr>
2375     <tr>
2376       <td>1</td>
2377       <td>0</td>
2378       <td>1</td>
2379     </tr>
2380     <tr>
2381       <td>1</td>
2382       <td>1</td>
2383       <td>0</td>
2384     </tr>
2385   </tbody>
2386 </table>
2387 </div>
2388 <p> </p>
2389 <h5>Example:</h5>
2390 <pre>  &lt;result&gt; = xor i32 4, %var         <i>; yields {i32}:result = 4 ^ %var</i>
2391   &lt;result&gt; = xor i32 15, 40          <i>; yields {i32}:result = 39</i>
2392   &lt;result&gt; = xor i32 4, 8            <i>; yields {i32}:result = 12</i>
2393   &lt;result&gt; = xor i32 %V, -1          <i>; yields {i32}:result = ~%V</i>
2394 </pre>
2395 </div>
2396
2397 <!-- ======================================================================= -->
2398 <div class="doc_subsection"> 
2399   <a name="vectorops">Vector Operations</a>
2400 </div>
2401
2402 <div class="doc_text">
2403
2404 <p>LLVM supports several instructions to represent vector operations in a
2405 target-independent manner.  These instructions cover the element-access and
2406 vector-specific operations needed to process vectors effectively.  While LLVM
2407 does directly support these vector operations, many sophisticated algorithms
2408 will want to use target-specific intrinsics to take full advantage of a specific
2409 target.</p>
2410
2411 </div>
2412
2413 <!-- _______________________________________________________________________ -->
2414 <div class="doc_subsubsection">
2415    <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2416 </div>
2417
2418 <div class="doc_text">
2419
2420 <h5>Syntax:</h5>
2421
2422 <pre>
2423   &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt;    <i>; yields &lt;ty&gt;</i>
2424 </pre>
2425
2426 <h5>Overview:</h5>
2427
2428 <p>
2429 The '<tt>extractelement</tt>' instruction extracts a single scalar
2430 element from a vector at a specified index.
2431 </p>
2432
2433
2434 <h5>Arguments:</h5>
2435
2436 <p>
2437 The first operand of an '<tt>extractelement</tt>' instruction is a
2438 value of <a href="#t_vector">vector</a> type.  The second operand is
2439 an index indicating the position from which to extract the element.
2440 The index may be a variable.</p>
2441
2442 <h5>Semantics:</h5>
2443
2444 <p>
2445 The result is a scalar of the same type as the element type of
2446 <tt>val</tt>.  Its value is the value at position <tt>idx</tt> of
2447 <tt>val</tt>.  If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2448 results are undefined.
2449 </p>
2450
2451 <h5>Example:</h5>
2452
2453 <pre>
2454   %result = extractelement &lt;4 x i32&gt; %vec, i32 0    <i>; yields i32</i>
2455 </pre>
2456 </div>
2457
2458
2459 <!-- _______________________________________________________________________ -->
2460 <div class="doc_subsubsection">
2461    <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2462 </div>
2463
2464 <div class="doc_text">
2465
2466 <h5>Syntax:</h5>
2467
2468 <pre>
2469   &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt, i32 &lt;idx&gt;    <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
2470 </pre>
2471
2472 <h5>Overview:</h5>
2473
2474 <p>
2475 The '<tt>insertelement</tt>' instruction inserts a scalar
2476 element into a vector at a specified index.
2477 </p>
2478
2479
2480 <h5>Arguments:</h5>
2481
2482 <p>
2483 The first operand of an '<tt>insertelement</tt>' instruction is a
2484 value of <a href="#t_vector">vector</a> type.  The second operand is a
2485 scalar value whose type must equal the element type of the first
2486 operand.  The third operand is an index indicating the position at
2487 which to insert the value.  The index may be a variable.</p>
2488
2489 <h5>Semantics:</h5>
2490
2491 <p>
2492 The result is a vector of the same type as <tt>val</tt>.  Its
2493 element values are those of <tt>val</tt> except at position
2494 <tt>idx</tt>, where it gets the value <tt>elt</tt>.  If <tt>idx</tt>
2495 exceeds the length of <tt>val</tt>, the results are undefined.
2496 </p>
2497
2498 <h5>Example:</h5>
2499
2500 <pre>
2501   %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0    <i>; yields &lt;4 x i32&gt;</i>
2502 </pre>
2503 </div>
2504
2505 <!-- _______________________________________________________________________ -->
2506 <div class="doc_subsubsection">
2507    <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2508 </div>
2509
2510 <div class="doc_text">
2511
2512 <h5>Syntax:</h5>
2513
2514 <pre>
2515   &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;n x i32&gt; &lt;mask&gt;    <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
2516 </pre>
2517
2518 <h5>Overview:</h5>
2519
2520 <p>
2521 The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
2522 from two input vectors, returning a vector of the same type.
2523 </p>
2524
2525 <h5>Arguments:</h5>
2526
2527 <p>
2528 The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2529 with types that match each other and types that match the result of the
2530 instruction.  The third argument is a shuffle mask, which has the same number
2531 of elements as the other vector type, but whose element type is always 'i32'.
2532 </p>
2533
2534 <p>
2535 The shuffle mask operand is required to be a constant vector with either
2536 constant integer or undef values.
2537 </p>
2538
2539 <h5>Semantics:</h5>
2540
2541 <p>
2542 The elements of the two input vectors are numbered from left to right across
2543 both of the vectors.  The shuffle mask operand specifies, for each element of
2544 the result vector, which element of the two input registers the result element
2545 gets.  The element selector may be undef (meaning "don't care") and the second
2546 operand may be undef if performing a shuffle from only one vector.
2547 </p>
2548
2549 <h5>Example:</h5>
2550
2551 <pre>
2552   %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2, 
2553                           &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt;  <i>; yields &lt;4 x i32&gt;</i>
2554   %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef, 
2555                           &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt;  <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
2556 </pre>
2557 </div>
2558
2559
2560 <!-- ======================================================================= -->
2561 <div class="doc_subsection"> 
2562   <a name="memoryops">Memory Access and Addressing Operations</a>
2563 </div>
2564
2565 <div class="doc_text">
2566
2567 <p>A key design point of an SSA-based representation is how it
2568 represents memory.  In LLVM, no memory locations are in SSA form, which
2569 makes things very simple.  This section describes how to read, write,
2570 allocate, and free memory in LLVM.</p>
2571
2572 </div>
2573
2574 <!-- _______________________________________________________________________ -->
2575 <div class="doc_subsubsection">
2576   <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
2577 </div>
2578
2579 <div class="doc_text">
2580
2581 <h5>Syntax:</h5>
2582
2583 <pre>
2584   &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;]     <i>; yields {type*}:result</i>
2585 </pre>
2586
2587 <h5>Overview:</h5>
2588
2589 <p>The '<tt>malloc</tt>' instruction allocates memory from the system
2590 heap and returns a pointer to it.</p>
2591
2592 <h5>Arguments:</h5>
2593
2594 <p>The '<tt>malloc</tt>' instruction allocates
2595 <tt>sizeof(&lt;type&gt;)*NumElements</tt>
2596 bytes of memory from the operating system and returns a pointer of the
2597 appropriate type to the program.  If "NumElements" is specified, it is the
2598 number of elements allocated.  If an alignment is specified, the value result
2599 of the allocation is guaranteed to be aligned to at least that boundary.  If
2600 not specified, or if zero, the target can choose to align the allocation on any
2601 convenient boundary.</p>
2602
2603 <p>'<tt>type</tt>' must be a sized type.</p>
2604
2605 <h5>Semantics:</h5>
2606
2607 <p>Memory is allocated using the system "<tt>malloc</tt>" function, and
2608 a pointer is returned.</p>
2609
2610 <h5>Example:</h5>
2611
2612 <pre>
2613   %array  = malloc [4 x i8 ]                    <i>; yields {[%4 x i8]*}:array</i>
2614
2615   %size   = <a href="#i_add">add</a> i32 2, 2                        <i>; yields {i32}:size = i32 4</i>
2616   %array1 = malloc i8, i32 4                    <i>; yields {i8*}:array1</i>
2617   %array2 = malloc [12 x i8], i32 %size         <i>; yields {[12 x i8]*}:array2</i>
2618   %array3 = malloc i32, i32 4, align 1024       <i>; yields {i32*}:array3</i>
2619   %array4 = malloc i32, align 1024              <i>; yields {i32*}:array4</i>
2620 </pre>
2621 </div>
2622
2623 <!-- _______________________________________________________________________ -->
2624 <div class="doc_subsubsection">
2625   <a name="i_free">'<tt>free</tt>' Instruction</a>
2626 </div>
2627
2628 <div class="doc_text">
2629
2630 <h5>Syntax:</h5>
2631
2632 <pre>
2633   free &lt;type&gt; &lt;value&gt;                              <i>; yields {void}</i>
2634 </pre>
2635
2636 <h5>Overview:</h5>
2637
2638 <p>The '<tt>free</tt>' instruction returns memory back to the unused
2639 memory heap to be reallocated in the future.</p>
2640
2641 <h5>Arguments:</h5>
2642
2643 <p>'<tt>value</tt>' shall be a pointer value that points to a value
2644 that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
2645 instruction.</p>
2646
2647 <h5>Semantics:</h5>
2648
2649 <p>Access to the memory pointed to by the pointer is no longer defined
2650 after this instruction executes.</p>
2651
2652 <h5>Example:</h5>
2653
2654 <pre>
2655   %array  = <a href="#i_malloc">malloc</a> [4 x i8]                    <i>; yields {[4 x i8]*}:array</i>
2656             free   [4 x i8]* %array
2657 </pre>
2658 </div>
2659
2660 <!-- _______________________________________________________________________ -->
2661 <div class="doc_subsubsection">
2662   <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
2663 </div>
2664
2665 <div class="doc_text">
2666
2667 <h5>Syntax:</h5>
2668
2669 <pre>
2670   &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;]     <i>; yields {type*}:result</i>
2671 </pre>
2672
2673 <h5>Overview:</h5>
2674
2675 <p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
2676 currently executing function, to be automatically released when this function
2677 returns to its caller.</p>
2678
2679 <h5>Arguments:</h5>
2680
2681 <p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
2682 bytes of memory on the runtime stack, returning a pointer of the
2683 appropriate type to the program.    If "NumElements" is specified, it is the
2684 number of elements allocated.  If an alignment is specified, the value result
2685 of the allocation is guaranteed to be aligned to at least that boundary.  If
2686 not specified, or if zero, the target can choose to align the allocation on any
2687 convenient boundary.</p>
2688
2689 <p>'<tt>type</tt>' may be any sized type.</p>
2690
2691 <h5>Semantics:</h5>
2692
2693 <p>Memory is allocated; a pointer is returned.  '<tt>alloca</tt>'d
2694 memory is automatically released when the function returns.  The '<tt>alloca</tt>'
2695 instruction is commonly used to represent automatic variables that must
2696 have an address available.  When the function returns (either with the <tt><a
2697  href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
2698 instructions), the memory is reclaimed.</p>
2699
2700 <h5>Example:</h5>
2701
2702 <pre>
2703   %ptr = alloca i32                              <i>; yields {i32*}:ptr</i>
2704   %ptr = alloca i32, i32 4                       <i>; yields {i32*}:ptr</i>
2705   %ptr = alloca i32, i32 4, align 1024           <i>; yields {i32*}:ptr</i>
2706   %ptr = alloca i32, align 1024                  <i>; yields {i32*}:ptr</i>
2707 </pre>
2708 </div>
2709
2710 <!-- _______________________________________________________________________ -->
2711 <div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
2712 Instruction</a> </div>
2713 <div class="doc_text">
2714 <h5>Syntax:</h5>
2715 <pre>  &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br>  &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
2716 <h5>Overview:</h5>
2717 <p>The '<tt>load</tt>' instruction is used to read from memory.</p>
2718 <h5>Arguments:</h5>
2719 <p>The argument to the '<tt>load</tt>' instruction specifies the memory
2720 address from which to load.  The pointer must point to a <a
2721  href="#t_firstclass">first class</a> type.  If the <tt>load</tt> is
2722 marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
2723 the number or order of execution of this <tt>load</tt> with other
2724 volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
2725 instructions. </p>
2726 <h5>Semantics:</h5>
2727 <p>The location of memory pointed to is loaded.</p>
2728 <h5>Examples:</h5>
2729 <pre>  %ptr = <a href="#i_alloca">alloca</a> i32                               <i>; yields {i32*}:ptr</i>
2730   <a
2731  href="#i_store">store</a> i32 3, i32* %ptr                          <i>; yields {void}</i>
2732   %val = load i32* %ptr                           <i>; yields {i32}:val = i32 3</i>
2733 </pre>
2734 </div>
2735 <!-- _______________________________________________________________________ -->
2736 <div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
2737 Instruction</a> </div>
2738 <div class="doc_text">
2739 <h5>Syntax:</h5>
2740 <pre>  store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]                   <i>; yields {void}</i>
2741   volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]          <i>; yields {void}</i>
2742 </pre>
2743 <h5>Overview:</h5>
2744 <p>The '<tt>store</tt>' instruction is used to write to memory.</p>
2745 <h5>Arguments:</h5>
2746 <p>There are two arguments to the '<tt>store</tt>' instruction: a value
2747 to store and an address at which to store it.  The type of the '<tt>&lt;pointer&gt;</tt>'
2748 operand must be a pointer to the type of the '<tt>&lt;value&gt;</tt>'
2749 operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
2750 optimizer is not allowed to modify the number or order of execution of
2751 this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
2752  href="#i_store">store</a></tt> instructions.</p>
2753 <h5>Semantics:</h5>
2754 <p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
2755 at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
2756 <h5>Example:</h5>
2757 <pre>  %ptr = <a href="#i_alloca">alloca</a> i32                               <i>; yields {i32*}:ptr</i>
2758   <a
2759  href="#i_store">store</a> i32 3, i32* %ptr                          <i>; yields {void}</i>
2760   %val = load i32* %ptr                           <i>; yields {i32}:val = i32 3</i>
2761 </pre>
2762 </div>
2763
2764 <!-- _______________________________________________________________________ -->
2765 <div class="doc_subsubsection">
2766    <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
2767 </div>
2768
2769 <div class="doc_text">
2770 <h5>Syntax:</h5>
2771 <pre>
2772   &lt;result&gt; = getelementptr &lt;ty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
2773 </pre>
2774
2775 <h5>Overview:</h5>
2776
2777 <p>
2778 The '<tt>getelementptr</tt>' instruction is used to get the address of a
2779 subelement of an aggregate data structure.</p>
2780
2781 <h5>Arguments:</h5>
2782
2783 <p>This instruction takes a list of integer operands that indicate what
2784 elements of the aggregate object to index to.  The actual types of the arguments
2785 provided depend on the type of the first pointer argument.  The
2786 '<tt>getelementptr</tt>' instruction is used to index down through the type
2787 levels of a structure or to a specific index in an array.  When indexing into a
2788 structure, only <tt>i32</tt> integer constants are allowed.  When indexing 
2789 into an array or pointer, only integers of 32 or 64 bits are allowed, and will 
2790 be sign extended to 64-bit values.</p>
2791
2792 <p>For example, let's consider a C code fragment and how it gets
2793 compiled to LLVM:</p>
2794
2795 <div class="doc_code">
2796 <pre>
2797 struct RT {
2798   char A;
2799   int B[10][20];
2800   char C;
2801 };
2802 struct ST {
2803   int X;
2804   double Y;
2805   struct RT Z;
2806 };
2807
2808 int *foo(struct ST *s) {
2809   return &amp;s[1].Z.B[5][13];
2810 }
2811 </pre>
2812 </div>
2813
2814 <p>The LLVM code generated by the GCC frontend is:</p>
2815
2816 <div class="doc_code">
2817 <pre>
2818 %RT = type { i8 , [10 x [20 x i32]], i8  }
2819 %ST = type { i32, double, %RT }
2820
2821 define i32* %foo(%ST* %s) {
2822 entry:
2823   %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
2824   ret i32* %reg
2825 }
2826 </pre>
2827 </div>
2828
2829 <h5>Semantics:</h5>
2830
2831 <p>The index types specified for the '<tt>getelementptr</tt>' instruction depend
2832 on the pointer type that is being indexed into. <a href="#t_pointer">Pointer</a>
2833 and <a href="#t_array">array</a> types can use a 32-bit or 64-bit
2834 <a href="#t_integer">integer</a> type but the value will always be sign extended
2835 to 64-bits.  <a href="#t_struct">Structure</a> types require <tt>i32</tt>
2836 <b>constants</b>.</p>
2837
2838 <p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
2839 type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
2840 }</tt>' type, a structure.  The second index indexes into the third element of
2841 the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
2842 i8  }</tt>' type, another structure.  The third index indexes into the second
2843 element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
2844 array.  The two dimensions of the array are subscripted into, yielding an
2845 '<tt>i32</tt>' type.  The '<tt>getelementptr</tt>' instruction returns a pointer
2846 to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
2847
2848 <p>Note that it is perfectly legal to index partially through a
2849 structure, returning a pointer to an inner element.  Because of this,
2850 the LLVM code for the given testcase is equivalent to:</p>
2851
2852 <pre>
2853   define i32* %foo(%ST* %s) {
2854     %t1 = getelementptr %ST* %s, i32 1                        <i>; yields %ST*:%t1</i>
2855     %t2 = getelementptr %ST* %t1, i32 0, i32 2                <i>; yields %RT*:%t2</i>
2856     %t3 = getelementptr %RT* %t2, i32 0, i32 1                <i>; yields [10 x [20 x i32]]*:%t3</i>
2857     %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5  <i>; yields [20 x i32]*:%t4</i>
2858     %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13        <i>; yields i32*:%t5</i>
2859     ret i32* %t5
2860   }
2861 </pre>
2862
2863 <p>Note that it is undefined to access an array out of bounds: array and 
2864 pointer indexes must always be within the defined bounds of the array type.
2865 The one exception for this rules is zero length arrays.  These arrays are
2866 defined to be accessible as variable length arrays, which requires access
2867 beyond the zero'th element.</p>
2868
2869 <p>The getelementptr instruction is often confusing.  For some more insight
2870 into how it works, see <a href="GetElementPtr.html">the getelementptr 
2871 FAQ</a>.</p>
2872
2873 <h5>Example:</h5>
2874
2875 <pre>
2876     <i>; yields [12 x i8]*:aptr</i>
2877     %aptr = getelementptr {i32, [12 x i8]}* %sptr, i64 0, i32 1
2878 </pre>
2879 </div>
2880
2881 <!-- ======================================================================= -->
2882 <div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
2883 </div>
2884 <div class="doc_text">
2885 <p>The instructions in this category are the conversion instructions (casting)
2886 which all take a single operand and a type. They perform various bit conversions
2887 on the operand.</p>
2888 </div>
2889
2890 <!-- _______________________________________________________________________ -->
2891 <div class="doc_subsubsection">
2892    <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
2893 </div>
2894 <div class="doc_text">
2895
2896 <h5>Syntax:</h5>
2897 <pre>
2898   &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
2899 </pre>
2900
2901 <h5>Overview:</h5>
2902 <p>
2903 The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
2904 </p>
2905
2906 <h5>Arguments:</h5>
2907 <p>
2908 The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must 
2909 be an <a href="#t_integer">integer</a> type, and a type that specifies the size 
2910 and type of the result, which must be an <a href="#t_integer">integer</a> 
2911 type. The bit size of <tt>value</tt> must be larger than the bit size of 
2912 <tt>ty2</tt>. Equal sized types are not allowed.</p>
2913
2914 <h5>Semantics:</h5>
2915 <p>
2916 The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
2917 and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
2918 larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
2919 It will always truncate bits.</p>
2920
2921 <h5>Example:</h5>
2922 <pre>
2923   %X = trunc i32 257 to i8              <i>; yields i8:1</i>
2924   %Y = trunc i32 123 to i1              <i>; yields i1:true</i>
2925   %Y = trunc i32 122 to i1              <i>; yields i1:false</i>
2926 </pre>
2927 </div>
2928
2929 <!-- _______________________________________________________________________ -->
2930 <div class="doc_subsubsection">
2931    <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
2932 </div>
2933 <div class="doc_text">
2934
2935 <h5>Syntax:</h5>
2936 <pre>
2937   &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
2938 </pre>
2939
2940 <h5>Overview:</h5>
2941 <p>The '<tt>zext</tt>' instruction zero extends its operand to type 
2942 <tt>ty2</tt>.</p>
2943
2944
2945 <h5>Arguments:</h5>
2946 <p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of 
2947 <a href="#t_integer">integer</a> type, and a type to cast it to, which must
2948 also be of <a href="#t_integer">integer</a> type. The bit size of the
2949 <tt>value</tt> must be smaller than the bit size of the destination type, 
2950 <tt>ty2</tt>.</p>
2951
2952 <h5>Semantics:</h5>
2953 <p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
2954 bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
2955
2956 <p>When zero extending from i1, the result will always be either 0 or 1.</p>
2957
2958 <h5>Example:</h5>
2959 <pre>
2960   %X = zext i32 257 to i64              <i>; yields i64:257</i>
2961   %Y = zext i1 true to i32              <i>; yields i32:1</i>
2962 </pre>
2963 </div>
2964
2965 <!-- _______________________________________________________________________ -->
2966 <div class="doc_subsubsection">
2967    <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
2968 </div>
2969 <div class="doc_text">
2970
2971 <h5>Syntax:</h5>
2972 <pre>
2973   &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
2974 </pre>
2975
2976 <h5>Overview:</h5>
2977 <p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
2978
2979 <h5>Arguments:</h5>
2980 <p>
2981 The '<tt>sext</tt>' instruction takes a value to cast, which must be of 
2982 <a href="#t_integer">integer</a> type, and a type to cast it to, which must
2983 also be of <a href="#t_integer">integer</a> type.  The bit size of the
2984 <tt>value</tt> must be smaller than the bit size of the destination type, 
2985 <tt>ty2</tt>.</p>
2986
2987 <h5>Semantics:</h5>
2988 <p>
2989 The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
2990 bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
2991 the type <tt>ty2</tt>.</p>
2992
2993 <p>When sign extending from i1, the extension always results in -1 or 0.</p>
2994
2995 <h5>Example:</h5>
2996 <pre>
2997   %X = sext i8  -1 to i16              <i>; yields i16   :65535</i>
2998   %Y = sext i1 true to i32             <i>; yields i32:-1</i>
2999 </pre>
3000 </div>
3001
3002 <!-- _______________________________________________________________________ -->
3003 <div class="doc_subsubsection">
3004    <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3005 </div>
3006
3007 <div class="doc_text">
3008
3009 <h5>Syntax:</h5>
3010
3011 <pre>
3012   &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
3013 </pre>
3014
3015 <h5>Overview:</h5>
3016 <p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3017 <tt>ty2</tt>.</p>
3018
3019
3020 <h5>Arguments:</h5>
3021 <p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3022   point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3023 cast it to. The size of <tt>value</tt> must be larger than the size of
3024 <tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a 
3025 <i>no-op cast</i>.</p>
3026
3027 <h5>Semantics:</h5>
3028 <p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3029 <a href="#t_floating">floating point</a> type to a smaller 
3030 <a href="#t_floating">floating point</a> type.  If the value cannot fit within 
3031 the destination type, <tt>ty2</tt>, then the results are undefined.</p>
3032
3033 <h5>Example:</h5>
3034 <pre>
3035   %X = fptrunc double 123.0 to float         <i>; yields float:123.0</i>
3036   %Y = fptrunc double 1.0E+300 to float      <i>; yields undefined</i>
3037 </pre>
3038 </div>
3039
3040 <!-- _______________________________________________________________________ -->
3041 <div class="doc_subsubsection">
3042    <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3043 </div>
3044 <div class="doc_text">
3045
3046 <h5>Syntax:</h5>
3047 <pre>
3048   &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
3049 </pre>
3050
3051 <h5>Overview:</h5>
3052 <p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3053 floating point value.</p>
3054
3055 <h5>Arguments:</h5>
3056 <p>The '<tt>fpext</tt>' instruction takes a 
3057 <a href="#t_floating">floating point</a> <tt>value</tt> to cast, 
3058 and a <a href="#t_floating">floating point</a> type to cast it to. The source
3059 type must be smaller than the destination type.</p>
3060
3061 <h5>Semantics:</h5>
3062 <p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
3063 <a href="#t_floating">floating point</a> type to a larger 
3064 <a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be 
3065 used to make a <i>no-op cast</i> because it always changes bits. Use 
3066 <tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
3067
3068 <h5>Example:</h5>
3069 <pre>
3070   %X = fpext float 3.1415 to double        <i>; yields double:3.1415</i>
3071   %Y = fpext float 1.0 to float            <i>; yields float:1.0 (no-op)</i>
3072 </pre>
3073 </div>
3074
3075 <!-- _______________________________________________________________________ -->
3076 <div class="doc_subsubsection">
3077    <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
3078 </div>
3079 <div class="doc_text">
3080
3081 <h5>Syntax:</h5>
3082 <pre>
3083   &lt;result&gt; = fp2uint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
3084 </pre>
3085
3086 <h5>Overview:</h5>
3087 <p>The '<tt>fp2uint</tt>' converts a floating point <tt>value</tt> to its
3088 unsigned integer equivalent of type <tt>ty2</tt>.
3089 </p>
3090
3091 <h5>Arguments:</h5>
3092 <p>The '<tt>fp2uint</tt>' instruction takes a value to cast, which must be a 
3093 <a href="#t_floating">floating point</a> value, and a type to cast it to, which
3094 must be an <a href="#t_integer">integer</a> type.</p>
3095
3096 <h5>Semantics:</h5>
3097 <p> The '<tt>fp2uint</tt>' instruction converts its 
3098 <a href="#t_floating">floating point</a> operand into the nearest (rounding
3099 towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3100 the results are undefined.</p>
3101
3102 <p>When converting to i1, the conversion is done as a comparison against 
3103 zero. If the <tt>value</tt> was zero, the i1 result will be <tt>false</tt>. 
3104 If the <tt>value</tt> was non-zero, the i1 result will be <tt>true</tt>.</p>
3105
3106 <h5>Example:</h5>
3107 <pre>
3108   %X = fp2uint double 123.0 to i32      <i>; yields i32:123</i>
3109   %Y = fp2uint float 1.0E+300 to i1     <i>; yields i1:true</i>
3110   %X = fp2uint float 1.04E+17 to i8     <i>; yields undefined:1</i>
3111 </pre>
3112 </div>
3113
3114 <!-- _______________________________________________________________________ -->
3115 <div class="doc_subsubsection">
3116    <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
3117 </div>
3118 <div class="doc_text">
3119
3120 <h5>Syntax:</h5>
3121 <pre>
3122   &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
3123 </pre>
3124
3125 <h5>Overview:</h5>
3126 <p>The '<tt>fptosi</tt>' instruction converts 
3127 <a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
3128 </p>
3129
3130
3131 <h5>Arguments:</h5>
3132 <p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a 
3133 <a href="#t_floating">floating point</a> value, and a type to cast it to, which 
3134 must also be an <a href="#t_integer">integer</a> type.</p>
3135
3136 <h5>Semantics:</h5>
3137 <p>The '<tt>fptosi</tt>' instruction converts its 
3138 <a href="#t_floating">floating point</a> operand into the nearest (rounding
3139 towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3140 the results are undefined.</p>
3141
3142 <p>When converting to i1, the conversion is done as a comparison against 
3143 zero. If the <tt>value</tt> was zero, the i1 result will be <tt>false</tt>. 
3144 If the <tt>value</tt> was non-zero, the i1 result will be <tt>true</tt>.</p>
3145
3146 <h5>Example:</h5>
3147 <pre>
3148   %X = fptosi double -123.0 to i32      <i>; yields i32:-123</i>
3149   %Y = fptosi float 1.0E-247 to i1      <i>; yields i1:true</i>
3150   %X = fptosi float 1.04E+17 to i8      <i>; yields undefined:1</i>
3151 </pre>
3152 </div>
3153
3154 <!-- _______________________________________________________________________ -->
3155 <div class="doc_subsubsection">
3156    <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
3157 </div>
3158 <div class="doc_text">
3159
3160 <h5>Syntax:</h5>
3161 <pre>
3162   &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
3163 </pre>
3164
3165 <h5>Overview:</h5>
3166 <p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
3167 integer and converts that value to the <tt>ty2</tt> type.</p>
3168
3169
3170 <h5>Arguments:</h5>
3171 <p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be an
3172 <a href="#t_integer">integer</a> value, and a type to cast it to, which must 
3173 be a <a href="#t_floating">floating point</a> type.</p>
3174
3175 <h5>Semantics:</h5>
3176 <p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
3177 integer quantity and converts it to the corresponding floating point value. If
3178 the value cannot fit in the floating point value, the results are undefined.</p>
3179
3180
3181 <h5>Example:</h5>
3182 <pre>
3183   %X = uitofp i32 257 to float         <i>; yields float:257.0</i>
3184   %Y = uitofp i8  -1 to double         <i>; yields double:255.0</i>
3185 </pre>
3186 </div>
3187
3188 <!-- _______________________________________________________________________ -->
3189 <div class="doc_subsubsection">
3190    <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
3191 </div>
3192 <div class="doc_text">
3193
3194 <h5>Syntax:</h5>
3195 <pre>
3196   &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
3197 </pre>
3198
3199 <h5>Overview:</h5>
3200 <p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
3201 integer and converts that value to the <tt>ty2</tt> type.</p>
3202
3203 <h5>Arguments:</h5>
3204 <p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be an
3205 <a href="#t_integer">integer</a> value, and a type to cast it to, which must be
3206 a <a href="#t_floating">floating point</a> type.</p>
3207
3208 <h5>Semantics:</h5>
3209 <p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
3210 integer quantity and converts it to the corresponding floating point value. If
3211 the value cannot fit in the floating point value, the results are undefined.</p>
3212
3213 <h5>Example:</h5>
3214 <pre>
3215   %X = sitofp i32 257 to float         <i>; yields float:257.0</i>
3216   %Y = sitofp i8  -1 to double         <i>; yields double:-1.0</i>
3217 </pre>
3218 </div>
3219
3220 <!-- _______________________________________________________________________ -->
3221 <div class="doc_subsubsection">
3222    <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3223 </div>
3224 <div class="doc_text">
3225
3226 <h5>Syntax:</h5>
3227 <pre>
3228   &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
3229 </pre>
3230
3231 <h5>Overview:</h5>
3232 <p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to 
3233 the integer type <tt>ty2</tt>.</p>
3234
3235 <h5>Arguments:</h5>
3236 <p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which 
3237 must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
3238 <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type. 
3239
3240 <h5>Semantics:</h5>
3241 <p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3242 <tt>ty2</tt> by interpreting the pointer value as an integer and either 
3243 truncating or zero extending that value to the size of the integer type. If
3244 <tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3245 <tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
3246 are the same size, then nothing is done (<i>no-op cast</i>) other than a type
3247 change.</p>
3248
3249 <h5>Example:</h5>
3250 <pre>
3251   %X = ptrtoint i32* %X to i8           <i>; yields truncation on 32-bit architecture</i>
3252   %Y = ptrtoint i32* %x to i64          <i>; yields zero extension on 32-bit architecture</i>
3253 </pre>
3254 </div>
3255
3256 <!-- _______________________________________________________________________ -->
3257 <div class="doc_subsubsection">
3258    <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3259 </div>
3260 <div class="doc_text">
3261
3262 <h5>Syntax:</h5>
3263 <pre>
3264   &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
3265 </pre>
3266
3267 <h5>Overview:</h5>
3268 <p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to 
3269 a pointer type, <tt>ty2</tt>.</p>
3270
3271 <h5>Arguments:</h5>
3272 <p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
3273 value to cast, and a type to cast it to, which must be a 
3274 <a href="#t_pointer">pointer</a> type.
3275
3276 <h5>Semantics:</h5>
3277 <p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3278 <tt>ty2</tt> by applying either a zero extension or a truncation depending on
3279 the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3280 size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3281 the size of a pointer then a zero extension is done. If they are the same size,
3282 nothing is done (<i>no-op cast</i>).</p>
3283
3284 <h5>Example:</h5>
3285 <pre>
3286   %X = inttoptr i32 255 to i32*          <i>; yields zero extension on 64-bit architecture</i>
3287   %X = inttoptr i32 255 to i32*          <i>; yields no-op on 32-bit architecture</i>
3288   %Y = inttoptr i64 0 to i32*            <i>; yields truncation on 32-bit architecture</i>
3289 </pre>
3290 </div>
3291
3292 <!-- _______________________________________________________________________ -->
3293 <div class="doc_subsubsection">
3294    <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
3295 </div>
3296 <div class="doc_text">
3297
3298 <h5>Syntax:</h5>
3299 <pre>
3300   &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
3301 </pre>
3302
3303 <h5>Overview:</h5>
3304 <p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
3305 <tt>ty2</tt> without changing any bits.</p>
3306
3307 <h5>Arguments:</h5>
3308 <p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be 
3309 a first class value, and a type to cast it to, which must also be a <a
3310   href="#t_firstclass">first class</a> type. The bit sizes of <tt>value</tt>
3311 and the destination type, <tt>ty2</tt>, must be identical. If the source
3312 type is a pointer, the destination type must also be a pointer.</p>
3313
3314 <h5>Semantics:</h5>
3315 <p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
3316 <tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with 
3317 this conversion.  The conversion is done as if the <tt>value</tt> had been 
3318 stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3319 converted to other pointer types with this instruction. To convert pointers to 
3320 other types, use the <a href="#i_inttoptr">inttoptr</a> or 
3321 <a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
3322
3323 <h5>Example:</h5>
3324 <pre>
3325   %X = bitcast i8 255 to i8              <i>; yields i8 :-1</i>
3326   %Y = bitcast i32* %x to sint*          <i>; yields sint*:%x</i>
3327   %Z = bitcast <2xint> %V to i64;        <i>; yields i64: %V</i>   
3328 </pre>
3329 </div>
3330
3331 <!-- ======================================================================= -->
3332 <div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3333 <div class="doc_text">
3334 <p>The instructions in this category are the "miscellaneous"
3335 instructions, which defy better classification.</p>
3336 </div>
3337
3338 <!-- _______________________________________________________________________ -->
3339 <div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
3340 </div>
3341 <div class="doc_text">
3342 <h5>Syntax:</h5>
3343 <pre>  &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {i1}:result</i>
3344 </pre>
3345 <h5>Overview:</h5>
3346 <p>The '<tt>icmp</tt>' instruction returns a boolean value based on comparison
3347 of its two integer operands.</p>
3348 <h5>Arguments:</h5>
3349 <p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
3350 the condition code indicating the kind of comparison to perform. It is not
3351 a value, just a keyword. The possible condition code are:
3352 <ol>
3353   <li><tt>eq</tt>: equal</li>
3354   <li><tt>ne</tt>: not equal </li>
3355   <li><tt>ugt</tt>: unsigned greater than</li>
3356   <li><tt>uge</tt>: unsigned greater or equal</li>
3357   <li><tt>ult</tt>: unsigned less than</li>
3358   <li><tt>ule</tt>: unsigned less or equal</li>
3359   <li><tt>sgt</tt>: signed greater than</li>
3360   <li><tt>sge</tt>: signed greater or equal</li>
3361   <li><tt>slt</tt>: signed less than</li>
3362   <li><tt>sle</tt>: signed less or equal</li>
3363 </ol>
3364 <p>The remaining two arguments must be <a href="#t_integer">integer</a> or
3365 <a href="#t_pointer">pointer</a> typed. They must also be identical types.</p>
3366 <h5>Semantics:</h5>
3367 <p>The '<tt>icmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to 
3368 the condition code given as <tt>cond</tt>. The comparison performed always
3369 yields a <a href="#t_primitive">i1</a> result, as follows: 
3370 <ol>
3371   <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal, 
3372   <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3373   </li>
3374   <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal, 
3375   <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3376   <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
3377   <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3378   <li><tt>uge</tt>: interprets the operands as unsigned values and yields
3379   <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3380   <li><tt>ult</tt>: interprets the operands as unsigned values and yields
3381   <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3382   <li><tt>ule</tt>: interprets the operands as unsigned values and yields
3383   <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3384   <li><tt>sgt</tt>: interprets the operands as signed values and yields
3385   <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3386   <li><tt>sge</tt>: interprets the operands as signed values and yields
3387   <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3388   <li><tt>slt</tt>: interprets the operands as signed values and yields
3389   <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3390   <li><tt>sle</tt>: interprets the operands as signed values and yields
3391   <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3392 </ol>
3393 <p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
3394 values are compared as if they were integers.</p>
3395
3396 <h5>Example:</h5>
3397 <pre>  &lt;result&gt; = icmp eq i32 4, 5          <i>; yields: result=false</i>
3398   &lt;result&gt; = icmp ne float* %X, %X     <i>; yields: result=false</i>
3399   &lt;result&gt; = icmp ult i16  4, 5        <i>; yields: result=true</i>
3400   &lt;result&gt; = icmp sgt i16  4, 5        <i>; yields: result=false</i>
3401   &lt;result&gt; = icmp ule i16 -4, 5        <i>; yields: result=false</i>
3402   &lt;result&gt; = icmp sge i16  4, 5        <i>; yields: result=false</i>
3403 </pre>
3404 </div>
3405
3406 <!-- _______________________________________________________________________ -->
3407 <div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
3408 </div>
3409 <div class="doc_text">
3410 <h5>Syntax:</h5>
3411 <pre>  &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;     <i>; yields {i1}:result</i>
3412 </pre>
3413 <h5>Overview:</h5>
3414 <p>The '<tt>fcmp</tt>' instruction returns a boolean value based on comparison
3415 of its floating point operands.</p>
3416 <h5>Arguments:</h5>
3417 <p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
3418 the condition code indicating the kind of comparison to perform. It is not
3419 a value, just a keyword. The possible condition code are:
3420 <ol>
3421   <li><tt>false</tt>: no comparison, always returns false</li>
3422   <li><tt>oeq</tt>: ordered and equal</li>
3423   <li><tt>ogt</tt>: ordered and greater than </li>
3424   <li><tt>oge</tt>: ordered and greater than or equal</li>
3425   <li><tt>olt</tt>: ordered and less than </li>
3426   <li><tt>ole</tt>: ordered and less than or equal</li>
3427   <li><tt>one</tt>: ordered and not equal</li>
3428   <li><tt>ord</tt>: ordered (no nans)</li>
3429   <li><tt>ueq</tt>: unordered or equal</li>
3430   <li><tt>ugt</tt>: unordered or greater than </li>
3431   <li><tt>uge</tt>: unordered or greater than or equal</li>
3432   <li><tt>ult</tt>: unordered or less than </li>
3433   <li><tt>ule</tt>: unordered or less than or equal</li>
3434   <li><tt>une</tt>: unordered or not equal</li>
3435   <li><tt>uno</tt>: unordered (either nans)</li>
3436   <li><tt>true</tt>: no comparison, always returns true</li>
3437 </ol>
3438 <p><i>Ordered</i> means that neither operand is a QNAN while
3439 <i>unordered</i> means that either operand may be a QNAN.</p>
3440 <p>The <tt>val1</tt> and <tt>val2</tt> arguments must be
3441 <a href="#t_floating">floating point</a> typed.  They must have identical 
3442 types.</p>
3443 <h5>Semantics:</h5>
3444 <p>The '<tt>fcmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to 
3445 the condition code given as <tt>cond</tt>. The comparison performed always
3446 yields a <a href="#t_primitive">i1</a> result, as follows: 
3447 <ol>
3448   <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
3449   <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and 
3450   <tt>var1</tt> is equal to <tt>var2</tt>.</li>
3451   <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3452   <tt>var1</tt> is greather than <tt>var2</tt>.</li>
3453   <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and 
3454   <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3455   <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and 
3456   <tt>var1</tt> is less than <tt>var2</tt>.</li>
3457   <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and 
3458   <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3459   <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and 
3460   <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
3461   <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
3462   <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or 
3463   <tt>var1</tt> is equal to <tt>var2</tt>.</li>
3464   <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or 
3465   <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3466   <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or 
3467   <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3468   <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or 
3469   <tt>var1</tt> is less than <tt>var2</tt>.</li>
3470   <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or 
3471   <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3472   <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or 
3473   <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
3474   <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
3475   <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
3476 </ol>
3477
3478 <h5>Example:</h5>
3479 <pre>  &lt;result&gt; = fcmp oeq float 4.0, 5.0    <i>; yields: result=false</i>
3480   &lt;result&gt; = icmp one float 4.0, 5.0    <i>; yields: result=true</i>
3481   &lt;result&gt; = icmp olt float 4.0, 5.0    <i>; yields: result=true</i>
3482   &lt;result&gt; = icmp ueq double 1.0, 2.0   <i>; yields: result=false</i>
3483 </pre>
3484 </div>
3485
3486 <!-- _______________________________________________________________________ -->
3487 <div class="doc_subsubsection"> <a name="i_phi">'<tt>phi</tt>'
3488 Instruction</a> </div>
3489 <div class="doc_text">
3490 <h5>Syntax:</h5>
3491 <pre>  &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
3492 <h5>Overview:</h5>
3493 <p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
3494 the SSA graph representing the function.</p>
3495 <h5>Arguments:</h5>
3496 <p>The type of the incoming values is specified with the first type
3497 field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
3498 as arguments, with one pair for each predecessor basic block of the
3499 current block.  Only values of <a href="#t_firstclass">first class</a>
3500 type may be used as the value arguments to the PHI node.  Only labels
3501 may be used as the label arguments.</p>
3502 <p>There must be no non-phi instructions between the start of a basic
3503 block and the PHI instructions: i.e. PHI instructions must be first in
3504 a basic block.</p>
3505 <h5>Semantics:</h5>
3506 <p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
3507 specified by the pair corresponding to the predecessor basic block that executed
3508 just prior to the current block.</p>
3509 <h5>Example:</h5>
3510 <pre>Loop:       ; Infinite loop that counts from 0 on up...<br>  %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]<br>  %nextindvar = add i32 %indvar, 1<br>  br label %Loop<br></pre>
3511 </div>
3512
3513 <!-- _______________________________________________________________________ -->
3514 <div class="doc_subsubsection">
3515    <a name="i_select">'<tt>select</tt>' Instruction</a>
3516 </div>
3517
3518 <div class="doc_text">
3519
3520 <h5>Syntax:</h5>
3521
3522 <pre>
3523   &lt;result&gt; = select i1 &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt;             <i>; yields ty</i>
3524 </pre>
3525
3526 <h5>Overview:</h5>
3527
3528 <p>
3529 The '<tt>select</tt>' instruction is used to choose one value based on a
3530 condition, without branching.
3531 </p>
3532
3533
3534 <h5>Arguments:</h5>
3535
3536 <p>
3537 The '<tt>select</tt>' instruction requires a boolean value indicating the condition, and two values of the same <a href="#t_firstclass">first class</a> type.
3538 </p>
3539
3540 <h5>Semantics:</h5>
3541
3542 <p>
3543 If the boolean condition evaluates to true, the instruction returns the first
3544 value argument; otherwise, it returns the second value argument.
3545 </p>
3546
3547 <h5>Example:</h5>
3548
3549 <pre>
3550   %X = select i1 true, i8 17, i8 42          <i>; yields i8:17</i>
3551 </pre>
3552 </div>
3553
3554
3555 <!-- _______________________________________________________________________ -->
3556 <div class="doc_subsubsection">
3557   <a name="i_call">'<tt>call</tt>' Instruction</a>
3558 </div>
3559
3560 <div class="doc_text">
3561
3562 <h5>Syntax:</h5>
3563 <pre>
3564   &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] &lt;ty&gt;* &lt;fnptrval&gt;(&lt;param list&gt;)
3565 </pre>
3566
3567 <h5>Overview:</h5>
3568
3569 <p>The '<tt>call</tt>' instruction represents a simple function call.</p>
3570
3571 <h5>Arguments:</h5>
3572
3573 <p>This instruction requires several arguments:</p>
3574
3575 <ol>
3576   <li>
3577     <p>The optional "tail" marker indicates whether the callee function accesses
3578     any allocas or varargs in the caller.  If the "tail" marker is present, the
3579     function call is eligible for tail call optimization.  Note that calls may
3580     be marked "tail" even if they do not occur before a <a
3581     href="#i_ret"><tt>ret</tt></a> instruction.
3582   </li>
3583   <li>
3584     <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
3585     convention</a> the call should use.  If none is specified, the call defaults
3586     to using C calling conventions.
3587   </li>
3588   <li>
3589     <p>'<tt>ty</tt>': shall be the signature of the pointer to function value
3590     being invoked.  The argument types must match the types implied by this
3591     signature.  This type can be omitted if the function is not varargs and
3592     if the function type does not return a pointer to a function.</p>
3593   </li>
3594   <li>
3595     <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
3596     be invoked. In most cases, this is a direct function invocation, but
3597     indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
3598     to function value.</p>
3599   </li>
3600   <li>
3601     <p>'<tt>function args</tt>': argument list whose types match the
3602     function signature argument types. All arguments must be of 
3603     <a href="#t_firstclass">first class</a> type. If the function signature 
3604     indicates the function accepts a variable number of arguments, the extra 
3605     arguments can be specified.</p>
3606   </li>
3607 </ol>
3608
3609 <h5>Semantics:</h5>
3610
3611 <p>The '<tt>call</tt>' instruction is used to cause control flow to
3612 transfer to a specified function, with its incoming arguments bound to
3613 the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
3614 instruction in the called function, control flow continues with the
3615 instruction after the function call, and the return value of the
3616 function is bound to the result argument.  This is a simpler case of
3617 the <a href="#i_invoke">invoke</a> instruction.</p>
3618
3619 <h5>Example:</h5>
3620
3621 <pre>
3622   %retval = call i32 %test(i32 %argc)
3623   call i32(i8 *, ...) *%printf(i8 * %msg, i32 12, i8 42);
3624   %X = tail call i32 %foo()
3625   %Y = tail call <a href="#callingconv">fastcc</a> i32 %foo()
3626 </pre>
3627
3628 </div>
3629
3630 <!-- _______________________________________________________________________ -->
3631 <div class="doc_subsubsection">
3632   <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
3633 </div>
3634
3635 <div class="doc_text">
3636
3637 <h5>Syntax:</h5>
3638
3639 <pre>
3640   &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
3641 </pre>
3642
3643 <h5>Overview:</h5>
3644
3645 <p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
3646 the "variable argument" area of a function call.  It is used to implement the
3647 <tt>va_arg</tt> macro in C.</p>
3648
3649 <h5>Arguments:</h5>
3650
3651 <p>This instruction takes a <tt>va_list*</tt> value and the type of
3652 the argument. It returns a value of the specified argument type and
3653 increments the <tt>va_list</tt> to point to the next argument.  The
3654 actual type of <tt>va_list</tt> is target specific.</p>
3655
3656 <h5>Semantics:</h5>
3657
3658 <p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
3659 type from the specified <tt>va_list</tt> and causes the
3660 <tt>va_list</tt> to point to the next argument.  For more information,
3661 see the variable argument handling <a href="#int_varargs">Intrinsic
3662 Functions</a>.</p>
3663
3664 <p>It is legal for this instruction to be called in a function which does not
3665 take a variable number of arguments, for example, the <tt>vfprintf</tt>
3666 function.</p>
3667
3668 <p><tt>va_arg</tt> is an LLVM instruction instead of an <a
3669 href="#intrinsics">intrinsic function</a> because it takes a type as an
3670 argument.</p>
3671
3672 <h5>Example:</h5>
3673
3674 <p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
3675
3676 </div>
3677
3678 <!-- *********************************************************************** -->
3679 <div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
3680 <!-- *********************************************************************** -->
3681
3682 <div class="doc_text">
3683
3684 <p>LLVM supports the notion of an "intrinsic function".  These functions have
3685 well known names and semantics and are required to follow certain restrictions.
3686 Overall, these intrinsics represent an extension mechanism for the LLVM 
3687 language that does not require changing all of the transformations in LLVM when 
3688 adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
3689
3690 <p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
3691 prefix is reserved in LLVM for intrinsic names; thus, function names may not
3692 begin with this prefix.  Intrinsic functions must always be external functions:
3693 you cannot define the body of intrinsic functions.  Intrinsic functions may
3694 only be used in call or invoke instructions: it is illegal to take the address
3695 of an intrinsic function.  Additionally, because intrinsic functions are part
3696 of the LLVM language, it is required if any are added that they be documented
3697 here.</p>
3698
3699 <p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
3700 a family of functions that perform the same operation but on different data
3701 types. This is most frequent with the integer types. Since LLVM can represent
3702 over 8 million different integer types, there is a way to declare an intrinsic 
3703 that can be overloaded based on its arguments. Such an intrinsic will have the
3704 names of its argument types encoded into its function name, each
3705 preceded by a period. For example, the <tt>llvm.ctpop</tt> function can take an
3706 integer of any width. This leads to a family of functions such as 
3707 <tt>i32 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i32 @llvm.ctpop.i29(i29 %val)</tt>.
3708 </p>
3709
3710
3711 <p>To learn how to add an intrinsic function, please see the 
3712 <a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
3713 </p>
3714
3715 </div>
3716
3717 <!-- ======================================================================= -->
3718 <div class="doc_subsection">
3719   <a name="int_varargs">Variable Argument Handling Intrinsics</a>
3720 </div>
3721
3722 <div class="doc_text">
3723
3724 <p>Variable argument support is defined in LLVM with the <a
3725  href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
3726 intrinsic functions.  These functions are related to the similarly
3727 named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
3728
3729 <p>All of these functions operate on arguments that use a
3730 target-specific value type "<tt>va_list</tt>".  The LLVM assembly
3731 language reference manual does not define what this type is, so all
3732 transformations should be prepared to handle these functions regardless of
3733 the type used.</p>
3734
3735 <p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
3736 instruction and the variable argument handling intrinsic functions are
3737 used.</p>
3738
3739 <div class="doc_code">
3740 <pre>
3741 define i32 @test(i32 %X, ...) {
3742   ; Initialize variable argument processing
3743   %ap = alloca i8*
3744   %ap2 = bitcast i8** %ap to i8*
3745   call void @llvm.va_start(i8* %ap2)
3746
3747   ; Read a single integer argument
3748   %tmp = va_arg i8** %ap, i32
3749
3750   ; Demonstrate usage of llvm.va_copy and llvm.va_end
3751   %aq = alloca i8*
3752   %aq2 = bitcast i8** %aq to i8*
3753   call void @llvm.va_copy(i8* %aq2, i8* %ap2)
3754   call void @llvm.va_end(i8* %aq2)
3755
3756   ; Stop processing of arguments.
3757   call void @llvm.va_end(i8* %ap2)
3758   ret i32 %tmp
3759 }
3760
3761 declare void @llvm.va_start(i8*)
3762 declare void @llvm.va_copy(i8*, i8*)
3763 declare void @llvm.va_end(i8*)
3764 </pre>
3765 </div>
3766
3767 </div>
3768
3769 <!-- _______________________________________________________________________ -->
3770 <div class="doc_subsubsection">
3771   <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
3772 </div>
3773
3774
3775 <div class="doc_text">
3776 <h5>Syntax:</h5>
3777 <pre>  declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
3778 <h5>Overview:</h5>
3779 <P>The '<tt>llvm.va_start</tt>' intrinsic initializes
3780 <tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
3781 href="#i_va_arg">va_arg</a></tt>.</p>
3782
3783 <h5>Arguments:</h5>
3784
3785 <P>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
3786
3787 <h5>Semantics:</h5>
3788
3789 <P>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
3790 macro available in C.  In a target-dependent way, it initializes the
3791 <tt>va_list</tt> element to which the argument points, so that the next call to
3792 <tt>va_arg</tt> will produce the first variable argument passed to the function.
3793 Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
3794 last argument of the function as the compiler can figure that out.</p>
3795
3796 </div>
3797
3798 <!-- _______________________________________________________________________ -->
3799 <div class="doc_subsubsection">
3800  <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
3801 </div>
3802
3803 <div class="doc_text">
3804 <h5>Syntax:</h5>
3805 <pre>  declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
3806 <h5>Overview:</h5>
3807
3808 <p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
3809 which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
3810 or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
3811
3812 <h5>Arguments:</h5>
3813
3814 <p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
3815
3816 <h5>Semantics:</h5>
3817
3818 <p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
3819 macro available in C.  In a target-dependent way, it destroys the
3820 <tt>va_list</tt> element to which the argument points.  Calls to <a
3821 href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
3822 <tt>llvm.va_copy</tt></a> must be matched exactly with calls to
3823 <tt>llvm.va_end</tt>.</p>
3824
3825 </div>
3826
3827 <!-- _______________________________________________________________________ -->
3828 <div class="doc_subsubsection">
3829   <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
3830 </div>
3831
3832 <div class="doc_text">
3833
3834 <h5>Syntax:</h5>
3835
3836 <pre>
3837   declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
3838 </pre>
3839
3840 <h5>Overview:</h5>
3841
3842 <p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
3843 from the source argument list to the destination argument list.</p>
3844
3845 <h5>Arguments:</h5>
3846
3847 <p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
3848 The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
3849
3850
3851 <h5>Semantics:</h5>
3852
3853 <p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
3854 macro available in C.  In a target-dependent way, it copies the source
3855 <tt>va_list</tt> element into the destination <tt>va_list</tt> element.  This
3856 intrinsic is necessary because the <tt><a href="#int_va_start">
3857 llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
3858 example, memory allocation.</p>
3859
3860 </div>
3861
3862 <!-- ======================================================================= -->
3863 <div class="doc_subsection">
3864   <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
3865 </div>
3866
3867 <div class="doc_text">
3868
3869 <p>
3870 LLVM support for <a href="GarbageCollection.html">Accurate Garbage
3871 Collection</a> requires the implementation and generation of these intrinsics.
3872 These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
3873 stack</a>, as well as garbage collector implementations that require <a
3874 href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
3875 Front-ends for type-safe garbage collected languages should generate these
3876 intrinsics to make use of the LLVM garbage collectors.  For more details, see <a
3877 href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
3878 </p>
3879 </div>
3880
3881 <!-- _______________________________________________________________________ -->
3882 <div class="doc_subsubsection">
3883   <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
3884 </div>
3885
3886 <div class="doc_text">
3887
3888 <h5>Syntax:</h5>
3889
3890 <pre>
3891   declare void @llvm.gcroot(&lt;ty&gt;** %ptrloc, &lt;ty2&gt;* %metadata)
3892 </pre>
3893
3894 <h5>Overview:</h5>
3895
3896 <p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
3897 the code generator, and allows some metadata to be associated with it.</p>
3898
3899 <h5>Arguments:</h5>
3900
3901 <p>The first argument specifies the address of a stack object that contains the
3902 root pointer.  The second pointer (which must be either a constant or a global
3903 value address) contains the meta-data to be associated with the root.</p>
3904
3905 <h5>Semantics:</h5>
3906
3907 <p>At runtime, a call to this intrinsics stores a null pointer into the "ptrloc"
3908 location.  At compile-time, the code generator generates information to allow
3909 the runtime to find the pointer at GC safe points.
3910 </p>
3911
3912 </div>
3913
3914
3915 <!-- _______________________________________________________________________ -->
3916 <div class="doc_subsubsection">
3917   <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
3918 </div>
3919
3920 <div class="doc_text">
3921
3922 <h5>Syntax:</h5>
3923
3924 <pre>
3925   declare i8 * @llvm.gcread(i8 * %ObjPtr, i8 ** %Ptr)
3926 </pre>
3927
3928 <h5>Overview:</h5>
3929
3930 <p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
3931 locations, allowing garbage collector implementations that require read
3932 barriers.</p>
3933
3934 <h5>Arguments:</h5>
3935
3936 <p>The second argument is the address to read from, which should be an address
3937 allocated from the garbage collector.  The first object is a pointer to the 
3938 start of the referenced object, if needed by the language runtime (otherwise
3939 null).</p>
3940
3941 <h5>Semantics:</h5>
3942
3943 <p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
3944 instruction, but may be replaced with substantially more complex code by the
3945 garbage collector runtime, as needed.</p>
3946
3947 </div>
3948
3949
3950 <!-- _______________________________________________________________________ -->
3951 <div class="doc_subsubsection">
3952   <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
3953 </div>
3954
3955 <div class="doc_text">
3956
3957 <h5>Syntax:</h5>
3958
3959 <pre>
3960   declare void @llvm.gcwrite(i8 * %P1, i8 * %Obj, i8 ** %P2)
3961 </pre>
3962
3963 <h5>Overview:</h5>
3964
3965 <p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
3966 locations, allowing garbage collector implementations that require write
3967 barriers (such as generational or reference counting collectors).</p>
3968
3969 <h5>Arguments:</h5>
3970
3971 <p>The first argument is the reference to store, the second is the start of the
3972 object to store it to, and the third is the address of the field of Obj to 
3973 store to.  If the runtime does not require a pointer to the object, Obj may be
3974 null.</p>
3975
3976 <h5>Semantics:</h5>
3977
3978 <p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
3979 instruction, but may be replaced with substantially more complex code by the
3980 garbage collector runtime, as needed.</p>
3981
3982 </div>
3983
3984
3985
3986 <!-- ======================================================================= -->
3987 <div class="doc_subsection">
3988   <a name="int_codegen">Code Generator Intrinsics</a>
3989 </div>
3990
3991 <div class="doc_text">
3992 <p>
3993 These intrinsics are provided by LLVM to expose special features that may only
3994 be implemented with code generator support.
3995 </p>
3996
3997 </div>
3998
3999 <!-- _______________________________________________________________________ -->
4000 <div class="doc_subsubsection">
4001   <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
4002 </div>
4003
4004 <div class="doc_text">
4005
4006 <h5>Syntax:</h5>
4007 <pre>
4008   declare i8  *@llvm.returnaddress(i32 &lt;level&gt;)
4009 </pre>
4010
4011 <h5>Overview:</h5>
4012
4013 <p>
4014 The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a 
4015 target-specific value indicating the return address of the current function 
4016 or one of its callers.
4017 </p>
4018
4019 <h5>Arguments:</h5>
4020
4021 <p>
4022 The argument to this intrinsic indicates which function to return the address
4023 for.  Zero indicates the calling function, one indicates its caller, etc.  The
4024 argument is <b>required</b> to be a constant integer value.
4025 </p>
4026
4027 <h5>Semantics:</h5>
4028
4029 <p>
4030 The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
4031 the return address of the specified call frame, or zero if it cannot be
4032 identified.  The value returned by this intrinsic is likely to be incorrect or 0
4033 for arguments other than zero, so it should only be used for debugging purposes.
4034 </p>
4035
4036 <p>
4037 Note that calling this intrinsic does not prevent function inlining or other
4038 aggressive transformations, so the value returned may not be that of the obvious
4039 source-language caller.
4040 </p>
4041 </div>
4042
4043
4044 <!-- _______________________________________________________________________ -->
4045 <div class="doc_subsubsection">
4046   <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
4047 </div>
4048
4049 <div class="doc_text">
4050
4051 <h5>Syntax:</h5>
4052 <pre>
4053   declare i8  *@llvm.frameaddress(i32 &lt;level&gt;)
4054 </pre>
4055
4056 <h5>Overview:</h5>
4057
4058 <p>
4059 The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the 
4060 target-specific frame pointer value for the specified stack frame.
4061 </p>
4062
4063 <h5>Arguments:</h5>
4064
4065 <p>
4066 The argument to this intrinsic indicates which function to return the frame
4067 pointer for.  Zero indicates the calling function, one indicates its caller,
4068 etc.  The argument is <b>required</b> to be a constant integer value.
4069 </p>
4070
4071 <h5>Semantics:</h5>
4072
4073 <p>
4074 The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
4075 the frame address of the specified call frame, or zero if it cannot be
4076 identified.  The value returned by this intrinsic is likely to be incorrect or 0
4077 for arguments other than zero, so it should only be used for debugging purposes.
4078 </p>
4079
4080 <p>
4081 Note that calling this intrinsic does not prevent function inlining or other
4082 aggressive transformations, so the value returned may not be that of the obvious
4083 source-language caller.
4084 </p>
4085 </div>
4086
4087 <!-- _______________________________________________________________________ -->
4088 <div class="doc_subsubsection">
4089   <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
4090 </div>
4091
4092 <div class="doc_text">
4093
4094 <h5>Syntax:</h5>
4095 <pre>
4096   declare i8  *@llvm.stacksave()
4097 </pre>
4098
4099 <h5>Overview:</h5>
4100
4101 <p>
4102 The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
4103 the function stack, for use with <a href="#int_stackrestore">
4104 <tt>llvm.stackrestore</tt></a>.  This is useful for implementing language
4105 features like scoped automatic variable sized arrays in C99.
4106 </p>
4107
4108 <h5>Semantics:</h5>
4109
4110 <p>
4111 This intrinsic returns a opaque pointer value that can be passed to <a
4112 href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>.  When an
4113 <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from 
4114 <tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
4115 state it was in when the <tt>llvm.stacksave</tt> intrinsic executed.  In
4116 practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
4117 that were allocated after the <tt>llvm.stacksave</tt> was executed.
4118 </p>
4119
4120 </div>
4121
4122 <!-- _______________________________________________________________________ -->
4123 <div class="doc_subsubsection">
4124   <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
4125 </div>
4126
4127 <div class="doc_text">
4128
4129 <h5>Syntax:</h5>
4130 <pre>
4131   declare void @llvm.stackrestore(i8 * %ptr)
4132 </pre>
4133
4134 <h5>Overview:</h5>
4135
4136 <p>
4137 The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
4138 the function stack to the state it was in when the corresponding <a
4139 href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed.  This is
4140 useful for implementing language features like scoped automatic variable sized
4141 arrays in C99.
4142 </p>
4143
4144 <h5>Semantics:</h5>
4145
4146 <p>
4147 See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
4148 </p>
4149
4150 </div>
4151
4152
4153 <!-- _______________________________________________________________________ -->
4154 <div class="doc_subsubsection">
4155   <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
4156 </div>
4157
4158 <div class="doc_text">
4159
4160 <h5>Syntax:</h5>
4161 <pre>
4162   declare void @llvm.prefetch(i8  * &lt;address&gt;,
4163                                 i32 &lt;rw&gt;, i32 &lt;locality&gt;)
4164 </pre>
4165
4166 <h5>Overview:</h5>
4167
4168
4169 <p>
4170 The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
4171 a prefetch instruction if supported; otherwise, it is a noop.  Prefetches have
4172 no
4173 effect on the behavior of the program but can change its performance
4174 characteristics.
4175 </p>
4176
4177 <h5>Arguments:</h5>
4178
4179 <p>
4180 <tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
4181 determining if the fetch should be for a read (0) or write (1), and
4182 <tt>locality</tt> is a temporal locality specifier ranging from (0) - no
4183 locality, to (3) - extremely local keep in cache.  The <tt>rw</tt> and
4184 <tt>locality</tt> arguments must be constant integers.
4185 </p>
4186
4187 <h5>Semantics:</h5>
4188
4189 <p>
4190 This intrinsic does not modify the behavior of the program.  In particular,
4191 prefetches cannot trap and do not produce a value.  On targets that support this
4192 intrinsic, the prefetch can provide hints to the processor cache for better
4193 performance.
4194 </p>
4195
4196 </div>
4197
4198 <!-- _______________________________________________________________________ -->
4199 <div class="doc_subsubsection">
4200   <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
4201 </div>
4202
4203 <div class="doc_text">
4204
4205 <h5>Syntax:</h5>
4206 <pre>
4207   declare void @llvm.pcmarker( i32 &lt;id&gt; )
4208 </pre>
4209
4210 <h5>Overview:</h5>
4211
4212
4213 <p>
4214 The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
4215 (PC) in a region of 
4216 code to simulators and other tools.  The method is target specific, but it is 
4217 expected that the marker will use exported symbols to transmit the PC of the marker.
4218 The marker makes no guarantees that it will remain with any specific instruction 
4219 after optimizations.  It is possible that the presence of a marker will inhibit 
4220 optimizations.  The intended use is to be inserted after optimizations to allow
4221 correlations of simulation runs.
4222 </p>
4223
4224 <h5>Arguments:</h5>
4225
4226 <p>
4227 <tt>id</tt> is a numerical id identifying the marker.
4228 </p>
4229
4230 <h5>Semantics:</h5>
4231
4232 <p>
4233 This intrinsic does not modify the behavior of the program.  Backends that do not 
4234 support this intrinisic may ignore it.
4235 </p>
4236
4237 </div>
4238
4239 <!-- _______________________________________________________________________ -->
4240 <div class="doc_subsubsection">
4241   <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
4242 </div>
4243
4244 <div class="doc_text">
4245
4246 <h5>Syntax:</h5>
4247 <pre>
4248   declare i64 @llvm.readcyclecounter( )
4249 </pre>
4250
4251 <h5>Overview:</h5>
4252
4253
4254 <p>
4255 The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle 
4256 counter register (or similar low latency, high accuracy clocks) on those targets
4257 that support it.  On X86, it should map to RDTSC.  On Alpha, it should map to RPCC.
4258 As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
4259 should only be used for small timings.  
4260 </p>
4261
4262 <h5>Semantics:</h5>
4263
4264 <p>
4265 When directly supported, reading the cycle counter should not modify any memory.  
4266 Implementations are allowed to either return a application specific value or a
4267 system wide value.  On backends without support, this is lowered to a constant 0.
4268 </p>
4269
4270 </div>
4271
4272 <!-- ======================================================================= -->
4273 <div class="doc_subsection">
4274   <a name="int_libc">Standard C Library Intrinsics</a>
4275 </div>
4276
4277 <div class="doc_text">
4278 <p>
4279 LLVM provides intrinsics for a few important standard C library functions.
4280 These intrinsics allow source-language front-ends to pass information about the
4281 alignment of the pointer arguments to the code generator, providing opportunity
4282 for more efficient code generation.
4283 </p>
4284
4285 </div>
4286
4287 <!-- _______________________________________________________________________ -->
4288 <div class="doc_subsubsection">
4289   <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
4290 </div>
4291
4292 <div class="doc_text">
4293
4294 <h5>Syntax:</h5>
4295 <pre>
4296   declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4297                                 i32 &lt;len&gt;, i32 &lt;align&gt;)
4298   declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4299                                 i64 &lt;len&gt;, i32 &lt;align&gt;)
4300 </pre>
4301
4302 <h5>Overview:</h5>
4303
4304 <p>
4305 The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
4306 location to the destination location.
4307 </p>
4308
4309 <p>
4310 Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt> 
4311 intrinsics do not return a value, and takes an extra alignment argument.
4312 </p>
4313
4314 <h5>Arguments:</h5>
4315
4316 <p>
4317 The first argument is a pointer to the destination, the second is a pointer to
4318 the source.  The third argument is an integer argument
4319 specifying the number of bytes to copy, and the fourth argument is the alignment
4320 of the source and destination locations.
4321 </p>
4322
4323 <p>
4324 If the call to this intrinisic has an alignment value that is not 0 or 1, then
4325 the caller guarantees that both the source and destination pointers are aligned
4326 to that boundary.
4327 </p>
4328
4329 <h5>Semantics:</h5>
4330
4331 <p>
4332 The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
4333 location to the destination location, which are not allowed to overlap.  It
4334 copies "len" bytes of memory over.  If the argument is known to be aligned to
4335 some boundary, this can be specified as the fourth argument, otherwise it should
4336 be set to 0 or 1.
4337 </p>
4338 </div>
4339
4340
4341 <!-- _______________________________________________________________________ -->
4342 <div class="doc_subsubsection">
4343   <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
4344 </div>
4345
4346 <div class="doc_text">
4347
4348 <h5>Syntax:</h5>
4349 <pre>
4350   declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4351                                  i32 &lt;len&gt;, i32 &lt;align&gt;)
4352   declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4353                                  i64 &lt;len&gt;, i32 &lt;align&gt;)
4354 </pre>
4355
4356 <h5>Overview:</h5>
4357
4358 <p>
4359 The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
4360 location to the destination location. It is similar to the
4361 '<tt>llvm.memcmp</tt>' intrinsic but allows the two memory locations to overlap.
4362 </p>
4363
4364 <p>
4365 Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt> 
4366 intrinsics do not return a value, and takes an extra alignment argument.
4367 </p>
4368
4369 <h5>Arguments:</h5>
4370
4371 <p>
4372 The first argument is a pointer to the destination, the second is a pointer to
4373 the source.  The third argument is an integer argument
4374 specifying the number of bytes to copy, and the fourth argument is the alignment
4375 of the source and destination locations.
4376 </p>
4377
4378 <p>
4379 If the call to this intrinisic has an alignment value that is not 0 or 1, then
4380 the caller guarantees that the source and destination pointers are aligned to
4381 that boundary.
4382 </p>
4383
4384 <h5>Semantics:</h5>
4385
4386 <p>
4387 The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
4388 location to the destination location, which may overlap.  It
4389 copies "len" bytes of memory over.  If the argument is known to be aligned to
4390 some boundary, this can be specified as the fourth argument, otherwise it should
4391 be set to 0 or 1.
4392 </p>
4393 </div>
4394
4395
4396 <!-- _______________________________________________________________________ -->
4397 <div class="doc_subsubsection">
4398   <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
4399 </div>
4400
4401 <div class="doc_text">
4402
4403 <h5>Syntax:</h5>
4404 <pre>
4405   declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
4406                                 i32 &lt;len&gt;, i32 &lt;align&gt;)
4407   declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
4408                                 i64 &lt;len&gt;, i32 &lt;align&gt;)
4409 </pre>
4410
4411 <h5>Overview:</h5>
4412
4413 <p>
4414 The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
4415 byte value.
4416 </p>
4417
4418 <p>
4419 Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
4420 does not return a value, and takes an extra alignment argument.
4421 </p>
4422
4423 <h5>Arguments:</h5>
4424
4425 <p>
4426 The first argument is a pointer to the destination to fill, the second is the
4427 byte value to fill it with, the third argument is an integer
4428 argument specifying the number of bytes to fill, and the fourth argument is the
4429 known alignment of destination location.
4430 </p>
4431
4432 <p>
4433 If the call to this intrinisic has an alignment value that is not 0 or 1, then
4434 the caller guarantees that the destination pointer is aligned to that boundary.
4435 </p>
4436
4437 <h5>Semantics:</h5>
4438
4439 <p>
4440 The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
4441 the
4442 destination location.  If the argument is known to be aligned to some boundary,
4443 this can be specified as the fourth argument, otherwise it should be set to 0 or
4444 1.
4445 </p>
4446 </div>
4447
4448
4449 <!-- _______________________________________________________________________ -->
4450 <div class="doc_subsubsection">
4451   <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
4452 </div>
4453
4454 <div class="doc_text">
4455
4456 <h5>Syntax:</h5>
4457 <pre>
4458   declare float @llvm.sqrt.f32(float %Val)
4459   declare double @llvm.sqrt.f64(double %Val)
4460 </pre>
4461
4462 <h5>Overview:</h5>
4463
4464 <p>
4465 The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
4466 returning the same value as the libm '<tt>sqrt</tt>' function would.  Unlike
4467 <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
4468 negative numbers (which allows for better optimization).
4469 </p>
4470
4471 <h5>Arguments:</h5>
4472
4473 <p>
4474 The argument and return value are floating point numbers of the same type.
4475 </p>
4476
4477 <h5>Semantics:</h5>
4478
4479 <p>
4480 This function returns the sqrt of the specified operand if it is a nonnegative
4481 floating point number.
4482 </p>
4483 </div>
4484
4485 <!-- _______________________________________________________________________ -->
4486 <div class="doc_subsubsection">
4487   <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
4488 </div>
4489
4490 <div class="doc_text">
4491
4492 <h5>Syntax:</h5>
4493 <pre>
4494   declare float  @llvm.powi.f32(float  %Val, i32 %power)
4495   declare double @llvm.powi.f64(double %Val, i32 %power)
4496 </pre>
4497
4498 <h5>Overview:</h5>
4499
4500 <p>
4501 The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
4502 specified (positive or negative) power.  The order of evaluation of
4503 multiplications is not defined.
4504 </p>
4505
4506 <h5>Arguments:</h5>
4507
4508 <p>
4509 The second argument is an integer power, and the first is a value to raise to
4510 that power.
4511 </p>
4512
4513 <h5>Semantics:</h5>
4514
4515 <p>
4516 This function returns the first value raised to the second power with an
4517 unspecified sequence of rounding operations.</p>
4518 </div>
4519
4520
4521 <!-- ======================================================================= -->
4522 <div class="doc_subsection">
4523   <a name="int_manip">Bit Manipulation Intrinsics</a>
4524 </div>
4525
4526 <div class="doc_text">
4527 <p>
4528 LLVM provides intrinsics for a few important bit manipulation operations.
4529 These allow efficient code generation for some algorithms.
4530 </p>
4531
4532 </div>
4533
4534 <!-- _______________________________________________________________________ -->
4535 <div class="doc_subsubsection">
4536   <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
4537 </div>
4538
4539 <div class="doc_text">
4540
4541 <h5>Syntax:</h5>
4542 <p>This is an overloaded intrinsic function. You can use bswap on any integer
4543 type that is an even number of bytes (i.e. BitWidth % 16 == 0). Note the suffix
4544 that includes the type for the result and the operand.
4545 <pre>
4546   declare i16 @llvm.bswap.i16.i16(i16 &lt;id&gt;)
4547   declare i32 @llvm.bswap.i32.i32(i32 &lt;id&gt;)
4548   declare i64 @llvm.bswap.i64.i64(i64 &lt;id&gt;)
4549 </pre>
4550
4551 <h5>Overview:</h5>
4552
4553 <p>
4554 The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer 
4555 values with an even number of bytes (positive multiple of 16 bits).  These are 
4556 useful for performing operations on data that is not in the target's native 
4557 byte order.
4558 </p>
4559
4560 <h5>Semantics:</h5>
4561
4562 <p>
4563 The <tt>llvm.bswap.16.i16</tt> intrinsic returns an i16 value that has the high 
4564 and low byte of the input i16 swapped.  Similarly, the <tt>llvm.bswap.i32</tt> 
4565 intrinsic returns an i32 value that has the four bytes of the input i32 
4566 swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned 
4567 i32 will have its bytes in 3, 2, 1, 0 order.  The <tt>llvm.bswap.i48.i48</tt>, 
4568 <tt>llvm.bswap.i64.i64</tt> and other intrinsics extend this concept to
4569 additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
4570 </p>
4571
4572 </div>
4573
4574 <!-- _______________________________________________________________________ -->
4575 <div class="doc_subsubsection">
4576   <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
4577 </div>
4578
4579 <div class="doc_text">
4580
4581 <h5>Syntax:</h5>
4582 <p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
4583 width. Not all targets support all bit widths however.
4584 <pre>
4585   declare i32 @llvm.ctpop.i8 (i8  &lt;src&gt;)
4586   declare i32 @llvm.ctpop.i16(i16 &lt;src&gt;)
4587   declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
4588   declare i32 @llvm.ctpop.i64(i64 &lt;src&gt;)
4589   declare i32 @llvm.ctpop.i256(i256 &lt;src&gt;)
4590 </pre>
4591
4592 <h5>Overview:</h5>
4593
4594 <p>
4595 The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a 
4596 value.
4597 </p>
4598
4599 <h5>Arguments:</h5>
4600
4601 <p>
4602 The only argument is the value to be counted.  The argument may be of any
4603 integer type.  The return type must match the argument type.
4604 </p>
4605
4606 <h5>Semantics:</h5>
4607
4608 <p>
4609 The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
4610 </p>
4611 </div>
4612
4613 <!-- _______________________________________________________________________ -->
4614 <div class="doc_subsubsection">
4615   <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
4616 </div>
4617
4618 <div class="doc_text">
4619
4620 <h5>Syntax:</h5>
4621 <p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any 
4622 integer bit width. Not all targets support all bit widths however.
4623 <pre>
4624   declare i32 @llvm.ctlz.i8 (i8  &lt;src&gt;)
4625   declare i32 @llvm.ctlz.i16(i16 &lt;src&gt;)
4626   declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
4627   declare i32 @llvm.ctlz.i64(i64 &lt;src&gt;)
4628   declare i32 @llvm.ctlz.i256(i256 &lt;src&gt;)
4629 </pre>
4630
4631 <h5>Overview:</h5>
4632
4633 <p>
4634 The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of 
4635 leading zeros in a variable.
4636 </p>
4637
4638 <h5>Arguments:</h5>
4639
4640 <p>
4641 The only argument is the value to be counted.  The argument may be of any
4642 integer type. The return type must match the argument type.
4643 </p>
4644
4645 <h5>Semantics:</h5>
4646
4647 <p>
4648 The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
4649 in a variable.  If the src == 0 then the result is the size in bits of the type
4650 of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
4651 </p>
4652 </div>
4653
4654
4655
4656 <!-- _______________________________________________________________________ -->
4657 <div class="doc_subsubsection">
4658   <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
4659 </div>
4660
4661 <div class="doc_text">
4662
4663 <h5>Syntax:</h5>
4664 <p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any 
4665 integer bit width. Not all targets support all bit widths however.
4666 <pre>
4667   declare i32 @llvm.cttz.i8 (i8  &lt;src&gt;)
4668   declare i32 @llvm.cttz.i16(i16 &lt;src&gt;)
4669   declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
4670   declare i32 @llvm.cttz.i64(i64 &lt;src&gt;)
4671   declare i32 @llvm.cttz.i256(i256 &lt;src&gt;)
4672 </pre>
4673
4674 <h5>Overview:</h5>
4675
4676 <p>
4677 The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of 
4678 trailing zeros.
4679 </p>
4680
4681 <h5>Arguments:</h5>
4682
4683 <p>
4684 The only argument is the value to be counted.  The argument may be of any
4685 integer type.  The return type must match the argument type.
4686 </p>
4687
4688 <h5>Semantics:</h5>
4689
4690 <p>
4691 The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
4692 in a variable.  If the src == 0 then the result is the size in bits of the type
4693 of src.  For example, <tt>llvm.cttz(2) = 1</tt>.
4694 </p>
4695 </div>
4696
4697 <!-- _______________________________________________________________________ -->
4698 <div class="doc_subsubsection">
4699   <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
4700 </div>
4701
4702 <div class="doc_text">
4703
4704 <h5>Syntax:</h5>
4705 <p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt> 
4706 on any integer bit width.
4707 <pre>
4708   declare i17 @llvm.part.select.i17.i17 (i17 %val, i32 %loBit, i32 %hiBit)
4709   declare i29 @llvm.part.select.i29.i29 (i29 %val, i32 %loBit, i32 %hiBit)
4710 </pre>
4711
4712 <h5>Overview:</h5>
4713 <p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
4714 range of bits from an integer value and returns them in the same bit width as
4715 the original value.</p>
4716
4717 <h5>Arguments:</h5>
4718 <p>The first argument, <tt>%val</tt> and the result may be integer types of 
4719 any bit width but they must have the same bit width. The second and third 
4720 arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
4721
4722 <h5>Semantics:</h5>
4723 <p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
4724 of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
4725 <tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
4726 operates in forward mode.</p>
4727 <p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
4728 right by <tt>%loBit</tt> bits and then ANDing it with a mask with
4729 only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
4730 <ol>
4731   <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
4732   by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
4733   <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
4734   to determine the number of bits to retain.</li>
4735   <li>A mask of the retained bits is created by shifting a -1 value.</li>
4736   <li>The mask is ANDed with <tt>%val</tt> to produce the result.
4737 </ol>
4738 <p>In reverse mode, a similar computation is made except that the bits are
4739 returned in the reverse order. So, for example, if <tt>X</tt> has the value
4740 <tt>i16 0x0ACF (101011001111)</tt> and we apply 
4741 <tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value 
4742 <tt>i16 0x0026 (000000100110)</tt>.</p>
4743 </div>
4744
4745 <div class="doc_subsubsection">
4746   <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
4747 </div>
4748
4749 <div class="doc_text">
4750
4751 <h5>Syntax:</h5>
4752 <p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt> 
4753 on any integer bit width.
4754 <pre>
4755   declare i17 @llvm.part.set.i17.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
4756   declare i29 @llvm.part.set.i29.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
4757 </pre>
4758
4759 <h5>Overview:</h5>
4760 <p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
4761 of bits in an integer value with another integer value. It returns the integer
4762 with the replaced bits.</p>
4763
4764 <h5>Arguments:</h5>
4765 <p>The first argument, <tt>%val</tt> and the result may be integer types of 
4766 any bit width but they must have the same bit width. <tt>%val</tt> is the value
4767 whose bits will be replaced.  The second argument, <tt>%repl</tt> may be an
4768 integer of any bit width. The third and fourth arguments must be <tt>i32</tt> 
4769 type since they specify only a bit index.</p>
4770
4771 <h5>Semantics:</h5>
4772 <p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
4773 of operation: forwards and reverse. If <tt>%lo</tt> is greater than
4774 <tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
4775 operates in forward mode.</p>
4776 <p>For both modes, the <tt>%repl</tt> value is prepared for use by either
4777 truncating it down to the size of the replacement area or zero extending it 
4778 up to that size.</p>
4779 <p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
4780 are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
4781 in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
4782 to the <tt>%hi</tt>th bit. 
4783 <p>In reverse mode, a similar computation is made except that the bits are
4784 reversed.  That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the 
4785 <tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.
4786 <h5>Examples:</h5>
4787 <pre>
4788   llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
4789   llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
4790   llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
4791   llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
4792   llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
4793 </pre>
4794 </div>
4795
4796 <!-- ======================================================================= -->
4797 <div class="doc_subsection">
4798   <a name="int_debugger">Debugger Intrinsics</a>
4799 </div>
4800
4801 <div class="doc_text">
4802 <p>
4803 The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
4804 are described in the <a
4805 href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
4806 Debugging</a> document.
4807 </p>
4808 </div>
4809
4810
4811 <!-- ======================================================================= -->
4812 <div class="doc_subsection">
4813   <a name="int_eh">Exception Handling Intrinsics</a>
4814 </div>
4815
4816 <div class="doc_text">
4817 <p> The LLVM exception handling intrinsics (which all start with
4818 <tt>llvm.eh.</tt> prefix), are described in the <a
4819 href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
4820 Handling</a> document. </p>
4821 </div>
4822
4823 <!-- ======================================================================= -->
4824 <div class="doc_subsection">
4825   <a name="int_general">General Intrinsics</a>
4826 </div>
4827
4828 <div class="doc_text">
4829 <p> This class of intrinsics is designed to be generic and has
4830 no specific purpose. </p>
4831 </div>
4832
4833 <!-- _______________________________________________________________________ -->
4834 <div class="doc_subsubsection">
4835   <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
4836 </div>
4837
4838 <div class="doc_text">
4839
4840 <h5>Syntax:</h5>
4841 <pre>
4842   declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt; )
4843 </pre>
4844
4845 <h5>Overview:</h5>
4846
4847 <p>
4848 The '<tt>llvm.var.annotation</tt>' intrinsic
4849 </p>
4850
4851 <h5>Arguments:</h5>
4852
4853 <p>
4854 The first argument is a pointer to a value, the second is a pointer to a 
4855 global string, the third is a pointer to a global string which is the source 
4856 file name, and the last argument is the line number.
4857 </p>
4858
4859 <h5>Semantics:</h5>
4860
4861 <p>
4862 This intrinsic allows annotation of local variables with arbitrary strings.  
4863 This can be useful for special purpose optimizations that want to look for these
4864  annotations.  These have no other defined use, they are ignored by code 
4865  generation and optimization.
4866 </div>
4867
4868
4869 <!-- *********************************************************************** -->
4870 <hr>
4871 <address>
4872   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
4873   src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
4874   <a href="http://validator.w3.org/check/referer"><img
4875   src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!" /></a>
4876
4877   <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
4878   <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
4879   Last modified: $Date$
4880 </address>
4881 </body>
4882 </html>