1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
5 <title>LLVM Assembly Language Reference Manual</title>
6 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
10 <link rel="stylesheet" href="llvm.css" type="text/css">
15 <div class="doc_title"> LLVM Language Reference Manual </div>
17 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
20 <li><a href="#highlevel">High Level Structure</a>
22 <li><a href="#modulestructure">Module Structure</a></li>
23 <li><a href="#linkage">Linkage Types</a></li>
24 <li><a href="#callingconv">Calling Conventions</a></li>
25 <li><a href="#namedtypes">Named Types</a></li>
26 <li><a href="#globalvars">Global Variables</a></li>
27 <li><a href="#functionstructure">Functions</a></li>
28 <li><a href="#aliasstructure">Aliases</a></li>
29 <li><a href="#paramattrs">Parameter Attributes</a></li>
30 <li><a href="#fnattrs">Function Attributes</a></li>
31 <li><a href="#gc">Garbage Collector Names</a></li>
32 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
33 <li><a href="#datalayout">Data Layout</a></li>
36 <li><a href="#typesystem">Type System</a>
38 <li><a href="#t_classifications">Type Classifications</a></li>
39 <li><a href="#t_primitive">Primitive Types</a>
41 <li><a href="#t_floating">Floating Point Types</a></li>
42 <li><a href="#t_void">Void Type</a></li>
43 <li><a href="#t_label">Label Type</a></li>
46 <li><a href="#t_derived">Derived Types</a>
48 <li><a href="#t_integer">Integer Type</a></li>
49 <li><a href="#t_array">Array Type</a></li>
50 <li><a href="#t_function">Function Type</a></li>
51 <li><a href="#t_pointer">Pointer Type</a></li>
52 <li><a href="#t_struct">Structure Type</a></li>
53 <li><a href="#t_pstruct">Packed Structure Type</a></li>
54 <li><a href="#t_vector">Vector Type</a></li>
55 <li><a href="#t_opaque">Opaque Type</a></li>
58 <li><a href="#t_uprefs">Type Up-references</a></li>
61 <li><a href="#constants">Constants</a>
63 <li><a href="#simpleconstants">Simple Constants</a></li>
64 <li><a href="#complexconstants">Complex Constants</a></li>
65 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
66 <li><a href="#undefvalues">Undefined Values</a></li>
67 <li><a href="#constantexprs">Constant Expressions</a></li>
70 <li><a href="#othervalues">Other Values</a>
72 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
75 <li><a href="#instref">Instruction Reference</a>
77 <li><a href="#terminators">Terminator Instructions</a>
79 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
80 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
81 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
82 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
83 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
84 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
87 <li><a href="#binaryops">Binary Operations</a>
89 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
90 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
91 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
92 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
93 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
94 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
95 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
96 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
97 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
100 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
102 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
103 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
104 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
105 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
106 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
107 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
110 <li><a href="#vectorops">Vector Operations</a>
112 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
113 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
114 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
117 <li><a href="#aggregateops">Aggregate Operations</a>
119 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
120 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
123 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
125 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
126 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
127 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
128 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
129 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
130 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
133 <li><a href="#convertops">Conversion Operations</a>
135 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
136 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
137 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
138 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
139 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
140 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
141 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
142 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
143 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
144 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
145 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
146 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
149 <li><a href="#otherops">Other Operations</a>
151 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
152 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
153 <li><a href="#i_vicmp">'<tt>vicmp</tt>' Instruction</a></li>
154 <li><a href="#i_vfcmp">'<tt>vfcmp</tt>' Instruction</a></li>
155 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
156 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
157 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
158 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
163 <li><a href="#intrinsics">Intrinsic Functions</a>
165 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
167 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
168 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
169 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
172 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
174 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
175 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
176 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
179 <li><a href="#int_codegen">Code Generator Intrinsics</a>
181 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
182 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
183 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
184 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
185 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
186 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
187 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
190 <li><a href="#int_libc">Standard C Library Intrinsics</a>
192 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
193 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
194 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
195 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
196 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
197 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
198 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
199 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
202 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
204 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
205 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
206 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
207 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
208 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
209 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
212 <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
214 <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
215 <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
216 <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
217 <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
218 <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
219 <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
222 <li><a href="#int_debugger">Debugger intrinsics</a></li>
223 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
224 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
226 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
229 <li><a href="#int_atomics">Atomic intrinsics</a>
231 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
232 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
233 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
234 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
235 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
236 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
237 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
238 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
239 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
240 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
241 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
242 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
243 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
246 <li><a href="#int_general">General intrinsics</a>
248 <li><a href="#int_var_annotation">
249 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
250 <li><a href="#int_annotation">
251 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
252 <li><a href="#int_trap">
253 '<tt>llvm.trap</tt>' Intrinsic</a></li>
254 <li><a href="#int_stackprotector">
255 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
262 <div class="doc_author">
263 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
264 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
267 <!-- *********************************************************************** -->
268 <div class="doc_section"> <a name="abstract">Abstract </a></div>
269 <!-- *********************************************************************** -->
271 <div class="doc_text">
272 <p>This document is a reference manual for the LLVM assembly language.
273 LLVM is a Static Single Assignment (SSA) based representation that provides
274 type safety, low-level operations, flexibility, and the capability of
275 representing 'all' high-level languages cleanly. It is the common code
276 representation used throughout all phases of the LLVM compilation
280 <!-- *********************************************************************** -->
281 <div class="doc_section"> <a name="introduction">Introduction</a> </div>
282 <!-- *********************************************************************** -->
284 <div class="doc_text">
286 <p>The LLVM code representation is designed to be used in three
287 different forms: as an in-memory compiler IR, as an on-disk bitcode
288 representation (suitable for fast loading by a Just-In-Time compiler),
289 and as a human readable assembly language representation. This allows
290 LLVM to provide a powerful intermediate representation for efficient
291 compiler transformations and analysis, while providing a natural means
292 to debug and visualize the transformations. The three different forms
293 of LLVM are all equivalent. This document describes the human readable
294 representation and notation.</p>
296 <p>The LLVM representation aims to be light-weight and low-level
297 while being expressive, typed, and extensible at the same time. It
298 aims to be a "universal IR" of sorts, by being at a low enough level
299 that high-level ideas may be cleanly mapped to it (similar to how
300 microprocessors are "universal IR's", allowing many source languages to
301 be mapped to them). By providing type information, LLVM can be used as
302 the target of optimizations: for example, through pointer analysis, it
303 can be proven that a C automatic variable is never accessed outside of
304 the current function... allowing it to be promoted to a simple SSA
305 value instead of a memory location.</p>
309 <!-- _______________________________________________________________________ -->
310 <div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
312 <div class="doc_text">
314 <p>It is important to note that this document describes 'well formed'
315 LLVM assembly language. There is a difference between what the parser
316 accepts and what is considered 'well formed'. For example, the
317 following instruction is syntactically okay, but not well formed:</p>
319 <div class="doc_code">
321 %x = <a href="#i_add">add</a> i32 1, %x
325 <p>...because the definition of <tt>%x</tt> does not dominate all of
326 its uses. The LLVM infrastructure provides a verification pass that may
327 be used to verify that an LLVM module is well formed. This pass is
328 automatically run by the parser after parsing input assembly and by
329 the optimizer before it outputs bitcode. The violations pointed out
330 by the verifier pass indicate bugs in transformation passes or input to
334 <!-- Describe the typesetting conventions here. -->
336 <!-- *********************************************************************** -->
337 <div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
338 <!-- *********************************************************************** -->
340 <div class="doc_text">
342 <p>LLVM identifiers come in two basic types: global and local. Global
343 identifiers (functions, global variables) begin with the @ character. Local
344 identifiers (register names, types) begin with the % character. Additionally,
345 there are three different formats for identifiers, for different purposes:</p>
348 <li>Named values are represented as a string of characters with their prefix.
349 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
350 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
351 Identifiers which require other characters in their names can be surrounded
352 with quotes. Special characters may be escaped using "\xx" where xx is the
353 ASCII code for the character in hexadecimal. In this way, any character can
354 be used in a name value, even quotes themselves.
356 <li>Unnamed values are represented as an unsigned numeric value with their
357 prefix. For example, %12, @2, %44.</li>
359 <li>Constants, which are described in a <a href="#constants">section about
360 constants</a>, below.</li>
363 <p>LLVM requires that values start with a prefix for two reasons: Compilers
364 don't need to worry about name clashes with reserved words, and the set of
365 reserved words may be expanded in the future without penalty. Additionally,
366 unnamed identifiers allow a compiler to quickly come up with a temporary
367 variable without having to avoid symbol table conflicts.</p>
369 <p>Reserved words in LLVM are very similar to reserved words in other
370 languages. There are keywords for different opcodes
371 ('<tt><a href="#i_add">add</a></tt>',
372 '<tt><a href="#i_bitcast">bitcast</a></tt>',
373 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
374 href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
375 and others. These reserved words cannot conflict with variable names, because
376 none of them start with a prefix character ('%' or '@').</p>
378 <p>Here is an example of LLVM code to multiply the integer variable
379 '<tt>%X</tt>' by 8:</p>
383 <div class="doc_code">
385 %result = <a href="#i_mul">mul</a> i32 %X, 8
389 <p>After strength reduction:</p>
391 <div class="doc_code">
393 %result = <a href="#i_shl">shl</a> i32 %X, i8 3
397 <p>And the hard way:</p>
399 <div class="doc_code">
401 <a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
402 <a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
403 %result = <a href="#i_add">add</a> i32 %1, %1
407 <p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
408 important lexical features of LLVM:</p>
412 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
415 <li>Unnamed temporaries are created when the result of a computation is not
416 assigned to a named value.</li>
418 <li>Unnamed temporaries are numbered sequentially</li>
422 <p>...and it also shows a convention that we follow in this document. When
423 demonstrating instructions, we will follow an instruction with a comment that
424 defines the type and name of value produced. Comments are shown in italic
429 <!-- *********************************************************************** -->
430 <div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
431 <!-- *********************************************************************** -->
433 <!-- ======================================================================= -->
434 <div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
437 <div class="doc_text">
439 <p>LLVM programs are composed of "Module"s, each of which is a
440 translation unit of the input programs. Each module consists of
441 functions, global variables, and symbol table entries. Modules may be
442 combined together with the LLVM linker, which merges function (and
443 global variable) definitions, resolves forward declarations, and merges
444 symbol table entries. Here is an example of the "hello world" module:</p>
446 <div class="doc_code">
447 <pre><i>; Declare the string constant as a global constant...</i>
448 <a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
449 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
451 <i>; External declaration of the puts function</i>
452 <a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
454 <i>; Definition of main function</i>
455 define i32 @main() { <i>; i32()* </i>
456 <i>; Convert [13 x i8]* to i8 *...</i>
458 href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
460 <i>; Call puts function to write out the string to stdout...</i>
462 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
464 href="#i_ret">ret</a> i32 0<br>}<br>
468 <p>This example is made up of a <a href="#globalvars">global variable</a>
469 named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
470 function, and a <a href="#functionstructure">function definition</a>
471 for "<tt>main</tt>".</p>
473 <p>In general, a module is made up of a list of global values,
474 where both functions and global variables are global values. Global values are
475 represented by a pointer to a memory location (in this case, a pointer to an
476 array of char, and a pointer to a function), and have one of the following <a
477 href="#linkage">linkage types</a>.</p>
481 <!-- ======================================================================= -->
482 <div class="doc_subsection">
483 <a name="linkage">Linkage Types</a>
486 <div class="doc_text">
489 All Global Variables and Functions have one of the following types of linkage:
494 <dt><tt><b><a name="linkage_private">private</a></b></tt>: </dt>
496 <dd>Global values with private linkage are only directly accessible by
497 objects in the current module. In particular, linking code into a module with
498 an private global value may cause the private to be renamed as necessary to
499 avoid collisions. Because the symbol is private to the module, all
500 references can be updated. This doesn't show up in any symbol table in the
504 <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
506 <dd> Similar to private, but the value shows as a local symbol (STB_LOCAL in
507 the case of ELF) in the object file. This corresponds to the notion of the
508 '<tt>static</tt>' keyword in C.
511 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
513 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
514 the same name when linkage occurs. This is typically used to implement
515 inline functions, templates, or other code which must be generated in each
516 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
517 allowed to be discarded.
520 <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
522 <dd>"<tt>common</tt>" linkage is exactly the same as <tt>linkonce</tt>
523 linkage, except that unreferenced <tt>common</tt> globals may not be
524 discarded. This is used for globals that may be emitted in multiple
525 translation units, but that are not guaranteed to be emitted into every
526 translation unit that uses them. One example of this is tentative
527 definitions in C, such as "<tt>int X;</tt>" at global scope.
530 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
532 <dd>"<tt>weak</tt>" linkage is the same as <tt>common</tt> linkage, except
533 that some targets may choose to emit different assembly sequences for them
534 for target-dependent reasons. This is used for globals that are declared
535 "weak" in C source code.
538 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
540 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
541 pointer to array type. When two global variables with appending linkage are
542 linked together, the two global arrays are appended together. This is the
543 LLVM, typesafe, equivalent of having the system linker append together
544 "sections" with identical names when .o files are linked.
547 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
548 <dd>The semantics of this linkage follow the ELF object file model: the
549 symbol is weak until linked, if not linked, the symbol becomes null instead
550 of being an undefined reference.
553 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
555 <dd>If none of the above identifiers are used, the global is externally
556 visible, meaning that it participates in linkage and can be used to resolve
557 external symbol references.
562 The next two types of linkage are targeted for Microsoft Windows platform
563 only. They are designed to support importing (exporting) symbols from (to)
564 DLLs (Dynamic Link Libraries).
568 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
570 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
571 or variable via a global pointer to a pointer that is set up by the DLL
572 exporting the symbol. On Microsoft Windows targets, the pointer name is
573 formed by combining <code>__imp_</code> and the function or variable name.
576 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
578 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
579 pointer to a pointer in a DLL, so that it can be referenced with the
580 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
581 name is formed by combining <code>__imp_</code> and the function or variable
587 <p>For example, since the "<tt>.LC0</tt>"
588 variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
589 variable and was linked with this one, one of the two would be renamed,
590 preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
591 external (i.e., lacking any linkage declarations), they are accessible
592 outside of the current module.</p>
593 <p>It is illegal for a function <i>declaration</i>
594 to have any linkage type other than "externally visible", <tt>dllimport</tt>,
595 or <tt>extern_weak</tt>.</p>
596 <p>Aliases can have only <tt>external</tt>, <tt>internal</tt> and <tt>weak</tt>
600 <!-- ======================================================================= -->
601 <div class="doc_subsection">
602 <a name="callingconv">Calling Conventions</a>
605 <div class="doc_text">
607 <p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
608 and <a href="#i_invoke">invokes</a> can all have an optional calling convention
609 specified for the call. The calling convention of any pair of dynamic
610 caller/callee must match, or the behavior of the program is undefined. The
611 following calling conventions are supported by LLVM, and more may be added in
615 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
617 <dd>This calling convention (the default if no other calling convention is
618 specified) matches the target C calling conventions. This calling convention
619 supports varargs function calls and tolerates some mismatch in the declared
620 prototype and implemented declaration of the function (as does normal C).
623 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
625 <dd>This calling convention attempts to make calls as fast as possible
626 (e.g. by passing things in registers). This calling convention allows the
627 target to use whatever tricks it wants to produce fast code for the target,
628 without having to conform to an externally specified ABI (Application Binary
629 Interface). Implementations of this convention should allow arbitrary
630 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> to be
631 supported. This calling convention does not support varargs and requires the
632 prototype of all callees to exactly match the prototype of the function
636 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
638 <dd>This calling convention attempts to make code in the caller as efficient
639 as possible under the assumption that the call is not commonly executed. As
640 such, these calls often preserve all registers so that the call does not break
641 any live ranges in the caller side. This calling convention does not support
642 varargs and requires the prototype of all callees to exactly match the
643 prototype of the function definition.
646 <dt><b>"<tt>cc <<em>n</em>></tt>" - Numbered convention</b>:</dt>
648 <dd>Any calling convention may be specified by number, allowing
649 target-specific calling conventions to be used. Target specific calling
650 conventions start at 64.
654 <p>More calling conventions can be added/defined on an as-needed basis, to
655 support pascal conventions or any other well-known target-independent
660 <!-- ======================================================================= -->
661 <div class="doc_subsection">
662 <a name="visibility">Visibility Styles</a>
665 <div class="doc_text">
668 All Global Variables and Functions have one of the following visibility styles:
672 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
674 <dd>On targets that use the ELF object file format, default visibility means
675 that the declaration is visible to other
676 modules and, in shared libraries, means that the declared entity may be
677 overridden. On Darwin, default visibility means that the declaration is
678 visible to other modules. Default visibility corresponds to "external
679 linkage" in the language.
682 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
684 <dd>Two declarations of an object with hidden visibility refer to the same
685 object if they are in the same shared object. Usually, hidden visibility
686 indicates that the symbol will not be placed into the dynamic symbol table,
687 so no other module (executable or shared library) can reference it
691 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
693 <dd>On ELF, protected visibility indicates that the symbol will be placed in
694 the dynamic symbol table, but that references within the defining module will
695 bind to the local symbol. That is, the symbol cannot be overridden by another
702 <!-- ======================================================================= -->
703 <div class="doc_subsection">
704 <a name="namedtypes">Named Types</a>
707 <div class="doc_text">
709 <p>LLVM IR allows you to specify name aliases for certain types. This can make
710 it easier to read the IR and make the IR more condensed (particularly when
711 recursive types are involved). An example of a name specification is:
714 <div class="doc_code">
716 %mytype = type { %mytype*, i32 }
720 <p>You may give a name to any <a href="#typesystem">type</a> except "<a
721 href="t_void">void</a>". Type name aliases may be used anywhere a type is
722 expected with the syntax "%mytype".</p>
724 <p>Note that type names are aliases for the structural type that they indicate,
725 and that you can therefore specify multiple names for the same type. This often
726 leads to confusing behavior when dumping out a .ll file. Since LLVM IR uses
727 structural typing, the name is not part of the type. When printing out LLVM IR,
728 the printer will pick <em>one name</em> to render all types of a particular
729 shape. This means that if you have code where two different source types end up
730 having the same LLVM type, that the dumper will sometimes print the "wrong" or
731 unexpected type. This is an important design point and isn't going to
736 <!-- ======================================================================= -->
737 <div class="doc_subsection">
738 <a name="globalvars">Global Variables</a>
741 <div class="doc_text">
743 <p>Global variables define regions of memory allocated at compilation time
744 instead of run-time. Global variables may optionally be initialized, may have
745 an explicit section to be placed in, and may have an optional explicit alignment
746 specified. A variable may be defined as "thread_local", which means that it
747 will not be shared by threads (each thread will have a separated copy of the
748 variable). A variable may be defined as a global "constant," which indicates
749 that the contents of the variable will <b>never</b> be modified (enabling better
750 optimization, allowing the global data to be placed in the read-only section of
751 an executable, etc). Note that variables that need runtime initialization
752 cannot be marked "constant" as there is a store to the variable.</p>
755 LLVM explicitly allows <em>declarations</em> of global variables to be marked
756 constant, even if the final definition of the global is not. This capability
757 can be used to enable slightly better optimization of the program, but requires
758 the language definition to guarantee that optimizations based on the
759 'constantness' are valid for the translation units that do not include the
763 <p>As SSA values, global variables define pointer values that are in
764 scope (i.e. they dominate) all basic blocks in the program. Global
765 variables always define a pointer to their "content" type because they
766 describe a region of memory, and all memory objects in LLVM are
767 accessed through pointers.</p>
769 <p>A global variable may be declared to reside in a target-specifc numbered
770 address space. For targets that support them, address spaces may affect how
771 optimizations are performed and/or what target instructions are used to access
772 the variable. The default address space is zero. The address space qualifier
773 must precede any other attributes.</p>
775 <p>LLVM allows an explicit section to be specified for globals. If the target
776 supports it, it will emit globals to the section specified.</p>
778 <p>An explicit alignment may be specified for a global. If not present, or if
779 the alignment is set to zero, the alignment of the global is set by the target
780 to whatever it feels convenient. If an explicit alignment is specified, the
781 global is forced to have at least that much alignment. All alignments must be
784 <p>For example, the following defines a global in a numbered address space with
785 an initializer, section, and alignment:</p>
787 <div class="doc_code">
789 @G = addrspace(5) constant float 1.0, section "foo", align 4
796 <!-- ======================================================================= -->
797 <div class="doc_subsection">
798 <a name="functionstructure">Functions</a>
801 <div class="doc_text">
803 <p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
804 an optional <a href="#linkage">linkage type</a>, an optional
805 <a href="#visibility">visibility style</a>, an optional
806 <a href="#callingconv">calling convention</a>, a return type, an optional
807 <a href="#paramattrs">parameter attribute</a> for the return type, a function
808 name, a (possibly empty) argument list (each with optional
809 <a href="#paramattrs">parameter attributes</a>), optional
810 <a href="#fnattrs">function attributes</a>, an optional section,
811 an optional alignment, an optional <a href="#gc">garbage collector name</a>,
812 an opening curly brace, a list of basic blocks, and a closing curly brace.
814 LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
815 optional <a href="#linkage">linkage type</a>, an optional
816 <a href="#visibility">visibility style</a>, an optional
817 <a href="#callingconv">calling convention</a>, a return type, an optional
818 <a href="#paramattrs">parameter attribute</a> for the return type, a function
819 name, a possibly empty list of arguments, an optional alignment, and an optional
820 <a href="#gc">garbage collector name</a>.</p>
822 <p>A function definition contains a list of basic blocks, forming the CFG
823 (Control Flow Graph) for
824 the function. Each basic block may optionally start with a label (giving the
825 basic block a symbol table entry), contains a list of instructions, and ends
826 with a <a href="#terminators">terminator</a> instruction (such as a branch or
827 function return).</p>
829 <p>The first basic block in a function is special in two ways: it is immediately
830 executed on entrance to the function, and it is not allowed to have predecessor
831 basic blocks (i.e. there can not be any branches to the entry block of a
832 function). Because the block can have no predecessors, it also cannot have any
833 <a href="#i_phi">PHI nodes</a>.</p>
835 <p>LLVM allows an explicit section to be specified for functions. If the target
836 supports it, it will emit functions to the section specified.</p>
838 <p>An explicit alignment may be specified for a function. If not present, or if
839 the alignment is set to zero, the alignment of the function is set by the target
840 to whatever it feels convenient. If an explicit alignment is specified, the
841 function is forced to have at least that much alignment. All alignments must be
846 <div class="doc_code">
848 define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
849 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
850 <ResultType> @<FunctionName> ([argument list])
851 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
852 [<a href="#gc">gc</a>] { ... }
859 <!-- ======================================================================= -->
860 <div class="doc_subsection">
861 <a name="aliasstructure">Aliases</a>
863 <div class="doc_text">
864 <p>Aliases act as "second name" for the aliasee value (which can be either
865 function, global variable, another alias or bitcast of global value). Aliases
866 may have an optional <a href="#linkage">linkage type</a>, and an
867 optional <a href="#visibility">visibility style</a>.</p>
871 <div class="doc_code">
873 @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee>
881 <!-- ======================================================================= -->
882 <div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
883 <div class="doc_text">
884 <p>The return type and each parameter of a function type may have a set of
885 <i>parameter attributes</i> associated with them. Parameter attributes are
886 used to communicate additional information about the result or parameters of
887 a function. Parameter attributes are considered to be part of the function,
888 not of the function type, so functions with different parameter attributes
889 can have the same function type.</p>
891 <p>Parameter attributes are simple keywords that follow the type specified. If
892 multiple parameter attributes are needed, they are space separated. For
895 <div class="doc_code">
897 declare i32 @printf(i8* noalias nocapture, ...)
898 declare i32 @atoi(i8 zeroext)
899 declare signext i8 @returns_signed_char()
903 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
904 <tt>readonly</tt>) come immediately after the argument list.</p>
906 <p>Currently, only the following parameter attributes are defined:</p>
908 <dt><tt>zeroext</tt></dt>
909 <dd>This indicates to the code generator that the parameter or return value
910 should be zero-extended to a 32-bit value by the caller (for a parameter)
911 or the callee (for a return value).</dd>
913 <dt><tt>signext</tt></dt>
914 <dd>This indicates to the code generator that the parameter or return value
915 should be sign-extended to a 32-bit value by the caller (for a parameter)
916 or the callee (for a return value).</dd>
918 <dt><tt>inreg</tt></dt>
919 <dd>This indicates that this parameter or return value should be treated
920 in a special target-dependent fashion during while emitting code for a
921 function call or return (usually, by putting it in a register as opposed
922 to memory, though some targets use it to distinguish between two different
923 kinds of registers). Use of this attribute is target-specific.</dd>
925 <dt><tt><a name="byval">byval</a></tt></dt>
926 <dd>This indicates that the pointer parameter should really be passed by
927 value to the function. The attribute implies that a hidden copy of the
928 pointee is made between the caller and the callee, so the callee is unable
929 to modify the value in the callee. This attribute is only valid on LLVM
930 pointer arguments. It is generally used to pass structs and arrays by
931 value, but is also valid on pointers to scalars. The copy is considered to
932 belong to the caller not the callee (for example,
933 <tt><a href="#readonly">readonly</a></tt> functions should not write to
934 <tt>byval</tt> parameters). This is not a valid attribute for return
935 values. The byval attribute also supports specifying an alignment with the
936 align attribute. This has a target-specific effect on the code generator
937 that usually indicates a desired alignment for the synthesized stack
940 <dt><tt>sret</tt></dt>
941 <dd>This indicates that the pointer parameter specifies the address of a
942 structure that is the return value of the function in the source program.
943 This pointer must be guaranteed by the caller to be valid: loads and stores
944 to the structure may be assumed by the callee to not to trap. This may only
945 be applied to the first parameter. This is not a valid attribute for
948 <dt><tt>noalias</tt></dt>
949 <dd>This indicates that the pointer does not alias any global or any other
950 parameter. The caller is responsible for ensuring that this is the
951 case. On a function return value, <tt>noalias</tt> additionally indicates
952 that the pointer does not alias any other pointers visible to the
953 caller. For further details, please see the discussion of the NoAlias
955 <a href="http://llvm.org/docs/AliasAnalysis.html#MustMayNo">alias
958 <dt><tt>nocapture</tt></dt>
959 <dd>This indicates that the callee does not make any copies of the pointer
960 that outlive the callee itself. This is not a valid attribute for return
963 <dt><tt>nest</tt></dt>
964 <dd>This indicates that the pointer parameter can be excised using the
965 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
966 attribute for return values.</dd>
971 <!-- ======================================================================= -->
972 <div class="doc_subsection">
973 <a name="gc">Garbage Collector Names</a>
976 <div class="doc_text">
977 <p>Each function may specify a garbage collector name, which is simply a
980 <div class="doc_code"><pre
981 >define void @f() gc "name" { ...</pre></div>
983 <p>The compiler declares the supported values of <i>name</i>. Specifying a
984 collector which will cause the compiler to alter its output in order to support
985 the named garbage collection algorithm.</p>
988 <!-- ======================================================================= -->
989 <div class="doc_subsection">
990 <a name="fnattrs">Function Attributes</a>
993 <div class="doc_text">
995 <p>Function attributes are set to communicate additional information about
996 a function. Function attributes are considered to be part of the function,
997 not of the function type, so functions with different parameter attributes
998 can have the same function type.</p>
1000 <p>Function attributes are simple keywords that follow the type specified. If
1001 multiple attributes are needed, they are space separated. For
1004 <div class="doc_code">
1006 define void @f() noinline { ... }
1007 define void @f() alwaysinline { ... }
1008 define void @f() alwaysinline optsize { ... }
1009 define void @f() optsize
1014 <dt><tt>alwaysinline</tt></dt>
1015 <dd>This attribute indicates that the inliner should attempt to inline this
1016 function into callers whenever possible, ignoring any active inlining size
1017 threshold for this caller.</dd>
1019 <dt><tt>noinline</tt></dt>
1020 <dd>This attribute indicates that the inliner should never inline this function
1021 in any situation. This attribute may not be used together with the
1022 <tt>alwaysinline</tt> attribute.</dd>
1024 <dt><tt>optsize</tt></dt>
1025 <dd>This attribute suggests that optimization passes and code generator passes
1026 make choices that keep the code size of this function low, and otherwise do
1027 optimizations specifically to reduce code size.</dd>
1029 <dt><tt>noreturn</tt></dt>
1030 <dd>This function attribute indicates that the function never returns normally.
1031 This produces undefined behavior at runtime if the function ever does
1032 dynamically return.</dd>
1034 <dt><tt>nounwind</tt></dt>
1035 <dd>This function attribute indicates that the function never returns with an
1036 unwind or exceptional control flow. If the function does unwind, its runtime
1037 behavior is undefined.</dd>
1039 <dt><tt>readnone</tt></dt>
1040 <dd>This attribute indicates that the function computes its result (or the
1041 exception it throws) based strictly on its arguments, without dereferencing any
1042 pointer arguments or otherwise accessing any mutable state (e.g. memory, control
1043 registers, etc) visible to caller functions. It does not write through any
1044 pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments) and
1045 never changes any state visible to callers.</dd>
1047 <dt><tt><a name="readonly">readonly</a></tt></dt>
1048 <dd>This attribute indicates that the function does not write through any
1049 pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments)
1050 or otherwise modify any state (e.g. memory, control registers, etc) visible to
1051 caller functions. It may dereference pointer arguments and read state that may
1052 be set in the caller. A readonly function always returns the same value (or
1053 throws the same exception) when called with the same set of arguments and global
1056 <dt><tt><a name="ssp">ssp</a></tt></dt>
1057 <dd>This attribute indicates that the function should emit a stack smashing
1058 protector. It is in the form of a "canary"—a random value placed on the
1059 stack before the local variables that's checked upon return from the function to
1060 see if it has been overwritten. A heuristic is used to determine if a function
1061 needs stack protectors or not.
1063 <p>If a function that has an <tt>ssp</tt> attribute is inlined into a function
1064 that doesn't have an <tt>ssp</tt> attribute, then the resulting function will
1065 have an <tt>ssp</tt> attribute.</p></dd>
1067 <dt><tt>sspreq</tt></dt>
1068 <dd>This attribute indicates that the function should <em>always</em> emit a
1069 stack smashing protector. This overrides the <tt><a href="#ssp">ssp</a></tt>
1072 <p>If a function that has an <tt>sspreq</tt> attribute is inlined into a
1073 function that doesn't have an <tt>sspreq</tt> attribute or which has
1074 an <tt>ssp</tt> attribute, then the resulting function will have
1075 an <tt>sspreq</tt> attribute.</p></dd>
1080 <!-- ======================================================================= -->
1081 <div class="doc_subsection">
1082 <a name="moduleasm">Module-Level Inline Assembly</a>
1085 <div class="doc_text">
1087 Modules may contain "module-level inline asm" blocks, which corresponds to the
1088 GCC "file scope inline asm" blocks. These blocks are internally concatenated by
1089 LLVM and treated as a single unit, but may be separated in the .ll file if
1090 desired. The syntax is very simple:
1093 <div class="doc_code">
1095 module asm "inline asm code goes here"
1096 module asm "more can go here"
1100 <p>The strings can contain any character by escaping non-printable characters.
1101 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
1106 The inline asm code is simply printed to the machine code .s file when
1107 assembly code is generated.
1111 <!-- ======================================================================= -->
1112 <div class="doc_subsection">
1113 <a name="datalayout">Data Layout</a>
1116 <div class="doc_text">
1117 <p>A module may specify a target specific data layout string that specifies how
1118 data is to be laid out in memory. The syntax for the data layout is simply:</p>
1119 <pre> target datalayout = "<i>layout specification</i>"</pre>
1120 <p>The <i>layout specification</i> consists of a list of specifications
1121 separated by the minus sign character ('-'). Each specification starts with a
1122 letter and may include other information after the letter to define some
1123 aspect of the data layout. The specifications accepted are as follows: </p>
1126 <dd>Specifies that the target lays out data in big-endian form. That is, the
1127 bits with the most significance have the lowest address location.</dd>
1129 <dd>Specifies that the target lays out data in little-endian form. That is,
1130 the bits with the least significance have the lowest address location.</dd>
1131 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1132 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
1133 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
1134 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
1136 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1137 <dd>This specifies the alignment for an integer type of a given bit
1138 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1139 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1140 <dd>This specifies the alignment for a vector type of a given bit
1142 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1143 <dd>This specifies the alignment for a floating point type of a given bit
1144 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1146 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1147 <dd>This specifies the alignment for an aggregate type of a given bit
1150 <p>When constructing the data layout for a given target, LLVM starts with a
1151 default set of specifications which are then (possibly) overriden by the
1152 specifications in the <tt>datalayout</tt> keyword. The default specifications
1153 are given in this list:</p>
1155 <li><tt>E</tt> - big endian</li>
1156 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
1157 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1158 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1159 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1160 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
1161 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
1162 alignment of 64-bits</li>
1163 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1164 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1165 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1166 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1167 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
1169 <p>When LLVM is determining the alignment for a given type, it uses the
1170 following rules:</p>
1172 <li>If the type sought is an exact match for one of the specifications, that
1173 specification is used.</li>
1174 <li>If no match is found, and the type sought is an integer type, then the
1175 smallest integer type that is larger than the bitwidth of the sought type is
1176 used. If none of the specifications are larger than the bitwidth then the the
1177 largest integer type is used. For example, given the default specifications
1178 above, the i7 type will use the alignment of i8 (next largest) while both
1179 i65 and i256 will use the alignment of i64 (largest specified).</li>
1180 <li>If no match is found, and the type sought is a vector type, then the
1181 largest vector type that is smaller than the sought vector type will be used
1182 as a fall back. This happens because <128 x double> can be implemented
1183 in terms of 64 <2 x double>, for example.</li>
1187 <!-- *********************************************************************** -->
1188 <div class="doc_section"> <a name="typesystem">Type System</a> </div>
1189 <!-- *********************************************************************** -->
1191 <div class="doc_text">
1193 <p>The LLVM type system is one of the most important features of the
1194 intermediate representation. Being typed enables a number of
1195 optimizations to be performed on the intermediate representation directly,
1196 without having to do
1197 extra analyses on the side before the transformation. A strong type
1198 system makes it easier to read the generated code and enables novel
1199 analyses and transformations that are not feasible to perform on normal
1200 three address code representations.</p>
1204 <!-- ======================================================================= -->
1205 <div class="doc_subsection"> <a name="t_classifications">Type
1206 Classifications</a> </div>
1207 <div class="doc_text">
1208 <p>The types fall into a few useful
1209 classifications:</p>
1211 <table border="1" cellspacing="0" cellpadding="4">
1213 <tr><th>Classification</th><th>Types</th></tr>
1215 <td><a href="#t_integer">integer</a></td>
1216 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
1219 <td><a href="#t_floating">floating point</a></td>
1220 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
1223 <td><a name="t_firstclass">first class</a></td>
1224 <td><a href="#t_integer">integer</a>,
1225 <a href="#t_floating">floating point</a>,
1226 <a href="#t_pointer">pointer</a>,
1227 <a href="#t_vector">vector</a>,
1228 <a href="#t_struct">structure</a>,
1229 <a href="#t_array">array</a>,
1230 <a href="#t_label">label</a>.
1234 <td><a href="#t_primitive">primitive</a></td>
1235 <td><a href="#t_label">label</a>,
1236 <a href="#t_void">void</a>,
1237 <a href="#t_floating">floating point</a>.</td>
1240 <td><a href="#t_derived">derived</a></td>
1241 <td><a href="#t_integer">integer</a>,
1242 <a href="#t_array">array</a>,
1243 <a href="#t_function">function</a>,
1244 <a href="#t_pointer">pointer</a>,
1245 <a href="#t_struct">structure</a>,
1246 <a href="#t_pstruct">packed structure</a>,
1247 <a href="#t_vector">vector</a>,
1248 <a href="#t_opaque">opaque</a>.
1254 <p>The <a href="#t_firstclass">first class</a> types are perhaps the
1255 most important. Values of these types are the only ones which can be
1256 produced by instructions, passed as arguments, or used as operands to
1260 <!-- ======================================================================= -->
1261 <div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
1263 <div class="doc_text">
1264 <p>The primitive types are the fundamental building blocks of the LLVM
1269 <!-- _______________________________________________________________________ -->
1270 <div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1272 <div class="doc_text">
1275 <tr><th>Type</th><th>Description</th></tr>
1276 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1277 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1278 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1279 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1280 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1285 <!-- _______________________________________________________________________ -->
1286 <div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1288 <div class="doc_text">
1290 <p>The void type does not represent any value and has no size.</p>
1299 <!-- _______________________________________________________________________ -->
1300 <div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1302 <div class="doc_text">
1304 <p>The label type represents code labels.</p>
1314 <!-- ======================================================================= -->
1315 <div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
1317 <div class="doc_text">
1319 <p>The real power in LLVM comes from the derived types in the system.
1320 This is what allows a programmer to represent arrays, functions,
1321 pointers, and other useful types. Note that these derived types may be
1322 recursive: For example, it is possible to have a two dimensional array.</p>
1326 <!-- _______________________________________________________________________ -->
1327 <div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1329 <div class="doc_text">
1332 <p>The integer type is a very simple derived type that simply specifies an
1333 arbitrary bit width for the integer type desired. Any bit width from 1 bit to
1334 2^23-1 (about 8 million) can be specified.</p>
1342 <p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1346 <table class="layout">
1349 <td><tt>i1</tt></td>
1350 <td>a single-bit integer.</td>
1352 <td><tt>i32</tt></td>
1353 <td>a 32-bit integer.</td>
1355 <td><tt>i1942652</tt></td>
1356 <td>a really big integer of over 1 million bits.</td>
1361 <p>Note that the code generator does not yet support large integer types
1362 to be used as function return types. The specific limit on how large a
1363 return type the code generator can currently handle is target-dependent;
1364 currently it's often 64 bits for 32-bit targets and 128 bits for 64-bit
1369 <!-- _______________________________________________________________________ -->
1370 <div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
1372 <div class="doc_text">
1376 <p>The array type is a very simple derived type that arranges elements
1377 sequentially in memory. The array type requires a size (number of
1378 elements) and an underlying data type.</p>
1383 [<# elements> x <elementtype>]
1386 <p>The number of elements is a constant integer value; elementtype may
1387 be any type with a size.</p>
1390 <table class="layout">
1392 <td class="left"><tt>[40 x i32]</tt></td>
1393 <td class="left">Array of 40 32-bit integer values.</td>
1396 <td class="left"><tt>[41 x i32]</tt></td>
1397 <td class="left">Array of 41 32-bit integer values.</td>
1400 <td class="left"><tt>[4 x i8]</tt></td>
1401 <td class="left">Array of 4 8-bit integer values.</td>
1404 <p>Here are some examples of multidimensional arrays:</p>
1405 <table class="layout">
1407 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1408 <td class="left">3x4 array of 32-bit integer values.</td>
1411 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1412 <td class="left">12x10 array of single precision floating point values.</td>
1415 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1416 <td class="left">2x3x4 array of 16-bit integer values.</td>
1420 <p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1421 length array. Normally, accesses past the end of an array are undefined in
1422 LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1423 As a special case, however, zero length arrays are recognized to be variable
1424 length. This allows implementation of 'pascal style arrays' with the LLVM
1425 type "{ i32, [0 x float]}", for example.</p>
1427 <p>Note that the code generator does not yet support large aggregate types
1428 to be used as function return types. The specific limit on how large an
1429 aggregate return type the code generator can currently handle is
1430 target-dependent, and also dependent on the aggregate element types.</p>
1434 <!-- _______________________________________________________________________ -->
1435 <div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
1436 <div class="doc_text">
1440 <p>The function type can be thought of as a function signature. It
1441 consists of a return type and a list of formal parameter types. The
1442 return type of a function type is a scalar type, a void type, or a struct type.
1443 If the return type is a struct type then all struct elements must be of first
1444 class types, and the struct must have at least one element.</p>
1449 <returntype list> (<parameter list>)
1452 <p>...where '<tt><parameter list></tt>' is a comma-separated list of type
1453 specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
1454 which indicates that the function takes a variable number of arguments.
1455 Variable argument functions can access their arguments with the <a
1456 href="#int_varargs">variable argument handling intrinsic</a> functions.
1457 '<tt><returntype list></tt>' is a comma-separated list of
1458 <a href="#t_firstclass">first class</a> type specifiers.</p>
1461 <table class="layout">
1463 <td class="left"><tt>i32 (i32)</tt></td>
1464 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
1466 </tr><tr class="layout">
1467 <td class="left"><tt>float (i16 signext, i32 *) *
1469 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1470 an <tt>i16</tt> that should be sign extended and a
1471 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
1474 </tr><tr class="layout">
1475 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1476 <td class="left">A vararg function that takes at least one
1477 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
1478 which returns an integer. This is the signature for <tt>printf</tt> in
1481 </tr><tr class="layout">
1482 <td class="left"><tt>{i32, i32} (i32)</tt></td>
1483 <td class="left">A function taking an <tt>i32</tt>, returning two
1484 <tt>i32</tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
1490 <!-- _______________________________________________________________________ -->
1491 <div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
1492 <div class="doc_text">
1494 <p>The structure type is used to represent a collection of data members
1495 together in memory. The packing of the field types is defined to match
1496 the ABI of the underlying processor. The elements of a structure may
1497 be any type that has a size.</p>
1498 <p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1499 and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1500 field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1503 <pre> { <type list> }<br></pre>
1505 <table class="layout">
1507 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1508 <td class="left">A triple of three <tt>i32</tt> values</td>
1509 </tr><tr class="layout">
1510 <td class="left"><tt>{ float, i32 (i32) * }</tt></td>
1511 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1512 second element is a <a href="#t_pointer">pointer</a> to a
1513 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1514 an <tt>i32</tt>.</td>
1518 <p>Note that the code generator does not yet support large aggregate types
1519 to be used as function return types. The specific limit on how large an
1520 aggregate return type the code generator can currently handle is
1521 target-dependent, and also dependent on the aggregate element types.</p>
1525 <!-- _______________________________________________________________________ -->
1526 <div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1528 <div class="doc_text">
1530 <p>The packed structure type is used to represent a collection of data members
1531 together in memory. There is no padding between fields. Further, the alignment
1532 of a packed structure is 1 byte. The elements of a packed structure may
1533 be any type that has a size.</p>
1534 <p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1535 and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1536 field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1539 <pre> < { <type list> } > <br></pre>
1541 <table class="layout">
1543 <td class="left"><tt>< { i32, i32, i32 } ></tt></td>
1544 <td class="left">A triple of three <tt>i32</tt> values</td>
1545 </tr><tr class="layout">
1547 <tt>< { float, i32 (i32)* } ></tt></td>
1548 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1549 second element is a <a href="#t_pointer">pointer</a> to a
1550 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1551 an <tt>i32</tt>.</td>
1556 <!-- _______________________________________________________________________ -->
1557 <div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
1558 <div class="doc_text">
1560 <p>As in many languages, the pointer type represents a pointer or
1561 reference to another object, which must live in memory. Pointer types may have
1562 an optional address space attribute defining the target-specific numbered
1563 address space where the pointed-to object resides. The default address space is
1566 <p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does
1567 it permit pointers to labels (<tt>label*</tt>). Use <tt>i8*</tt> instead.</p>
1570 <pre> <type> *<br></pre>
1572 <table class="layout">
1574 <td class="left"><tt>[4 x i32]*</tt></td>
1575 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1576 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1579 <td class="left"><tt>i32 (i32 *) *</tt></td>
1580 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
1581 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
1585 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1586 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1587 that resides in address space #5.</td>
1592 <!-- _______________________________________________________________________ -->
1593 <div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
1594 <div class="doc_text">
1598 <p>A vector type is a simple derived type that represents a vector
1599 of elements. Vector types are used when multiple primitive data
1600 are operated in parallel using a single instruction (SIMD).
1601 A vector type requires a size (number of
1602 elements) and an underlying primitive data type. Vectors must have a power
1603 of two length (1, 2, 4, 8, 16 ...). Vector types are
1604 considered <a href="#t_firstclass">first class</a>.</p>
1609 < <# elements> x <elementtype> >
1612 <p>The number of elements is a constant integer value; elementtype may
1613 be any integer or floating point type.</p>
1617 <table class="layout">
1619 <td class="left"><tt><4 x i32></tt></td>
1620 <td class="left">Vector of 4 32-bit integer values.</td>
1623 <td class="left"><tt><8 x float></tt></td>
1624 <td class="left">Vector of 8 32-bit floating-point values.</td>
1627 <td class="left"><tt><2 x i64></tt></td>
1628 <td class="left">Vector of 2 64-bit integer values.</td>
1632 <p>Note that the code generator does not yet support large vector types
1633 to be used as function return types. The specific limit on how large a
1634 vector return type codegen can currently handle is target-dependent;
1635 currently it's often a few times longer than a hardware vector register.</p>
1639 <!-- _______________________________________________________________________ -->
1640 <div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1641 <div class="doc_text">
1645 <p>Opaque types are used to represent unknown types in the system. This
1646 corresponds (for example) to the C notion of a forward declared structure type.
1647 In LLVM, opaque types can eventually be resolved to any type (not just a
1648 structure type).</p>
1658 <table class="layout">
1660 <td class="left"><tt>opaque</tt></td>
1661 <td class="left">An opaque type.</td>
1666 <!-- ======================================================================= -->
1667 <div class="doc_subsection">
1668 <a name="t_uprefs">Type Up-references</a>
1671 <div class="doc_text">
1674 An "up reference" allows you to refer to a lexically enclosing type without
1675 requiring it to have a name. For instance, a structure declaration may contain a
1676 pointer to any of the types it is lexically a member of. Example of up
1677 references (with their equivalent as named type declarations) include:</p>
1680 { \2 * } %x = type { %x* }
1681 { \2 }* %y = type { %y }*
1686 An up reference is needed by the asmprinter for printing out cyclic types when
1687 there is no declared name for a type in the cycle. Because the asmprinter does
1688 not want to print out an infinite type string, it needs a syntax to handle
1689 recursive types that have no names (all names are optional in llvm IR).
1698 The level is the count of the lexical type that is being referred to.
1703 <table class="layout">
1705 <td class="left"><tt>\1*</tt></td>
1706 <td class="left">Self-referential pointer.</td>
1709 <td class="left"><tt>{ { \3*, i8 }, i32 }</tt></td>
1710 <td class="left">Recursive structure where the upref refers to the out-most
1717 <!-- *********************************************************************** -->
1718 <div class="doc_section"> <a name="constants">Constants</a> </div>
1719 <!-- *********************************************************************** -->
1721 <div class="doc_text">
1723 <p>LLVM has several different basic types of constants. This section describes
1724 them all and their syntax.</p>
1728 <!-- ======================================================================= -->
1729 <div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
1731 <div class="doc_text">
1734 <dt><b>Boolean constants</b></dt>
1736 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
1737 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
1740 <dt><b>Integer constants</b></dt>
1742 <dd>Standard integers (such as '4') are constants of the <a
1743 href="#t_integer">integer</a> type. Negative numbers may be used with
1747 <dt><b>Floating point constants</b></dt>
1749 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1750 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
1751 notation (see below). The assembler requires the exact decimal value of
1752 a floating-point constant. For example, the assembler accepts 1.25 but
1753 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1754 constants must have a <a href="#t_floating">floating point</a> type. </dd>
1756 <dt><b>Null pointer constants</b></dt>
1758 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
1759 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1763 <p>The one non-intuitive notation for constants is the hexadecimal form
1764 of floating point constants. For example, the form '<tt>double
1765 0x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
1766 4.5e+15</tt>'. The only time hexadecimal floating point constants are required
1767 (and the only time that they are generated by the disassembler) is when a
1768 floating point constant must be emitted but it cannot be represented as a
1769 decimal floating point number in a reasonable number of digits. For example,
1770 NaN's, infinities, and other
1771 special values are represented in their IEEE hexadecimal format so that
1772 assembly and disassembly do not cause any bits to change in the constants.</p>
1773 <p>When using the hexadecimal form, constants of types float and double are
1774 represented using the 16-digit form shown above (which matches the IEEE754
1775 representation for double); float values must, however, be exactly representable
1776 as IEE754 single precision.
1777 Hexadecimal format is always used for long
1778 double, and there are three forms of long double. The 80-bit
1779 format used by x86 is represented as <tt>0xK</tt>
1780 followed by 20 hexadecimal digits.
1781 The 128-bit format used by PowerPC (two adjacent doubles) is represented
1782 by <tt>0xM</tt> followed by 32 hexadecimal digits. The IEEE 128-bit
1783 format is represented
1784 by <tt>0xL</tt> followed by 32 hexadecimal digits; no currently supported
1785 target uses this format. Long doubles will only work if they match
1786 the long double format on your target. All hexadecimal formats are big-endian
1787 (sign bit at the left).</p>
1790 <!-- ======================================================================= -->
1791 <div class="doc_subsection">
1792 <a name="aggregateconstants"> <!-- old anchor -->
1793 <a name="complexconstants">Complex Constants</a></a>
1796 <div class="doc_text">
1797 <p>Complex constants are a (potentially recursive) combination of simple
1798 constants and smaller complex constants.</p>
1801 <dt><b>Structure constants</b></dt>
1803 <dd>Structure constants are represented with notation similar to structure
1804 type definitions (a comma separated list of elements, surrounded by braces
1805 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1806 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
1807 must have <a href="#t_struct">structure type</a>, and the number and
1808 types of elements must match those specified by the type.
1811 <dt><b>Array constants</b></dt>
1813 <dd>Array constants are represented with notation similar to array type
1814 definitions (a comma separated list of elements, surrounded by square brackets
1815 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
1816 constants must have <a href="#t_array">array type</a>, and the number and
1817 types of elements must match those specified by the type.
1820 <dt><b>Vector constants</b></dt>
1822 <dd>Vector constants are represented with notation similar to vector type
1823 definitions (a comma separated list of elements, surrounded by
1824 less-than/greater-than's (<tt><></tt>)). For example: "<tt>< i32 42,
1825 i32 11, i32 74, i32 100 ></tt>". Vector constants must have <a
1826 href="#t_vector">vector type</a>, and the number and types of elements must
1827 match those specified by the type.
1830 <dt><b>Zero initialization</b></dt>
1832 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1833 value to zero of <em>any</em> type, including scalar and aggregate types.
1834 This is often used to avoid having to print large zero initializers (e.g. for
1835 large arrays) and is always exactly equivalent to using explicit zero
1842 <!-- ======================================================================= -->
1843 <div class="doc_subsection">
1844 <a name="globalconstants">Global Variable and Function Addresses</a>
1847 <div class="doc_text">
1849 <p>The addresses of <a href="#globalvars">global variables</a> and <a
1850 href="#functionstructure">functions</a> are always implicitly valid (link-time)
1851 constants. These constants are explicitly referenced when the <a
1852 href="#identifiers">identifier for the global</a> is used and always have <a
1853 href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1856 <div class="doc_code">
1860 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1866 <!-- ======================================================================= -->
1867 <div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
1868 <div class="doc_text">
1869 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
1870 no specific value. Undefined values may be of any type and be used anywhere
1871 a constant is permitted.</p>
1873 <p>Undefined values indicate to the compiler that the program is well defined
1874 no matter what value is used, giving the compiler more freedom to optimize.
1878 <!-- ======================================================================= -->
1879 <div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1882 <div class="doc_text">
1884 <p>Constant expressions are used to allow expressions involving other constants
1885 to be used as constants. Constant expressions may be of any <a
1886 href="#t_firstclass">first class</a> type and may involve any LLVM operation
1887 that does not have side effects (e.g. load and call are not supported). The
1888 following is the syntax for constant expressions:</p>
1891 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1892 <dd>Truncate a constant to another type. The bit size of CST must be larger
1893 than the bit size of TYPE. Both types must be integers.</dd>
1895 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1896 <dd>Zero extend a constant to another type. The bit size of CST must be
1897 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
1899 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1900 <dd>Sign extend a constant to another type. The bit size of CST must be
1901 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
1903 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1904 <dd>Truncate a floating point constant to another floating point type. The
1905 size of CST must be larger than the size of TYPE. Both types must be
1906 floating point.</dd>
1908 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1909 <dd>Floating point extend a constant to another type. The size of CST must be
1910 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1912 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
1913 <dd>Convert a floating point constant to the corresponding unsigned integer
1914 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1915 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1916 of the same number of elements. If the value won't fit in the integer type,
1917 the results are undefined.</dd>
1919 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
1920 <dd>Convert a floating point constant to the corresponding signed integer
1921 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1922 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1923 of the same number of elements. If the value won't fit in the integer type,
1924 the results are undefined.</dd>
1926 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
1927 <dd>Convert an unsigned integer constant to the corresponding floating point
1928 constant. TYPE must be a scalar or vector floating point type. CST must be of
1929 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1930 of the same number of elements. If the value won't fit in the floating point
1931 type, the results are undefined.</dd>
1933 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
1934 <dd>Convert a signed integer constant to the corresponding floating point
1935 constant. TYPE must be a scalar or vector floating point type. CST must be of
1936 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1937 of the same number of elements. If the value won't fit in the floating point
1938 type, the results are undefined.</dd>
1940 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1941 <dd>Convert a pointer typed constant to the corresponding integer constant
1942 TYPE must be an integer type. CST must be of pointer type. The CST value is
1943 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1945 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1946 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1947 pointer type. CST must be of integer type. The CST value is zero extended,
1948 truncated, or unchanged to make it fit in a pointer size. This one is
1949 <i>really</i> dangerous!</dd>
1951 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
1952 <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
1953 are the same as those for the <a href="#i_bitcast">bitcast
1954 instruction</a>.</dd>
1956 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1958 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1959 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1960 instruction, the index list may have zero or more indexes, which are required
1961 to make sense for the type of "CSTPTR".</dd>
1963 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1965 <dd>Perform the <a href="#i_select">select operation</a> on
1968 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1969 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1971 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1972 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
1974 <dt><b><tt>vicmp COND ( VAL1, VAL2 )</tt></b></dt>
1975 <dd>Performs the <a href="#i_vicmp">vicmp operation</a> on constants.</dd>
1977 <dt><b><tt>vfcmp COND ( VAL1, VAL2 )</tt></b></dt>
1978 <dd>Performs the <a href="#i_vfcmp">vfcmp operation</a> on constants.</dd>
1980 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1982 <dd>Perform the <a href="#i_extractelement">extractelement
1983 operation</a> on constants.</dd>
1985 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1987 <dd>Perform the <a href="#i_insertelement">insertelement
1988 operation</a> on constants.</dd>
1991 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1993 <dd>Perform the <a href="#i_shufflevector">shufflevector
1994 operation</a> on constants.</dd>
1996 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1998 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1999 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
2000 binary</a> operations. The constraints on operands are the same as those for
2001 the corresponding instruction (e.g. no bitwise operations on floating point
2002 values are allowed).</dd>
2006 <!-- *********************************************************************** -->
2007 <div class="doc_section"> <a name="othervalues">Other Values</a> </div>
2008 <!-- *********************************************************************** -->
2010 <!-- ======================================================================= -->
2011 <div class="doc_subsection">
2012 <a name="inlineasm">Inline Assembler Expressions</a>
2015 <div class="doc_text">
2018 LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
2019 Module-Level Inline Assembly</a>) through the use of a special value. This
2020 value represents the inline assembler as a string (containing the instructions
2021 to emit), a list of operand constraints (stored as a string), and a flag that
2022 indicates whether or not the inline asm expression has side effects. An example
2023 inline assembler expression is:
2026 <div class="doc_code">
2028 i32 (i32) asm "bswap $0", "=r,r"
2033 Inline assembler expressions may <b>only</b> be used as the callee operand of
2034 a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
2037 <div class="doc_code">
2039 %X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
2044 Inline asms with side effects not visible in the constraint list must be marked
2045 as having side effects. This is done through the use of the
2046 '<tt>sideeffect</tt>' keyword, like so:
2049 <div class="doc_code">
2051 call void asm sideeffect "eieio", ""()
2055 <p>TODO: The format of the asm and constraints string still need to be
2056 documented here. Constraints on what can be done (e.g. duplication, moving, etc
2057 need to be documented). This is probably best done by reference to another
2058 document that covers inline asm from a holistic perspective.
2063 <!-- *********************************************************************** -->
2064 <div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
2065 <!-- *********************************************************************** -->
2067 <div class="doc_text">
2069 <p>The LLVM instruction set consists of several different
2070 classifications of instructions: <a href="#terminators">terminator
2071 instructions</a>, <a href="#binaryops">binary instructions</a>,
2072 <a href="#bitwiseops">bitwise binary instructions</a>, <a
2073 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
2074 instructions</a>.</p>
2078 <!-- ======================================================================= -->
2079 <div class="doc_subsection"> <a name="terminators">Terminator
2080 Instructions</a> </div>
2082 <div class="doc_text">
2084 <p>As mentioned <a href="#functionstructure">previously</a>, every
2085 basic block in a program ends with a "Terminator" instruction, which
2086 indicates which block should be executed after the current block is
2087 finished. These terminator instructions typically yield a '<tt>void</tt>'
2088 value: they produce control flow, not values (the one exception being
2089 the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
2090 <p>There are six different terminator instructions: the '<a
2091 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
2092 instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
2093 the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
2094 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
2095 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
2099 <!-- _______________________________________________________________________ -->
2100 <div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
2101 Instruction</a> </div>
2102 <div class="doc_text">
2105 ret <type> <value> <i>; Return a value from a non-void function</i>
2106 ret void <i>; Return from void function</i>
2111 <p>The '<tt>ret</tt>' instruction is used to return control flow (and
2112 optionally a value) from a function back to the caller.</p>
2113 <p>There are two forms of the '<tt>ret</tt>' instruction: one that
2114 returns a value and then causes control flow, and one that just causes
2115 control flow to occur.</p>
2119 <p>The '<tt>ret</tt>' instruction optionally accepts a single argument,
2120 the return value. The type of the return value must be a
2121 '<a href="#t_firstclass">first class</a>' type.</p>
2123 <p>A function is not <a href="#wellformed">well formed</a> if
2124 it it has a non-void return type and contains a '<tt>ret</tt>'
2125 instruction with no return value or a return value with a type that
2126 does not match its type, or if it has a void return type and contains
2127 a '<tt>ret</tt>' instruction with a return value.</p>
2131 <p>When the '<tt>ret</tt>' instruction is executed, control flow
2132 returns back to the calling function's context. If the caller is a "<a
2133 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
2134 the instruction after the call. If the caller was an "<a
2135 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
2136 at the beginning of the "normal" destination block. If the instruction
2137 returns a value, that value shall set the call or invoke instruction's
2143 ret i32 5 <i>; Return an integer value of 5</i>
2144 ret void <i>; Return from a void function</i>
2145 ret { i32, i8 } { i32 4, i8 2 } <i>; Return an struct of values 4 and 2</i>
2148 <p>Note that the code generator does not yet fully support large
2149 return values. The specific sizes that are currently supported are
2150 dependent on the target. For integers, on 32-bit targets the limit
2151 is often 64 bits, and on 64-bit targets the limit is often 128 bits.
2152 For aggregate types, the current limits are dependent on the element
2153 types; for example targets are often limited to 2 total integer
2154 elements and 2 total floating-point elements.</p>
2157 <!-- _______________________________________________________________________ -->
2158 <div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
2159 <div class="doc_text">
2161 <pre> br i1 <cond>, label <iftrue>, label <iffalse><br> br label <dest> <i>; Unconditional branch</i>
2164 <p>The '<tt>br</tt>' instruction is used to cause control flow to
2165 transfer to a different basic block in the current function. There are
2166 two forms of this instruction, corresponding to a conditional branch
2167 and an unconditional branch.</p>
2169 <p>The conditional branch form of the '<tt>br</tt>' instruction takes a
2170 single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
2171 unconditional form of the '<tt>br</tt>' instruction takes a single
2172 '<tt>label</tt>' value as a target.</p>
2174 <p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
2175 argument is evaluated. If the value is <tt>true</tt>, control flows
2176 to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
2177 control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
2179 <pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
2180 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
2182 <!-- _______________________________________________________________________ -->
2183 <div class="doc_subsubsection">
2184 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
2187 <div class="doc_text">
2191 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
2196 <p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
2197 several different places. It is a generalization of the '<tt>br</tt>'
2198 instruction, allowing a branch to occur to one of many possible
2204 <p>The '<tt>switch</tt>' instruction uses three parameters: an integer
2205 comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
2206 an array of pairs of comparison value constants and '<tt>label</tt>'s. The
2207 table is not allowed to contain duplicate constant entries.</p>
2211 <p>The <tt>switch</tt> instruction specifies a table of values and
2212 destinations. When the '<tt>switch</tt>' instruction is executed, this
2213 table is searched for the given value. If the value is found, control flow is
2214 transfered to the corresponding destination; otherwise, control flow is
2215 transfered to the default destination.</p>
2217 <h5>Implementation:</h5>
2219 <p>Depending on properties of the target machine and the particular
2220 <tt>switch</tt> instruction, this instruction may be code generated in different
2221 ways. For example, it could be generated as a series of chained conditional
2222 branches or with a lookup table.</p>
2227 <i>; Emulate a conditional br instruction</i>
2228 %Val = <a href="#i_zext">zext</a> i1 %value to i32
2229 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
2231 <i>; Emulate an unconditional br instruction</i>
2232 switch i32 0, label %dest [ ]
2234 <i>; Implement a jump table:</i>
2235 switch i32 %val, label %otherwise [ i32 0, label %onzero
2237 i32 2, label %ontwo ]
2241 <!-- _______________________________________________________________________ -->
2242 <div class="doc_subsubsection">
2243 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2246 <div class="doc_text">
2251 <result> = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] <ptr to function ty> <function ptr val>(<function args>) [<a href="#fnattrs">fn attrs</a>]
2252 to label <normal label> unwind label <exception label>
2257 <p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
2258 function, with the possibility of control flow transfer to either the
2259 '<tt>normal</tt>' label or the
2260 '<tt>exception</tt>' label. If the callee function returns with the
2261 "<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
2262 "normal" label. If the callee (or any indirect callees) returns with the "<a
2263 href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
2264 continued at the dynamically nearest "exception" label.</p>
2268 <p>This instruction requires several arguments:</p>
2272 The optional "cconv" marker indicates which <a href="#callingconv">calling
2273 convention</a> the call should use. If none is specified, the call defaults
2274 to using C calling conventions.
2277 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
2278 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
2279 and '<tt>inreg</tt>' attributes are valid here.</li>
2281 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
2282 function value being invoked. In most cases, this is a direct function
2283 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
2284 an arbitrary pointer to function value.
2287 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
2288 function to be invoked. </li>
2290 <li>'<tt>function args</tt>': argument list whose types match the function
2291 signature argument types. If the function signature indicates the function
2292 accepts a variable number of arguments, the extra arguments can be
2295 <li>'<tt>normal label</tt>': the label reached when the called function
2296 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
2298 <li>'<tt>exception label</tt>': the label reached when a callee returns with
2299 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
2301 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
2302 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
2303 '<tt>readnone</tt>' attributes are valid here.</li>
2308 <p>This instruction is designed to operate as a standard '<tt><a
2309 href="#i_call">call</a></tt>' instruction in most regards. The primary
2310 difference is that it establishes an association with a label, which is used by
2311 the runtime library to unwind the stack.</p>
2313 <p>This instruction is used in languages with destructors to ensure that proper
2314 cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2315 exception. Additionally, this is important for implementation of
2316 '<tt>catch</tt>' clauses in high-level languages that support them.</p>
2320 %retval = invoke i32 @Test(i32 15) to label %Continue
2321 unwind label %TestCleanup <i>; {i32}:retval set</i>
2322 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
2323 unwind label %TestCleanup <i>; {i32}:retval set</i>
2328 <!-- _______________________________________________________________________ -->
2330 <div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2331 Instruction</a> </div>
2333 <div class="doc_text">
2342 <p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
2343 at the first callee in the dynamic call stack which used an <a
2344 href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
2345 primarily used to implement exception handling.</p>
2349 <p>The '<tt>unwind</tt>' instruction causes execution of the current function to
2350 immediately halt. The dynamic call stack is then searched for the first <a
2351 href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
2352 execution continues at the "exceptional" destination block specified by the
2353 <tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
2354 dynamic call chain, undefined behavior results.</p>
2357 <!-- _______________________________________________________________________ -->
2359 <div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2360 Instruction</a> </div>
2362 <div class="doc_text">
2371 <p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
2372 instruction is used to inform the optimizer that a particular portion of the
2373 code is not reachable. This can be used to indicate that the code after a
2374 no-return function cannot be reached, and other facts.</p>
2378 <p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
2383 <!-- ======================================================================= -->
2384 <div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
2385 <div class="doc_text">
2386 <p>Binary operators are used to do most of the computation in a
2387 program. They require two operands of the same type, execute an operation on them, and
2388 produce a single value. The operands might represent
2389 multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
2390 The result value has the same type as its operands.</p>
2391 <p>There are several different binary operators:</p>
2393 <!-- _______________________________________________________________________ -->
2394 <div class="doc_subsubsection">
2395 <a name="i_add">'<tt>add</tt>' Instruction</a>
2398 <div class="doc_text">
2403 <result> = add <ty> <op1>, <op2> <i>; yields {ty}:result</i>
2408 <p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
2412 <p>The two arguments to the '<tt>add</tt>' instruction must be <a
2413 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>, or
2414 <a href="#t_vector">vector</a> values. Both arguments must have identical
2419 <p>The value produced is the integer or floating point sum of the two
2422 <p>If an integer sum has unsigned overflow, the result returned is the
2423 mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2426 <p>Because LLVM integers use a two's complement representation, this
2427 instruction is appropriate for both signed and unsigned integers.</p>
2432 <result> = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
2435 <!-- _______________________________________________________________________ -->
2436 <div class="doc_subsubsection">
2437 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
2440 <div class="doc_text">
2445 <result> = sub <ty> <op1>, <op2> <i>; yields {ty}:result</i>
2450 <p>The '<tt>sub</tt>' instruction returns the difference of its two
2453 <p>Note that the '<tt>sub</tt>' instruction is used to represent the
2454 '<tt>neg</tt>' instruction present in most other intermediate
2455 representations.</p>
2459 <p>The two arguments to the '<tt>sub</tt>' instruction must be <a
2460 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2461 or <a href="#t_vector">vector</a> values. Both arguments must have identical
2466 <p>The value produced is the integer or floating point difference of
2467 the two operands.</p>
2469 <p>If an integer difference has unsigned overflow, the result returned is the
2470 mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2473 <p>Because LLVM integers use a two's complement representation, this
2474 instruction is appropriate for both signed and unsigned integers.</p>
2478 <result> = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
2479 <result> = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
2483 <!-- _______________________________________________________________________ -->
2484 <div class="doc_subsubsection">
2485 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
2488 <div class="doc_text">
2491 <pre> <result> = mul <ty> <op1>, <op2> <i>; yields {ty}:result</i>
2494 <p>The '<tt>mul</tt>' instruction returns the product of its two
2499 <p>The two arguments to the '<tt>mul</tt>' instruction must be <a
2500 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2501 or <a href="#t_vector">vector</a> values. Both arguments must have identical
2506 <p>The value produced is the integer or floating point product of the
2509 <p>If the result of an integer multiplication has unsigned overflow,
2510 the result returned is the mathematical result modulo
2511 2<sup>n</sup>, where n is the bit width of the result.</p>
2512 <p>Because LLVM integers use a two's complement representation, and the
2513 result is the same width as the operands, this instruction returns the
2514 correct result for both signed and unsigned integers. If a full product
2515 (e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands
2516 should be sign-extended or zero-extended as appropriate to the
2517 width of the full product.</p>
2519 <pre> <result> = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
2523 <!-- _______________________________________________________________________ -->
2524 <div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2526 <div class="doc_text">
2528 <pre> <result> = udiv <ty> <op1>, <op2> <i>; yields {ty}:result</i>
2531 <p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2536 <p>The two arguments to the '<tt>udiv</tt>' instruction must be
2537 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2538 values. Both arguments must have identical types.</p>
2542 <p>The value produced is the unsigned integer quotient of the two operands.</p>
2543 <p>Note that unsigned integer division and signed integer division are distinct
2544 operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
2545 <p>Division by zero leads to undefined behavior.</p>
2547 <pre> <result> = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
2550 <!-- _______________________________________________________________________ -->
2551 <div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2553 <div class="doc_text">
2556 <result> = sdiv <ty> <op1>, <op2> <i>; yields {ty}:result</i>
2561 <p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2566 <p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2567 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2568 values. Both arguments must have identical types.</p>
2571 <p>The value produced is the signed integer quotient of the two operands rounded towards zero.</p>
2572 <p>Note that signed integer division and unsigned integer division are distinct
2573 operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
2574 <p>Division by zero leads to undefined behavior. Overflow also leads to
2575 undefined behavior; this is a rare case, but can occur, for example,
2576 by doing a 32-bit division of -2147483648 by -1.</p>
2578 <pre> <result> = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
2581 <!-- _______________________________________________________________________ -->
2582 <div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
2583 Instruction</a> </div>
2584 <div class="doc_text">
2587 <result> = fdiv <ty> <op1>, <op2> <i>; yields {ty}:result</i>
2591 <p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
2596 <p>The two arguments to the '<tt>fdiv</tt>' instruction must be
2597 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2598 of floating point values. Both arguments must have identical types.</p>
2602 <p>The value produced is the floating point quotient of the two operands.</p>
2607 <result> = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
2611 <!-- _______________________________________________________________________ -->
2612 <div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2614 <div class="doc_text">
2616 <pre> <result> = urem <ty> <op1>, <op2> <i>; yields {ty}:result</i>
2619 <p>The '<tt>urem</tt>' instruction returns the remainder from the
2620 unsigned division of its two arguments.</p>
2622 <p>The two arguments to the '<tt>urem</tt>' instruction must be
2623 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2624 values. Both arguments must have identical types.</p>
2626 <p>This instruction returns the unsigned integer <i>remainder</i> of a division.
2627 This instruction always performs an unsigned division to get the remainder.</p>
2628 <p>Note that unsigned integer remainder and signed integer remainder are
2629 distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
2630 <p>Taking the remainder of a division by zero leads to undefined behavior.</p>
2632 <pre> <result> = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
2636 <!-- _______________________________________________________________________ -->
2637 <div class="doc_subsubsection">
2638 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
2641 <div class="doc_text">
2646 <result> = srem <ty> <op1>, <op2> <i>; yields {ty}:result</i>
2651 <p>The '<tt>srem</tt>' instruction returns the remainder from the
2652 signed division of its two operands. This instruction can also take
2653 <a href="#t_vector">vector</a> versions of the values in which case
2654 the elements must be integers.</p>
2658 <p>The two arguments to the '<tt>srem</tt>' instruction must be
2659 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2660 values. Both arguments must have identical types.</p>
2664 <p>This instruction returns the <i>remainder</i> of a division (where the result
2665 has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
2666 operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
2667 a value. For more information about the difference, see <a
2668 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
2669 Math Forum</a>. For a table of how this is implemented in various languages,
2670 please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
2671 Wikipedia: modulo operation</a>.</p>
2672 <p>Note that signed integer remainder and unsigned integer remainder are
2673 distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
2674 <p>Taking the remainder of a division by zero leads to undefined behavior.
2675 Overflow also leads to undefined behavior; this is a rare case, but can occur,
2676 for example, by taking the remainder of a 32-bit division of -2147483648 by -1.
2677 (The remainder doesn't actually overflow, but this rule lets srem be
2678 implemented using instructions that return both the result of the division
2679 and the remainder.)</p>
2681 <pre> <result> = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
2685 <!-- _______________________________________________________________________ -->
2686 <div class="doc_subsubsection">
2687 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
2689 <div class="doc_text">
2692 <pre> <result> = frem <ty> <op1>, <op2> <i>; yields {ty}:result</i>
2695 <p>The '<tt>frem</tt>' instruction returns the remainder from the
2696 division of its two operands.</p>
2698 <p>The two arguments to the '<tt>frem</tt>' instruction must be
2699 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2700 of floating point values. Both arguments must have identical types.</p>
2704 <p>This instruction returns the <i>remainder</i> of a division.
2705 The remainder has the same sign as the dividend.</p>
2710 <result> = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
2714 <!-- ======================================================================= -->
2715 <div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2716 Operations</a> </div>
2717 <div class="doc_text">
2718 <p>Bitwise binary operators are used to do various forms of
2719 bit-twiddling in a program. They are generally very efficient
2720 instructions and can commonly be strength reduced from other
2721 instructions. They require two operands of the same type, execute an operation on them,
2722 and produce a single value. The resulting value is the same type as its operands.</p>
2725 <!-- _______________________________________________________________________ -->
2726 <div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2727 Instruction</a> </div>
2728 <div class="doc_text">
2730 <pre> <result> = shl <ty> <op1>, <op2> <i>; yields {ty}:result</i>
2735 <p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2736 the left a specified number of bits.</p>
2740 <p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
2741 href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2742 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
2746 <p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod 2<sup>n</sup>,
2747 where n is the width of the result. If <tt>op2</tt> is (statically or dynamically) negative or
2748 equal to or larger than the number of bits in <tt>op1</tt>, the result is undefined.
2749 If the arguments are vectors, each vector element of <tt>op1</tt> is shifted by the
2750 corresponding shift amount in <tt>op2</tt>.</p>
2752 <h5>Example:</h5><pre>
2753 <result> = shl i32 4, %var <i>; yields {i32}: 4 << %var</i>
2754 <result> = shl i32 4, 2 <i>; yields {i32}: 16</i>
2755 <result> = shl i32 1, 10 <i>; yields {i32}: 1024</i>
2756 <result> = shl i32 1, 32 <i>; undefined</i>
2757 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> <i>; yields: result=<2 x i32> < i32 2, i32 4></i>
2760 <!-- _______________________________________________________________________ -->
2761 <div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2762 Instruction</a> </div>
2763 <div class="doc_text">
2765 <pre> <result> = lshr <ty> <op1>, <op2> <i>; yields {ty}:result</i>
2769 <p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
2770 operand shifted to the right a specified number of bits with zero fill.</p>
2773 <p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
2774 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2775 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
2779 <p>This instruction always performs a logical shift right operation. The most
2780 significant bits of the result will be filled with zero bits after the
2781 shift. If <tt>op2</tt> is (statically or dynamically) equal to or larger than
2782 the number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
2783 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding shift
2784 amount in <tt>op2</tt>.</p>
2788 <result> = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2789 <result> = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2790 <result> = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2791 <result> = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
2792 <result> = lshr i32 1, 32 <i>; undefined</i>
2793 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> <i>; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1></i>
2797 <!-- _______________________________________________________________________ -->
2798 <div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2799 Instruction</a> </div>
2800 <div class="doc_text">
2803 <pre> <result> = ashr <ty> <op1>, <op2> <i>; yields {ty}:result</i>
2807 <p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
2808 operand shifted to the right a specified number of bits with sign extension.</p>
2811 <p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
2812 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2813 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
2816 <p>This instruction always performs an arithmetic shift right operation,
2817 The most significant bits of the result will be filled with the sign bit
2818 of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
2819 larger than the number of bits in <tt>op1</tt>, the result is undefined. If the
2820 arguments are vectors, each vector element of <tt>op1</tt> is shifted by the
2821 corresponding shift amount in <tt>op2</tt>.</p>
2825 <result> = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2826 <result> = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2827 <result> = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2828 <result> = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
2829 <result> = ashr i32 1, 32 <i>; undefined</i>
2830 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> <i>; yields: result=<2 x i32> < i32 -1, i32 0></i>
2834 <!-- _______________________________________________________________________ -->
2835 <div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2836 Instruction</a> </div>
2838 <div class="doc_text">
2843 <result> = and <ty> <op1>, <op2> <i>; yields {ty}:result</i>
2848 <p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2849 its two operands.</p>
2853 <p>The two arguments to the '<tt>and</tt>' instruction must be
2854 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2855 values. Both arguments must have identical types.</p>
2858 <p>The truth table used for the '<tt>and</tt>' instruction is:</p>
2861 <table border="1" cellspacing="0" cellpadding="4">
2893 <result> = and i32 4, %var <i>; yields {i32}:result = 4 & %var</i>
2894 <result> = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2895 <result> = and i32 4, 8 <i>; yields {i32}:result = 0</i>
2898 <!-- _______________________________________________________________________ -->
2899 <div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
2900 <div class="doc_text">
2902 <pre> <result> = or <ty> <op1>, <op2> <i>; yields {ty}:result</i>
2905 <p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2906 or of its two operands.</p>
2909 <p>The two arguments to the '<tt>or</tt>' instruction must be
2910 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2911 values. Both arguments must have identical types.</p>
2913 <p>The truth table used for the '<tt>or</tt>' instruction is:</p>
2916 <table border="1" cellspacing="0" cellpadding="4">
2947 <pre> <result> = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2948 <result> = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2949 <result> = or i32 4, 8 <i>; yields {i32}:result = 12</i>
2952 <!-- _______________________________________________________________________ -->
2953 <div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2954 Instruction</a> </div>
2955 <div class="doc_text">
2957 <pre> <result> = xor <ty> <op1>, <op2> <i>; yields {ty}:result</i>
2960 <p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2961 or of its two operands. The <tt>xor</tt> is used to implement the
2962 "one's complement" operation, which is the "~" operator in C.</p>
2964 <p>The two arguments to the '<tt>xor</tt>' instruction must be
2965 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2966 values. Both arguments must have identical types.</p>
2970 <p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
2973 <table border="1" cellspacing="0" cellpadding="4">
3005 <pre> <result> = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
3006 <result> = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
3007 <result> = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
3008 <result> = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
3012 <!-- ======================================================================= -->
3013 <div class="doc_subsection">
3014 <a name="vectorops">Vector Operations</a>
3017 <div class="doc_text">
3019 <p>LLVM supports several instructions to represent vector operations in a
3020 target-independent manner. These instructions cover the element-access and
3021 vector-specific operations needed to process vectors effectively. While LLVM
3022 does directly support these vector operations, many sophisticated algorithms
3023 will want to use target-specific intrinsics to take full advantage of a specific
3028 <!-- _______________________________________________________________________ -->
3029 <div class="doc_subsubsection">
3030 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
3033 <div class="doc_text">
3038 <result> = extractelement <n x <ty>> <val>, i32 <idx> <i>; yields <ty></i>
3044 The '<tt>extractelement</tt>' instruction extracts a single scalar
3045 element from a vector at a specified index.
3052 The first operand of an '<tt>extractelement</tt>' instruction is a
3053 value of <a href="#t_vector">vector</a> type. The second operand is
3054 an index indicating the position from which to extract the element.
3055 The index may be a variable.</p>
3060 The result is a scalar of the same type as the element type of
3061 <tt>val</tt>. Its value is the value at position <tt>idx</tt> of
3062 <tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
3063 results are undefined.
3069 %result = extractelement <4 x i32> %vec, i32 0 <i>; yields i32</i>
3074 <!-- _______________________________________________________________________ -->
3075 <div class="doc_subsubsection">
3076 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
3079 <div class="doc_text">
3084 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> <i>; yields <n x <ty>></i>
3090 The '<tt>insertelement</tt>' instruction inserts a scalar
3091 element into a vector at a specified index.
3098 The first operand of an '<tt>insertelement</tt>' instruction is a
3099 value of <a href="#t_vector">vector</a> type. The second operand is a
3100 scalar value whose type must equal the element type of the first
3101 operand. The third operand is an index indicating the position at
3102 which to insert the value. The index may be a variable.</p>
3107 The result is a vector of the same type as <tt>val</tt>. Its
3108 element values are those of <tt>val</tt> except at position
3109 <tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
3110 exceeds the length of <tt>val</tt>, the results are undefined.
3116 %result = insertelement <4 x i32> %vec, i32 1, i32 0 <i>; yields <4 x i32></i>
3120 <!-- _______________________________________________________________________ -->
3121 <div class="doc_subsubsection">
3122 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
3125 <div class="doc_text">
3130 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> <i>; yields <m x <ty>></i>
3136 The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
3137 from two input vectors, returning a vector with the same element type as
3138 the input and length that is the same as the shuffle mask.
3144 The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
3145 with types that match each other. The third argument is a shuffle mask whose
3146 element type is always 'i32'. The result of the instruction is a vector whose
3147 length is the same as the shuffle mask and whose element type is the same as
3148 the element type of the first two operands.
3152 The shuffle mask operand is required to be a constant vector with either
3153 constant integer or undef values.
3159 The elements of the two input vectors are numbered from left to right across
3160 both of the vectors. The shuffle mask operand specifies, for each element of
3161 the result vector, which element of the two input vectors the result element
3162 gets. The element selector may be undef (meaning "don't care") and the second
3163 operand may be undef if performing a shuffle from only one vector.
3169 %result = shufflevector <4 x i32> %v1, <4 x i32> %v2,
3170 <4 x i32> <i32 0, i32 4, i32 1, i32 5> <i>; yields <4 x i32></i>
3171 %result = shufflevector <4 x i32> %v1, <4 x i32> undef,
3172 <4 x i32> <i32 0, i32 1, i32 2, i32 3> <i>; yields <4 x i32></i> - Identity shuffle.
3173 %result = shufflevector <8 x i32> %v1, <8 x i32> undef,
3174 <4 x i32> <i32 0, i32 1, i32 2, i32 3> <i>; yields <4 x i32></i>
3175 %result = shufflevector <4 x i32> %v1, <4 x i32> %v2,
3176 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > <i>; yields <8 x i32></i>
3181 <!-- ======================================================================= -->
3182 <div class="doc_subsection">
3183 <a name="aggregateops">Aggregate Operations</a>
3186 <div class="doc_text">
3188 <p>LLVM supports several instructions for working with aggregate values.
3193 <!-- _______________________________________________________________________ -->
3194 <div class="doc_subsubsection">
3195 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
3198 <div class="doc_text">
3203 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
3209 The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
3210 or array element from an aggregate value.
3217 The first operand of an '<tt>extractvalue</tt>' instruction is a
3218 value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a>
3219 type. The operands are constant indices to specify which value to extract
3220 in a similar manner as indices in a
3221 '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3227 The result is the value at the position in the aggregate specified by
3234 %result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
3239 <!-- _______________________________________________________________________ -->
3240 <div class="doc_subsubsection">
3241 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
3244 <div class="doc_text">
3249 <result> = insertvalue <aggregate type> <val>, <ty> <val>, <idx> <i>; yields <n x <ty>></i>
3255 The '<tt>insertvalue</tt>' instruction inserts a value
3256 into a struct field or array element in an aggregate.
3263 The first operand of an '<tt>insertvalue</tt>' instruction is a
3264 value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type.
3265 The second operand is a first-class value to insert.
3266 The following operands are constant indices
3267 indicating the position at which to insert the value in a similar manner as
3269 '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3270 The value to insert must have the same type as the value identified
3277 The result is an aggregate of the same type as <tt>val</tt>. Its
3278 value is that of <tt>val</tt> except that the value at the position
3279 specified by the indices is that of <tt>elt</tt>.
3285 %result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
3290 <!-- ======================================================================= -->
3291 <div class="doc_subsection">
3292 <a name="memoryops">Memory Access and Addressing Operations</a>
3295 <div class="doc_text">
3297 <p>A key design point of an SSA-based representation is how it
3298 represents memory. In LLVM, no memory locations are in SSA form, which
3299 makes things very simple. This section describes how to read, write,
3300 allocate, and free memory in LLVM.</p>
3304 <!-- _______________________________________________________________________ -->
3305 <div class="doc_subsubsection">
3306 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
3309 <div class="doc_text">
3314 <result> = malloc <type>[, i32 <NumElements>][, align <alignment>] <i>; yields {type*}:result</i>
3319 <p>The '<tt>malloc</tt>' instruction allocates memory from the system
3320 heap and returns a pointer to it. The object is always allocated in the generic
3321 address space (address space zero).</p>
3325 <p>The '<tt>malloc</tt>' instruction allocates
3326 <tt>sizeof(<type>)*NumElements</tt>
3327 bytes of memory from the operating system and returns a pointer of the
3328 appropriate type to the program. If "NumElements" is specified, it is the
3329 number of elements allocated, otherwise "NumElements" is defaulted to be one.
3330 If a constant alignment is specified, the value result of the allocation is guaranteed to
3331 be aligned to at least that boundary. If not specified, or if zero, the target can
3332 choose to align the allocation on any convenient boundary.</p>
3334 <p>'<tt>type</tt>' must be a sized type.</p>
3338 <p>Memory is allocated using the system "<tt>malloc</tt>" function, and
3339 a pointer is returned. The result of a zero byte allocation is undefined. The
3340 result is null if there is insufficient memory available.</p>
3345 %array = malloc [4 x i8] <i>; yields {[%4 x i8]*}:array</i>
3347 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
3348 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
3349 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
3350 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
3351 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
3354 <p>Note that the code generator does not yet respect the
3355 alignment value.</p>
3359 <!-- _______________________________________________________________________ -->
3360 <div class="doc_subsubsection">
3361 <a name="i_free">'<tt>free</tt>' Instruction</a>
3364 <div class="doc_text">
3369 free <type> <value> <i>; yields {void}</i>
3374 <p>The '<tt>free</tt>' instruction returns memory back to the unused
3375 memory heap to be reallocated in the future.</p>
3379 <p>'<tt>value</tt>' shall be a pointer value that points to a value
3380 that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
3385 <p>Access to the memory pointed to by the pointer is no longer defined
3386 after this instruction executes. If the pointer is null, the operation
3392 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
3393 free [4 x i8]* %array
3397 <!-- _______________________________________________________________________ -->
3398 <div class="doc_subsubsection">
3399 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3402 <div class="doc_text">
3407 <result> = alloca <type>[, i32 <NumElements>][, align <alignment>] <i>; yields {type*}:result</i>
3412 <p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
3413 currently executing function, to be automatically released when this function
3414 returns to its caller. The object is always allocated in the generic address
3415 space (address space zero).</p>
3419 <p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(<type>)*NumElements</tt>
3420 bytes of memory on the runtime stack, returning a pointer of the
3421 appropriate type to the program. If "NumElements" is specified, it is the
3422 number of elements allocated, otherwise "NumElements" is defaulted to be one.
3423 If a constant alignment is specified, the value result of the allocation is guaranteed
3424 to be aligned to at least that boundary. If not specified, or if zero, the target
3425 can choose to align the allocation on any convenient boundary.</p>
3427 <p>'<tt>type</tt>' may be any sized type.</p>
3431 <p>Memory is allocated; a pointer is returned. The operation is undefiend if
3432 there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
3433 memory is automatically released when the function returns. The '<tt>alloca</tt>'
3434 instruction is commonly used to represent automatic variables that must
3435 have an address available. When the function returns (either with the <tt><a
3436 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
3437 instructions), the memory is reclaimed. Allocating zero bytes
3438 is legal, but the result is undefined.</p>
3443 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
3444 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3445 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
3446 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
3450 <!-- _______________________________________________________________________ -->
3451 <div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3452 Instruction</a> </div>
3453 <div class="doc_text">
3455 <pre> <result> = load <ty>* <pointer>[, align <alignment>]<br> <result> = volatile load <ty>* <pointer>[, align <alignment>]<br></pre>
3457 <p>The '<tt>load</tt>' instruction is used to read from memory.</p>
3459 <p>The argument to the '<tt>load</tt>' instruction specifies the memory
3460 address from which to load. The pointer must point to a <a
3461 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
3462 marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
3463 the number or order of execution of this <tt>load</tt> with other
3464 volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3467 The optional constant "align" argument specifies the alignment of the operation
3468 (that is, the alignment of the memory address). A value of 0 or an
3469 omitted "align" argument means that the operation has the preferential
3470 alignment for the target. It is the responsibility of the code emitter
3471 to ensure that the alignment information is correct. Overestimating
3472 the alignment results in an undefined behavior. Underestimating the
3473 alignment may produce less efficient code. An alignment of 1 is always
3477 <p>The location of memory pointed to is loaded.</p>
3479 <pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
3481 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
3482 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
3485 <!-- _______________________________________________________________________ -->
3486 <div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
3487 Instruction</a> </div>
3488 <div class="doc_text">
3490 <pre> store <ty> <value>, <ty>* <pointer>[, align <alignment>] <i>; yields {void}</i>
3491 volatile store <ty> <value>, <ty>* <pointer>[, align <alignment>] <i>; yields {void}</i>
3494 <p>The '<tt>store</tt>' instruction is used to write to memory.</p>
3496 <p>There are two arguments to the '<tt>store</tt>' instruction: a value
3497 to store and an address at which to store it. The type of the '<tt><pointer></tt>'
3498 operand must be a pointer to the <a href="#t_firstclass">first class</a> type
3499 of the '<tt><value></tt>'
3500 operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
3501 optimizer is not allowed to modify the number or order of execution of
3502 this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
3503 href="#i_store">store</a></tt> instructions.</p>
3505 The optional constant "align" argument specifies the alignment of the operation
3506 (that is, the alignment of the memory address). A value of 0 or an
3507 omitted "align" argument means that the operation has the preferential
3508 alignment for the target. It is the responsibility of the code emitter
3509 to ensure that the alignment information is correct. Overestimating
3510 the alignment results in an undefined behavior. Underestimating the
3511 alignment may produce less efficient code. An alignment of 1 is always
3515 <p>The contents of memory are updated to contain '<tt><value></tt>'
3516 at the location specified by the '<tt><pointer></tt>' operand.</p>
3518 <pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
3519 store i32 3, i32* %ptr <i>; yields {void}</i>
3520 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
3524 <!-- _______________________________________________________________________ -->
3525 <div class="doc_subsubsection">
3526 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
3529 <div class="doc_text">
3532 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
3538 The '<tt>getelementptr</tt>' instruction is used to get the address of a
3539 subelement of an aggregate data structure. It performs address calculation only
3540 and does not access memory.</p>
3544 <p>The first argument is always a pointer, and forms the basis of the
3545 calculation. The remaining arguments are indices, that indicate which of the
3546 elements of the aggregate object are indexed. The interpretation of each index
3547 is dependent on the type being indexed into. The first index always indexes the
3548 pointer value given as the first argument, the second index indexes a value of
3549 the type pointed to (not necessarily the value directly pointed to, since the
3550 first index can be non-zero), etc. The first type indexed into must be a pointer
3551 value, subsequent types can be arrays, vectors and structs. Note that subsequent
3552 types being indexed into can never be pointers, since that would require loading
3553 the pointer before continuing calculation.</p>
3555 <p>The type of each index argument depends on the type it is indexing into.
3556 When indexing into a (packed) structure, only <tt>i32</tt> integer
3557 <b>constants</b> are allowed. When indexing into an array, pointer or vector,
3558 only integers of 32 or 64 bits are allowed (also non-constants). 32-bit values
3559 will be sign extended to 64-bits if required.</p>
3561 <p>For example, let's consider a C code fragment and how it gets
3562 compiled to LLVM:</p>
3564 <div class="doc_code">
3577 int *foo(struct ST *s) {
3578 return &s[1].Z.B[5][13];
3583 <p>The LLVM code generated by the GCC frontend is:</p>
3585 <div class="doc_code">
3587 %RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8 }
3588 %ST = <a href="#namedtypes">type</a> { i32, double, %RT }
3590 define i32* %foo(%ST* %s) {
3592 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
3600 <p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
3601 type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
3602 }</tt>' type, a structure. The second index indexes into the third element of
3603 the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
3604 i8 }</tt>' type, another structure. The third index indexes into the second
3605 element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
3606 array. The two dimensions of the array are subscripted into, yielding an
3607 '<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
3608 to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
3610 <p>Note that it is perfectly legal to index partially through a
3611 structure, returning a pointer to an inner element. Because of this,
3612 the LLVM code for the given testcase is equivalent to:</p>
3615 define i32* %foo(%ST* %s) {
3616 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
3617 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
3618 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
3619 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
3620 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
3625 <p>Note that it is undefined to access an array out of bounds: array and
3626 pointer indexes must always be within the defined bounds of the array type.
3627 The one exception for this rule is zero length arrays. These arrays are
3628 defined to be accessible as variable length arrays, which requires access
3629 beyond the zero'th element.</p>
3631 <p>The getelementptr instruction is often confusing. For some more insight
3632 into how it works, see <a href="GetElementPtr.html">the getelementptr
3638 <i>; yields [12 x i8]*:aptr</i>
3639 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
3640 <i>; yields i8*:vptr</i>
3641 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
3642 <i>; yields i8*:eptr</i>
3643 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
3647 <!-- ======================================================================= -->
3648 <div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
3650 <div class="doc_text">
3651 <p>The instructions in this category are the conversion instructions (casting)
3652 which all take a single operand and a type. They perform various bit conversions
3656 <!-- _______________________________________________________________________ -->
3657 <div class="doc_subsubsection">
3658 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
3660 <div class="doc_text">
3664 <result> = trunc <ty> <value> to <ty2> <i>; yields ty2</i>
3669 The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
3674 The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
3675 be an <a href="#t_integer">integer</a> type, and a type that specifies the size
3676 and type of the result, which must be an <a href="#t_integer">integer</a>
3677 type. The bit size of <tt>value</tt> must be larger than the bit size of
3678 <tt>ty2</tt>. Equal sized types are not allowed.</p>
3682 The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
3683 and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
3684 larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
3685 It will always truncate bits.</p>
3689 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
3690 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
3691 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
3695 <!-- _______________________________________________________________________ -->
3696 <div class="doc_subsubsection">
3697 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
3699 <div class="doc_text">
3703 <result> = zext <ty> <value> to <ty2> <i>; yields ty2</i>
3707 <p>The '<tt>zext</tt>' instruction zero extends its operand to type
3712 <p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
3713 <a href="#t_integer">integer</a> type, and a type to cast it to, which must
3714 also be of <a href="#t_integer">integer</a> type. The bit size of the
3715 <tt>value</tt> must be smaller than the bit size of the destination type,
3719 <p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
3720 bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
3722 <p>When zero extending from i1, the result will always be either 0 or 1.</p>
3726 %X = zext i32 257 to i64 <i>; yields i64:257</i>
3727 %Y = zext i1 true to i32 <i>; yields i32:1</i>
3731 <!-- _______________________________________________________________________ -->
3732 <div class="doc_subsubsection">
3733 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3735 <div class="doc_text">
3739 <result> = sext <ty> <value> to <ty2> <i>; yields ty2</i>
3743 <p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3747 The '<tt>sext</tt>' instruction takes a value to cast, which must be of
3748 <a href="#t_integer">integer</a> type, and a type to cast it to, which must
3749 also be of <a href="#t_integer">integer</a> type. The bit size of the
3750 <tt>value</tt> must be smaller than the bit size of the destination type,
3755 The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3756 bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
3757 the type <tt>ty2</tt>.</p>
3759 <p>When sign extending from i1, the extension always results in -1 or 0.</p>
3763 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
3764 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
3768 <!-- _______________________________________________________________________ -->
3769 <div class="doc_subsubsection">
3770 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3773 <div class="doc_text">
3778 <result> = fptrunc <ty> <value> to <ty2> <i>; yields ty2</i>
3782 <p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3787 <p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3788 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3789 cast it to. The size of <tt>value</tt> must be larger than the size of
3790 <tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3791 <i>no-op cast</i>.</p>
3794 <p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3795 <a href="#t_floating">floating point</a> type to a smaller
3796 <a href="#t_floating">floating point</a> type. If the value cannot fit within
3797 the destination type, <tt>ty2</tt>, then the results are undefined.</p>
3801 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3802 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3806 <!-- _______________________________________________________________________ -->
3807 <div class="doc_subsubsection">
3808 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3810 <div class="doc_text">
3814 <result> = fpext <ty> <value> to <ty2> <i>; yields ty2</i>
3818 <p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3819 floating point value.</p>
3822 <p>The '<tt>fpext</tt>' instruction takes a
3823 <a href="#t_floating">floating point</a> <tt>value</tt> to cast,
3824 and a <a href="#t_floating">floating point</a> type to cast it to. The source
3825 type must be smaller than the destination type.</p>
3828 <p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
3829 <a href="#t_floating">floating point</a> type to a larger
3830 <a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
3831 used to make a <i>no-op cast</i> because it always changes bits. Use
3832 <tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
3836 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3837 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3841 <!-- _______________________________________________________________________ -->
3842 <div class="doc_subsubsection">
3843 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
3845 <div class="doc_text">
3849 <result> = fptoui <ty> <value> to <ty2> <i>; yields ty2</i>
3853 <p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
3854 unsigned integer equivalent of type <tt>ty2</tt>.
3858 <p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
3859 scalar or vector <a href="#t_floating">floating point</a> value, and a type
3860 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3861 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3862 vector integer type with the same number of elements as <tt>ty</tt></p>
3865 <p> The '<tt>fptoui</tt>' instruction converts its
3866 <a href="#t_floating">floating point</a> operand into the nearest (rounding
3867 towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3868 the results are undefined.</p>
3872 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
3873 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
3874 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
3878 <!-- _______________________________________________________________________ -->
3879 <div class="doc_subsubsection">
3880 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
3882 <div class="doc_text">
3886 <result> = fptosi <ty> <value> to <ty2> <i>; yields ty2</i>
3890 <p>The '<tt>fptosi</tt>' instruction converts
3891 <a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
3895 <p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
3896 scalar or vector <a href="#t_floating">floating point</a> value, and a type
3897 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3898 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3899 vector integer type with the same number of elements as <tt>ty</tt></p>
3902 <p>The '<tt>fptosi</tt>' instruction converts its
3903 <a href="#t_floating">floating point</a> operand into the nearest (rounding
3904 towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3905 the results are undefined.</p>
3909 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
3910 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
3911 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
3915 <!-- _______________________________________________________________________ -->
3916 <div class="doc_subsubsection">
3917 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
3919 <div class="doc_text">
3923 <result> = uitofp <ty> <value> to <ty2> <i>; yields ty2</i>
3927 <p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
3928 integer and converts that value to the <tt>ty2</tt> type.</p>
3931 <p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
3932 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3933 to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3934 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3935 floating point type with the same number of elements as <tt>ty</tt></p>
3938 <p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
3939 integer quantity and converts it to the corresponding floating point value. If
3940 the value cannot fit in the floating point value, the results are undefined.</p>
3944 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
3945 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
3949 <!-- _______________________________________________________________________ -->
3950 <div class="doc_subsubsection">
3951 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
3953 <div class="doc_text">
3957 <result> = sitofp <ty> <value> to <ty2> <i>; yields ty2</i>
3961 <p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
3962 integer and converts that value to the <tt>ty2</tt> type.</p>
3965 <p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
3966 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3967 to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3968 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3969 floating point type with the same number of elements as <tt>ty</tt></p>
3972 <p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
3973 integer quantity and converts it to the corresponding floating point value. If
3974 the value cannot fit in the floating point value, the results are undefined.</p>
3978 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
3979 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
3983 <!-- _______________________________________________________________________ -->
3984 <div class="doc_subsubsection">
3985 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3987 <div class="doc_text">
3991 <result> = ptrtoint <ty> <value> to <ty2> <i>; yields ty2</i>
3995 <p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3996 the integer type <tt>ty2</tt>.</p>
3999 <p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
4000 must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
4001 <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
4004 <p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
4005 <tt>ty2</tt> by interpreting the pointer value as an integer and either
4006 truncating or zero extending that value to the size of the integer type. If
4007 <tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
4008 <tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
4009 are the same size, then nothing is done (<i>no-op cast</i>) other than a type
4014 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
4015 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
4019 <!-- _______________________________________________________________________ -->
4020 <div class="doc_subsubsection">
4021 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
4023 <div class="doc_text">
4027 <result> = inttoptr <ty> <value> to <ty2> <i>; yields ty2</i>
4031 <p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
4032 a pointer type, <tt>ty2</tt>.</p>
4035 <p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
4036 value to cast, and a type to cast it to, which must be a
4037 <a href="#t_pointer">pointer</a> type.</p>
4040 <p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
4041 <tt>ty2</tt> by applying either a zero extension or a truncation depending on
4042 the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
4043 size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
4044 the size of a pointer then a zero extension is done. If they are the same size,
4045 nothing is done (<i>no-op cast</i>).</p>
4049 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
4050 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
4051 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
4055 <!-- _______________________________________________________________________ -->
4056 <div class="doc_subsubsection">
4057 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
4059 <div class="doc_text">
4063 <result> = bitcast <ty> <value> to <ty2> <i>; yields ty2</i>
4068 <p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
4069 <tt>ty2</tt> without changing any bits.</p>
4073 <p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
4074 a non-aggregate first class value, and a type to cast it to, which must also be
4075 a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes of
4077 and the destination type, <tt>ty2</tt>, must be identical. If the source
4078 type is a pointer, the destination type must also be a pointer. This
4079 instruction supports bitwise conversion of vectors to integers and to vectors
4080 of other types (as long as they have the same size).</p>
4083 <p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
4084 <tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
4085 this conversion. The conversion is done as if the <tt>value</tt> had been
4086 stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
4087 converted to other pointer types with this instruction. To convert pointers to
4088 other types, use the <a href="#i_inttoptr">inttoptr</a> or
4089 <a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
4093 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
4094 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
4095 %Z = bitcast <2 x int> %V to i64; <i>; yields i64: %V</i>
4099 <!-- ======================================================================= -->
4100 <div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
4101 <div class="doc_text">
4102 <p>The instructions in this category are the "miscellaneous"
4103 instructions, which defy better classification.</p>
4106 <!-- _______________________________________________________________________ -->
4107 <div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
4109 <div class="doc_text">
4111 <pre> <result> = icmp <cond> <ty> <op1>, <op2> <i>; yields {i1} or {<N x i1>}:result</i>
4114 <p>The '<tt>icmp</tt>' instruction returns a boolean value or
4115 a vector of boolean values based on comparison
4116 of its two integer, integer vector, or pointer operands.</p>
4118 <p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
4119 the condition code indicating the kind of comparison to perform. It is not
4120 a value, just a keyword. The possible condition code are:
4123 <li><tt>eq</tt>: equal</li>
4124 <li><tt>ne</tt>: not equal </li>
4125 <li><tt>ugt</tt>: unsigned greater than</li>
4126 <li><tt>uge</tt>: unsigned greater or equal</li>
4127 <li><tt>ult</tt>: unsigned less than</li>
4128 <li><tt>ule</tt>: unsigned less or equal</li>
4129 <li><tt>sgt</tt>: signed greater than</li>
4130 <li><tt>sge</tt>: signed greater or equal</li>
4131 <li><tt>slt</tt>: signed less than</li>
4132 <li><tt>sle</tt>: signed less or equal</li>
4134 <p>The remaining two arguments must be <a href="#t_integer">integer</a> or
4135 <a href="#t_pointer">pointer</a>
4136 or integer <a href="#t_vector">vector</a> typed.
4137 They must also be identical types.</p>
4139 <p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to
4140 the condition code given as <tt>cond</tt>. The comparison performed always
4141 yields either an <a href="#t_primitive"><tt>i1</tt></a> or vector of <tt>i1</tt> result, as follows:
4144 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
4145 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
4147 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
4148 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.</li>
4149 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
4150 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
4151 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
4152 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
4153 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
4154 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
4155 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
4156 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
4157 <li><tt>sgt</tt>: interprets the operands as signed values and yields
4158 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
4159 <li><tt>sge</tt>: interprets the operands as signed values and yields
4160 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
4161 <li><tt>slt</tt>: interprets the operands as signed values and yields
4162 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
4163 <li><tt>sle</tt>: interprets the operands as signed values and yields
4164 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
4166 <p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
4167 values are compared as if they were integers.</p>
4168 <p>If the operands are integer vectors, then they are compared
4169 element by element. The result is an <tt>i1</tt> vector with
4170 the same number of elements as the values being compared.
4171 Otherwise, the result is an <tt>i1</tt>.
4175 <pre> <result> = icmp eq i32 4, 5 <i>; yields: result=false</i>
4176 <result> = icmp ne float* %X, %X <i>; yields: result=false</i>
4177 <result> = icmp ult i16 4, 5 <i>; yields: result=true</i>
4178 <result> = icmp sgt i16 4, 5 <i>; yields: result=false</i>
4179 <result> = icmp ule i16 -4, 5 <i>; yields: result=false</i>
4180 <result> = icmp sge i16 4, 5 <i>; yields: result=false</i>
4183 <p>Note that the code generator does not yet support vector types with
4184 the <tt>icmp</tt> instruction.</p>
4188 <!-- _______________________________________________________________________ -->
4189 <div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
4191 <div class="doc_text">
4193 <pre> <result> = fcmp <cond> <ty> <op1>, <op2> <i>; yields {i1} or {<N x i1>}:result</i>
4196 <p>The '<tt>fcmp</tt>' instruction returns a boolean value
4197 or vector of boolean values based on comparison
4198 of its operands.</p>
4200 If the operands are floating point scalars, then the result
4201 type is a boolean (<a href="#t_primitive"><tt>i1</tt></a>).
4203 <p>If the operands are floating point vectors, then the result type
4204 is a vector of boolean with the same number of elements as the
4205 operands being compared.</p>
4207 <p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
4208 the condition code indicating the kind of comparison to perform. It is not
4209 a value, just a keyword. The possible condition code are:</p>
4211 <li><tt>false</tt>: no comparison, always returns false</li>
4212 <li><tt>oeq</tt>: ordered and equal</li>
4213 <li><tt>ogt</tt>: ordered and greater than </li>
4214 <li><tt>oge</tt>: ordered and greater than or equal</li>
4215 <li><tt>olt</tt>: ordered and less than </li>
4216 <li><tt>ole</tt>: ordered and less than or equal</li>
4217 <li><tt>one</tt>: ordered and not equal</li>
4218 <li><tt>ord</tt>: ordered (no nans)</li>
4219 <li><tt>ueq</tt>: unordered or equal</li>
4220 <li><tt>ugt</tt>: unordered or greater than </li>
4221 <li><tt>uge</tt>: unordered or greater than or equal</li>
4222 <li><tt>ult</tt>: unordered or less than </li>
4223 <li><tt>ule</tt>: unordered or less than or equal</li>
4224 <li><tt>une</tt>: unordered or not equal</li>
4225 <li><tt>uno</tt>: unordered (either nans)</li>
4226 <li><tt>true</tt>: no comparison, always returns true</li>
4228 <p><i>Ordered</i> means that neither operand is a QNAN while
4229 <i>unordered</i> means that either operand may be a QNAN.</p>
4230 <p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be
4231 either a <a href="#t_floating">floating point</a> type
4232 or a <a href="#t_vector">vector</a> of floating point type.
4233 They must have identical types.</p>
4235 <p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
4236 according to the condition code given as <tt>cond</tt>.
4237 If the operands are vectors, then the vectors are compared
4239 Each comparison performed
4240 always yields an <a href="#t_primitive">i1</a> result, as follows:</p>
4242 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
4243 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
4244 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
4245 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
4246 <tt>op1</tt> is greather than <tt>op2</tt>.</li>
4247 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
4248 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
4249 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
4250 <tt>op1</tt> is less than <tt>op2</tt>.</li>
4251 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
4252 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
4253 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
4254 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
4255 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
4256 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
4257 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
4258 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
4259 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
4260 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
4261 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
4262 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
4263 <tt>op1</tt> is less than <tt>op2</tt>.</li>
4264 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
4265 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
4266 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
4267 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
4268 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
4269 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
4273 <pre> <result> = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
4274 <result> = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
4275 <result> = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
4276 <result> = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
4279 <p>Note that the code generator does not yet support vector types with
4280 the <tt>fcmp</tt> instruction.</p>
4284 <!-- _______________________________________________________________________ -->
4285 <div class="doc_subsubsection">
4286 <a name="i_vicmp">'<tt>vicmp</tt>' Instruction</a>
4288 <div class="doc_text">
4290 <pre> <result> = vicmp <cond> <ty> <op1>, <op2> <i>; yields {ty}:result</i>
4293 <p>The '<tt>vicmp</tt>' instruction returns an integer vector value based on
4294 element-wise comparison of its two integer vector operands.</p>
4296 <p>The '<tt>vicmp</tt>' instruction takes three operands. The first operand is
4297 the condition code indicating the kind of comparison to perform. It is not
4298 a value, just a keyword. The possible condition code are:</p>
4300 <li><tt>eq</tt>: equal</li>
4301 <li><tt>ne</tt>: not equal </li>
4302 <li><tt>ugt</tt>: unsigned greater than</li>
4303 <li><tt>uge</tt>: unsigned greater or equal</li>
4304 <li><tt>ult</tt>: unsigned less than</li>
4305 <li><tt>ule</tt>: unsigned less or equal</li>
4306 <li><tt>sgt</tt>: signed greater than</li>
4307 <li><tt>sge</tt>: signed greater or equal</li>
4308 <li><tt>slt</tt>: signed less than</li>
4309 <li><tt>sle</tt>: signed less or equal</li>
4311 <p>The remaining two arguments must be <a href="#t_vector">vector</a> or
4312 <a href="#t_integer">integer</a> typed. They must also be identical types.</p>
4314 <p>The '<tt>vicmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
4315 according to the condition code given as <tt>cond</tt>. The comparison yields a
4316 <a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, of
4317 identical type as the values being compared. The most significant bit in each
4318 element is 1 if the element-wise comparison evaluates to true, and is 0
4319 otherwise. All other bits of the result are undefined. The condition codes
4320 are evaluated identically to the <a href="#i_icmp">'<tt>icmp</tt>'
4321 instruction</a>.</p>
4325 <result> = vicmp eq <2 x i32> < i32 4, i32 0>, < i32 5, i32 0> <i>; yields: result=<2 x i32> < i32 0, i32 -1 ></i>
4326 <result> = vicmp ult <2 x i8 > < i8 1, i8 2>, < i8 2, i8 2 > <i>; yields: result=<2 x i8> < i8 -1, i8 0 ></i>
4330 <!-- _______________________________________________________________________ -->
4331 <div class="doc_subsubsection">
4332 <a name="i_vfcmp">'<tt>vfcmp</tt>' Instruction</a>
4334 <div class="doc_text">
4336 <pre> <result> = vfcmp <cond> <ty> <op1>, <op2></pre>
4338 <p>The '<tt>vfcmp</tt>' instruction returns an integer vector value based on
4339 element-wise comparison of its two floating point vector operands. The output
4340 elements have the same width as the input elements.</p>
4342 <p>The '<tt>vfcmp</tt>' instruction takes three operands. The first operand is
4343 the condition code indicating the kind of comparison to perform. It is not
4344 a value, just a keyword. The possible condition code are:</p>
4346 <li><tt>false</tt>: no comparison, always returns false</li>
4347 <li><tt>oeq</tt>: ordered and equal</li>
4348 <li><tt>ogt</tt>: ordered and greater than </li>
4349 <li><tt>oge</tt>: ordered and greater than or equal</li>
4350 <li><tt>olt</tt>: ordered and less than </li>
4351 <li><tt>ole</tt>: ordered and less than or equal</li>
4352 <li><tt>one</tt>: ordered and not equal</li>
4353 <li><tt>ord</tt>: ordered (no nans)</li>
4354 <li><tt>ueq</tt>: unordered or equal</li>
4355 <li><tt>ugt</tt>: unordered or greater than </li>
4356 <li><tt>uge</tt>: unordered or greater than or equal</li>
4357 <li><tt>ult</tt>: unordered or less than </li>
4358 <li><tt>ule</tt>: unordered or less than or equal</li>
4359 <li><tt>une</tt>: unordered or not equal</li>
4360 <li><tt>uno</tt>: unordered (either nans)</li>
4361 <li><tt>true</tt>: no comparison, always returns true</li>
4363 <p>The remaining two arguments must be <a href="#t_vector">vector</a> of
4364 <a href="#t_floating">floating point</a> typed. They must also be identical
4367 <p>The '<tt>vfcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
4368 according to the condition code given as <tt>cond</tt>. The comparison yields a
4369 <a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, with
4370 an identical number of elements as the values being compared, and each element
4371 having identical with to the width of the floating point elements. The most
4372 significant bit in each element is 1 if the element-wise comparison evaluates to
4373 true, and is 0 otherwise. All other bits of the result are undefined. The
4374 condition codes are evaluated identically to the
4375 <a href="#i_fcmp">'<tt>fcmp</tt>' instruction</a>.</p>
4379 <i>; yields: result=<2 x i32> < i32 0, i32 -1 ></i>
4380 <result> = vfcmp oeq <2 x float> < float 4, float 0 >, < float 5, float 0 >
4382 <i>; yields: result=<2 x i64> < i64 -1, i64 0 ></i>
4383 <result> = vfcmp ult <2 x double> < double 1, double 2 >, < double 2, double 2>
4387 <!-- _______________________________________________________________________ -->
4388 <div class="doc_subsubsection">
4389 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
4392 <div class="doc_text">
4396 <pre> <result> = phi <ty> [ <val0>, <label0>], ...<br></pre>
4398 <p>The '<tt>phi</tt>' instruction is used to implement the φ node in
4399 the SSA graph representing the function.</p>
4402 <p>The type of the incoming values is specified with the first type
4403 field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
4404 as arguments, with one pair for each predecessor basic block of the
4405 current block. Only values of <a href="#t_firstclass">first class</a>
4406 type may be used as the value arguments to the PHI node. Only labels
4407 may be used as the label arguments.</p>
4409 <p>There must be no non-phi instructions between the start of a basic
4410 block and the PHI instructions: i.e. PHI instructions must be first in
4415 <p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
4416 specified by the pair corresponding to the predecessor basic block that executed
4417 just prior to the current block.</p>
4421 Loop: ; Infinite loop that counts from 0 on up...
4422 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
4423 %nextindvar = add i32 %indvar, 1
4428 <!-- _______________________________________________________________________ -->
4429 <div class="doc_subsubsection">
4430 <a name="i_select">'<tt>select</tt>' Instruction</a>
4433 <div class="doc_text">
4438 <result> = select <i>selty</i> <cond>, <ty> <val1>, <ty> <val2> <i>; yields ty</i>
4440 <i>selty</i> is either i1 or {<N x i1>}
4446 The '<tt>select</tt>' instruction is used to choose one value based on a
4447 condition, without branching.
4454 The '<tt>select</tt>' instruction requires an 'i1' value or
4455 a vector of 'i1' values indicating the
4456 condition, and two values of the same <a href="#t_firstclass">first class</a>
4457 type. If the val1/val2 are vectors and
4458 the condition is a scalar, then entire vectors are selected, not
4459 individual elements.
4465 If the condition is an i1 and it evaluates to 1, the instruction returns the first
4466 value argument; otherwise, it returns the second value argument.
4469 If the condition is a vector of i1, then the value arguments must
4470 be vectors of the same size, and the selection is done element
4477 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
4480 <p>Note that the code generator does not yet support conditions
4481 with vector type.</p>
4486 <!-- _______________________________________________________________________ -->
4487 <div class="doc_subsubsection">
4488 <a name="i_call">'<tt>call</tt>' Instruction</a>
4491 <div class="doc_text">
4495 <result> = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] <ty> [<fnty>*] <fnptrval>(<function args>) [<a href="#fnattrs">fn attrs</a>]
4500 <p>The '<tt>call</tt>' instruction represents a simple function call.</p>
4504 <p>This instruction requires several arguments:</p>
4508 <p>The optional "tail" marker indicates whether the callee function accesses
4509 any allocas or varargs in the caller. If the "tail" marker is present, the
4510 function call is eligible for tail call optimization. Note that calls may
4511 be marked "tail" even if they do not occur before a <a
4512 href="#i_ret"><tt>ret</tt></a> instruction.</p>
4515 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
4516 convention</a> the call should use. If none is specified, the call defaults
4517 to using C calling conventions.</p>
4521 <p>The optional <a href="#paramattrs">Parameter Attributes</a> list for
4522 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
4523 and '<tt>inreg</tt>' attributes are valid here.</p>
4527 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
4528 the type of the return value. Functions that return no value are marked
4529 <tt><a href="#t_void">void</a></tt>.</p>
4532 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
4533 value being invoked. The argument types must match the types implied by
4534 this signature. This type can be omitted if the function is not varargs
4535 and if the function type does not return a pointer to a function.</p>
4538 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
4539 be invoked. In most cases, this is a direct function invocation, but
4540 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
4541 to function value.</p>
4544 <p>'<tt>function args</tt>': argument list whose types match the
4545 function signature argument types. All arguments must be of
4546 <a href="#t_firstclass">first class</a> type. If the function signature
4547 indicates the function accepts a variable number of arguments, the extra
4548 arguments can be specified.</p>
4551 <p>The optional <a href="#fnattrs">function attributes</a> list. Only
4552 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
4553 '<tt>readnone</tt>' attributes are valid here.</p>
4559 <p>The '<tt>call</tt>' instruction is used to cause control flow to
4560 transfer to a specified function, with its incoming arguments bound to
4561 the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
4562 instruction in the called function, control flow continues with the
4563 instruction after the function call, and the return value of the
4564 function is bound to the result argument.</p>
4569 %retval = call i32 @test(i32 %argc)
4570 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
4571 %X = tail call i32 @foo() <i>; yields i32</i>
4572 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
4573 call void %foo(i8 97 signext)
4575 %struct.A = type { i32, i8 }
4576 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
4577 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
4578 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
4579 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
4580 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
4585 <!-- _______________________________________________________________________ -->
4586 <div class="doc_subsubsection">
4587 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
4590 <div class="doc_text">
4595 <resultval> = va_arg <va_list*> <arglist>, <argty>
4600 <p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
4601 the "variable argument" area of a function call. It is used to implement the
4602 <tt>va_arg</tt> macro in C.</p>
4606 <p>This instruction takes a <tt>va_list*</tt> value and the type of
4607 the argument. It returns a value of the specified argument type and
4608 increments the <tt>va_list</tt> to point to the next argument. The
4609 actual type of <tt>va_list</tt> is target specific.</p>
4613 <p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
4614 type from the specified <tt>va_list</tt> and causes the
4615 <tt>va_list</tt> to point to the next argument. For more information,
4616 see the variable argument handling <a href="#int_varargs">Intrinsic
4619 <p>It is legal for this instruction to be called in a function which does not
4620 take a variable number of arguments, for example, the <tt>vfprintf</tt>
4623 <p><tt>va_arg</tt> is an LLVM instruction instead of an <a
4624 href="#intrinsics">intrinsic function</a> because it takes a type as an
4629 <p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
4631 <p>Note that the code generator does not yet fully support va_arg
4632 on many targets. Also, it does not currently support va_arg with
4633 aggregate types on any target.</p>
4637 <!-- *********************************************************************** -->
4638 <div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
4639 <!-- *********************************************************************** -->
4641 <div class="doc_text">
4643 <p>LLVM supports the notion of an "intrinsic function". These functions have
4644 well known names and semantics and are required to follow certain restrictions.
4645 Overall, these intrinsics represent an extension mechanism for the LLVM
4646 language that does not require changing all of the transformations in LLVM when
4647 adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
4649 <p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
4650 prefix is reserved in LLVM for intrinsic names; thus, function names may not
4651 begin with this prefix. Intrinsic functions must always be external functions:
4652 you cannot define the body of intrinsic functions. Intrinsic functions may
4653 only be used in call or invoke instructions: it is illegal to take the address
4654 of an intrinsic function. Additionally, because intrinsic functions are part
4655 of the LLVM language, it is required if any are added that they be documented
4658 <p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
4659 a family of functions that perform the same operation but on different data
4660 types. Because LLVM can represent over 8 million different integer types,
4661 overloading is used commonly to allow an intrinsic function to operate on any
4662 integer type. One or more of the argument types or the result type can be
4663 overloaded to accept any integer type. Argument types may also be defined as
4664 exactly matching a previous argument's type or the result type. This allows an
4665 intrinsic function which accepts multiple arguments, but needs all of them to
4666 be of the same type, to only be overloaded with respect to a single argument or
4669 <p>Overloaded intrinsics will have the names of its overloaded argument types
4670 encoded into its function name, each preceded by a period. Only those types
4671 which are overloaded result in a name suffix. Arguments whose type is matched
4672 against another type do not. For example, the <tt>llvm.ctpop</tt> function can
4673 take an integer of any width and returns an integer of exactly the same integer
4674 width. This leads to a family of functions such as
4675 <tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
4676 Only one type, the return type, is overloaded, and only one type suffix is
4677 required. Because the argument's type is matched against the return type, it
4678 does not require its own name suffix.</p>
4680 <p>To learn how to add an intrinsic function, please see the
4681 <a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
4686 <!-- ======================================================================= -->
4687 <div class="doc_subsection">
4688 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
4691 <div class="doc_text">
4693 <p>Variable argument support is defined in LLVM with the <a
4694 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
4695 intrinsic functions. These functions are related to the similarly
4696 named macros defined in the <tt><stdarg.h></tt> header file.</p>
4698 <p>All of these functions operate on arguments that use a
4699 target-specific value type "<tt>va_list</tt>". The LLVM assembly
4700 language reference manual does not define what this type is, so all
4701 transformations should be prepared to handle these functions regardless of
4704 <p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
4705 instruction and the variable argument handling intrinsic functions are
4708 <div class="doc_code">
4710 define i32 @test(i32 %X, ...) {
4711 ; Initialize variable argument processing
4713 %ap2 = bitcast i8** %ap to i8*
4714 call void @llvm.va_start(i8* %ap2)
4716 ; Read a single integer argument
4717 %tmp = va_arg i8** %ap, i32
4719 ; Demonstrate usage of llvm.va_copy and llvm.va_end
4721 %aq2 = bitcast i8** %aq to i8*
4722 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
4723 call void @llvm.va_end(i8* %aq2)
4725 ; Stop processing of arguments.
4726 call void @llvm.va_end(i8* %ap2)
4730 declare void @llvm.va_start(i8*)
4731 declare void @llvm.va_copy(i8*, i8*)
4732 declare void @llvm.va_end(i8*)
4738 <!-- _______________________________________________________________________ -->
4739 <div class="doc_subsubsection">
4740 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
4744 <div class="doc_text">
4746 <pre> declare void %llvm.va_start(i8* <arglist>)<br></pre>
4748 <p>The '<tt>llvm.va_start</tt>' intrinsic initializes
4749 <tt>*<arglist></tt> for subsequent use by <tt><a
4750 href="#i_va_arg">va_arg</a></tt>.</p>
4754 <p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
4758 <p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
4759 macro available in C. In a target-dependent way, it initializes the
4760 <tt>va_list</tt> element to which the argument points, so that the next call to
4761 <tt>va_arg</tt> will produce the first variable argument passed to the function.
4762 Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
4763 last argument of the function as the compiler can figure that out.</p>
4767 <!-- _______________________________________________________________________ -->
4768 <div class="doc_subsubsection">
4769 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
4772 <div class="doc_text">
4774 <pre> declare void @llvm.va_end(i8* <arglist>)<br></pre>
4777 <p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*<arglist></tt>,
4778 which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
4779 or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
4783 <p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
4787 <p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
4788 macro available in C. In a target-dependent way, it destroys the
4789 <tt>va_list</tt> element to which the argument points. Calls to <a
4790 href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
4791 <tt>llvm.va_copy</tt></a> must be matched exactly with calls to
4792 <tt>llvm.va_end</tt>.</p>
4796 <!-- _______________________________________________________________________ -->
4797 <div class="doc_subsubsection">
4798 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
4801 <div class="doc_text">
4806 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
4811 <p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
4812 from the source argument list to the destination argument list.</p>
4816 <p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
4817 The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
4822 <p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
4823 macro available in C. In a target-dependent way, it copies the source
4824 <tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
4825 intrinsic is necessary because the <tt><a href="#int_va_start">
4826 llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
4827 example, memory allocation.</p>
4831 <!-- ======================================================================= -->
4832 <div class="doc_subsection">
4833 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
4836 <div class="doc_text">
4839 LLVM support for <a href="GarbageCollection.html">Accurate Garbage
4840 Collection</a> (GC) requires the implementation and generation of these
4842 These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
4843 stack</a>, as well as garbage collector implementations that require <a
4844 href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
4845 Front-ends for type-safe garbage collected languages should generate these
4846 intrinsics to make use of the LLVM garbage collectors. For more details, see <a
4847 href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
4850 <p>The garbage collection intrinsics only operate on objects in the generic
4851 address space (address space zero).</p>
4855 <!-- _______________________________________________________________________ -->
4856 <div class="doc_subsubsection">
4857 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
4860 <div class="doc_text">
4865 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
4870 <p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
4871 the code generator, and allows some metadata to be associated with it.</p>
4875 <p>The first argument specifies the address of a stack object that contains the
4876 root pointer. The second pointer (which must be either a constant or a global
4877 value address) contains the meta-data to be associated with the root.</p>
4881 <p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
4882 location. At compile-time, the code generator generates information to allow
4883 the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
4884 intrinsic may only be used in a function which <a href="#gc">specifies a GC
4890 <!-- _______________________________________________________________________ -->
4891 <div class="doc_subsubsection">
4892 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
4895 <div class="doc_text">
4900 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
4905 <p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
4906 locations, allowing garbage collector implementations that require read
4911 <p>The second argument is the address to read from, which should be an address
4912 allocated from the garbage collector. The first object is a pointer to the
4913 start of the referenced object, if needed by the language runtime (otherwise
4918 <p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
4919 instruction, but may be replaced with substantially more complex code by the
4920 garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
4921 may only be used in a function which <a href="#gc">specifies a GC
4927 <!-- _______________________________________________________________________ -->
4928 <div class="doc_subsubsection">
4929 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
4932 <div class="doc_text">
4937 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
4942 <p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
4943 locations, allowing garbage collector implementations that require write
4944 barriers (such as generational or reference counting collectors).</p>
4948 <p>The first argument is the reference to store, the second is the start of the
4949 object to store it to, and the third is the address of the field of Obj to
4950 store to. If the runtime does not require a pointer to the object, Obj may be
4955 <p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
4956 instruction, but may be replaced with substantially more complex code by the
4957 garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
4958 may only be used in a function which <a href="#gc">specifies a GC
4965 <!-- ======================================================================= -->
4966 <div class="doc_subsection">
4967 <a name="int_codegen">Code Generator Intrinsics</a>
4970 <div class="doc_text">
4972 These intrinsics are provided by LLVM to expose special features that may only
4973 be implemented with code generator support.
4978 <!-- _______________________________________________________________________ -->
4979 <div class="doc_subsubsection">
4980 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
4983 <div class="doc_text">
4987 declare i8 *@llvm.returnaddress(i32 <level>)
4993 The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
4994 target-specific value indicating the return address of the current function
4995 or one of its callers.
5001 The argument to this intrinsic indicates which function to return the address
5002 for. Zero indicates the calling function, one indicates its caller, etc. The
5003 argument is <b>required</b> to be a constant integer value.
5009 The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
5010 the return address of the specified call frame, or zero if it cannot be
5011 identified. The value returned by this intrinsic is likely to be incorrect or 0
5012 for arguments other than zero, so it should only be used for debugging purposes.
5016 Note that calling this intrinsic does not prevent function inlining or other
5017 aggressive transformations, so the value returned may not be that of the obvious
5018 source-language caller.
5023 <!-- _______________________________________________________________________ -->
5024 <div class="doc_subsubsection">
5025 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
5028 <div class="doc_text">
5032 declare i8 *@llvm.frameaddress(i32 <level>)
5038 The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
5039 target-specific frame pointer value for the specified stack frame.
5045 The argument to this intrinsic indicates which function to return the frame
5046 pointer for. Zero indicates the calling function, one indicates its caller,
5047 etc. The argument is <b>required</b> to be a constant integer value.
5053 The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
5054 the frame address of the specified call frame, or zero if it cannot be
5055 identified. The value returned by this intrinsic is likely to be incorrect or 0
5056 for arguments other than zero, so it should only be used for debugging purposes.
5060 Note that calling this intrinsic does not prevent function inlining or other
5061 aggressive transformations, so the value returned may not be that of the obvious
5062 source-language caller.
5066 <!-- _______________________________________________________________________ -->
5067 <div class="doc_subsubsection">
5068 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
5071 <div class="doc_text">
5075 declare i8 *@llvm.stacksave()
5081 The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
5082 the function stack, for use with <a href="#int_stackrestore">
5083 <tt>llvm.stackrestore</tt></a>. This is useful for implementing language
5084 features like scoped automatic variable sized arrays in C99.
5090 This intrinsic returns a opaque pointer value that can be passed to <a
5091 href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
5092 <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
5093 <tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
5094 state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
5095 practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
5096 that were allocated after the <tt>llvm.stacksave</tt> was executed.
5101 <!-- _______________________________________________________________________ -->
5102 <div class="doc_subsubsection">
5103 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
5106 <div class="doc_text">
5110 declare void @llvm.stackrestore(i8 * %ptr)
5116 The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
5117 the function stack to the state it was in when the corresponding <a
5118 href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
5119 useful for implementing language features like scoped automatic variable sized
5126 See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
5132 <!-- _______________________________________________________________________ -->
5133 <div class="doc_subsubsection">
5134 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
5137 <div class="doc_text">
5141 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>)
5148 The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
5149 a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
5151 effect on the behavior of the program but can change its performance
5158 <tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
5159 determining if the fetch should be for a read (0) or write (1), and
5160 <tt>locality</tt> is a temporal locality specifier ranging from (0) - no
5161 locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
5162 <tt>locality</tt> arguments must be constant integers.
5168 This intrinsic does not modify the behavior of the program. In particular,
5169 prefetches cannot trap and do not produce a value. On targets that support this
5170 intrinsic, the prefetch can provide hints to the processor cache for better
5176 <!-- _______________________________________________________________________ -->
5177 <div class="doc_subsubsection">
5178 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
5181 <div class="doc_text">
5185 declare void @llvm.pcmarker(i32 <id>)
5192 The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
5194 code to simulators and other tools. The method is target specific, but it is
5195 expected that the marker will use exported symbols to transmit the PC of the
5197 The marker makes no guarantees that it will remain with any specific instruction
5198 after optimizations. It is possible that the presence of a marker will inhibit
5199 optimizations. The intended use is to be inserted after optimizations to allow
5200 correlations of simulation runs.
5206 <tt>id</tt> is a numerical id identifying the marker.
5212 This intrinsic does not modify the behavior of the program. Backends that do not
5213 support this intrinisic may ignore it.
5218 <!-- _______________________________________________________________________ -->
5219 <div class="doc_subsubsection">
5220 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
5223 <div class="doc_text">
5227 declare i64 @llvm.readcyclecounter( )
5234 The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
5235 counter register (or similar low latency, high accuracy clocks) on those targets
5236 that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
5237 As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
5238 should only be used for small timings.
5244 When directly supported, reading the cycle counter should not modify any memory.
5245 Implementations are allowed to either return a application specific value or a
5246 system wide value. On backends without support, this is lowered to a constant 0.
5251 <!-- ======================================================================= -->
5252 <div class="doc_subsection">
5253 <a name="int_libc">Standard C Library Intrinsics</a>
5256 <div class="doc_text">
5258 LLVM provides intrinsics for a few important standard C library functions.
5259 These intrinsics allow source-language front-ends to pass information about the
5260 alignment of the pointer arguments to the code generator, providing opportunity
5261 for more efficient code generation.
5266 <!-- _______________________________________________________________________ -->
5267 <div class="doc_subsubsection">
5268 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
5271 <div class="doc_text">
5274 <p>This is an overloaded intrinsic. You can use llvm.memcpy on any integer bit
5275 width. Not all targets support all bit widths however.</p>
5277 declare void @llvm.memcpy.i8(i8 * <dest>, i8 * <src>,
5278 i8 <len>, i32 <align>)
5279 declare void @llvm.memcpy.i16(i8 * <dest>, i8 * <src>,
5280 i16 <len>, i32 <align>)
5281 declare void @llvm.memcpy.i32(i8 * <dest>, i8 * <src>,
5282 i32 <len>, i32 <align>)
5283 declare void @llvm.memcpy.i64(i8 * <dest>, i8 * <src>,
5284 i64 <len>, i32 <align>)
5290 The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
5291 location to the destination location.
5295 Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
5296 intrinsics do not return a value, and takes an extra alignment argument.
5302 The first argument is a pointer to the destination, the second is a pointer to
5303 the source. The third argument is an integer argument
5304 specifying the number of bytes to copy, and the fourth argument is the alignment
5305 of the source and destination locations.
5309 If the call to this intrinisic has an alignment value that is not 0 or 1, then
5310 the caller guarantees that both the source and destination pointers are aligned
5317 The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
5318 location to the destination location, which are not allowed to overlap. It
5319 copies "len" bytes of memory over. If the argument is known to be aligned to
5320 some boundary, this can be specified as the fourth argument, otherwise it should
5326 <!-- _______________________________________________________________________ -->
5327 <div class="doc_subsubsection">
5328 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
5331 <div class="doc_text">
5334 <p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
5335 width. Not all targets support all bit widths however.</p>
5337 declare void @llvm.memmove.i8(i8 * <dest>, i8 * <src>,
5338 i8 <len>, i32 <align>)
5339 declare void @llvm.memmove.i16(i8 * <dest>, i8 * <src>,
5340 i16 <len>, i32 <align>)
5341 declare void @llvm.memmove.i32(i8 * <dest>, i8 * <src>,
5342 i32 <len>, i32 <align>)
5343 declare void @llvm.memmove.i64(i8 * <dest>, i8 * <src>,
5344 i64 <len>, i32 <align>)
5350 The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
5351 location to the destination location. It is similar to the
5352 '<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
5356 Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5357 intrinsics do not return a value, and takes an extra alignment argument.
5363 The first argument is a pointer to the destination, the second is a pointer to
5364 the source. The third argument is an integer argument
5365 specifying the number of bytes to copy, and the fourth argument is the alignment
5366 of the source and destination locations.
5370 If the call to this intrinisic has an alignment value that is not 0 or 1, then
5371 the caller guarantees that the source and destination pointers are aligned to
5378 The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
5379 location to the destination location, which may overlap. It
5380 copies "len" bytes of memory over. If the argument is known to be aligned to
5381 some boundary, this can be specified as the fourth argument, otherwise it should
5387 <!-- _______________________________________________________________________ -->
5388 <div class="doc_subsubsection">
5389 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
5392 <div class="doc_text">
5395 <p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
5396 width. Not all targets support all bit widths however.</p>
5398 declare void @llvm.memset.i8(i8 * <dest>, i8 <val>,
5399 i8 <len>, i32 <align>)
5400 declare void @llvm.memset.i16(i8 * <dest>, i8 <val>,
5401 i16 <len>, i32 <align>)
5402 declare void @llvm.memset.i32(i8 * <dest>, i8 <val>,
5403 i32 <len>, i32 <align>)
5404 declare void @llvm.memset.i64(i8 * <dest>, i8 <val>,
5405 i64 <len>, i32 <align>)
5411 The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
5416 Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
5417 does not return a value, and takes an extra alignment argument.
5423 The first argument is a pointer to the destination to fill, the second is the
5424 byte value to fill it with, the third argument is an integer
5425 argument specifying the number of bytes to fill, and the fourth argument is the
5426 known alignment of destination location.
5430 If the call to this intrinisic has an alignment value that is not 0 or 1, then
5431 the caller guarantees that the destination pointer is aligned to that boundary.
5437 The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
5439 destination location. If the argument is known to be aligned to some boundary,
5440 this can be specified as the fourth argument, otherwise it should be set to 0 or
5446 <!-- _______________________________________________________________________ -->
5447 <div class="doc_subsubsection">
5448 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
5451 <div class="doc_text">
5454 <p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
5455 floating point or vector of floating point type. Not all targets support all
5458 declare float @llvm.sqrt.f32(float %Val)
5459 declare double @llvm.sqrt.f64(double %Val)
5460 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5461 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5462 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
5468 The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
5469 returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike
5470 <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
5471 negative numbers other than -0.0 (which allows for better optimization, because
5472 there is no need to worry about errno being set). <tt>llvm.sqrt(-0.0)</tt> is
5473 defined to return -0.0 like IEEE sqrt.
5479 The argument and return value are floating point numbers of the same type.
5485 This function returns the sqrt of the specified operand if it is a nonnegative
5486 floating point number.
5490 <!-- _______________________________________________________________________ -->
5491 <div class="doc_subsubsection">
5492 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
5495 <div class="doc_text">
5498 <p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
5499 floating point or vector of floating point type. Not all targets support all
5502 declare float @llvm.powi.f32(float %Val, i32 %power)
5503 declare double @llvm.powi.f64(double %Val, i32 %power)
5504 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5505 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5506 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
5512 The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5513 specified (positive or negative) power. The order of evaluation of
5514 multiplications is not defined. When a vector of floating point type is
5515 used, the second argument remains a scalar integer value.
5521 The second argument is an integer power, and the first is a value to raise to
5528 This function returns the first value raised to the second power with an
5529 unspecified sequence of rounding operations.</p>
5532 <!-- _______________________________________________________________________ -->
5533 <div class="doc_subsubsection">
5534 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5537 <div class="doc_text">
5540 <p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5541 floating point or vector of floating point type. Not all targets support all
5544 declare float @llvm.sin.f32(float %Val)
5545 declare double @llvm.sin.f64(double %Val)
5546 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5547 declare fp128 @llvm.sin.f128(fp128 %Val)
5548 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5554 The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
5560 The argument and return value are floating point numbers of the same type.
5566 This function returns the sine of the specified operand, returning the
5567 same values as the libm <tt>sin</tt> functions would, and handles error
5568 conditions in the same way.</p>
5571 <!-- _______________________________________________________________________ -->
5572 <div class="doc_subsubsection">
5573 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5576 <div class="doc_text">
5579 <p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5580 floating point or vector of floating point type. Not all targets support all
5583 declare float @llvm.cos.f32(float %Val)
5584 declare double @llvm.cos.f64(double %Val)
5585 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5586 declare fp128 @llvm.cos.f128(fp128 %Val)
5587 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5593 The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
5599 The argument and return value are floating point numbers of the same type.
5605 This function returns the cosine of the specified operand, returning the
5606 same values as the libm <tt>cos</tt> functions would, and handles error
5607 conditions in the same way.</p>
5610 <!-- _______________________________________________________________________ -->
5611 <div class="doc_subsubsection">
5612 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5615 <div class="doc_text">
5618 <p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5619 floating point or vector of floating point type. Not all targets support all
5622 declare float @llvm.pow.f32(float %Val, float %Power)
5623 declare double @llvm.pow.f64(double %Val, double %Power)
5624 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5625 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5626 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5632 The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5633 specified (positive or negative) power.
5639 The second argument is a floating point power, and the first is a value to
5640 raise to that power.
5646 This function returns the first value raised to the second power,
5648 same values as the libm <tt>pow</tt> functions would, and handles error
5649 conditions in the same way.</p>
5653 <!-- ======================================================================= -->
5654 <div class="doc_subsection">
5655 <a name="int_manip">Bit Manipulation Intrinsics</a>
5658 <div class="doc_text">
5660 LLVM provides intrinsics for a few important bit manipulation operations.
5661 These allow efficient code generation for some algorithms.
5666 <!-- _______________________________________________________________________ -->
5667 <div class="doc_subsubsection">
5668 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
5671 <div class="doc_text">
5674 <p>This is an overloaded intrinsic function. You can use bswap on any integer
5675 type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
5677 declare i16 @llvm.bswap.i16(i16 <id>)
5678 declare i32 @llvm.bswap.i32(i32 <id>)
5679 declare i64 @llvm.bswap.i64(i64 <id>)
5685 The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
5686 values with an even number of bytes (positive multiple of 16 bits). These are
5687 useful for performing operations on data that is not in the target's native
5694 The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
5695 and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
5696 intrinsic returns an i32 value that has the four bytes of the input i32
5697 swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
5698 i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
5699 <tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
5700 additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
5705 <!-- _______________________________________________________________________ -->
5706 <div class="doc_subsubsection">
5707 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
5710 <div class="doc_text">
5713 <p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
5714 width. Not all targets support all bit widths however.</p>
5716 declare i8 @llvm.ctpop.i8(i8 <src>)
5717 declare i16 @llvm.ctpop.i16(i16 <src>)
5718 declare i32 @llvm.ctpop.i32(i32 <src>)
5719 declare i64 @llvm.ctpop.i64(i64 <src>)
5720 declare i256 @llvm.ctpop.i256(i256 <src>)
5726 The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
5733 The only argument is the value to be counted. The argument may be of any
5734 integer type. The return type must match the argument type.
5740 The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
5744 <!-- _______________________________________________________________________ -->
5745 <div class="doc_subsubsection">
5746 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
5749 <div class="doc_text">
5752 <p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
5753 integer bit width. Not all targets support all bit widths however.</p>
5755 declare i8 @llvm.ctlz.i8 (i8 <src>)
5756 declare i16 @llvm.ctlz.i16(i16 <src>)
5757 declare i32 @llvm.ctlz.i32(i32 <src>)
5758 declare i64 @llvm.ctlz.i64(i64 <src>)
5759 declare i256 @llvm.ctlz.i256(i256 <src>)
5765 The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
5766 leading zeros in a variable.
5772 The only argument is the value to be counted. The argument may be of any
5773 integer type. The return type must match the argument type.
5779 The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
5780 in a variable. If the src == 0 then the result is the size in bits of the type
5781 of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
5787 <!-- _______________________________________________________________________ -->
5788 <div class="doc_subsubsection">
5789 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
5792 <div class="doc_text">
5795 <p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
5796 integer bit width. Not all targets support all bit widths however.</p>
5798 declare i8 @llvm.cttz.i8 (i8 <src>)
5799 declare i16 @llvm.cttz.i16(i16 <src>)
5800 declare i32 @llvm.cttz.i32(i32 <src>)
5801 declare i64 @llvm.cttz.i64(i64 <src>)
5802 declare i256 @llvm.cttz.i256(i256 <src>)
5808 The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
5815 The only argument is the value to be counted. The argument may be of any
5816 integer type. The return type must match the argument type.
5822 The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
5823 in a variable. If the src == 0 then the result is the size in bits of the type
5824 of src. For example, <tt>llvm.cttz(2) = 1</tt>.
5828 <!-- _______________________________________________________________________ -->
5829 <div class="doc_subsubsection">
5830 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
5833 <div class="doc_text">
5836 <p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
5837 on any integer bit width.</p>
5839 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
5840 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
5844 <p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
5845 range of bits from an integer value and returns them in the same bit width as
5846 the original value.</p>
5849 <p>The first argument, <tt>%val</tt> and the result may be integer types of
5850 any bit width but they must have the same bit width. The second and third
5851 arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
5854 <p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
5855 of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
5856 <tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
5857 operates in forward mode.</p>
5858 <p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
5859 right by <tt>%loBit</tt> bits and then ANDing it with a mask with
5860 only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
5862 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
5863 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
5864 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
5865 to determine the number of bits to retain.</li>
5866 <li>A mask of the retained bits is created by shifting a -1 value.</li>
5867 <li>The mask is ANDed with <tt>%val</tt> to produce the result.</li>
5869 <p>In reverse mode, a similar computation is made except that the bits are
5870 returned in the reverse order. So, for example, if <tt>X</tt> has the value
5871 <tt>i16 0x0ACF (101011001111)</tt> and we apply
5872 <tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
5873 <tt>i16 0x0026 (000000100110)</tt>.</p>
5876 <div class="doc_subsubsection">
5877 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
5880 <div class="doc_text">
5883 <p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
5884 on any integer bit width.</p>
5886 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
5887 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
5891 <p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
5892 of bits in an integer value with another integer value. It returns the integer
5893 with the replaced bits.</p>
5896 <p>The first argument, <tt>%val</tt>, and the result may be integer types of
5897 any bit width, but they must have the same bit width. <tt>%val</tt> is the value
5898 whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
5899 integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
5900 type since they specify only a bit index.</p>
5903 <p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
5904 of operation: forwards and reverse. If <tt>%lo</tt> is greater than
5905 <tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
5906 operates in forward mode.</p>
5908 <p>For both modes, the <tt>%repl</tt> value is prepared for use by either
5909 truncating it down to the size of the replacement area or zero extending it
5910 up to that size.</p>
5912 <p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
5913 are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
5914 in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
5915 to the <tt>%hi</tt>th bit.</p>
5917 <p>In reverse mode, a similar computation is made except that the bits are
5918 reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
5919 <tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.</p>
5924 llvm.part.set(0xFFFF, 0, 4, 7) -> 0xFF0F
5925 llvm.part.set(0xFFFF, 0, 7, 4) -> 0xFF0F
5926 llvm.part.set(0xFFFF, 1, 7, 4) -> 0xFF8F
5927 llvm.part.set(0xFFFF, F, 8, 3) -> 0xFFE7
5928 llvm.part.set(0xFFFF, 0, 3, 8) -> 0xFE07
5933 <!-- ======================================================================= -->
5934 <div class="doc_subsection">
5935 <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
5938 <div class="doc_text">
5940 LLVM provides intrinsics for some arithmetic with overflow operations.
5945 <!-- _______________________________________________________________________ -->
5946 <div class="doc_subsubsection">
5947 <a name="int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics</a>
5950 <div class="doc_text">
5954 <p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
5955 on any integer bit width.</p>
5958 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
5959 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
5960 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
5965 <p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
5966 a signed addition of the two arguments, and indicate whether an overflow
5967 occurred during the signed summation.</p>
5971 <p>The arguments (%a and %b) and the first element of the result structure may
5972 be of integer types of any bit width, but they must have the same bit width. The
5973 second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
5974 and <tt>%b</tt> are the two values that will undergo signed addition.</p>
5978 <p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
5979 a signed addition of the two variables. They return a structure — the
5980 first element of which is the signed summation, and the second element of which
5981 is a bit specifying if the signed summation resulted in an overflow.</p>
5985 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
5986 %sum = extractvalue {i32, i1} %res, 0
5987 %obit = extractvalue {i32, i1} %res, 1
5988 br i1 %obit, label %overflow, label %normal
5993 <!-- _______________________________________________________________________ -->
5994 <div class="doc_subsubsection">
5995 <a name="int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics</a>
5998 <div class="doc_text">
6002 <p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
6003 on any integer bit width.</p>
6006 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
6007 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6008 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
6013 <p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
6014 an unsigned addition of the two arguments, and indicate whether a carry occurred
6015 during the unsigned summation.</p>
6019 <p>The arguments (%a and %b) and the first element of the result structure may
6020 be of integer types of any bit width, but they must have the same bit width. The
6021 second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6022 and <tt>%b</tt> are the two values that will undergo unsigned addition.</p>
6026 <p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
6027 an unsigned addition of the two arguments. They return a structure — the
6028 first element of which is the sum, and the second element of which is a bit
6029 specifying if the unsigned summation resulted in a carry.</p>
6033 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6034 %sum = extractvalue {i32, i1} %res, 0
6035 %obit = extractvalue {i32, i1} %res, 1
6036 br i1 %obit, label %carry, label %normal
6041 <!-- _______________________________________________________________________ -->
6042 <div class="doc_subsubsection">
6043 <a name="int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics</a>
6046 <div class="doc_text">
6050 <p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
6051 on any integer bit width.</p>
6054 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
6055 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6056 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
6061 <p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
6062 a signed subtraction of the two arguments, and indicate whether an overflow
6063 occurred during the signed subtraction.</p>
6067 <p>The arguments (%a and %b) and the first element of the result structure may
6068 be of integer types of any bit width, but they must have the same bit width. The
6069 second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6070 and <tt>%b</tt> are the two values that will undergo signed subtraction.</p>
6074 <p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
6075 a signed subtraction of the two arguments. They return a structure — the
6076 first element of which is the subtraction, and the second element of which is a bit
6077 specifying if the signed subtraction resulted in an overflow.</p>
6081 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6082 %sum = extractvalue {i32, i1} %res, 0
6083 %obit = extractvalue {i32, i1} %res, 1
6084 br i1 %obit, label %overflow, label %normal
6089 <!-- _______________________________________________________________________ -->
6090 <div class="doc_subsubsection">
6091 <a name="int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt>' Intrinsics</a>
6094 <div class="doc_text">
6098 <p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
6099 on any integer bit width.</p>
6102 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
6103 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6104 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
6109 <p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
6110 an unsigned subtraction of the two arguments, and indicate whether an overflow
6111 occurred during the unsigned subtraction.</p>
6115 <p>The arguments (%a and %b) and the first element of the result structure may
6116 be of integer types of any bit width, but they must have the same bit width. The
6117 second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6118 and <tt>%b</tt> are the two values that will undergo unsigned subtraction.</p>
6122 <p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
6123 an unsigned subtraction of the two arguments. They return a structure — the
6124 first element of which is the subtraction, and the second element of which is a bit
6125 specifying if the unsigned subtraction resulted in an overflow.</p>
6129 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6130 %sum = extractvalue {i32, i1} %res, 0
6131 %obit = extractvalue {i32, i1} %res, 1
6132 br i1 %obit, label %overflow, label %normal
6137 <!-- _______________________________________________________________________ -->
6138 <div class="doc_subsubsection">
6139 <a name="int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt>' Intrinsics</a>
6142 <div class="doc_text">
6146 <p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
6147 on any integer bit width.</p>
6150 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
6151 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6152 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
6157 <p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
6158 a signed multiplication of the two arguments, and indicate whether an overflow
6159 occurred during the signed multiplication.</p>
6163 <p>The arguments (%a and %b) and the first element of the result structure may
6164 be of integer types of any bit width, but they must have the same bit width. The
6165 second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6166 and <tt>%b</tt> are the two values that will undergo signed multiplication.</p>
6170 <p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
6171 a signed multiplication of the two arguments. They return a structure —
6172 the first element of which is the multiplication, and the second element of
6173 which is a bit specifying if the signed multiplication resulted in an
6178 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6179 %sum = extractvalue {i32, i1} %res, 0
6180 %obit = extractvalue {i32, i1} %res, 1
6181 br i1 %obit, label %overflow, label %normal
6186 <!-- _______________________________________________________________________ -->
6187 <div class="doc_subsubsection">
6188 <a name="int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt>' Intrinsics</a>
6191 <div class="doc_text">
6195 <p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
6196 on any integer bit width.</p>
6199 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
6200 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6201 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
6206 <p><i><b>Warning:</b> '<tt>llvm.umul.with.overflow</tt>' is badly broken. It is
6207 actively being fixed, but it should not currently be used!</i></p>
6209 <p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
6210 a unsigned multiplication of the two arguments, and indicate whether an overflow
6211 occurred during the unsigned multiplication.</p>
6215 <p>The arguments (%a and %b) and the first element of the result structure may
6216 be of integer types of any bit width, but they must have the same bit width. The
6217 second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6218 and <tt>%b</tt> are the two values that will undergo unsigned
6223 <p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
6224 an unsigned multiplication of the two arguments. They return a structure —
6225 the first element of which is the multiplication, and the second element of
6226 which is a bit specifying if the unsigned multiplication resulted in an
6231 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6232 %sum = extractvalue {i32, i1} %res, 0
6233 %obit = extractvalue {i32, i1} %res, 1
6234 br i1 %obit, label %overflow, label %normal
6239 <!-- ======================================================================= -->
6240 <div class="doc_subsection">
6241 <a name="int_debugger">Debugger Intrinsics</a>
6244 <div class="doc_text">
6246 The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
6247 are described in the <a
6248 href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
6249 Debugging</a> document.
6254 <!-- ======================================================================= -->
6255 <div class="doc_subsection">
6256 <a name="int_eh">Exception Handling Intrinsics</a>
6259 <div class="doc_text">
6260 <p> The LLVM exception handling intrinsics (which all start with
6261 <tt>llvm.eh.</tt> prefix), are described in the <a
6262 href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
6263 Handling</a> document. </p>
6266 <!-- ======================================================================= -->
6267 <div class="doc_subsection">
6268 <a name="int_trampoline">Trampoline Intrinsic</a>
6271 <div class="doc_text">
6273 This intrinsic makes it possible to excise one parameter, marked with
6274 the <tt>nest</tt> attribute, from a function. The result is a callable
6275 function pointer lacking the nest parameter - the caller does not need
6276 to provide a value for it. Instead, the value to use is stored in
6277 advance in a "trampoline", a block of memory usually allocated
6278 on the stack, which also contains code to splice the nest value into the
6279 argument list. This is used to implement the GCC nested function address
6283 For example, if the function is
6284 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
6285 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
6287 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
6288 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
6289 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
6290 %fp = bitcast i8* %p to i32 (i32, i32)*
6292 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
6293 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
6296 <!-- _______________________________________________________________________ -->
6297 <div class="doc_subsubsection">
6298 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
6300 <div class="doc_text">
6303 declare i8* @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
6307 This fills the memory pointed to by <tt>tramp</tt> with code
6308 and returns a function pointer suitable for executing it.
6312 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
6313 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
6314 and sufficiently aligned block of memory; this memory is written to by the
6315 intrinsic. Note that the size and the alignment are target-specific - LLVM
6316 currently provides no portable way of determining them, so a front-end that
6317 generates this intrinsic needs to have some target-specific knowledge.
6318 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
6322 The block of memory pointed to by <tt>tramp</tt> is filled with target
6323 dependent code, turning it into a function. A pointer to this function is
6324 returned, but needs to be bitcast to an
6325 <a href="#int_trampoline">appropriate function pointer type</a>
6326 before being called. The new function's signature is the same as that of
6327 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
6328 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
6329 of pointer type. Calling the new function is equivalent to calling
6330 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
6331 missing <tt>nest</tt> argument. If, after calling
6332 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
6333 modified, then the effect of any later call to the returned function pointer is
6338 <!-- ======================================================================= -->
6339 <div class="doc_subsection">
6340 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
6343 <div class="doc_text">
6345 These intrinsic functions expand the "universal IR" of LLVM to represent
6346 hardware constructs for atomic operations and memory synchronization. This
6347 provides an interface to the hardware, not an interface to the programmer. It
6348 is aimed at a low enough level to allow any programming models or APIs
6349 (Application Programming Interfaces) which
6350 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
6351 hardware behavior. Just as hardware provides a "universal IR" for source
6352 languages, it also provides a starting point for developing a "universal"
6353 atomic operation and synchronization IR.
6356 These do <em>not</em> form an API such as high-level threading libraries,
6357 software transaction memory systems, atomic primitives, and intrinsic
6358 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
6359 application libraries. The hardware interface provided by LLVM should allow
6360 a clean implementation of all of these APIs and parallel programming models.
6361 No one model or paradigm should be selected above others unless the hardware
6362 itself ubiquitously does so.
6367 <!-- _______________________________________________________________________ -->
6368 <div class="doc_subsubsection">
6369 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
6371 <div class="doc_text">
6374 declare void @llvm.memory.barrier( i1 <ll>, i1 <ls>, i1 <sl>, i1 <ss>,
6380 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
6381 specific pairs of memory access types.
6385 The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
6386 The first four arguments enables a specific barrier as listed below. The fith
6387 argument specifies that the barrier applies to io or device or uncached memory.
6391 <li><tt>ll</tt>: load-load barrier</li>
6392 <li><tt>ls</tt>: load-store barrier</li>
6393 <li><tt>sl</tt>: store-load barrier</li>
6394 <li><tt>ss</tt>: store-store barrier</li>
6395 <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
6399 This intrinsic causes the system to enforce some ordering constraints upon
6400 the loads and stores of the program. This barrier does not indicate
6401 <em>when</em> any events will occur, it only enforces an <em>order</em> in
6402 which they occur. For any of the specified pairs of load and store operations
6403 (f.ex. load-load, or store-load), all of the first operations preceding the
6404 barrier will complete before any of the second operations succeeding the
6405 barrier begin. Specifically the semantics for each pairing is as follows:
6408 <li><tt>ll</tt>: All loads before the barrier must complete before any load
6409 after the barrier begins.</li>
6411 <li><tt>ls</tt>: All loads before the barrier must complete before any
6412 store after the barrier begins.</li>
6413 <li><tt>ss</tt>: All stores before the barrier must complete before any
6414 store after the barrier begins.</li>
6415 <li><tt>sl</tt>: All stores before the barrier must complete before any
6416 load after the barrier begins.</li>
6419 These semantics are applied with a logical "and" behavior when more than one
6420 is enabled in a single memory barrier intrinsic.
6423 Backends may implement stronger barriers than those requested when they do not
6424 support as fine grained a barrier as requested. Some architectures do not
6425 need all types of barriers and on such architectures, these become noops.
6432 %result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
6433 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
6434 <i>; guarantee the above finishes</i>
6435 store i32 8, %ptr <i>; before this begins</i>
6439 <!-- _______________________________________________________________________ -->
6440 <div class="doc_subsubsection">
6441 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
6443 <div class="doc_text">
6446 This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
6447 any integer bit width and for different address spaces. Not all targets
6448 support all bit widths however.</p>
6451 declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* <ptr>, i8 <cmp>, i8 <val> )
6452 declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* <ptr>, i16 <cmp>, i16 <val> )
6453 declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* <ptr>, i32 <cmp>, i32 <val> )
6454 declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* <ptr>, i64 <cmp>, i64 <val> )
6459 This loads a value in memory and compares it to a given value. If they are
6460 equal, it stores a new value into the memory.
6464 The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result as
6465 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
6466 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
6467 this integer type. While any bit width integer may be used, targets may only
6468 lower representations they support in hardware.
6473 This entire intrinsic must be executed atomically. It first loads the value
6474 in memory pointed to by <tt>ptr</tt> and compares it with the value
6475 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
6476 loaded value is yielded in all cases. This provides the equivalent of an
6477 atomic compare-and-swap operation within the SSA framework.
6485 %val1 = add i32 4, 4
6486 %result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
6487 <i>; yields {i32}:result1 = 4</i>
6488 %stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6489 %memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6491 %val2 = add i32 1, 1
6492 %result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
6493 <i>; yields {i32}:result2 = 8</i>
6494 %stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
6496 %memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
6500 <!-- _______________________________________________________________________ -->
6501 <div class="doc_subsubsection">
6502 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
6504 <div class="doc_text">
6508 This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
6509 integer bit width. Not all targets support all bit widths however.</p>
6511 declare i8 @llvm.atomic.swap.i8.p0i8( i8* <ptr>, i8 <val> )
6512 declare i16 @llvm.atomic.swap.i16.p0i16( i16* <ptr>, i16 <val> )
6513 declare i32 @llvm.atomic.swap.i32.p0i32( i32* <ptr>, i32 <val> )
6514 declare i64 @llvm.atomic.swap.i64.p0i64( i64* <ptr>, i64 <val> )
6519 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
6520 the value from memory. It then stores the value in <tt>val</tt> in the memory
6526 The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both the
6527 <tt>val</tt> argument and the result must be integers of the same bit width.
6528 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
6529 integer type. The targets may only lower integer representations they
6534 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
6535 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
6536 equivalent of an atomic swap operation within the SSA framework.
6544 %val1 = add i32 4, 4
6545 %result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
6546 <i>; yields {i32}:result1 = 4</i>
6547 %stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6548 %memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6550 %val2 = add i32 1, 1
6551 %result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
6552 <i>; yields {i32}:result2 = 8</i>
6554 %stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
6555 %memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
6559 <!-- _______________________________________________________________________ -->
6560 <div class="doc_subsubsection">
6561 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
6564 <div class="doc_text">
6567 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on any
6568 integer bit width. Not all targets support all bit widths however.</p>
6570 declare i8 @llvm.atomic.load.add.i8..p0i8( i8* <ptr>, i8 <delta> )
6571 declare i16 @llvm.atomic.load.add.i16..p0i16( i16* <ptr>, i16 <delta> )
6572 declare i32 @llvm.atomic.load.add.i32..p0i32( i32* <ptr>, i32 <delta> )
6573 declare i64 @llvm.atomic.load.add.i64..p0i64( i64* <ptr>, i64 <delta> )
6578 This intrinsic adds <tt>delta</tt> to the value stored in memory at
6579 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6584 The intrinsic takes two arguments, the first a pointer to an integer value
6585 and the second an integer value. The result is also an integer value. These
6586 integer types can have any bit width, but they must all have the same bit
6587 width. The targets may only lower integer representations they support.
6591 This intrinsic does a series of operations atomically. It first loads the
6592 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
6593 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6600 %result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
6601 <i>; yields {i32}:result1 = 4</i>
6602 %result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
6603 <i>; yields {i32}:result2 = 8</i>
6604 %result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
6605 <i>; yields {i32}:result3 = 10</i>
6606 %memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
6610 <!-- _______________________________________________________________________ -->
6611 <div class="doc_subsubsection">
6612 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
6615 <div class="doc_text">
6618 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
6619 any integer bit width and for different address spaces. Not all targets
6620 support all bit widths however.</p>
6622 declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* <ptr>, i8 <delta> )
6623 declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* <ptr>, i16 <delta> )
6624 declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* <ptr>, i32 <delta> )
6625 declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* <ptr>, i64 <delta> )
6630 This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
6631 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6636 The intrinsic takes two arguments, the first a pointer to an integer value
6637 and the second an integer value. The result is also an integer value. These
6638 integer types can have any bit width, but they must all have the same bit
6639 width. The targets may only lower integer representations they support.
6643 This intrinsic does a series of operations atomically. It first loads the
6644 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
6645 result to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6652 %result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
6653 <i>; yields {i32}:result1 = 8</i>
6654 %result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
6655 <i>; yields {i32}:result2 = 4</i>
6656 %result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
6657 <i>; yields {i32}:result3 = 2</i>
6658 %memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
6662 <!-- _______________________________________________________________________ -->
6663 <div class="doc_subsubsection">
6664 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
6665 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
6666 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
6667 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
6670 <div class="doc_text">
6673 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_and</tt>,
6674 <tt>llvm.atomic.load_nand</tt>, <tt>llvm.atomic.load_or</tt>, and
6675 <tt>llvm.atomic.load_xor</tt> on any integer bit width and for different
6676 address spaces. Not all targets support all bit widths however.</p>
6678 declare i8 @llvm.atomic.load.and.i8.p0i8( i8* <ptr>, i8 <delta> )
6679 declare i16 @llvm.atomic.load.and.i16.p0i16( i16* <ptr>, i16 <delta> )
6680 declare i32 @llvm.atomic.load.and.i32.p0i32( i32* <ptr>, i32 <delta> )
6681 declare i64 @llvm.atomic.load.and.i64.p0i64( i64* <ptr>, i64 <delta> )
6686 declare i8 @llvm.atomic.load.or.i8.p0i8( i8* <ptr>, i8 <delta> )
6687 declare i16 @llvm.atomic.load.or.i16.p0i16( i16* <ptr>, i16 <delta> )
6688 declare i32 @llvm.atomic.load.or.i32.p0i32( i32* <ptr>, i32 <delta> )
6689 declare i64 @llvm.atomic.load.or.i64.p0i64( i64* <ptr>, i64 <delta> )
6694 declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* <ptr>, i8 <delta> )
6695 declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* <ptr>, i16 <delta> )
6696 declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* <ptr>, i32 <delta> )
6697 declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* <ptr>, i64 <delta> )
6702 declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* <ptr>, i8 <delta> )
6703 declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* <ptr>, i16 <delta> )
6704 declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* <ptr>, i32 <delta> )
6705 declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* <ptr>, i64 <delta> )
6710 These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
6711 the value stored in memory at <tt>ptr</tt>. It yields the original value
6717 These intrinsics take two arguments, the first a pointer to an integer value
6718 and the second an integer value. The result is also an integer value. These
6719 integer types can have any bit width, but they must all have the same bit
6720 width. The targets may only lower integer representations they support.
6724 These intrinsics does a series of operations atomically. They first load the
6725 value stored at <tt>ptr</tt>. They then do the bitwise operation
6726 <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the original
6727 value stored at <tt>ptr</tt>.
6733 store i32 0x0F0F, %ptr
6734 %result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
6735 <i>; yields {i32}:result0 = 0x0F0F</i>
6736 %result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
6737 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
6738 %result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
6739 <i>; yields {i32}:result2 = 0xF0</i>
6740 %result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
6741 <i>; yields {i32}:result3 = FF</i>
6742 %memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
6747 <!-- _______________________________________________________________________ -->
6748 <div class="doc_subsubsection">
6749 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
6750 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
6751 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
6752 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
6755 <div class="doc_text">
6758 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
6759 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
6760 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
6761 address spaces. Not all targets
6762 support all bit widths however.</p>
6764 declare i8 @llvm.atomic.load.max.i8.p0i8( i8* <ptr>, i8 <delta> )
6765 declare i16 @llvm.atomic.load.max.i16.p0i16( i16* <ptr>, i16 <delta> )
6766 declare i32 @llvm.atomic.load.max.i32.p0i32( i32* <ptr>, i32 <delta> )
6767 declare i64 @llvm.atomic.load.max.i64.p0i64( i64* <ptr>, i64 <delta> )
6772 declare i8 @llvm.atomic.load.min.i8.p0i8( i8* <ptr>, i8 <delta> )
6773 declare i16 @llvm.atomic.load.min.i16.p0i16( i16* <ptr>, i16 <delta> )
6774 declare i32 @llvm.atomic.load.min.i32..p0i32( i32* <ptr>, i32 <delta> )
6775 declare i64 @llvm.atomic.load.min.i64..p0i64( i64* <ptr>, i64 <delta> )
6780 declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* <ptr>, i8 <delta> )
6781 declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* <ptr>, i16 <delta> )
6782 declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* <ptr>, i32 <delta> )
6783 declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* <ptr>, i64 <delta> )
6788 declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* <ptr>, i8 <delta> )
6789 declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* <ptr>, i16 <delta> )
6790 declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* <ptr>, i32 <delta> )
6791 declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* <ptr>, i64 <delta> )
6796 These intrinsics takes the signed or unsigned minimum or maximum of
6797 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
6798 original value at <tt>ptr</tt>.
6803 These intrinsics take two arguments, the first a pointer to an integer value
6804 and the second an integer value. The result is also an integer value. These
6805 integer types can have any bit width, but they must all have the same bit
6806 width. The targets may only lower integer representations they support.
6810 These intrinsics does a series of operations atomically. They first load the
6811 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or max
6812 <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They yield
6813 the original value stored at <tt>ptr</tt>.
6820 %result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
6821 <i>; yields {i32}:result0 = 7</i>
6822 %result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
6823 <i>; yields {i32}:result1 = -2</i>
6824 %result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
6825 <i>; yields {i32}:result2 = 8</i>
6826 %result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
6827 <i>; yields {i32}:result3 = 8</i>
6828 %memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
6832 <!-- ======================================================================= -->
6833 <div class="doc_subsection">
6834 <a name="int_general">General Intrinsics</a>
6837 <div class="doc_text">
6838 <p> This class of intrinsics is designed to be generic and has
6839 no specific purpose. </p>
6842 <!-- _______________________________________________________________________ -->
6843 <div class="doc_subsubsection">
6844 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
6847 <div class="doc_text">
6851 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int> )
6857 The '<tt>llvm.var.annotation</tt>' intrinsic
6863 The first argument is a pointer to a value, the second is a pointer to a
6864 global string, the third is a pointer to a global string which is the source
6865 file name, and the last argument is the line number.
6871 This intrinsic allows annotation of local variables with arbitrary strings.
6872 This can be useful for special purpose optimizations that want to look for these
6873 annotations. These have no other defined use, they are ignored by code
6874 generation and optimization.
6878 <!-- _______________________________________________________________________ -->
6879 <div class="doc_subsubsection">
6880 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
6883 <div class="doc_text">
6886 <p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
6887 any integer bit width.
6890 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int> )
6891 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int> )
6892 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int> )
6893 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int> )
6894 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int> )
6900 The '<tt>llvm.annotation</tt>' intrinsic.
6906 The first argument is an integer value (result of some expression),
6907 the second is a pointer to a global string, the third is a pointer to a global
6908 string which is the source file name, and the last argument is the line number.
6909 It returns the value of the first argument.
6915 This intrinsic allows annotations to be put on arbitrary expressions
6916 with arbitrary strings. This can be useful for special purpose optimizations
6917 that want to look for these annotations. These have no other defined use, they
6918 are ignored by code generation and optimization.
6922 <!-- _______________________________________________________________________ -->
6923 <div class="doc_subsubsection">
6924 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
6927 <div class="doc_text">
6931 declare void @llvm.trap()
6937 The '<tt>llvm.trap</tt>' intrinsic
6949 This intrinsics is lowered to the target dependent trap instruction. If the
6950 target does not have a trap instruction, this intrinsic will be lowered to the
6951 call of the abort() function.
6955 <!-- _______________________________________________________________________ -->
6956 <div class="doc_subsubsection">
6957 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
6959 <div class="doc_text">
6962 declare void @llvm.stackprotector( i8* <guard>, i8** <slot> )
6967 The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and stores
6968 it onto the stack at <tt>slot</tt>. The stack slot is adjusted to ensure that
6969 it is placed on the stack before local variables.
6973 The <tt>llvm.stackprotector</tt> intrinsic requires two pointer arguments. The
6974 first argument is the value loaded from the stack guard
6975 <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt> that
6976 has enough space to hold the value of the guard.
6980 This intrinsic causes the prologue/epilogue inserter to force the position of
6981 the <tt>AllocaInst</tt> stack slot to be before local variables on the
6982 stack. This is to ensure that if a local variable on the stack is overwritten,
6983 it will destroy the value of the guard. When the function exits, the guard on
6984 the stack is checked against the original guard. If they're different, then
6985 the program aborts by calling the <tt>__stack_chk_fail()</tt> function.
6989 <!-- *********************************************************************** -->
6992 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
6993 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
6994 <a href="http://validator.w3.org/check/referer"><img
6995 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
6997 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
6998 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
6999 Last modified: $Date$