document the byval parameter attribute.
[oota-llvm.git] / docs / LangRef.html
1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2                       "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4 <head>
5   <title>LLVM Assembly Language Reference Manual</title>
6   <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7   <meta name="author" content="Chris Lattner">
8   <meta name="description" 
9   content="LLVM Assembly Language Reference Manual.">
10   <link rel="stylesheet" href="llvm.css" type="text/css">
11 </head>
12
13 <body>
14
15 <div class="doc_title"> LLVM Language Reference Manual </div>
16 <ol>
17   <li><a href="#abstract">Abstract</a></li>
18   <li><a href="#introduction">Introduction</a></li>
19   <li><a href="#identifiers">Identifiers</a></li>
20   <li><a href="#highlevel">High Level Structure</a>
21     <ol>
22       <li><a href="#modulestructure">Module Structure</a></li>
23       <li><a href="#linkage">Linkage Types</a></li>
24       <li><a href="#callingconv">Calling Conventions</a></li>
25       <li><a href="#globalvars">Global Variables</a></li>
26       <li><a href="#functionstructure">Functions</a></li>
27       <li><a href="#aliasstructure">Aliases</a>
28       <li><a href="#paramattrs">Parameter Attributes</a></li>
29       <li><a href="#gc">Garbage Collector Names</a></li>
30       <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
31       <li><a href="#datalayout">Data Layout</a></li>
32     </ol>
33   </li>
34   <li><a href="#typesystem">Type System</a>
35     <ol>
36       <li><a href="#t_classifications">Type Classifications</a></li>
37       <li><a href="#t_primitive">Primitive Types</a>    
38         <ol>
39           <li><a href="#t_floating">Floating Point Types</a></li>
40           <li><a href="#t_void">Void Type</a></li>
41           <li><a href="#t_label">Label Type</a></li>
42         </ol>
43       </li>
44       <li><a href="#t_derived">Derived Types</a>
45         <ol>
46           <li><a href="#t_integer">Integer Type</a></li>
47           <li><a href="#t_array">Array Type</a></li>
48           <li><a href="#t_function">Function Type</a></li>
49           <li><a href="#t_pointer">Pointer Type</a></li>
50           <li><a href="#t_struct">Structure Type</a></li>
51           <li><a href="#t_pstruct">Packed Structure Type</a></li>
52           <li><a href="#t_vector">Vector Type</a></li>
53           <li><a href="#t_opaque">Opaque Type</a></li>
54         </ol>
55       </li>
56     </ol>
57   </li>
58   <li><a href="#constants">Constants</a>
59     <ol>
60       <li><a href="#simpleconstants">Simple Constants</a>
61       <li><a href="#aggregateconstants">Aggregate Constants</a>
62       <li><a href="#globalconstants">Global Variable and Function Addresses</a>
63       <li><a href="#undefvalues">Undefined Values</a>
64       <li><a href="#constantexprs">Constant Expressions</a>
65     </ol>
66   </li>
67   <li><a href="#othervalues">Other Values</a>
68     <ol>
69       <li><a href="#inlineasm">Inline Assembler Expressions</a>
70     </ol>
71   </li>
72   <li><a href="#instref">Instruction Reference</a>
73     <ol>
74       <li><a href="#terminators">Terminator Instructions</a>
75         <ol>
76           <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
77           <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
78           <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
79           <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
80           <li><a href="#i_unwind">'<tt>unwind</tt>'  Instruction</a></li>
81           <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
82         </ol>
83       </li>
84       <li><a href="#binaryops">Binary Operations</a>
85         <ol>
86           <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
87           <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
88           <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
89           <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
90           <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
91           <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
92           <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
93           <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
94           <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
95         </ol>
96       </li>
97       <li><a href="#bitwiseops">Bitwise Binary Operations</a>
98         <ol>
99           <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
100           <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
101           <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
102           <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
103           <li><a href="#i_or">'<tt>or</tt>'  Instruction</a></li>
104           <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
105         </ol>
106       </li>
107       <li><a href="#vectorops">Vector Operations</a>
108         <ol>
109           <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
110           <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
111           <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
112         </ol>
113       </li>
114       <li><a href="#memoryops">Memory Access and Addressing Operations</a>
115         <ol>
116           <li><a href="#i_malloc">'<tt>malloc</tt>'   Instruction</a></li>
117           <li><a href="#i_free">'<tt>free</tt>'     Instruction</a></li>
118           <li><a href="#i_alloca">'<tt>alloca</tt>'   Instruction</a></li>
119          <li><a href="#i_load">'<tt>load</tt>'     Instruction</a></li>
120          <li><a href="#i_store">'<tt>store</tt>'    Instruction</a></li>
121          <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
122         </ol>
123       </li>
124       <li><a href="#convertops">Conversion Operations</a>
125         <ol>
126           <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
127           <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
128           <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
129           <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
130           <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
131           <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
132           <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
133           <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
134           <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
135           <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
136           <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
137           <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
138         </ol>
139       <li><a href="#otherops">Other Operations</a>
140         <ol>
141           <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
142           <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
143           <li><a href="#i_phi">'<tt>phi</tt>'   Instruction</a></li>
144           <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
145           <li><a href="#i_call">'<tt>call</tt>'  Instruction</a></li>
146           <li><a href="#i_va_arg">'<tt>va_arg</tt>'  Instruction</a></li>
147         </ol>
148       </li>
149     </ol>
150   </li>
151   <li><a href="#intrinsics">Intrinsic Functions</a>
152     <ol>
153       <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
154         <ol>
155           <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
156           <li><a href="#int_va_end">'<tt>llvm.va_end</tt>'   Intrinsic</a></li>
157           <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>'  Intrinsic</a></li>
158         </ol>
159       </li>
160       <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
161         <ol>
162           <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
163           <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
164           <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
165         </ol>
166       </li>
167       <li><a href="#int_codegen">Code Generator Intrinsics</a>
168         <ol>
169           <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
170           <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>'   Intrinsic</a></li>
171           <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
172           <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
173           <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
174           <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
175           <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
176         </ol>
177       </li>
178       <li><a href="#int_libc">Standard C Library Intrinsics</a>
179         <ol>
180           <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
181           <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
182           <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
183           <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
184           <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
185           <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
186           <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
187           <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
188         </ol>
189       </li>
190       <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
191         <ol>
192           <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
193           <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
194           <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
195           <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
196           <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
197           <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
198         </ol>
199       </li>
200       <li><a href="#int_debugger">Debugger intrinsics</a></li>
201       <li><a href="#int_eh">Exception Handling intrinsics</a></li>
202       <li><a href="#int_trampoline">Trampoline Intrinsic</a>
203         <ol>
204           <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
205         </ol>
206       </li>
207       <li><a href="#int_general">General intrinsics</a>
208         <ol>
209           <li><a href="#int_var_annotation">
210             <tt>llvm.var.annotation</tt>' Intrinsic</a></li>
211         </ol>
212         <ol>
213           <li><a href="#int_annotation">
214             <tt>llvm.annotation.*</tt>' Intrinsic</a></li>
215         </ol>
216       </li>
217     </ol>
218   </li>
219 </ol>
220
221 <div class="doc_author">
222   <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
223             and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
224 </div>
225
226 <!-- *********************************************************************** -->
227 <div class="doc_section"> <a name="abstract">Abstract </a></div>
228 <!-- *********************************************************************** -->
229
230 <div class="doc_text">
231 <p>This document is a reference manual for the LLVM assembly language. 
232 LLVM is an SSA based representation that provides type safety,
233 low-level operations, flexibility, and the capability of representing
234 'all' high-level languages cleanly.  It is the common code
235 representation used throughout all phases of the LLVM compilation
236 strategy.</p>
237 </div>
238
239 <!-- *********************************************************************** -->
240 <div class="doc_section"> <a name="introduction">Introduction</a> </div>
241 <!-- *********************************************************************** -->
242
243 <div class="doc_text">
244
245 <p>The LLVM code representation is designed to be used in three
246 different forms: as an in-memory compiler IR, as an on-disk bitcode
247 representation (suitable for fast loading by a Just-In-Time compiler),
248 and as a human readable assembly language representation.  This allows
249 LLVM to provide a powerful intermediate representation for efficient
250 compiler transformations and analysis, while providing a natural means
251 to debug and visualize the transformations.  The three different forms
252 of LLVM are all equivalent.  This document describes the human readable
253 representation and notation.</p>
254
255 <p>The LLVM representation aims to be light-weight and low-level
256 while being expressive, typed, and extensible at the same time.  It
257 aims to be a "universal IR" of sorts, by being at a low enough level
258 that high-level ideas may be cleanly mapped to it (similar to how
259 microprocessors are "universal IR's", allowing many source languages to
260 be mapped to them).  By providing type information, LLVM can be used as
261 the target of optimizations: for example, through pointer analysis, it
262 can be proven that a C automatic variable is never accessed outside of
263 the current function... allowing it to be promoted to a simple SSA
264 value instead of a memory location.</p>
265
266 </div>
267
268 <!-- _______________________________________________________________________ -->
269 <div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
270
271 <div class="doc_text">
272
273 <p>It is important to note that this document describes 'well formed'
274 LLVM assembly language.  There is a difference between what the parser
275 accepts and what is considered 'well formed'.  For example, the
276 following instruction is syntactically okay, but not well formed:</p>
277
278 <div class="doc_code">
279 <pre>
280 %x = <a href="#i_add">add</a> i32 1, %x
281 </pre>
282 </div>
283
284 <p>...because the definition of <tt>%x</tt> does not dominate all of
285 its uses. The LLVM infrastructure provides a verification pass that may
286 be used to verify that an LLVM module is well formed.  This pass is
287 automatically run by the parser after parsing input assembly and by
288 the optimizer before it outputs bitcode.  The violations pointed out
289 by the verifier pass indicate bugs in transformation passes or input to
290 the parser.</p>
291 </div>
292
293 <!-- Describe the typesetting conventions here. -->
294
295 <!-- *********************************************************************** -->
296 <div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
297 <!-- *********************************************************************** -->
298
299 <div class="doc_text">
300
301   <p>LLVM identifiers come in two basic types: global and local. Global
302   identifiers (functions, global variables) begin with the @ character. Local
303   identifiers (register names, types) begin with the % character. Additionally,
304   there are three different formats for identifiers, for different purposes:
305
306 <ol>
307   <li>Named values are represented as a string of characters with their prefix.
308   For example, %foo, @DivisionByZero, %a.really.long.identifier.  The actual
309   regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
310   Identifiers which require other characters in their names can be surrounded
311   with quotes.  In this way, anything except a <tt>&quot;</tt> character can 
312   be used in a named value.</li>
313
314   <li>Unnamed values are represented as an unsigned numeric value with their
315   prefix.  For example, %12, @2, %44.</li>
316
317   <li>Constants, which are described in a <a href="#constants">section about
318   constants</a>, below.</li>
319 </ol>
320
321 <p>LLVM requires that values start with a prefix for two reasons: Compilers
322 don't need to worry about name clashes with reserved words, and the set of
323 reserved words may be expanded in the future without penalty.  Additionally,
324 unnamed identifiers allow a compiler to quickly come up with a temporary
325 variable without having to avoid symbol table conflicts.</p>
326
327 <p>Reserved words in LLVM are very similar to reserved words in other
328 languages. There are keywords for different opcodes 
329 ('<tt><a href="#i_add">add</a></tt>', 
330  '<tt><a href="#i_bitcast">bitcast</a></tt>', 
331  '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
332 href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
333 and others.  These reserved words cannot conflict with variable names, because
334 none of them start with a prefix character ('%' or '@').</p>
335
336 <p>Here is an example of LLVM code to multiply the integer variable
337 '<tt>%X</tt>' by 8:</p>
338
339 <p>The easy way:</p>
340
341 <div class="doc_code">
342 <pre>
343 %result = <a href="#i_mul">mul</a> i32 %X, 8
344 </pre>
345 </div>
346
347 <p>After strength reduction:</p>
348
349 <div class="doc_code">
350 <pre>
351 %result = <a href="#i_shl">shl</a> i32 %X, i8 3
352 </pre>
353 </div>
354
355 <p>And the hard way:</p>
356
357 <div class="doc_code">
358 <pre>
359 <a href="#i_add">add</a> i32 %X, %X           <i>; yields {i32}:%0</i>
360 <a href="#i_add">add</a> i32 %0, %0           <i>; yields {i32}:%1</i>
361 %result = <a href="#i_add">add</a> i32 %1, %1
362 </pre>
363 </div>
364
365 <p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
366 important lexical features of LLVM:</p>
367
368 <ol>
369
370   <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
371   line.</li>
372
373   <li>Unnamed temporaries are created when the result of a computation is not
374   assigned to a named value.</li>
375
376   <li>Unnamed temporaries are numbered sequentially</li>
377
378 </ol>
379
380 <p>...and it also shows a convention that we follow in this document.  When
381 demonstrating instructions, we will follow an instruction with a comment that
382 defines the type and name of value produced.  Comments are shown in italic
383 text.</p>
384
385 </div>
386
387 <!-- *********************************************************************** -->
388 <div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
389 <!-- *********************************************************************** -->
390
391 <!-- ======================================================================= -->
392 <div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
393 </div>
394
395 <div class="doc_text">
396
397 <p>LLVM programs are composed of "Module"s, each of which is a
398 translation unit of the input programs.  Each module consists of
399 functions, global variables, and symbol table entries.  Modules may be
400 combined together with the LLVM linker, which merges function (and
401 global variable) definitions, resolves forward declarations, and merges
402 symbol table entries. Here is an example of the "hello world" module:</p>
403
404 <div class="doc_code">
405 <pre><i>; Declare the string constant as a global constant...</i>
406 <a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
407  href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00"          <i>; [13 x i8]*</i>
408
409 <i>; External declaration of the puts function</i>
410 <a href="#functionstructure">declare</a> i32 @puts(i8 *)                                            <i>; i32(i8 *)* </i>
411
412 <i>; Definition of main function</i>
413 define i32 @main() {                                                 <i>; i32()* </i>
414         <i>; Convert [13x i8 ]* to i8  *...</i>
415         %cast210 = <a
416  href="#i_getelementptr">getelementptr</a> [13 x i8 ]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
417
418         <i>; Call puts function to write out the string to stdout...</i>
419         <a
420  href="#i_call">call</a> i32 @puts(i8 * %cast210)                              <i>; i32</i>
421         <a
422  href="#i_ret">ret</a> i32 0<br>}<br>
423 </pre>
424 </div>
425
426 <p>This example is made up of a <a href="#globalvars">global variable</a>
427 named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
428 function, and a <a href="#functionstructure">function definition</a>
429 for "<tt>main</tt>".</p>
430
431 <p>In general, a module is made up of a list of global values,
432 where both functions and global variables are global values.  Global values are
433 represented by a pointer to a memory location (in this case, a pointer to an
434 array of char, and a pointer to a function), and have one of the following <a
435 href="#linkage">linkage types</a>.</p>
436
437 </div>
438
439 <!-- ======================================================================= -->
440 <div class="doc_subsection">
441   <a name="linkage">Linkage Types</a>
442 </div>
443
444 <div class="doc_text">
445
446 <p>
447 All Global Variables and Functions have one of the following types of linkage:
448 </p>
449
450 <dl>
451
452   <dt><tt><b><a name="linkage_internal">internal</a></b></tt> </dt>
453
454   <dd>Global values with internal linkage are only directly accessible by
455   objects in the current module.  In particular, linking code into a module with
456   an internal global value may cause the internal to be renamed as necessary to
457   avoid collisions.  Because the symbol is internal to the module, all
458   references can be updated.  This corresponds to the notion of the
459   '<tt>static</tt>' keyword in C.
460   </dd>
461
462   <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
463
464   <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
465   the same name when linkage occurs.  This is typically used to implement 
466   inline functions, templates, or other code which must be generated in each 
467   translation unit that uses it.  Unreferenced <tt>linkonce</tt> globals are 
468   allowed to be discarded.
469   </dd>
470
471   <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
472
473   <dd>"<tt>weak</tt>" linkage is exactly the same as <tt>linkonce</tt> linkage,
474   except that unreferenced <tt>weak</tt> globals may not be discarded.  This is
475   used for globals that may be emitted in multiple translation units, but that
476   are not guaranteed to be emitted into every translation unit that uses them.
477   One example of this are common globals in C, such as "<tt>int X;</tt>" at 
478   global scope.
479   </dd>
480
481   <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
482
483   <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
484   pointer to array type.  When two global variables with appending linkage are
485   linked together, the two global arrays are appended together.  This is the
486   LLVM, typesafe, equivalent of having the system linker append together
487   "sections" with identical names when .o files are linked.
488   </dd>
489
490   <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
491   <dd>The semantics of this linkage follow the ELF model: the symbol is weak
492     until linked, if not linked, the symbol becomes null instead of being an
493     undefined reference.
494   </dd>
495
496   <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
497
498   <dd>If none of the above identifiers are used, the global is externally
499   visible, meaning that it participates in linkage and can be used to resolve
500   external symbol references.
501   </dd>
502 </dl>
503
504   <p>
505   The next two types of linkage are targeted for Microsoft Windows platform
506   only. They are designed to support importing (exporting) symbols from (to)
507   DLLs.
508   </p>
509
510   <dl>
511   <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
512
513   <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
514     or variable via a global pointer to a pointer that is set up by the DLL
515     exporting the symbol. On Microsoft Windows targets, the pointer name is
516     formed by combining <code>_imp__</code> and the function or variable name.
517   </dd>
518
519   <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
520
521   <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
522     pointer to a pointer in a DLL, so that it can be referenced with the
523     <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
524     name is formed by combining <code>_imp__</code> and the function or variable
525     name.
526   </dd>
527
528 </dl>
529
530 <p><a name="linkage_external"></a>For example, since the "<tt>.LC0</tt>"
531 variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
532 variable and was linked with this one, one of the two would be renamed,
533 preventing a collision.  Since "<tt>main</tt>" and "<tt>puts</tt>" are
534 external (i.e., lacking any linkage declarations), they are accessible
535 outside of the current module.</p>
536 <p>It is illegal for a function <i>declaration</i>
537 to have any linkage type other than "externally visible", <tt>dllimport</tt>,
538 or <tt>extern_weak</tt>.</p>
539 <p>Aliases can have only <tt>external</tt>, <tt>internal</tt> and <tt>weak</tt>
540 linkages.
541 </div>
542
543 <!-- ======================================================================= -->
544 <div class="doc_subsection">
545   <a name="callingconv">Calling Conventions</a>
546 </div>
547
548 <div class="doc_text">
549
550 <p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
551 and <a href="#i_invoke">invokes</a> can all have an optional calling convention
552 specified for the call.  The calling convention of any pair of dynamic
553 caller/callee must match, or the behavior of the program is undefined.  The
554 following calling conventions are supported by LLVM, and more may be added in
555 the future:</p>
556
557 <dl>
558   <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
559
560   <dd>This calling convention (the default if no other calling convention is
561   specified) matches the target C calling conventions.  This calling convention
562   supports varargs function calls and tolerates some mismatch in the declared
563   prototype and implemented declaration of the function (as does normal C). 
564   </dd>
565
566   <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
567
568   <dd>This calling convention attempts to make calls as fast as possible
569   (e.g. by passing things in registers).  This calling convention allows the
570   target to use whatever tricks it wants to produce fast code for the target,
571   without having to conform to an externally specified ABI.  Implementations of
572   this convention should allow arbitrary tail call optimization to be supported.
573   This calling convention does not support varargs and requires the prototype of
574   all callees to exactly match the prototype of the function definition.
575   </dd>
576
577   <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
578
579   <dd>This calling convention attempts to make code in the caller as efficient
580   as possible under the assumption that the call is not commonly executed.  As
581   such, these calls often preserve all registers so that the call does not break
582   any live ranges in the caller side.  This calling convention does not support
583   varargs and requires the prototype of all callees to exactly match the
584   prototype of the function definition.
585   </dd>
586
587   <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
588
589   <dd>Any calling convention may be specified by number, allowing
590   target-specific calling conventions to be used.  Target specific calling
591   conventions start at 64.
592   </dd>
593 </dl>
594
595 <p>More calling conventions can be added/defined on an as-needed basis, to
596 support pascal conventions or any other well-known target-independent
597 convention.</p>
598
599 </div>
600
601 <!-- ======================================================================= -->
602 <div class="doc_subsection">
603   <a name="visibility">Visibility Styles</a>
604 </div>
605
606 <div class="doc_text">
607
608 <p>
609 All Global Variables and Functions have one of the following visibility styles:
610 </p>
611
612 <dl>
613   <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
614
615   <dd>On ELF, default visibility means that the declaration is visible to other
616     modules and, in shared libraries, means that the declared entity may be
617     overridden. On Darwin, default visibility means that the declaration is
618     visible to other modules. Default visibility corresponds to "external
619     linkage" in the language.
620   </dd>
621
622   <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
623
624   <dd>Two declarations of an object with hidden visibility refer to the same
625     object if they are in the same shared object. Usually, hidden visibility
626     indicates that the symbol will not be placed into the dynamic symbol table,
627     so no other module (executable or shared library) can reference it
628     directly.
629   </dd>
630
631   <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
632
633   <dd>On ELF, protected visibility indicates that the symbol will be placed in
634   the dynamic symbol table, but that references within the defining module will
635   bind to the local symbol. That is, the symbol cannot be overridden by another
636   module.
637   </dd>
638 </dl>
639
640 </div>
641
642 <!-- ======================================================================= -->
643 <div class="doc_subsection">
644   <a name="globalvars">Global Variables</a>
645 </div>
646
647 <div class="doc_text">
648
649 <p>Global variables define regions of memory allocated at compilation time
650 instead of run-time.  Global variables may optionally be initialized, may have
651 an explicit section to be placed in, and may have an optional explicit alignment
652 specified.  A variable may be defined as "thread_local", which means that it
653 will not be shared by threads (each thread will have a separated copy of the
654 variable).  A variable may be defined as a global "constant," which indicates
655 that the contents of the variable will <b>never</b> be modified (enabling better
656 optimization, allowing the global data to be placed in the read-only section of
657 an executable, etc).  Note that variables that need runtime initialization
658 cannot be marked "constant" as there is a store to the variable.</p>
659
660 <p>
661 LLVM explicitly allows <em>declarations</em> of global variables to be marked
662 constant, even if the final definition of the global is not.  This capability
663 can be used to enable slightly better optimization of the program, but requires
664 the language definition to guarantee that optimizations based on the
665 'constantness' are valid for the translation units that do not include the
666 definition.
667 </p>
668
669 <p>As SSA values, global variables define pointer values that are in
670 scope (i.e. they dominate) all basic blocks in the program.  Global
671 variables always define a pointer to their "content" type because they
672 describe a region of memory, and all memory objects in LLVM are
673 accessed through pointers.</p>
674
675 <p>A global variable may be declared to reside in a target-specifc numbered 
676 address space. For targets that support them, address spaces may affect how
677 optimizations are performed and/or what target instructions are used to access 
678 the variable. The default address space is zero. The address space qualifier 
679 must precede any other attributes.</p>
680
681 <p>LLVM allows an explicit section to be specified for globals.  If the target
682 supports it, it will emit globals to the section specified.</p>
683
684 <p>An explicit alignment may be specified for a global.  If not present, or if
685 the alignment is set to zero, the alignment of the global is set by the target
686 to whatever it feels convenient.  If an explicit alignment is specified, the 
687 global is forced to have at least that much alignment.  All alignments must be
688 a power of 2.</p>
689
690 <p>For example, the following defines a global in a numbered address space with 
691 an initializer, section, and alignment:</p>
692
693 <div class="doc_code">
694 <pre>
695 @G = constant float 1.0 addrspace(5), section "foo", align 4
696 </pre>
697 </div>
698
699 </div>
700
701
702 <!-- ======================================================================= -->
703 <div class="doc_subsection">
704   <a name="functionstructure">Functions</a>
705 </div>
706
707 <div class="doc_text">
708
709 <p>LLVM function definitions consist of the "<tt>define</tt>" keyord, 
710 an optional <a href="#linkage">linkage type</a>, an optional 
711 <a href="#visibility">visibility style</a>, an optional 
712 <a href="#callingconv">calling convention</a>, a return type, an optional
713 <a href="#paramattrs">parameter attribute</a> for the return type, a function 
714 name, a (possibly empty) argument list (each with optional 
715 <a href="#paramattrs">parameter attributes</a>), an optional section, an
716 optional alignment, an optional <a href="#gc">garbage collector name</a>, an
717 opening curly brace, a list of basic blocks, and a closing curly brace.
718
719 LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
720 optional <a href="#linkage">linkage type</a>, an optional
721 <a href="#visibility">visibility style</a>, an optional 
722 <a href="#callingconv">calling convention</a>, a return type, an optional
723 <a href="#paramattrs">parameter attribute</a> for the return type, a function 
724 name, a possibly empty list of arguments, an optional alignment, and an optional
725 <a href="#gc">garbage collector name</a>.</p>
726
727 <p>A function definition contains a list of basic blocks, forming the CFG for
728 the function.  Each basic block may optionally start with a label (giving the
729 basic block a symbol table entry), contains a list of instructions, and ends
730 with a <a href="#terminators">terminator</a> instruction (such as a branch or
731 function return).</p>
732
733 <p>The first basic block in a function is special in two ways: it is immediately
734 executed on entrance to the function, and it is not allowed to have predecessor
735 basic blocks (i.e. there can not be any branches to the entry block of a
736 function).  Because the block can have no predecessors, it also cannot have any
737 <a href="#i_phi">PHI nodes</a>.</p>
738
739 <p>LLVM allows an explicit section to be specified for functions.  If the target
740 supports it, it will emit functions to the section specified.</p>
741
742 <p>An explicit alignment may be specified for a function.  If not present, or if
743 the alignment is set to zero, the alignment of the function is set by the target
744 to whatever it feels convenient.  If an explicit alignment is specified, the
745 function is forced to have at least that much alignment.  All alignments must be
746 a power of 2.</p>
747
748 </div>
749
750
751 <!-- ======================================================================= -->
752 <div class="doc_subsection">
753   <a name="aliasstructure">Aliases</a>
754 </div>
755 <div class="doc_text">
756   <p>Aliases act as "second name" for the aliasee value (which can be either
757   function or global variable or bitcast of global value). Aliases may have an
758   optional <a href="#linkage">linkage type</a>, and an
759   optional <a href="#visibility">visibility style</a>.</p>
760
761   <h5>Syntax:</h5>
762
763 <div class="doc_code">
764 <pre>
765 @&lt;Name&gt; = [Linkage] [Visibility] alias &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
766 </pre>
767 </div>
768
769 </div>
770
771
772
773 <!-- ======================================================================= -->
774 <div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
775 <div class="doc_text">
776   <p>The return type and each parameter of a function type may have a set of
777   <i>parameter attributes</i> associated with them. Parameter attributes are
778   used to communicate additional information about the result or parameters of
779   a function. Parameter attributes are considered to be part of the function,
780   not of the function type, so functions with different parameter attributes
781   can have the same function type.</p>
782
783   <p>Parameter attributes are simple keywords that follow the type specified. If
784   multiple parameter attributes are needed, they are space separated. For 
785   example:</p>
786
787 <div class="doc_code">
788 <pre>
789 declare i32 @printf(i8* noalias , ...) nounwind
790 declare i32 @atoi(i8*) nounwind readonly
791 </pre>
792 </div>
793
794   <p>Note that any attributes for the function result (<tt>nounwind</tt>,
795   <tt>readonly</tt>) come immediately after the argument list.</p>
796
797   <p>Currently, only the following parameter attributes are defined:</p>
798   <dl>
799     <dt><tt>zeroext</tt></dt>
800     <dd>This indicates that the parameter should be zero extended just before
801     a call to this function.</dd>
802
803     <dt><tt>signext</tt></dt>
804     <dd>This indicates that the parameter should be sign extended just before
805     a call to this function.</dd>
806
807     <dt><tt>inreg</tt></dt>
808     <dd>This indicates that the parameter should be placed in register (if
809     possible) during assembling function call. Support for this attribute is
810     target-specific</dd>
811
812     <dt><tt>byval</tt></dt>
813     <dd>This indicates that the pointer parameter is really an aggregate that
814     was passed by value to the function.  The attribute implies that a hidden
815     copy of the struct is made between the caller and the callee, so the
816     callee is unable to modify the struct in the callee.  This attribute is only
817     valid on llvm pointer arguments.</dd>
818
819     <dt><tt>sret</tt></dt>
820     <dd>This indicates that the parameter specifies the address of a structure
821     that is the return value of the function in the source program.</dd>
822
823     <dt><tt>noalias</tt></dt>
824     <dd>This indicates that the parameter not alias any other object or any 
825     other "noalias" objects during the function call.
826
827     <dt><tt>noreturn</tt></dt>
828     <dd>This function attribute indicates that the function never returns. This
829     indicates to LLVM that every call to this function should be treated as if
830     an <tt>unreachable</tt> instruction immediately followed the call.</dd> 
831
832     <dt><tt>nounwind</tt></dt>
833     <dd>This function attribute indicates that the function type does not use
834     the unwind instruction and does not allow stack unwinding to propagate
835     through it.</dd>
836     
837     <dt><tt>nest</tt></dt>
838     <dd>This indicates that the parameter can be excised using the
839     <a href="#int_trampoline">trampoline intrinsics</a>.</dd>
840     <dt><tt>readonly</tt></dt>
841     <dd>This function attribute indicates that the function has no side-effects
842     except for producing a return value or throwing an exception.  The value
843     returned must only depend on the function arguments and/or global variables.
844     It may use values obtained by dereferencing pointers.</dd>
845     <dt><tt>readnone</tt></dt>
846     <dd>A <tt>readnone</tt> function has the same restrictions as a <tt>readonly</tt>
847     function, but in addition it is not allowed to dereference any pointer arguments
848     or global variables.
849   </dl>
850
851 </div>
852
853 <!-- ======================================================================= -->
854 <div class="doc_subsection">
855   <a name="gc">Garbage Collector Names</a>
856 </div>
857
858 <div class="doc_text">
859 <p>Each function may specify a garbage collector name, which is simply a
860 string.</p>
861
862 <div class="doc_code"><pre
863 >define void @f() gc "name" { ...</pre></div>
864
865 <p>The compiler declares the supported values of <i>name</i>. Specifying a
866 collector which will cause the compiler to alter its output in order to support
867 the named garbage collection algorithm.</p>
868 </div>
869
870 <!-- ======================================================================= -->
871 <div class="doc_subsection">
872   <a name="moduleasm">Module-Level Inline Assembly</a>
873 </div>
874
875 <div class="doc_text">
876 <p>
877 Modules may contain "module-level inline asm" blocks, which corresponds to the
878 GCC "file scope inline asm" blocks.  These blocks are internally concatenated by
879 LLVM and treated as a single unit, but may be separated in the .ll file if
880 desired.  The syntax is very simple:
881 </p>
882
883 <div class="doc_code">
884 <pre>
885 module asm "inline asm code goes here"
886 module asm "more can go here"
887 </pre>
888 </div>
889
890 <p>The strings can contain any character by escaping non-printable characters.
891    The escape sequence used is simply "\xx" where "xx" is the two digit hex code
892    for the number.
893 </p>
894
895 <p>
896   The inline asm code is simply printed to the machine code .s file when
897   assembly code is generated.
898 </p>
899 </div>
900
901 <!-- ======================================================================= -->
902 <div class="doc_subsection">
903   <a name="datalayout">Data Layout</a>
904 </div>
905
906 <div class="doc_text">
907 <p>A module may specify a target specific data layout string that specifies how
908 data is to be laid out in memory. The syntax for the data layout is simply:</p>
909 <pre>    target datalayout = "<i>layout specification</i>"</pre>
910 <p>The <i>layout specification</i> consists of a list of specifications 
911 separated by the minus sign character ('-').  Each specification starts with a 
912 letter and may include other information after the letter to define some 
913 aspect of the data layout.  The specifications accepted are as follows: </p>
914 <dl>
915   <dt><tt>E</tt></dt>
916   <dd>Specifies that the target lays out data in big-endian form. That is, the
917   bits with the most significance have the lowest address location.</dd>
918   <dt><tt>e</tt></dt>
919   <dd>Specifies that hte target lays out data in little-endian form. That is,
920   the bits with the least significance have the lowest address location.</dd>
921   <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
922   <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and 
923   <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
924   alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
925   too.</dd>
926   <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
927   <dd>This specifies the alignment for an integer type of a given bit
928   <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
929   <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
930   <dd>This specifies the alignment for a vector type of a given bit 
931   <i>size</i>.</dd>
932   <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
933   <dd>This specifies the alignment for a floating point type of a given bit 
934   <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
935   (double).</dd>
936   <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
937   <dd>This specifies the alignment for an aggregate type of a given bit
938   <i>size</i>.</dd>
939 </dl>
940 <p>When constructing the data layout for a given target, LLVM starts with a
941 default set of specifications which are then (possibly) overriden by the
942 specifications in the <tt>datalayout</tt> keyword. The default specifications
943 are given in this list:</p>
944 <ul>
945   <li><tt>E</tt> - big endian</li>
946   <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
947   <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
948   <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
949   <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
950   <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
951   <li><tt>i64:32:64</tt> - i64 has abi alignment of 32-bits but preferred
952   alignment of 64-bits</li>
953   <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
954   <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
955   <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
956   <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
957   <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
958 </ul>
959 <p>When llvm is determining the alignment for a given type, it uses the 
960 following rules:
961 <ol>
962   <li>If the type sought is an exact match for one of the specifications, that
963   specification is used.</li>
964   <li>If no match is found, and the type sought is an integer type, then the
965   smallest integer type that is larger than the bitwidth of the sought type is
966   used. If none of the specifications are larger than the bitwidth then the the
967   largest integer type is used. For example, given the default specifications
968   above, the i7 type will use the alignment of i8 (next largest) while both
969   i65 and i256 will use the alignment of i64 (largest specified).</li>
970   <li>If no match is found, and the type sought is a vector type, then the
971   largest vector type that is smaller than the sought vector type will be used
972   as a fall back.  This happens because <128 x double> can be implemented in 
973   terms of 64 <2 x double>, for example.</li>
974 </ol>
975 </div>
976
977 <!-- *********************************************************************** -->
978 <div class="doc_section"> <a name="typesystem">Type System</a> </div>
979 <!-- *********************************************************************** -->
980
981 <div class="doc_text">
982
983 <p>The LLVM type system is one of the most important features of the
984 intermediate representation.  Being typed enables a number of
985 optimizations to be performed on the IR directly, without having to do
986 extra analyses on the side before the transformation.  A strong type
987 system makes it easier to read the generated code and enables novel
988 analyses and transformations that are not feasible to perform on normal
989 three address code representations.</p>
990
991 </div>
992
993 <!-- ======================================================================= -->
994 <div class="doc_subsection"> <a name="t_classifications">Type
995 Classifications</a> </div>
996 <div class="doc_text">
997 <p>The types fall into a few useful
998 classifications:</p>
999
1000 <table border="1" cellspacing="0" cellpadding="4">
1001   <tbody>
1002     <tr><th>Classification</th><th>Types</th></tr>
1003     <tr>
1004       <td><a href="#t_integer">integer</a></td>
1005       <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
1006     </tr>
1007     <tr>
1008       <td><a href="#t_floating">floating point</a></td>
1009       <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
1010     </tr>
1011     <tr>
1012       <td><a name="t_firstclass">first class</a></td>
1013       <td><a href="#t_integer">integer</a>,
1014           <a href="#t_floating">floating point</a>,
1015           <a href="#t_pointer">pointer</a>,
1016           <a href="#t_vector">vector</a>
1017       </td>
1018     </tr>
1019     <tr>
1020       <td><a href="#t_primitive">primitive</a></td>
1021       <td><a href="#t_label">label</a>,
1022           <a href="#t_void">void</a>,
1023           <a href="#t_integer">integer</a>,
1024           <a href="#t_floating">floating point</a>.</td>
1025     </tr>
1026     <tr>
1027       <td><a href="#t_derived">derived</a></td>
1028       <td><a href="#t_integer">integer</a>,
1029           <a href="#t_array">array</a>,
1030           <a href="#t_function">function</a>,
1031           <a href="#t_pointer">pointer</a>,
1032           <a href="#t_struct">structure</a>,
1033           <a href="#t_pstruct">packed structure</a>,
1034           <a href="#t_vector">vector</a>,
1035           <a href="#t_opaque">opaque</a>.
1036     </tr>
1037   </tbody>
1038 </table>
1039
1040 <p>The <a href="#t_firstclass">first class</a> types are perhaps the
1041 most important.  Values of these types are the only ones which can be
1042 produced by instructions, passed as arguments, or used as operands to
1043 instructions.  This means that all structures and arrays must be
1044 manipulated either by pointer or by component.</p>
1045 </div>
1046
1047 <!-- ======================================================================= -->
1048 <div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
1049
1050 <div class="doc_text">
1051 <p>The primitive types are the fundamental building blocks of the LLVM
1052 system.</p>
1053
1054 </div>
1055
1056 <!-- _______________________________________________________________________ -->
1057 <div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1058
1059 <div class="doc_text">
1060       <table>
1061         <tbody>
1062           <tr><th>Type</th><th>Description</th></tr>
1063           <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1064           <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1065           <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1066           <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1067           <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1068         </tbody>
1069       </table>
1070 </div>
1071
1072 <!-- _______________________________________________________________________ -->
1073 <div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1074
1075 <div class="doc_text">
1076 <h5>Overview:</h5>
1077 <p>The void type does not represent any value and has no size.</p>
1078
1079 <h5>Syntax:</h5>
1080
1081 <pre>
1082   void
1083 </pre>
1084 </div>
1085
1086 <!-- _______________________________________________________________________ -->
1087 <div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1088
1089 <div class="doc_text">
1090 <h5>Overview:</h5>
1091 <p>The label type represents code labels.</p>
1092
1093 <h5>Syntax:</h5>
1094
1095 <pre>
1096   label
1097 </pre>
1098 </div>
1099
1100
1101 <!-- ======================================================================= -->
1102 <div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
1103
1104 <div class="doc_text">
1105
1106 <p>The real power in LLVM comes from the derived types in the system. 
1107 This is what allows a programmer to represent arrays, functions,
1108 pointers, and other useful types.  Note that these derived types may be
1109 recursive: For example, it is possible to have a two dimensional array.</p>
1110
1111 </div>
1112
1113 <!-- _______________________________________________________________________ -->
1114 <div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1115
1116 <div class="doc_text">
1117
1118 <h5>Overview:</h5>
1119 <p>The integer type is a very simple derived type that simply specifies an
1120 arbitrary bit width for the integer type desired. Any bit width from 1 bit to
1121 2^23-1 (about 8 million) can be specified.</p>
1122
1123 <h5>Syntax:</h5>
1124
1125 <pre>
1126   iN
1127 </pre>
1128
1129 <p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1130 value.</p>
1131
1132 <h5>Examples:</h5>
1133 <table class="layout">
1134   <tbody>
1135   <tr>
1136     <td><tt>i1</tt></td>
1137     <td>a single-bit integer.</td>
1138   </tr><tr>
1139     <td><tt>i32</tt></td>
1140     <td>a 32-bit integer.</td>
1141   </tr><tr>
1142     <td><tt>i1942652</tt></td>
1143     <td>a really big integer of over 1 million bits.</td>
1144   </tr>
1145   </tbody>
1146 </table>
1147 </div>
1148
1149 <!-- _______________________________________________________________________ -->
1150 <div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
1151
1152 <div class="doc_text">
1153
1154 <h5>Overview:</h5>
1155
1156 <p>The array type is a very simple derived type that arranges elements
1157 sequentially in memory.  The array type requires a size (number of
1158 elements) and an underlying data type.</p>
1159
1160 <h5>Syntax:</h5>
1161
1162 <pre>
1163   [&lt;# elements&gt; x &lt;elementtype&gt;]
1164 </pre>
1165
1166 <p>The number of elements is a constant integer value; elementtype may
1167 be any type with a size.</p>
1168
1169 <h5>Examples:</h5>
1170 <table class="layout">
1171   <tr class="layout">
1172     <td class="left"><tt>[40 x i32]</tt></td>
1173     <td class="left">Array of 40 32-bit integer values.</td>
1174   </tr>
1175   <tr class="layout">
1176     <td class="left"><tt>[41 x i32]</tt></td>
1177     <td class="left">Array of 41 32-bit integer values.</td>
1178   </tr>
1179   <tr class="layout">
1180     <td class="left"><tt>[4 x i8]</tt></td>
1181     <td class="left">Array of 4 8-bit integer values.</td>
1182   </tr>
1183 </table>
1184 <p>Here are some examples of multidimensional arrays:</p>
1185 <table class="layout">
1186   <tr class="layout">
1187     <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1188     <td class="left">3x4 array of 32-bit integer values.</td>
1189   </tr>
1190   <tr class="layout">
1191     <td class="left"><tt>[12 x [10 x float]]</tt></td>
1192     <td class="left">12x10 array of single precision floating point values.</td>
1193   </tr>
1194   <tr class="layout">
1195     <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1196     <td class="left">2x3x4 array of 16-bit integer  values.</td>
1197   </tr>
1198 </table>
1199
1200 <p>Note that 'variable sized arrays' can be implemented in LLVM with a zero 
1201 length array.  Normally, accesses past the end of an array are undefined in
1202 LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1203 As a special case, however, zero length arrays are recognized to be variable
1204 length.  This allows implementation of 'pascal style arrays' with the  LLVM
1205 type "{ i32, [0 x float]}", for example.</p>
1206
1207 </div>
1208
1209 <!-- _______________________________________________________________________ -->
1210 <div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
1211 <div class="doc_text">
1212 <h5>Overview:</h5>
1213 <p>The function type can be thought of as a function signature.  It
1214 consists of a return type and a list of formal parameter types. 
1215 Function types are usually used to build virtual function tables
1216 (which are structures of pointers to functions), for indirect function
1217 calls, and when defining a function.</p>
1218 <p>
1219 The return type of a function type cannot be an aggregate type.
1220 </p>
1221 <h5>Syntax:</h5>
1222 <pre>  &lt;returntype&gt; (&lt;parameter list&gt;)<br></pre>
1223 <p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
1224 specifiers.  Optionally, the parameter list may include a type <tt>...</tt>,
1225 which indicates that the function takes a variable number of arguments.
1226 Variable argument functions can access their arguments with the <a
1227  href="#int_varargs">variable argument handling intrinsic</a> functions.</p>
1228 <h5>Examples:</h5>
1229 <table class="layout">
1230   <tr class="layout">
1231     <td class="left"><tt>i32 (i32)</tt></td>
1232     <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
1233     </td>
1234   </tr><tr class="layout">
1235     <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
1236     </tt></td>
1237     <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes 
1238       an <tt>i16</tt> that should be sign extended and a 
1239       <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning 
1240       <tt>float</tt>.
1241     </td>
1242   </tr><tr class="layout">
1243     <td class="left"><tt>i32 (i8*, ...)</tt></td>
1244     <td class="left">A vararg function that takes at least one 
1245       <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C), 
1246       which returns an integer.  This is the signature for <tt>printf</tt> in 
1247       LLVM.
1248     </td>
1249   </tr>
1250 </table>
1251
1252 </div>
1253 <!-- _______________________________________________________________________ -->
1254 <div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
1255 <div class="doc_text">
1256 <h5>Overview:</h5>
1257 <p>The structure type is used to represent a collection of data members
1258 together in memory.  The packing of the field types is defined to match
1259 the ABI of the underlying processor.  The elements of a structure may
1260 be any type that has a size.</p>
1261 <p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1262 and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1263 field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1264 instruction.</p>
1265 <h5>Syntax:</h5>
1266 <pre>  { &lt;type list&gt; }<br></pre>
1267 <h5>Examples:</h5>
1268 <table class="layout">
1269   <tr class="layout">
1270     <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1271     <td class="left">A triple of three <tt>i32</tt> values</td>
1272   </tr><tr class="layout">
1273     <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1274     <td class="left">A pair, where the first element is a <tt>float</tt> and the
1275       second element is a <a href="#t_pointer">pointer</a> to a
1276       <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1277       an <tt>i32</tt>.</td>
1278   </tr>
1279 </table>
1280 </div>
1281
1282 <!-- _______________________________________________________________________ -->
1283 <div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1284 </div>
1285 <div class="doc_text">
1286 <h5>Overview:</h5>
1287 <p>The packed structure type is used to represent a collection of data members
1288 together in memory.  There is no padding between fields.  Further, the alignment
1289 of a packed structure is 1 byte.  The elements of a packed structure may
1290 be any type that has a size.</p>
1291 <p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1292 and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1293 field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1294 instruction.</p>
1295 <h5>Syntax:</h5>
1296 <pre>  &lt; { &lt;type list&gt; } &gt; <br></pre>
1297 <h5>Examples:</h5>
1298 <table class="layout">
1299   <tr class="layout">
1300     <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1301     <td class="left">A triple of three <tt>i32</tt> values</td>
1302   </tr><tr class="layout">
1303   <td class="left"><tt>&lt; { float, i32 (i32)* } &gt;</tt></td>
1304     <td class="left">A pair, where the first element is a <tt>float</tt> and the
1305       second element is a <a href="#t_pointer">pointer</a> to a
1306       <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1307       an <tt>i32</tt>.</td>
1308   </tr>
1309 </table>
1310 </div>
1311
1312 <!-- _______________________________________________________________________ -->
1313 <div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
1314 <div class="doc_text">
1315 <h5>Overview:</h5>
1316 <p>As in many languages, the pointer type represents a pointer or
1317 reference to another object, which must live in memory. Pointer types may have 
1318 an optional address space attribute defining the target-specific numbered 
1319 address space where the pointed-to object resides. The default address space is 
1320 zero.</p>
1321 <h5>Syntax:</h5>
1322 <pre>  &lt;type&gt; *<br></pre>
1323 <h5>Examples:</h5>
1324 <table class="layout">
1325   <tr class="layout">
1326     <td class="left"><tt>[4x i32]*</tt></td>
1327     <td class="left">A <a href="#t_pointer">pointer</a> to <a
1328                     href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1329   </tr>
1330   <tr class="layout">
1331     <td class="left"><tt>i32 (i32 *) *</tt></td>
1332     <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
1333       href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
1334       <tt>i32</tt>.</td>
1335   </tr>
1336   <tr class="layout">
1337     <td class="left"><tt>i32 addrspace(5)*</tt></td>
1338     <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1339      that resides in address space #5.</td>
1340   </tr>
1341 </table>
1342 </div>
1343
1344 <!-- _______________________________________________________________________ -->
1345 <div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
1346 <div class="doc_text">
1347
1348 <h5>Overview:</h5>
1349
1350 <p>A vector type is a simple derived type that represents a vector
1351 of elements.  Vector types are used when multiple primitive data 
1352 are operated in parallel using a single instruction (SIMD). 
1353 A vector type requires a size (number of
1354 elements) and an underlying primitive data type.  Vectors must have a power
1355 of two length (1, 2, 4, 8, 16 ...).  Vector types are
1356 considered <a href="#t_firstclass">first class</a>.</p>
1357
1358 <h5>Syntax:</h5>
1359
1360 <pre>
1361   &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1362 </pre>
1363
1364 <p>The number of elements is a constant integer value; elementtype may
1365 be any integer or floating point type.</p>
1366
1367 <h5>Examples:</h5>
1368
1369 <table class="layout">
1370   <tr class="layout">
1371     <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1372     <td class="left">Vector of 4 32-bit integer values.</td>
1373   </tr>
1374   <tr class="layout">
1375     <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1376     <td class="left">Vector of 8 32-bit floating-point values.</td>
1377   </tr>
1378   <tr class="layout">
1379     <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1380     <td class="left">Vector of 2 64-bit integer values.</td>
1381   </tr>
1382 </table>
1383 </div>
1384
1385 <!-- _______________________________________________________________________ -->
1386 <div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1387 <div class="doc_text">
1388
1389 <h5>Overview:</h5>
1390
1391 <p>Opaque types are used to represent unknown types in the system.  This
1392 corresponds (for example) to the C notion of a forward declared structure type.
1393 In LLVM, opaque types can eventually be resolved to any type (not just a
1394 structure type).</p>
1395
1396 <h5>Syntax:</h5>
1397
1398 <pre>
1399   opaque
1400 </pre>
1401
1402 <h5>Examples:</h5>
1403
1404 <table class="layout">
1405   <tr class="layout">
1406     <td class="left"><tt>opaque</tt></td>
1407     <td class="left">An opaque type.</td>
1408   </tr>
1409 </table>
1410 </div>
1411
1412
1413 <!-- *********************************************************************** -->
1414 <div class="doc_section"> <a name="constants">Constants</a> </div>
1415 <!-- *********************************************************************** -->
1416
1417 <div class="doc_text">
1418
1419 <p>LLVM has several different basic types of constants.  This section describes
1420 them all and their syntax.</p>
1421
1422 </div>
1423
1424 <!-- ======================================================================= -->
1425 <div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
1426
1427 <div class="doc_text">
1428
1429 <dl>
1430   <dt><b>Boolean constants</b></dt>
1431
1432   <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
1433   constants of the <tt><a href="#t_primitive">i1</a></tt> type.
1434   </dd>
1435
1436   <dt><b>Integer constants</b></dt>
1437
1438   <dd>Standard integers (such as '4') are constants of the <a
1439   href="#t_integer">integer</a> type.  Negative numbers may be used with 
1440   integer types.
1441   </dd>
1442
1443   <dt><b>Floating point constants</b></dt>
1444
1445   <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1446   exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
1447   notation (see below).  Floating point constants must have a <a
1448   href="#t_floating">floating point</a> type. </dd>
1449
1450   <dt><b>Null pointer constants</b></dt>
1451
1452   <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
1453   and must be of <a href="#t_pointer">pointer type</a>.</dd>
1454
1455 </dl>
1456
1457 <p>The one non-intuitive notation for constants is the optional hexadecimal form
1458 of floating point constants.  For example, the form '<tt>double
1459 0x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
1460 4.5e+15</tt>'.  The only time hexadecimal floating point constants are required
1461 (and the only time that they are generated by the disassembler) is when a 
1462 floating point constant must be emitted but it cannot be represented as a 
1463 decimal floating point number.  For example, NaN's, infinities, and other 
1464 special values are represented in their IEEE hexadecimal format so that 
1465 assembly and disassembly do not cause any bits to change in the constants.</p>
1466
1467 </div>
1468
1469 <!-- ======================================================================= -->
1470 <div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1471 </div>
1472
1473 <div class="doc_text">
1474 <p>Aggregate constants arise from aggregation of simple constants
1475 and smaller aggregate constants.</p>
1476
1477 <dl>
1478   <dt><b>Structure constants</b></dt>
1479
1480   <dd>Structure constants are represented with notation similar to structure
1481   type definitions (a comma separated list of elements, surrounded by braces
1482   (<tt>{}</tt>)).  For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1483   where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>".  Structure constants
1484   must have <a href="#t_struct">structure type</a>, and the number and
1485   types of elements must match those specified by the type.
1486   </dd>
1487
1488   <dt><b>Array constants</b></dt>
1489
1490   <dd>Array constants are represented with notation similar to array type
1491   definitions (a comma separated list of elements, surrounded by square brackets
1492   (<tt>[]</tt>)).  For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>".  Array
1493   constants must have <a href="#t_array">array type</a>, and the number and
1494   types of elements must match those specified by the type.
1495   </dd>
1496
1497   <dt><b>Vector constants</b></dt>
1498
1499   <dd>Vector constants are represented with notation similar to vector type
1500   definitions (a comma separated list of elements, surrounded by
1501   less-than/greater-than's (<tt>&lt;&gt;</tt>)).  For example: "<tt>&lt; i32 42,
1502   i32 11, i32 74, i32 100 &gt;</tt>".  Vector constants must have <a
1503   href="#t_vector">vector type</a>, and the number and types of elements must
1504   match those specified by the type.
1505   </dd>
1506
1507   <dt><b>Zero initialization</b></dt>
1508
1509   <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1510   value to zero of <em>any</em> type, including scalar and aggregate types.
1511   This is often used to avoid having to print large zero initializers (e.g. for
1512   large arrays) and is always exactly equivalent to using explicit zero
1513   initializers.
1514   </dd>
1515 </dl>
1516
1517 </div>
1518
1519 <!-- ======================================================================= -->
1520 <div class="doc_subsection">
1521   <a name="globalconstants">Global Variable and Function Addresses</a>
1522 </div>
1523
1524 <div class="doc_text">
1525
1526 <p>The addresses of <a href="#globalvars">global variables</a> and <a
1527 href="#functionstructure">functions</a> are always implicitly valid (link-time)
1528 constants.  These constants are explicitly referenced when the <a
1529 href="#identifiers">identifier for the global</a> is used and always have <a
1530 href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1531 file:</p>
1532
1533 <div class="doc_code">
1534 <pre>
1535 @X = global i32 17
1536 @Y = global i32 42
1537 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1538 </pre>
1539 </div>
1540
1541 </div>
1542
1543 <!-- ======================================================================= -->
1544 <div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
1545 <div class="doc_text">
1546   <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has 
1547   no specific value.  Undefined values may be of any type and be used anywhere 
1548   a constant is permitted.</p>
1549
1550   <p>Undefined values indicate to the compiler that the program is well defined
1551   no matter what value is used, giving the compiler more freedom to optimize.
1552   </p>
1553 </div>
1554
1555 <!-- ======================================================================= -->
1556 <div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1557 </div>
1558
1559 <div class="doc_text">
1560
1561 <p>Constant expressions are used to allow expressions involving other constants
1562 to be used as constants.  Constant expressions may be of any <a
1563 href="#t_firstclass">first class</a> type and may involve any LLVM operation
1564 that does not have side effects (e.g. load and call are not supported).  The
1565 following is the syntax for constant expressions:</p>
1566
1567 <dl>
1568   <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1569   <dd>Truncate a constant to another type. The bit size of CST must be larger 
1570   than the bit size of TYPE. Both types must be integers.</dd>
1571
1572   <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1573   <dd>Zero extend a constant to another type. The bit size of CST must be 
1574   smaller or equal to the bit size of TYPE.  Both types must be integers.</dd>
1575
1576   <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1577   <dd>Sign extend a constant to another type. The bit size of CST must be 
1578   smaller or equal to the bit size of TYPE.  Both types must be integers.</dd>
1579
1580   <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1581   <dd>Truncate a floating point constant to another floating point type. The 
1582   size of CST must be larger than the size of TYPE. Both types must be 
1583   floating point.</dd>
1584
1585   <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1586   <dd>Floating point extend a constant to another type. The size of CST must be 
1587   smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1588
1589   <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
1590   <dd>Convert a floating point constant to the corresponding unsigned integer
1591   constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1592   or vector floating point type. Both CST and TYPE must be scalars, or vectors
1593   of the same number of elements. If the  value won't fit in the integer type,
1594   the results are undefined.</dd>
1595
1596   <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
1597   <dd>Convert a floating point constant to the corresponding signed integer
1598   constant.  TYPE must be a scalar or vector integer type. CST must be of scalar
1599   or vector floating point type. Both CST and TYPE must be scalars, or vectors
1600   of the same number of elements. If the  value won't fit in the integer type,
1601   the results are undefined.</dd>
1602
1603   <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
1604   <dd>Convert an unsigned integer constant to the corresponding floating point
1605   constant. TYPE must be a scalar or vector floating point type. CST must be of
1606   scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1607   of the same number of elements. If the value won't fit in the floating point 
1608   type, the results are undefined.</dd>
1609
1610   <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
1611   <dd>Convert a signed integer constant to the corresponding floating point
1612   constant. TYPE must be a scalar or vector floating point type. CST must be of
1613   scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1614   of the same number of elements. If the value won't fit in the floating point 
1615   type, the results are undefined.</dd>
1616
1617   <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1618   <dd>Convert a pointer typed constant to the corresponding integer constant
1619   TYPE must be an integer type. CST must be of pointer type. The CST value is
1620   zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1621
1622   <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1623   <dd>Convert a integer constant to a pointer constant.  TYPE must be a
1624   pointer type.  CST must be of integer type. The CST value is zero extended, 
1625   truncated, or unchanged to make it fit in a pointer size. This one is 
1626   <i>really</i> dangerous!</dd>
1627
1628   <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
1629   <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1630   identical (same number of bits). The conversion is done as if the CST value
1631   was stored to memory and read back as TYPE. In other words, no bits change 
1632   with this operator, just the type.  This can be used for conversion of
1633   vector types to any other type, as long as they have the same bit width. For
1634   pointers it is only valid to cast to another pointer type.
1635   </dd>
1636
1637   <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1638
1639   <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1640   constants.  As with the <a href="#i_getelementptr">getelementptr</a>
1641   instruction, the index list may have zero or more indexes, which are required
1642   to make sense for the type of "CSTPTR".</dd>
1643
1644   <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1645
1646   <dd>Perform the <a href="#i_select">select operation</a> on
1647   constants.</dd>
1648
1649   <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1650   <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1651
1652   <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1653   <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
1654
1655   <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1656
1657   <dd>Perform the <a href="#i_extractelement">extractelement
1658   operation</a> on constants.
1659
1660   <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1661
1662   <dd>Perform the <a href="#i_insertelement">insertelement
1663     operation</a> on constants.</dd>
1664
1665
1666   <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1667
1668   <dd>Perform the <a href="#i_shufflevector">shufflevector
1669     operation</a> on constants.</dd>
1670
1671   <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1672
1673   <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may 
1674   be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
1675   binary</a> operations.  The constraints on operands are the same as those for
1676   the corresponding instruction (e.g. no bitwise operations on floating point
1677   values are allowed).</dd>
1678 </dl>
1679 </div>
1680
1681 <!-- *********************************************************************** -->
1682 <div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1683 <!-- *********************************************************************** -->
1684
1685 <!-- ======================================================================= -->
1686 <div class="doc_subsection">
1687 <a name="inlineasm">Inline Assembler Expressions</a>
1688 </div>
1689
1690 <div class="doc_text">
1691
1692 <p>
1693 LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1694 Module-Level Inline Assembly</a>) through the use of a special value.  This
1695 value represents the inline assembler as a string (containing the instructions
1696 to emit), a list of operand constraints (stored as a string), and a flag that 
1697 indicates whether or not the inline asm expression has side effects.  An example
1698 inline assembler expression is:
1699 </p>
1700
1701 <div class="doc_code">
1702 <pre>
1703 i32 (i32) asm "bswap $0", "=r,r"
1704 </pre>
1705 </div>
1706
1707 <p>
1708 Inline assembler expressions may <b>only</b> be used as the callee operand of
1709 a <a href="#i_call"><tt>call</tt> instruction</a>.  Thus, typically we have:
1710 </p>
1711
1712 <div class="doc_code">
1713 <pre>
1714 %X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
1715 </pre>
1716 </div>
1717
1718 <p>
1719 Inline asms with side effects not visible in the constraint list must be marked
1720 as having side effects.  This is done through the use of the
1721 '<tt>sideeffect</tt>' keyword, like so:
1722 </p>
1723
1724 <div class="doc_code">
1725 <pre>
1726 call void asm sideeffect "eieio", ""()
1727 </pre>
1728 </div>
1729
1730 <p>TODO: The format of the asm and constraints string still need to be
1731 documented here.  Constraints on what can be done (e.g. duplication, moving, etc
1732 need to be documented).
1733 </p>
1734
1735 </div>
1736
1737 <!-- *********************************************************************** -->
1738 <div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1739 <!-- *********************************************************************** -->
1740
1741 <div class="doc_text">
1742
1743 <p>The LLVM instruction set consists of several different
1744 classifications of instructions: <a href="#terminators">terminator
1745 instructions</a>, <a href="#binaryops">binary instructions</a>,
1746 <a href="#bitwiseops">bitwise binary instructions</a>, <a
1747  href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1748 instructions</a>.</p>
1749
1750 </div>
1751
1752 <!-- ======================================================================= -->
1753 <div class="doc_subsection"> <a name="terminators">Terminator
1754 Instructions</a> </div>
1755
1756 <div class="doc_text">
1757
1758 <p>As mentioned <a href="#functionstructure">previously</a>, every
1759 basic block in a program ends with a "Terminator" instruction, which
1760 indicates which block should be executed after the current block is
1761 finished. These terminator instructions typically yield a '<tt>void</tt>'
1762 value: they produce control flow, not values (the one exception being
1763 the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
1764 <p>There are six different terminator instructions: the '<a
1765  href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1766 instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
1767 the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1768  href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1769  href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
1770
1771 </div>
1772
1773 <!-- _______________________________________________________________________ -->
1774 <div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1775 Instruction</a> </div>
1776 <div class="doc_text">
1777 <h5>Syntax:</h5>
1778 <pre>  ret &lt;type&gt; &lt;value&gt;       <i>; Return a value from a non-void function</i>
1779   ret void                 <i>; Return from void function</i>
1780 </pre>
1781 <h5>Overview:</h5>
1782 <p>The '<tt>ret</tt>' instruction is used to return control flow (and a
1783 value) from a function back to the caller.</p>
1784 <p>There are two forms of the '<tt>ret</tt>' instruction: one that
1785 returns a value and then causes control flow, and one that just causes
1786 control flow to occur.</p>
1787 <h5>Arguments:</h5>
1788 <p>The '<tt>ret</tt>' instruction may return any '<a
1789  href="#t_firstclass">first class</a>' type.  Notice that a function is
1790 not <a href="#wellformed">well formed</a> if there exists a '<tt>ret</tt>'
1791 instruction inside of the function that returns a value that does not
1792 match the return type of the function.</p>
1793 <h5>Semantics:</h5>
1794 <p>When the '<tt>ret</tt>' instruction is executed, control flow
1795 returns back to the calling function's context.  If the caller is a "<a
1796  href="#i_call"><tt>call</tt></a>" instruction, execution continues at
1797 the instruction after the call.  If the caller was an "<a
1798  href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
1799 at the beginning of the "normal" destination block.  If the instruction
1800 returns a value, that value shall set the call or invoke instruction's
1801 return value.</p>
1802 <h5>Example:</h5>
1803 <pre>  ret i32 5                       <i>; Return an integer value of 5</i>
1804   ret void                        <i>; Return from a void function</i>
1805 </pre>
1806 </div>
1807 <!-- _______________________________________________________________________ -->
1808 <div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
1809 <div class="doc_text">
1810 <h5>Syntax:</h5>
1811 <pre>  br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br>  br label &lt;dest&gt;          <i>; Unconditional branch</i>
1812 </pre>
1813 <h5>Overview:</h5>
1814 <p>The '<tt>br</tt>' instruction is used to cause control flow to
1815 transfer to a different basic block in the current function.  There are
1816 two forms of this instruction, corresponding to a conditional branch
1817 and an unconditional branch.</p>
1818 <h5>Arguments:</h5>
1819 <p>The conditional branch form of the '<tt>br</tt>' instruction takes a
1820 single '<tt>i1</tt>' value and two '<tt>label</tt>' values.  The
1821 unconditional form of the '<tt>br</tt>' instruction takes a single 
1822 '<tt>label</tt>' value as a target.</p>
1823 <h5>Semantics:</h5>
1824 <p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
1825 argument is evaluated.  If the value is <tt>true</tt>, control flows
1826 to the '<tt>iftrue</tt>' <tt>label</tt> argument.  If "cond" is <tt>false</tt>,
1827 control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
1828 <h5>Example:</h5>
1829 <pre>Test:<br>  %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br>  br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br>  <a
1830  href="#i_ret">ret</a> i32 1<br>IfUnequal:<br>  <a href="#i_ret">ret</a> i32 0<br></pre>
1831 </div>
1832 <!-- _______________________________________________________________________ -->
1833 <div class="doc_subsubsection">
1834    <a name="i_switch">'<tt>switch</tt>' Instruction</a>
1835 </div>
1836
1837 <div class="doc_text">
1838 <h5>Syntax:</h5>
1839
1840 <pre>
1841   switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
1842 </pre>
1843
1844 <h5>Overview:</h5>
1845
1846 <p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
1847 several different places.  It is a generalization of the '<tt>br</tt>'
1848 instruction, allowing a branch to occur to one of many possible
1849 destinations.</p>
1850
1851
1852 <h5>Arguments:</h5>
1853
1854 <p>The '<tt>switch</tt>' instruction uses three parameters: an integer
1855 comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
1856 an array of pairs of comparison value constants and '<tt>label</tt>'s.  The
1857 table is not allowed to contain duplicate constant entries.</p>
1858
1859 <h5>Semantics:</h5>
1860
1861 <p>The <tt>switch</tt> instruction specifies a table of values and
1862 destinations. When the '<tt>switch</tt>' instruction is executed, this
1863 table is searched for the given value.  If the value is found, control flow is
1864 transfered to the corresponding destination; otherwise, control flow is
1865 transfered to the default destination.</p>
1866
1867 <h5>Implementation:</h5>
1868
1869 <p>Depending on properties of the target machine and the particular
1870 <tt>switch</tt> instruction, this instruction may be code generated in different
1871 ways.  For example, it could be generated as a series of chained conditional
1872 branches or with a lookup table.</p>
1873
1874 <h5>Example:</h5>
1875
1876 <pre>
1877  <i>; Emulate a conditional br instruction</i>
1878  %Val = <a href="#i_zext">zext</a> i1 %value to i32
1879  switch i32 %Val, label %truedest [i32 0, label %falsedest ]
1880
1881  <i>; Emulate an unconditional br instruction</i>
1882  switch i32 0, label %dest [ ]
1883
1884  <i>; Implement a jump table:</i>
1885  switch i32 %val, label %otherwise [ i32 0, label %onzero 
1886                                       i32 1, label %onone 
1887                                       i32 2, label %ontwo ]
1888 </pre>
1889 </div>
1890
1891 <!-- _______________________________________________________________________ -->
1892 <div class="doc_subsubsection">
1893   <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
1894 </div>
1895
1896 <div class="doc_text">
1897
1898 <h5>Syntax:</h5>
1899
1900 <pre>
1901   &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] &lt;ptr to function ty&gt; %&lt;function ptr val&gt;(&lt;function args&gt;) 
1902                 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
1903 </pre>
1904
1905 <h5>Overview:</h5>
1906
1907 <p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
1908 function, with the possibility of control flow transfer to either the
1909 '<tt>normal</tt>' label or the
1910 '<tt>exception</tt>' label.  If the callee function returns with the
1911 "<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
1912 "normal" label.  If the callee (or any indirect callees) returns with the "<a
1913 href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
1914 continued at the dynamically nearest "exception" label.</p>
1915
1916 <h5>Arguments:</h5>
1917
1918 <p>This instruction requires several arguments:</p>
1919
1920 <ol>
1921   <li>
1922     The optional "cconv" marker indicates which <a href="#callingconv">calling
1923     convention</a> the call should use.  If none is specified, the call defaults
1924     to using C calling conventions.
1925   </li>
1926   <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
1927   function value being invoked.  In most cases, this is a direct function
1928   invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
1929   an arbitrary pointer to function value.
1930   </li>
1931
1932   <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
1933   function to be invoked. </li>
1934
1935   <li>'<tt>function args</tt>': argument list whose types match the function
1936   signature argument types.  If the function signature indicates the function
1937   accepts a variable number of arguments, the extra arguments can be
1938   specified. </li>
1939
1940   <li>'<tt>normal label</tt>': the label reached when the called function
1941   executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
1942
1943   <li>'<tt>exception label</tt>': the label reached when a callee returns with
1944   the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
1945
1946 </ol>
1947
1948 <h5>Semantics:</h5>
1949
1950 <p>This instruction is designed to operate as a standard '<tt><a
1951 href="#i_call">call</a></tt>' instruction in most regards.  The primary
1952 difference is that it establishes an association with a label, which is used by
1953 the runtime library to unwind the stack.</p>
1954
1955 <p>This instruction is used in languages with destructors to ensure that proper
1956 cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
1957 exception.  Additionally, this is important for implementation of
1958 '<tt>catch</tt>' clauses in high-level languages that support them.</p>
1959
1960 <h5>Example:</h5>
1961 <pre>
1962   %retval = invoke i32 %Test(i32 15) to label %Continue
1963               unwind label %TestCleanup              <i>; {i32}:retval set</i>
1964   %retval = invoke <a href="#callingconv">coldcc</a> i32 %Test(i32 15) to label %Continue
1965               unwind label %TestCleanup              <i>; {i32}:retval set</i>
1966 </pre>
1967 </div>
1968
1969
1970 <!-- _______________________________________________________________________ -->
1971
1972 <div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
1973 Instruction</a> </div>
1974
1975 <div class="doc_text">
1976
1977 <h5>Syntax:</h5>
1978 <pre>
1979   unwind
1980 </pre>
1981
1982 <h5>Overview:</h5>
1983
1984 <p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
1985 at the first callee in the dynamic call stack which used an <a
1986 href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call.  This is
1987 primarily used to implement exception handling.</p>
1988
1989 <h5>Semantics:</h5>
1990
1991 <p>The '<tt>unwind</tt>' intrinsic causes execution of the current function to
1992 immediately halt.  The dynamic call stack is then searched for the first <a
1993 href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack.  Once found,
1994 execution continues at the "exceptional" destination block specified by the
1995 <tt>invoke</tt> instruction.  If there is no <tt>invoke</tt> instruction in the
1996 dynamic call chain, undefined behavior results.</p>
1997 </div>
1998
1999 <!-- _______________________________________________________________________ -->
2000
2001 <div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2002 Instruction</a> </div>
2003
2004 <div class="doc_text">
2005
2006 <h5>Syntax:</h5>
2007 <pre>
2008   unreachable
2009 </pre>
2010
2011 <h5>Overview:</h5>
2012
2013 <p>The '<tt>unreachable</tt>' instruction has no defined semantics.  This
2014 instruction is used to inform the optimizer that a particular portion of the
2015 code is not reachable.  This can be used to indicate that the code after a
2016 no-return function cannot be reached, and other facts.</p>
2017
2018 <h5>Semantics:</h5>
2019
2020 <p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
2021 </div>
2022
2023
2024
2025 <!-- ======================================================================= -->
2026 <div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
2027 <div class="doc_text">
2028 <p>Binary operators are used to do most of the computation in a
2029 program.  They require two operands, execute an operation on them, and
2030 produce a single value.  The operands might represent 
2031 multiple data, as is the case with the <a href="#t_vector">vector</a> data type. 
2032 The result value of a binary operator is not
2033 necessarily the same type as its operands.</p>
2034 <p>There are several different binary operators:</p>
2035 </div>
2036 <!-- _______________________________________________________________________ -->
2037 <div class="doc_subsubsection"> <a name="i_add">'<tt>add</tt>'
2038 Instruction</a> </div>
2039 <div class="doc_text">
2040 <h5>Syntax:</h5>
2041 <pre>  &lt;result&gt; = add &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
2042 </pre>
2043 <h5>Overview:</h5>
2044 <p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
2045 <h5>Arguments:</h5>
2046 <p>The two arguments to the '<tt>add</tt>' instruction must be either <a
2047  href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> values.
2048  This instruction can also take <a href="#t_vector">vector</a> versions of the values.
2049 Both arguments must have identical types.</p>
2050 <h5>Semantics:</h5>
2051 <p>The value produced is the integer or floating point sum of the two
2052 operands.</p>
2053 <h5>Example:</h5>
2054 <pre>  &lt;result&gt; = add i32 4, %var          <i>; yields {i32}:result = 4 + %var</i>
2055 </pre>
2056 </div>
2057 <!-- _______________________________________________________________________ -->
2058 <div class="doc_subsubsection"> <a name="i_sub">'<tt>sub</tt>'
2059 Instruction</a> </div>
2060 <div class="doc_text">
2061 <h5>Syntax:</h5>
2062 <pre>  &lt;result&gt; = sub &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
2063 </pre>
2064 <h5>Overview:</h5>
2065 <p>The '<tt>sub</tt>' instruction returns the difference of its two
2066 operands.</p>
2067 <p>Note that the '<tt>sub</tt>' instruction is used to represent the '<tt>neg</tt>'
2068 instruction present in most other intermediate representations.</p>
2069 <h5>Arguments:</h5>
2070 <p>The two arguments to the '<tt>sub</tt>' instruction must be either <a
2071  href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
2072 values. 
2073 This instruction can also take <a href="#t_vector">vector</a> versions of the values.
2074 Both arguments must have identical types.</p>
2075 <h5>Semantics:</h5>
2076 <p>The value produced is the integer or floating point difference of
2077 the two operands.</p>
2078 <h5>Example:</h5>
2079 <pre>
2080   &lt;result&gt; = sub i32 4, %var          <i>; yields {i32}:result = 4 - %var</i>
2081   &lt;result&gt; = sub i32 0, %val          <i>; yields {i32}:result = -%var</i>
2082 </pre>
2083 </div>
2084 <!-- _______________________________________________________________________ -->
2085 <div class="doc_subsubsection"> <a name="i_mul">'<tt>mul</tt>'
2086 Instruction</a> </div>
2087 <div class="doc_text">
2088 <h5>Syntax:</h5>
2089 <pre>  &lt;result&gt; = mul &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
2090 </pre>
2091 <h5>Overview:</h5>
2092 <p>The  '<tt>mul</tt>' instruction returns the product of its two
2093 operands.</p>
2094 <h5>Arguments:</h5>
2095 <p>The two arguments to the '<tt>mul</tt>' instruction must be either <a
2096  href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
2097 values. 
2098 This instruction can also take <a href="#t_vector">vector</a> versions of the values.
2099 Both arguments must have identical types.</p>
2100 <h5>Semantics:</h5>
2101 <p>The value produced is the integer or floating point product of the
2102 two operands.</p>
2103 <p>Because the operands are the same width, the result of an integer
2104 multiplication is the same whether the operands should be deemed unsigned or
2105 signed.</p>
2106 <h5>Example:</h5>
2107 <pre>  &lt;result&gt; = mul i32 4, %var          <i>; yields {i32}:result = 4 * %var</i>
2108 </pre>
2109 </div>
2110 <!-- _______________________________________________________________________ -->
2111 <div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2112 </a></div>
2113 <div class="doc_text">
2114 <h5>Syntax:</h5>
2115 <pre>  &lt;result&gt; = udiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
2116 </pre>
2117 <h5>Overview:</h5>
2118 <p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2119 operands.</p>
2120 <h5>Arguments:</h5>
2121 <p>The two arguments to the '<tt>udiv</tt>' instruction must be 
2122 <a href="#t_integer">integer</a> values. Both arguments must have identical 
2123 types. This instruction can also take <a href="#t_vector">vector</a> versions 
2124 of the values in which case the elements must be integers.</p>
2125 <h5>Semantics:</h5>
2126 <p>The value produced is the unsigned integer quotient of the two operands. This
2127 instruction always performs an unsigned division operation, regardless of 
2128 whether the arguments are unsigned or not.</p>
2129 <h5>Example:</h5>
2130 <pre>  &lt;result&gt; = udiv i32 4, %var          <i>; yields {i32}:result = 4 / %var</i>
2131 </pre>
2132 </div>
2133 <!-- _______________________________________________________________________ -->
2134 <div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2135 </a> </div>
2136 <div class="doc_text">
2137 <h5>Syntax:</h5>
2138 <pre>  &lt;result&gt; = sdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
2139 </pre>
2140 <h5>Overview:</h5>
2141 <p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2142 operands.</p>
2143 <h5>Arguments:</h5>
2144 <p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2145 <a href="#t_integer">integer</a> values.  Both arguments must have identical 
2146 types. This instruction can also take <a href="#t_vector">vector</a> versions 
2147 of the values in which case the elements must be integers.</p>
2148 <h5>Semantics:</h5>
2149 <p>The value produced is the signed integer quotient of the two operands. This
2150 instruction always performs a signed division operation, regardless of whether
2151 the arguments are signed or not.</p>
2152 <h5>Example:</h5>
2153 <pre>  &lt;result&gt; = sdiv i32 4, %var          <i>; yields {i32}:result = 4 / %var</i>
2154 </pre>
2155 </div>
2156 <!-- _______________________________________________________________________ -->
2157 <div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
2158 Instruction</a> </div>
2159 <div class="doc_text">
2160 <h5>Syntax:</h5>
2161 <pre>  &lt;result&gt; = fdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
2162 </pre>
2163 <h5>Overview:</h5>
2164 <p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
2165 operands.</p>
2166 <h5>Arguments:</h5>
2167 <p>The two arguments to the '<tt>fdiv</tt>' instruction must be
2168 <a href="#t_floating">floating point</a> values.  Both arguments must have
2169 identical types.  This instruction can also take <a href="#t_vector">vector</a>
2170 versions of floating point values.</p>
2171 <h5>Semantics:</h5>
2172 <p>The value produced is the floating point quotient of the two operands.</p>
2173 <h5>Example:</h5>
2174 <pre>  &lt;result&gt; = fdiv float 4.0, %var          <i>; yields {float}:result = 4.0 / %var</i>
2175 </pre>
2176 </div>
2177 <!-- _______________________________________________________________________ -->
2178 <div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2179 </div>
2180 <div class="doc_text">
2181 <h5>Syntax:</h5>
2182 <pre>  &lt;result&gt; = urem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
2183 </pre>
2184 <h5>Overview:</h5>
2185 <p>The '<tt>urem</tt>' instruction returns the remainder from the
2186 unsigned division of its two arguments.</p>
2187 <h5>Arguments:</h5>
2188 <p>The two arguments to the '<tt>urem</tt>' instruction must be
2189 <a href="#t_integer">integer</a> values. Both arguments must have identical
2190 types. This instruction can also take <a href="#t_vector">vector</a> versions 
2191 of the values in which case the elements must be integers.</p>
2192 <h5>Semantics:</h5>
2193 <p>This instruction returns the unsigned integer <i>remainder</i> of a division.
2194 This instruction always performs an unsigned division to get the remainder,
2195 regardless of whether the arguments are unsigned or not.</p>
2196 <h5>Example:</h5>
2197 <pre>  &lt;result&gt; = urem i32 4, %var          <i>; yields {i32}:result = 4 % %var</i>
2198 </pre>
2199
2200 </div>
2201 <!-- _______________________________________________________________________ -->
2202 <div class="doc_subsubsection"> <a name="i_srem">'<tt>srem</tt>'
2203 Instruction</a> </div>
2204 <div class="doc_text">
2205 <h5>Syntax:</h5>
2206 <pre>  &lt;result&gt; = srem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
2207 </pre>
2208 <h5>Overview:</h5>
2209 <p>The '<tt>srem</tt>' instruction returns the remainder from the
2210 signed division of its two operands. This instruction can also take
2211 <a href="#t_vector">vector</a> versions of the values in which case
2212 the elements must be integers.</p>
2213
2214 <h5>Arguments:</h5>
2215 <p>The two arguments to the '<tt>srem</tt>' instruction must be 
2216 <a href="#t_integer">integer</a> values.  Both arguments must have identical 
2217 types.</p>
2218 <h5>Semantics:</h5>
2219 <p>This instruction returns the <i>remainder</i> of a division (where the result
2220 has the same sign as the dividend, <tt>var1</tt>), not the <i>modulo</i> 
2221 operator (where the result has the same sign as the divisor, <tt>var2</tt>) of 
2222 a value.  For more information about the difference, see <a
2223  href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
2224 Math Forum</a>. For a table of how this is implemented in various languages,
2225 please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
2226 Wikipedia: modulo operation</a>.</p>
2227 <h5>Example:</h5>
2228 <pre>  &lt;result&gt; = srem i32 4, %var          <i>; yields {i32}:result = 4 % %var</i>
2229 </pre>
2230
2231 </div>
2232 <!-- _______________________________________________________________________ -->
2233 <div class="doc_subsubsection"> <a name="i_frem">'<tt>frem</tt>'
2234 Instruction</a> </div>
2235 <div class="doc_text">
2236 <h5>Syntax:</h5>
2237 <pre>  &lt;result&gt; = frem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
2238 </pre>
2239 <h5>Overview:</h5>
2240 <p>The '<tt>frem</tt>' instruction returns the remainder from the
2241 division of its two operands.</p>
2242 <h5>Arguments:</h5>
2243 <p>The two arguments to the '<tt>frem</tt>' instruction must be
2244 <a href="#t_floating">floating point</a> values.  Both arguments must have 
2245 identical types.  This instruction can also take <a href="#t_vector">vector</a>
2246 versions of floating point values.</p>
2247 <h5>Semantics:</h5>
2248 <p>This instruction returns the <i>remainder</i> of a division.</p>
2249 <h5>Example:</h5>
2250 <pre>  &lt;result&gt; = frem float 4.0, %var          <i>; yields {float}:result = 4.0 % %var</i>
2251 </pre>
2252 </div>
2253
2254 <!-- ======================================================================= -->
2255 <div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2256 Operations</a> </div>
2257 <div class="doc_text">
2258 <p>Bitwise binary operators are used to do various forms of
2259 bit-twiddling in a program.  They are generally very efficient
2260 instructions and can commonly be strength reduced from other
2261 instructions.  They require two operands, execute an operation on them,
2262 and produce a single value.  The resulting value of the bitwise binary
2263 operators is always the same type as its first operand.</p>
2264 </div>
2265
2266 <!-- _______________________________________________________________________ -->
2267 <div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2268 Instruction</a> </div>
2269 <div class="doc_text">
2270 <h5>Syntax:</h5>
2271 <pre>  &lt;result&gt; = shl &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
2272 </pre>
2273
2274 <h5>Overview:</h5>
2275
2276 <p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2277 the left a specified number of bits.</p>
2278
2279 <h5>Arguments:</h5>
2280
2281 <p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
2282  href="#t_integer">integer</a> type.</p>
2283  
2284 <h5>Semantics:</h5>
2285
2286 <p>The value produced is <tt>var1</tt> * 2<sup><tt>var2</tt></sup>.  If
2287 <tt>var2</tt> is (statically or dynamically) equal to or larger than the number
2288 of bits in <tt>var1</tt>, the result is undefined.</p>
2289
2290 <h5>Example:</h5><pre>
2291   &lt;result&gt; = shl i32 4, %var   <i>; yields {i32}: 4 &lt;&lt; %var</i>
2292   &lt;result&gt; = shl i32 4, 2      <i>; yields {i32}: 16</i>
2293   &lt;result&gt; = shl i32 1, 10     <i>; yields {i32}: 1024</i>
2294   &lt;result&gt; = shl i32 1, 32     <i>; undefined</i>
2295 </pre>
2296 </div>
2297 <!-- _______________________________________________________________________ -->
2298 <div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2299 Instruction</a> </div>
2300 <div class="doc_text">
2301 <h5>Syntax:</h5>
2302 <pre>  &lt;result&gt; = lshr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
2303 </pre>
2304
2305 <h5>Overview:</h5>
2306 <p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first 
2307 operand shifted to the right a specified number of bits with zero fill.</p>
2308
2309 <h5>Arguments:</h5>
2310 <p>Both arguments to the '<tt>lshr</tt>' instruction must be the same 
2311 <a href="#t_integer">integer</a> type.</p>
2312
2313 <h5>Semantics:</h5>
2314
2315 <p>This instruction always performs a logical shift right operation. The most
2316 significant bits of the result will be filled with zero bits after the 
2317 shift.  If <tt>var2</tt> is (statically or dynamically) equal to or larger than
2318 the number of bits in <tt>var1</tt>, the result is undefined.</p>
2319
2320 <h5>Example:</h5>
2321 <pre>
2322   &lt;result&gt; = lshr i32 4, 1   <i>; yields {i32}:result = 2</i>
2323   &lt;result&gt; = lshr i32 4, 2   <i>; yields {i32}:result = 1</i>
2324   &lt;result&gt; = lshr i8  4, 3   <i>; yields {i8}:result = 0</i>
2325   &lt;result&gt; = lshr i8 -2, 1   <i>; yields {i8}:result = 0x7FFFFFFF </i>
2326   &lt;result&gt; = lshr i32 1, 32  <i>; undefined</i>
2327 </pre>
2328 </div>
2329
2330 <!-- _______________________________________________________________________ -->
2331 <div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2332 Instruction</a> </div>
2333 <div class="doc_text">
2334
2335 <h5>Syntax:</h5>
2336 <pre>  &lt;result&gt; = ashr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
2337 </pre>
2338
2339 <h5>Overview:</h5>
2340 <p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first 
2341 operand shifted to the right a specified number of bits with sign extension.</p>
2342
2343 <h5>Arguments:</h5>
2344 <p>Both arguments to the '<tt>ashr</tt>' instruction must be the same 
2345 <a href="#t_integer">integer</a> type.</p>
2346
2347 <h5>Semantics:</h5>
2348 <p>This instruction always performs an arithmetic shift right operation, 
2349 The most significant bits of the result will be filled with the sign bit 
2350 of <tt>var1</tt>.  If <tt>var2</tt> is (statically or dynamically) equal to or
2351 larger than the number of bits in <tt>var1</tt>, the result is undefined.
2352 </p>
2353
2354 <h5>Example:</h5>
2355 <pre>
2356   &lt;result&gt; = ashr i32 4, 1   <i>; yields {i32}:result = 2</i>
2357   &lt;result&gt; = ashr i32 4, 2   <i>; yields {i32}:result = 1</i>
2358   &lt;result&gt; = ashr i8  4, 3   <i>; yields {i8}:result = 0</i>
2359   &lt;result&gt; = ashr i8 -2, 1   <i>; yields {i8}:result = -1</i>
2360   &lt;result&gt; = ashr i32 1, 32  <i>; undefined</i>
2361 </pre>
2362 </div>
2363
2364 <!-- _______________________________________________________________________ -->
2365 <div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2366 Instruction</a> </div>
2367 <div class="doc_text">
2368 <h5>Syntax:</h5>
2369 <pre>  &lt;result&gt; = and &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
2370 </pre>
2371 <h5>Overview:</h5>
2372 <p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2373 its two operands.</p>
2374 <h5>Arguments:</h5>
2375 <p>The two arguments to the '<tt>and</tt>' instruction must be <a
2376  href="#t_integer">integer</a> values.  Both arguments must have
2377 identical types.</p>
2378 <h5>Semantics:</h5>
2379 <p>The truth table used for the '<tt>and</tt>' instruction is:</p>
2380 <p> </p>
2381 <div style="align: center">
2382 <table border="1" cellspacing="0" cellpadding="4">
2383   <tbody>
2384     <tr>
2385       <td>In0</td>
2386       <td>In1</td>
2387       <td>Out</td>
2388     </tr>
2389     <tr>
2390       <td>0</td>
2391       <td>0</td>
2392       <td>0</td>
2393     </tr>
2394     <tr>
2395       <td>0</td>
2396       <td>1</td>
2397       <td>0</td>
2398     </tr>
2399     <tr>
2400       <td>1</td>
2401       <td>0</td>
2402       <td>0</td>
2403     </tr>
2404     <tr>
2405       <td>1</td>
2406       <td>1</td>
2407       <td>1</td>
2408     </tr>
2409   </tbody>
2410 </table>
2411 </div>
2412 <h5>Example:</h5>
2413 <pre>  &lt;result&gt; = and i32 4, %var         <i>; yields {i32}:result = 4 &amp; %var</i>
2414   &lt;result&gt; = and i32 15, 40          <i>; yields {i32}:result = 8</i>
2415   &lt;result&gt; = and i32 4, 8            <i>; yields {i32}:result = 0</i>
2416 </pre>
2417 </div>
2418 <!-- _______________________________________________________________________ -->
2419 <div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
2420 <div class="doc_text">
2421 <h5>Syntax:</h5>
2422 <pre>  &lt;result&gt; = or &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
2423 </pre>
2424 <h5>Overview:</h5>
2425 <p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2426 or of its two operands.</p>
2427 <h5>Arguments:</h5>
2428 <p>The two arguments to the '<tt>or</tt>' instruction must be <a
2429  href="#t_integer">integer</a> values.  Both arguments must have
2430 identical types.</p>
2431 <h5>Semantics:</h5>
2432 <p>The truth table used for the '<tt>or</tt>' instruction is:</p>
2433 <p> </p>
2434 <div style="align: center">
2435 <table border="1" cellspacing="0" cellpadding="4">
2436   <tbody>
2437     <tr>
2438       <td>In0</td>
2439       <td>In1</td>
2440       <td>Out</td>
2441     </tr>
2442     <tr>
2443       <td>0</td>
2444       <td>0</td>
2445       <td>0</td>
2446     </tr>
2447     <tr>
2448       <td>0</td>
2449       <td>1</td>
2450       <td>1</td>
2451     </tr>
2452     <tr>
2453       <td>1</td>
2454       <td>0</td>
2455       <td>1</td>
2456     </tr>
2457     <tr>
2458       <td>1</td>
2459       <td>1</td>
2460       <td>1</td>
2461     </tr>
2462   </tbody>
2463 </table>
2464 </div>
2465 <h5>Example:</h5>
2466 <pre>  &lt;result&gt; = or i32 4, %var         <i>; yields {i32}:result = 4 | %var</i>
2467   &lt;result&gt; = or i32 15, 40          <i>; yields {i32}:result = 47</i>
2468   &lt;result&gt; = or i32 4, 8            <i>; yields {i32}:result = 12</i>
2469 </pre>
2470 </div>
2471 <!-- _______________________________________________________________________ -->
2472 <div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2473 Instruction</a> </div>
2474 <div class="doc_text">
2475 <h5>Syntax:</h5>
2476 <pre>  &lt;result&gt; = xor &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
2477 </pre>
2478 <h5>Overview:</h5>
2479 <p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2480 or of its two operands.  The <tt>xor</tt> is used to implement the
2481 "one's complement" operation, which is the "~" operator in C.</p>
2482 <h5>Arguments:</h5>
2483 <p>The two arguments to the '<tt>xor</tt>' instruction must be <a
2484  href="#t_integer">integer</a> values.  Both arguments must have
2485 identical types.</p>
2486 <h5>Semantics:</h5>
2487 <p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
2488 <p> </p>
2489 <div style="align: center">
2490 <table border="1" cellspacing="0" cellpadding="4">
2491   <tbody>
2492     <tr>
2493       <td>In0</td>
2494       <td>In1</td>
2495       <td>Out</td>
2496     </tr>
2497     <tr>
2498       <td>0</td>
2499       <td>0</td>
2500       <td>0</td>
2501     </tr>
2502     <tr>
2503       <td>0</td>
2504       <td>1</td>
2505       <td>1</td>
2506     </tr>
2507     <tr>
2508       <td>1</td>
2509       <td>0</td>
2510       <td>1</td>
2511     </tr>
2512     <tr>
2513       <td>1</td>
2514       <td>1</td>
2515       <td>0</td>
2516     </tr>
2517   </tbody>
2518 </table>
2519 </div>
2520 <p> </p>
2521 <h5>Example:</h5>
2522 <pre>  &lt;result&gt; = xor i32 4, %var         <i>; yields {i32}:result = 4 ^ %var</i>
2523   &lt;result&gt; = xor i32 15, 40          <i>; yields {i32}:result = 39</i>
2524   &lt;result&gt; = xor i32 4, 8            <i>; yields {i32}:result = 12</i>
2525   &lt;result&gt; = xor i32 %V, -1          <i>; yields {i32}:result = ~%V</i>
2526 </pre>
2527 </div>
2528
2529 <!-- ======================================================================= -->
2530 <div class="doc_subsection"> 
2531   <a name="vectorops">Vector Operations</a>
2532 </div>
2533
2534 <div class="doc_text">
2535
2536 <p>LLVM supports several instructions to represent vector operations in a
2537 target-independent manner.  These instructions cover the element-access and
2538 vector-specific operations needed to process vectors effectively.  While LLVM
2539 does directly support these vector operations, many sophisticated algorithms
2540 will want to use target-specific intrinsics to take full advantage of a specific
2541 target.</p>
2542
2543 </div>
2544
2545 <!-- _______________________________________________________________________ -->
2546 <div class="doc_subsubsection">
2547    <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2548 </div>
2549
2550 <div class="doc_text">
2551
2552 <h5>Syntax:</h5>
2553
2554 <pre>
2555   &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt;    <i>; yields &lt;ty&gt;</i>
2556 </pre>
2557
2558 <h5>Overview:</h5>
2559
2560 <p>
2561 The '<tt>extractelement</tt>' instruction extracts a single scalar
2562 element from a vector at a specified index.
2563 </p>
2564
2565
2566 <h5>Arguments:</h5>
2567
2568 <p>
2569 The first operand of an '<tt>extractelement</tt>' instruction is a
2570 value of <a href="#t_vector">vector</a> type.  The second operand is
2571 an index indicating the position from which to extract the element.
2572 The index may be a variable.</p>
2573
2574 <h5>Semantics:</h5>
2575
2576 <p>
2577 The result is a scalar of the same type as the element type of
2578 <tt>val</tt>.  Its value is the value at position <tt>idx</tt> of
2579 <tt>val</tt>.  If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2580 results are undefined.
2581 </p>
2582
2583 <h5>Example:</h5>
2584
2585 <pre>
2586   %result = extractelement &lt;4 x i32&gt; %vec, i32 0    <i>; yields i32</i>
2587 </pre>
2588 </div>
2589
2590
2591 <!-- _______________________________________________________________________ -->
2592 <div class="doc_subsubsection">
2593    <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2594 </div>
2595
2596 <div class="doc_text">
2597
2598 <h5>Syntax:</h5>
2599
2600 <pre>
2601   &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt, i32 &lt;idx&gt;    <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
2602 </pre>
2603
2604 <h5>Overview:</h5>
2605
2606 <p>
2607 The '<tt>insertelement</tt>' instruction inserts a scalar
2608 element into a vector at a specified index.
2609 </p>
2610
2611
2612 <h5>Arguments:</h5>
2613
2614 <p>
2615 The first operand of an '<tt>insertelement</tt>' instruction is a
2616 value of <a href="#t_vector">vector</a> type.  The second operand is a
2617 scalar value whose type must equal the element type of the first
2618 operand.  The third operand is an index indicating the position at
2619 which to insert the value.  The index may be a variable.</p>
2620
2621 <h5>Semantics:</h5>
2622
2623 <p>
2624 The result is a vector of the same type as <tt>val</tt>.  Its
2625 element values are those of <tt>val</tt> except at position
2626 <tt>idx</tt>, where it gets the value <tt>elt</tt>.  If <tt>idx</tt>
2627 exceeds the length of <tt>val</tt>, the results are undefined.
2628 </p>
2629
2630 <h5>Example:</h5>
2631
2632 <pre>
2633   %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0    <i>; yields &lt;4 x i32&gt;</i>
2634 </pre>
2635 </div>
2636
2637 <!-- _______________________________________________________________________ -->
2638 <div class="doc_subsubsection">
2639    <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2640 </div>
2641
2642 <div class="doc_text">
2643
2644 <h5>Syntax:</h5>
2645
2646 <pre>
2647   &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;n x i32&gt; &lt;mask&gt;    <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
2648 </pre>
2649
2650 <h5>Overview:</h5>
2651
2652 <p>
2653 The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
2654 from two input vectors, returning a vector of the same type.
2655 </p>
2656
2657 <h5>Arguments:</h5>
2658
2659 <p>
2660 The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2661 with types that match each other and types that match the result of the
2662 instruction.  The third argument is a shuffle mask, which has the same number
2663 of elements as the other vector type, but whose element type is always 'i32'.
2664 </p>
2665
2666 <p>
2667 The shuffle mask operand is required to be a constant vector with either
2668 constant integer or undef values.
2669 </p>
2670
2671 <h5>Semantics:</h5>
2672
2673 <p>
2674 The elements of the two input vectors are numbered from left to right across
2675 both of the vectors.  The shuffle mask operand specifies, for each element of
2676 the result vector, which element of the two input registers the result element
2677 gets.  The element selector may be undef (meaning "don't care") and the second
2678 operand may be undef if performing a shuffle from only one vector.
2679 </p>
2680
2681 <h5>Example:</h5>
2682
2683 <pre>
2684   %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2, 
2685                           &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt;  <i>; yields &lt;4 x i32&gt;</i>
2686   %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef, 
2687                           &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt;  <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
2688 </pre>
2689 </div>
2690
2691
2692 <!-- ======================================================================= -->
2693 <div class="doc_subsection"> 
2694   <a name="memoryops">Memory Access and Addressing Operations</a>
2695 </div>
2696
2697 <div class="doc_text">
2698
2699 <p>A key design point of an SSA-based representation is how it
2700 represents memory.  In LLVM, no memory locations are in SSA form, which
2701 makes things very simple.  This section describes how to read, write,
2702 allocate, and free memory in LLVM.</p>
2703
2704 </div>
2705
2706 <!-- _______________________________________________________________________ -->
2707 <div class="doc_subsubsection">
2708   <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
2709 </div>
2710
2711 <div class="doc_text">
2712
2713 <h5>Syntax:</h5>
2714
2715 <pre>
2716   &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;]     <i>; yields {type*}:result</i>
2717 </pre>
2718
2719 <h5>Overview:</h5>
2720
2721 <p>The '<tt>malloc</tt>' instruction allocates memory from the system
2722 heap and returns a pointer to it. The object is always allocated in the generic 
2723 address space (address space zero).</p>
2724
2725 <h5>Arguments:</h5>
2726
2727 <p>The '<tt>malloc</tt>' instruction allocates
2728 <tt>sizeof(&lt;type&gt;)*NumElements</tt>
2729 bytes of memory from the operating system and returns a pointer of the
2730 appropriate type to the program.  If "NumElements" is specified, it is the
2731 number of elements allocated.  If an alignment is specified, the value result
2732 of the allocation is guaranteed to be aligned to at least that boundary.  If
2733 not specified, or if zero, the target can choose to align the allocation on any
2734 convenient boundary.</p>
2735
2736 <p>'<tt>type</tt>' must be a sized type.</p>
2737
2738 <h5>Semantics:</h5>
2739
2740 <p>Memory is allocated using the system "<tt>malloc</tt>" function, and
2741 a pointer is returned.</p>
2742
2743 <h5>Example:</h5>
2744
2745 <pre>
2746   %array  = malloc [4 x i8 ]                    <i>; yields {[%4 x i8]*}:array</i>
2747
2748   %size   = <a href="#i_add">add</a> i32 2, 2                        <i>; yields {i32}:size = i32 4</i>
2749   %array1 = malloc i8, i32 4                    <i>; yields {i8*}:array1</i>
2750   %array2 = malloc [12 x i8], i32 %size         <i>; yields {[12 x i8]*}:array2</i>
2751   %array3 = malloc i32, i32 4, align 1024       <i>; yields {i32*}:array3</i>
2752   %array4 = malloc i32, align 1024              <i>; yields {i32*}:array4</i>
2753 </pre>
2754 </div>
2755
2756 <!-- _______________________________________________________________________ -->
2757 <div class="doc_subsubsection">
2758   <a name="i_free">'<tt>free</tt>' Instruction</a>
2759 </div>
2760
2761 <div class="doc_text">
2762
2763 <h5>Syntax:</h5>
2764
2765 <pre>
2766   free &lt;type&gt; &lt;value&gt;                              <i>; yields {void}</i>
2767 </pre>
2768
2769 <h5>Overview:</h5>
2770
2771 <p>The '<tt>free</tt>' instruction returns memory back to the unused
2772 memory heap to be reallocated in the future.</p>
2773
2774 <h5>Arguments:</h5>
2775
2776 <p>'<tt>value</tt>' shall be a pointer value that points to a value
2777 that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
2778 instruction.</p>
2779
2780 <h5>Semantics:</h5>
2781
2782 <p>Access to the memory pointed to by the pointer is no longer defined
2783 after this instruction executes.</p>
2784
2785 <h5>Example:</h5>
2786
2787 <pre>
2788   %array  = <a href="#i_malloc">malloc</a> [4 x i8]                    <i>; yields {[4 x i8]*}:array</i>
2789             free   [4 x i8]* %array
2790 </pre>
2791 </div>
2792
2793 <!-- _______________________________________________________________________ -->
2794 <div class="doc_subsubsection">
2795   <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
2796 </div>
2797
2798 <div class="doc_text">
2799
2800 <h5>Syntax:</h5>
2801
2802 <pre>
2803   &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;]     <i>; yields {type*}:result</i>
2804 </pre>
2805
2806 <h5>Overview:</h5>
2807
2808 <p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
2809 currently executing function, to be automatically released when this function
2810 returns to its caller. The object is always allocated in the generic address 
2811 space (address space zero).</p>
2812
2813 <h5>Arguments:</h5>
2814
2815 <p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
2816 bytes of memory on the runtime stack, returning a pointer of the
2817 appropriate type to the program.    If "NumElements" is specified, it is the
2818 number of elements allocated.  If an alignment is specified, the value result
2819 of the allocation is guaranteed to be aligned to at least that boundary.  If
2820 not specified, or if zero, the target can choose to align the allocation on any
2821 convenient boundary.</p>
2822
2823 <p>'<tt>type</tt>' may be any sized type.</p>
2824
2825 <h5>Semantics:</h5>
2826
2827 <p>Memory is allocated; a pointer is returned.  '<tt>alloca</tt>'d
2828 memory is automatically released when the function returns.  The '<tt>alloca</tt>'
2829 instruction is commonly used to represent automatic variables that must
2830 have an address available.  When the function returns (either with the <tt><a
2831  href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
2832 instructions), the memory is reclaimed.</p>
2833
2834 <h5>Example:</h5>
2835
2836 <pre>
2837   %ptr = alloca i32                              <i>; yields {i32*}:ptr</i>
2838   %ptr = alloca i32, i32 4                       <i>; yields {i32*}:ptr</i>
2839   %ptr = alloca i32, i32 4, align 1024           <i>; yields {i32*}:ptr</i>
2840   %ptr = alloca i32, align 1024                  <i>; yields {i32*}:ptr</i>
2841 </pre>
2842 </div>
2843
2844 <!-- _______________________________________________________________________ -->
2845 <div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
2846 Instruction</a> </div>
2847 <div class="doc_text">
2848 <h5>Syntax:</h5>
2849 <pre>  &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br>  &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
2850 <h5>Overview:</h5>
2851 <p>The '<tt>load</tt>' instruction is used to read from memory.</p>
2852 <h5>Arguments:</h5>
2853 <p>The argument to the '<tt>load</tt>' instruction specifies the memory
2854 address from which to load.  The pointer must point to a <a
2855  href="#t_firstclass">first class</a> type.  If the <tt>load</tt> is
2856 marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
2857 the number or order of execution of this <tt>load</tt> with other
2858 volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
2859 instructions. </p>
2860 <p>
2861 The optional "align" argument specifies the alignment of the operation
2862 (that is, the alignment of the memory address). A value of 0 or an
2863 omitted "align" argument means that the operation has the preferential
2864 alignment for the target. It is the responsibility of the code emitter
2865 to ensure that the alignment information is correct. Overestimating
2866 the alignment results in an undefined behavior. Underestimating the
2867 alignment may produce less efficient code. An alignment of 1 is always
2868 safe.
2869 </p>
2870 <h5>Semantics:</h5>
2871 <p>The location of memory pointed to is loaded.</p>
2872 <h5>Examples:</h5>
2873 <pre>  %ptr = <a href="#i_alloca">alloca</a> i32                               <i>; yields {i32*}:ptr</i>
2874   <a
2875  href="#i_store">store</a> i32 3, i32* %ptr                          <i>; yields {void}</i>
2876   %val = load i32* %ptr                           <i>; yields {i32}:val = i32 3</i>
2877 </pre>
2878 </div>
2879 <!-- _______________________________________________________________________ -->
2880 <div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
2881 Instruction</a> </div>
2882 <div class="doc_text">
2883 <h5>Syntax:</h5>
2884 <pre>  store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]                   <i>; yields {void}</i>
2885   volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]          <i>; yields {void}</i>
2886 </pre>
2887 <h5>Overview:</h5>
2888 <p>The '<tt>store</tt>' instruction is used to write to memory.</p>
2889 <h5>Arguments:</h5>
2890 <p>There are two arguments to the '<tt>store</tt>' instruction: a value
2891 to store and an address at which to store it.  The type of the '<tt>&lt;pointer&gt;</tt>'
2892 operand must be a pointer to the type of the '<tt>&lt;value&gt;</tt>'
2893 operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
2894 optimizer is not allowed to modify the number or order of execution of
2895 this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
2896  href="#i_store">store</a></tt> instructions.</p>
2897 <p>
2898 The optional "align" argument specifies the alignment of the operation
2899 (that is, the alignment of the memory address). A value of 0 or an
2900 omitted "align" argument means that the operation has the preferential
2901 alignment for the target. It is the responsibility of the code emitter
2902 to ensure that the alignment information is correct. Overestimating
2903 the alignment results in an undefined behavior. Underestimating the
2904 alignment may produce less efficient code. An alignment of 1 is always
2905 safe.
2906 </p>
2907 <h5>Semantics:</h5>
2908 <p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
2909 at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
2910 <h5>Example:</h5>
2911 <pre>  %ptr = <a href="#i_alloca">alloca</a> i32                               <i>; yields {i32*}:ptr</i>
2912   store i32 3, i32* %ptr                          <i>; yields {void}</i>
2913   %val = <a href="#i_load">load</a> i32* %ptr                           <i>; yields {i32}:val = i32 3</i>
2914 </pre>
2915 </div>
2916
2917 <!-- _______________________________________________________________________ -->
2918 <div class="doc_subsubsection">
2919    <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
2920 </div>
2921
2922 <div class="doc_text">
2923 <h5>Syntax:</h5>
2924 <pre>
2925   &lt;result&gt; = getelementptr &lt;ty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
2926 </pre>
2927
2928 <h5>Overview:</h5>
2929
2930 <p>
2931 The '<tt>getelementptr</tt>' instruction is used to get the address of a
2932 subelement of an aggregate data structure.</p>
2933
2934 <h5>Arguments:</h5>
2935
2936 <p>This instruction takes a list of integer operands that indicate what
2937 elements of the aggregate object to index to.  The actual types of the arguments
2938 provided depend on the type of the first pointer argument.  The
2939 '<tt>getelementptr</tt>' instruction is used to index down through the type
2940 levels of a structure or to a specific index in an array.  When indexing into a
2941 structure, only <tt>i32</tt> integer constants are allowed.  When indexing 
2942 into an array or pointer, only integers of 32 or 64 bits are allowed, and will 
2943 be sign extended to 64-bit values.</p>
2944
2945 <p>For example, let's consider a C code fragment and how it gets
2946 compiled to LLVM:</p>
2947
2948 <div class="doc_code">
2949 <pre>
2950 struct RT {
2951   char A;
2952   int B[10][20];
2953   char C;
2954 };
2955 struct ST {
2956   int X;
2957   double Y;
2958   struct RT Z;
2959 };
2960
2961 int *foo(struct ST *s) {
2962   return &amp;s[1].Z.B[5][13];
2963 }
2964 </pre>
2965 </div>
2966
2967 <p>The LLVM code generated by the GCC frontend is:</p>
2968
2969 <div class="doc_code">
2970 <pre>
2971 %RT = type { i8 , [10 x [20 x i32]], i8  }
2972 %ST = type { i32, double, %RT }
2973
2974 define i32* %foo(%ST* %s) {
2975 entry:
2976   %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
2977   ret i32* %reg
2978 }
2979 </pre>
2980 </div>
2981
2982 <h5>Semantics:</h5>
2983
2984 <p>The index types specified for the '<tt>getelementptr</tt>' instruction depend
2985 on the pointer type that is being indexed into. <a href="#t_pointer">Pointer</a>
2986 and <a href="#t_array">array</a> types can use a 32-bit or 64-bit
2987 <a href="#t_integer">integer</a> type but the value will always be sign extended
2988 to 64-bits.  <a href="#t_struct">Structure</a> types require <tt>i32</tt>
2989 <b>constants</b>.</p>
2990
2991 <p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
2992 type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
2993 }</tt>' type, a structure.  The second index indexes into the third element of
2994 the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
2995 i8  }</tt>' type, another structure.  The third index indexes into the second
2996 element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
2997 array.  The two dimensions of the array are subscripted into, yielding an
2998 '<tt>i32</tt>' type.  The '<tt>getelementptr</tt>' instruction returns a pointer
2999 to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
3000
3001 <p>Note that it is perfectly legal to index partially through a
3002 structure, returning a pointer to an inner element.  Because of this,
3003 the LLVM code for the given testcase is equivalent to:</p>
3004
3005 <pre>
3006   define i32* %foo(%ST* %s) {
3007     %t1 = getelementptr %ST* %s, i32 1                        <i>; yields %ST*:%t1</i>
3008     %t2 = getelementptr %ST* %t1, i32 0, i32 2                <i>; yields %RT*:%t2</i>
3009     %t3 = getelementptr %RT* %t2, i32 0, i32 1                <i>; yields [10 x [20 x i32]]*:%t3</i>
3010     %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5  <i>; yields [20 x i32]*:%t4</i>
3011     %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13        <i>; yields i32*:%t5</i>
3012     ret i32* %t5
3013   }
3014 </pre>
3015
3016 <p>Note that it is undefined to access an array out of bounds: array and 
3017 pointer indexes must always be within the defined bounds of the array type.
3018 The one exception for this rules is zero length arrays.  These arrays are
3019 defined to be accessible as variable length arrays, which requires access
3020 beyond the zero'th element.</p>
3021
3022 <p>The getelementptr instruction is often confusing.  For some more insight
3023 into how it works, see <a href="GetElementPtr.html">the getelementptr 
3024 FAQ</a>.</p>
3025
3026 <h5>Example:</h5>
3027
3028 <pre>
3029     <i>; yields [12 x i8]*:aptr</i>
3030     %aptr = getelementptr {i32, [12 x i8]}* %sptr, i64 0, i32 1
3031 </pre>
3032 </div>
3033
3034 <!-- ======================================================================= -->
3035 <div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
3036 </div>
3037 <div class="doc_text">
3038 <p>The instructions in this category are the conversion instructions (casting)
3039 which all take a single operand and a type. They perform various bit conversions
3040 on the operand.</p>
3041 </div>
3042
3043 <!-- _______________________________________________________________________ -->
3044 <div class="doc_subsubsection">
3045    <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
3046 </div>
3047 <div class="doc_text">
3048
3049 <h5>Syntax:</h5>
3050 <pre>
3051   &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
3052 </pre>
3053
3054 <h5>Overview:</h5>
3055 <p>
3056 The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
3057 </p>
3058
3059 <h5>Arguments:</h5>
3060 <p>
3061 The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must 
3062 be an <a href="#t_integer">integer</a> type, and a type that specifies the size 
3063 and type of the result, which must be an <a href="#t_integer">integer</a> 
3064 type. The bit size of <tt>value</tt> must be larger than the bit size of 
3065 <tt>ty2</tt>. Equal sized types are not allowed.</p>
3066
3067 <h5>Semantics:</h5>
3068 <p>
3069 The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
3070 and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
3071 larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
3072 It will always truncate bits.</p>
3073
3074 <h5>Example:</h5>
3075 <pre>
3076   %X = trunc i32 257 to i8              <i>; yields i8:1</i>
3077   %Y = trunc i32 123 to i1              <i>; yields i1:true</i>
3078   %Y = trunc i32 122 to i1              <i>; yields i1:false</i>
3079 </pre>
3080 </div>
3081
3082 <!-- _______________________________________________________________________ -->
3083 <div class="doc_subsubsection">
3084    <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
3085 </div>
3086 <div class="doc_text">
3087
3088 <h5>Syntax:</h5>
3089 <pre>
3090   &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
3091 </pre>
3092
3093 <h5>Overview:</h5>
3094 <p>The '<tt>zext</tt>' instruction zero extends its operand to type 
3095 <tt>ty2</tt>.</p>
3096
3097
3098 <h5>Arguments:</h5>
3099 <p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of 
3100 <a href="#t_integer">integer</a> type, and a type to cast it to, which must
3101 also be of <a href="#t_integer">integer</a> type. The bit size of the
3102 <tt>value</tt> must be smaller than the bit size of the destination type, 
3103 <tt>ty2</tt>.</p>
3104
3105 <h5>Semantics:</h5>
3106 <p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
3107 bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
3108
3109 <p>When zero extending from i1, the result will always be either 0 or 1.</p>
3110
3111 <h5>Example:</h5>
3112 <pre>
3113   %X = zext i32 257 to i64              <i>; yields i64:257</i>
3114   %Y = zext i1 true to i32              <i>; yields i32:1</i>
3115 </pre>
3116 </div>
3117
3118 <!-- _______________________________________________________________________ -->
3119 <div class="doc_subsubsection">
3120    <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3121 </div>
3122 <div class="doc_text">
3123
3124 <h5>Syntax:</h5>
3125 <pre>
3126   &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
3127 </pre>
3128
3129 <h5>Overview:</h5>
3130 <p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3131
3132 <h5>Arguments:</h5>
3133 <p>
3134 The '<tt>sext</tt>' instruction takes a value to cast, which must be of 
3135 <a href="#t_integer">integer</a> type, and a type to cast it to, which must
3136 also be of <a href="#t_integer">integer</a> type.  The bit size of the
3137 <tt>value</tt> must be smaller than the bit size of the destination type, 
3138 <tt>ty2</tt>.</p>
3139
3140 <h5>Semantics:</h5>
3141 <p>
3142 The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3143 bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
3144 the type <tt>ty2</tt>.</p>
3145
3146 <p>When sign extending from i1, the extension always results in -1 or 0.</p>
3147
3148 <h5>Example:</h5>
3149 <pre>
3150   %X = sext i8  -1 to i16              <i>; yields i16   :65535</i>
3151   %Y = sext i1 true to i32             <i>; yields i32:-1</i>
3152 </pre>
3153 </div>
3154
3155 <!-- _______________________________________________________________________ -->
3156 <div class="doc_subsubsection">
3157    <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3158 </div>
3159
3160 <div class="doc_text">
3161
3162 <h5>Syntax:</h5>
3163
3164 <pre>
3165   &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
3166 </pre>
3167
3168 <h5>Overview:</h5>
3169 <p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3170 <tt>ty2</tt>.</p>
3171
3172
3173 <h5>Arguments:</h5>
3174 <p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3175   point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3176 cast it to. The size of <tt>value</tt> must be larger than the size of
3177 <tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a 
3178 <i>no-op cast</i>.</p>
3179
3180 <h5>Semantics:</h5>
3181 <p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3182 <a href="#t_floating">floating point</a> type to a smaller 
3183 <a href="#t_floating">floating point</a> type.  If the value cannot fit within 
3184 the destination type, <tt>ty2</tt>, then the results are undefined.</p>
3185
3186 <h5>Example:</h5>
3187 <pre>
3188   %X = fptrunc double 123.0 to float         <i>; yields float:123.0</i>
3189   %Y = fptrunc double 1.0E+300 to float      <i>; yields undefined</i>
3190 </pre>
3191 </div>
3192
3193 <!-- _______________________________________________________________________ -->
3194 <div class="doc_subsubsection">
3195    <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3196 </div>
3197 <div class="doc_text">
3198
3199 <h5>Syntax:</h5>
3200 <pre>
3201   &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
3202 </pre>
3203
3204 <h5>Overview:</h5>
3205 <p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3206 floating point value.</p>
3207
3208 <h5>Arguments:</h5>
3209 <p>The '<tt>fpext</tt>' instruction takes a 
3210 <a href="#t_floating">floating point</a> <tt>value</tt> to cast, 
3211 and a <a href="#t_floating">floating point</a> type to cast it to. The source
3212 type must be smaller than the destination type.</p>
3213
3214 <h5>Semantics:</h5>
3215 <p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
3216 <a href="#t_floating">floating point</a> type to a larger 
3217 <a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be 
3218 used to make a <i>no-op cast</i> because it always changes bits. Use 
3219 <tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
3220
3221 <h5>Example:</h5>
3222 <pre>
3223   %X = fpext float 3.1415 to double        <i>; yields double:3.1415</i>
3224   %Y = fpext float 1.0 to float            <i>; yields float:1.0 (no-op)</i>
3225 </pre>
3226 </div>
3227
3228 <!-- _______________________________________________________________________ -->
3229 <div class="doc_subsubsection">
3230    <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
3231 </div>
3232 <div class="doc_text">
3233
3234 <h5>Syntax:</h5>
3235 <pre>
3236   &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
3237 </pre>
3238
3239 <h5>Overview:</h5>
3240 <p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
3241 unsigned integer equivalent of type <tt>ty2</tt>.
3242 </p>
3243
3244 <h5>Arguments:</h5>
3245 <p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a 
3246 scalar or vector <a href="#t_floating">floating point</a> value, and a type 
3247 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> 
3248 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3249 vector integer type with the same number of elements as <tt>ty</tt></p>
3250
3251 <h5>Semantics:</h5>
3252 <p> The '<tt>fptoui</tt>' instruction converts its 
3253 <a href="#t_floating">floating point</a> operand into the nearest (rounding
3254 towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3255 the results are undefined.</p>
3256
3257 <h5>Example:</h5>
3258 <pre>
3259   %X = fptoui double 123.0 to i32      <i>; yields i32:123</i>
3260   %Y = fptoui float 1.0E+300 to i1     <i>; yields undefined:1</i>
3261   %X = fptoui float 1.04E+17 to i8     <i>; yields undefined:1</i>
3262 </pre>
3263 </div>
3264
3265 <!-- _______________________________________________________________________ -->
3266 <div class="doc_subsubsection">
3267    <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
3268 </div>
3269 <div class="doc_text">
3270
3271 <h5>Syntax:</h5>
3272 <pre>
3273   &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
3274 </pre>
3275
3276 <h5>Overview:</h5>
3277 <p>The '<tt>fptosi</tt>' instruction converts 
3278 <a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
3279 </p>
3280
3281 <h5>Arguments:</h5>
3282 <p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a 
3283 scalar or vector <a href="#t_floating">floating point</a> value, and a type 
3284 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> 
3285 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3286 vector integer type with the same number of elements as <tt>ty</tt></p>
3287
3288 <h5>Semantics:</h5>
3289 <p>The '<tt>fptosi</tt>' instruction converts its 
3290 <a href="#t_floating">floating point</a> operand into the nearest (rounding
3291 towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3292 the results are undefined.</p>
3293
3294 <h5>Example:</h5>
3295 <pre>
3296   %X = fptosi double -123.0 to i32      <i>; yields i32:-123</i>
3297   %Y = fptosi float 1.0E-247 to i1      <i>; yields undefined:1</i>
3298   %X = fptosi float 1.04E+17 to i8      <i>; yields undefined:1</i>
3299 </pre>
3300 </div>
3301
3302 <!-- _______________________________________________________________________ -->
3303 <div class="doc_subsubsection">
3304    <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
3305 </div>
3306 <div class="doc_text">
3307
3308 <h5>Syntax:</h5>
3309 <pre>
3310   &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
3311 </pre>
3312
3313 <h5>Overview:</h5>
3314 <p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
3315 integer and converts that value to the <tt>ty2</tt> type.</p>
3316
3317 <h5>Arguments:</h5>
3318 <p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
3319 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3320 to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a> 
3321 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3322 floating point type with the same number of elements as <tt>ty</tt></p>
3323
3324 <h5>Semantics:</h5>
3325 <p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
3326 integer quantity and converts it to the corresponding floating point value. If
3327 the value cannot fit in the floating point value, the results are undefined.</p>
3328
3329 <h5>Example:</h5>
3330 <pre>
3331   %X = uitofp i32 257 to float         <i>; yields float:257.0</i>
3332   %Y = uitofp i8  -1 to double         <i>; yields double:255.0</i>
3333 </pre>
3334 </div>
3335
3336 <!-- _______________________________________________________________________ -->
3337 <div class="doc_subsubsection">
3338    <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
3339 </div>
3340 <div class="doc_text">
3341
3342 <h5>Syntax:</h5>
3343 <pre>
3344   &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
3345 </pre>
3346
3347 <h5>Overview:</h5>
3348 <p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
3349 integer and converts that value to the <tt>ty2</tt> type.</p>
3350
3351 <h5>Arguments:</h5>
3352 <p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
3353 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3354 to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a> 
3355 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3356 floating point type with the same number of elements as <tt>ty</tt></p>
3357
3358 <h5>Semantics:</h5>
3359 <p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
3360 integer quantity and converts it to the corresponding floating point value. If
3361 the value cannot fit in the floating point value, the results are undefined.</p>
3362
3363 <h5>Example:</h5>
3364 <pre>
3365   %X = sitofp i32 257 to float         <i>; yields float:257.0</i>
3366   %Y = sitofp i8  -1 to double         <i>; yields double:-1.0</i>
3367 </pre>
3368 </div>
3369
3370 <!-- _______________________________________________________________________ -->
3371 <div class="doc_subsubsection">
3372    <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3373 </div>
3374 <div class="doc_text">
3375
3376 <h5>Syntax:</h5>
3377 <pre>
3378   &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
3379 </pre>
3380
3381 <h5>Overview:</h5>
3382 <p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to 
3383 the integer type <tt>ty2</tt>.</p>
3384
3385 <h5>Arguments:</h5>
3386 <p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which 
3387 must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
3388 <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type. 
3389
3390 <h5>Semantics:</h5>
3391 <p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3392 <tt>ty2</tt> by interpreting the pointer value as an integer and either 
3393 truncating or zero extending that value to the size of the integer type. If
3394 <tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3395 <tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
3396 are the same size, then nothing is done (<i>no-op cast</i>) other than a type
3397 change.</p>
3398
3399 <h5>Example:</h5>
3400 <pre>
3401   %X = ptrtoint i32* %X to i8           <i>; yields truncation on 32-bit architecture</i>
3402   %Y = ptrtoint i32* %x to i64          <i>; yields zero extension on 32-bit architecture</i>
3403 </pre>
3404 </div>
3405
3406 <!-- _______________________________________________________________________ -->
3407 <div class="doc_subsubsection">
3408    <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3409 </div>
3410 <div class="doc_text">
3411
3412 <h5>Syntax:</h5>
3413 <pre>
3414   &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
3415 </pre>
3416
3417 <h5>Overview:</h5>
3418 <p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to 
3419 a pointer type, <tt>ty2</tt>.</p>
3420
3421 <h5>Arguments:</h5>
3422 <p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
3423 value to cast, and a type to cast it to, which must be a 
3424 <a href="#t_pointer">pointer</a> type.
3425
3426 <h5>Semantics:</h5>
3427 <p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3428 <tt>ty2</tt> by applying either a zero extension or a truncation depending on
3429 the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3430 size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3431 the size of a pointer then a zero extension is done. If they are the same size,
3432 nothing is done (<i>no-op cast</i>).</p>
3433
3434 <h5>Example:</h5>
3435 <pre>
3436   %X = inttoptr i32 255 to i32*          <i>; yields zero extension on 64-bit architecture</i>
3437   %X = inttoptr i32 255 to i32*          <i>; yields no-op on 32-bit architecture</i>
3438   %Y = inttoptr i64 0 to i32*            <i>; yields truncation on 32-bit architecture</i>
3439 </pre>
3440 </div>
3441
3442 <!-- _______________________________________________________________________ -->
3443 <div class="doc_subsubsection">
3444    <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
3445 </div>
3446 <div class="doc_text">
3447
3448 <h5>Syntax:</h5>
3449 <pre>
3450   &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
3451 </pre>
3452
3453 <h5>Overview:</h5>
3454 <p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
3455 <tt>ty2</tt> without changing any bits.</p>
3456
3457 <h5>Arguments:</h5>
3458 <p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be 
3459 a first class value, and a type to cast it to, which must also be a <a
3460   href="#t_firstclass">first class</a> type. The bit sizes of <tt>value</tt>
3461 and the destination type, <tt>ty2</tt>, must be identical. If the source
3462 type is a pointer, the destination type must also be a pointer.</p>
3463
3464 <h5>Semantics:</h5>
3465 <p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
3466 <tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with 
3467 this conversion.  The conversion is done as if the <tt>value</tt> had been 
3468 stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3469 converted to other pointer types with this instruction. To convert pointers to 
3470 other types, use the <a href="#i_inttoptr">inttoptr</a> or 
3471 <a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
3472
3473 <h5>Example:</h5>
3474 <pre>
3475   %X = bitcast i8 255 to i8              <i>; yields i8 :-1</i>
3476   %Y = bitcast i32* %x to sint*          <i>; yields sint*:%x</i>
3477   %Z = bitcast <2xint> %V to i64;        <i>; yields i64: %V</i>   
3478 </pre>
3479 </div>
3480
3481 <!-- ======================================================================= -->
3482 <div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3483 <div class="doc_text">
3484 <p>The instructions in this category are the "miscellaneous"
3485 instructions, which defy better classification.</p>
3486 </div>
3487
3488 <!-- _______________________________________________________________________ -->
3489 <div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
3490 </div>
3491 <div class="doc_text">
3492 <h5>Syntax:</h5>
3493 <pre>  &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {i1}:result</i>
3494 </pre>
3495 <h5>Overview:</h5>
3496 <p>The '<tt>icmp</tt>' instruction returns a boolean value based on comparison
3497 of its two integer operands.</p>
3498 <h5>Arguments:</h5>
3499 <p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
3500 the condition code indicating the kind of comparison to perform. It is not
3501 a value, just a keyword. The possible condition code are:
3502 <ol>
3503   <li><tt>eq</tt>: equal</li>
3504   <li><tt>ne</tt>: not equal </li>
3505   <li><tt>ugt</tt>: unsigned greater than</li>
3506   <li><tt>uge</tt>: unsigned greater or equal</li>
3507   <li><tt>ult</tt>: unsigned less than</li>
3508   <li><tt>ule</tt>: unsigned less or equal</li>
3509   <li><tt>sgt</tt>: signed greater than</li>
3510   <li><tt>sge</tt>: signed greater or equal</li>
3511   <li><tt>slt</tt>: signed less than</li>
3512   <li><tt>sle</tt>: signed less or equal</li>
3513 </ol>
3514 <p>The remaining two arguments must be <a href="#t_integer">integer</a> or
3515 <a href="#t_pointer">pointer</a> typed. They must also be identical types.</p>
3516 <h5>Semantics:</h5>
3517 <p>The '<tt>icmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to 
3518 the condition code given as <tt>cond</tt>. The comparison performed always
3519 yields a <a href="#t_primitive">i1</a> result, as follows: 
3520 <ol>
3521   <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal, 
3522   <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3523   </li>
3524   <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal, 
3525   <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3526   <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
3527   <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3528   <li><tt>uge</tt>: interprets the operands as unsigned values and yields
3529   <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3530   <li><tt>ult</tt>: interprets the operands as unsigned values and yields
3531   <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3532   <li><tt>ule</tt>: interprets the operands as unsigned values and yields
3533   <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3534   <li><tt>sgt</tt>: interprets the operands as signed values and yields
3535   <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3536   <li><tt>sge</tt>: interprets the operands as signed values and yields
3537   <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3538   <li><tt>slt</tt>: interprets the operands as signed values and yields
3539   <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3540   <li><tt>sle</tt>: interprets the operands as signed values and yields
3541   <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3542 </ol>
3543 <p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
3544 values are compared as if they were integers.</p>
3545
3546 <h5>Example:</h5>
3547 <pre>  &lt;result&gt; = icmp eq i32 4, 5          <i>; yields: result=false</i>
3548   &lt;result&gt; = icmp ne float* %X, %X     <i>; yields: result=false</i>
3549   &lt;result&gt; = icmp ult i16  4, 5        <i>; yields: result=true</i>
3550   &lt;result&gt; = icmp sgt i16  4, 5        <i>; yields: result=false</i>
3551   &lt;result&gt; = icmp ule i16 -4, 5        <i>; yields: result=false</i>
3552   &lt;result&gt; = icmp sge i16  4, 5        <i>; yields: result=false</i>
3553 </pre>
3554 </div>
3555
3556 <!-- _______________________________________________________________________ -->
3557 <div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
3558 </div>
3559 <div class="doc_text">
3560 <h5>Syntax:</h5>
3561 <pre>  &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;     <i>; yields {i1}:result</i>
3562 </pre>
3563 <h5>Overview:</h5>
3564 <p>The '<tt>fcmp</tt>' instruction returns a boolean value based on comparison
3565 of its floating point operands.</p>
3566 <h5>Arguments:</h5>
3567 <p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
3568 the condition code indicating the kind of comparison to perform. It is not
3569 a value, just a keyword. The possible condition code are:
3570 <ol>
3571   <li><tt>false</tt>: no comparison, always returns false</li>
3572   <li><tt>oeq</tt>: ordered and equal</li>
3573   <li><tt>ogt</tt>: ordered and greater than </li>
3574   <li><tt>oge</tt>: ordered and greater than or equal</li>
3575   <li><tt>olt</tt>: ordered and less than </li>
3576   <li><tt>ole</tt>: ordered and less than or equal</li>
3577   <li><tt>one</tt>: ordered and not equal</li>
3578   <li><tt>ord</tt>: ordered (no nans)</li>
3579   <li><tt>ueq</tt>: unordered or equal</li>
3580   <li><tt>ugt</tt>: unordered or greater than </li>
3581   <li><tt>uge</tt>: unordered or greater than or equal</li>
3582   <li><tt>ult</tt>: unordered or less than </li>
3583   <li><tt>ule</tt>: unordered or less than or equal</li>
3584   <li><tt>une</tt>: unordered or not equal</li>
3585   <li><tt>uno</tt>: unordered (either nans)</li>
3586   <li><tt>true</tt>: no comparison, always returns true</li>
3587 </ol>
3588 <p><i>Ordered</i> means that neither operand is a QNAN while
3589 <i>unordered</i> means that either operand may be a QNAN.</p>
3590 <p>The <tt>val1</tt> and <tt>val2</tt> arguments must be
3591 <a href="#t_floating">floating point</a> typed.  They must have identical 
3592 types.</p>
3593 <h5>Semantics:</h5>
3594 <p>The '<tt>fcmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to 
3595 the condition code given as <tt>cond</tt>. The comparison performed always
3596 yields a <a href="#t_primitive">i1</a> result, as follows: 
3597 <ol>
3598   <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
3599   <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and 
3600   <tt>var1</tt> is equal to <tt>var2</tt>.</li>
3601   <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3602   <tt>var1</tt> is greather than <tt>var2</tt>.</li>
3603   <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and 
3604   <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3605   <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and 
3606   <tt>var1</tt> is less than <tt>var2</tt>.</li>
3607   <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and 
3608   <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3609   <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and 
3610   <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
3611   <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
3612   <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or 
3613   <tt>var1</tt> is equal to <tt>var2</tt>.</li>
3614   <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or 
3615   <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3616   <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or 
3617   <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3618   <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or 
3619   <tt>var1</tt> is less than <tt>var2</tt>.</li>
3620   <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or 
3621   <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3622   <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or 
3623   <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
3624   <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
3625   <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
3626 </ol>
3627
3628 <h5>Example:</h5>
3629 <pre>  &lt;result&gt; = fcmp oeq float 4.0, 5.0    <i>; yields: result=false</i>
3630   &lt;result&gt; = icmp one float 4.0, 5.0    <i>; yields: result=true</i>
3631   &lt;result&gt; = icmp olt float 4.0, 5.0    <i>; yields: result=true</i>
3632   &lt;result&gt; = icmp ueq double 1.0, 2.0   <i>; yields: result=false</i>
3633 </pre>
3634 </div>
3635
3636 <!-- _______________________________________________________________________ -->
3637 <div class="doc_subsubsection"> <a name="i_phi">'<tt>phi</tt>'
3638 Instruction</a> </div>
3639 <div class="doc_text">
3640 <h5>Syntax:</h5>
3641 <pre>  &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
3642 <h5>Overview:</h5>
3643 <p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
3644 the SSA graph representing the function.</p>
3645 <h5>Arguments:</h5>
3646 <p>The type of the incoming values is specified with the first type
3647 field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
3648 as arguments, with one pair for each predecessor basic block of the
3649 current block.  Only values of <a href="#t_firstclass">first class</a>
3650 type may be used as the value arguments to the PHI node.  Only labels
3651 may be used as the label arguments.</p>
3652 <p>There must be no non-phi instructions between the start of a basic
3653 block and the PHI instructions: i.e. PHI instructions must be first in
3654 a basic block.</p>
3655 <h5>Semantics:</h5>
3656 <p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
3657 specified by the pair corresponding to the predecessor basic block that executed
3658 just prior to the current block.</p>
3659 <h5>Example:</h5>
3660 <pre>Loop:       ; Infinite loop that counts from 0 on up...<br>  %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]<br>  %nextindvar = add i32 %indvar, 1<br>  br label %Loop<br></pre>
3661 </div>
3662
3663 <!-- _______________________________________________________________________ -->
3664 <div class="doc_subsubsection">
3665    <a name="i_select">'<tt>select</tt>' Instruction</a>
3666 </div>
3667
3668 <div class="doc_text">
3669
3670 <h5>Syntax:</h5>
3671
3672 <pre>
3673   &lt;result&gt; = select i1 &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt;             <i>; yields ty</i>
3674 </pre>
3675
3676 <h5>Overview:</h5>
3677
3678 <p>
3679 The '<tt>select</tt>' instruction is used to choose one value based on a
3680 condition, without branching.
3681 </p>
3682
3683
3684 <h5>Arguments:</h5>
3685
3686 <p>
3687 The '<tt>select</tt>' instruction requires a boolean value indicating the condition, and two values of the same <a href="#t_firstclass">first class</a> type.
3688 </p>
3689
3690 <h5>Semantics:</h5>
3691
3692 <p>
3693 If the boolean condition evaluates to true, the instruction returns the first
3694 value argument; otherwise, it returns the second value argument.
3695 </p>
3696
3697 <h5>Example:</h5>
3698
3699 <pre>
3700   %X = select i1 true, i8 17, i8 42          <i>; yields i8:17</i>
3701 </pre>
3702 </div>
3703
3704
3705 <!-- _______________________________________________________________________ -->
3706 <div class="doc_subsubsection">
3707   <a name="i_call">'<tt>call</tt>' Instruction</a>
3708 </div>
3709
3710 <div class="doc_text">
3711
3712 <h5>Syntax:</h5>
3713 <pre>
3714   &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;param list&gt;)
3715 </pre>
3716
3717 <h5>Overview:</h5>
3718
3719 <p>The '<tt>call</tt>' instruction represents a simple function call.</p>
3720
3721 <h5>Arguments:</h5>
3722
3723 <p>This instruction requires several arguments:</p>
3724
3725 <ol>
3726   <li>
3727     <p>The optional "tail" marker indicates whether the callee function accesses
3728     any allocas or varargs in the caller.  If the "tail" marker is present, the
3729     function call is eligible for tail call optimization.  Note that calls may
3730     be marked "tail" even if they do not occur before a <a
3731     href="#i_ret"><tt>ret</tt></a> instruction.
3732   </li>
3733   <li>
3734     <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
3735     convention</a> the call should use.  If none is specified, the call defaults
3736     to using C calling conventions.
3737   </li>
3738   <li>
3739     <p>'<tt>ty</tt>': the type of the call instruction itself which is also
3740     the type of the return value.  Functions that return no value are marked
3741     <tt><a href="#t_void">void</a></tt>.</p>
3742   </li>
3743   <li>
3744     <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
3745     value being invoked.  The argument types must match the types implied by
3746     this signature.  This type can be omitted if the function is not varargs
3747     and if the function type does not return a pointer to a function.</p>
3748   </li>
3749   <li>
3750     <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
3751     be invoked. In most cases, this is a direct function invocation, but
3752     indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
3753     to function value.</p>
3754   </li>
3755   <li>
3756     <p>'<tt>function args</tt>': argument list whose types match the
3757     function signature argument types. All arguments must be of 
3758     <a href="#t_firstclass">first class</a> type. If the function signature 
3759     indicates the function accepts a variable number of arguments, the extra 
3760     arguments can be specified.</p>
3761   </li>
3762 </ol>
3763
3764 <h5>Semantics:</h5>
3765
3766 <p>The '<tt>call</tt>' instruction is used to cause control flow to
3767 transfer to a specified function, with its incoming arguments bound to
3768 the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
3769 instruction in the called function, control flow continues with the
3770 instruction after the function call, and the return value of the
3771 function is bound to the result argument.  This is a simpler case of
3772 the <a href="#i_invoke">invoke</a> instruction.</p>
3773
3774 <h5>Example:</h5>
3775
3776 <pre>
3777   %retval = call i32 @test(i32 %argc)
3778   call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42);
3779   %X = tail call i32 @foo()
3780   %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo()
3781   %Z = call void %foo(i8 97 signext)
3782 </pre>
3783
3784 </div>
3785
3786 <!-- _______________________________________________________________________ -->
3787 <div class="doc_subsubsection">
3788   <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
3789 </div>
3790
3791 <div class="doc_text">
3792
3793 <h5>Syntax:</h5>
3794
3795 <pre>
3796   &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
3797 </pre>
3798
3799 <h5>Overview:</h5>
3800
3801 <p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
3802 the "variable argument" area of a function call.  It is used to implement the
3803 <tt>va_arg</tt> macro in C.</p>
3804
3805 <h5>Arguments:</h5>
3806
3807 <p>This instruction takes a <tt>va_list*</tt> value and the type of
3808 the argument. It returns a value of the specified argument type and
3809 increments the <tt>va_list</tt> to point to the next argument.  The
3810 actual type of <tt>va_list</tt> is target specific.</p>
3811
3812 <h5>Semantics:</h5>
3813
3814 <p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
3815 type from the specified <tt>va_list</tt> and causes the
3816 <tt>va_list</tt> to point to the next argument.  For more information,
3817 see the variable argument handling <a href="#int_varargs">Intrinsic
3818 Functions</a>.</p>
3819
3820 <p>It is legal for this instruction to be called in a function which does not
3821 take a variable number of arguments, for example, the <tt>vfprintf</tt>
3822 function.</p>
3823
3824 <p><tt>va_arg</tt> is an LLVM instruction instead of an <a
3825 href="#intrinsics">intrinsic function</a> because it takes a type as an
3826 argument.</p>
3827
3828 <h5>Example:</h5>
3829
3830 <p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
3831
3832 </div>
3833
3834 <!-- *********************************************************************** -->
3835 <div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
3836 <!-- *********************************************************************** -->
3837
3838 <div class="doc_text">
3839
3840 <p>LLVM supports the notion of an "intrinsic function".  These functions have
3841 well known names and semantics and are required to follow certain restrictions.
3842 Overall, these intrinsics represent an extension mechanism for the LLVM 
3843 language that does not require changing all of the transformations in LLVM when 
3844 adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
3845
3846 <p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
3847 prefix is reserved in LLVM for intrinsic names; thus, function names may not
3848 begin with this prefix.  Intrinsic functions must always be external functions:
3849 you cannot define the body of intrinsic functions.  Intrinsic functions may
3850 only be used in call or invoke instructions: it is illegal to take the address
3851 of an intrinsic function.  Additionally, because intrinsic functions are part
3852 of the LLVM language, it is required if any are added that they be documented
3853 here.</p>
3854
3855 <p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents 
3856 a family of functions that perform the same operation but on different data 
3857 types. Because LLVM can represent over 8 million different integer types, 
3858 overloading is used commonly to allow an intrinsic function to operate on any 
3859 integer type. One or more of the argument types or the result type can be 
3860 overloaded to accept any integer type. Argument types may also be defined as 
3861 exactly matching a previous argument's type or the result type. This allows an 
3862 intrinsic function which accepts multiple arguments, but needs all of them to 
3863 be of the same type, to only be overloaded with respect to a single argument or 
3864 the result.</p>
3865
3866 <p>Overloaded intrinsics will have the names of its overloaded argument types 
3867 encoded into its function name, each preceded by a period. Only those types 
3868 which are overloaded result in a name suffix. Arguments whose type is matched 
3869 against another type do not. For example, the <tt>llvm.ctpop</tt> function can 
3870 take an integer of any width and returns an integer of exactly the same integer 
3871 width. This leads to a family of functions such as
3872 <tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
3873 Only one type, the return type, is overloaded, and only one type suffix is 
3874 required. Because the argument's type is matched against the return type, it 
3875 does not require its own name suffix.</p>
3876
3877 <p>To learn how to add an intrinsic function, please see the 
3878 <a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
3879 </p>
3880
3881 </div>
3882
3883 <!-- ======================================================================= -->
3884 <div class="doc_subsection">
3885   <a name="int_varargs">Variable Argument Handling Intrinsics</a>
3886 </div>
3887
3888 <div class="doc_text">
3889
3890 <p>Variable argument support is defined in LLVM with the <a
3891  href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
3892 intrinsic functions.  These functions are related to the similarly
3893 named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
3894
3895 <p>All of these functions operate on arguments that use a
3896 target-specific value type "<tt>va_list</tt>".  The LLVM assembly
3897 language reference manual does not define what this type is, so all
3898 transformations should be prepared to handle these functions regardless of
3899 the type used.</p>
3900
3901 <p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
3902 instruction and the variable argument handling intrinsic functions are
3903 used.</p>
3904
3905 <div class="doc_code">
3906 <pre>
3907 define i32 @test(i32 %X, ...) {
3908   ; Initialize variable argument processing
3909   %ap = alloca i8*
3910   %ap2 = bitcast i8** %ap to i8*
3911   call void @llvm.va_start(i8* %ap2)
3912
3913   ; Read a single integer argument
3914   %tmp = va_arg i8** %ap, i32
3915
3916   ; Demonstrate usage of llvm.va_copy and llvm.va_end
3917   %aq = alloca i8*
3918   %aq2 = bitcast i8** %aq to i8*
3919   call void @llvm.va_copy(i8* %aq2, i8* %ap2)
3920   call void @llvm.va_end(i8* %aq2)
3921
3922   ; Stop processing of arguments.
3923   call void @llvm.va_end(i8* %ap2)
3924   ret i32 %tmp
3925 }
3926
3927 declare void @llvm.va_start(i8*)
3928 declare void @llvm.va_copy(i8*, i8*)
3929 declare void @llvm.va_end(i8*)
3930 </pre>
3931 </div>
3932
3933 </div>
3934
3935 <!-- _______________________________________________________________________ -->
3936 <div class="doc_subsubsection">
3937   <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
3938 </div>
3939
3940
3941 <div class="doc_text">
3942 <h5>Syntax:</h5>
3943 <pre>  declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
3944 <h5>Overview:</h5>
3945 <P>The '<tt>llvm.va_start</tt>' intrinsic initializes
3946 <tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
3947 href="#i_va_arg">va_arg</a></tt>.</p>
3948
3949 <h5>Arguments:</h5>
3950
3951 <P>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
3952
3953 <h5>Semantics:</h5>
3954
3955 <P>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
3956 macro available in C.  In a target-dependent way, it initializes the
3957 <tt>va_list</tt> element to which the argument points, so that the next call to
3958 <tt>va_arg</tt> will produce the first variable argument passed to the function.
3959 Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
3960 last argument of the function as the compiler can figure that out.</p>
3961
3962 </div>
3963
3964 <!-- _______________________________________________________________________ -->
3965 <div class="doc_subsubsection">
3966  <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
3967 </div>
3968
3969 <div class="doc_text">
3970 <h5>Syntax:</h5>
3971 <pre>  declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
3972 <h5>Overview:</h5>
3973
3974 <p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
3975 which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
3976 or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
3977
3978 <h5>Arguments:</h5>
3979
3980 <p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
3981
3982 <h5>Semantics:</h5>
3983
3984 <p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
3985 macro available in C.  In a target-dependent way, it destroys the
3986 <tt>va_list</tt> element to which the argument points.  Calls to <a
3987 href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
3988 <tt>llvm.va_copy</tt></a> must be matched exactly with calls to
3989 <tt>llvm.va_end</tt>.</p>
3990
3991 </div>
3992
3993 <!-- _______________________________________________________________________ -->
3994 <div class="doc_subsubsection">
3995   <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
3996 </div>
3997
3998 <div class="doc_text">
3999
4000 <h5>Syntax:</h5>
4001
4002 <pre>
4003   declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
4004 </pre>
4005
4006 <h5>Overview:</h5>
4007
4008 <p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
4009 from the source argument list to the destination argument list.</p>
4010
4011 <h5>Arguments:</h5>
4012
4013 <p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
4014 The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
4015
4016
4017 <h5>Semantics:</h5>
4018
4019 <p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
4020 macro available in C.  In a target-dependent way, it copies the source
4021 <tt>va_list</tt> element into the destination <tt>va_list</tt> element.  This
4022 intrinsic is necessary because the <tt><a href="#int_va_start">
4023 llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
4024 example, memory allocation.</p>
4025
4026 </div>
4027
4028 <!-- ======================================================================= -->
4029 <div class="doc_subsection">
4030   <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
4031 </div>
4032
4033 <div class="doc_text">
4034
4035 <p>
4036 LLVM support for <a href="GarbageCollection.html">Accurate Garbage
4037 Collection</a> requires the implementation and generation of these intrinsics.
4038 These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
4039 stack</a>, as well as garbage collector implementations that require <a
4040 href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
4041 Front-ends for type-safe garbage collected languages should generate these
4042 intrinsics to make use of the LLVM garbage collectors.  For more details, see <a
4043 href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
4044 </p>
4045
4046 <p>The garbage collection intrinsics only operate on objects in the generic 
4047         address space (address space zero).</p>
4048
4049 </div>
4050
4051 <!-- _______________________________________________________________________ -->
4052 <div class="doc_subsubsection">
4053   <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
4054 </div>
4055
4056 <div class="doc_text">
4057
4058 <h5>Syntax:</h5>
4059
4060 <pre>
4061   declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
4062 </pre>
4063
4064 <h5>Overview:</h5>
4065
4066 <p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
4067 the code generator, and allows some metadata to be associated with it.</p>
4068
4069 <h5>Arguments:</h5>
4070
4071 <p>The first argument specifies the address of a stack object that contains the
4072 root pointer.  The second pointer (which must be either a constant or a global
4073 value address) contains the meta-data to be associated with the root.</p>
4074
4075 <h5>Semantics:</h5>
4076
4077 <p>At runtime, a call to this intrinsics stores a null pointer into the "ptrloc"
4078 location.  At compile-time, the code generator generates information to allow
4079 the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
4080 intrinsic may only be used in a function which <a href="#gc">specifies a GC
4081 algorithm</a>.</p>
4082
4083 </div>
4084
4085
4086 <!-- _______________________________________________________________________ -->
4087 <div class="doc_subsubsection">
4088   <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
4089 </div>
4090
4091 <div class="doc_text">
4092
4093 <h5>Syntax:</h5>
4094
4095 <pre>
4096   declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
4097 </pre>
4098
4099 <h5>Overview:</h5>
4100
4101 <p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
4102 locations, allowing garbage collector implementations that require read
4103 barriers.</p>
4104
4105 <h5>Arguments:</h5>
4106
4107 <p>The second argument is the address to read from, which should be an address
4108 allocated from the garbage collector.  The first object is a pointer to the 
4109 start of the referenced object, if needed by the language runtime (otherwise
4110 null).</p>
4111
4112 <h5>Semantics:</h5>
4113
4114 <p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
4115 instruction, but may be replaced with substantially more complex code by the
4116 garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
4117 may only be used in a function which <a href="#gc">specifies a GC
4118 algorithm</a>.</p>
4119
4120 </div>
4121
4122
4123 <!-- _______________________________________________________________________ -->
4124 <div class="doc_subsubsection">
4125   <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
4126 </div>
4127
4128 <div class="doc_text">
4129
4130 <h5>Syntax:</h5>
4131
4132 <pre>
4133   declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
4134 </pre>
4135
4136 <h5>Overview:</h5>
4137
4138 <p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
4139 locations, allowing garbage collector implementations that require write
4140 barriers (such as generational or reference counting collectors).</p>
4141
4142 <h5>Arguments:</h5>
4143
4144 <p>The first argument is the reference to store, the second is the start of the
4145 object to store it to, and the third is the address of the field of Obj to 
4146 store to.  If the runtime does not require a pointer to the object, Obj may be
4147 null.</p>
4148
4149 <h5>Semantics:</h5>
4150
4151 <p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
4152 instruction, but may be replaced with substantially more complex code by the
4153 garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
4154 may only be used in a function which <a href="#gc">specifies a GC
4155 algorithm</a>.</p>
4156
4157 </div>
4158
4159
4160
4161 <!-- ======================================================================= -->
4162 <div class="doc_subsection">
4163   <a name="int_codegen">Code Generator Intrinsics</a>
4164 </div>
4165
4166 <div class="doc_text">
4167 <p>
4168 These intrinsics are provided by LLVM to expose special features that may only
4169 be implemented with code generator support.
4170 </p>
4171
4172 </div>
4173
4174 <!-- _______________________________________________________________________ -->
4175 <div class="doc_subsubsection">
4176   <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
4177 </div>
4178
4179 <div class="doc_text">
4180
4181 <h5>Syntax:</h5>
4182 <pre>
4183   declare i8  *@llvm.returnaddress(i32 &lt;level&gt;)
4184 </pre>
4185
4186 <h5>Overview:</h5>
4187
4188 <p>
4189 The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a 
4190 target-specific value indicating the return address of the current function 
4191 or one of its callers.
4192 </p>
4193
4194 <h5>Arguments:</h5>
4195
4196 <p>
4197 The argument to this intrinsic indicates which function to return the address
4198 for.  Zero indicates the calling function, one indicates its caller, etc.  The
4199 argument is <b>required</b> to be a constant integer value.
4200 </p>
4201
4202 <h5>Semantics:</h5>
4203
4204 <p>
4205 The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
4206 the return address of the specified call frame, or zero if it cannot be
4207 identified.  The value returned by this intrinsic is likely to be incorrect or 0
4208 for arguments other than zero, so it should only be used for debugging purposes.
4209 </p>
4210
4211 <p>
4212 Note that calling this intrinsic does not prevent function inlining or other
4213 aggressive transformations, so the value returned may not be that of the obvious
4214 source-language caller.
4215 </p>
4216 </div>
4217
4218
4219 <!-- _______________________________________________________________________ -->
4220 <div class="doc_subsubsection">
4221   <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
4222 </div>
4223
4224 <div class="doc_text">
4225
4226 <h5>Syntax:</h5>
4227 <pre>
4228   declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
4229 </pre>
4230
4231 <h5>Overview:</h5>
4232
4233 <p>
4234 The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the 
4235 target-specific frame pointer value for the specified stack frame.
4236 </p>
4237
4238 <h5>Arguments:</h5>
4239
4240 <p>
4241 The argument to this intrinsic indicates which function to return the frame
4242 pointer for.  Zero indicates the calling function, one indicates its caller,
4243 etc.  The argument is <b>required</b> to be a constant integer value.
4244 </p>
4245
4246 <h5>Semantics:</h5>
4247
4248 <p>
4249 The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
4250 the frame address of the specified call frame, or zero if it cannot be
4251 identified.  The value returned by this intrinsic is likely to be incorrect or 0
4252 for arguments other than zero, so it should only be used for debugging purposes.
4253 </p>
4254
4255 <p>
4256 Note that calling this intrinsic does not prevent function inlining or other
4257 aggressive transformations, so the value returned may not be that of the obvious
4258 source-language caller.
4259 </p>
4260 </div>
4261
4262 <!-- _______________________________________________________________________ -->
4263 <div class="doc_subsubsection">
4264   <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
4265 </div>
4266
4267 <div class="doc_text">
4268
4269 <h5>Syntax:</h5>
4270 <pre>
4271   declare i8 *@llvm.stacksave()
4272 </pre>
4273
4274 <h5>Overview:</h5>
4275
4276 <p>
4277 The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
4278 the function stack, for use with <a href="#int_stackrestore">
4279 <tt>llvm.stackrestore</tt></a>.  This is useful for implementing language
4280 features like scoped automatic variable sized arrays in C99.
4281 </p>
4282
4283 <h5>Semantics:</h5>
4284
4285 <p>
4286 This intrinsic returns a opaque pointer value that can be passed to <a
4287 href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>.  When an
4288 <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from 
4289 <tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
4290 state it was in when the <tt>llvm.stacksave</tt> intrinsic executed.  In
4291 practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
4292 that were allocated after the <tt>llvm.stacksave</tt> was executed.
4293 </p>
4294
4295 </div>
4296
4297 <!-- _______________________________________________________________________ -->
4298 <div class="doc_subsubsection">
4299   <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
4300 </div>
4301
4302 <div class="doc_text">
4303
4304 <h5>Syntax:</h5>
4305 <pre>
4306   declare void @llvm.stackrestore(i8 * %ptr)
4307 </pre>
4308
4309 <h5>Overview:</h5>
4310
4311 <p>
4312 The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
4313 the function stack to the state it was in when the corresponding <a
4314 href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed.  This is
4315 useful for implementing language features like scoped automatic variable sized
4316 arrays in C99.
4317 </p>
4318
4319 <h5>Semantics:</h5>
4320
4321 <p>
4322 See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
4323 </p>
4324
4325 </div>
4326
4327
4328 <!-- _______________________________________________________________________ -->
4329 <div class="doc_subsubsection">
4330   <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
4331 </div>
4332
4333 <div class="doc_text">
4334
4335 <h5>Syntax:</h5>
4336 <pre>
4337   declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
4338 </pre>
4339
4340 <h5>Overview:</h5>
4341
4342
4343 <p>
4344 The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
4345 a prefetch instruction if supported; otherwise, it is a noop.  Prefetches have
4346 no
4347 effect on the behavior of the program but can change its performance
4348 characteristics.
4349 </p>
4350
4351 <h5>Arguments:</h5>
4352
4353 <p>
4354 <tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
4355 determining if the fetch should be for a read (0) or write (1), and
4356 <tt>locality</tt> is a temporal locality specifier ranging from (0) - no
4357 locality, to (3) - extremely local keep in cache.  The <tt>rw</tt> and
4358 <tt>locality</tt> arguments must be constant integers.
4359 </p>
4360
4361 <h5>Semantics:</h5>
4362
4363 <p>
4364 This intrinsic does not modify the behavior of the program.  In particular,
4365 prefetches cannot trap and do not produce a value.  On targets that support this
4366 intrinsic, the prefetch can provide hints to the processor cache for better
4367 performance.
4368 </p>
4369
4370 </div>
4371
4372 <!-- _______________________________________________________________________ -->
4373 <div class="doc_subsubsection">
4374   <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
4375 </div>
4376
4377 <div class="doc_text">
4378
4379 <h5>Syntax:</h5>
4380 <pre>
4381   declare void @llvm.pcmarker(i32 &lt;id&gt;)
4382 </pre>
4383
4384 <h5>Overview:</h5>
4385
4386
4387 <p>
4388 The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
4389 (PC) in a region of 
4390 code to simulators and other tools.  The method is target specific, but it is 
4391 expected that the marker will use exported symbols to transmit the PC of the marker.
4392 The marker makes no guarantees that it will remain with any specific instruction 
4393 after optimizations.  It is possible that the presence of a marker will inhibit 
4394 optimizations.  The intended use is to be inserted after optimizations to allow
4395 correlations of simulation runs.
4396 </p>
4397
4398 <h5>Arguments:</h5>
4399
4400 <p>
4401 <tt>id</tt> is a numerical id identifying the marker.
4402 </p>
4403
4404 <h5>Semantics:</h5>
4405
4406 <p>
4407 This intrinsic does not modify the behavior of the program.  Backends that do not 
4408 support this intrinisic may ignore it.
4409 </p>
4410
4411 </div>
4412
4413 <!-- _______________________________________________________________________ -->
4414 <div class="doc_subsubsection">
4415   <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
4416 </div>
4417
4418 <div class="doc_text">
4419
4420 <h5>Syntax:</h5>
4421 <pre>
4422   declare i64 @llvm.readcyclecounter( )
4423 </pre>
4424
4425 <h5>Overview:</h5>
4426
4427
4428 <p>
4429 The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle 
4430 counter register (or similar low latency, high accuracy clocks) on those targets
4431 that support it.  On X86, it should map to RDTSC.  On Alpha, it should map to RPCC.
4432 As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
4433 should only be used for small timings.  
4434 </p>
4435
4436 <h5>Semantics:</h5>
4437
4438 <p>
4439 When directly supported, reading the cycle counter should not modify any memory.  
4440 Implementations are allowed to either return a application specific value or a
4441 system wide value.  On backends without support, this is lowered to a constant 0.
4442 </p>
4443
4444 </div>
4445
4446 <!-- ======================================================================= -->
4447 <div class="doc_subsection">
4448   <a name="int_libc">Standard C Library Intrinsics</a>
4449 </div>
4450
4451 <div class="doc_text">
4452 <p>
4453 LLVM provides intrinsics for a few important standard C library functions.
4454 These intrinsics allow source-language front-ends to pass information about the
4455 alignment of the pointer arguments to the code generator, providing opportunity
4456 for more efficient code generation.
4457 </p>
4458
4459 </div>
4460
4461 <!-- _______________________________________________________________________ -->
4462 <div class="doc_subsubsection">
4463   <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
4464 </div>
4465
4466 <div class="doc_text">
4467
4468 <h5>Syntax:</h5>
4469 <pre>
4470   declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4471                                 i32 &lt;len&gt;, i32 &lt;align&gt;)
4472   declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4473                                 i64 &lt;len&gt;, i32 &lt;align&gt;)
4474 </pre>
4475
4476 <h5>Overview:</h5>
4477
4478 <p>
4479 The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
4480 location to the destination location.
4481 </p>
4482
4483 <p>
4484 Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt> 
4485 intrinsics do not return a value, and takes an extra alignment argument.
4486 </p>
4487
4488 <h5>Arguments:</h5>
4489
4490 <p>
4491 The first argument is a pointer to the destination, the second is a pointer to
4492 the source.  The third argument is an integer argument
4493 specifying the number of bytes to copy, and the fourth argument is the alignment
4494 of the source and destination locations.
4495 </p>
4496
4497 <p>
4498 If the call to this intrinisic has an alignment value that is not 0 or 1, then
4499 the caller guarantees that both the source and destination pointers are aligned
4500 to that boundary.
4501 </p>
4502
4503 <h5>Semantics:</h5>
4504
4505 <p>
4506 The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
4507 location to the destination location, which are not allowed to overlap.  It
4508 copies "len" bytes of memory over.  If the argument is known to be aligned to
4509 some boundary, this can be specified as the fourth argument, otherwise it should
4510 be set to 0 or 1.
4511 </p>
4512 </div>
4513
4514
4515 <!-- _______________________________________________________________________ -->
4516 <div class="doc_subsubsection">
4517   <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
4518 </div>
4519
4520 <div class="doc_text">
4521
4522 <h5>Syntax:</h5>
4523 <pre>
4524   declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4525                                  i32 &lt;len&gt;, i32 &lt;align&gt;)
4526   declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4527                                  i64 &lt;len&gt;, i32 &lt;align&gt;)
4528 </pre>
4529
4530 <h5>Overview:</h5>
4531
4532 <p>
4533 The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
4534 location to the destination location. It is similar to the
4535 '<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
4536 </p>
4537
4538 <p>
4539 Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt> 
4540 intrinsics do not return a value, and takes an extra alignment argument.
4541 </p>
4542
4543 <h5>Arguments:</h5>
4544
4545 <p>
4546 The first argument is a pointer to the destination, the second is a pointer to
4547 the source.  The third argument is an integer argument
4548 specifying the number of bytes to copy, and the fourth argument is the alignment
4549 of the source and destination locations.
4550 </p>
4551
4552 <p>
4553 If the call to this intrinisic has an alignment value that is not 0 or 1, then
4554 the caller guarantees that the source and destination pointers are aligned to
4555 that boundary.
4556 </p>
4557
4558 <h5>Semantics:</h5>
4559
4560 <p>
4561 The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
4562 location to the destination location, which may overlap.  It
4563 copies "len" bytes of memory over.  If the argument is known to be aligned to
4564 some boundary, this can be specified as the fourth argument, otherwise it should
4565 be set to 0 or 1.
4566 </p>
4567 </div>
4568
4569
4570 <!-- _______________________________________________________________________ -->
4571 <div class="doc_subsubsection">
4572   <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
4573 </div>
4574
4575 <div class="doc_text">
4576
4577 <h5>Syntax:</h5>
4578 <pre>
4579   declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
4580                                 i32 &lt;len&gt;, i32 &lt;align&gt;)
4581   declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
4582                                 i64 &lt;len&gt;, i32 &lt;align&gt;)
4583 </pre>
4584
4585 <h5>Overview:</h5>
4586
4587 <p>
4588 The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
4589 byte value.
4590 </p>
4591
4592 <p>
4593 Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
4594 does not return a value, and takes an extra alignment argument.
4595 </p>
4596
4597 <h5>Arguments:</h5>
4598
4599 <p>
4600 The first argument is a pointer to the destination to fill, the second is the
4601 byte value to fill it with, the third argument is an integer
4602 argument specifying the number of bytes to fill, and the fourth argument is the
4603 known alignment of destination location.
4604 </p>
4605
4606 <p>
4607 If the call to this intrinisic has an alignment value that is not 0 or 1, then
4608 the caller guarantees that the destination pointer is aligned to that boundary.
4609 </p>
4610
4611 <h5>Semantics:</h5>
4612
4613 <p>
4614 The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
4615 the
4616 destination location.  If the argument is known to be aligned to some boundary,
4617 this can be specified as the fourth argument, otherwise it should be set to 0 or
4618 1.
4619 </p>
4620 </div>
4621
4622
4623 <!-- _______________________________________________________________________ -->
4624 <div class="doc_subsubsection">
4625   <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
4626 </div>
4627
4628 <div class="doc_text">
4629
4630 <h5>Syntax:</h5>
4631 <p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any 
4632 floating point or vector of floating point type. Not all targets support all
4633 types however.
4634 <pre>
4635   declare float     @llvm.sqrt.f32(float %Val)
4636   declare double    @llvm.sqrt.f64(double %Val)
4637   declare x86_fp80  @llvm.sqrt.f80(x86_fp80 %Val)
4638   declare fp128     @llvm.sqrt.f128(fp128 %Val)
4639   declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
4640 </pre>
4641
4642 <h5>Overview:</h5>
4643
4644 <p>
4645 The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
4646 returning the same value as the libm '<tt>sqrt</tt>' functions would.  Unlike
4647 <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
4648 negative numbers (which allows for better optimization).
4649 </p>
4650
4651 <h5>Arguments:</h5>
4652
4653 <p>
4654 The argument and return value are floating point numbers of the same type.
4655 </p>
4656
4657 <h5>Semantics:</h5>
4658
4659 <p>
4660 This function returns the sqrt of the specified operand if it is a nonnegative
4661 floating point number.
4662 </p>
4663 </div>
4664
4665 <!-- _______________________________________________________________________ -->
4666 <div class="doc_subsubsection">
4667   <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
4668 </div>
4669
4670 <div class="doc_text">
4671
4672 <h5>Syntax:</h5>
4673 <p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any 
4674 floating point or vector of floating point type. Not all targets support all
4675 types however.
4676 <pre>
4677   declare float     @llvm.powi.f32(float  %Val, i32 %power)
4678   declare double    @llvm.powi.f64(double %Val, i32 %power)
4679   declare x86_fp80  @llvm.powi.f80(x86_fp80  %Val, i32 %power)
4680   declare fp128     @llvm.powi.f128(fp128 %Val, i32 %power)
4681   declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128  %Val, i32 %power)
4682 </pre>
4683
4684 <h5>Overview:</h5>
4685
4686 <p>
4687 The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
4688 specified (positive or negative) power.  The order of evaluation of
4689 multiplications is not defined.  When a vector of floating point type is
4690 used, the second argument remains a scalar integer value.
4691 </p>
4692
4693 <h5>Arguments:</h5>
4694
4695 <p>
4696 The second argument is an integer power, and the first is a value to raise to
4697 that power.
4698 </p>
4699
4700 <h5>Semantics:</h5>
4701
4702 <p>
4703 This function returns the first value raised to the second power with an
4704 unspecified sequence of rounding operations.</p>
4705 </div>
4706
4707 <!-- _______________________________________________________________________ -->
4708 <div class="doc_subsubsection">
4709   <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
4710 </div>
4711
4712 <div class="doc_text">
4713
4714 <h5>Syntax:</h5>
4715 <p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any 
4716 floating point or vector of floating point type. Not all targets support all
4717 types however.
4718 <pre>
4719   declare float     @llvm.sin.f32(float  %Val)
4720   declare double    @llvm.sin.f64(double %Val)
4721   declare x86_fp80  @llvm.sin.f80(x86_fp80  %Val)
4722   declare fp128     @llvm.sin.f128(fp128 %Val)
4723   declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128  %Val)
4724 </pre>
4725
4726 <h5>Overview:</h5>
4727
4728 <p>
4729 The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
4730 </p>
4731
4732 <h5>Arguments:</h5>
4733
4734 <p>
4735 The argument and return value are floating point numbers of the same type.
4736 </p>
4737
4738 <h5>Semantics:</h5>
4739
4740 <p>
4741 This function returns the sine of the specified operand, returning the
4742 same values as the libm <tt>sin</tt> functions would, and handles error
4743 conditions in the same way.</p>
4744 </div>
4745
4746 <!-- _______________________________________________________________________ -->
4747 <div class="doc_subsubsection">
4748   <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
4749 </div>
4750
4751 <div class="doc_text">
4752
4753 <h5>Syntax:</h5>
4754 <p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any 
4755 floating point or vector of floating point type. Not all targets support all
4756 types however.
4757 <pre>
4758   declare float     @llvm.cos.f32(float  %Val)
4759   declare double    @llvm.cos.f64(double %Val)
4760   declare x86_fp80  @llvm.cos.f80(x86_fp80  %Val)
4761   declare fp128     @llvm.cos.f128(fp128 %Val)
4762   declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128  %Val)
4763 </pre>
4764
4765 <h5>Overview:</h5>
4766
4767 <p>
4768 The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
4769 </p>
4770
4771 <h5>Arguments:</h5>
4772
4773 <p>
4774 The argument and return value are floating point numbers of the same type.
4775 </p>
4776
4777 <h5>Semantics:</h5>
4778
4779 <p>
4780 This function returns the cosine of the specified operand, returning the
4781 same values as the libm <tt>cos</tt> functions would, and handles error
4782 conditions in the same way.</p>
4783 </div>
4784
4785 <!-- _______________________________________________________________________ -->
4786 <div class="doc_subsubsection">
4787   <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
4788 </div>
4789
4790 <div class="doc_text">
4791
4792 <h5>Syntax:</h5>
4793 <p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any 
4794 floating point or vector of floating point type. Not all targets support all
4795 types however.
4796 <pre>
4797   declare float     @llvm.pow.f32(float  %Val, float %Power)
4798   declare double    @llvm.pow.f64(double %Val, double %Power)
4799   declare x86_fp80  @llvm.pow.f80(x86_fp80  %Val, x86_fp80 %Power)
4800   declare fp128     @llvm.pow.f128(fp128 %Val, fp128 %Power)
4801   declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128  %Val, ppc_fp128 Power)
4802 </pre>
4803
4804 <h5>Overview:</h5>
4805
4806 <p>
4807 The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
4808 specified (positive or negative) power.
4809 </p>
4810
4811 <h5>Arguments:</h5>
4812
4813 <p>
4814 The second argument is a floating point power, and the first is a value to
4815 raise to that power.
4816 </p>
4817
4818 <h5>Semantics:</h5>
4819
4820 <p>
4821 This function returns the first value raised to the second power,
4822 returning the
4823 same values as the libm <tt>pow</tt> functions would, and handles error
4824 conditions in the same way.</p>
4825 </div>
4826
4827
4828 <!-- ======================================================================= -->
4829 <div class="doc_subsection">
4830   <a name="int_manip">Bit Manipulation Intrinsics</a>
4831 </div>
4832
4833 <div class="doc_text">
4834 <p>
4835 LLVM provides intrinsics for a few important bit manipulation operations.
4836 These allow efficient code generation for some algorithms.
4837 </p>
4838
4839 </div>
4840
4841 <!-- _______________________________________________________________________ -->
4842 <div class="doc_subsubsection">
4843   <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
4844 </div>
4845
4846 <div class="doc_text">
4847
4848 <h5>Syntax:</h5>
4849 <p>This is an overloaded intrinsic function. You can use bswap on any integer
4850 type that is an even number of bytes (i.e. BitWidth % 16 == 0).
4851 <pre>
4852   declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
4853   declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
4854   declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
4855 </pre>
4856
4857 <h5>Overview:</h5>
4858
4859 <p>
4860 The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer 
4861 values with an even number of bytes (positive multiple of 16 bits).  These are 
4862 useful for performing operations on data that is not in the target's native 
4863 byte order.
4864 </p>
4865
4866 <h5>Semantics:</h5>
4867
4868 <p>
4869 The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high 
4870 and low byte of the input i16 swapped.  Similarly, the <tt>llvm.bswap.i32</tt> 
4871 intrinsic returns an i32 value that has the four bytes of the input i32 
4872 swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned 
4873 i32 will have its bytes in 3, 2, 1, 0 order.  The <tt>llvm.bswap.i48</tt>, 
4874 <tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
4875 additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
4876 </p>
4877
4878 </div>
4879
4880 <!-- _______________________________________________________________________ -->
4881 <div class="doc_subsubsection">
4882   <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
4883 </div>
4884
4885 <div class="doc_text">
4886
4887 <h5>Syntax:</h5>
4888 <p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
4889 width. Not all targets support all bit widths however.
4890 <pre>
4891   declare i8 @llvm.ctpop.i8 (i8  &lt;src&gt;)
4892   declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
4893   declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
4894   declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
4895   declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
4896 </pre>
4897
4898 <h5>Overview:</h5>
4899
4900 <p>
4901 The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a 
4902 value.
4903 </p>
4904
4905 <h5>Arguments:</h5>
4906
4907 <p>
4908 The only argument is the value to be counted.  The argument may be of any
4909 integer type.  The return type must match the argument type.
4910 </p>
4911
4912 <h5>Semantics:</h5>
4913
4914 <p>
4915 The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
4916 </p>
4917 </div>
4918
4919 <!-- _______________________________________________________________________ -->
4920 <div class="doc_subsubsection">
4921   <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
4922 </div>
4923
4924 <div class="doc_text">
4925
4926 <h5>Syntax:</h5>
4927 <p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any 
4928 integer bit width. Not all targets support all bit widths however.
4929 <pre>
4930   declare i8 @llvm.ctlz.i8 (i8  &lt;src&gt;)
4931   declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
4932   declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
4933   declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
4934   declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
4935 </pre>
4936
4937 <h5>Overview:</h5>
4938
4939 <p>
4940 The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of 
4941 leading zeros in a variable.
4942 </p>
4943
4944 <h5>Arguments:</h5>
4945
4946 <p>
4947 The only argument is the value to be counted.  The argument may be of any
4948 integer type. The return type must match the argument type.
4949 </p>
4950
4951 <h5>Semantics:</h5>
4952
4953 <p>
4954 The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
4955 in a variable.  If the src == 0 then the result is the size in bits of the type
4956 of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
4957 </p>
4958 </div>
4959
4960
4961
4962 <!-- _______________________________________________________________________ -->
4963 <div class="doc_subsubsection">
4964   <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
4965 </div>
4966
4967 <div class="doc_text">
4968
4969 <h5>Syntax:</h5>
4970 <p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any 
4971 integer bit width. Not all targets support all bit widths however.
4972 <pre>
4973   declare i8 @llvm.cttz.i8 (i8  &lt;src&gt;)
4974   declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
4975   declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
4976   declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
4977   declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
4978 </pre>
4979
4980 <h5>Overview:</h5>
4981
4982 <p>
4983 The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of 
4984 trailing zeros.
4985 </p>
4986
4987 <h5>Arguments:</h5>
4988
4989 <p>
4990 The only argument is the value to be counted.  The argument may be of any
4991 integer type.  The return type must match the argument type.
4992 </p>
4993
4994 <h5>Semantics:</h5>
4995
4996 <p>
4997 The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
4998 in a variable.  If the src == 0 then the result is the size in bits of the type
4999 of src.  For example, <tt>llvm.cttz(2) = 1</tt>.
5000 </p>
5001 </div>
5002
5003 <!-- _______________________________________________________________________ -->
5004 <div class="doc_subsubsection">
5005   <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
5006 </div>
5007
5008 <div class="doc_text">
5009
5010 <h5>Syntax:</h5>
5011 <p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt> 
5012 on any integer bit width.
5013 <pre>
5014   declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
5015   declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
5016 </pre>
5017
5018 <h5>Overview:</h5>
5019 <p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
5020 range of bits from an integer value and returns them in the same bit width as
5021 the original value.</p>
5022
5023 <h5>Arguments:</h5>
5024 <p>The first argument, <tt>%val</tt> and the result may be integer types of 
5025 any bit width but they must have the same bit width. The second and third 
5026 arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
5027
5028 <h5>Semantics:</h5>
5029 <p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
5030 of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
5031 <tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
5032 operates in forward mode.</p>
5033 <p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
5034 right by <tt>%loBit</tt> bits and then ANDing it with a mask with
5035 only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
5036 <ol>
5037   <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
5038   by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
5039   <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
5040   to determine the number of bits to retain.</li>
5041   <li>A mask of the retained bits is created by shifting a -1 value.</li>
5042   <li>The mask is ANDed with <tt>%val</tt> to produce the result.
5043 </ol>
5044 <p>In reverse mode, a similar computation is made except that the bits are
5045 returned in the reverse order. So, for example, if <tt>X</tt> has the value
5046 <tt>i16 0x0ACF (101011001111)</tt> and we apply 
5047 <tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value 
5048 <tt>i16 0x0026 (000000100110)</tt>.</p>
5049 </div>
5050
5051 <div class="doc_subsubsection">
5052   <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
5053 </div>
5054
5055 <div class="doc_text">
5056
5057 <h5>Syntax:</h5>
5058 <p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt> 
5059 on any integer bit width.
5060 <pre>
5061   declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
5062   declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
5063 </pre>
5064
5065 <h5>Overview:</h5>
5066 <p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
5067 of bits in an integer value with another integer value. It returns the integer
5068 with the replaced bits.</p>
5069
5070 <h5>Arguments:</h5>
5071 <p>The first argument, <tt>%val</tt> and the result may be integer types of 
5072 any bit width but they must have the same bit width. <tt>%val</tt> is the value
5073 whose bits will be replaced.  The second argument, <tt>%repl</tt> may be an
5074 integer of any bit width. The third and fourth arguments must be <tt>i32</tt> 
5075 type since they specify only a bit index.</p>
5076
5077 <h5>Semantics:</h5>
5078 <p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
5079 of operation: forwards and reverse. If <tt>%lo</tt> is greater than
5080 <tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
5081 operates in forward mode.</p>
5082 <p>For both modes, the <tt>%repl</tt> value is prepared for use by either
5083 truncating it down to the size of the replacement area or zero extending it 
5084 up to that size.</p>
5085 <p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
5086 are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
5087 in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
5088 to the <tt>%hi</tt>th bit. 
5089 <p>In reverse mode, a similar computation is made except that the bits are
5090 reversed.  That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the 
5091 <tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.
5092 <h5>Examples:</h5>
5093 <pre>
5094   llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
5095   llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
5096   llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
5097   llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
5098   llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
5099 </pre>
5100 </div>
5101
5102 <!-- ======================================================================= -->
5103 <div class="doc_subsection">
5104   <a name="int_debugger">Debugger Intrinsics</a>
5105 </div>
5106
5107 <div class="doc_text">
5108 <p>
5109 The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
5110 are described in the <a
5111 href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
5112 Debugging</a> document.
5113 </p>
5114 </div>
5115
5116
5117 <!-- ======================================================================= -->
5118 <div class="doc_subsection">
5119   <a name="int_eh">Exception Handling Intrinsics</a>
5120 </div>
5121
5122 <div class="doc_text">
5123 <p> The LLVM exception handling intrinsics (which all start with
5124 <tt>llvm.eh.</tt> prefix), are described in the <a
5125 href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
5126 Handling</a> document. </p>
5127 </div>
5128
5129 <!-- ======================================================================= -->
5130 <div class="doc_subsection">
5131   <a name="int_trampoline">Trampoline Intrinsic</a>
5132 </div>
5133
5134 <div class="doc_text">
5135 <p>
5136   This intrinsic makes it possible to excise one parameter, marked with
5137   the <tt>nest</tt> attribute, from a function.  The result is a callable
5138   function pointer lacking the nest parameter - the caller does not need
5139   to provide a value for it.  Instead, the value to use is stored in
5140   advance in a "trampoline", a block of memory usually allocated
5141   on the stack, which also contains code to splice the nest value into the
5142   argument list.  This is used to implement the GCC nested function address
5143   extension.
5144 </p>
5145 <p>
5146   For example, if the function is
5147   <tt>i32 f(i8* nest  %c, i32 %x, i32 %y)</tt> then the resulting function
5148   pointer has signature <tt>i32 (i32, i32)*</tt>.  It can be created as follows:</p>
5149 <pre>
5150   %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
5151   %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
5152   %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
5153   %fp = bitcast i8* %p to i32 (i32, i32)*
5154 </pre>
5155   <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
5156   to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
5157 </div>
5158
5159 <!-- _______________________________________________________________________ -->
5160 <div class="doc_subsubsection">
5161   <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
5162 </div>
5163 <div class="doc_text">
5164 <h5>Syntax:</h5>
5165 <pre>
5166 declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
5167 </pre>
5168 <h5>Overview:</h5>
5169 <p>
5170   This fills the memory pointed to by <tt>tramp</tt> with code
5171   and returns a function pointer suitable for executing it.
5172 </p>
5173 <h5>Arguments:</h5>
5174 <p>
5175   The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
5176   pointers.  The <tt>tramp</tt> argument must point to a sufficiently large
5177   and sufficiently aligned block of memory; this memory is written to by the
5178   intrinsic.  Note that the size and the alignment are target-specific - LLVM
5179   currently provides no portable way of determining them, so a front-end that
5180   generates this intrinsic needs to have some target-specific knowledge.
5181   The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
5182 </p>
5183 <h5>Semantics:</h5>
5184 <p>
5185   The block of memory pointed to by <tt>tramp</tt> is filled with target
5186   dependent code, turning it into a function.  A pointer to this function is
5187   returned, but needs to be bitcast to an
5188   <a href="#int_trampoline">appropriate function pointer type</a>
5189   before being called.  The new function's signature is the same as that of
5190   <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
5191   removed.  At most one such <tt>nest</tt> argument is allowed, and it must be
5192   of pointer type.  Calling the new function is equivalent to calling
5193   <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
5194   missing <tt>nest</tt> argument.  If, after calling
5195   <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
5196   modified, then the effect of any later call to the returned function pointer is
5197   undefined.
5198 </p>
5199 </div>
5200
5201 <!-- ======================================================================= -->
5202 <div class="doc_subsection">
5203   <a name="int_general">General Intrinsics</a>
5204 </div>
5205
5206 <div class="doc_text">
5207 <p> This class of intrinsics is designed to be generic and has
5208 no specific purpose. </p>
5209 </div>
5210
5211 <!-- _______________________________________________________________________ -->
5212 <div class="doc_subsubsection">
5213   <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
5214 </div>
5215
5216 <div class="doc_text">
5217
5218 <h5>Syntax:</h5>
5219 <pre>
5220   declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt; )
5221 </pre>
5222
5223 <h5>Overview:</h5>
5224
5225 <p>
5226 The '<tt>llvm.var.annotation</tt>' intrinsic
5227 </p>
5228
5229 <h5>Arguments:</h5>
5230
5231 <p>
5232 The first argument is a pointer to a value, the second is a pointer to a 
5233 global string, the third is a pointer to a global string which is the source 
5234 file name, and the last argument is the line number.
5235 </p>
5236
5237 <h5>Semantics:</h5>
5238
5239 <p>
5240 This intrinsic allows annotation of local variables with arbitrary strings.  
5241 This can be useful for special purpose optimizations that want to look for these
5242  annotations.  These have no other defined use, they are ignored by code 
5243  generation and optimization.
5244 </div>
5245
5246 <!-- _______________________________________________________________________ -->
5247 <div class="doc_subsubsection">
5248   <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
5249 </div>
5250
5251 <div class="doc_text">
5252
5253 <h5>Syntax:</h5>
5254 <p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on 
5255 any integer bit width. 
5256 </p>
5257 <pre>
5258   declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt; )
5259   declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt; )
5260   declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt; )
5261   declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt; )
5262   declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt; )
5263 </pre>
5264
5265 <h5>Overview:</h5>
5266
5267 <p>
5268 The '<tt>llvm.annotation</tt>' intrinsic.
5269 </p>
5270
5271 <h5>Arguments:</h5>
5272
5273 <p>
5274 The first argument is an integer value (result of some expression), 
5275 the second is a pointer to a global string, the third is a pointer to a global 
5276 string which is the source file name, and the last argument is the line number.
5277 It returns the value of the first argument.
5278 </p>
5279
5280 <h5>Semantics:</h5>
5281
5282 <p>
5283 This intrinsic allows annotations to be put on arbitrary expressions
5284 with arbitrary strings.  This can be useful for special purpose optimizations 
5285 that want to look for these annotations.  These have no other defined use, they 
5286 are ignored by code generation and optimization.
5287 </div>
5288
5289 <!-- *********************************************************************** -->
5290 <hr>
5291 <address>
5292   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
5293   src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
5294   <a href="http://validator.w3.org/check/referer"><img
5295   src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
5296
5297   <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
5298   <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
5299   Last modified: $Date$
5300 </address>
5301
5302 </body>
5303 </html>