Add description of 'llvm.trap' intrinsic. Also, minor fixes in formatting.
[oota-llvm.git] / docs / LangRef.html
1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2                       "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4 <head>
5   <title>LLVM Assembly Language Reference Manual</title>
6   <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7   <meta name="author" content="Chris Lattner">
8   <meta name="description" 
9   content="LLVM Assembly Language Reference Manual.">
10   <link rel="stylesheet" href="llvm.css" type="text/css">
11 </head>
12
13 <body>
14
15 <div class="doc_title"> LLVM Language Reference Manual </div>
16 <ol>
17   <li><a href="#abstract">Abstract</a></li>
18   <li><a href="#introduction">Introduction</a></li>
19   <li><a href="#identifiers">Identifiers</a></li>
20   <li><a href="#highlevel">High Level Structure</a>
21     <ol>
22       <li><a href="#modulestructure">Module Structure</a></li>
23       <li><a href="#linkage">Linkage Types</a></li>
24       <li><a href="#callingconv">Calling Conventions</a></li>
25       <li><a href="#globalvars">Global Variables</a></li>
26       <li><a href="#functionstructure">Functions</a></li>
27       <li><a href="#aliasstructure">Aliases</a>
28       <li><a href="#paramattrs">Parameter Attributes</a></li>
29       <li><a href="#gc">Garbage Collector Names</a></li>
30       <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
31       <li><a href="#datalayout">Data Layout</a></li>
32     </ol>
33   </li>
34   <li><a href="#typesystem">Type System</a>
35     <ol>
36       <li><a href="#t_classifications">Type Classifications</a></li>
37       <li><a href="#t_primitive">Primitive Types</a>    
38         <ol>
39           <li><a href="#t_floating">Floating Point Types</a></li>
40           <li><a href="#t_void">Void Type</a></li>
41           <li><a href="#t_label">Label Type</a></li>
42         </ol>
43       </li>
44       <li><a href="#t_derived">Derived Types</a>
45         <ol>
46           <li><a href="#t_integer">Integer Type</a></li>
47           <li><a href="#t_array">Array Type</a></li>
48           <li><a href="#t_function">Function Type</a></li>
49           <li><a href="#t_pointer">Pointer Type</a></li>
50           <li><a href="#t_struct">Structure Type</a></li>
51           <li><a href="#t_pstruct">Packed Structure Type</a></li>
52           <li><a href="#t_vector">Vector Type</a></li>
53           <li><a href="#t_opaque">Opaque Type</a></li>
54         </ol>
55       </li>
56     </ol>
57   </li>
58   <li><a href="#constants">Constants</a>
59     <ol>
60       <li><a href="#simpleconstants">Simple Constants</a>
61       <li><a href="#aggregateconstants">Aggregate Constants</a>
62       <li><a href="#globalconstants">Global Variable and Function Addresses</a>
63       <li><a href="#undefvalues">Undefined Values</a>
64       <li><a href="#constantexprs">Constant Expressions</a>
65     </ol>
66   </li>
67   <li><a href="#othervalues">Other Values</a>
68     <ol>
69       <li><a href="#inlineasm">Inline Assembler Expressions</a>
70     </ol>
71   </li>
72   <li><a href="#instref">Instruction Reference</a>
73     <ol>
74       <li><a href="#terminators">Terminator Instructions</a>
75         <ol>
76           <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
77           <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
78           <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
79           <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
80           <li><a href="#i_unwind">'<tt>unwind</tt>'  Instruction</a></li>
81           <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
82         </ol>
83       </li>
84       <li><a href="#binaryops">Binary Operations</a>
85         <ol>
86           <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
87           <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
88           <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
89           <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
90           <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
91           <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
92           <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
93           <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
94           <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
95         </ol>
96       </li>
97       <li><a href="#bitwiseops">Bitwise Binary Operations</a>
98         <ol>
99           <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
100           <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
101           <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
102           <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
103           <li><a href="#i_or">'<tt>or</tt>'  Instruction</a></li>
104           <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
105         </ol>
106       </li>
107       <li><a href="#vectorops">Vector Operations</a>
108         <ol>
109           <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
110           <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
111           <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
112         </ol>
113       </li>
114       <li><a href="#memoryops">Memory Access and Addressing Operations</a>
115         <ol>
116           <li><a href="#i_malloc">'<tt>malloc</tt>'   Instruction</a></li>
117           <li><a href="#i_free">'<tt>free</tt>'     Instruction</a></li>
118           <li><a href="#i_alloca">'<tt>alloca</tt>'   Instruction</a></li>
119          <li><a href="#i_load">'<tt>load</tt>'     Instruction</a></li>
120          <li><a href="#i_store">'<tt>store</tt>'    Instruction</a></li>
121          <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
122         </ol>
123       </li>
124       <li><a href="#convertops">Conversion Operations</a>
125         <ol>
126           <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
127           <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
128           <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
129           <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
130           <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
131           <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
132           <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
133           <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
134           <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
135           <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
136           <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
137           <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
138         </ol>
139       <li><a href="#otherops">Other Operations</a>
140         <ol>
141           <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
142           <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
143           <li><a href="#i_phi">'<tt>phi</tt>'   Instruction</a></li>
144           <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
145           <li><a href="#i_call">'<tt>call</tt>'  Instruction</a></li>
146           <li><a href="#i_va_arg">'<tt>va_arg</tt>'  Instruction</a></li>
147         </ol>
148       </li>
149     </ol>
150   </li>
151   <li><a href="#intrinsics">Intrinsic Functions</a>
152     <ol>
153       <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
154         <ol>
155           <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
156           <li><a href="#int_va_end">'<tt>llvm.va_end</tt>'   Intrinsic</a></li>
157           <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>'  Intrinsic</a></li>
158         </ol>
159       </li>
160       <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
161         <ol>
162           <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
163           <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
164           <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
165         </ol>
166       </li>
167       <li><a href="#int_codegen">Code Generator Intrinsics</a>
168         <ol>
169           <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
170           <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>'   Intrinsic</a></li>
171           <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
172           <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
173           <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
174           <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
175           <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
176         </ol>
177       </li>
178       <li><a href="#int_libc">Standard C Library Intrinsics</a>
179         <ol>
180           <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
181           <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
182           <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
183           <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
184           <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
185           <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
186           <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
187           <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
188         </ol>
189       </li>
190       <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
191         <ol>
192           <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
193           <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
194           <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
195           <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
196           <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
197           <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
198         </ol>
199       </li>
200       <li><a href="#int_debugger">Debugger intrinsics</a></li>
201       <li><a href="#int_eh">Exception Handling intrinsics</a></li>
202       <li><a href="#int_trampoline">Trampoline Intrinsic</a>
203         <ol>
204           <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
205         </ol>
206       </li>
207       <li><a href="#int_general">General intrinsics</a>
208         <ol>
209           <li><a href="#int_var_annotation">
210             <tt>llvm.var.annotation</tt>' Intrinsic</a></li>
211           <li><a href="#int_annotation">
212             <tt>llvm.annotation.*</tt>' Intrinsic</a></li>
213           <li><a href="#int_trap">
214             <tt>llvm.trap</tt>' Intrinsic</a></li>
215         </ol>
216       </li>
217     </ol>
218   </li>
219 </ol>
220
221 <div class="doc_author">
222   <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
223             and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
224 </div>
225
226 <!-- *********************************************************************** -->
227 <div class="doc_section"> <a name="abstract">Abstract </a></div>
228 <!-- *********************************************************************** -->
229
230 <div class="doc_text">
231 <p>This document is a reference manual for the LLVM assembly language. 
232 LLVM is an SSA based representation that provides type safety,
233 low-level operations, flexibility, and the capability of representing
234 'all' high-level languages cleanly.  It is the common code
235 representation used throughout all phases of the LLVM compilation
236 strategy.</p>
237 </div>
238
239 <!-- *********************************************************************** -->
240 <div class="doc_section"> <a name="introduction">Introduction</a> </div>
241 <!-- *********************************************************************** -->
242
243 <div class="doc_text">
244
245 <p>The LLVM code representation is designed to be used in three
246 different forms: as an in-memory compiler IR, as an on-disk bitcode
247 representation (suitable for fast loading by a Just-In-Time compiler),
248 and as a human readable assembly language representation.  This allows
249 LLVM to provide a powerful intermediate representation for efficient
250 compiler transformations and analysis, while providing a natural means
251 to debug and visualize the transformations.  The three different forms
252 of LLVM are all equivalent.  This document describes the human readable
253 representation and notation.</p>
254
255 <p>The LLVM representation aims to be light-weight and low-level
256 while being expressive, typed, and extensible at the same time.  It
257 aims to be a "universal IR" of sorts, by being at a low enough level
258 that high-level ideas may be cleanly mapped to it (similar to how
259 microprocessors are "universal IR's", allowing many source languages to
260 be mapped to them).  By providing type information, LLVM can be used as
261 the target of optimizations: for example, through pointer analysis, it
262 can be proven that a C automatic variable is never accessed outside of
263 the current function... allowing it to be promoted to a simple SSA
264 value instead of a memory location.</p>
265
266 </div>
267
268 <!-- _______________________________________________________________________ -->
269 <div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
270
271 <div class="doc_text">
272
273 <p>It is important to note that this document describes 'well formed'
274 LLVM assembly language.  There is a difference between what the parser
275 accepts and what is considered 'well formed'.  For example, the
276 following instruction is syntactically okay, but not well formed:</p>
277
278 <div class="doc_code">
279 <pre>
280 %x = <a href="#i_add">add</a> i32 1, %x
281 </pre>
282 </div>
283
284 <p>...because the definition of <tt>%x</tt> does not dominate all of
285 its uses. The LLVM infrastructure provides a verification pass that may
286 be used to verify that an LLVM module is well formed.  This pass is
287 automatically run by the parser after parsing input assembly and by
288 the optimizer before it outputs bitcode.  The violations pointed out
289 by the verifier pass indicate bugs in transformation passes or input to
290 the parser.</p>
291 </div>
292
293 <!-- Describe the typesetting conventions here. -->
294
295 <!-- *********************************************************************** -->
296 <div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
297 <!-- *********************************************************************** -->
298
299 <div class="doc_text">
300
301   <p>LLVM identifiers come in two basic types: global and local. Global
302   identifiers (functions, global variables) begin with the @ character. Local
303   identifiers (register names, types) begin with the % character. Additionally,
304   there are three different formats for identifiers, for different purposes:
305
306 <ol>
307   <li>Named values are represented as a string of characters with their prefix.
308   For example, %foo, @DivisionByZero, %a.really.long.identifier.  The actual
309   regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
310   Identifiers which require other characters in their names can be surrounded
311   with quotes.  In this way, anything except a <tt>&quot;</tt> character can 
312   be used in a named value.</li>
313
314   <li>Unnamed values are represented as an unsigned numeric value with their
315   prefix.  For example, %12, @2, %44.</li>
316
317   <li>Constants, which are described in a <a href="#constants">section about
318   constants</a>, below.</li>
319 </ol>
320
321 <p>LLVM requires that values start with a prefix for two reasons: Compilers
322 don't need to worry about name clashes with reserved words, and the set of
323 reserved words may be expanded in the future without penalty.  Additionally,
324 unnamed identifiers allow a compiler to quickly come up with a temporary
325 variable without having to avoid symbol table conflicts.</p>
326
327 <p>Reserved words in LLVM are very similar to reserved words in other
328 languages. There are keywords for different opcodes 
329 ('<tt><a href="#i_add">add</a></tt>', 
330  '<tt><a href="#i_bitcast">bitcast</a></tt>', 
331  '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
332 href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
333 and others.  These reserved words cannot conflict with variable names, because
334 none of them start with a prefix character ('%' or '@').</p>
335
336 <p>Here is an example of LLVM code to multiply the integer variable
337 '<tt>%X</tt>' by 8:</p>
338
339 <p>The easy way:</p>
340
341 <div class="doc_code">
342 <pre>
343 %result = <a href="#i_mul">mul</a> i32 %X, 8
344 </pre>
345 </div>
346
347 <p>After strength reduction:</p>
348
349 <div class="doc_code">
350 <pre>
351 %result = <a href="#i_shl">shl</a> i32 %X, i8 3
352 </pre>
353 </div>
354
355 <p>And the hard way:</p>
356
357 <div class="doc_code">
358 <pre>
359 <a href="#i_add">add</a> i32 %X, %X           <i>; yields {i32}:%0</i>
360 <a href="#i_add">add</a> i32 %0, %0           <i>; yields {i32}:%1</i>
361 %result = <a href="#i_add">add</a> i32 %1, %1
362 </pre>
363 </div>
364
365 <p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
366 important lexical features of LLVM:</p>
367
368 <ol>
369
370   <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
371   line.</li>
372
373   <li>Unnamed temporaries are created when the result of a computation is not
374   assigned to a named value.</li>
375
376   <li>Unnamed temporaries are numbered sequentially</li>
377
378 </ol>
379
380 <p>...and it also shows a convention that we follow in this document.  When
381 demonstrating instructions, we will follow an instruction with a comment that
382 defines the type and name of value produced.  Comments are shown in italic
383 text.</p>
384
385 </div>
386
387 <!-- *********************************************************************** -->
388 <div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
389 <!-- *********************************************************************** -->
390
391 <!-- ======================================================================= -->
392 <div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
393 </div>
394
395 <div class="doc_text">
396
397 <p>LLVM programs are composed of "Module"s, each of which is a
398 translation unit of the input programs.  Each module consists of
399 functions, global variables, and symbol table entries.  Modules may be
400 combined together with the LLVM linker, which merges function (and
401 global variable) definitions, resolves forward declarations, and merges
402 symbol table entries. Here is an example of the "hello world" module:</p>
403
404 <div class="doc_code">
405 <pre><i>; Declare the string constant as a global constant...</i>
406 <a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
407  href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00"          <i>; [13 x i8]*</i>
408
409 <i>; External declaration of the puts function</i>
410 <a href="#functionstructure">declare</a> i32 @puts(i8 *)                                            <i>; i32(i8 *)* </i>
411
412 <i>; Definition of main function</i>
413 define i32 @main() {                                                 <i>; i32()* </i>
414         <i>; Convert [13x i8 ]* to i8  *...</i>
415         %cast210 = <a
416  href="#i_getelementptr">getelementptr</a> [13 x i8 ]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
417
418         <i>; Call puts function to write out the string to stdout...</i>
419         <a
420  href="#i_call">call</a> i32 @puts(i8 * %cast210)                              <i>; i32</i>
421         <a
422  href="#i_ret">ret</a> i32 0<br>}<br>
423 </pre>
424 </div>
425
426 <p>This example is made up of a <a href="#globalvars">global variable</a>
427 named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
428 function, and a <a href="#functionstructure">function definition</a>
429 for "<tt>main</tt>".</p>
430
431 <p>In general, a module is made up of a list of global values,
432 where both functions and global variables are global values.  Global values are
433 represented by a pointer to a memory location (in this case, a pointer to an
434 array of char, and a pointer to a function), and have one of the following <a
435 href="#linkage">linkage types</a>.</p>
436
437 </div>
438
439 <!-- ======================================================================= -->
440 <div class="doc_subsection">
441   <a name="linkage">Linkage Types</a>
442 </div>
443
444 <div class="doc_text">
445
446 <p>
447 All Global Variables and Functions have one of the following types of linkage:
448 </p>
449
450 <dl>
451
452   <dt><tt><b><a name="linkage_internal">internal</a></b></tt> </dt>
453
454   <dd>Global values with internal linkage are only directly accessible by
455   objects in the current module.  In particular, linking code into a module with
456   an internal global value may cause the internal to be renamed as necessary to
457   avoid collisions.  Because the symbol is internal to the module, all
458   references can be updated.  This corresponds to the notion of the
459   '<tt>static</tt>' keyword in C.
460   </dd>
461
462   <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
463
464   <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
465   the same name when linkage occurs.  This is typically used to implement 
466   inline functions, templates, or other code which must be generated in each 
467   translation unit that uses it.  Unreferenced <tt>linkonce</tt> globals are 
468   allowed to be discarded.
469   </dd>
470
471   <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
472
473   <dd>"<tt>weak</tt>" linkage is exactly the same as <tt>linkonce</tt> linkage,
474   except that unreferenced <tt>weak</tt> globals may not be discarded.  This is
475   used for globals that may be emitted in multiple translation units, but that
476   are not guaranteed to be emitted into every translation unit that uses them.
477   One example of this are common globals in C, such as "<tt>int X;</tt>" at 
478   global scope.
479   </dd>
480
481   <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
482
483   <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
484   pointer to array type.  When two global variables with appending linkage are
485   linked together, the two global arrays are appended together.  This is the
486   LLVM, typesafe, equivalent of having the system linker append together
487   "sections" with identical names when .o files are linked.
488   </dd>
489
490   <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
491   <dd>The semantics of this linkage follow the ELF model: the symbol is weak
492     until linked, if not linked, the symbol becomes null instead of being an
493     undefined reference.
494   </dd>
495
496   <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
497
498   <dd>If none of the above identifiers are used, the global is externally
499   visible, meaning that it participates in linkage and can be used to resolve
500   external symbol references.
501   </dd>
502 </dl>
503
504   <p>
505   The next two types of linkage are targeted for Microsoft Windows platform
506   only. They are designed to support importing (exporting) symbols from (to)
507   DLLs.
508   </p>
509
510   <dl>
511   <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
512
513   <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
514     or variable via a global pointer to a pointer that is set up by the DLL
515     exporting the symbol. On Microsoft Windows targets, the pointer name is
516     formed by combining <code>_imp__</code> and the function or variable name.
517   </dd>
518
519   <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
520
521   <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
522     pointer to a pointer in a DLL, so that it can be referenced with the
523     <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
524     name is formed by combining <code>_imp__</code> and the function or variable
525     name.
526   </dd>
527
528 </dl>
529
530 <p><a name="linkage_external"></a>For example, since the "<tt>.LC0</tt>"
531 variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
532 variable and was linked with this one, one of the two would be renamed,
533 preventing a collision.  Since "<tt>main</tt>" and "<tt>puts</tt>" are
534 external (i.e., lacking any linkage declarations), they are accessible
535 outside of the current module.</p>
536 <p>It is illegal for a function <i>declaration</i>
537 to have any linkage type other than "externally visible", <tt>dllimport</tt>,
538 or <tt>extern_weak</tt>.</p>
539 <p>Aliases can have only <tt>external</tt>, <tt>internal</tt> and <tt>weak</tt>
540 linkages.
541 </div>
542
543 <!-- ======================================================================= -->
544 <div class="doc_subsection">
545   <a name="callingconv">Calling Conventions</a>
546 </div>
547
548 <div class="doc_text">
549
550 <p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
551 and <a href="#i_invoke">invokes</a> can all have an optional calling convention
552 specified for the call.  The calling convention of any pair of dynamic
553 caller/callee must match, or the behavior of the program is undefined.  The
554 following calling conventions are supported by LLVM, and more may be added in
555 the future:</p>
556
557 <dl>
558   <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
559
560   <dd>This calling convention (the default if no other calling convention is
561   specified) matches the target C calling conventions.  This calling convention
562   supports varargs function calls and tolerates some mismatch in the declared
563   prototype and implemented declaration of the function (as does normal C). 
564   </dd>
565
566   <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
567
568   <dd>This calling convention attempts to make calls as fast as possible
569   (e.g. by passing things in registers).  This calling convention allows the
570   target to use whatever tricks it wants to produce fast code for the target,
571   without having to conform to an externally specified ABI.  Implementations of
572   this convention should allow arbitrary tail call optimization to be supported.
573   This calling convention does not support varargs and requires the prototype of
574   all callees to exactly match the prototype of the function definition.
575   </dd>
576
577   <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
578
579   <dd>This calling convention attempts to make code in the caller as efficient
580   as possible under the assumption that the call is not commonly executed.  As
581   such, these calls often preserve all registers so that the call does not break
582   any live ranges in the caller side.  This calling convention does not support
583   varargs and requires the prototype of all callees to exactly match the
584   prototype of the function definition.
585   </dd>
586
587   <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
588
589   <dd>Any calling convention may be specified by number, allowing
590   target-specific calling conventions to be used.  Target specific calling
591   conventions start at 64.
592   </dd>
593 </dl>
594
595 <p>More calling conventions can be added/defined on an as-needed basis, to
596 support pascal conventions or any other well-known target-independent
597 convention.</p>
598
599 </div>
600
601 <!-- ======================================================================= -->
602 <div class="doc_subsection">
603   <a name="visibility">Visibility Styles</a>
604 </div>
605
606 <div class="doc_text">
607
608 <p>
609 All Global Variables and Functions have one of the following visibility styles:
610 </p>
611
612 <dl>
613   <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
614
615   <dd>On ELF, default visibility means that the declaration is visible to other
616     modules and, in shared libraries, means that the declared entity may be
617     overridden. On Darwin, default visibility means that the declaration is
618     visible to other modules. Default visibility corresponds to "external
619     linkage" in the language.
620   </dd>
621
622   <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
623
624   <dd>Two declarations of an object with hidden visibility refer to the same
625     object if they are in the same shared object. Usually, hidden visibility
626     indicates that the symbol will not be placed into the dynamic symbol table,
627     so no other module (executable or shared library) can reference it
628     directly.
629   </dd>
630
631   <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
632
633   <dd>On ELF, protected visibility indicates that the symbol will be placed in
634   the dynamic symbol table, but that references within the defining module will
635   bind to the local symbol. That is, the symbol cannot be overridden by another
636   module.
637   </dd>
638 </dl>
639
640 </div>
641
642 <!-- ======================================================================= -->
643 <div class="doc_subsection">
644   <a name="globalvars">Global Variables</a>
645 </div>
646
647 <div class="doc_text">
648
649 <p>Global variables define regions of memory allocated at compilation time
650 instead of run-time.  Global variables may optionally be initialized, may have
651 an explicit section to be placed in, and may have an optional explicit alignment
652 specified.  A variable may be defined as "thread_local", which means that it
653 will not be shared by threads (each thread will have a separated copy of the
654 variable).  A variable may be defined as a global "constant," which indicates
655 that the contents of the variable will <b>never</b> be modified (enabling better
656 optimization, allowing the global data to be placed in the read-only section of
657 an executable, etc).  Note that variables that need runtime initialization
658 cannot be marked "constant" as there is a store to the variable.</p>
659
660 <p>
661 LLVM explicitly allows <em>declarations</em> of global variables to be marked
662 constant, even if the final definition of the global is not.  This capability
663 can be used to enable slightly better optimization of the program, but requires
664 the language definition to guarantee that optimizations based on the
665 'constantness' are valid for the translation units that do not include the
666 definition.
667 </p>
668
669 <p>As SSA values, global variables define pointer values that are in
670 scope (i.e. they dominate) all basic blocks in the program.  Global
671 variables always define a pointer to their "content" type because they
672 describe a region of memory, and all memory objects in LLVM are
673 accessed through pointers.</p>
674
675 <p>A global variable may be declared to reside in a target-specifc numbered 
676 address space. For targets that support them, address spaces may affect how
677 optimizations are performed and/or what target instructions are used to access 
678 the variable. The default address space is zero. The address space qualifier 
679 must precede any other attributes.</p>
680
681 <p>LLVM allows an explicit section to be specified for globals.  If the target
682 supports it, it will emit globals to the section specified.</p>
683
684 <p>An explicit alignment may be specified for a global.  If not present, or if
685 the alignment is set to zero, the alignment of the global is set by the target
686 to whatever it feels convenient.  If an explicit alignment is specified, the 
687 global is forced to have at least that much alignment.  All alignments must be
688 a power of 2.</p>
689
690 <p>For example, the following defines a global in a numbered address space with 
691 an initializer, section, and alignment:</p>
692
693 <div class="doc_code">
694 <pre>
695 @G = constant float 1.0 addrspace(5), section "foo", align 4
696 </pre>
697 </div>
698
699 </div>
700
701
702 <!-- ======================================================================= -->
703 <div class="doc_subsection">
704   <a name="functionstructure">Functions</a>
705 </div>
706
707 <div class="doc_text">
708
709 <p>LLVM function definitions consist of the "<tt>define</tt>" keyord, 
710 an optional <a href="#linkage">linkage type</a>, an optional 
711 <a href="#visibility">visibility style</a>, an optional 
712 <a href="#callingconv">calling convention</a>, a return type, an optional
713 <a href="#paramattrs">parameter attribute</a> for the return type, a function 
714 name, a (possibly empty) argument list (each with optional 
715 <a href="#paramattrs">parameter attributes</a>), an optional section, an
716 optional alignment, an optional <a href="#gc">garbage collector name</a>, an
717 opening curly brace, a list of basic blocks, and a closing curly brace.
718
719 LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
720 optional <a href="#linkage">linkage type</a>, an optional
721 <a href="#visibility">visibility style</a>, an optional 
722 <a href="#callingconv">calling convention</a>, a return type, an optional
723 <a href="#paramattrs">parameter attribute</a> for the return type, a function 
724 name, a possibly empty list of arguments, an optional alignment, and an optional
725 <a href="#gc">garbage collector name</a>.</p>
726
727 <p>A function definition contains a list of basic blocks, forming the CFG for
728 the function.  Each basic block may optionally start with a label (giving the
729 basic block a symbol table entry), contains a list of instructions, and ends
730 with a <a href="#terminators">terminator</a> instruction (such as a branch or
731 function return).</p>
732
733 <p>The first basic block in a function is special in two ways: it is immediately
734 executed on entrance to the function, and it is not allowed to have predecessor
735 basic blocks (i.e. there can not be any branches to the entry block of a
736 function).  Because the block can have no predecessors, it also cannot have any
737 <a href="#i_phi">PHI nodes</a>.</p>
738
739 <p>LLVM allows an explicit section to be specified for functions.  If the target
740 supports it, it will emit functions to the section specified.</p>
741
742 <p>An explicit alignment may be specified for a function.  If not present, or if
743 the alignment is set to zero, the alignment of the function is set by the target
744 to whatever it feels convenient.  If an explicit alignment is specified, the
745 function is forced to have at least that much alignment.  All alignments must be
746 a power of 2.</p>
747
748 </div>
749
750
751 <!-- ======================================================================= -->
752 <div class="doc_subsection">
753   <a name="aliasstructure">Aliases</a>
754 </div>
755 <div class="doc_text">
756   <p>Aliases act as "second name" for the aliasee value (which can be either
757   function or global variable or bitcast of global value). Aliases may have an
758   optional <a href="#linkage">linkage type</a>, and an
759   optional <a href="#visibility">visibility style</a>.</p>
760
761   <h5>Syntax:</h5>
762
763 <div class="doc_code">
764 <pre>
765 @&lt;Name&gt; = [Linkage] [Visibility] alias &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
766 </pre>
767 </div>
768
769 </div>
770
771
772
773 <!-- ======================================================================= -->
774 <div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
775 <div class="doc_text">
776   <p>The return type and each parameter of a function type may have a set of
777   <i>parameter attributes</i> associated with them. Parameter attributes are
778   used to communicate additional information about the result or parameters of
779   a function. Parameter attributes are considered to be part of the function,
780   not of the function type, so functions with different parameter attributes
781   can have the same function type.</p>
782
783   <p>Parameter attributes are simple keywords that follow the type specified. If
784   multiple parameter attributes are needed, they are space separated. For 
785   example:</p>
786
787 <div class="doc_code">
788 <pre>
789 declare i32 @printf(i8* noalias , ...) nounwind
790 declare i32 @atoi(i8*) nounwind readonly
791 </pre>
792 </div>
793
794   <p>Note that any attributes for the function result (<tt>nounwind</tt>,
795   <tt>readonly</tt>) come immediately after the argument list.</p>
796
797   <p>Currently, only the following parameter attributes are defined:</p>
798   <dl>
799     <dt><tt>zeroext</tt></dt>
800     <dd>This indicates that the parameter should be zero extended just before
801     a call to this function.</dd>
802
803     <dt><tt>signext</tt></dt>
804     <dd>This indicates that the parameter should be sign extended just before
805     a call to this function.</dd>
806
807     <dt><tt>inreg</tt></dt>
808     <dd>This indicates that the parameter should be placed in register (if
809     possible) during assembling function call. Support for this attribute is
810     target-specific</dd>
811
812     <dt><tt>byval</tt></dt>
813     <dd>This indicates that the pointer parameter should really be passed by
814     value to the function.  The attribute implies that a hidden copy of the
815     pointee is made between the caller and the callee, so the callee is unable
816     to modify the value in the callee.  This attribute is only valid on llvm
817     pointer arguments.  It is generally used to pass structs and arrays by
818     value, but is also valid on scalars (even though this is silly).</dd>
819
820     <dt><tt>sret</tt></dt>
821     <dd>This indicates that the parameter specifies the address of a structure
822     that is the return value of the function in the source program.</dd>
823
824     <dt><tt>noalias</tt></dt>
825     <dd>This indicates that the parameter not alias any other object or any 
826     other "noalias" objects during the function call.
827
828     <dt><tt>noreturn</tt></dt>
829     <dd>This function attribute indicates that the function never returns. This
830     indicates to LLVM that every call to this function should be treated as if
831     an <tt>unreachable</tt> instruction immediately followed the call.</dd> 
832
833     <dt><tt>nounwind</tt></dt>
834     <dd>This function attribute indicates that the function type does not use
835     the unwind instruction and does not allow stack unwinding to propagate
836     through it.</dd>
837     
838     <dt><tt>nest</tt></dt>
839     <dd>This indicates that the parameter can be excised using the
840     <a href="#int_trampoline">trampoline intrinsics</a>.</dd>
841     <dt><tt>readonly</tt></dt>
842     <dd>This function attribute indicates that the function has no side-effects
843     except for producing a return value or throwing an exception.  The value
844     returned must only depend on the function arguments and/or global variables.
845     It may use values obtained by dereferencing pointers.</dd>
846     <dt><tt>readnone</tt></dt>
847     <dd>A <tt>readnone</tt> function has the same restrictions as a <tt>readonly</tt>
848     function, but in addition it is not allowed to dereference any pointer arguments
849     or global variables.
850   </dl>
851
852 </div>
853
854 <!-- ======================================================================= -->
855 <div class="doc_subsection">
856   <a name="gc">Garbage Collector Names</a>
857 </div>
858
859 <div class="doc_text">
860 <p>Each function may specify a garbage collector name, which is simply a
861 string.</p>
862
863 <div class="doc_code"><pre
864 >define void @f() gc "name" { ...</pre></div>
865
866 <p>The compiler declares the supported values of <i>name</i>. Specifying a
867 collector which will cause the compiler to alter its output in order to support
868 the named garbage collection algorithm.</p>
869 </div>
870
871 <!-- ======================================================================= -->
872 <div class="doc_subsection">
873   <a name="moduleasm">Module-Level Inline Assembly</a>
874 </div>
875
876 <div class="doc_text">
877 <p>
878 Modules may contain "module-level inline asm" blocks, which corresponds to the
879 GCC "file scope inline asm" blocks.  These blocks are internally concatenated by
880 LLVM and treated as a single unit, but may be separated in the .ll file if
881 desired.  The syntax is very simple:
882 </p>
883
884 <div class="doc_code">
885 <pre>
886 module asm "inline asm code goes here"
887 module asm "more can go here"
888 </pre>
889 </div>
890
891 <p>The strings can contain any character by escaping non-printable characters.
892    The escape sequence used is simply "\xx" where "xx" is the two digit hex code
893    for the number.
894 </p>
895
896 <p>
897   The inline asm code is simply printed to the machine code .s file when
898   assembly code is generated.
899 </p>
900 </div>
901
902 <!-- ======================================================================= -->
903 <div class="doc_subsection">
904   <a name="datalayout">Data Layout</a>
905 </div>
906
907 <div class="doc_text">
908 <p>A module may specify a target specific data layout string that specifies how
909 data is to be laid out in memory. The syntax for the data layout is simply:</p>
910 <pre>    target datalayout = "<i>layout specification</i>"</pre>
911 <p>The <i>layout specification</i> consists of a list of specifications 
912 separated by the minus sign character ('-').  Each specification starts with a 
913 letter and may include other information after the letter to define some 
914 aspect of the data layout.  The specifications accepted are as follows: </p>
915 <dl>
916   <dt><tt>E</tt></dt>
917   <dd>Specifies that the target lays out data in big-endian form. That is, the
918   bits with the most significance have the lowest address location.</dd>
919   <dt><tt>e</tt></dt>
920   <dd>Specifies that hte target lays out data in little-endian form. That is,
921   the bits with the least significance have the lowest address location.</dd>
922   <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
923   <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and 
924   <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
925   alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
926   too.</dd>
927   <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
928   <dd>This specifies the alignment for an integer type of a given bit
929   <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
930   <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
931   <dd>This specifies the alignment for a vector type of a given bit 
932   <i>size</i>.</dd>
933   <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
934   <dd>This specifies the alignment for a floating point type of a given bit 
935   <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
936   (double).</dd>
937   <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
938   <dd>This specifies the alignment for an aggregate type of a given bit
939   <i>size</i>.</dd>
940 </dl>
941 <p>When constructing the data layout for a given target, LLVM starts with a
942 default set of specifications which are then (possibly) overriden by the
943 specifications in the <tt>datalayout</tt> keyword. The default specifications
944 are given in this list:</p>
945 <ul>
946   <li><tt>E</tt> - big endian</li>
947   <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
948   <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
949   <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
950   <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
951   <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
952   <li><tt>i64:32:64</tt> - i64 has abi alignment of 32-bits but preferred
953   alignment of 64-bits</li>
954   <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
955   <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
956   <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
957   <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
958   <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
959 </ul>
960 <p>When llvm is determining the alignment for a given type, it uses the 
961 following rules:
962 <ol>
963   <li>If the type sought is an exact match for one of the specifications, that
964   specification is used.</li>
965   <li>If no match is found, and the type sought is an integer type, then the
966   smallest integer type that is larger than the bitwidth of the sought type is
967   used. If none of the specifications are larger than the bitwidth then the the
968   largest integer type is used. For example, given the default specifications
969   above, the i7 type will use the alignment of i8 (next largest) while both
970   i65 and i256 will use the alignment of i64 (largest specified).</li>
971   <li>If no match is found, and the type sought is a vector type, then the
972   largest vector type that is smaller than the sought vector type will be used
973   as a fall back.  This happens because <128 x double> can be implemented in 
974   terms of 64 <2 x double>, for example.</li>
975 </ol>
976 </div>
977
978 <!-- *********************************************************************** -->
979 <div class="doc_section"> <a name="typesystem">Type System</a> </div>
980 <!-- *********************************************************************** -->
981
982 <div class="doc_text">
983
984 <p>The LLVM type system is one of the most important features of the
985 intermediate representation.  Being typed enables a number of
986 optimizations to be performed on the IR directly, without having to do
987 extra analyses on the side before the transformation.  A strong type
988 system makes it easier to read the generated code and enables novel
989 analyses and transformations that are not feasible to perform on normal
990 three address code representations.</p>
991
992 </div>
993
994 <!-- ======================================================================= -->
995 <div class="doc_subsection"> <a name="t_classifications">Type
996 Classifications</a> </div>
997 <div class="doc_text">
998 <p>The types fall into a few useful
999 classifications:</p>
1000
1001 <table border="1" cellspacing="0" cellpadding="4">
1002   <tbody>
1003     <tr><th>Classification</th><th>Types</th></tr>
1004     <tr>
1005       <td><a href="#t_integer">integer</a></td>
1006       <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
1007     </tr>
1008     <tr>
1009       <td><a href="#t_floating">floating point</a></td>
1010       <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
1011     </tr>
1012     <tr>
1013       <td><a name="t_firstclass">first class</a></td>
1014       <td><a href="#t_integer">integer</a>,
1015           <a href="#t_floating">floating point</a>,
1016           <a href="#t_pointer">pointer</a>,
1017           <a href="#t_vector">vector</a>
1018       </td>
1019     </tr>
1020     <tr>
1021       <td><a href="#t_primitive">primitive</a></td>
1022       <td><a href="#t_label">label</a>,
1023           <a href="#t_void">void</a>,
1024           <a href="#t_integer">integer</a>,
1025           <a href="#t_floating">floating point</a>.</td>
1026     </tr>
1027     <tr>
1028       <td><a href="#t_derived">derived</a></td>
1029       <td><a href="#t_integer">integer</a>,
1030           <a href="#t_array">array</a>,
1031           <a href="#t_function">function</a>,
1032           <a href="#t_pointer">pointer</a>,
1033           <a href="#t_struct">structure</a>,
1034           <a href="#t_pstruct">packed structure</a>,
1035           <a href="#t_vector">vector</a>,
1036           <a href="#t_opaque">opaque</a>.
1037     </tr>
1038   </tbody>
1039 </table>
1040
1041 <p>The <a href="#t_firstclass">first class</a> types are perhaps the
1042 most important.  Values of these types are the only ones which can be
1043 produced by instructions, passed as arguments, or used as operands to
1044 instructions.  This means that all structures and arrays must be
1045 manipulated either by pointer or by component.</p>
1046 </div>
1047
1048 <!-- ======================================================================= -->
1049 <div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
1050
1051 <div class="doc_text">
1052 <p>The primitive types are the fundamental building blocks of the LLVM
1053 system.</p>
1054
1055 </div>
1056
1057 <!-- _______________________________________________________________________ -->
1058 <div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1059
1060 <div class="doc_text">
1061       <table>
1062         <tbody>
1063           <tr><th>Type</th><th>Description</th></tr>
1064           <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1065           <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1066           <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1067           <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1068           <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1069         </tbody>
1070       </table>
1071 </div>
1072
1073 <!-- _______________________________________________________________________ -->
1074 <div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1075
1076 <div class="doc_text">
1077 <h5>Overview:</h5>
1078 <p>The void type does not represent any value and has no size.</p>
1079
1080 <h5>Syntax:</h5>
1081
1082 <pre>
1083   void
1084 </pre>
1085 </div>
1086
1087 <!-- _______________________________________________________________________ -->
1088 <div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1089
1090 <div class="doc_text">
1091 <h5>Overview:</h5>
1092 <p>The label type represents code labels.</p>
1093
1094 <h5>Syntax:</h5>
1095
1096 <pre>
1097   label
1098 </pre>
1099 </div>
1100
1101
1102 <!-- ======================================================================= -->
1103 <div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
1104
1105 <div class="doc_text">
1106
1107 <p>The real power in LLVM comes from the derived types in the system. 
1108 This is what allows a programmer to represent arrays, functions,
1109 pointers, and other useful types.  Note that these derived types may be
1110 recursive: For example, it is possible to have a two dimensional array.</p>
1111
1112 </div>
1113
1114 <!-- _______________________________________________________________________ -->
1115 <div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1116
1117 <div class="doc_text">
1118
1119 <h5>Overview:</h5>
1120 <p>The integer type is a very simple derived type that simply specifies an
1121 arbitrary bit width for the integer type desired. Any bit width from 1 bit to
1122 2^23-1 (about 8 million) can be specified.</p>
1123
1124 <h5>Syntax:</h5>
1125
1126 <pre>
1127   iN
1128 </pre>
1129
1130 <p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1131 value.</p>
1132
1133 <h5>Examples:</h5>
1134 <table class="layout">
1135   <tbody>
1136   <tr>
1137     <td><tt>i1</tt></td>
1138     <td>a single-bit integer.</td>
1139   </tr><tr>
1140     <td><tt>i32</tt></td>
1141     <td>a 32-bit integer.</td>
1142   </tr><tr>
1143     <td><tt>i1942652</tt></td>
1144     <td>a really big integer of over 1 million bits.</td>
1145   </tr>
1146   </tbody>
1147 </table>
1148 </div>
1149
1150 <!-- _______________________________________________________________________ -->
1151 <div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
1152
1153 <div class="doc_text">
1154
1155 <h5>Overview:</h5>
1156
1157 <p>The array type is a very simple derived type that arranges elements
1158 sequentially in memory.  The array type requires a size (number of
1159 elements) and an underlying data type.</p>
1160
1161 <h5>Syntax:</h5>
1162
1163 <pre>
1164   [&lt;# elements&gt; x &lt;elementtype&gt;]
1165 </pre>
1166
1167 <p>The number of elements is a constant integer value; elementtype may
1168 be any type with a size.</p>
1169
1170 <h5>Examples:</h5>
1171 <table class="layout">
1172   <tr class="layout">
1173     <td class="left"><tt>[40 x i32]</tt></td>
1174     <td class="left">Array of 40 32-bit integer values.</td>
1175   </tr>
1176   <tr class="layout">
1177     <td class="left"><tt>[41 x i32]</tt></td>
1178     <td class="left">Array of 41 32-bit integer values.</td>
1179   </tr>
1180   <tr class="layout">
1181     <td class="left"><tt>[4 x i8]</tt></td>
1182     <td class="left">Array of 4 8-bit integer values.</td>
1183   </tr>
1184 </table>
1185 <p>Here are some examples of multidimensional arrays:</p>
1186 <table class="layout">
1187   <tr class="layout">
1188     <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1189     <td class="left">3x4 array of 32-bit integer values.</td>
1190   </tr>
1191   <tr class="layout">
1192     <td class="left"><tt>[12 x [10 x float]]</tt></td>
1193     <td class="left">12x10 array of single precision floating point values.</td>
1194   </tr>
1195   <tr class="layout">
1196     <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1197     <td class="left">2x3x4 array of 16-bit integer  values.</td>
1198   </tr>
1199 </table>
1200
1201 <p>Note that 'variable sized arrays' can be implemented in LLVM with a zero 
1202 length array.  Normally, accesses past the end of an array are undefined in
1203 LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1204 As a special case, however, zero length arrays are recognized to be variable
1205 length.  This allows implementation of 'pascal style arrays' with the  LLVM
1206 type "{ i32, [0 x float]}", for example.</p>
1207
1208 </div>
1209
1210 <!-- _______________________________________________________________________ -->
1211 <div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
1212 <div class="doc_text">
1213 <h5>Overview:</h5>
1214 <p>The function type can be thought of as a function signature.  It
1215 consists of a return type and a list of formal parameter types. 
1216 Function types are usually used to build virtual function tables
1217 (which are structures of pointers to functions), for indirect function
1218 calls, and when defining a function.</p>
1219 <p>
1220 The return type of a function type cannot be an aggregate type.
1221 </p>
1222 <h5>Syntax:</h5>
1223 <pre>  &lt;returntype&gt; (&lt;parameter list&gt;)<br></pre>
1224 <p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
1225 specifiers.  Optionally, the parameter list may include a type <tt>...</tt>,
1226 which indicates that the function takes a variable number of arguments.
1227 Variable argument functions can access their arguments with the <a
1228  href="#int_varargs">variable argument handling intrinsic</a> functions.</p>
1229 <h5>Examples:</h5>
1230 <table class="layout">
1231   <tr class="layout">
1232     <td class="left"><tt>i32 (i32)</tt></td>
1233     <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
1234     </td>
1235   </tr><tr class="layout">
1236     <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
1237     </tt></td>
1238     <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes 
1239       an <tt>i16</tt> that should be sign extended and a 
1240       <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning 
1241       <tt>float</tt>.
1242     </td>
1243   </tr><tr class="layout">
1244     <td class="left"><tt>i32 (i8*, ...)</tt></td>
1245     <td class="left">A vararg function that takes at least one 
1246       <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C), 
1247       which returns an integer.  This is the signature for <tt>printf</tt> in 
1248       LLVM.
1249     </td>
1250   </tr>
1251 </table>
1252
1253 </div>
1254 <!-- _______________________________________________________________________ -->
1255 <div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
1256 <div class="doc_text">
1257 <h5>Overview:</h5>
1258 <p>The structure type is used to represent a collection of data members
1259 together in memory.  The packing of the field types is defined to match
1260 the ABI of the underlying processor.  The elements of a structure may
1261 be any type that has a size.</p>
1262 <p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1263 and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1264 field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1265 instruction.</p>
1266 <h5>Syntax:</h5>
1267 <pre>  { &lt;type list&gt; }<br></pre>
1268 <h5>Examples:</h5>
1269 <table class="layout">
1270   <tr class="layout">
1271     <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1272     <td class="left">A triple of three <tt>i32</tt> values</td>
1273   </tr><tr class="layout">
1274     <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1275     <td class="left">A pair, where the first element is a <tt>float</tt> and the
1276       second element is a <a href="#t_pointer">pointer</a> to a
1277       <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1278       an <tt>i32</tt>.</td>
1279   </tr>
1280 </table>
1281 </div>
1282
1283 <!-- _______________________________________________________________________ -->
1284 <div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1285 </div>
1286 <div class="doc_text">
1287 <h5>Overview:</h5>
1288 <p>The packed structure type is used to represent a collection of data members
1289 together in memory.  There is no padding between fields.  Further, the alignment
1290 of a packed structure is 1 byte.  The elements of a packed structure may
1291 be any type that has a size.</p>
1292 <p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1293 and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1294 field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1295 instruction.</p>
1296 <h5>Syntax:</h5>
1297 <pre>  &lt; { &lt;type list&gt; } &gt; <br></pre>
1298 <h5>Examples:</h5>
1299 <table class="layout">
1300   <tr class="layout">
1301     <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1302     <td class="left">A triple of three <tt>i32</tt> values</td>
1303   </tr><tr class="layout">
1304   <td class="left"><tt>&lt; { float, i32 (i32)* } &gt;</tt></td>
1305     <td class="left">A pair, where the first element is a <tt>float</tt> and the
1306       second element is a <a href="#t_pointer">pointer</a> to a
1307       <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1308       an <tt>i32</tt>.</td>
1309   </tr>
1310 </table>
1311 </div>
1312
1313 <!-- _______________________________________________________________________ -->
1314 <div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
1315 <div class="doc_text">
1316 <h5>Overview:</h5>
1317 <p>As in many languages, the pointer type represents a pointer or
1318 reference to another object, which must live in memory. Pointer types may have 
1319 an optional address space attribute defining the target-specific numbered 
1320 address space where the pointed-to object resides. The default address space is 
1321 zero.</p>
1322 <h5>Syntax:</h5>
1323 <pre>  &lt;type&gt; *<br></pre>
1324 <h5>Examples:</h5>
1325 <table class="layout">
1326   <tr class="layout">
1327     <td class="left"><tt>[4x i32]*</tt></td>
1328     <td class="left">A <a href="#t_pointer">pointer</a> to <a
1329                     href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1330   </tr>
1331   <tr class="layout">
1332     <td class="left"><tt>i32 (i32 *) *</tt></td>
1333     <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
1334       href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
1335       <tt>i32</tt>.</td>
1336   </tr>
1337   <tr class="layout">
1338     <td class="left"><tt>i32 addrspace(5)*</tt></td>
1339     <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1340      that resides in address space #5.</td>
1341   </tr>
1342 </table>
1343 </div>
1344
1345 <!-- _______________________________________________________________________ -->
1346 <div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
1347 <div class="doc_text">
1348
1349 <h5>Overview:</h5>
1350
1351 <p>A vector type is a simple derived type that represents a vector
1352 of elements.  Vector types are used when multiple primitive data 
1353 are operated in parallel using a single instruction (SIMD). 
1354 A vector type requires a size (number of
1355 elements) and an underlying primitive data type.  Vectors must have a power
1356 of two length (1, 2, 4, 8, 16 ...).  Vector types are
1357 considered <a href="#t_firstclass">first class</a>.</p>
1358
1359 <h5>Syntax:</h5>
1360
1361 <pre>
1362   &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1363 </pre>
1364
1365 <p>The number of elements is a constant integer value; elementtype may
1366 be any integer or floating point type.</p>
1367
1368 <h5>Examples:</h5>
1369
1370 <table class="layout">
1371   <tr class="layout">
1372     <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1373     <td class="left">Vector of 4 32-bit integer values.</td>
1374   </tr>
1375   <tr class="layout">
1376     <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1377     <td class="left">Vector of 8 32-bit floating-point values.</td>
1378   </tr>
1379   <tr class="layout">
1380     <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1381     <td class="left">Vector of 2 64-bit integer values.</td>
1382   </tr>
1383 </table>
1384 </div>
1385
1386 <!-- _______________________________________________________________________ -->
1387 <div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1388 <div class="doc_text">
1389
1390 <h5>Overview:</h5>
1391
1392 <p>Opaque types are used to represent unknown types in the system.  This
1393 corresponds (for example) to the C notion of a forward declared structure type.
1394 In LLVM, opaque types can eventually be resolved to any type (not just a
1395 structure type).</p>
1396
1397 <h5>Syntax:</h5>
1398
1399 <pre>
1400   opaque
1401 </pre>
1402
1403 <h5>Examples:</h5>
1404
1405 <table class="layout">
1406   <tr class="layout">
1407     <td class="left"><tt>opaque</tt></td>
1408     <td class="left">An opaque type.</td>
1409   </tr>
1410 </table>
1411 </div>
1412
1413
1414 <!-- *********************************************************************** -->
1415 <div class="doc_section"> <a name="constants">Constants</a> </div>
1416 <!-- *********************************************************************** -->
1417
1418 <div class="doc_text">
1419
1420 <p>LLVM has several different basic types of constants.  This section describes
1421 them all and their syntax.</p>
1422
1423 </div>
1424
1425 <!-- ======================================================================= -->
1426 <div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
1427
1428 <div class="doc_text">
1429
1430 <dl>
1431   <dt><b>Boolean constants</b></dt>
1432
1433   <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
1434   constants of the <tt><a href="#t_primitive">i1</a></tt> type.
1435   </dd>
1436
1437   <dt><b>Integer constants</b></dt>
1438
1439   <dd>Standard integers (such as '4') are constants of the <a
1440   href="#t_integer">integer</a> type.  Negative numbers may be used with 
1441   integer types.
1442   </dd>
1443
1444   <dt><b>Floating point constants</b></dt>
1445
1446   <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1447   exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
1448   notation (see below).  Floating point constants must have a <a
1449   href="#t_floating">floating point</a> type. </dd>
1450
1451   <dt><b>Null pointer constants</b></dt>
1452
1453   <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
1454   and must be of <a href="#t_pointer">pointer type</a>.</dd>
1455
1456 </dl>
1457
1458 <p>The one non-intuitive notation for constants is the optional hexadecimal form
1459 of floating point constants.  For example, the form '<tt>double
1460 0x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
1461 4.5e+15</tt>'.  The only time hexadecimal floating point constants are required
1462 (and the only time that they are generated by the disassembler) is when a 
1463 floating point constant must be emitted but it cannot be represented as a 
1464 decimal floating point number.  For example, NaN's, infinities, and other 
1465 special values are represented in their IEEE hexadecimal format so that 
1466 assembly and disassembly do not cause any bits to change in the constants.</p>
1467
1468 </div>
1469
1470 <!-- ======================================================================= -->
1471 <div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1472 </div>
1473
1474 <div class="doc_text">
1475 <p>Aggregate constants arise from aggregation of simple constants
1476 and smaller aggregate constants.</p>
1477
1478 <dl>
1479   <dt><b>Structure constants</b></dt>
1480
1481   <dd>Structure constants are represented with notation similar to structure
1482   type definitions (a comma separated list of elements, surrounded by braces
1483   (<tt>{}</tt>)).  For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1484   where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>".  Structure constants
1485   must have <a href="#t_struct">structure type</a>, and the number and
1486   types of elements must match those specified by the type.
1487   </dd>
1488
1489   <dt><b>Array constants</b></dt>
1490
1491   <dd>Array constants are represented with notation similar to array type
1492   definitions (a comma separated list of elements, surrounded by square brackets
1493   (<tt>[]</tt>)).  For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>".  Array
1494   constants must have <a href="#t_array">array type</a>, and the number and
1495   types of elements must match those specified by the type.
1496   </dd>
1497
1498   <dt><b>Vector constants</b></dt>
1499
1500   <dd>Vector constants are represented with notation similar to vector type
1501   definitions (a comma separated list of elements, surrounded by
1502   less-than/greater-than's (<tt>&lt;&gt;</tt>)).  For example: "<tt>&lt; i32 42,
1503   i32 11, i32 74, i32 100 &gt;</tt>".  Vector constants must have <a
1504   href="#t_vector">vector type</a>, and the number and types of elements must
1505   match those specified by the type.
1506   </dd>
1507
1508   <dt><b>Zero initialization</b></dt>
1509
1510   <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1511   value to zero of <em>any</em> type, including scalar and aggregate types.
1512   This is often used to avoid having to print large zero initializers (e.g. for
1513   large arrays) and is always exactly equivalent to using explicit zero
1514   initializers.
1515   </dd>
1516 </dl>
1517
1518 </div>
1519
1520 <!-- ======================================================================= -->
1521 <div class="doc_subsection">
1522   <a name="globalconstants">Global Variable and Function Addresses</a>
1523 </div>
1524
1525 <div class="doc_text">
1526
1527 <p>The addresses of <a href="#globalvars">global variables</a> and <a
1528 href="#functionstructure">functions</a> are always implicitly valid (link-time)
1529 constants.  These constants are explicitly referenced when the <a
1530 href="#identifiers">identifier for the global</a> is used and always have <a
1531 href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1532 file:</p>
1533
1534 <div class="doc_code">
1535 <pre>
1536 @X = global i32 17
1537 @Y = global i32 42
1538 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1539 </pre>
1540 </div>
1541
1542 </div>
1543
1544 <!-- ======================================================================= -->
1545 <div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
1546 <div class="doc_text">
1547   <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has 
1548   no specific value.  Undefined values may be of any type and be used anywhere 
1549   a constant is permitted.</p>
1550
1551   <p>Undefined values indicate to the compiler that the program is well defined
1552   no matter what value is used, giving the compiler more freedom to optimize.
1553   </p>
1554 </div>
1555
1556 <!-- ======================================================================= -->
1557 <div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1558 </div>
1559
1560 <div class="doc_text">
1561
1562 <p>Constant expressions are used to allow expressions involving other constants
1563 to be used as constants.  Constant expressions may be of any <a
1564 href="#t_firstclass">first class</a> type and may involve any LLVM operation
1565 that does not have side effects (e.g. load and call are not supported).  The
1566 following is the syntax for constant expressions:</p>
1567
1568 <dl>
1569   <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1570   <dd>Truncate a constant to another type. The bit size of CST must be larger 
1571   than the bit size of TYPE. Both types must be integers.</dd>
1572
1573   <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1574   <dd>Zero extend a constant to another type. The bit size of CST must be 
1575   smaller or equal to the bit size of TYPE.  Both types must be integers.</dd>
1576
1577   <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1578   <dd>Sign extend a constant to another type. The bit size of CST must be 
1579   smaller or equal to the bit size of TYPE.  Both types must be integers.</dd>
1580
1581   <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1582   <dd>Truncate a floating point constant to another floating point type. The 
1583   size of CST must be larger than the size of TYPE. Both types must be 
1584   floating point.</dd>
1585
1586   <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1587   <dd>Floating point extend a constant to another type. The size of CST must be 
1588   smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1589
1590   <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
1591   <dd>Convert a floating point constant to the corresponding unsigned integer
1592   constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1593   or vector floating point type. Both CST and TYPE must be scalars, or vectors
1594   of the same number of elements. If the  value won't fit in the integer type,
1595   the results are undefined.</dd>
1596
1597   <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
1598   <dd>Convert a floating point constant to the corresponding signed integer
1599   constant.  TYPE must be a scalar or vector integer type. CST must be of scalar
1600   or vector floating point type. Both CST and TYPE must be scalars, or vectors
1601   of the same number of elements. If the  value won't fit in the integer type,
1602   the results are undefined.</dd>
1603
1604   <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
1605   <dd>Convert an unsigned integer constant to the corresponding floating point
1606   constant. TYPE must be a scalar or vector floating point type. CST must be of
1607   scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1608   of the same number of elements. If the value won't fit in the floating point 
1609   type, the results are undefined.</dd>
1610
1611   <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
1612   <dd>Convert a signed integer constant to the corresponding floating point
1613   constant. TYPE must be a scalar or vector floating point type. CST must be of
1614   scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1615   of the same number of elements. If the value won't fit in the floating point 
1616   type, the results are undefined.</dd>
1617
1618   <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1619   <dd>Convert a pointer typed constant to the corresponding integer constant
1620   TYPE must be an integer type. CST must be of pointer type. The CST value is
1621   zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1622
1623   <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1624   <dd>Convert a integer constant to a pointer constant.  TYPE must be a
1625   pointer type.  CST must be of integer type. The CST value is zero extended, 
1626   truncated, or unchanged to make it fit in a pointer size. This one is 
1627   <i>really</i> dangerous!</dd>
1628
1629   <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
1630   <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1631   identical (same number of bits). The conversion is done as if the CST value
1632   was stored to memory and read back as TYPE. In other words, no bits change 
1633   with this operator, just the type.  This can be used for conversion of
1634   vector types to any other type, as long as they have the same bit width. For
1635   pointers it is only valid to cast to another pointer type.
1636   </dd>
1637
1638   <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1639
1640   <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1641   constants.  As with the <a href="#i_getelementptr">getelementptr</a>
1642   instruction, the index list may have zero or more indexes, which are required
1643   to make sense for the type of "CSTPTR".</dd>
1644
1645   <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1646
1647   <dd>Perform the <a href="#i_select">select operation</a> on
1648   constants.</dd>
1649
1650   <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1651   <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1652
1653   <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1654   <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
1655
1656   <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1657
1658   <dd>Perform the <a href="#i_extractelement">extractelement
1659   operation</a> on constants.
1660
1661   <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1662
1663   <dd>Perform the <a href="#i_insertelement">insertelement
1664     operation</a> on constants.</dd>
1665
1666
1667   <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1668
1669   <dd>Perform the <a href="#i_shufflevector">shufflevector
1670     operation</a> on constants.</dd>
1671
1672   <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1673
1674   <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may 
1675   be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
1676   binary</a> operations.  The constraints on operands are the same as those for
1677   the corresponding instruction (e.g. no bitwise operations on floating point
1678   values are allowed).</dd>
1679 </dl>
1680 </div>
1681
1682 <!-- *********************************************************************** -->
1683 <div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1684 <!-- *********************************************************************** -->
1685
1686 <!-- ======================================================================= -->
1687 <div class="doc_subsection">
1688 <a name="inlineasm">Inline Assembler Expressions</a>
1689 </div>
1690
1691 <div class="doc_text">
1692
1693 <p>
1694 LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1695 Module-Level Inline Assembly</a>) through the use of a special value.  This
1696 value represents the inline assembler as a string (containing the instructions
1697 to emit), a list of operand constraints (stored as a string), and a flag that 
1698 indicates whether or not the inline asm expression has side effects.  An example
1699 inline assembler expression is:
1700 </p>
1701
1702 <div class="doc_code">
1703 <pre>
1704 i32 (i32) asm "bswap $0", "=r,r"
1705 </pre>
1706 </div>
1707
1708 <p>
1709 Inline assembler expressions may <b>only</b> be used as the callee operand of
1710 a <a href="#i_call"><tt>call</tt> instruction</a>.  Thus, typically we have:
1711 </p>
1712
1713 <div class="doc_code">
1714 <pre>
1715 %X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
1716 </pre>
1717 </div>
1718
1719 <p>
1720 Inline asms with side effects not visible in the constraint list must be marked
1721 as having side effects.  This is done through the use of the
1722 '<tt>sideeffect</tt>' keyword, like so:
1723 </p>
1724
1725 <div class="doc_code">
1726 <pre>
1727 call void asm sideeffect "eieio", ""()
1728 </pre>
1729 </div>
1730
1731 <p>TODO: The format of the asm and constraints string still need to be
1732 documented here.  Constraints on what can be done (e.g. duplication, moving, etc
1733 need to be documented).
1734 </p>
1735
1736 </div>
1737
1738 <!-- *********************************************************************** -->
1739 <div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1740 <!-- *********************************************************************** -->
1741
1742 <div class="doc_text">
1743
1744 <p>The LLVM instruction set consists of several different
1745 classifications of instructions: <a href="#terminators">terminator
1746 instructions</a>, <a href="#binaryops">binary instructions</a>,
1747 <a href="#bitwiseops">bitwise binary instructions</a>, <a
1748  href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1749 instructions</a>.</p>
1750
1751 </div>
1752
1753 <!-- ======================================================================= -->
1754 <div class="doc_subsection"> <a name="terminators">Terminator
1755 Instructions</a> </div>
1756
1757 <div class="doc_text">
1758
1759 <p>As mentioned <a href="#functionstructure">previously</a>, every
1760 basic block in a program ends with a "Terminator" instruction, which
1761 indicates which block should be executed after the current block is
1762 finished. These terminator instructions typically yield a '<tt>void</tt>'
1763 value: they produce control flow, not values (the one exception being
1764 the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
1765 <p>There are six different terminator instructions: the '<a
1766  href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1767 instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
1768 the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1769  href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1770  href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
1771
1772 </div>
1773
1774 <!-- _______________________________________________________________________ -->
1775 <div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1776 Instruction</a> </div>
1777 <div class="doc_text">
1778 <h5>Syntax:</h5>
1779 <pre>  ret &lt;type&gt; &lt;value&gt;       <i>; Return a value from a non-void function</i>
1780   ret void                 <i>; Return from void function</i>
1781 </pre>
1782 <h5>Overview:</h5>
1783 <p>The '<tt>ret</tt>' instruction is used to return control flow (and a
1784 value) from a function back to the caller.</p>
1785 <p>There are two forms of the '<tt>ret</tt>' instruction: one that
1786 returns a value and then causes control flow, and one that just causes
1787 control flow to occur.</p>
1788 <h5>Arguments:</h5>
1789 <p>The '<tt>ret</tt>' instruction may return any '<a
1790  href="#t_firstclass">first class</a>' type.  Notice that a function is
1791 not <a href="#wellformed">well formed</a> if there exists a '<tt>ret</tt>'
1792 instruction inside of the function that returns a value that does not
1793 match the return type of the function.</p>
1794 <h5>Semantics:</h5>
1795 <p>When the '<tt>ret</tt>' instruction is executed, control flow
1796 returns back to the calling function's context.  If the caller is a "<a
1797  href="#i_call"><tt>call</tt></a>" instruction, execution continues at
1798 the instruction after the call.  If the caller was an "<a
1799  href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
1800 at the beginning of the "normal" destination block.  If the instruction
1801 returns a value, that value shall set the call or invoke instruction's
1802 return value.</p>
1803 <h5>Example:</h5>
1804 <pre>  ret i32 5                       <i>; Return an integer value of 5</i>
1805   ret void                        <i>; Return from a void function</i>
1806 </pre>
1807 </div>
1808 <!-- _______________________________________________________________________ -->
1809 <div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
1810 <div class="doc_text">
1811 <h5>Syntax:</h5>
1812 <pre>  br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br>  br label &lt;dest&gt;          <i>; Unconditional branch</i>
1813 </pre>
1814 <h5>Overview:</h5>
1815 <p>The '<tt>br</tt>' instruction is used to cause control flow to
1816 transfer to a different basic block in the current function.  There are
1817 two forms of this instruction, corresponding to a conditional branch
1818 and an unconditional branch.</p>
1819 <h5>Arguments:</h5>
1820 <p>The conditional branch form of the '<tt>br</tt>' instruction takes a
1821 single '<tt>i1</tt>' value and two '<tt>label</tt>' values.  The
1822 unconditional form of the '<tt>br</tt>' instruction takes a single 
1823 '<tt>label</tt>' value as a target.</p>
1824 <h5>Semantics:</h5>
1825 <p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
1826 argument is evaluated.  If the value is <tt>true</tt>, control flows
1827 to the '<tt>iftrue</tt>' <tt>label</tt> argument.  If "cond" is <tt>false</tt>,
1828 control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
1829 <h5>Example:</h5>
1830 <pre>Test:<br>  %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br>  br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br>  <a
1831  href="#i_ret">ret</a> i32 1<br>IfUnequal:<br>  <a href="#i_ret">ret</a> i32 0<br></pre>
1832 </div>
1833 <!-- _______________________________________________________________________ -->
1834 <div class="doc_subsubsection">
1835    <a name="i_switch">'<tt>switch</tt>' Instruction</a>
1836 </div>
1837
1838 <div class="doc_text">
1839 <h5>Syntax:</h5>
1840
1841 <pre>
1842   switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
1843 </pre>
1844
1845 <h5>Overview:</h5>
1846
1847 <p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
1848 several different places.  It is a generalization of the '<tt>br</tt>'
1849 instruction, allowing a branch to occur to one of many possible
1850 destinations.</p>
1851
1852
1853 <h5>Arguments:</h5>
1854
1855 <p>The '<tt>switch</tt>' instruction uses three parameters: an integer
1856 comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
1857 an array of pairs of comparison value constants and '<tt>label</tt>'s.  The
1858 table is not allowed to contain duplicate constant entries.</p>
1859
1860 <h5>Semantics:</h5>
1861
1862 <p>The <tt>switch</tt> instruction specifies a table of values and
1863 destinations. When the '<tt>switch</tt>' instruction is executed, this
1864 table is searched for the given value.  If the value is found, control flow is
1865 transfered to the corresponding destination; otherwise, control flow is
1866 transfered to the default destination.</p>
1867
1868 <h5>Implementation:</h5>
1869
1870 <p>Depending on properties of the target machine and the particular
1871 <tt>switch</tt> instruction, this instruction may be code generated in different
1872 ways.  For example, it could be generated as a series of chained conditional
1873 branches or with a lookup table.</p>
1874
1875 <h5>Example:</h5>
1876
1877 <pre>
1878  <i>; Emulate a conditional br instruction</i>
1879  %Val = <a href="#i_zext">zext</a> i1 %value to i32
1880  switch i32 %Val, label %truedest [i32 0, label %falsedest ]
1881
1882  <i>; Emulate an unconditional br instruction</i>
1883  switch i32 0, label %dest [ ]
1884
1885  <i>; Implement a jump table:</i>
1886  switch i32 %val, label %otherwise [ i32 0, label %onzero 
1887                                       i32 1, label %onone 
1888                                       i32 2, label %ontwo ]
1889 </pre>
1890 </div>
1891
1892 <!-- _______________________________________________________________________ -->
1893 <div class="doc_subsubsection">
1894   <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
1895 </div>
1896
1897 <div class="doc_text">
1898
1899 <h5>Syntax:</h5>
1900
1901 <pre>
1902   &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] &lt;ptr to function ty&gt; %&lt;function ptr val&gt;(&lt;function args&gt;) 
1903                 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
1904 </pre>
1905
1906 <h5>Overview:</h5>
1907
1908 <p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
1909 function, with the possibility of control flow transfer to either the
1910 '<tt>normal</tt>' label or the
1911 '<tt>exception</tt>' label.  If the callee function returns with the
1912 "<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
1913 "normal" label.  If the callee (or any indirect callees) returns with the "<a
1914 href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
1915 continued at the dynamically nearest "exception" label.</p>
1916
1917 <h5>Arguments:</h5>
1918
1919 <p>This instruction requires several arguments:</p>
1920
1921 <ol>
1922   <li>
1923     The optional "cconv" marker indicates which <a href="#callingconv">calling
1924     convention</a> the call should use.  If none is specified, the call defaults
1925     to using C calling conventions.
1926   </li>
1927   <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
1928   function value being invoked.  In most cases, this is a direct function
1929   invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
1930   an arbitrary pointer to function value.
1931   </li>
1932
1933   <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
1934   function to be invoked. </li>
1935
1936   <li>'<tt>function args</tt>': argument list whose types match the function
1937   signature argument types.  If the function signature indicates the function
1938   accepts a variable number of arguments, the extra arguments can be
1939   specified. </li>
1940
1941   <li>'<tt>normal label</tt>': the label reached when the called function
1942   executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
1943
1944   <li>'<tt>exception label</tt>': the label reached when a callee returns with
1945   the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
1946
1947 </ol>
1948
1949 <h5>Semantics:</h5>
1950
1951 <p>This instruction is designed to operate as a standard '<tt><a
1952 href="#i_call">call</a></tt>' instruction in most regards.  The primary
1953 difference is that it establishes an association with a label, which is used by
1954 the runtime library to unwind the stack.</p>
1955
1956 <p>This instruction is used in languages with destructors to ensure that proper
1957 cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
1958 exception.  Additionally, this is important for implementation of
1959 '<tt>catch</tt>' clauses in high-level languages that support them.</p>
1960
1961 <h5>Example:</h5>
1962 <pre>
1963   %retval = invoke i32 %Test(i32 15) to label %Continue
1964               unwind label %TestCleanup              <i>; {i32}:retval set</i>
1965   %retval = invoke <a href="#callingconv">coldcc</a> i32 %Test(i32 15) to label %Continue
1966               unwind label %TestCleanup              <i>; {i32}:retval set</i>
1967 </pre>
1968 </div>
1969
1970
1971 <!-- _______________________________________________________________________ -->
1972
1973 <div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
1974 Instruction</a> </div>
1975
1976 <div class="doc_text">
1977
1978 <h5>Syntax:</h5>
1979 <pre>
1980   unwind
1981 </pre>
1982
1983 <h5>Overview:</h5>
1984
1985 <p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
1986 at the first callee in the dynamic call stack which used an <a
1987 href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call.  This is
1988 primarily used to implement exception handling.</p>
1989
1990 <h5>Semantics:</h5>
1991
1992 <p>The '<tt>unwind</tt>' intrinsic causes execution of the current function to
1993 immediately halt.  The dynamic call stack is then searched for the first <a
1994 href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack.  Once found,
1995 execution continues at the "exceptional" destination block specified by the
1996 <tt>invoke</tt> instruction.  If there is no <tt>invoke</tt> instruction in the
1997 dynamic call chain, undefined behavior results.</p>
1998 </div>
1999
2000 <!-- _______________________________________________________________________ -->
2001
2002 <div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2003 Instruction</a> </div>
2004
2005 <div class="doc_text">
2006
2007 <h5>Syntax:</h5>
2008 <pre>
2009   unreachable
2010 </pre>
2011
2012 <h5>Overview:</h5>
2013
2014 <p>The '<tt>unreachable</tt>' instruction has no defined semantics.  This
2015 instruction is used to inform the optimizer that a particular portion of the
2016 code is not reachable.  This can be used to indicate that the code after a
2017 no-return function cannot be reached, and other facts.</p>
2018
2019 <h5>Semantics:</h5>
2020
2021 <p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
2022 </div>
2023
2024
2025
2026 <!-- ======================================================================= -->
2027 <div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
2028 <div class="doc_text">
2029 <p>Binary operators are used to do most of the computation in a
2030 program.  They require two operands, execute an operation on them, and
2031 produce a single value.  The operands might represent 
2032 multiple data, as is the case with the <a href="#t_vector">vector</a> data type. 
2033 The result value of a binary operator is not
2034 necessarily the same type as its operands.</p>
2035 <p>There are several different binary operators:</p>
2036 </div>
2037 <!-- _______________________________________________________________________ -->
2038 <div class="doc_subsubsection"> <a name="i_add">'<tt>add</tt>'
2039 Instruction</a> </div>
2040 <div class="doc_text">
2041 <h5>Syntax:</h5>
2042 <pre>  &lt;result&gt; = add &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
2043 </pre>
2044 <h5>Overview:</h5>
2045 <p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
2046 <h5>Arguments:</h5>
2047 <p>The two arguments to the '<tt>add</tt>' instruction must be either <a
2048  href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> values.
2049  This instruction can also take <a href="#t_vector">vector</a> versions of the values.
2050 Both arguments must have identical types.</p>
2051 <h5>Semantics:</h5>
2052 <p>The value produced is the integer or floating point sum of the two
2053 operands.</p>
2054 <h5>Example:</h5>
2055 <pre>  &lt;result&gt; = add i32 4, %var          <i>; yields {i32}:result = 4 + %var</i>
2056 </pre>
2057 </div>
2058 <!-- _______________________________________________________________________ -->
2059 <div class="doc_subsubsection"> <a name="i_sub">'<tt>sub</tt>'
2060 Instruction</a> </div>
2061 <div class="doc_text">
2062 <h5>Syntax:</h5>
2063 <pre>  &lt;result&gt; = sub &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
2064 </pre>
2065 <h5>Overview:</h5>
2066 <p>The '<tt>sub</tt>' instruction returns the difference of its two
2067 operands.</p>
2068 <p>Note that the '<tt>sub</tt>' instruction is used to represent the '<tt>neg</tt>'
2069 instruction present in most other intermediate representations.</p>
2070 <h5>Arguments:</h5>
2071 <p>The two arguments to the '<tt>sub</tt>' instruction must be either <a
2072  href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
2073 values. 
2074 This instruction can also take <a href="#t_vector">vector</a> versions of the values.
2075 Both arguments must have identical types.</p>
2076 <h5>Semantics:</h5>
2077 <p>The value produced is the integer or floating point difference of
2078 the two operands.</p>
2079 <h5>Example:</h5>
2080 <pre>
2081   &lt;result&gt; = sub i32 4, %var          <i>; yields {i32}:result = 4 - %var</i>
2082   &lt;result&gt; = sub i32 0, %val          <i>; yields {i32}:result = -%var</i>
2083 </pre>
2084 </div>
2085 <!-- _______________________________________________________________________ -->
2086 <div class="doc_subsubsection"> <a name="i_mul">'<tt>mul</tt>'
2087 Instruction</a> </div>
2088 <div class="doc_text">
2089 <h5>Syntax:</h5>
2090 <pre>  &lt;result&gt; = mul &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
2091 </pre>
2092 <h5>Overview:</h5>
2093 <p>The  '<tt>mul</tt>' instruction returns the product of its two
2094 operands.</p>
2095 <h5>Arguments:</h5>
2096 <p>The two arguments to the '<tt>mul</tt>' instruction must be either <a
2097  href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
2098 values. 
2099 This instruction can also take <a href="#t_vector">vector</a> versions of the values.
2100 Both arguments must have identical types.</p>
2101 <h5>Semantics:</h5>
2102 <p>The value produced is the integer or floating point product of the
2103 two operands.</p>
2104 <p>Because the operands are the same width, the result of an integer
2105 multiplication is the same whether the operands should be deemed unsigned or
2106 signed.</p>
2107 <h5>Example:</h5>
2108 <pre>  &lt;result&gt; = mul i32 4, %var          <i>; yields {i32}:result = 4 * %var</i>
2109 </pre>
2110 </div>
2111 <!-- _______________________________________________________________________ -->
2112 <div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2113 </a></div>
2114 <div class="doc_text">
2115 <h5>Syntax:</h5>
2116 <pre>  &lt;result&gt; = udiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
2117 </pre>
2118 <h5>Overview:</h5>
2119 <p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2120 operands.</p>
2121 <h5>Arguments:</h5>
2122 <p>The two arguments to the '<tt>udiv</tt>' instruction must be 
2123 <a href="#t_integer">integer</a> values. Both arguments must have identical 
2124 types. This instruction can also take <a href="#t_vector">vector</a> versions 
2125 of the values in which case the elements must be integers.</p>
2126 <h5>Semantics:</h5>
2127 <p>The value produced is the unsigned integer quotient of the two operands. This
2128 instruction always performs an unsigned division operation, regardless of 
2129 whether the arguments are unsigned or not.</p>
2130 <h5>Example:</h5>
2131 <pre>  &lt;result&gt; = udiv i32 4, %var          <i>; yields {i32}:result = 4 / %var</i>
2132 </pre>
2133 </div>
2134 <!-- _______________________________________________________________________ -->
2135 <div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2136 </a> </div>
2137 <div class="doc_text">
2138 <h5>Syntax:</h5>
2139 <pre>  &lt;result&gt; = sdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
2140 </pre>
2141 <h5>Overview:</h5>
2142 <p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2143 operands.</p>
2144 <h5>Arguments:</h5>
2145 <p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2146 <a href="#t_integer">integer</a> values.  Both arguments must have identical 
2147 types. This instruction can also take <a href="#t_vector">vector</a> versions 
2148 of the values in which case the elements must be integers.</p>
2149 <h5>Semantics:</h5>
2150 <p>The value produced is the signed integer quotient of the two operands. This
2151 instruction always performs a signed division operation, regardless of whether
2152 the arguments are signed or not.</p>
2153 <h5>Example:</h5>
2154 <pre>  &lt;result&gt; = sdiv i32 4, %var          <i>; yields {i32}:result = 4 / %var</i>
2155 </pre>
2156 </div>
2157 <!-- _______________________________________________________________________ -->
2158 <div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
2159 Instruction</a> </div>
2160 <div class="doc_text">
2161 <h5>Syntax:</h5>
2162 <pre>  &lt;result&gt; = fdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
2163 </pre>
2164 <h5>Overview:</h5>
2165 <p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
2166 operands.</p>
2167 <h5>Arguments:</h5>
2168 <p>The two arguments to the '<tt>fdiv</tt>' instruction must be
2169 <a href="#t_floating">floating point</a> values.  Both arguments must have
2170 identical types.  This instruction can also take <a href="#t_vector">vector</a>
2171 versions of floating point values.</p>
2172 <h5>Semantics:</h5>
2173 <p>The value produced is the floating point quotient of the two operands.</p>
2174 <h5>Example:</h5>
2175 <pre>  &lt;result&gt; = fdiv float 4.0, %var          <i>; yields {float}:result = 4.0 / %var</i>
2176 </pre>
2177 </div>
2178 <!-- _______________________________________________________________________ -->
2179 <div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2180 </div>
2181 <div class="doc_text">
2182 <h5>Syntax:</h5>
2183 <pre>  &lt;result&gt; = urem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
2184 </pre>
2185 <h5>Overview:</h5>
2186 <p>The '<tt>urem</tt>' instruction returns the remainder from the
2187 unsigned division of its two arguments.</p>
2188 <h5>Arguments:</h5>
2189 <p>The two arguments to the '<tt>urem</tt>' instruction must be
2190 <a href="#t_integer">integer</a> values. Both arguments must have identical
2191 types. This instruction can also take <a href="#t_vector">vector</a> versions 
2192 of the values in which case the elements must be integers.</p>
2193 <h5>Semantics:</h5>
2194 <p>This instruction returns the unsigned integer <i>remainder</i> of a division.
2195 This instruction always performs an unsigned division to get the remainder,
2196 regardless of whether the arguments are unsigned or not.</p>
2197 <h5>Example:</h5>
2198 <pre>  &lt;result&gt; = urem i32 4, %var          <i>; yields {i32}:result = 4 % %var</i>
2199 </pre>
2200
2201 </div>
2202 <!-- _______________________________________________________________________ -->
2203 <div class="doc_subsubsection"> <a name="i_srem">'<tt>srem</tt>'
2204 Instruction</a> </div>
2205 <div class="doc_text">
2206 <h5>Syntax:</h5>
2207 <pre>  &lt;result&gt; = srem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
2208 </pre>
2209 <h5>Overview:</h5>
2210 <p>The '<tt>srem</tt>' instruction returns the remainder from the
2211 signed division of its two operands. This instruction can also take
2212 <a href="#t_vector">vector</a> versions of the values in which case
2213 the elements must be integers.</p>
2214
2215 <h5>Arguments:</h5>
2216 <p>The two arguments to the '<tt>srem</tt>' instruction must be 
2217 <a href="#t_integer">integer</a> values.  Both arguments must have identical 
2218 types.</p>
2219 <h5>Semantics:</h5>
2220 <p>This instruction returns the <i>remainder</i> of a division (where the result
2221 has the same sign as the dividend, <tt>var1</tt>), not the <i>modulo</i> 
2222 operator (where the result has the same sign as the divisor, <tt>var2</tt>) of 
2223 a value.  For more information about the difference, see <a
2224  href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
2225 Math Forum</a>. For a table of how this is implemented in various languages,
2226 please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
2227 Wikipedia: modulo operation</a>.</p>
2228 <h5>Example:</h5>
2229 <pre>  &lt;result&gt; = srem i32 4, %var          <i>; yields {i32}:result = 4 % %var</i>
2230 </pre>
2231
2232 </div>
2233 <!-- _______________________________________________________________________ -->
2234 <div class="doc_subsubsection"> <a name="i_frem">'<tt>frem</tt>'
2235 Instruction</a> </div>
2236 <div class="doc_text">
2237 <h5>Syntax:</h5>
2238 <pre>  &lt;result&gt; = frem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
2239 </pre>
2240 <h5>Overview:</h5>
2241 <p>The '<tt>frem</tt>' instruction returns the remainder from the
2242 division of its two operands.</p>
2243 <h5>Arguments:</h5>
2244 <p>The two arguments to the '<tt>frem</tt>' instruction must be
2245 <a href="#t_floating">floating point</a> values.  Both arguments must have 
2246 identical types.  This instruction can also take <a href="#t_vector">vector</a>
2247 versions of floating point values.</p>
2248 <h5>Semantics:</h5>
2249 <p>This instruction returns the <i>remainder</i> of a division.</p>
2250 <h5>Example:</h5>
2251 <pre>  &lt;result&gt; = frem float 4.0, %var          <i>; yields {float}:result = 4.0 % %var</i>
2252 </pre>
2253 </div>
2254
2255 <!-- ======================================================================= -->
2256 <div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2257 Operations</a> </div>
2258 <div class="doc_text">
2259 <p>Bitwise binary operators are used to do various forms of
2260 bit-twiddling in a program.  They are generally very efficient
2261 instructions and can commonly be strength reduced from other
2262 instructions.  They require two operands, execute an operation on them,
2263 and produce a single value.  The resulting value of the bitwise binary
2264 operators is always the same type as its first operand.</p>
2265 </div>
2266
2267 <!-- _______________________________________________________________________ -->
2268 <div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2269 Instruction</a> </div>
2270 <div class="doc_text">
2271 <h5>Syntax:</h5>
2272 <pre>  &lt;result&gt; = shl &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
2273 </pre>
2274
2275 <h5>Overview:</h5>
2276
2277 <p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2278 the left a specified number of bits.</p>
2279
2280 <h5>Arguments:</h5>
2281
2282 <p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
2283  href="#t_integer">integer</a> type.</p>
2284  
2285 <h5>Semantics:</h5>
2286
2287 <p>The value produced is <tt>var1</tt> * 2<sup><tt>var2</tt></sup>.  If
2288 <tt>var2</tt> is (statically or dynamically) equal to or larger than the number
2289 of bits in <tt>var1</tt>, the result is undefined.</p>
2290
2291 <h5>Example:</h5><pre>
2292   &lt;result&gt; = shl i32 4, %var   <i>; yields {i32}: 4 &lt;&lt; %var</i>
2293   &lt;result&gt; = shl i32 4, 2      <i>; yields {i32}: 16</i>
2294   &lt;result&gt; = shl i32 1, 10     <i>; yields {i32}: 1024</i>
2295   &lt;result&gt; = shl i32 1, 32     <i>; undefined</i>
2296 </pre>
2297 </div>
2298 <!-- _______________________________________________________________________ -->
2299 <div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2300 Instruction</a> </div>
2301 <div class="doc_text">
2302 <h5>Syntax:</h5>
2303 <pre>  &lt;result&gt; = lshr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
2304 </pre>
2305
2306 <h5>Overview:</h5>
2307 <p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first 
2308 operand shifted to the right a specified number of bits with zero fill.</p>
2309
2310 <h5>Arguments:</h5>
2311 <p>Both arguments to the '<tt>lshr</tt>' instruction must be the same 
2312 <a href="#t_integer">integer</a> type.</p>
2313
2314 <h5>Semantics:</h5>
2315
2316 <p>This instruction always performs a logical shift right operation. The most
2317 significant bits of the result will be filled with zero bits after the 
2318 shift.  If <tt>var2</tt> is (statically or dynamically) equal to or larger than
2319 the number of bits in <tt>var1</tt>, the result is undefined.</p>
2320
2321 <h5>Example:</h5>
2322 <pre>
2323   &lt;result&gt; = lshr i32 4, 1   <i>; yields {i32}:result = 2</i>
2324   &lt;result&gt; = lshr i32 4, 2   <i>; yields {i32}:result = 1</i>
2325   &lt;result&gt; = lshr i8  4, 3   <i>; yields {i8}:result = 0</i>
2326   &lt;result&gt; = lshr i8 -2, 1   <i>; yields {i8}:result = 0x7FFFFFFF </i>
2327   &lt;result&gt; = lshr i32 1, 32  <i>; undefined</i>
2328 </pre>
2329 </div>
2330
2331 <!-- _______________________________________________________________________ -->
2332 <div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2333 Instruction</a> </div>
2334 <div class="doc_text">
2335
2336 <h5>Syntax:</h5>
2337 <pre>  &lt;result&gt; = ashr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
2338 </pre>
2339
2340 <h5>Overview:</h5>
2341 <p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first 
2342 operand shifted to the right a specified number of bits with sign extension.</p>
2343
2344 <h5>Arguments:</h5>
2345 <p>Both arguments to the '<tt>ashr</tt>' instruction must be the same 
2346 <a href="#t_integer">integer</a> type.</p>
2347
2348 <h5>Semantics:</h5>
2349 <p>This instruction always performs an arithmetic shift right operation, 
2350 The most significant bits of the result will be filled with the sign bit 
2351 of <tt>var1</tt>.  If <tt>var2</tt> is (statically or dynamically) equal to or
2352 larger than the number of bits in <tt>var1</tt>, the result is undefined.
2353 </p>
2354
2355 <h5>Example:</h5>
2356 <pre>
2357   &lt;result&gt; = ashr i32 4, 1   <i>; yields {i32}:result = 2</i>
2358   &lt;result&gt; = ashr i32 4, 2   <i>; yields {i32}:result = 1</i>
2359   &lt;result&gt; = ashr i8  4, 3   <i>; yields {i8}:result = 0</i>
2360   &lt;result&gt; = ashr i8 -2, 1   <i>; yields {i8}:result = -1</i>
2361   &lt;result&gt; = ashr i32 1, 32  <i>; undefined</i>
2362 </pre>
2363 </div>
2364
2365 <!-- _______________________________________________________________________ -->
2366 <div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2367 Instruction</a> </div>
2368 <div class="doc_text">
2369 <h5>Syntax:</h5>
2370 <pre>  &lt;result&gt; = and &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
2371 </pre>
2372 <h5>Overview:</h5>
2373 <p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2374 its two operands.</p>
2375 <h5>Arguments:</h5>
2376 <p>The two arguments to the '<tt>and</tt>' instruction must be <a
2377  href="#t_integer">integer</a> values.  Both arguments must have
2378 identical types.</p>
2379 <h5>Semantics:</h5>
2380 <p>The truth table used for the '<tt>and</tt>' instruction is:</p>
2381 <p> </p>
2382 <div style="align: center">
2383 <table border="1" cellspacing="0" cellpadding="4">
2384   <tbody>
2385     <tr>
2386       <td>In0</td>
2387       <td>In1</td>
2388       <td>Out</td>
2389     </tr>
2390     <tr>
2391       <td>0</td>
2392       <td>0</td>
2393       <td>0</td>
2394     </tr>
2395     <tr>
2396       <td>0</td>
2397       <td>1</td>
2398       <td>0</td>
2399     </tr>
2400     <tr>
2401       <td>1</td>
2402       <td>0</td>
2403       <td>0</td>
2404     </tr>
2405     <tr>
2406       <td>1</td>
2407       <td>1</td>
2408       <td>1</td>
2409     </tr>
2410   </tbody>
2411 </table>
2412 </div>
2413 <h5>Example:</h5>
2414 <pre>  &lt;result&gt; = and i32 4, %var         <i>; yields {i32}:result = 4 &amp; %var</i>
2415   &lt;result&gt; = and i32 15, 40          <i>; yields {i32}:result = 8</i>
2416   &lt;result&gt; = and i32 4, 8            <i>; yields {i32}:result = 0</i>
2417 </pre>
2418 </div>
2419 <!-- _______________________________________________________________________ -->
2420 <div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
2421 <div class="doc_text">
2422 <h5>Syntax:</h5>
2423 <pre>  &lt;result&gt; = or &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
2424 </pre>
2425 <h5>Overview:</h5>
2426 <p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2427 or of its two operands.</p>
2428 <h5>Arguments:</h5>
2429 <p>The two arguments to the '<tt>or</tt>' instruction must be <a
2430  href="#t_integer">integer</a> values.  Both arguments must have
2431 identical types.</p>
2432 <h5>Semantics:</h5>
2433 <p>The truth table used for the '<tt>or</tt>' instruction is:</p>
2434 <p> </p>
2435 <div style="align: center">
2436 <table border="1" cellspacing="0" cellpadding="4">
2437   <tbody>
2438     <tr>
2439       <td>In0</td>
2440       <td>In1</td>
2441       <td>Out</td>
2442     </tr>
2443     <tr>
2444       <td>0</td>
2445       <td>0</td>
2446       <td>0</td>
2447     </tr>
2448     <tr>
2449       <td>0</td>
2450       <td>1</td>
2451       <td>1</td>
2452     </tr>
2453     <tr>
2454       <td>1</td>
2455       <td>0</td>
2456       <td>1</td>
2457     </tr>
2458     <tr>
2459       <td>1</td>
2460       <td>1</td>
2461       <td>1</td>
2462     </tr>
2463   </tbody>
2464 </table>
2465 </div>
2466 <h5>Example:</h5>
2467 <pre>  &lt;result&gt; = or i32 4, %var         <i>; yields {i32}:result = 4 | %var</i>
2468   &lt;result&gt; = or i32 15, 40          <i>; yields {i32}:result = 47</i>
2469   &lt;result&gt; = or i32 4, 8            <i>; yields {i32}:result = 12</i>
2470 </pre>
2471 </div>
2472 <!-- _______________________________________________________________________ -->
2473 <div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2474 Instruction</a> </div>
2475 <div class="doc_text">
2476 <h5>Syntax:</h5>
2477 <pre>  &lt;result&gt; = xor &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
2478 </pre>
2479 <h5>Overview:</h5>
2480 <p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2481 or of its two operands.  The <tt>xor</tt> is used to implement the
2482 "one's complement" operation, which is the "~" operator in C.</p>
2483 <h5>Arguments:</h5>
2484 <p>The two arguments to the '<tt>xor</tt>' instruction must be <a
2485  href="#t_integer">integer</a> values.  Both arguments must have
2486 identical types.</p>
2487 <h5>Semantics:</h5>
2488 <p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
2489 <p> </p>
2490 <div style="align: center">
2491 <table border="1" cellspacing="0" cellpadding="4">
2492   <tbody>
2493     <tr>
2494       <td>In0</td>
2495       <td>In1</td>
2496       <td>Out</td>
2497     </tr>
2498     <tr>
2499       <td>0</td>
2500       <td>0</td>
2501       <td>0</td>
2502     </tr>
2503     <tr>
2504       <td>0</td>
2505       <td>1</td>
2506       <td>1</td>
2507     </tr>
2508     <tr>
2509       <td>1</td>
2510       <td>0</td>
2511       <td>1</td>
2512     </tr>
2513     <tr>
2514       <td>1</td>
2515       <td>1</td>
2516       <td>0</td>
2517     </tr>
2518   </tbody>
2519 </table>
2520 </div>
2521 <p> </p>
2522 <h5>Example:</h5>
2523 <pre>  &lt;result&gt; = xor i32 4, %var         <i>; yields {i32}:result = 4 ^ %var</i>
2524   &lt;result&gt; = xor i32 15, 40          <i>; yields {i32}:result = 39</i>
2525   &lt;result&gt; = xor i32 4, 8            <i>; yields {i32}:result = 12</i>
2526   &lt;result&gt; = xor i32 %V, -1          <i>; yields {i32}:result = ~%V</i>
2527 </pre>
2528 </div>
2529
2530 <!-- ======================================================================= -->
2531 <div class="doc_subsection"> 
2532   <a name="vectorops">Vector Operations</a>
2533 </div>
2534
2535 <div class="doc_text">
2536
2537 <p>LLVM supports several instructions to represent vector operations in a
2538 target-independent manner.  These instructions cover the element-access and
2539 vector-specific operations needed to process vectors effectively.  While LLVM
2540 does directly support these vector operations, many sophisticated algorithms
2541 will want to use target-specific intrinsics to take full advantage of a specific
2542 target.</p>
2543
2544 </div>
2545
2546 <!-- _______________________________________________________________________ -->
2547 <div class="doc_subsubsection">
2548    <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2549 </div>
2550
2551 <div class="doc_text">
2552
2553 <h5>Syntax:</h5>
2554
2555 <pre>
2556   &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt;    <i>; yields &lt;ty&gt;</i>
2557 </pre>
2558
2559 <h5>Overview:</h5>
2560
2561 <p>
2562 The '<tt>extractelement</tt>' instruction extracts a single scalar
2563 element from a vector at a specified index.
2564 </p>
2565
2566
2567 <h5>Arguments:</h5>
2568
2569 <p>
2570 The first operand of an '<tt>extractelement</tt>' instruction is a
2571 value of <a href="#t_vector">vector</a> type.  The second operand is
2572 an index indicating the position from which to extract the element.
2573 The index may be a variable.</p>
2574
2575 <h5>Semantics:</h5>
2576
2577 <p>
2578 The result is a scalar of the same type as the element type of
2579 <tt>val</tt>.  Its value is the value at position <tt>idx</tt> of
2580 <tt>val</tt>.  If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2581 results are undefined.
2582 </p>
2583
2584 <h5>Example:</h5>
2585
2586 <pre>
2587   %result = extractelement &lt;4 x i32&gt; %vec, i32 0    <i>; yields i32</i>
2588 </pre>
2589 </div>
2590
2591
2592 <!-- _______________________________________________________________________ -->
2593 <div class="doc_subsubsection">
2594    <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2595 </div>
2596
2597 <div class="doc_text">
2598
2599 <h5>Syntax:</h5>
2600
2601 <pre>
2602   &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt, i32 &lt;idx&gt;    <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
2603 </pre>
2604
2605 <h5>Overview:</h5>
2606
2607 <p>
2608 The '<tt>insertelement</tt>' instruction inserts a scalar
2609 element into a vector at a specified index.
2610 </p>
2611
2612
2613 <h5>Arguments:</h5>
2614
2615 <p>
2616 The first operand of an '<tt>insertelement</tt>' instruction is a
2617 value of <a href="#t_vector">vector</a> type.  The second operand is a
2618 scalar value whose type must equal the element type of the first
2619 operand.  The third operand is an index indicating the position at
2620 which to insert the value.  The index may be a variable.</p>
2621
2622 <h5>Semantics:</h5>
2623
2624 <p>
2625 The result is a vector of the same type as <tt>val</tt>.  Its
2626 element values are those of <tt>val</tt> except at position
2627 <tt>idx</tt>, where it gets the value <tt>elt</tt>.  If <tt>idx</tt>
2628 exceeds the length of <tt>val</tt>, the results are undefined.
2629 </p>
2630
2631 <h5>Example:</h5>
2632
2633 <pre>
2634   %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0    <i>; yields &lt;4 x i32&gt;</i>
2635 </pre>
2636 </div>
2637
2638 <!-- _______________________________________________________________________ -->
2639 <div class="doc_subsubsection">
2640    <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2641 </div>
2642
2643 <div class="doc_text">
2644
2645 <h5>Syntax:</h5>
2646
2647 <pre>
2648   &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;n x i32&gt; &lt;mask&gt;    <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
2649 </pre>
2650
2651 <h5>Overview:</h5>
2652
2653 <p>
2654 The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
2655 from two input vectors, returning a vector of the same type.
2656 </p>
2657
2658 <h5>Arguments:</h5>
2659
2660 <p>
2661 The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2662 with types that match each other and types that match the result of the
2663 instruction.  The third argument is a shuffle mask, which has the same number
2664 of elements as the other vector type, but whose element type is always 'i32'.
2665 </p>
2666
2667 <p>
2668 The shuffle mask operand is required to be a constant vector with either
2669 constant integer or undef values.
2670 </p>
2671
2672 <h5>Semantics:</h5>
2673
2674 <p>
2675 The elements of the two input vectors are numbered from left to right across
2676 both of the vectors.  The shuffle mask operand specifies, for each element of
2677 the result vector, which element of the two input registers the result element
2678 gets.  The element selector may be undef (meaning "don't care") and the second
2679 operand may be undef if performing a shuffle from only one vector.
2680 </p>
2681
2682 <h5>Example:</h5>
2683
2684 <pre>
2685   %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2, 
2686                           &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt;  <i>; yields &lt;4 x i32&gt;</i>
2687   %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef, 
2688                           &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt;  <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
2689 </pre>
2690 </div>
2691
2692
2693 <!-- ======================================================================= -->
2694 <div class="doc_subsection"> 
2695   <a name="memoryops">Memory Access and Addressing Operations</a>
2696 </div>
2697
2698 <div class="doc_text">
2699
2700 <p>A key design point of an SSA-based representation is how it
2701 represents memory.  In LLVM, no memory locations are in SSA form, which
2702 makes things very simple.  This section describes how to read, write,
2703 allocate, and free memory in LLVM.</p>
2704
2705 </div>
2706
2707 <!-- _______________________________________________________________________ -->
2708 <div class="doc_subsubsection">
2709   <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
2710 </div>
2711
2712 <div class="doc_text">
2713
2714 <h5>Syntax:</h5>
2715
2716 <pre>
2717   &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;]     <i>; yields {type*}:result</i>
2718 </pre>
2719
2720 <h5>Overview:</h5>
2721
2722 <p>The '<tt>malloc</tt>' instruction allocates memory from the system
2723 heap and returns a pointer to it. The object is always allocated in the generic 
2724 address space (address space zero).</p>
2725
2726 <h5>Arguments:</h5>
2727
2728 <p>The '<tt>malloc</tt>' instruction allocates
2729 <tt>sizeof(&lt;type&gt;)*NumElements</tt>
2730 bytes of memory from the operating system and returns a pointer of the
2731 appropriate type to the program.  If "NumElements" is specified, it is the
2732 number of elements allocated.  If an alignment is specified, the value result
2733 of the allocation is guaranteed to be aligned to at least that boundary.  If
2734 not specified, or if zero, the target can choose to align the allocation on any
2735 convenient boundary.</p>
2736
2737 <p>'<tt>type</tt>' must be a sized type.</p>
2738
2739 <h5>Semantics:</h5>
2740
2741 <p>Memory is allocated using the system "<tt>malloc</tt>" function, and
2742 a pointer is returned.</p>
2743
2744 <h5>Example:</h5>
2745
2746 <pre>
2747   %array  = malloc [4 x i8 ]                    <i>; yields {[%4 x i8]*}:array</i>
2748
2749   %size   = <a href="#i_add">add</a> i32 2, 2                        <i>; yields {i32}:size = i32 4</i>
2750   %array1 = malloc i8, i32 4                    <i>; yields {i8*}:array1</i>
2751   %array2 = malloc [12 x i8], i32 %size         <i>; yields {[12 x i8]*}:array2</i>
2752   %array3 = malloc i32, i32 4, align 1024       <i>; yields {i32*}:array3</i>
2753   %array4 = malloc i32, align 1024              <i>; yields {i32*}:array4</i>
2754 </pre>
2755 </div>
2756
2757 <!-- _______________________________________________________________________ -->
2758 <div class="doc_subsubsection">
2759   <a name="i_free">'<tt>free</tt>' Instruction</a>
2760 </div>
2761
2762 <div class="doc_text">
2763
2764 <h5>Syntax:</h5>
2765
2766 <pre>
2767   free &lt;type&gt; &lt;value&gt;                              <i>; yields {void}</i>
2768 </pre>
2769
2770 <h5>Overview:</h5>
2771
2772 <p>The '<tt>free</tt>' instruction returns memory back to the unused
2773 memory heap to be reallocated in the future.</p>
2774
2775 <h5>Arguments:</h5>
2776
2777 <p>'<tt>value</tt>' shall be a pointer value that points to a value
2778 that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
2779 instruction.</p>
2780
2781 <h5>Semantics:</h5>
2782
2783 <p>Access to the memory pointed to by the pointer is no longer defined
2784 after this instruction executes.</p>
2785
2786 <h5>Example:</h5>
2787
2788 <pre>
2789   %array  = <a href="#i_malloc">malloc</a> [4 x i8]                    <i>; yields {[4 x i8]*}:array</i>
2790             free   [4 x i8]* %array
2791 </pre>
2792 </div>
2793
2794 <!-- _______________________________________________________________________ -->
2795 <div class="doc_subsubsection">
2796   <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
2797 </div>
2798
2799 <div class="doc_text">
2800
2801 <h5>Syntax:</h5>
2802
2803 <pre>
2804   &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;]     <i>; yields {type*}:result</i>
2805 </pre>
2806
2807 <h5>Overview:</h5>
2808
2809 <p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
2810 currently executing function, to be automatically released when this function
2811 returns to its caller. The object is always allocated in the generic address 
2812 space (address space zero).</p>
2813
2814 <h5>Arguments:</h5>
2815
2816 <p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
2817 bytes of memory on the runtime stack, returning a pointer of the
2818 appropriate type to the program.    If "NumElements" is specified, it is the
2819 number of elements allocated.  If an alignment is specified, the value result
2820 of the allocation is guaranteed to be aligned to at least that boundary.  If
2821 not specified, or if zero, the target can choose to align the allocation on any
2822 convenient boundary.</p>
2823
2824 <p>'<tt>type</tt>' may be any sized type.</p>
2825
2826 <h5>Semantics:</h5>
2827
2828 <p>Memory is allocated; a pointer is returned.  '<tt>alloca</tt>'d
2829 memory is automatically released when the function returns.  The '<tt>alloca</tt>'
2830 instruction is commonly used to represent automatic variables that must
2831 have an address available.  When the function returns (either with the <tt><a
2832  href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
2833 instructions), the memory is reclaimed.</p>
2834
2835 <h5>Example:</h5>
2836
2837 <pre>
2838   %ptr = alloca i32                              <i>; yields {i32*}:ptr</i>
2839   %ptr = alloca i32, i32 4                       <i>; yields {i32*}:ptr</i>
2840   %ptr = alloca i32, i32 4, align 1024           <i>; yields {i32*}:ptr</i>
2841   %ptr = alloca i32, align 1024                  <i>; yields {i32*}:ptr</i>
2842 </pre>
2843 </div>
2844
2845 <!-- _______________________________________________________________________ -->
2846 <div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
2847 Instruction</a> </div>
2848 <div class="doc_text">
2849 <h5>Syntax:</h5>
2850 <pre>  &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br>  &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
2851 <h5>Overview:</h5>
2852 <p>The '<tt>load</tt>' instruction is used to read from memory.</p>
2853 <h5>Arguments:</h5>
2854 <p>The argument to the '<tt>load</tt>' instruction specifies the memory
2855 address from which to load.  The pointer must point to a <a
2856  href="#t_firstclass">first class</a> type.  If the <tt>load</tt> is
2857 marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
2858 the number or order of execution of this <tt>load</tt> with other
2859 volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
2860 instructions. </p>
2861 <p>
2862 The optional "align" argument specifies the alignment of the operation
2863 (that is, the alignment of the memory address). A value of 0 or an
2864 omitted "align" argument means that the operation has the preferential
2865 alignment for the target. It is the responsibility of the code emitter
2866 to ensure that the alignment information is correct. Overestimating
2867 the alignment results in an undefined behavior. Underestimating the
2868 alignment may produce less efficient code. An alignment of 1 is always
2869 safe.
2870 </p>
2871 <h5>Semantics:</h5>
2872 <p>The location of memory pointed to is loaded.</p>
2873 <h5>Examples:</h5>
2874 <pre>  %ptr = <a href="#i_alloca">alloca</a> i32                               <i>; yields {i32*}:ptr</i>
2875   <a
2876  href="#i_store">store</a> i32 3, i32* %ptr                          <i>; yields {void}</i>
2877   %val = load i32* %ptr                           <i>; yields {i32}:val = i32 3</i>
2878 </pre>
2879 </div>
2880 <!-- _______________________________________________________________________ -->
2881 <div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
2882 Instruction</a> </div>
2883 <div class="doc_text">
2884 <h5>Syntax:</h5>
2885 <pre>  store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]                   <i>; yields {void}</i>
2886   volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]          <i>; yields {void}</i>
2887 </pre>
2888 <h5>Overview:</h5>
2889 <p>The '<tt>store</tt>' instruction is used to write to memory.</p>
2890 <h5>Arguments:</h5>
2891 <p>There are two arguments to the '<tt>store</tt>' instruction: a value
2892 to store and an address at which to store it.  The type of the '<tt>&lt;pointer&gt;</tt>'
2893 operand must be a pointer to the type of the '<tt>&lt;value&gt;</tt>'
2894 operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
2895 optimizer is not allowed to modify the number or order of execution of
2896 this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
2897  href="#i_store">store</a></tt> instructions.</p>
2898 <p>
2899 The optional "align" argument specifies the alignment of the operation
2900 (that is, the alignment of the memory address). A value of 0 or an
2901 omitted "align" argument means that the operation has the preferential
2902 alignment for the target. It is the responsibility of the code emitter
2903 to ensure that the alignment information is correct. Overestimating
2904 the alignment results in an undefined behavior. Underestimating the
2905 alignment may produce less efficient code. An alignment of 1 is always
2906 safe.
2907 </p>
2908 <h5>Semantics:</h5>
2909 <p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
2910 at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
2911 <h5>Example:</h5>
2912 <pre>  %ptr = <a href="#i_alloca">alloca</a> i32                               <i>; yields {i32*}:ptr</i>
2913   store i32 3, i32* %ptr                          <i>; yields {void}</i>
2914   %val = <a href="#i_load">load</a> i32* %ptr                           <i>; yields {i32}:val = i32 3</i>
2915 </pre>
2916 </div>
2917
2918 <!-- _______________________________________________________________________ -->
2919 <div class="doc_subsubsection">
2920    <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
2921 </div>
2922
2923 <div class="doc_text">
2924 <h5>Syntax:</h5>
2925 <pre>
2926   &lt;result&gt; = getelementptr &lt;ty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
2927 </pre>
2928
2929 <h5>Overview:</h5>
2930
2931 <p>
2932 The '<tt>getelementptr</tt>' instruction is used to get the address of a
2933 subelement of an aggregate data structure.</p>
2934
2935 <h5>Arguments:</h5>
2936
2937 <p>This instruction takes a list of integer operands that indicate what
2938 elements of the aggregate object to index to.  The actual types of the arguments
2939 provided depend on the type of the first pointer argument.  The
2940 '<tt>getelementptr</tt>' instruction is used to index down through the type
2941 levels of a structure or to a specific index in an array.  When indexing into a
2942 structure, only <tt>i32</tt> integer constants are allowed.  When indexing 
2943 into an array or pointer, only integers of 32 or 64 bits are allowed, and will 
2944 be sign extended to 64-bit values.</p>
2945
2946 <p>For example, let's consider a C code fragment and how it gets
2947 compiled to LLVM:</p>
2948
2949 <div class="doc_code">
2950 <pre>
2951 struct RT {
2952   char A;
2953   int B[10][20];
2954   char C;
2955 };
2956 struct ST {
2957   int X;
2958   double Y;
2959   struct RT Z;
2960 };
2961
2962 int *foo(struct ST *s) {
2963   return &amp;s[1].Z.B[5][13];
2964 }
2965 </pre>
2966 </div>
2967
2968 <p>The LLVM code generated by the GCC frontend is:</p>
2969
2970 <div class="doc_code">
2971 <pre>
2972 %RT = type { i8 , [10 x [20 x i32]], i8  }
2973 %ST = type { i32, double, %RT }
2974
2975 define i32* %foo(%ST* %s) {
2976 entry:
2977   %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
2978   ret i32* %reg
2979 }
2980 </pre>
2981 </div>
2982
2983 <h5>Semantics:</h5>
2984
2985 <p>The index types specified for the '<tt>getelementptr</tt>' instruction depend
2986 on the pointer type that is being indexed into. <a href="#t_pointer">Pointer</a>
2987 and <a href="#t_array">array</a> types can use a 32-bit or 64-bit
2988 <a href="#t_integer">integer</a> type but the value will always be sign extended
2989 to 64-bits.  <a href="#t_struct">Structure</a> types require <tt>i32</tt>
2990 <b>constants</b>.</p>
2991
2992 <p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
2993 type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
2994 }</tt>' type, a structure.  The second index indexes into the third element of
2995 the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
2996 i8  }</tt>' type, another structure.  The third index indexes into the second
2997 element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
2998 array.  The two dimensions of the array are subscripted into, yielding an
2999 '<tt>i32</tt>' type.  The '<tt>getelementptr</tt>' instruction returns a pointer
3000 to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
3001
3002 <p>Note that it is perfectly legal to index partially through a
3003 structure, returning a pointer to an inner element.  Because of this,
3004 the LLVM code for the given testcase is equivalent to:</p>
3005
3006 <pre>
3007   define i32* %foo(%ST* %s) {
3008     %t1 = getelementptr %ST* %s, i32 1                        <i>; yields %ST*:%t1</i>
3009     %t2 = getelementptr %ST* %t1, i32 0, i32 2                <i>; yields %RT*:%t2</i>
3010     %t3 = getelementptr %RT* %t2, i32 0, i32 1                <i>; yields [10 x [20 x i32]]*:%t3</i>
3011     %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5  <i>; yields [20 x i32]*:%t4</i>
3012     %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13        <i>; yields i32*:%t5</i>
3013     ret i32* %t5
3014   }
3015 </pre>
3016
3017 <p>Note that it is undefined to access an array out of bounds: array and 
3018 pointer indexes must always be within the defined bounds of the array type.
3019 The one exception for this rules is zero length arrays.  These arrays are
3020 defined to be accessible as variable length arrays, which requires access
3021 beyond the zero'th element.</p>
3022
3023 <p>The getelementptr instruction is often confusing.  For some more insight
3024 into how it works, see <a href="GetElementPtr.html">the getelementptr 
3025 FAQ</a>.</p>
3026
3027 <h5>Example:</h5>
3028
3029 <pre>
3030     <i>; yields [12 x i8]*:aptr</i>
3031     %aptr = getelementptr {i32, [12 x i8]}* %sptr, i64 0, i32 1
3032 </pre>
3033 </div>
3034
3035 <!-- ======================================================================= -->
3036 <div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
3037 </div>
3038 <div class="doc_text">
3039 <p>The instructions in this category are the conversion instructions (casting)
3040 which all take a single operand and a type. They perform various bit conversions
3041 on the operand.</p>
3042 </div>
3043
3044 <!-- _______________________________________________________________________ -->
3045 <div class="doc_subsubsection">
3046    <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
3047 </div>
3048 <div class="doc_text">
3049
3050 <h5>Syntax:</h5>
3051 <pre>
3052   &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
3053 </pre>
3054
3055 <h5>Overview:</h5>
3056 <p>
3057 The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
3058 </p>
3059
3060 <h5>Arguments:</h5>
3061 <p>
3062 The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must 
3063 be an <a href="#t_integer">integer</a> type, and a type that specifies the size 
3064 and type of the result, which must be an <a href="#t_integer">integer</a> 
3065 type. The bit size of <tt>value</tt> must be larger than the bit size of 
3066 <tt>ty2</tt>. Equal sized types are not allowed.</p>
3067
3068 <h5>Semantics:</h5>
3069 <p>
3070 The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
3071 and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
3072 larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
3073 It will always truncate bits.</p>
3074
3075 <h5>Example:</h5>
3076 <pre>
3077   %X = trunc i32 257 to i8              <i>; yields i8:1</i>
3078   %Y = trunc i32 123 to i1              <i>; yields i1:true</i>
3079   %Y = trunc i32 122 to i1              <i>; yields i1:false</i>
3080 </pre>
3081 </div>
3082
3083 <!-- _______________________________________________________________________ -->
3084 <div class="doc_subsubsection">
3085    <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
3086 </div>
3087 <div class="doc_text">
3088
3089 <h5>Syntax:</h5>
3090 <pre>
3091   &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
3092 </pre>
3093
3094 <h5>Overview:</h5>
3095 <p>The '<tt>zext</tt>' instruction zero extends its operand to type 
3096 <tt>ty2</tt>.</p>
3097
3098
3099 <h5>Arguments:</h5>
3100 <p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of 
3101 <a href="#t_integer">integer</a> type, and a type to cast it to, which must
3102 also be of <a href="#t_integer">integer</a> type. The bit size of the
3103 <tt>value</tt> must be smaller than the bit size of the destination type, 
3104 <tt>ty2</tt>.</p>
3105
3106 <h5>Semantics:</h5>
3107 <p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
3108 bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
3109
3110 <p>When zero extending from i1, the result will always be either 0 or 1.</p>
3111
3112 <h5>Example:</h5>
3113 <pre>
3114   %X = zext i32 257 to i64              <i>; yields i64:257</i>
3115   %Y = zext i1 true to i32              <i>; yields i32:1</i>
3116 </pre>
3117 </div>
3118
3119 <!-- _______________________________________________________________________ -->
3120 <div class="doc_subsubsection">
3121    <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3122 </div>
3123 <div class="doc_text">
3124
3125 <h5>Syntax:</h5>
3126 <pre>
3127   &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
3128 </pre>
3129
3130 <h5>Overview:</h5>
3131 <p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3132
3133 <h5>Arguments:</h5>
3134 <p>
3135 The '<tt>sext</tt>' instruction takes a value to cast, which must be of 
3136 <a href="#t_integer">integer</a> type, and a type to cast it to, which must
3137 also be of <a href="#t_integer">integer</a> type.  The bit size of the
3138 <tt>value</tt> must be smaller than the bit size of the destination type, 
3139 <tt>ty2</tt>.</p>
3140
3141 <h5>Semantics:</h5>
3142 <p>
3143 The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3144 bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
3145 the type <tt>ty2</tt>.</p>
3146
3147 <p>When sign extending from i1, the extension always results in -1 or 0.</p>
3148
3149 <h5>Example:</h5>
3150 <pre>
3151   %X = sext i8  -1 to i16              <i>; yields i16   :65535</i>
3152   %Y = sext i1 true to i32             <i>; yields i32:-1</i>
3153 </pre>
3154 </div>
3155
3156 <!-- _______________________________________________________________________ -->
3157 <div class="doc_subsubsection">
3158    <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3159 </div>
3160
3161 <div class="doc_text">
3162
3163 <h5>Syntax:</h5>
3164
3165 <pre>
3166   &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
3167 </pre>
3168
3169 <h5>Overview:</h5>
3170 <p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3171 <tt>ty2</tt>.</p>
3172
3173
3174 <h5>Arguments:</h5>
3175 <p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3176   point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3177 cast it to. The size of <tt>value</tt> must be larger than the size of
3178 <tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a 
3179 <i>no-op cast</i>.</p>
3180
3181 <h5>Semantics:</h5>
3182 <p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3183 <a href="#t_floating">floating point</a> type to a smaller 
3184 <a href="#t_floating">floating point</a> type.  If the value cannot fit within 
3185 the destination type, <tt>ty2</tt>, then the results are undefined.</p>
3186
3187 <h5>Example:</h5>
3188 <pre>
3189   %X = fptrunc double 123.0 to float         <i>; yields float:123.0</i>
3190   %Y = fptrunc double 1.0E+300 to float      <i>; yields undefined</i>
3191 </pre>
3192 </div>
3193
3194 <!-- _______________________________________________________________________ -->
3195 <div class="doc_subsubsection">
3196    <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3197 </div>
3198 <div class="doc_text">
3199
3200 <h5>Syntax:</h5>
3201 <pre>
3202   &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
3203 </pre>
3204
3205 <h5>Overview:</h5>
3206 <p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3207 floating point value.</p>
3208
3209 <h5>Arguments:</h5>
3210 <p>The '<tt>fpext</tt>' instruction takes a 
3211 <a href="#t_floating">floating point</a> <tt>value</tt> to cast, 
3212 and a <a href="#t_floating">floating point</a> type to cast it to. The source
3213 type must be smaller than the destination type.</p>
3214
3215 <h5>Semantics:</h5>
3216 <p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
3217 <a href="#t_floating">floating point</a> type to a larger 
3218 <a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be 
3219 used to make a <i>no-op cast</i> because it always changes bits. Use 
3220 <tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
3221
3222 <h5>Example:</h5>
3223 <pre>
3224   %X = fpext float 3.1415 to double        <i>; yields double:3.1415</i>
3225   %Y = fpext float 1.0 to float            <i>; yields float:1.0 (no-op)</i>
3226 </pre>
3227 </div>
3228
3229 <!-- _______________________________________________________________________ -->
3230 <div class="doc_subsubsection">
3231    <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
3232 </div>
3233 <div class="doc_text">
3234
3235 <h5>Syntax:</h5>
3236 <pre>
3237   &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
3238 </pre>
3239
3240 <h5>Overview:</h5>
3241 <p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
3242 unsigned integer equivalent of type <tt>ty2</tt>.
3243 </p>
3244
3245 <h5>Arguments:</h5>
3246 <p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a 
3247 scalar or vector <a href="#t_floating">floating point</a> value, and a type 
3248 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> 
3249 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3250 vector integer type with the same number of elements as <tt>ty</tt></p>
3251
3252 <h5>Semantics:</h5>
3253 <p> The '<tt>fptoui</tt>' instruction converts its 
3254 <a href="#t_floating">floating point</a> operand into the nearest (rounding
3255 towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3256 the results are undefined.</p>
3257
3258 <h5>Example:</h5>
3259 <pre>
3260   %X = fptoui double 123.0 to i32      <i>; yields i32:123</i>
3261   %Y = fptoui float 1.0E+300 to i1     <i>; yields undefined:1</i>
3262   %X = fptoui float 1.04E+17 to i8     <i>; yields undefined:1</i>
3263 </pre>
3264 </div>
3265
3266 <!-- _______________________________________________________________________ -->
3267 <div class="doc_subsubsection">
3268    <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
3269 </div>
3270 <div class="doc_text">
3271
3272 <h5>Syntax:</h5>
3273 <pre>
3274   &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
3275 </pre>
3276
3277 <h5>Overview:</h5>
3278 <p>The '<tt>fptosi</tt>' instruction converts 
3279 <a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
3280 </p>
3281
3282 <h5>Arguments:</h5>
3283 <p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a 
3284 scalar or vector <a href="#t_floating">floating point</a> value, and a type 
3285 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> 
3286 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3287 vector integer type with the same number of elements as <tt>ty</tt></p>
3288
3289 <h5>Semantics:</h5>
3290 <p>The '<tt>fptosi</tt>' instruction converts its 
3291 <a href="#t_floating">floating point</a> operand into the nearest (rounding
3292 towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3293 the results are undefined.</p>
3294
3295 <h5>Example:</h5>
3296 <pre>
3297   %X = fptosi double -123.0 to i32      <i>; yields i32:-123</i>
3298   %Y = fptosi float 1.0E-247 to i1      <i>; yields undefined:1</i>
3299   %X = fptosi float 1.04E+17 to i8      <i>; yields undefined:1</i>
3300 </pre>
3301 </div>
3302
3303 <!-- _______________________________________________________________________ -->
3304 <div class="doc_subsubsection">
3305    <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
3306 </div>
3307 <div class="doc_text">
3308
3309 <h5>Syntax:</h5>
3310 <pre>
3311   &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
3312 </pre>
3313
3314 <h5>Overview:</h5>
3315 <p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
3316 integer and converts that value to the <tt>ty2</tt> type.</p>
3317
3318 <h5>Arguments:</h5>
3319 <p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
3320 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3321 to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a> 
3322 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3323 floating point type with the same number of elements as <tt>ty</tt></p>
3324
3325 <h5>Semantics:</h5>
3326 <p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
3327 integer quantity and converts it to the corresponding floating point value. If
3328 the value cannot fit in the floating point value, the results are undefined.</p>
3329
3330 <h5>Example:</h5>
3331 <pre>
3332   %X = uitofp i32 257 to float         <i>; yields float:257.0</i>
3333   %Y = uitofp i8  -1 to double         <i>; yields double:255.0</i>
3334 </pre>
3335 </div>
3336
3337 <!-- _______________________________________________________________________ -->
3338 <div class="doc_subsubsection">
3339    <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
3340 </div>
3341 <div class="doc_text">
3342
3343 <h5>Syntax:</h5>
3344 <pre>
3345   &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
3346 </pre>
3347
3348 <h5>Overview:</h5>
3349 <p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
3350 integer and converts that value to the <tt>ty2</tt> type.</p>
3351
3352 <h5>Arguments:</h5>
3353 <p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
3354 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3355 to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a> 
3356 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3357 floating point type with the same number of elements as <tt>ty</tt></p>
3358
3359 <h5>Semantics:</h5>
3360 <p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
3361 integer quantity and converts it to the corresponding floating point value. If
3362 the value cannot fit in the floating point value, the results are undefined.</p>
3363
3364 <h5>Example:</h5>
3365 <pre>
3366   %X = sitofp i32 257 to float         <i>; yields float:257.0</i>
3367   %Y = sitofp i8  -1 to double         <i>; yields double:-1.0</i>
3368 </pre>
3369 </div>
3370
3371 <!-- _______________________________________________________________________ -->
3372 <div class="doc_subsubsection">
3373    <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3374 </div>
3375 <div class="doc_text">
3376
3377 <h5>Syntax:</h5>
3378 <pre>
3379   &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
3380 </pre>
3381
3382 <h5>Overview:</h5>
3383 <p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to 
3384 the integer type <tt>ty2</tt>.</p>
3385
3386 <h5>Arguments:</h5>
3387 <p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which 
3388 must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
3389 <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type. 
3390
3391 <h5>Semantics:</h5>
3392 <p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3393 <tt>ty2</tt> by interpreting the pointer value as an integer and either 
3394 truncating or zero extending that value to the size of the integer type. If
3395 <tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3396 <tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
3397 are the same size, then nothing is done (<i>no-op cast</i>) other than a type
3398 change.</p>
3399
3400 <h5>Example:</h5>
3401 <pre>
3402   %X = ptrtoint i32* %X to i8           <i>; yields truncation on 32-bit architecture</i>
3403   %Y = ptrtoint i32* %x to i64          <i>; yields zero extension on 32-bit architecture</i>
3404 </pre>
3405 </div>
3406
3407 <!-- _______________________________________________________________________ -->
3408 <div class="doc_subsubsection">
3409    <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3410 </div>
3411 <div class="doc_text">
3412
3413 <h5>Syntax:</h5>
3414 <pre>
3415   &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
3416 </pre>
3417
3418 <h5>Overview:</h5>
3419 <p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to 
3420 a pointer type, <tt>ty2</tt>.</p>
3421
3422 <h5>Arguments:</h5>
3423 <p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
3424 value to cast, and a type to cast it to, which must be a 
3425 <a href="#t_pointer">pointer</a> type.
3426
3427 <h5>Semantics:</h5>
3428 <p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3429 <tt>ty2</tt> by applying either a zero extension or a truncation depending on
3430 the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3431 size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3432 the size of a pointer then a zero extension is done. If they are the same size,
3433 nothing is done (<i>no-op cast</i>).</p>
3434
3435 <h5>Example:</h5>
3436 <pre>
3437   %X = inttoptr i32 255 to i32*          <i>; yields zero extension on 64-bit architecture</i>
3438   %X = inttoptr i32 255 to i32*          <i>; yields no-op on 32-bit architecture</i>
3439   %Y = inttoptr i64 0 to i32*            <i>; yields truncation on 32-bit architecture</i>
3440 </pre>
3441 </div>
3442
3443 <!-- _______________________________________________________________________ -->
3444 <div class="doc_subsubsection">
3445    <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
3446 </div>
3447 <div class="doc_text">
3448
3449 <h5>Syntax:</h5>
3450 <pre>
3451   &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
3452 </pre>
3453
3454 <h5>Overview:</h5>
3455 <p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
3456 <tt>ty2</tt> without changing any bits.</p>
3457
3458 <h5>Arguments:</h5>
3459 <p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be 
3460 a first class value, and a type to cast it to, which must also be a <a
3461   href="#t_firstclass">first class</a> type. The bit sizes of <tt>value</tt>
3462 and the destination type, <tt>ty2</tt>, must be identical. If the source
3463 type is a pointer, the destination type must also be a pointer.</p>
3464
3465 <h5>Semantics:</h5>
3466 <p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
3467 <tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with 
3468 this conversion.  The conversion is done as if the <tt>value</tt> had been 
3469 stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3470 converted to other pointer types with this instruction. To convert pointers to 
3471 other types, use the <a href="#i_inttoptr">inttoptr</a> or 
3472 <a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
3473
3474 <h5>Example:</h5>
3475 <pre>
3476   %X = bitcast i8 255 to i8              <i>; yields i8 :-1</i>
3477   %Y = bitcast i32* %x to sint*          <i>; yields sint*:%x</i>
3478   %Z = bitcast <2xint> %V to i64;        <i>; yields i64: %V</i>   
3479 </pre>
3480 </div>
3481
3482 <!-- ======================================================================= -->
3483 <div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3484 <div class="doc_text">
3485 <p>The instructions in this category are the "miscellaneous"
3486 instructions, which defy better classification.</p>
3487 </div>
3488
3489 <!-- _______________________________________________________________________ -->
3490 <div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
3491 </div>
3492 <div class="doc_text">
3493 <h5>Syntax:</h5>
3494 <pre>  &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {i1}:result</i>
3495 </pre>
3496 <h5>Overview:</h5>
3497 <p>The '<tt>icmp</tt>' instruction returns a boolean value based on comparison
3498 of its two integer operands.</p>
3499 <h5>Arguments:</h5>
3500 <p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
3501 the condition code indicating the kind of comparison to perform. It is not
3502 a value, just a keyword. The possible condition code are:
3503 <ol>
3504   <li><tt>eq</tt>: equal</li>
3505   <li><tt>ne</tt>: not equal </li>
3506   <li><tt>ugt</tt>: unsigned greater than</li>
3507   <li><tt>uge</tt>: unsigned greater or equal</li>
3508   <li><tt>ult</tt>: unsigned less than</li>
3509   <li><tt>ule</tt>: unsigned less or equal</li>
3510   <li><tt>sgt</tt>: signed greater than</li>
3511   <li><tt>sge</tt>: signed greater or equal</li>
3512   <li><tt>slt</tt>: signed less than</li>
3513   <li><tt>sle</tt>: signed less or equal</li>
3514 </ol>
3515 <p>The remaining two arguments must be <a href="#t_integer">integer</a> or
3516 <a href="#t_pointer">pointer</a> typed. They must also be identical types.</p>
3517 <h5>Semantics:</h5>
3518 <p>The '<tt>icmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to 
3519 the condition code given as <tt>cond</tt>. The comparison performed always
3520 yields a <a href="#t_primitive">i1</a> result, as follows: 
3521 <ol>
3522   <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal, 
3523   <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3524   </li>
3525   <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal, 
3526   <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3527   <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
3528   <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3529   <li><tt>uge</tt>: interprets the operands as unsigned values and yields
3530   <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3531   <li><tt>ult</tt>: interprets the operands as unsigned values and yields
3532   <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3533   <li><tt>ule</tt>: interprets the operands as unsigned values and yields
3534   <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3535   <li><tt>sgt</tt>: interprets the operands as signed values and yields
3536   <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3537   <li><tt>sge</tt>: interprets the operands as signed values and yields
3538   <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3539   <li><tt>slt</tt>: interprets the operands as signed values and yields
3540   <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3541   <li><tt>sle</tt>: interprets the operands as signed values and yields
3542   <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3543 </ol>
3544 <p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
3545 values are compared as if they were integers.</p>
3546
3547 <h5>Example:</h5>
3548 <pre>  &lt;result&gt; = icmp eq i32 4, 5          <i>; yields: result=false</i>
3549   &lt;result&gt; = icmp ne float* %X, %X     <i>; yields: result=false</i>
3550   &lt;result&gt; = icmp ult i16  4, 5        <i>; yields: result=true</i>
3551   &lt;result&gt; = icmp sgt i16  4, 5        <i>; yields: result=false</i>
3552   &lt;result&gt; = icmp ule i16 -4, 5        <i>; yields: result=false</i>
3553   &lt;result&gt; = icmp sge i16  4, 5        <i>; yields: result=false</i>
3554 </pre>
3555 </div>
3556
3557 <!-- _______________________________________________________________________ -->
3558 <div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
3559 </div>
3560 <div class="doc_text">
3561 <h5>Syntax:</h5>
3562 <pre>  &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;     <i>; yields {i1}:result</i>
3563 </pre>
3564 <h5>Overview:</h5>
3565 <p>The '<tt>fcmp</tt>' instruction returns a boolean value based on comparison
3566 of its floating point operands.</p>
3567 <h5>Arguments:</h5>
3568 <p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
3569 the condition code indicating the kind of comparison to perform. It is not
3570 a value, just a keyword. The possible condition code are:
3571 <ol>
3572   <li><tt>false</tt>: no comparison, always returns false</li>
3573   <li><tt>oeq</tt>: ordered and equal</li>
3574   <li><tt>ogt</tt>: ordered and greater than </li>
3575   <li><tt>oge</tt>: ordered and greater than or equal</li>
3576   <li><tt>olt</tt>: ordered and less than </li>
3577   <li><tt>ole</tt>: ordered and less than or equal</li>
3578   <li><tt>one</tt>: ordered and not equal</li>
3579   <li><tt>ord</tt>: ordered (no nans)</li>
3580   <li><tt>ueq</tt>: unordered or equal</li>
3581   <li><tt>ugt</tt>: unordered or greater than </li>
3582   <li><tt>uge</tt>: unordered or greater than or equal</li>
3583   <li><tt>ult</tt>: unordered or less than </li>
3584   <li><tt>ule</tt>: unordered or less than or equal</li>
3585   <li><tt>une</tt>: unordered or not equal</li>
3586   <li><tt>uno</tt>: unordered (either nans)</li>
3587   <li><tt>true</tt>: no comparison, always returns true</li>
3588 </ol>
3589 <p><i>Ordered</i> means that neither operand is a QNAN while
3590 <i>unordered</i> means that either operand may be a QNAN.</p>
3591 <p>The <tt>val1</tt> and <tt>val2</tt> arguments must be
3592 <a href="#t_floating">floating point</a> typed.  They must have identical 
3593 types.</p>
3594 <h5>Semantics:</h5>
3595 <p>The '<tt>fcmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to 
3596 the condition code given as <tt>cond</tt>. The comparison performed always
3597 yields a <a href="#t_primitive">i1</a> result, as follows: 
3598 <ol>
3599   <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
3600   <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and 
3601   <tt>var1</tt> is equal to <tt>var2</tt>.</li>
3602   <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3603   <tt>var1</tt> is greather than <tt>var2</tt>.</li>
3604   <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and 
3605   <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3606   <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and 
3607   <tt>var1</tt> is less than <tt>var2</tt>.</li>
3608   <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and 
3609   <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3610   <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and 
3611   <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
3612   <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
3613   <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or 
3614   <tt>var1</tt> is equal to <tt>var2</tt>.</li>
3615   <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or 
3616   <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3617   <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or 
3618   <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3619   <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or 
3620   <tt>var1</tt> is less than <tt>var2</tt>.</li>
3621   <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or 
3622   <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3623   <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or 
3624   <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
3625   <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
3626   <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
3627 </ol>
3628
3629 <h5>Example:</h5>
3630 <pre>  &lt;result&gt; = fcmp oeq float 4.0, 5.0    <i>; yields: result=false</i>
3631   &lt;result&gt; = icmp one float 4.0, 5.0    <i>; yields: result=true</i>
3632   &lt;result&gt; = icmp olt float 4.0, 5.0    <i>; yields: result=true</i>
3633   &lt;result&gt; = icmp ueq double 1.0, 2.0   <i>; yields: result=false</i>
3634 </pre>
3635 </div>
3636
3637 <!-- _______________________________________________________________________ -->
3638 <div class="doc_subsubsection"> <a name="i_phi">'<tt>phi</tt>'
3639 Instruction</a> </div>
3640 <div class="doc_text">
3641 <h5>Syntax:</h5>
3642 <pre>  &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
3643 <h5>Overview:</h5>
3644 <p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
3645 the SSA graph representing the function.</p>
3646 <h5>Arguments:</h5>
3647 <p>The type of the incoming values is specified with the first type
3648 field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
3649 as arguments, with one pair for each predecessor basic block of the
3650 current block.  Only values of <a href="#t_firstclass">first class</a>
3651 type may be used as the value arguments to the PHI node.  Only labels
3652 may be used as the label arguments.</p>
3653 <p>There must be no non-phi instructions between the start of a basic
3654 block and the PHI instructions: i.e. PHI instructions must be first in
3655 a basic block.</p>
3656 <h5>Semantics:</h5>
3657 <p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
3658 specified by the pair corresponding to the predecessor basic block that executed
3659 just prior to the current block.</p>
3660 <h5>Example:</h5>
3661 <pre>Loop:       ; Infinite loop that counts from 0 on up...<br>  %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]<br>  %nextindvar = add i32 %indvar, 1<br>  br label %Loop<br></pre>
3662 </div>
3663
3664 <!-- _______________________________________________________________________ -->
3665 <div class="doc_subsubsection">
3666    <a name="i_select">'<tt>select</tt>' Instruction</a>
3667 </div>
3668
3669 <div class="doc_text">
3670
3671 <h5>Syntax:</h5>
3672
3673 <pre>
3674   &lt;result&gt; = select i1 &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt;             <i>; yields ty</i>
3675 </pre>
3676
3677 <h5>Overview:</h5>
3678
3679 <p>
3680 The '<tt>select</tt>' instruction is used to choose one value based on a
3681 condition, without branching.
3682 </p>
3683
3684
3685 <h5>Arguments:</h5>
3686
3687 <p>
3688 The '<tt>select</tt>' instruction requires a boolean value indicating the condition, and two values of the same <a href="#t_firstclass">first class</a> type.
3689 </p>
3690
3691 <h5>Semantics:</h5>
3692
3693 <p>
3694 If the boolean condition evaluates to true, the instruction returns the first
3695 value argument; otherwise, it returns the second value argument.
3696 </p>
3697
3698 <h5>Example:</h5>
3699
3700 <pre>
3701   %X = select i1 true, i8 17, i8 42          <i>; yields i8:17</i>
3702 </pre>
3703 </div>
3704
3705
3706 <!-- _______________________________________________________________________ -->
3707 <div class="doc_subsubsection">
3708   <a name="i_call">'<tt>call</tt>' Instruction</a>
3709 </div>
3710
3711 <div class="doc_text">
3712
3713 <h5>Syntax:</h5>
3714 <pre>
3715   &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;param list&gt;)
3716 </pre>
3717
3718 <h5>Overview:</h5>
3719
3720 <p>The '<tt>call</tt>' instruction represents a simple function call.</p>
3721
3722 <h5>Arguments:</h5>
3723
3724 <p>This instruction requires several arguments:</p>
3725
3726 <ol>
3727   <li>
3728     <p>The optional "tail" marker indicates whether the callee function accesses
3729     any allocas or varargs in the caller.  If the "tail" marker is present, the
3730     function call is eligible for tail call optimization.  Note that calls may
3731     be marked "tail" even if they do not occur before a <a
3732     href="#i_ret"><tt>ret</tt></a> instruction.
3733   </li>
3734   <li>
3735     <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
3736     convention</a> the call should use.  If none is specified, the call defaults
3737     to using C calling conventions.
3738   </li>
3739   <li>
3740     <p>'<tt>ty</tt>': the type of the call instruction itself which is also
3741     the type of the return value.  Functions that return no value are marked
3742     <tt><a href="#t_void">void</a></tt>.</p>
3743   </li>
3744   <li>
3745     <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
3746     value being invoked.  The argument types must match the types implied by
3747     this signature.  This type can be omitted if the function is not varargs
3748     and if the function type does not return a pointer to a function.</p>
3749   </li>
3750   <li>
3751     <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
3752     be invoked. In most cases, this is a direct function invocation, but
3753     indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
3754     to function value.</p>
3755   </li>
3756   <li>
3757     <p>'<tt>function args</tt>': argument list whose types match the
3758     function signature argument types. All arguments must be of 
3759     <a href="#t_firstclass">first class</a> type. If the function signature 
3760     indicates the function accepts a variable number of arguments, the extra 
3761     arguments can be specified.</p>
3762   </li>
3763 </ol>
3764
3765 <h5>Semantics:</h5>
3766
3767 <p>The '<tt>call</tt>' instruction is used to cause control flow to
3768 transfer to a specified function, with its incoming arguments bound to
3769 the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
3770 instruction in the called function, control flow continues with the
3771 instruction after the function call, and the return value of the
3772 function is bound to the result argument.  This is a simpler case of
3773 the <a href="#i_invoke">invoke</a> instruction.</p>
3774
3775 <h5>Example:</h5>
3776
3777 <pre>
3778   %retval = call i32 @test(i32 %argc)
3779   call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42);
3780   %X = tail call i32 @foo()
3781   %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo()
3782   %Z = call void %foo(i8 97 signext)
3783 </pre>
3784
3785 </div>
3786
3787 <!-- _______________________________________________________________________ -->
3788 <div class="doc_subsubsection">
3789   <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
3790 </div>
3791
3792 <div class="doc_text">
3793
3794 <h5>Syntax:</h5>
3795
3796 <pre>
3797   &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
3798 </pre>
3799
3800 <h5>Overview:</h5>
3801
3802 <p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
3803 the "variable argument" area of a function call.  It is used to implement the
3804 <tt>va_arg</tt> macro in C.</p>
3805
3806 <h5>Arguments:</h5>
3807
3808 <p>This instruction takes a <tt>va_list*</tt> value and the type of
3809 the argument. It returns a value of the specified argument type and
3810 increments the <tt>va_list</tt> to point to the next argument.  The
3811 actual type of <tt>va_list</tt> is target specific.</p>
3812
3813 <h5>Semantics:</h5>
3814
3815 <p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
3816 type from the specified <tt>va_list</tt> and causes the
3817 <tt>va_list</tt> to point to the next argument.  For more information,
3818 see the variable argument handling <a href="#int_varargs">Intrinsic
3819 Functions</a>.</p>
3820
3821 <p>It is legal for this instruction to be called in a function which does not
3822 take a variable number of arguments, for example, the <tt>vfprintf</tt>
3823 function.</p>
3824
3825 <p><tt>va_arg</tt> is an LLVM instruction instead of an <a
3826 href="#intrinsics">intrinsic function</a> because it takes a type as an
3827 argument.</p>
3828
3829 <h5>Example:</h5>
3830
3831 <p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
3832
3833 </div>
3834
3835 <!-- *********************************************************************** -->
3836 <div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
3837 <!-- *********************************************************************** -->
3838
3839 <div class="doc_text">
3840
3841 <p>LLVM supports the notion of an "intrinsic function".  These functions have
3842 well known names and semantics and are required to follow certain restrictions.
3843 Overall, these intrinsics represent an extension mechanism for the LLVM 
3844 language that does not require changing all of the transformations in LLVM when 
3845 adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
3846
3847 <p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
3848 prefix is reserved in LLVM for intrinsic names; thus, function names may not
3849 begin with this prefix.  Intrinsic functions must always be external functions:
3850 you cannot define the body of intrinsic functions.  Intrinsic functions may
3851 only be used in call or invoke instructions: it is illegal to take the address
3852 of an intrinsic function.  Additionally, because intrinsic functions are part
3853 of the LLVM language, it is required if any are added that they be documented
3854 here.</p>
3855
3856 <p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents 
3857 a family of functions that perform the same operation but on different data 
3858 types. Because LLVM can represent over 8 million different integer types, 
3859 overloading is used commonly to allow an intrinsic function to operate on any 
3860 integer type. One or more of the argument types or the result type can be 
3861 overloaded to accept any integer type. Argument types may also be defined as 
3862 exactly matching a previous argument's type or the result type. This allows an 
3863 intrinsic function which accepts multiple arguments, but needs all of them to 
3864 be of the same type, to only be overloaded with respect to a single argument or 
3865 the result.</p>
3866
3867 <p>Overloaded intrinsics will have the names of its overloaded argument types 
3868 encoded into its function name, each preceded by a period. Only those types 
3869 which are overloaded result in a name suffix. Arguments whose type is matched 
3870 against another type do not. For example, the <tt>llvm.ctpop</tt> function can 
3871 take an integer of any width and returns an integer of exactly the same integer 
3872 width. This leads to a family of functions such as
3873 <tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
3874 Only one type, the return type, is overloaded, and only one type suffix is 
3875 required. Because the argument's type is matched against the return type, it 
3876 does not require its own name suffix.</p>
3877
3878 <p>To learn how to add an intrinsic function, please see the 
3879 <a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
3880 </p>
3881
3882 </div>
3883
3884 <!-- ======================================================================= -->
3885 <div class="doc_subsection">
3886   <a name="int_varargs">Variable Argument Handling Intrinsics</a>
3887 </div>
3888
3889 <div class="doc_text">
3890
3891 <p>Variable argument support is defined in LLVM with the <a
3892  href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
3893 intrinsic functions.  These functions are related to the similarly
3894 named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
3895
3896 <p>All of these functions operate on arguments that use a
3897 target-specific value type "<tt>va_list</tt>".  The LLVM assembly
3898 language reference manual does not define what this type is, so all
3899 transformations should be prepared to handle these functions regardless of
3900 the type used.</p>
3901
3902 <p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
3903 instruction and the variable argument handling intrinsic functions are
3904 used.</p>
3905
3906 <div class="doc_code">
3907 <pre>
3908 define i32 @test(i32 %X, ...) {
3909   ; Initialize variable argument processing
3910   %ap = alloca i8*
3911   %ap2 = bitcast i8** %ap to i8*
3912   call void @llvm.va_start(i8* %ap2)
3913
3914   ; Read a single integer argument
3915   %tmp = va_arg i8** %ap, i32
3916
3917   ; Demonstrate usage of llvm.va_copy and llvm.va_end
3918   %aq = alloca i8*
3919   %aq2 = bitcast i8** %aq to i8*
3920   call void @llvm.va_copy(i8* %aq2, i8* %ap2)
3921   call void @llvm.va_end(i8* %aq2)
3922
3923   ; Stop processing of arguments.
3924   call void @llvm.va_end(i8* %ap2)
3925   ret i32 %tmp
3926 }
3927
3928 declare void @llvm.va_start(i8*)
3929 declare void @llvm.va_copy(i8*, i8*)
3930 declare void @llvm.va_end(i8*)
3931 </pre>
3932 </div>
3933
3934 </div>
3935
3936 <!-- _______________________________________________________________________ -->
3937 <div class="doc_subsubsection">
3938   <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
3939 </div>
3940
3941
3942 <div class="doc_text">
3943 <h5>Syntax:</h5>
3944 <pre>  declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
3945 <h5>Overview:</h5>
3946 <P>The '<tt>llvm.va_start</tt>' intrinsic initializes
3947 <tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
3948 href="#i_va_arg">va_arg</a></tt>.</p>
3949
3950 <h5>Arguments:</h5>
3951
3952 <P>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
3953
3954 <h5>Semantics:</h5>
3955
3956 <P>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
3957 macro available in C.  In a target-dependent way, it initializes the
3958 <tt>va_list</tt> element to which the argument points, so that the next call to
3959 <tt>va_arg</tt> will produce the first variable argument passed to the function.
3960 Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
3961 last argument of the function as the compiler can figure that out.</p>
3962
3963 </div>
3964
3965 <!-- _______________________________________________________________________ -->
3966 <div class="doc_subsubsection">
3967  <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
3968 </div>
3969
3970 <div class="doc_text">
3971 <h5>Syntax:</h5>
3972 <pre>  declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
3973 <h5>Overview:</h5>
3974
3975 <p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
3976 which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
3977 or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
3978
3979 <h5>Arguments:</h5>
3980
3981 <p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
3982
3983 <h5>Semantics:</h5>
3984
3985 <p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
3986 macro available in C.  In a target-dependent way, it destroys the
3987 <tt>va_list</tt> element to which the argument points.  Calls to <a
3988 href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
3989 <tt>llvm.va_copy</tt></a> must be matched exactly with calls to
3990 <tt>llvm.va_end</tt>.</p>
3991
3992 </div>
3993
3994 <!-- _______________________________________________________________________ -->
3995 <div class="doc_subsubsection">
3996   <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
3997 </div>
3998
3999 <div class="doc_text">
4000
4001 <h5>Syntax:</h5>
4002
4003 <pre>
4004   declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
4005 </pre>
4006
4007 <h5>Overview:</h5>
4008
4009 <p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
4010 from the source argument list to the destination argument list.</p>
4011
4012 <h5>Arguments:</h5>
4013
4014 <p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
4015 The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
4016
4017
4018 <h5>Semantics:</h5>
4019
4020 <p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
4021 macro available in C.  In a target-dependent way, it copies the source
4022 <tt>va_list</tt> element into the destination <tt>va_list</tt> element.  This
4023 intrinsic is necessary because the <tt><a href="#int_va_start">
4024 llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
4025 example, memory allocation.</p>
4026
4027 </div>
4028
4029 <!-- ======================================================================= -->
4030 <div class="doc_subsection">
4031   <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
4032 </div>
4033
4034 <div class="doc_text">
4035
4036 <p>
4037 LLVM support for <a href="GarbageCollection.html">Accurate Garbage
4038 Collection</a> requires the implementation and generation of these intrinsics.
4039 These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
4040 stack</a>, as well as garbage collector implementations that require <a
4041 href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
4042 Front-ends for type-safe garbage collected languages should generate these
4043 intrinsics to make use of the LLVM garbage collectors.  For more details, see <a
4044 href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
4045 </p>
4046
4047 <p>The garbage collection intrinsics only operate on objects in the generic 
4048         address space (address space zero).</p>
4049
4050 </div>
4051
4052 <!-- _______________________________________________________________________ -->
4053 <div class="doc_subsubsection">
4054   <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
4055 </div>
4056
4057 <div class="doc_text">
4058
4059 <h5>Syntax:</h5>
4060
4061 <pre>
4062   declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
4063 </pre>
4064
4065 <h5>Overview:</h5>
4066
4067 <p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
4068 the code generator, and allows some metadata to be associated with it.</p>
4069
4070 <h5>Arguments:</h5>
4071
4072 <p>The first argument specifies the address of a stack object that contains the
4073 root pointer.  The second pointer (which must be either a constant or a global
4074 value address) contains the meta-data to be associated with the root.</p>
4075
4076 <h5>Semantics:</h5>
4077
4078 <p>At runtime, a call to this intrinsics stores a null pointer into the "ptrloc"
4079 location.  At compile-time, the code generator generates information to allow
4080 the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
4081 intrinsic may only be used in a function which <a href="#gc">specifies a GC
4082 algorithm</a>.</p>
4083
4084 </div>
4085
4086
4087 <!-- _______________________________________________________________________ -->
4088 <div class="doc_subsubsection">
4089   <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
4090 </div>
4091
4092 <div class="doc_text">
4093
4094 <h5>Syntax:</h5>
4095
4096 <pre>
4097   declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
4098 </pre>
4099
4100 <h5>Overview:</h5>
4101
4102 <p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
4103 locations, allowing garbage collector implementations that require read
4104 barriers.</p>
4105
4106 <h5>Arguments:</h5>
4107
4108 <p>The second argument is the address to read from, which should be an address
4109 allocated from the garbage collector.  The first object is a pointer to the 
4110 start of the referenced object, if needed by the language runtime (otherwise
4111 null).</p>
4112
4113 <h5>Semantics:</h5>
4114
4115 <p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
4116 instruction, but may be replaced with substantially more complex code by the
4117 garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
4118 may only be used in a function which <a href="#gc">specifies a GC
4119 algorithm</a>.</p>
4120
4121 </div>
4122
4123
4124 <!-- _______________________________________________________________________ -->
4125 <div class="doc_subsubsection">
4126   <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
4127 </div>
4128
4129 <div class="doc_text">
4130
4131 <h5>Syntax:</h5>
4132
4133 <pre>
4134   declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
4135 </pre>
4136
4137 <h5>Overview:</h5>
4138
4139 <p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
4140 locations, allowing garbage collector implementations that require write
4141 barriers (such as generational or reference counting collectors).</p>
4142
4143 <h5>Arguments:</h5>
4144
4145 <p>The first argument is the reference to store, the second is the start of the
4146 object to store it to, and the third is the address of the field of Obj to 
4147 store to.  If the runtime does not require a pointer to the object, Obj may be
4148 null.</p>
4149
4150 <h5>Semantics:</h5>
4151
4152 <p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
4153 instruction, but may be replaced with substantially more complex code by the
4154 garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
4155 may only be used in a function which <a href="#gc">specifies a GC
4156 algorithm</a>.</p>
4157
4158 </div>
4159
4160
4161
4162 <!-- ======================================================================= -->
4163 <div class="doc_subsection">
4164   <a name="int_codegen">Code Generator Intrinsics</a>
4165 </div>
4166
4167 <div class="doc_text">
4168 <p>
4169 These intrinsics are provided by LLVM to expose special features that may only
4170 be implemented with code generator support.
4171 </p>
4172
4173 </div>
4174
4175 <!-- _______________________________________________________________________ -->
4176 <div class="doc_subsubsection">
4177   <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
4178 </div>
4179
4180 <div class="doc_text">
4181
4182 <h5>Syntax:</h5>
4183 <pre>
4184   declare i8  *@llvm.returnaddress(i32 &lt;level&gt;)
4185 </pre>
4186
4187 <h5>Overview:</h5>
4188
4189 <p>
4190 The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a 
4191 target-specific value indicating the return address of the current function 
4192 or one of its callers.
4193 </p>
4194
4195 <h5>Arguments:</h5>
4196
4197 <p>
4198 The argument to this intrinsic indicates which function to return the address
4199 for.  Zero indicates the calling function, one indicates its caller, etc.  The
4200 argument is <b>required</b> to be a constant integer value.
4201 </p>
4202
4203 <h5>Semantics:</h5>
4204
4205 <p>
4206 The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
4207 the return address of the specified call frame, or zero if it cannot be
4208 identified.  The value returned by this intrinsic is likely to be incorrect or 0
4209 for arguments other than zero, so it should only be used for debugging purposes.
4210 </p>
4211
4212 <p>
4213 Note that calling this intrinsic does not prevent function inlining or other
4214 aggressive transformations, so the value returned may not be that of the obvious
4215 source-language caller.
4216 </p>
4217 </div>
4218
4219
4220 <!-- _______________________________________________________________________ -->
4221 <div class="doc_subsubsection">
4222   <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
4223 </div>
4224
4225 <div class="doc_text">
4226
4227 <h5>Syntax:</h5>
4228 <pre>
4229   declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
4230 </pre>
4231
4232 <h5>Overview:</h5>
4233
4234 <p>
4235 The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the 
4236 target-specific frame pointer value for the specified stack frame.
4237 </p>
4238
4239 <h5>Arguments:</h5>
4240
4241 <p>
4242 The argument to this intrinsic indicates which function to return the frame
4243 pointer for.  Zero indicates the calling function, one indicates its caller,
4244 etc.  The argument is <b>required</b> to be a constant integer value.
4245 </p>
4246
4247 <h5>Semantics:</h5>
4248
4249 <p>
4250 The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
4251 the frame address of the specified call frame, or zero if it cannot be
4252 identified.  The value returned by this intrinsic is likely to be incorrect or 0
4253 for arguments other than zero, so it should only be used for debugging purposes.
4254 </p>
4255
4256 <p>
4257 Note that calling this intrinsic does not prevent function inlining or other
4258 aggressive transformations, so the value returned may not be that of the obvious
4259 source-language caller.
4260 </p>
4261 </div>
4262
4263 <!-- _______________________________________________________________________ -->
4264 <div class="doc_subsubsection">
4265   <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
4266 </div>
4267
4268 <div class="doc_text">
4269
4270 <h5>Syntax:</h5>
4271 <pre>
4272   declare i8 *@llvm.stacksave()
4273 </pre>
4274
4275 <h5>Overview:</h5>
4276
4277 <p>
4278 The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
4279 the function stack, for use with <a href="#int_stackrestore">
4280 <tt>llvm.stackrestore</tt></a>.  This is useful for implementing language
4281 features like scoped automatic variable sized arrays in C99.
4282 </p>
4283
4284 <h5>Semantics:</h5>
4285
4286 <p>
4287 This intrinsic returns a opaque pointer value that can be passed to <a
4288 href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>.  When an
4289 <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from 
4290 <tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
4291 state it was in when the <tt>llvm.stacksave</tt> intrinsic executed.  In
4292 practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
4293 that were allocated after the <tt>llvm.stacksave</tt> was executed.
4294 </p>
4295
4296 </div>
4297
4298 <!-- _______________________________________________________________________ -->
4299 <div class="doc_subsubsection">
4300   <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
4301 </div>
4302
4303 <div class="doc_text">
4304
4305 <h5>Syntax:</h5>
4306 <pre>
4307   declare void @llvm.stackrestore(i8 * %ptr)
4308 </pre>
4309
4310 <h5>Overview:</h5>
4311
4312 <p>
4313 The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
4314 the function stack to the state it was in when the corresponding <a
4315 href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed.  This is
4316 useful for implementing language features like scoped automatic variable sized
4317 arrays in C99.
4318 </p>
4319
4320 <h5>Semantics:</h5>
4321
4322 <p>
4323 See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
4324 </p>
4325
4326 </div>
4327
4328
4329 <!-- _______________________________________________________________________ -->
4330 <div class="doc_subsubsection">
4331   <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
4332 </div>
4333
4334 <div class="doc_text">
4335
4336 <h5>Syntax:</h5>
4337 <pre>
4338   declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
4339 </pre>
4340
4341 <h5>Overview:</h5>
4342
4343
4344 <p>
4345 The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
4346 a prefetch instruction if supported; otherwise, it is a noop.  Prefetches have
4347 no
4348 effect on the behavior of the program but can change its performance
4349 characteristics.
4350 </p>
4351
4352 <h5>Arguments:</h5>
4353
4354 <p>
4355 <tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
4356 determining if the fetch should be for a read (0) or write (1), and
4357 <tt>locality</tt> is a temporal locality specifier ranging from (0) - no
4358 locality, to (3) - extremely local keep in cache.  The <tt>rw</tt> and
4359 <tt>locality</tt> arguments must be constant integers.
4360 </p>
4361
4362 <h5>Semantics:</h5>
4363
4364 <p>
4365 This intrinsic does not modify the behavior of the program.  In particular,
4366 prefetches cannot trap and do not produce a value.  On targets that support this
4367 intrinsic, the prefetch can provide hints to the processor cache for better
4368 performance.
4369 </p>
4370
4371 </div>
4372
4373 <!-- _______________________________________________________________________ -->
4374 <div class="doc_subsubsection">
4375   <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
4376 </div>
4377
4378 <div class="doc_text">
4379
4380 <h5>Syntax:</h5>
4381 <pre>
4382   declare void @llvm.pcmarker(i32 &lt;id&gt;)
4383 </pre>
4384
4385 <h5>Overview:</h5>
4386
4387
4388 <p>
4389 The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
4390 (PC) in a region of 
4391 code to simulators and other tools.  The method is target specific, but it is 
4392 expected that the marker will use exported symbols to transmit the PC of the marker.
4393 The marker makes no guarantees that it will remain with any specific instruction 
4394 after optimizations.  It is possible that the presence of a marker will inhibit 
4395 optimizations.  The intended use is to be inserted after optimizations to allow
4396 correlations of simulation runs.
4397 </p>
4398
4399 <h5>Arguments:</h5>
4400
4401 <p>
4402 <tt>id</tt> is a numerical id identifying the marker.
4403 </p>
4404
4405 <h5>Semantics:</h5>
4406
4407 <p>
4408 This intrinsic does not modify the behavior of the program.  Backends that do not 
4409 support this intrinisic may ignore it.
4410 </p>
4411
4412 </div>
4413
4414 <!-- _______________________________________________________________________ -->
4415 <div class="doc_subsubsection">
4416   <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
4417 </div>
4418
4419 <div class="doc_text">
4420
4421 <h5>Syntax:</h5>
4422 <pre>
4423   declare i64 @llvm.readcyclecounter( )
4424 </pre>
4425
4426 <h5>Overview:</h5>
4427
4428
4429 <p>
4430 The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle 
4431 counter register (or similar low latency, high accuracy clocks) on those targets
4432 that support it.  On X86, it should map to RDTSC.  On Alpha, it should map to RPCC.
4433 As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
4434 should only be used for small timings.  
4435 </p>
4436
4437 <h5>Semantics:</h5>
4438
4439 <p>
4440 When directly supported, reading the cycle counter should not modify any memory.  
4441 Implementations are allowed to either return a application specific value or a
4442 system wide value.  On backends without support, this is lowered to a constant 0.
4443 </p>
4444
4445 </div>
4446
4447 <!-- ======================================================================= -->
4448 <div class="doc_subsection">
4449   <a name="int_libc">Standard C Library Intrinsics</a>
4450 </div>
4451
4452 <div class="doc_text">
4453 <p>
4454 LLVM provides intrinsics for a few important standard C library functions.
4455 These intrinsics allow source-language front-ends to pass information about the
4456 alignment of the pointer arguments to the code generator, providing opportunity
4457 for more efficient code generation.
4458 </p>
4459
4460 </div>
4461
4462 <!-- _______________________________________________________________________ -->
4463 <div class="doc_subsubsection">
4464   <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
4465 </div>
4466
4467 <div class="doc_text">
4468
4469 <h5>Syntax:</h5>
4470 <pre>
4471   declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4472                                 i32 &lt;len&gt;, i32 &lt;align&gt;)
4473   declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4474                                 i64 &lt;len&gt;, i32 &lt;align&gt;)
4475 </pre>
4476
4477 <h5>Overview:</h5>
4478
4479 <p>
4480 The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
4481 location to the destination location.
4482 </p>
4483
4484 <p>
4485 Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt> 
4486 intrinsics do not return a value, and takes an extra alignment argument.
4487 </p>
4488
4489 <h5>Arguments:</h5>
4490
4491 <p>
4492 The first argument is a pointer to the destination, the second is a pointer to
4493 the source.  The third argument is an integer argument
4494 specifying the number of bytes to copy, and the fourth argument is the alignment
4495 of the source and destination locations.
4496 </p>
4497
4498 <p>
4499 If the call to this intrinisic has an alignment value that is not 0 or 1, then
4500 the caller guarantees that both the source and destination pointers are aligned
4501 to that boundary.
4502 </p>
4503
4504 <h5>Semantics:</h5>
4505
4506 <p>
4507 The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
4508 location to the destination location, which are not allowed to overlap.  It
4509 copies "len" bytes of memory over.  If the argument is known to be aligned to
4510 some boundary, this can be specified as the fourth argument, otherwise it should
4511 be set to 0 or 1.
4512 </p>
4513 </div>
4514
4515
4516 <!-- _______________________________________________________________________ -->
4517 <div class="doc_subsubsection">
4518   <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
4519 </div>
4520
4521 <div class="doc_text">
4522
4523 <h5>Syntax:</h5>
4524 <pre>
4525   declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4526                                  i32 &lt;len&gt;, i32 &lt;align&gt;)
4527   declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4528                                  i64 &lt;len&gt;, i32 &lt;align&gt;)
4529 </pre>
4530
4531 <h5>Overview:</h5>
4532
4533 <p>
4534 The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
4535 location to the destination location. It is similar to the
4536 '<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
4537 </p>
4538
4539 <p>
4540 Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt> 
4541 intrinsics do not return a value, and takes an extra alignment argument.
4542 </p>
4543
4544 <h5>Arguments:</h5>
4545
4546 <p>
4547 The first argument is a pointer to the destination, the second is a pointer to
4548 the source.  The third argument is an integer argument
4549 specifying the number of bytes to copy, and the fourth argument is the alignment
4550 of the source and destination locations.
4551 </p>
4552
4553 <p>
4554 If the call to this intrinisic has an alignment value that is not 0 or 1, then
4555 the caller guarantees that the source and destination pointers are aligned to
4556 that boundary.
4557 </p>
4558
4559 <h5>Semantics:</h5>
4560
4561 <p>
4562 The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
4563 location to the destination location, which may overlap.  It
4564 copies "len" bytes of memory over.  If the argument is known to be aligned to
4565 some boundary, this can be specified as the fourth argument, otherwise it should
4566 be set to 0 or 1.
4567 </p>
4568 </div>
4569
4570
4571 <!-- _______________________________________________________________________ -->
4572 <div class="doc_subsubsection">
4573   <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
4574 </div>
4575
4576 <div class="doc_text">
4577
4578 <h5>Syntax:</h5>
4579 <pre>
4580   declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
4581                                 i32 &lt;len&gt;, i32 &lt;align&gt;)
4582   declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
4583                                 i64 &lt;len&gt;, i32 &lt;align&gt;)
4584 </pre>
4585
4586 <h5>Overview:</h5>
4587
4588 <p>
4589 The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
4590 byte value.
4591 </p>
4592
4593 <p>
4594 Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
4595 does not return a value, and takes an extra alignment argument.
4596 </p>
4597
4598 <h5>Arguments:</h5>
4599
4600 <p>
4601 The first argument is a pointer to the destination to fill, the second is the
4602 byte value to fill it with, the third argument is an integer
4603 argument specifying the number of bytes to fill, and the fourth argument is the
4604 known alignment of destination location.
4605 </p>
4606
4607 <p>
4608 If the call to this intrinisic has an alignment value that is not 0 or 1, then
4609 the caller guarantees that the destination pointer is aligned to that boundary.
4610 </p>
4611
4612 <h5>Semantics:</h5>
4613
4614 <p>
4615 The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
4616 the
4617 destination location.  If the argument is known to be aligned to some boundary,
4618 this can be specified as the fourth argument, otherwise it should be set to 0 or
4619 1.
4620 </p>
4621 </div>
4622
4623
4624 <!-- _______________________________________________________________________ -->
4625 <div class="doc_subsubsection">
4626   <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
4627 </div>
4628
4629 <div class="doc_text">
4630
4631 <h5>Syntax:</h5>
4632 <p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any 
4633 floating point or vector of floating point type. Not all targets support all
4634 types however.
4635 <pre>
4636   declare float     @llvm.sqrt.f32(float %Val)
4637   declare double    @llvm.sqrt.f64(double %Val)
4638   declare x86_fp80  @llvm.sqrt.f80(x86_fp80 %Val)
4639   declare fp128     @llvm.sqrt.f128(fp128 %Val)
4640   declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
4641 </pre>
4642
4643 <h5>Overview:</h5>
4644
4645 <p>
4646 The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
4647 returning the same value as the libm '<tt>sqrt</tt>' functions would.  Unlike
4648 <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
4649 negative numbers (which allows for better optimization).
4650 </p>
4651
4652 <h5>Arguments:</h5>
4653
4654 <p>
4655 The argument and return value are floating point numbers of the same type.
4656 </p>
4657
4658 <h5>Semantics:</h5>
4659
4660 <p>
4661 This function returns the sqrt of the specified operand if it is a nonnegative
4662 floating point number.
4663 </p>
4664 </div>
4665
4666 <!-- _______________________________________________________________________ -->
4667 <div class="doc_subsubsection">
4668   <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
4669 </div>
4670
4671 <div class="doc_text">
4672
4673 <h5>Syntax:</h5>
4674 <p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any 
4675 floating point or vector of floating point type. Not all targets support all
4676 types however.
4677 <pre>
4678   declare float     @llvm.powi.f32(float  %Val, i32 %power)
4679   declare double    @llvm.powi.f64(double %Val, i32 %power)
4680   declare x86_fp80  @llvm.powi.f80(x86_fp80  %Val, i32 %power)
4681   declare fp128     @llvm.powi.f128(fp128 %Val, i32 %power)
4682   declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128  %Val, i32 %power)
4683 </pre>
4684
4685 <h5>Overview:</h5>
4686
4687 <p>
4688 The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
4689 specified (positive or negative) power.  The order of evaluation of
4690 multiplications is not defined.  When a vector of floating point type is
4691 used, the second argument remains a scalar integer value.
4692 </p>
4693
4694 <h5>Arguments:</h5>
4695
4696 <p>
4697 The second argument is an integer power, and the first is a value to raise to
4698 that power.
4699 </p>
4700
4701 <h5>Semantics:</h5>
4702
4703 <p>
4704 This function returns the first value raised to the second power with an
4705 unspecified sequence of rounding operations.</p>
4706 </div>
4707
4708 <!-- _______________________________________________________________________ -->
4709 <div class="doc_subsubsection">
4710   <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
4711 </div>
4712
4713 <div class="doc_text">
4714
4715 <h5>Syntax:</h5>
4716 <p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any 
4717 floating point or vector of floating point type. Not all targets support all
4718 types however.
4719 <pre>
4720   declare float     @llvm.sin.f32(float  %Val)
4721   declare double    @llvm.sin.f64(double %Val)
4722   declare x86_fp80  @llvm.sin.f80(x86_fp80  %Val)
4723   declare fp128     @llvm.sin.f128(fp128 %Val)
4724   declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128  %Val)
4725 </pre>
4726
4727 <h5>Overview:</h5>
4728
4729 <p>
4730 The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
4731 </p>
4732
4733 <h5>Arguments:</h5>
4734
4735 <p>
4736 The argument and return value are floating point numbers of the same type.
4737 </p>
4738
4739 <h5>Semantics:</h5>
4740
4741 <p>
4742 This function returns the sine of the specified operand, returning the
4743 same values as the libm <tt>sin</tt> functions would, and handles error
4744 conditions in the same way.</p>
4745 </div>
4746
4747 <!-- _______________________________________________________________________ -->
4748 <div class="doc_subsubsection">
4749   <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
4750 </div>
4751
4752 <div class="doc_text">
4753
4754 <h5>Syntax:</h5>
4755 <p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any 
4756 floating point or vector of floating point type. Not all targets support all
4757 types however.
4758 <pre>
4759   declare float     @llvm.cos.f32(float  %Val)
4760   declare double    @llvm.cos.f64(double %Val)
4761   declare x86_fp80  @llvm.cos.f80(x86_fp80  %Val)
4762   declare fp128     @llvm.cos.f128(fp128 %Val)
4763   declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128  %Val)
4764 </pre>
4765
4766 <h5>Overview:</h5>
4767
4768 <p>
4769 The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
4770 </p>
4771
4772 <h5>Arguments:</h5>
4773
4774 <p>
4775 The argument and return value are floating point numbers of the same type.
4776 </p>
4777
4778 <h5>Semantics:</h5>
4779
4780 <p>
4781 This function returns the cosine of the specified operand, returning the
4782 same values as the libm <tt>cos</tt> functions would, and handles error
4783 conditions in the same way.</p>
4784 </div>
4785
4786 <!-- _______________________________________________________________________ -->
4787 <div class="doc_subsubsection">
4788   <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
4789 </div>
4790
4791 <div class="doc_text">
4792
4793 <h5>Syntax:</h5>
4794 <p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any 
4795 floating point or vector of floating point type. Not all targets support all
4796 types however.
4797 <pre>
4798   declare float     @llvm.pow.f32(float  %Val, float %Power)
4799   declare double    @llvm.pow.f64(double %Val, double %Power)
4800   declare x86_fp80  @llvm.pow.f80(x86_fp80  %Val, x86_fp80 %Power)
4801   declare fp128     @llvm.pow.f128(fp128 %Val, fp128 %Power)
4802   declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128  %Val, ppc_fp128 Power)
4803 </pre>
4804
4805 <h5>Overview:</h5>
4806
4807 <p>
4808 The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
4809 specified (positive or negative) power.
4810 </p>
4811
4812 <h5>Arguments:</h5>
4813
4814 <p>
4815 The second argument is a floating point power, and the first is a value to
4816 raise to that power.
4817 </p>
4818
4819 <h5>Semantics:</h5>
4820
4821 <p>
4822 This function returns the first value raised to the second power,
4823 returning the
4824 same values as the libm <tt>pow</tt> functions would, and handles error
4825 conditions in the same way.</p>
4826 </div>
4827
4828
4829 <!-- ======================================================================= -->
4830 <div class="doc_subsection">
4831   <a name="int_manip">Bit Manipulation Intrinsics</a>
4832 </div>
4833
4834 <div class="doc_text">
4835 <p>
4836 LLVM provides intrinsics for a few important bit manipulation operations.
4837 These allow efficient code generation for some algorithms.
4838 </p>
4839
4840 </div>
4841
4842 <!-- _______________________________________________________________________ -->
4843 <div class="doc_subsubsection">
4844   <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
4845 </div>
4846
4847 <div class="doc_text">
4848
4849 <h5>Syntax:</h5>
4850 <p>This is an overloaded intrinsic function. You can use bswap on any integer
4851 type that is an even number of bytes (i.e. BitWidth % 16 == 0).
4852 <pre>
4853   declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
4854   declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
4855   declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
4856 </pre>
4857
4858 <h5>Overview:</h5>
4859
4860 <p>
4861 The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer 
4862 values with an even number of bytes (positive multiple of 16 bits).  These are 
4863 useful for performing operations on data that is not in the target's native 
4864 byte order.
4865 </p>
4866
4867 <h5>Semantics:</h5>
4868
4869 <p>
4870 The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high 
4871 and low byte of the input i16 swapped.  Similarly, the <tt>llvm.bswap.i32</tt> 
4872 intrinsic returns an i32 value that has the four bytes of the input i32 
4873 swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned 
4874 i32 will have its bytes in 3, 2, 1, 0 order.  The <tt>llvm.bswap.i48</tt>, 
4875 <tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
4876 additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
4877 </p>
4878
4879 </div>
4880
4881 <!-- _______________________________________________________________________ -->
4882 <div class="doc_subsubsection">
4883   <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
4884 </div>
4885
4886 <div class="doc_text">
4887
4888 <h5>Syntax:</h5>
4889 <p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
4890 width. Not all targets support all bit widths however.
4891 <pre>
4892   declare i8 @llvm.ctpop.i8 (i8  &lt;src&gt;)
4893   declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
4894   declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
4895   declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
4896   declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
4897 </pre>
4898
4899 <h5>Overview:</h5>
4900
4901 <p>
4902 The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a 
4903 value.
4904 </p>
4905
4906 <h5>Arguments:</h5>
4907
4908 <p>
4909 The only argument is the value to be counted.  The argument may be of any
4910 integer type.  The return type must match the argument type.
4911 </p>
4912
4913 <h5>Semantics:</h5>
4914
4915 <p>
4916 The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
4917 </p>
4918 </div>
4919
4920 <!-- _______________________________________________________________________ -->
4921 <div class="doc_subsubsection">
4922   <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
4923 </div>
4924
4925 <div class="doc_text">
4926
4927 <h5>Syntax:</h5>
4928 <p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any 
4929 integer bit width. Not all targets support all bit widths however.
4930 <pre>
4931   declare i8 @llvm.ctlz.i8 (i8  &lt;src&gt;)
4932   declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
4933   declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
4934   declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
4935   declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
4936 </pre>
4937
4938 <h5>Overview:</h5>
4939
4940 <p>
4941 The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of 
4942 leading zeros in a variable.
4943 </p>
4944
4945 <h5>Arguments:</h5>
4946
4947 <p>
4948 The only argument is the value to be counted.  The argument may be of any
4949 integer type. The return type must match the argument type.
4950 </p>
4951
4952 <h5>Semantics:</h5>
4953
4954 <p>
4955 The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
4956 in a variable.  If the src == 0 then the result is the size in bits of the type
4957 of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
4958 </p>
4959 </div>
4960
4961
4962
4963 <!-- _______________________________________________________________________ -->
4964 <div class="doc_subsubsection">
4965   <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
4966 </div>
4967
4968 <div class="doc_text">
4969
4970 <h5>Syntax:</h5>
4971 <p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any 
4972 integer bit width. Not all targets support all bit widths however.
4973 <pre>
4974   declare i8 @llvm.cttz.i8 (i8  &lt;src&gt;)
4975   declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
4976   declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
4977   declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
4978   declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
4979 </pre>
4980
4981 <h5>Overview:</h5>
4982
4983 <p>
4984 The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of 
4985 trailing zeros.
4986 </p>
4987
4988 <h5>Arguments:</h5>
4989
4990 <p>
4991 The only argument is the value to be counted.  The argument may be of any
4992 integer type.  The return type must match the argument type.
4993 </p>
4994
4995 <h5>Semantics:</h5>
4996
4997 <p>
4998 The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
4999 in a variable.  If the src == 0 then the result is the size in bits of the type
5000 of src.  For example, <tt>llvm.cttz(2) = 1</tt>.
5001 </p>
5002 </div>
5003
5004 <!-- _______________________________________________________________________ -->
5005 <div class="doc_subsubsection">
5006   <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
5007 </div>
5008
5009 <div class="doc_text">
5010
5011 <h5>Syntax:</h5>
5012 <p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt> 
5013 on any integer bit width.
5014 <pre>
5015   declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
5016   declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
5017 </pre>
5018
5019 <h5>Overview:</h5>
5020 <p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
5021 range of bits from an integer value and returns them in the same bit width as
5022 the original value.</p>
5023
5024 <h5>Arguments:</h5>
5025 <p>The first argument, <tt>%val</tt> and the result may be integer types of 
5026 any bit width but they must have the same bit width. The second and third 
5027 arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
5028
5029 <h5>Semantics:</h5>
5030 <p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
5031 of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
5032 <tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
5033 operates in forward mode.</p>
5034 <p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
5035 right by <tt>%loBit</tt> bits and then ANDing it with a mask with
5036 only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
5037 <ol>
5038   <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
5039   by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
5040   <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
5041   to determine the number of bits to retain.</li>
5042   <li>A mask of the retained bits is created by shifting a -1 value.</li>
5043   <li>The mask is ANDed with <tt>%val</tt> to produce the result.
5044 </ol>
5045 <p>In reverse mode, a similar computation is made except that the bits are
5046 returned in the reverse order. So, for example, if <tt>X</tt> has the value
5047 <tt>i16 0x0ACF (101011001111)</tt> and we apply 
5048 <tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value 
5049 <tt>i16 0x0026 (000000100110)</tt>.</p>
5050 </div>
5051
5052 <div class="doc_subsubsection">
5053   <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
5054 </div>
5055
5056 <div class="doc_text">
5057
5058 <h5>Syntax:</h5>
5059 <p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt> 
5060 on any integer bit width.
5061 <pre>
5062   declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
5063   declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
5064 </pre>
5065
5066 <h5>Overview:</h5>
5067 <p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
5068 of bits in an integer value with another integer value. It returns the integer
5069 with the replaced bits.</p>
5070
5071 <h5>Arguments:</h5>
5072 <p>The first argument, <tt>%val</tt> and the result may be integer types of 
5073 any bit width but they must have the same bit width. <tt>%val</tt> is the value
5074 whose bits will be replaced.  The second argument, <tt>%repl</tt> may be an
5075 integer of any bit width. The third and fourth arguments must be <tt>i32</tt> 
5076 type since they specify only a bit index.</p>
5077
5078 <h5>Semantics:</h5>
5079 <p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
5080 of operation: forwards and reverse. If <tt>%lo</tt> is greater than
5081 <tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
5082 operates in forward mode.</p>
5083 <p>For both modes, the <tt>%repl</tt> value is prepared for use by either
5084 truncating it down to the size of the replacement area or zero extending it 
5085 up to that size.</p>
5086 <p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
5087 are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
5088 in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
5089 to the <tt>%hi</tt>th bit. 
5090 <p>In reverse mode, a similar computation is made except that the bits are
5091 reversed.  That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the 
5092 <tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.
5093 <h5>Examples:</h5>
5094 <pre>
5095   llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
5096   llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
5097   llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
5098   llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
5099   llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
5100 </pre>
5101 </div>
5102
5103 <!-- ======================================================================= -->
5104 <div class="doc_subsection">
5105   <a name="int_debugger">Debugger Intrinsics</a>
5106 </div>
5107
5108 <div class="doc_text">
5109 <p>
5110 The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
5111 are described in the <a
5112 href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
5113 Debugging</a> document.
5114 </p>
5115 </div>
5116
5117
5118 <!-- ======================================================================= -->
5119 <div class="doc_subsection">
5120   <a name="int_eh">Exception Handling Intrinsics</a>
5121 </div>
5122
5123 <div class="doc_text">
5124 <p> The LLVM exception handling intrinsics (which all start with
5125 <tt>llvm.eh.</tt> prefix), are described in the <a
5126 href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
5127 Handling</a> document. </p>
5128 </div>
5129
5130 <!-- ======================================================================= -->
5131 <div class="doc_subsection">
5132   <a name="int_trampoline">Trampoline Intrinsic</a>
5133 </div>
5134
5135 <div class="doc_text">
5136 <p>
5137   This intrinsic makes it possible to excise one parameter, marked with
5138   the <tt>nest</tt> attribute, from a function.  The result is a callable
5139   function pointer lacking the nest parameter - the caller does not need
5140   to provide a value for it.  Instead, the value to use is stored in
5141   advance in a "trampoline", a block of memory usually allocated
5142   on the stack, which also contains code to splice the nest value into the
5143   argument list.  This is used to implement the GCC nested function address
5144   extension.
5145 </p>
5146 <p>
5147   For example, if the function is
5148   <tt>i32 f(i8* nest  %c, i32 %x, i32 %y)</tt> then the resulting function
5149   pointer has signature <tt>i32 (i32, i32)*</tt>.  It can be created as follows:</p>
5150 <pre>
5151   %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
5152   %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
5153   %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
5154   %fp = bitcast i8* %p to i32 (i32, i32)*
5155 </pre>
5156   <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
5157   to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
5158 </div>
5159
5160 <!-- _______________________________________________________________________ -->
5161 <div class="doc_subsubsection">
5162   <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
5163 </div>
5164 <div class="doc_text">
5165 <h5>Syntax:</h5>
5166 <pre>
5167 declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
5168 </pre>
5169 <h5>Overview:</h5>
5170 <p>
5171   This fills the memory pointed to by <tt>tramp</tt> with code
5172   and returns a function pointer suitable for executing it.
5173 </p>
5174 <h5>Arguments:</h5>
5175 <p>
5176   The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
5177   pointers.  The <tt>tramp</tt> argument must point to a sufficiently large
5178   and sufficiently aligned block of memory; this memory is written to by the
5179   intrinsic.  Note that the size and the alignment are target-specific - LLVM
5180   currently provides no portable way of determining them, so a front-end that
5181   generates this intrinsic needs to have some target-specific knowledge.
5182   The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
5183 </p>
5184 <h5>Semantics:</h5>
5185 <p>
5186   The block of memory pointed to by <tt>tramp</tt> is filled with target
5187   dependent code, turning it into a function.  A pointer to this function is
5188   returned, but needs to be bitcast to an
5189   <a href="#int_trampoline">appropriate function pointer type</a>
5190   before being called.  The new function's signature is the same as that of
5191   <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
5192   removed.  At most one such <tt>nest</tt> argument is allowed, and it must be
5193   of pointer type.  Calling the new function is equivalent to calling
5194   <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
5195   missing <tt>nest</tt> argument.  If, after calling
5196   <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
5197   modified, then the effect of any later call to the returned function pointer is
5198   undefined.
5199 </p>
5200 </div>
5201
5202 <!-- ======================================================================= -->
5203 <div class="doc_subsection">
5204   <a name="int_general">General Intrinsics</a>
5205 </div>
5206
5207 <div class="doc_text">
5208 <p> This class of intrinsics is designed to be generic and has
5209 no specific purpose. </p>
5210 </div>
5211
5212 <!-- _______________________________________________________________________ -->
5213 <div class="doc_subsubsection">
5214   <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
5215 </div>
5216
5217 <div class="doc_text">
5218
5219 <h5>Syntax:</h5>
5220 <pre>
5221   declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt; )
5222 </pre>
5223
5224 <h5>Overview:</h5>
5225
5226 <p>
5227 The '<tt>llvm.var.annotation</tt>' intrinsic
5228 </p>
5229
5230 <h5>Arguments:</h5>
5231
5232 <p>
5233 The first argument is a pointer to a value, the second is a pointer to a 
5234 global string, the third is a pointer to a global string which is the source 
5235 file name, and the last argument is the line number.
5236 </p>
5237
5238 <h5>Semantics:</h5>
5239
5240 <p>
5241 This intrinsic allows annotation of local variables with arbitrary strings.
5242 This can be useful for special purpose optimizations that want to look for these
5243 annotations.  These have no other defined use, they are ignored by code
5244 generation and optimization.
5245 </p>
5246 </div>
5247
5248 <!-- _______________________________________________________________________ -->
5249 <div class="doc_subsubsection">
5250   <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
5251 </div>
5252
5253 <div class="doc_text">
5254
5255 <h5>Syntax:</h5>
5256 <p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on 
5257 any integer bit width. 
5258 </p>
5259 <pre>
5260   declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt; )
5261   declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt; )
5262   declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt; )
5263   declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt; )
5264   declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt; )
5265 </pre>
5266
5267 <h5>Overview:</h5>
5268
5269 <p>
5270 The '<tt>llvm.annotation</tt>' intrinsic.
5271 </p>
5272
5273 <h5>Arguments:</h5>
5274
5275 <p>
5276 The first argument is an integer value (result of some expression), 
5277 the second is a pointer to a global string, the third is a pointer to a global 
5278 string which is the source file name, and the last argument is the line number.
5279 It returns the value of the first argument.
5280 </p>
5281
5282 <h5>Semantics:</h5>
5283
5284 <p>
5285 This intrinsic allows annotations to be put on arbitrary expressions
5286 with arbitrary strings.  This can be useful for special purpose optimizations 
5287 that want to look for these annotations.  These have no other defined use, they 
5288 are ignored by code generation and optimization.
5289 </div>
5290
5291 <!-- _______________________________________________________________________ -->
5292 <div class="doc_subsubsection">
5293   <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
5294 </div>
5295
5296 <div class="doc_text">
5297
5298 <h5>Syntax:</h5>
5299 <pre>
5300   declare void @llvm.trap()
5301 </pre>
5302
5303 <h5>Overview:</h5>
5304
5305 <p>
5306 The '<tt>llvm.trap</tt>' intrinsic
5307 </p>
5308
5309 <h5>Arguments:</h5>
5310
5311 <p>
5312 None
5313 </p>
5314
5315 <h5>Semantics:</h5>
5316
5317 <p>
5318 This intrinsics is lowered to the target dependent trap instruction. If the
5319 target does not have a trap instruction, this intrinsic will be lowered to the
5320 call of the abort() function.
5321 </p>
5322 </div>
5323
5324 <!-- *********************************************************************** -->
5325 <hr>
5326 <address>
5327   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
5328   src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
5329   <a href="http://validator.w3.org/check/referer"><img
5330   src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
5331
5332   <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
5333   <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
5334   Last modified: $Date$
5335 </address>
5336
5337 </body>
5338 </html>