1d5ad0e82c0d8319fa5dea47da7e8f80c5f5ee46
[oota-llvm.git] / docs / ProgrammersManual.html
1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2                       "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4 <head>
5   <title>LLVM Programmer's Manual</title>
6   <link rel="stylesheet" href="llvm.css" type="text/css">
7 </head>
8 <body>
9
10 <div class="doc_title">
11   LLVM Programmer's Manual
12 </div>
13
14 <ol>
15   <li><a href="#introduction">Introduction</a></li>
16   <li><a href="#general">General Information</a>
17     <ul>
18       <li><a href="#stl">The C++ Standard Template Library</a></li>
19 <!--
20       <li>The <tt>-time-passes</tt> option</li>
21       <li>How to use the LLVM Makefile system</li>
22       <li>How to write a regression test</li>
23
24 --> 
25     </ul>
26   </li>
27   <li><a href="#apis">Important and useful LLVM APIs</a>
28     <ul>
29       <li><a href="#isa">The <tt>isa&lt;&gt;</tt>, <tt>cast&lt;&gt;</tt>
30 and <tt>dyn_cast&lt;&gt;</tt> templates</a> </li>
31       <li><a href="#DEBUG">The <tt>DEBUG()</tt> macro and <tt>-debug</tt>
32 option</a>
33         <ul>
34           <li><a href="#DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE</tt>
35 and the <tt>-debug-only</tt> option</a> </li>
36         </ul>
37       </li>
38       <li><a href="#Statistic">The <tt>Statistic</tt> class &amp; <tt>-stats</tt>
39 option</a></li>
40 <!--
41       <li>The <tt>InstVisitor</tt> template
42       <li>The general graph API
43 --> 
44       <li><a href="#ViewGraph">Viewing graphs while debugging code</a></li>
45     </ul>
46   </li>
47   <li><a href="#datastructure">Picking the Right Data Structure for a Task</a>
48     <ul>
49     <li><a href="#ds_sequential">Sequential Containers (std::vector, std::list, etc)</a>
50     <ul>
51       <li><a href="#dss_fixedarrays">Fixed Size Arrays</a></li>
52       <li><a href="#dss_heaparrays">Heap Allocated Arrays</a></li>
53       <li><a href="#dss_smallvector">"llvm/ADT/SmallVector.h"</a></li>
54       <li><a href="#dss_vector">&lt;vector&gt;</a></li>
55       <li><a href="#dss_deque">&lt;deque&gt;</a></li>
56       <li><a href="#dss_list">&lt;list&gt;</a></li>
57       <li><a href="#dss_ilist">llvm/ADT/ilist</a></li>
58       <li><a href="#dss_other">Other Sequential Container Options</a></li>
59     </ul></li>
60     <li><a href="#ds_set">Set-Like Containers (std::set, SmallSet, SetVector, etc)</a>
61     <ul>
62       <li><a href="#dss_sortedvectorset">A sorted 'vector'</a></li>
63       <li><a href="#dss_smallset">"llvm/ADT/SmallSet.h"</a></li>
64       <li><a href="#dss_smallptrset">"llvm/ADT/SmallPtrSet.h"</a></li>
65       <li><a href="#dss_FoldingSet">"llvm/ADT/FoldingSet.h"</a></li>
66       <li><a href="#dss_set">&lt;set&gt;</a></li>
67       <li><a href="#dss_setvector">"llvm/ADT/SetVector.h"</a></li>
68       <li><a href="#dss_uniquevector">"llvm/ADT/UniqueVector.h"</a></li>
69       <li><a href="#dss_otherset">Other Set-Like ContainerOptions</a></li>
70     </ul></li>
71     <li><a href="#ds_map">Map-Like Containers (std::map, DenseMap, etc)</a>
72     <ul>
73       <li><a href="#dss_sortedvectormap">A sorted 'vector'</a></li>
74       <li><a href="#dss_cstringmap">"llvm/ADT/CStringMap.h"</a></li>
75       <li><a href="#dss_indexedmap">"llvm/ADT/IndexedMap.h"</a></li>
76       <li><a href="#dss_densemap">"llvm/ADT/DenseMap.h"</a></li>
77       <li><a href="#dss_map">&lt;map&gt;</a></li>
78       <li><a href="#dss_othermap">Other Map-Like Container Options</a></li>
79     </ul></li>
80   </ul>
81   </li>
82   <li><a href="#common">Helpful Hints for Common Operations</a>
83     <ul>
84       <li><a href="#inspection">Basic Inspection and Traversal Routines</a>
85         <ul>
86           <li><a href="#iterate_function">Iterating over the <tt>BasicBlock</tt>s
87 in a <tt>Function</tt></a> </li>
88           <li><a href="#iterate_basicblock">Iterating over the <tt>Instruction</tt>s
89 in a <tt>BasicBlock</tt></a> </li>
90           <li><a href="#iterate_institer">Iterating over the <tt>Instruction</tt>s
91 in a <tt>Function</tt></a> </li>
92           <li><a href="#iterate_convert">Turning an iterator into a
93 class pointer</a> </li>
94           <li><a href="#iterate_complex">Finding call sites: a more
95 complex example</a> </li>
96           <li><a href="#calls_and_invokes">Treating calls and invokes
97 the same way</a> </li>
98           <li><a href="#iterate_chains">Iterating over def-use &amp;
99 use-def chains</a> </li>
100         </ul>
101       </li>
102       <li><a href="#simplechanges">Making simple changes</a>
103         <ul>
104           <li><a href="#schanges_creating">Creating and inserting new
105                  <tt>Instruction</tt>s</a> </li>
106           <li><a href="#schanges_deleting">Deleting              <tt>Instruction</tt>s</a> </li>
107           <li><a href="#schanges_replacing">Replacing an                 <tt>Instruction</tt>
108 with another <tt>Value</tt></a> </li>
109         </ul>
110       </li>
111 <!--
112     <li>Working with the Control Flow Graph
113     <ul>
114       <li>Accessing predecessors and successors of a <tt>BasicBlock</tt>
115       <li>
116       <li>
117     </ul>
118 --> 
119     </ul>
120   </li>
121
122   <li><a href="#advanced">Advanced Topics</a>
123   <ul>
124   <li><a href="#TypeResolve">LLVM Type Resolution</a>
125   <ul>
126     <li><a href="#BuildRecType">Basic Recursive Type Construction</a></li>
127     <li><a href="#refineAbstractTypeTo">The <tt>refineAbstractTypeTo</tt> method</a></li>
128     <li><a href="#PATypeHolder">The PATypeHolder Class</a></li>
129     <li><a href="#AbstractTypeUser">The AbstractTypeUser Class</a></li>
130   </ul></li>
131
132   <li><a href="#SymbolTable">The <tt>SymbolTable</tt> class </a></li>
133   </ul></li>
134
135   <li><a href="#coreclasses">The Core LLVM Class Hierarchy Reference</a>
136     <ul>
137       <li><a href="#Type">The <tt>Type</tt> class</a> </li>
138       <li><a href="#Module">The <tt>Module</tt> class</a></li>
139       <li><a href="#Value">The <tt>Value</tt> class</a>
140       <ul>
141         <li><a href="#User">The <tt>User</tt> class</a>
142         <ul>
143           <li><a href="#Instruction">The <tt>Instruction</tt> class</a></li>
144           <li><a href="#Constant">The <tt>Constant</tt> class</a>
145           <ul>
146             <li><a href="#GlobalValue">The <tt>GlobalValue</tt> class</a>
147             <ul>
148               <li><a href="#Function">The <tt>Function</tt> class</a></li>
149               <li><a href="#GlobalVariable">The <tt>GlobalVariable</tt> class</a></li>
150             </ul>
151             </li>
152           </ul>
153           </li>
154         </ul>
155         </li>
156         <li><a href="#BasicBlock">The <tt>BasicBlock</tt> class</a></li>
157         <li><a href="#Argument">The <tt>Argument</tt> class</a></li>
158       </ul>
159       </li>
160     </ul>
161   </li>
162 </ol>
163
164 <div class="doc_author">    
165   <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>, 
166                 <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a>, 
167                 <a href="mailto:jstanley@cs.uiuc.edu">Joel Stanley</a>, and
168                 <a href="mailto:rspencer@x10sys.com">Reid Spencer</a></p>
169 </div>
170
171 <!-- *********************************************************************** -->
172 <div class="doc_section">
173   <a name="introduction">Introduction </a>
174 </div>
175 <!-- *********************************************************************** -->
176
177 <div class="doc_text">
178
179 <p>This document is meant to highlight some of the important classes and
180 interfaces available in the LLVM source-base.  This manual is not
181 intended to explain what LLVM is, how it works, and what LLVM code looks
182 like.  It assumes that you know the basics of LLVM and are interested
183 in writing transformations or otherwise analyzing or manipulating the
184 code.</p>
185
186 <p>This document should get you oriented so that you can find your
187 way in the continuously growing source code that makes up the LLVM
188 infrastructure. Note that this manual is not intended to serve as a
189 replacement for reading the source code, so if you think there should be
190 a method in one of these classes to do something, but it's not listed,
191 check the source.  Links to the <a href="/doxygen/">doxygen</a> sources
192 are provided to make this as easy as possible.</p>
193
194 <p>The first section of this document describes general information that is
195 useful to know when working in the LLVM infrastructure, and the second describes
196 the Core LLVM classes.  In the future this manual will be extended with
197 information describing how to use extension libraries, such as dominator
198 information, CFG traversal routines, and useful utilities like the <tt><a
199 href="/doxygen/InstVisitor_8h-source.html">InstVisitor</a></tt> template.</p>
200
201 </div>
202
203 <!-- *********************************************************************** -->
204 <div class="doc_section">
205   <a name="general">General Information</a>
206 </div>
207 <!-- *********************************************************************** -->
208
209 <div class="doc_text">
210
211 <p>This section contains general information that is useful if you are working
212 in the LLVM source-base, but that isn't specific to any particular API.</p>
213
214 </div>
215
216 <!-- ======================================================================= -->
217 <div class="doc_subsection">
218   <a name="stl">The C++ Standard Template Library</a>
219 </div>
220
221 <div class="doc_text">
222
223 <p>LLVM makes heavy use of the C++ Standard Template Library (STL),
224 perhaps much more than you are used to, or have seen before.  Because of
225 this, you might want to do a little background reading in the
226 techniques used and capabilities of the library.  There are many good
227 pages that discuss the STL, and several books on the subject that you
228 can get, so it will not be discussed in this document.</p>
229
230 <p>Here are some useful links:</p>
231
232 <ol>
233
234 <li><a href="http://www.dinkumware.com/refxcpp.html">Dinkumware C++ Library
235 reference</a> - an excellent reference for the STL and other parts of the
236 standard C++ library.</li>
237
238 <li><a href="http://www.tempest-sw.com/cpp/">C++ In a Nutshell</a> - This is an
239 O'Reilly book in the making.  It has a decent 
240 Standard Library
241 Reference that rivals Dinkumware's, and is unfortunately no longer free since the book has been 
242 published.</li>
243
244 <li><a href="http://www.parashift.com/c++-faq-lite/">C++ Frequently Asked
245 Questions</a></li>
246
247 <li><a href="http://www.sgi.com/tech/stl/">SGI's STL Programmer's Guide</a> -
248 Contains a useful <a
249 href="http://www.sgi.com/tech/stl/stl_introduction.html">Introduction to the
250 STL</a>.</li>
251
252 <li><a href="http://www.research.att.com/%7Ebs/C++.html">Bjarne Stroustrup's C++
253 Page</a></li>
254
255 <li><a href="http://64.78.49.204/">
256 Bruce Eckel's Thinking in C++, 2nd ed. Volume 2 Revision 4.0 (even better, get
257 the book).</a></li>
258
259 </ol>
260   
261 <p>You are also encouraged to take a look at the <a
262 href="CodingStandards.html">LLVM Coding Standards</a> guide which focuses on how
263 to write maintainable code more than where to put your curly braces.</p>
264
265 </div>
266
267 <!-- ======================================================================= -->
268 <div class="doc_subsection">
269   <a name="stl">Other useful references</a>
270 </div>
271
272 <div class="doc_text">
273
274 <ol>
275 <li><a href="http://www.psc.edu/%7Esemke/cvs_branches.html">CVS
276 Branch and Tag Primer</a></li>
277 <li><a href="http://www.fortran-2000.com/ArnaudRecipes/sharedlib.html">Using
278 static and shared libraries across platforms</a></li>
279 </ol>
280
281 </div>
282
283 <!-- *********************************************************************** -->
284 <div class="doc_section">
285   <a name="apis">Important and useful LLVM APIs</a>
286 </div>
287 <!-- *********************************************************************** -->
288
289 <div class="doc_text">
290
291 <p>Here we highlight some LLVM APIs that are generally useful and good to
292 know about when writing transformations.</p>
293
294 </div>
295
296 <!-- ======================================================================= -->
297 <div class="doc_subsection">
298   <a name="isa">The <tt>isa&lt;&gt;</tt>, <tt>cast&lt;&gt;</tt> and
299   <tt>dyn_cast&lt;&gt;</tt> templates</a>
300 </div>
301
302 <div class="doc_text">
303
304 <p>The LLVM source-base makes extensive use of a custom form of RTTI.
305 These templates have many similarities to the C++ <tt>dynamic_cast&lt;&gt;</tt>
306 operator, but they don't have some drawbacks (primarily stemming from
307 the fact that <tt>dynamic_cast&lt;&gt;</tt> only works on classes that
308 have a v-table). Because they are used so often, you must know what they
309 do and how they work. All of these templates are defined in the <a
310  href="/doxygen/Casting_8h-source.html"><tt>llvm/Support/Casting.h</tt></a>
311 file (note that you very rarely have to include this file directly).</p>
312
313 <dl>
314   <dt><tt>isa&lt;&gt;</tt>: </dt>
315
316   <dd><p>The <tt>isa&lt;&gt;</tt> operator works exactly like the Java
317   "<tt>instanceof</tt>" operator.  It returns true or false depending on whether
318   a reference or pointer points to an instance of the specified class.  This can
319   be very useful for constraint checking of various sorts (example below).</p>
320   </dd>
321
322   <dt><tt>cast&lt;&gt;</tt>: </dt>
323
324   <dd><p>The <tt>cast&lt;&gt;</tt> operator is a "checked cast" operation. It
325   converts a pointer or reference from a base class to a derived cast, causing
326   an assertion failure if it is not really an instance of the right type.  This
327   should be used in cases where you have some information that makes you believe
328   that something is of the right type.  An example of the <tt>isa&lt;&gt;</tt>
329   and <tt>cast&lt;&gt;</tt> template is:</p>
330
331 <div class="doc_code">
332 <pre>
333 static bool isLoopInvariant(const <a href="#Value">Value</a> *V, const Loop *L) {
334   if (isa&lt;<a href="#Constant">Constant</a>&gt;(V) || isa&lt;<a href="#Argument">Argument</a>&gt;(V) || isa&lt;<a href="#GlobalValue">GlobalValue</a>&gt;(V))
335     return true;
336
337   // <i>Otherwise, it must be an instruction...</i>
338   return !L-&gt;contains(cast&lt;<a href="#Instruction">Instruction</a>&gt;(V)-&gt;getParent());
339 }
340 </pre>
341 </div>
342
343   <p>Note that you should <b>not</b> use an <tt>isa&lt;&gt;</tt> test followed
344   by a <tt>cast&lt;&gt;</tt>, for that use the <tt>dyn_cast&lt;&gt;</tt>
345   operator.</p>
346
347   </dd>
348
349   <dt><tt>dyn_cast&lt;&gt;</tt>:</dt>
350
351   <dd><p>The <tt>dyn_cast&lt;&gt;</tt> operator is a "checking cast" operation.
352   It checks to see if the operand is of the specified type, and if so, returns a
353   pointer to it (this operator does not work with references). If the operand is
354   not of the correct type, a null pointer is returned.  Thus, this works very
355   much like the <tt>dynamic_cast&lt;&gt;</tt> operator in C++, and should be
356   used in the same circumstances.  Typically, the <tt>dyn_cast&lt;&gt;</tt>
357   operator is used in an <tt>if</tt> statement or some other flow control
358   statement like this:</p>
359
360 <div class="doc_code">
361 <pre>
362 if (<a href="#AllocationInst">AllocationInst</a> *AI = dyn_cast&lt;<a href="#AllocationInst">AllocationInst</a>&gt;(Val)) {
363   // <i>...</i>
364 }
365 </pre>
366 </div>
367    
368   <p>This form of the <tt>if</tt> statement effectively combines together a call
369   to <tt>isa&lt;&gt;</tt> and a call to <tt>cast&lt;&gt;</tt> into one
370   statement, which is very convenient.</p>
371
372   <p>Note that the <tt>dyn_cast&lt;&gt;</tt> operator, like C++'s
373   <tt>dynamic_cast&lt;&gt;</tt> or Java's <tt>instanceof</tt> operator, can be
374   abused.  In particular, you should not use big chained <tt>if/then/else</tt>
375   blocks to check for lots of different variants of classes.  If you find
376   yourself wanting to do this, it is much cleaner and more efficient to use the
377   <tt>InstVisitor</tt> class to dispatch over the instruction type directly.</p>
378
379   </dd>
380
381   <dt><tt>cast_or_null&lt;&gt;</tt>: </dt>
382   
383   <dd><p>The <tt>cast_or_null&lt;&gt;</tt> operator works just like the
384   <tt>cast&lt;&gt;</tt> operator, except that it allows for a null pointer as an
385   argument (which it then propagates).  This can sometimes be useful, allowing
386   you to combine several null checks into one.</p></dd>
387
388   <dt><tt>dyn_cast_or_null&lt;&gt;</tt>: </dt>
389
390   <dd><p>The <tt>dyn_cast_or_null&lt;&gt;</tt> operator works just like the
391   <tt>dyn_cast&lt;&gt;</tt> operator, except that it allows for a null pointer
392   as an argument (which it then propagates).  This can sometimes be useful,
393   allowing you to combine several null checks into one.</p></dd>
394
395 </dl>
396
397 <p>These five templates can be used with any classes, whether they have a
398 v-table or not.  To add support for these templates, you simply need to add
399 <tt>classof</tt> static methods to the class you are interested casting
400 to. Describing this is currently outside the scope of this document, but there
401 are lots of examples in the LLVM source base.</p>
402
403 </div>
404
405 <!-- ======================================================================= -->
406 <div class="doc_subsection">
407   <a name="DEBUG">The <tt>DEBUG()</tt> macro and <tt>-debug</tt> option</a>
408 </div>
409
410 <div class="doc_text">
411
412 <p>Often when working on your pass you will put a bunch of debugging printouts
413 and other code into your pass.  After you get it working, you want to remove
414 it, but you may need it again in the future (to work out new bugs that you run
415 across).</p>
416
417 <p> Naturally, because of this, you don't want to delete the debug printouts,
418 but you don't want them to always be noisy.  A standard compromise is to comment
419 them out, allowing you to enable them if you need them in the future.</p>
420
421 <p>The "<tt><a href="/doxygen/Debug_8h-source.html">llvm/Support/Debug.h</a></tt>"
422 file provides a macro named <tt>DEBUG()</tt> that is a much nicer solution to
423 this problem.  Basically, you can put arbitrary code into the argument of the
424 <tt>DEBUG</tt> macro, and it is only executed if '<tt>opt</tt>' (or any other
425 tool) is run with the '<tt>-debug</tt>' command line argument:</p>
426
427 <div class="doc_code">
428 <pre>
429 DOUT &lt;&lt; "I am here!\n";
430 </pre>
431 </div>
432
433 <p>Then you can run your pass like this:</p>
434
435 <div class="doc_code">
436 <pre>
437 $ opt &lt; a.bc &gt; /dev/null -mypass
438 <i>&lt;no output&gt;</i>
439 $ opt &lt; a.bc &gt; /dev/null -mypass -debug
440 I am here!
441 </pre>
442 </div>
443
444 <p>Using the <tt>DEBUG()</tt> macro instead of a home-brewed solution allows you
445 to not have to create "yet another" command line option for the debug output for
446 your pass.  Note that <tt>DEBUG()</tt> macros are disabled for optimized builds,
447 so they do not cause a performance impact at all (for the same reason, they
448 should also not contain side-effects!).</p>
449
450 <p>One additional nice thing about the <tt>DEBUG()</tt> macro is that you can
451 enable or disable it directly in gdb.  Just use "<tt>set DebugFlag=0</tt>" or
452 "<tt>set DebugFlag=1</tt>" from the gdb if the program is running.  If the
453 program hasn't been started yet, you can always just run it with
454 <tt>-debug</tt>.</p>
455
456 </div>
457
458 <!-- _______________________________________________________________________ -->
459 <div class="doc_subsubsection">
460   <a name="DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE</tt> and
461   the <tt>-debug-only</tt> option</a>
462 </div>
463
464 <div class="doc_text">
465
466 <p>Sometimes you may find yourself in a situation where enabling <tt>-debug</tt>
467 just turns on <b>too much</b> information (such as when working on the code
468 generator).  If you want to enable debug information with more fine-grained
469 control, you define the <tt>DEBUG_TYPE</tt> macro and the <tt>-debug</tt> only
470 option as follows:</p>
471
472 <div class="doc_code">
473 <pre>
474 DOUT &lt;&lt; "No debug type\n";
475 #undef  DEBUG_TYPE
476 #define DEBUG_TYPE "foo"
477 DOUT &lt;&lt; "'foo' debug type\n";
478 #undef  DEBUG_TYPE
479 #define DEBUG_TYPE "bar"
480 DOUT &lt;&lt; "'bar' debug type\n";
481 #undef  DEBUG_TYPE
482 #define DEBUG_TYPE ""
483 DOUT &lt;&lt; "No debug type (2)\n";
484 </pre>
485 </div>
486
487 <p>Then you can run your pass like this:</p>
488
489 <div class="doc_code">
490 <pre>
491 $ opt &lt; a.bc &gt; /dev/null -mypass
492 <i>&lt;no output&gt;</i>
493 $ opt &lt; a.bc &gt; /dev/null -mypass -debug
494 No debug type
495 'foo' debug type
496 'bar' debug type
497 No debug type (2)
498 $ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=foo
499 'foo' debug type
500 $ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=bar
501 'bar' debug type
502 </pre>
503 </div>
504
505 <p>Of course, in practice, you should only set <tt>DEBUG_TYPE</tt> at the top of
506 a file, to specify the debug type for the entire module (if you do this before
507 you <tt>#include "llvm/Support/Debug.h"</tt>, you don't have to insert the ugly
508 <tt>#undef</tt>'s).  Also, you should use names more meaningful than "foo" and
509 "bar", because there is no system in place to ensure that names do not
510 conflict. If two different modules use the same string, they will all be turned
511 on when the name is specified. This allows, for example, all debug information
512 for instruction scheduling to be enabled with <tt>-debug-type=InstrSched</tt>,
513 even if the source lives in multiple files.</p>
514
515 </div>
516
517 <!-- ======================================================================= -->
518 <div class="doc_subsection">
519   <a name="Statistic">The <tt>Statistic</tt> class &amp; <tt>-stats</tt>
520   option</a>
521 </div>
522
523 <div class="doc_text">
524
525 <p>The "<tt><a
526 href="/doxygen/Statistic_8h-source.html">llvm/ADT/Statistic.h</a></tt>" file
527 provides a class named <tt>Statistic</tt> that is used as a unified way to
528 keep track of what the LLVM compiler is doing and how effective various
529 optimizations are.  It is useful to see what optimizations are contributing to
530 making a particular program run faster.</p>
531
532 <p>Often you may run your pass on some big program, and you're interested to see
533 how many times it makes a certain transformation.  Although you can do this with
534 hand inspection, or some ad-hoc method, this is a real pain and not very useful
535 for big programs.  Using the <tt>Statistic</tt> class makes it very easy to
536 keep track of this information, and the calculated information is presented in a
537 uniform manner with the rest of the passes being executed.</p>
538
539 <p>There are many examples of <tt>Statistic</tt> uses, but the basics of using
540 it are as follows:</p>
541
542 <ol>
543     <li><p>Define your statistic like this:</p>
544
545 <div class="doc_code">
546 <pre>
547 #define <a href="#DEBUG_TYPE">DEBUG_TYPE</a> "mypassname"   <i>// This goes before any #includes.</i>
548 STATISTIC(NumXForms, "The # of times I did stuff");
549 </pre>
550 </div>
551
552   <p>The <tt>STATISTIC</tt> macro defines a static variable, whose name is
553     specified by the first argument.  The pass name is taken from the DEBUG_TYPE
554     macro, and the description is taken from the second argument.  The variable
555     defined ("NumXForms" in this case) acts like an unsigned integer.</p></li>
556
557     <li><p>Whenever you make a transformation, bump the counter:</p>
558
559 <div class="doc_code">
560 <pre>
561 ++NumXForms;   // <i>I did stuff!</i>
562 </pre>
563 </div>
564
565     </li>
566   </ol>
567
568   <p>That's all you have to do.  To get '<tt>opt</tt>' to print out the
569   statistics gathered, use the '<tt>-stats</tt>' option:</p>
570
571 <div class="doc_code">
572 <pre>
573 $ opt -stats -mypassname &lt; program.bc &gt; /dev/null
574 <i>... statistics output ...</i>
575 </pre>
576 </div>
577
578   <p> When running <tt>gccas</tt> on a C file from the SPEC benchmark
579 suite, it gives a report that looks like this:</p>
580
581 <div class="doc_code">
582 <pre>
583    7646 bytecodewriter  - Number of normal instructions
584     725 bytecodewriter  - Number of oversized instructions
585  129996 bytecodewriter  - Number of bytecode bytes written
586    2817 raise           - Number of insts DCEd or constprop'd
587    3213 raise           - Number of cast-of-self removed
588    5046 raise           - Number of expression trees converted
589      75 raise           - Number of other getelementptr's formed
590     138 raise           - Number of load/store peepholes
591      42 deadtypeelim    - Number of unused typenames removed from symtab
592     392 funcresolve     - Number of varargs functions resolved
593      27 globaldce       - Number of global variables removed
594       2 adce            - Number of basic blocks removed
595     134 cee             - Number of branches revectored
596      49 cee             - Number of setcc instruction eliminated
597     532 gcse            - Number of loads removed
598    2919 gcse            - Number of instructions removed
599      86 indvars         - Number of canonical indvars added
600      87 indvars         - Number of aux indvars removed
601      25 instcombine     - Number of dead inst eliminate
602     434 instcombine     - Number of insts combined
603     248 licm            - Number of load insts hoisted
604    1298 licm            - Number of insts hoisted to a loop pre-header
605       3 licm            - Number of insts hoisted to multiple loop preds (bad, no loop pre-header)
606      75 mem2reg         - Number of alloca's promoted
607    1444 cfgsimplify     - Number of blocks simplified
608 </pre>
609 </div>
610
611 <p>Obviously, with so many optimizations, having a unified framework for this
612 stuff is very nice.  Making your pass fit well into the framework makes it more
613 maintainable and useful.</p>
614
615 </div>
616
617 <!-- ======================================================================= -->
618 <div class="doc_subsection">
619   <a name="ViewGraph">Viewing graphs while debugging code</a>
620 </div>
621
622 <div class="doc_text">
623
624 <p>Several of the important data structures in LLVM are graphs: for example
625 CFGs made out of LLVM <a href="#BasicBlock">BasicBlock</a>s, CFGs made out of
626 LLVM <a href="CodeGenerator.html#machinebasicblock">MachineBasicBlock</a>s, and
627 <a href="CodeGenerator.html#selectiondag_intro">Instruction Selection
628 DAGs</a>.  In many cases, while debugging various parts of the compiler, it is
629 nice to instantly visualize these graphs.</p>
630
631 <p>LLVM provides several callbacks that are available in a debug build to do
632 exactly that.  If you call the <tt>Function::viewCFG()</tt> method, for example,
633 the current LLVM tool will pop up a window containing the CFG for the function
634 where each basic block is a node in the graph, and each node contains the
635 instructions in the block.  Similarly, there also exists 
636 <tt>Function::viewCFGOnly()</tt> (does not include the instructions), the
637 <tt>MachineFunction::viewCFG()</tt> and <tt>MachineFunction::viewCFGOnly()</tt>,
638 and the <tt>SelectionDAG::viewGraph()</tt> methods.  Within GDB, for example,
639 you can usually use something like <tt>call DAG.viewGraph()</tt> to pop
640 up a window.  Alternatively, you can sprinkle calls to these functions in your
641 code in places you want to debug.</p>
642
643 <p>Getting this to work requires a small amount of configuration.  On Unix
644 systems with X11, install the <a href="http://www.graphviz.org">graphviz</a>
645 toolkit, and make sure 'dot' and 'gv' are in your path.  If you are running on
646 Mac OS/X, download and install the Mac OS/X <a 
647 href="http://www.pixelglow.com/graphviz/">Graphviz program</a>, and add
648 <tt>/Applications/Graphviz.app/Contents/MacOS/</tt> (or wherever you install
649 it) to your path.  Once in your system and path are set up, rerun the LLVM
650 configure script and rebuild LLVM to enable this functionality.</p>
651
652 <p><tt>SelectionDAG</tt> has been extended to make it easier to locate
653 <i>interesting</i> nodes in large complex graphs.  From gdb, if you
654 <tt>call DAG.setGraphColor(<i>node</i>, "<i>color</i>")</tt>, then the
655 next <tt>call DAG.viewGraph()</tt> would highlight the node in the
656 specified color (choices of colors can be found at <a
657 href="http://www.graphviz.org/doc/info/colors.html">colors</a>.) More
658 complex node attributes can be provided with <tt>call
659 DAG.setGraphAttrs(<i>node</i>, "<i>attributes</i>")</tt> (choices can be
660 found at <a href="http://www.graphviz.org/doc/info/attrs.html">Graph
661 Attributes</a>.)  If you want to restart and clear all the current graph
662 attributes, then you can <tt>call DAG.clearGraphAttrs()</tt>. </p>
663
664 </div>
665
666 <!-- *********************************************************************** -->
667 <div class="doc_section">
668   <a name="datastructure">Picking the Right Data Structure for a Task</a>
669 </div>
670 <!-- *********************************************************************** -->
671
672 <div class="doc_text">
673
674 <p>LLVM has a plethora of data structures in the <tt>llvm/ADT/</tt> directory,
675  and we commonly use STL data structures.  This section describes the trade-offs
676  you should consider when you pick one.</p>
677
678 <p>
679 The first step is a choose your own adventure: do you want a sequential
680 container, a set-like container, or a map-like container?  The most important
681 thing when choosing a container is the algorithmic properties of how you plan to
682 access the container.  Based on that, you should use:</p>
683
684 <ul>
685 <li>a <a href="#ds_map">map-like</a> container if you need efficient look-up
686     of an value based on another value.  Map-like containers also support
687     efficient queries for containment (whether a key is in the map).  Map-like
688     containers generally do not support efficient reverse mapping (values to
689     keys).  If you need that, use two maps.  Some map-like containers also
690     support efficient iteration through the keys in sorted order.  Map-like
691     containers are the most expensive sort, only use them if you need one of
692     these capabilities.</li>
693
694 <li>a <a href="#ds_set">set-like</a> container if you need to put a bunch of
695     stuff into a container that automatically eliminates duplicates.  Some
696     set-like containers support efficient iteration through the elements in
697     sorted order.  Set-like containers are more expensive than sequential
698     containers.
699 </li>
700
701 <li>a <a href="#ds_sequential">sequential</a> container provides
702     the most efficient way to add elements and keeps track of the order they are
703     added to the collection.  They permit duplicates and support efficient
704     iteration, but do not support efficient look-up based on a key.
705 </li>
706
707 </ul>
708
709 <p>
710 Once the proper category of container is determined, you can fine tune the
711 memory use, constant factors, and cache behaviors of access by intelligently
712 picking a member of the category.  Note that constant factors and cache behavior
713 can be a big deal.  If you have a vector that usually only contains a few
714 elements (but could contain many), for example, it's much better to use
715 <a href="#dss_smallvector">SmallVector</a> than <a href="#dss_vector">vector</a>
716 .  Doing so avoids (relatively) expensive malloc/free calls, which dwarf the
717 cost of adding the elements to the container. </p>
718
719 </div>
720
721 <!-- ======================================================================= -->
722 <div class="doc_subsection">
723   <a name="ds_sequential">Sequential Containers (std::vector, std::list, etc)</a>
724 </div>
725
726 <div class="doc_text">
727 There are a variety of sequential containers available for you, based on your
728 needs.  Pick the first in this section that will do what you want.
729 </div>
730
731 <!-- _______________________________________________________________________ -->
732 <div class="doc_subsubsection">
733   <a name="dss_fixedarrays">Fixed Size Arrays</a>
734 </div>
735
736 <div class="doc_text">
737 <p>Fixed size arrays are very simple and very fast.  They are good if you know
738 exactly how many elements you have, or you have a (low) upper bound on how many
739 you have.</p>
740 </div>
741
742 <!-- _______________________________________________________________________ -->
743 <div class="doc_subsubsection">
744   <a name="dss_heaparrays">Heap Allocated Arrays</a>
745 </div>
746
747 <div class="doc_text">
748 <p>Heap allocated arrays (new[] + delete[]) are also simple.  They are good if
749 the number of elements is variable, if you know how many elements you will need
750 before the array is allocated, and if the array is usually large (if not,
751 consider a <a href="#dss_smallvector">SmallVector</a>).  The cost of a heap
752 allocated array is the cost of the new/delete (aka malloc/free).  Also note that
753 if you are allocating an array of a type with a constructor, the constructor and
754 destructors will be run for every element in the array (re-sizable vectors only
755 construct those elements actually used).</p>
756 </div>
757
758 <!-- _______________________________________________________________________ -->
759 <div class="doc_subsubsection">
760   <a name="dss_smallvector">"llvm/ADT/SmallVector.h"</a>
761 </div>
762
763 <div class="doc_text">
764 <p><tt>SmallVector&lt;Type, N&gt;</tt> is a simple class that looks and smells
765 just like <tt>vector&lt;Type&gt;</tt>:
766 it supports efficient iteration, lays out elements in memory order (so you can
767 do pointer arithmetic between elements), supports efficient push_back/pop_back
768 operations, supports efficient random access to its elements, etc.</p>
769
770 <p>The advantage of SmallVector is that it allocates space for
771 some number of elements (N) <b>in the object itself</b>.  Because of this, if
772 the SmallVector is dynamically smaller than N, no malloc is performed.  This can
773 be a big win in cases where the malloc/free call is far more expensive than the
774 code that fiddles around with the elements.</p>
775
776 <p>This is good for vectors that are "usually small" (e.g. the number of
777 predecessors/successors of a block is usually less than 8).  On the other hand,
778 this makes the size of the SmallVector itself large, so you don't want to
779 allocate lots of them (doing so will waste a lot of space).  As such,
780 SmallVectors are most useful when on the stack.</p>
781
782 <p>SmallVector also provides a nice portable and efficient replacement for
783 <tt>alloca</tt>.</p>
784
785 </div>
786
787 <!-- _______________________________________________________________________ -->
788 <div class="doc_subsubsection">
789   <a name="dss_vector">&lt;vector&gt;</a>
790 </div>
791
792 <div class="doc_text">
793 <p>
794 std::vector is well loved and respected.  It is useful when SmallVector isn't:
795 when the size of the vector is often large (thus the small optimization will
796 rarely be a benefit) or if you will be allocating many instances of the vector
797 itself (which would waste space for elements that aren't in the container).
798 vector is also useful when interfacing with code that expects vectors :).
799 </p>
800 </div>
801
802 <!-- _______________________________________________________________________ -->
803 <div class="doc_subsubsection">
804   <a name="dss_deque">&lt;deque&gt;</a>
805 </div>
806
807 <div class="doc_text">
808 <p>std::deque is, in some senses, a generalized version of std::vector.  Like
809 std::vector, it provides constant time random access and other similar
810 properties, but it also provides efficient access to the front of the list.  It
811 does not guarantee continuity of elements within memory.</p>
812
813 <p>In exchange for this extra flexibility, std::deque has significantly higher
814 constant factor costs than std::vector.  If possible, use std::vector or
815 something cheaper.</p>
816 </div>
817
818 <!-- _______________________________________________________________________ -->
819 <div class="doc_subsubsection">
820   <a name="dss_list">&lt;list&gt;</a>
821 </div>
822
823 <div class="doc_text">
824 <p>std::list is an extremely inefficient class that is rarely useful.
825 It performs a heap allocation for every element inserted into it, thus having an
826 extremely high constant factor, particularly for small data types.  std::list
827 also only supports bidirectional iteration, not random access iteration.</p>
828
829 <p>In exchange for this high cost, std::list supports efficient access to both
830 ends of the list (like std::deque, but unlike std::vector or SmallVector).  In
831 addition, the iterator invalidation characteristics of std::list are stronger
832 than that of a vector class: inserting or removing an element into the list does
833 not invalidate iterator or pointers to other elements in the list.</p>
834 </div>
835
836 <!-- _______________________________________________________________________ -->
837 <div class="doc_subsubsection">
838   <a name="dss_ilist">llvm/ADT/ilist</a>
839 </div>
840
841 <div class="doc_text">
842 <p><tt>ilist&lt;T&gt;</tt> implements an 'intrusive' doubly-linked list.  It is
843 intrusive, because it requires the element to store and provide access to the
844 prev/next pointers for the list.</p>
845
846 <p>ilist has the same drawbacks as std::list, and additionally requires an
847 ilist_traits implementation for the element type, but it provides some novel
848 characteristics.  In particular, it can efficiently store polymorphic objects,
849 the traits class is informed when an element is inserted or removed from the
850 list, and ilists are guaranteed to support a constant-time splice operation.
851 </p>
852
853 <p>These properties are exactly what we want for things like Instructions and
854 basic blocks, which is why these are implemented with ilists.</p>
855 </div>
856
857 <!-- _______________________________________________________________________ -->
858 <div class="doc_subsubsection">
859   <a name="dss_other">Other Sequential Container options</a>
860 </div>
861
862 <div class="doc_text">
863 <p>Other STL containers are available, such as std::string.</p>
864
865 <p>There are also various STL adapter classes such as std::queue,
866 std::priority_queue, std::stack, etc.  These provide simplified access to an
867 underlying container but don't affect the cost of the container itself.</p>
868
869 </div>
870
871
872 <!-- ======================================================================= -->
873 <div class="doc_subsection">
874   <a name="ds_set">Set-Like Containers (std::set, SmallSet, SetVector, etc)</a>
875 </div>
876
877 <div class="doc_text">
878
879 <p>Set-like containers are useful when you need to canonicalize multiple values
880 into a single representation.  There are several different choices for how to do
881 this, providing various trade-offs.</p>
882
883 </div>
884
885
886 <!-- _______________________________________________________________________ -->
887 <div class="doc_subsubsection">
888   <a name="dss_sortedvectorset">A sorted 'vector'</a>
889 </div>
890
891 <div class="doc_text">
892
893 <p>If you intend to insert a lot of elements, then do a lot of queries, a
894 great approach is to use a vector (or other sequential container) with
895 std::sort+std::unique to remove duplicates.  This approach works really well if
896 your usage pattern has these two distinct phases (insert then query), and can be
897 coupled with a good choice of <a href="#ds_sequential">sequential container</a>.
898 </p>
899
900 <p>
901 This combination provides the several nice properties: the result data is
902 contiguous in memory (good for cache locality), has few allocations, is easy to
903 address (iterators in the final vector are just indices or pointers), and can be
904 efficiently queried with a standard binary or radix search.</p>
905
906 </div>
907
908 <!-- _______________________________________________________________________ -->
909 <div class="doc_subsubsection">
910   <a name="dss_smallset">"llvm/ADT/SmallSet.h"</a>
911 </div>
912
913 <div class="doc_text">
914
915 <p>If you have a set-like data structure that is usually small and whose elements
916 are reasonably small, a <tt>SmallSet&lt;Type, N&gt;</tt> is a good choice.  This set
917 has space for N elements in place (thus, if the set is dynamically smaller than
918 N, no malloc traffic is required) and accesses them with a simple linear search.
919 When the set grows beyond 'N' elements, it allocates a more expensive representation that
920 guarantees efficient access (for most types, it falls back to std::set, but for
921 pointers it uses something far better, <a
922 href="#dss_smallptrset">SmallPtrSet</a>).</p>
923
924 <p>The magic of this class is that it handles small sets extremely efficiently,
925 but gracefully handles extremely large sets without loss of efficiency.  The
926 drawback is that the interface is quite small: it supports insertion, queries
927 and erasing, but does not support iteration.</p>
928
929 </div>
930
931 <!-- _______________________________________________________________________ -->
932 <div class="doc_subsubsection">
933   <a name="dss_smallptrset">"llvm/ADT/SmallPtrSet.h"</a>
934 </div>
935
936 <div class="doc_text">
937
938 <p>SmallPtrSet has all the advantages of SmallSet (and a SmallSet of pointers is 
939 transparently implemented with a SmallPtrSet), but also supports iterators.  If
940 more than 'N' insertions are performed, a single quadratically
941 probed hash table is allocated and grows as needed, providing extremely
942 efficient access (constant time insertion/deleting/queries with low constant
943 factors) and is very stingy with malloc traffic.</p>
944
945 <p>Note that, unlike std::set, the iterators of SmallPtrSet are invalidated
946 whenever an insertion occurs.  Also, the values visited by the iterators are not
947 visited in sorted order.</p>
948
949 </div>
950
951 <!-- _______________________________________________________________________ -->
952 <div class="doc_subsubsection">
953   <a name="dss_FoldingSet">"llvm/ADT/FoldingSet.h"</a>
954 </div>
955
956 <div class="doc_text">
957
958 <p>
959 FoldingSet is an aggregate class that is really good at uniquing
960 expensive-to-create or polymorphic objects.  It is a combination of a chained
961 hash table with intrusive links (uniqued objects are required to inherit from
962 FoldingSetNode) that uses <a href="#dss_smallvector">SmallVector</a> as part of
963 its ID process.</p>
964
965 <p>Consider a case where you want to implement a "getOrCreateFoo" method for
966 a complex object (for example, a node in the code generator).  The client has a
967 description of *what* it wants to generate (it knows the opcode and all the
968 operands), but we don't want to 'new' a node, then try inserting it into a set
969 only to find out it already exists, at which point we would have to delete it
970 and return the node that already exists.
971 </p>
972
973 <p>To support this style of client, FoldingSet perform a query with a
974 FoldingSetNodeID (which wraps SmallVector) that can be used to describe the
975 element that we want to query for.  The query either returns the element
976 matching the ID or it returns an opaque ID that indicates where insertion should
977 take place.  Construction of the ID usually does not require heap traffic.</p>
978
979 <p>Because FoldingSet uses intrusive links, it can support polymorphic objects
980 in the set (for example, you can have SDNode instances mixed with LoadSDNodes).
981 Because the elements are individually allocated, pointers to the elements are
982 stable: inserting or removing elements does not invalidate any pointers to other
983 elements.
984 </p>
985
986 </div>
987
988 <!-- _______________________________________________________________________ -->
989 <div class="doc_subsubsection">
990   <a name="dss_set">&lt;set&gt;</a>
991 </div>
992
993 <div class="doc_text">
994
995 <p><tt>std::set</tt> is a reasonable all-around set class, which is decent at
996 many things but great at nothing.  std::set allocates memory for each element
997 inserted (thus it is very malloc intensive) and typically stores three pointers
998 per element in the set (thus adding a large amount of per-element space
999 overhead).  It offers guaranteed log(n) performance, which is not particularly
1000 fast from a complexity standpoint (particularly if the elements of the set are
1001 expensive to compare, like strings), and has extremely high constant factors for
1002 lookup, insertion and removal.</p>
1003
1004 <p>The advantages of std::set are that its iterators are stable (deleting or
1005 inserting an element from the set does not affect iterators or pointers to other
1006 elements) and that iteration over the set is guaranteed to be in sorted order.
1007 If the elements in the set are large, then the relative overhead of the pointers
1008 and malloc traffic is not a big deal, but if the elements of the set are small,
1009 std::set is almost never a good choice.</p>
1010
1011 </div>
1012
1013 <!-- _______________________________________________________________________ -->
1014 <div class="doc_subsubsection">
1015   <a name="dss_setvector">"llvm/ADT/SetVector.h"</a>
1016 </div>
1017
1018 <div class="doc_text">
1019 <p>LLVM's SetVector&lt;Type&gt; is an adapter class that combines your choice of
1020 a set-like container along with a <a href="#ds_sequential">Sequential 
1021 Container</a>.  The important property
1022 that this provides is efficient insertion with uniquing (duplicate elements are
1023 ignored) with iteration support.  It implements this by inserting elements into
1024 both a set-like container and the sequential container, using the set-like
1025 container for uniquing and the sequential container for iteration.
1026 </p>
1027
1028 <p>The difference between SetVector and other sets is that the order of
1029 iteration is guaranteed to match the order of insertion into the SetVector.
1030 This property is really important for things like sets of pointers.  Because
1031 pointer values are non-deterministic (e.g. vary across runs of the program on
1032 different machines), iterating over the pointers in the set will
1033 not be in a well-defined order.</p>
1034
1035 <p>
1036 The drawback of SetVector is that it requires twice as much space as a normal
1037 set and has the sum of constant factors from the set-like container and the 
1038 sequential container that it uses.  Use it *only* if you need to iterate over 
1039 the elements in a deterministic order.  SetVector is also expensive to delete
1040 elements out of (linear time), unless you use it's "pop_back" method, which is
1041 faster.
1042 </p>
1043
1044 <p>SetVector is an adapter class that defaults to using std::vector and std::set
1045 for the underlying containers, so it is quite expensive.  However,
1046 <tt>"llvm/ADT/SetVector.h"</tt> also provides a SmallSetVector class, which
1047 defaults to using a SmallVector and SmallSet of a specified size.  If you use
1048 this, and if your sets are dynamically smaller than N, you will save a lot of 
1049 heap traffic.</p>
1050
1051 </div>
1052
1053 <!-- _______________________________________________________________________ -->
1054 <div class="doc_subsubsection">
1055   <a name="dss_uniquevector">"llvm/ADT/UniqueVector.h"</a>
1056 </div>
1057
1058 <div class="doc_text">
1059
1060 <p>
1061 UniqueVector is similar to <a href="#dss_setvector">SetVector</a>, but it
1062 retains a unique ID for each element inserted into the set.  It internally
1063 contains a map and a vector, and it assigns a unique ID for each value inserted
1064 into the set.</p>
1065
1066 <p>UniqueVector is very expensive: its cost is the sum of the cost of
1067 maintaining both the map and vector, it has high complexity, high constant
1068 factors, and produces a lot of malloc traffic.  It should be avoided.</p>
1069
1070 </div>
1071
1072
1073 <!-- _______________________________________________________________________ -->
1074 <div class="doc_subsubsection">
1075   <a name="dss_otherset">Other Set-Like Container Options</a>
1076 </div>
1077
1078 <div class="doc_text">
1079
1080 <p>
1081 The STL provides several other options, such as std::multiset and the various 
1082 "hash_set" like containers (whether from C++ TR1 or from the SGI library).</p>
1083
1084 <p>std::multiset is useful if you're not interested in elimination of
1085 duplicates, but has all the drawbacks of std::set.  A sorted vector (where you 
1086 don't delete duplicate entries) or some other approach is almost always
1087 better.</p>
1088
1089 <p>The various hash_set implementations (exposed portably by
1090 "llvm/ADT/hash_set") is a simple chained hashtable.  This algorithm is as malloc
1091 intensive as std::set (performing an allocation for each element inserted,
1092 thus having really high constant factors) but (usually) provides O(1)
1093 insertion/deletion of elements.  This can be useful if your elements are large
1094 (thus making the constant-factor cost relatively low) or if comparisons are
1095 expensive.  Element iteration does not visit elements in a useful order.</p>
1096
1097 </div>
1098
1099 <!-- ======================================================================= -->
1100 <div class="doc_subsection">
1101   <a name="ds_map">Map-Like Containers (std::map, DenseMap, etc)</a>
1102 </div>
1103
1104 <div class="doc_text">
1105 Map-like containers are useful when you want to associate data to a key.  As
1106 usual, there are a lot of different ways to do this. :)
1107 </div>
1108
1109 <!-- _______________________________________________________________________ -->
1110 <div class="doc_subsubsection">
1111   <a name="dss_sortedvectormap">A sorted 'vector'</a>
1112 </div>
1113
1114 <div class="doc_text">
1115
1116 <p>
1117 If your usage pattern follows a strict insert-then-query approach, you can
1118 trivially use the same approach as <a href="#dss_sortedvectorset">sorted vectors
1119 for set-like containers</a>.  The only difference is that your query function
1120 (which uses std::lower_bound to get efficient log(n) lookup) should only compare
1121 the key, not both the key and value.  This yields the same advantages as sorted
1122 vectors for sets.
1123 </p>
1124 </div>
1125
1126 <!-- _______________________________________________________________________ -->
1127 <div class="doc_subsubsection">
1128   <a name="dss_cstringmap">"llvm/ADT/CStringMap.h"</a>
1129 </div>
1130
1131 <div class="doc_text">
1132
1133 <p>
1134 Strings are commonly used as keys in maps, and they are difficult to support
1135 efficiently: they are variable length, inefficient to hash and compare when
1136 long, expensive to copy, etc.  CStringMap is a specialized container designed to
1137 cope with these issues.  It supports mapping an arbitrary range of bytes that
1138 does not have an embedded nul character in it ("C strings") to an arbitrary
1139 other object.</p>
1140
1141 <p>The CStringMap implementation uses a quadratically-probed hash table, where
1142 the buckets store a pointer to the heap allocated entries (and some other
1143 stuff).  The entries in the map must be heap allocated because the strings are
1144 variable length.  The string data (key) and the element object (value) are
1145 stored in the same allocation with the string data immediately after the element
1146 object.  This container guarantees the "<tt>(char*)(&amp;Value+1)</tt>" points
1147 to the key string for a value.</p>
1148
1149 <p>The CStringMap is very fast for several reasons: quadratic probing is very
1150 cache efficient for lookups, the hash value of strings in buckets is not
1151 recomputed when lookup up an element, CStringMap rarely has to touch the
1152 memory for unrelated objects when looking up a value (even when hash collisions
1153 happen), hash table growth does not recompute the hash values for strings
1154 already in the table, and each pair in the map is store in a single allocation
1155 (the string data is stored in the same allocation as the Value of a pair).</p>
1156
1157 <p>CStringMap also provides query methods that take byte ranges, so it only ever
1158 copies a string if a value is inserted into the table.</p>
1159 </div>
1160
1161 <!-- _______________________________________________________________________ -->
1162 <div class="doc_subsubsection">
1163   <a name="dss_indexedmap">"llvm/ADT/IndexedMap.h"</a>
1164 </div>
1165
1166 <div class="doc_text">
1167 <p>
1168 IndexedMap is a specialized container for mapping small dense integers (or
1169 values that can be mapped to small dense integers) to some other type.  It is
1170 internally implemented as a vector with a mapping function that maps the keys to
1171 the dense integer range.
1172 </p>
1173
1174 <p>
1175 This is useful for cases like virtual registers in the LLVM code generator: they
1176 have a dense mapping that is offset by a compile-time constant (the first
1177 virtual register ID).</p>
1178
1179 </div>
1180
1181 <!-- _______________________________________________________________________ -->
1182 <div class="doc_subsubsection">
1183   <a name="dss_densemap">"llvm/ADT/DenseMap.h"</a>
1184 </div>
1185
1186 <div class="doc_text">
1187
1188 <p>
1189 DenseMap is a simple quadratically probed hash table.  It excels at supporting
1190 small keys and values: it uses a single allocation to hold all of the pairs that
1191 are currently inserted in the map.  DenseMap is a great way to map pointers to
1192 pointers, or map other small types to each other.
1193 </p>
1194
1195 <p>
1196 There are several aspects of DenseMap that you should be aware of, however.  The
1197 iterators in a densemap are invalidated whenever an insertion occurs, unlike
1198 map.  Also, because DenseMap allocates space for a large number of key/value
1199 pairs (it starts with 64 by default), it will waste a lot of space if your keys
1200 or values are large.  Finally, you must implement a partial specialization of
1201 DenseMapKeyInfo for the key that you want, if it isn't already supported.  This
1202 is required to tell DenseMap about two special marker values (which can never be
1203 inserted into the map) that it needs internally.</p>
1204
1205 </div>
1206
1207 <!-- _______________________________________________________________________ -->
1208 <div class="doc_subsubsection">
1209   <a name="dss_map">&lt;map&gt;</a>
1210 </div>
1211
1212 <div class="doc_text">
1213
1214 <p>
1215 std::map has similar characteristics to <a href="#dss_set">std::set</a>: it uses
1216 a single allocation per pair inserted into the map, it offers log(n) lookup with
1217 an extremely large constant factor, imposes a space penalty of 3 pointers per
1218 pair in the map, etc.</p>
1219
1220 <p>std::map is most useful when your keys or values are very large, if you need
1221 to iterate over the collection in sorted order, or if you need stable iterators
1222 into the map (i.e. they don't get invalidated if an insertion or deletion of
1223 another element takes place).</p>
1224
1225 </div>
1226
1227 <!-- _______________________________________________________________________ -->
1228 <div class="doc_subsubsection">
1229   <a name="dss_othermap">Other Map-Like Container Options</a>
1230 </div>
1231
1232 <div class="doc_text">
1233
1234 <p>
1235 The STL provides several other options, such as std::multimap and the various 
1236 "hash_map" like containers (whether from C++ TR1 or from the SGI library).</p>
1237
1238 <p>std::multimap is useful if you want to map a key to multiple values, but has
1239 all the drawbacks of std::map.  A sorted vector or some other approach is almost
1240 always better.</p>
1241
1242 <p>The various hash_map implementations (exposed portably by
1243 "llvm/ADT/hash_map") are simple chained hash tables.  This algorithm is as
1244 malloc intensive as std::map (performing an allocation for each element
1245 inserted, thus having really high constant factors) but (usually) provides O(1)
1246 insertion/deletion of elements.  This can be useful if your elements are large
1247 (thus making the constant-factor cost relatively low) or if comparisons are
1248 expensive.  Element iteration does not visit elements in a useful order.</p>
1249
1250 </div>
1251
1252
1253 <!-- *********************************************************************** -->
1254 <div class="doc_section">
1255   <a name="common">Helpful Hints for Common Operations</a>
1256 </div>
1257 <!-- *********************************************************************** -->
1258
1259 <div class="doc_text">
1260
1261 <p>This section describes how to perform some very simple transformations of
1262 LLVM code.  This is meant to give examples of common idioms used, showing the
1263 practical side of LLVM transformations.  <p> Because this is a "how-to" section,
1264 you should also read about the main classes that you will be working with.  The
1265 <a href="#coreclasses">Core LLVM Class Hierarchy Reference</a> contains details
1266 and descriptions of the main classes that you should know about.</p>
1267
1268 </div>
1269
1270 <!-- NOTE: this section should be heavy on example code -->
1271 <!-- ======================================================================= -->
1272 <div class="doc_subsection">
1273   <a name="inspection">Basic Inspection and Traversal Routines</a>
1274 </div>
1275
1276 <div class="doc_text">
1277
1278 <p>The LLVM compiler infrastructure have many different data structures that may
1279 be traversed.  Following the example of the C++ standard template library, the
1280 techniques used to traverse these various data structures are all basically the
1281 same.  For a enumerable sequence of values, the <tt>XXXbegin()</tt> function (or
1282 method) returns an iterator to the start of the sequence, the <tt>XXXend()</tt>
1283 function returns an iterator pointing to one past the last valid element of the
1284 sequence, and there is some <tt>XXXiterator</tt> data type that is common
1285 between the two operations.</p>
1286
1287 <p>Because the pattern for iteration is common across many different aspects of
1288 the program representation, the standard template library algorithms may be used
1289 on them, and it is easier to remember how to iterate. First we show a few common
1290 examples of the data structures that need to be traversed.  Other data
1291 structures are traversed in very similar ways.</p>
1292
1293 </div>
1294
1295 <!-- _______________________________________________________________________ -->
1296 <div class="doc_subsubsection">
1297   <a name="iterate_function">Iterating over the </a><a
1298   href="#BasicBlock"><tt>BasicBlock</tt></a>s in a <a
1299   href="#Function"><tt>Function</tt></a>
1300 </div>
1301
1302 <div class="doc_text">
1303
1304 <p>It's quite common to have a <tt>Function</tt> instance that you'd like to
1305 transform in some way; in particular, you'd like to manipulate its
1306 <tt>BasicBlock</tt>s.  To facilitate this, you'll need to iterate over all of
1307 the <tt>BasicBlock</tt>s that constitute the <tt>Function</tt>. The following is
1308 an example that prints the name of a <tt>BasicBlock</tt> and the number of
1309 <tt>Instruction</tt>s it contains:</p>
1310
1311 <div class="doc_code">
1312 <pre>
1313 // <i>func is a pointer to a Function instance</i>
1314 for (Function::iterator i = func-&gt;begin(), e = func-&gt;end(); i != e; ++i)
1315   // <i>Print out the name of the basic block if it has one, and then the</i>
1316   // <i>number of instructions that it contains</i>
1317   llvm::cerr &lt;&lt; "Basic block (name=" &lt;&lt; i-&gt;getName() &lt;&lt; ") has "
1318              &lt;&lt; i-&gt;size() &lt;&lt; " instructions.\n";
1319 </pre>
1320 </div>
1321
1322 <p>Note that i can be used as if it were a pointer for the purposes of
1323 invoking member functions of the <tt>Instruction</tt> class.  This is
1324 because the indirection operator is overloaded for the iterator
1325 classes.  In the above code, the expression <tt>i-&gt;size()</tt> is
1326 exactly equivalent to <tt>(*i).size()</tt> just like you'd expect.</p>
1327
1328 </div>
1329
1330 <!-- _______________________________________________________________________ -->
1331 <div class="doc_subsubsection">
1332   <a name="iterate_basicblock">Iterating over the </a><a
1333   href="#Instruction"><tt>Instruction</tt></a>s in a <a
1334   href="#BasicBlock"><tt>BasicBlock</tt></a>
1335 </div>
1336
1337 <div class="doc_text">
1338
1339 <p>Just like when dealing with <tt>BasicBlock</tt>s in <tt>Function</tt>s, it's
1340 easy to iterate over the individual instructions that make up
1341 <tt>BasicBlock</tt>s. Here's a code snippet that prints out each instruction in
1342 a <tt>BasicBlock</tt>:</p>
1343
1344 <div class="doc_code">
1345 <pre>
1346 // <i>blk is a pointer to a BasicBlock instance</i>
1347 for (BasicBlock::iterator i = blk-&gt;begin(), e = blk-&gt;end(); i != e; ++i)
1348    // <i>The next statement works since operator&lt;&lt;(ostream&amp;,...)</i>
1349    // <i>is overloaded for Instruction&amp;</i>
1350    llvm::cerr &lt;&lt; *i &lt;&lt; "\n";
1351 </pre>
1352 </div>
1353
1354 <p>However, this isn't really the best way to print out the contents of a
1355 <tt>BasicBlock</tt>!  Since the ostream operators are overloaded for virtually
1356 anything you'll care about, you could have just invoked the print routine on the
1357 basic block itself: <tt>llvm::cerr &lt;&lt; *blk &lt;&lt; "\n";</tt>.</p>
1358
1359 </div>
1360
1361 <!-- _______________________________________________________________________ -->
1362 <div class="doc_subsubsection">
1363   <a name="iterate_institer">Iterating over the </a><a
1364   href="#Instruction"><tt>Instruction</tt></a>s in a <a
1365   href="#Function"><tt>Function</tt></a>
1366 </div>
1367
1368 <div class="doc_text">
1369
1370 <p>If you're finding that you commonly iterate over a <tt>Function</tt>'s
1371 <tt>BasicBlock</tt>s and then that <tt>BasicBlock</tt>'s <tt>Instruction</tt>s,
1372 <tt>InstIterator</tt> should be used instead. You'll need to include <a
1373 href="/doxygen/InstIterator_8h-source.html"><tt>llvm/Support/InstIterator.h</tt></a>,
1374 and then instantiate <tt>InstIterator</tt>s explicitly in your code.  Here's a
1375 small example that shows how to dump all instructions in a function to the standard error stream:<p>
1376
1377 <div class="doc_code">
1378 <pre>
1379 #include "<a href="/doxygen/InstIterator_8h-source.html">llvm/Support/InstIterator.h</a>"
1380
1381 // <i>F is a pointer to a Function instance</i>
1382 for (inst_iterator i = inst_begin(F), e = inst_end(F); i != e; ++i)
1383   llvm::cerr &lt;&lt; *i &lt;&lt; "\n";
1384 </pre>
1385 </div>
1386
1387 <p>Easy, isn't it?  You can also use <tt>InstIterator</tt>s to fill a
1388 work list with its initial contents.  For example, if you wanted to
1389 initialize a work list to contain all instructions in a <tt>Function</tt>
1390 F, all you would need to do is something like:</p>
1391
1392 <div class="doc_code">
1393 <pre>
1394 std::set&lt;Instruction*&gt; worklist;
1395 worklist.insert(inst_begin(F), inst_end(F));
1396 </pre>
1397 </div>
1398
1399 <p>The STL set <tt>worklist</tt> would now contain all instructions in the
1400 <tt>Function</tt> pointed to by F.</p>
1401
1402 </div>
1403
1404 <!-- _______________________________________________________________________ -->
1405 <div class="doc_subsubsection">
1406   <a name="iterate_convert">Turning an iterator into a class pointer (and
1407   vice-versa)</a>
1408 </div>
1409
1410 <div class="doc_text">
1411
1412 <p>Sometimes, it'll be useful to grab a reference (or pointer) to a class
1413 instance when all you've got at hand is an iterator.  Well, extracting
1414 a reference or a pointer from an iterator is very straight-forward.
1415 Assuming that <tt>i</tt> is a <tt>BasicBlock::iterator</tt> and <tt>j</tt>
1416 is a <tt>BasicBlock::const_iterator</tt>:</p>
1417
1418 <div class="doc_code">
1419 <pre>
1420 Instruction&amp; inst = *i;   // <i>Grab reference to instruction reference</i>
1421 Instruction* pinst = &amp;*i; // <i>Grab pointer to instruction reference</i>
1422 const Instruction&amp; inst = *j;
1423 </pre>
1424 </div>
1425
1426 <p>However, the iterators you'll be working with in the LLVM framework are
1427 special: they will automatically convert to a ptr-to-instance type whenever they
1428 need to.  Instead of dereferencing the iterator and then taking the address of
1429 the result, you can simply assign the iterator to the proper pointer type and
1430 you get the dereference and address-of operation as a result of the assignment
1431 (behind the scenes, this is a result of overloading casting mechanisms).  Thus
1432 the last line of the last example,</p>
1433
1434 <div class="doc_code">
1435 <pre>
1436 Instruction* pinst = &amp;*i;
1437 </pre>
1438 </div>
1439
1440 <p>is semantically equivalent to</p>
1441
1442 <div class="doc_code">
1443 <pre>
1444 Instruction* pinst = i;
1445 </pre>
1446 </div>
1447
1448 <p>It's also possible to turn a class pointer into the corresponding iterator,
1449 and this is a constant time operation (very efficient).  The following code
1450 snippet illustrates use of the conversion constructors provided by LLVM
1451 iterators.  By using these, you can explicitly grab the iterator of something
1452 without actually obtaining it via iteration over some structure:</p>
1453
1454 <div class="doc_code">
1455 <pre>
1456 void printNextInstruction(Instruction* inst) {
1457   BasicBlock::iterator it(inst);
1458   ++it; // <i>After this line, it refers to the instruction after *inst</i>
1459   if (it != inst-&gt;getParent()-&gt;end()) llvm::cerr &lt;&lt; *it &lt;&lt; "\n";
1460 }
1461 </pre>
1462 </div>
1463
1464 </div>
1465
1466 <!--_______________________________________________________________________-->
1467 <div class="doc_subsubsection">
1468   <a name="iterate_complex">Finding call sites: a slightly more complex
1469   example</a>
1470 </div>
1471
1472 <div class="doc_text">
1473
1474 <p>Say that you're writing a FunctionPass and would like to count all the
1475 locations in the entire module (that is, across every <tt>Function</tt>) where a
1476 certain function (i.e., some <tt>Function</tt>*) is already in scope.  As you'll
1477 learn later, you may want to use an <tt>InstVisitor</tt> to accomplish this in a
1478 much more straight-forward manner, but this example will allow us to explore how
1479 you'd do it if you didn't have <tt>InstVisitor</tt> around. In pseudo-code, this
1480 is what we want to do:</p>
1481
1482 <div class="doc_code">
1483 <pre>
1484 initialize callCounter to zero
1485 for each Function f in the Module
1486   for each BasicBlock b in f
1487     for each Instruction i in b
1488       if (i is a CallInst and calls the given function)
1489         increment callCounter
1490 </pre>
1491 </div>
1492
1493 <p>And the actual code is (remember, because we're writing a
1494 <tt>FunctionPass</tt>, our <tt>FunctionPass</tt>-derived class simply has to
1495 override the <tt>runOnFunction</tt> method):</p>
1496
1497 <div class="doc_code">
1498 <pre>
1499 Function* targetFunc = ...;
1500
1501 class OurFunctionPass : public FunctionPass {
1502   public:
1503     OurFunctionPass(): callCounter(0) { }
1504
1505     virtual runOnFunction(Function&amp; F) {
1506       for (Function::iterator b = F.begin(), be = F.end(); b != be; ++b) {
1507         for (BasicBlock::iterator i = b-&gt;begin(); ie = b-&gt;end(); i != ie; ++i) {
1508           if (<a href="#CallInst">CallInst</a>* callInst = <a href="#isa">dyn_cast</a>&lt;<a
1509  href="#CallInst">CallInst</a>&gt;(&amp;*i)) {
1510             // <i>We know we've encountered a call instruction, so we</i>
1511             // <i>need to determine if it's a call to the</i>
1512             // <i>function pointed to by m_func or not</i>
1513
1514             if (callInst-&gt;getCalledFunction() == targetFunc)
1515               ++callCounter;
1516           }
1517         }
1518       }
1519     }
1520
1521   private:
1522     unsigned  callCounter;
1523 };
1524 </pre>
1525 </div>
1526
1527 </div>
1528
1529 <!--_______________________________________________________________________-->
1530 <div class="doc_subsubsection">
1531   <a name="calls_and_invokes">Treating calls and invokes the same way</a>
1532 </div>
1533
1534 <div class="doc_text">
1535
1536 <p>You may have noticed that the previous example was a bit oversimplified in
1537 that it did not deal with call sites generated by 'invoke' instructions. In
1538 this, and in other situations, you may find that you want to treat
1539 <tt>CallInst</tt>s and <tt>InvokeInst</tt>s the same way, even though their
1540 most-specific common base class is <tt>Instruction</tt>, which includes lots of
1541 less closely-related things. For these cases, LLVM provides a handy wrapper
1542 class called <a
1543 href="http://llvm.org/doxygen/classllvm_1_1CallSite.html"><tt>CallSite</tt></a>.
1544 It is essentially a wrapper around an <tt>Instruction</tt> pointer, with some
1545 methods that provide functionality common to <tt>CallInst</tt>s and
1546 <tt>InvokeInst</tt>s.</p>
1547
1548 <p>This class has "value semantics": it should be passed by value, not by
1549 reference and it should not be dynamically allocated or deallocated using
1550 <tt>operator new</tt> or <tt>operator delete</tt>. It is efficiently copyable,
1551 assignable and constructable, with costs equivalents to that of a bare pointer.
1552 If you look at its definition, it has only a single pointer member.</p>
1553
1554 </div>
1555
1556 <!--_______________________________________________________________________-->
1557 <div class="doc_subsubsection">
1558   <a name="iterate_chains">Iterating over def-use &amp; use-def chains</a>
1559 </div>
1560
1561 <div class="doc_text">
1562
1563 <p>Frequently, we might have an instance of the <a
1564 href="/doxygen/classllvm_1_1Value.html">Value Class</a> and we want to
1565 determine which <tt>User</tt>s use the <tt>Value</tt>.  The list of all
1566 <tt>User</tt>s of a particular <tt>Value</tt> is called a <i>def-use</i> chain.
1567 For example, let's say we have a <tt>Function*</tt> named <tt>F</tt> to a
1568 particular function <tt>foo</tt>. Finding all of the instructions that
1569 <i>use</i> <tt>foo</tt> is as simple as iterating over the <i>def-use</i> chain
1570 of <tt>F</tt>:</p>
1571
1572 <div class="doc_code">
1573 <pre>
1574 Function* F = ...;
1575
1576 for (Value::use_iterator i = F-&gt;use_begin(), e = F-&gt;use_end(); i != e; ++i)
1577   if (Instruction *Inst = dyn_cast&lt;Instruction&gt;(*i)) {
1578     llvm::cerr &lt;&lt; "F is used in instruction:\n";
1579     llvm::cerr &lt;&lt; *Inst &lt;&lt; "\n";
1580   }
1581 </pre>
1582 </div>
1583
1584 <p>Alternately, it's common to have an instance of the <a
1585 href="/doxygen/classllvm_1_1User.html">User Class</a> and need to know what
1586 <tt>Value</tt>s are used by it.  The list of all <tt>Value</tt>s used by a
1587 <tt>User</tt> is known as a <i>use-def</i> chain.  Instances of class
1588 <tt>Instruction</tt> are common <tt>User</tt>s, so we might want to iterate over
1589 all of the values that a particular instruction uses (that is, the operands of
1590 the particular <tt>Instruction</tt>):</p>
1591
1592 <div class="doc_code">
1593 <pre>
1594 Instruction* pi = ...;
1595
1596 for (User::op_iterator i = pi-&gt;op_begin(), e = pi-&gt;op_end(); i != e; ++i) {
1597   Value* v = *i;
1598   // <i>...</i>
1599 }
1600 </pre>
1601 </div>
1602
1603 <!--
1604   def-use chains ("finding all users of"): Value::use_begin/use_end
1605   use-def chains ("finding all values used"): User::op_begin/op_end [op=operand]
1606 -->
1607
1608 </div>
1609
1610 <!-- ======================================================================= -->
1611 <div class="doc_subsection">
1612   <a name="simplechanges">Making simple changes</a>
1613 </div>
1614
1615 <div class="doc_text">
1616
1617 <p>There are some primitive transformation operations present in the LLVM
1618 infrastructure that are worth knowing about.  When performing
1619 transformations, it's fairly common to manipulate the contents of basic
1620 blocks. This section describes some of the common methods for doing so
1621 and gives example code.</p>
1622
1623 </div>
1624
1625 <!--_______________________________________________________________________-->
1626 <div class="doc_subsubsection">
1627   <a name="schanges_creating">Creating and inserting new
1628   <tt>Instruction</tt>s</a>
1629 </div>
1630
1631 <div class="doc_text">
1632
1633 <p><i>Instantiating Instructions</i></p>
1634
1635 <p>Creation of <tt>Instruction</tt>s is straight-forward: simply call the
1636 constructor for the kind of instruction to instantiate and provide the necessary
1637 parameters. For example, an <tt>AllocaInst</tt> only <i>requires</i> a
1638 (const-ptr-to) <tt>Type</tt>. Thus:</p> 
1639
1640 <div class="doc_code">
1641 <pre>
1642 AllocaInst* ai = new AllocaInst(Type::IntTy);
1643 </pre>
1644 </div>
1645
1646 <p>will create an <tt>AllocaInst</tt> instance that represents the allocation of
1647 one integer in the current stack frame, at run time. Each <tt>Instruction</tt>
1648 subclass is likely to have varying default parameters which change the semantics
1649 of the instruction, so refer to the <a
1650 href="/doxygen/classllvm_1_1Instruction.html">doxygen documentation for the subclass of
1651 Instruction</a> that you're interested in instantiating.</p>
1652
1653 <p><i>Naming values</i></p>
1654
1655 <p>It is very useful to name the values of instructions when you're able to, as
1656 this facilitates the debugging of your transformations.  If you end up looking
1657 at generated LLVM machine code, you definitely want to have logical names
1658 associated with the results of instructions!  By supplying a value for the
1659 <tt>Name</tt> (default) parameter of the <tt>Instruction</tt> constructor, you
1660 associate a logical name with the result of the instruction's execution at
1661 run time.  For example, say that I'm writing a transformation that dynamically
1662 allocates space for an integer on the stack, and that integer is going to be
1663 used as some kind of index by some other code.  To accomplish this, I place an
1664 <tt>AllocaInst</tt> at the first point in the first <tt>BasicBlock</tt> of some
1665 <tt>Function</tt>, and I'm intending to use it within the same
1666 <tt>Function</tt>. I might do:</p>
1667
1668 <div class="doc_code">
1669 <pre>
1670 AllocaInst* pa = new AllocaInst(Type::IntTy, 0, "indexLoc");
1671 </pre>
1672 </div>
1673
1674 <p>where <tt>indexLoc</tt> is now the logical name of the instruction's
1675 execution value, which is a pointer to an integer on the run time stack.</p>
1676
1677 <p><i>Inserting instructions</i></p>
1678
1679 <p>There are essentially two ways to insert an <tt>Instruction</tt>
1680 into an existing sequence of instructions that form a <tt>BasicBlock</tt>:</p>
1681
1682 <ul>
1683   <li>Insertion into an explicit instruction list
1684
1685     <p>Given a <tt>BasicBlock* pb</tt>, an <tt>Instruction* pi</tt> within that
1686     <tt>BasicBlock</tt>, and a newly-created instruction we wish to insert
1687     before <tt>*pi</tt>, we do the following: </p>
1688
1689 <div class="doc_code">
1690 <pre>
1691 BasicBlock *pb = ...;
1692 Instruction *pi = ...;
1693 Instruction *newInst = new Instruction(...);
1694
1695 pb-&gt;getInstList().insert(pi, newInst); // <i>Inserts newInst before pi in pb</i>
1696 </pre>
1697 </div>
1698
1699     <p>Appending to the end of a <tt>BasicBlock</tt> is so common that
1700     the <tt>Instruction</tt> class and <tt>Instruction</tt>-derived
1701     classes provide constructors which take a pointer to a
1702     <tt>BasicBlock</tt> to be appended to. For example code that
1703     looked like: </p>
1704
1705 <div class="doc_code">
1706 <pre>
1707 BasicBlock *pb = ...;
1708 Instruction *newInst = new Instruction(...);
1709
1710 pb-&gt;getInstList().push_back(newInst); // <i>Appends newInst to pb</i>
1711 </pre>
1712 </div>
1713
1714     <p>becomes: </p>
1715
1716 <div class="doc_code">
1717 <pre>
1718 BasicBlock *pb = ...;
1719 Instruction *newInst = new Instruction(..., pb);
1720 </pre>
1721 </div>
1722
1723     <p>which is much cleaner, especially if you are creating
1724     long instruction streams.</p></li>
1725
1726   <li>Insertion into an implicit instruction list
1727
1728     <p><tt>Instruction</tt> instances that are already in <tt>BasicBlock</tt>s
1729     are implicitly associated with an existing instruction list: the instruction
1730     list of the enclosing basic block. Thus, we could have accomplished the same
1731     thing as the above code without being given a <tt>BasicBlock</tt> by doing:
1732     </p>
1733
1734 <div class="doc_code">
1735 <pre>
1736 Instruction *pi = ...;
1737 Instruction *newInst = new Instruction(...);
1738
1739 pi-&gt;getParent()-&gt;getInstList().insert(pi, newInst);
1740 </pre>
1741 </div>
1742
1743     <p>In fact, this sequence of steps occurs so frequently that the
1744     <tt>Instruction</tt> class and <tt>Instruction</tt>-derived classes provide
1745     constructors which take (as a default parameter) a pointer to an
1746     <tt>Instruction</tt> which the newly-created <tt>Instruction</tt> should
1747     precede.  That is, <tt>Instruction</tt> constructors are capable of
1748     inserting the newly-created instance into the <tt>BasicBlock</tt> of a
1749     provided instruction, immediately before that instruction.  Using an
1750     <tt>Instruction</tt> constructor with a <tt>insertBefore</tt> (default)
1751     parameter, the above code becomes:</p>
1752
1753 <div class="doc_code">
1754 <pre>
1755 Instruction* pi = ...;
1756 Instruction* newInst = new Instruction(..., pi);
1757 </pre>
1758 </div>
1759
1760     <p>which is much cleaner, especially if you're creating a lot of
1761     instructions and adding them to <tt>BasicBlock</tt>s.</p></li>
1762 </ul>
1763
1764 </div>
1765
1766 <!--_______________________________________________________________________-->
1767 <div class="doc_subsubsection">
1768   <a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a>
1769 </div>
1770
1771 <div class="doc_text">
1772
1773 <p>Deleting an instruction from an existing sequence of instructions that form a
1774 <a href="#BasicBlock"><tt>BasicBlock</tt></a> is very straight-forward. First,
1775 you must have a pointer to the instruction that you wish to delete.  Second, you
1776 need to obtain the pointer to that instruction's basic block. You use the
1777 pointer to the basic block to get its list of instructions and then use the
1778 erase function to remove your instruction. For example:</p>
1779
1780 <div class="doc_code">
1781 <pre>
1782 <a href="#Instruction">Instruction</a> *I = .. ;
1783 <a href="#BasicBlock">BasicBlock</a> *BB = I-&gt;getParent();
1784
1785 BB-&gt;getInstList().erase(I);
1786 </pre>
1787 </div>
1788
1789 </div>
1790
1791 <!--_______________________________________________________________________-->
1792 <div class="doc_subsubsection">
1793   <a name="schanges_replacing">Replacing an <tt>Instruction</tt> with another
1794   <tt>Value</tt></a>
1795 </div>
1796
1797 <div class="doc_text">
1798
1799 <p><i>Replacing individual instructions</i></p>
1800
1801 <p>Including "<a href="/doxygen/BasicBlockUtils_8h-source.html">llvm/Transforms/Utils/BasicBlockUtils.h</a>"
1802 permits use of two very useful replace functions: <tt>ReplaceInstWithValue</tt>
1803 and <tt>ReplaceInstWithInst</tt>.</p>
1804
1805 <h4><a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a></h4>
1806
1807 <ul>
1808   <li><tt>ReplaceInstWithValue</tt>
1809
1810     <p>This function replaces all uses (within a basic block) of a given
1811     instruction with a value, and then removes the original instruction. The
1812     following example illustrates the replacement of the result of a particular
1813     <tt>AllocaInst</tt> that allocates memory for a single integer with a null
1814     pointer to an integer.</p>
1815
1816 <div class="doc_code">
1817 <pre>
1818 AllocaInst* instToReplace = ...;
1819 BasicBlock::iterator ii(instToReplace);
1820
1821 ReplaceInstWithValue(instToReplace-&gt;getParent()-&gt;getInstList(), ii,
1822                      Constant::getNullValue(PointerType::get(Type::IntTy)));
1823 </pre></div></li>
1824
1825   <li><tt>ReplaceInstWithInst</tt> 
1826
1827     <p>This function replaces a particular instruction with another
1828     instruction. The following example illustrates the replacement of one
1829     <tt>AllocaInst</tt> with another.</p>
1830
1831 <div class="doc_code">
1832 <pre>
1833 AllocaInst* instToReplace = ...;
1834 BasicBlock::iterator ii(instToReplace);
1835
1836 ReplaceInstWithInst(instToReplace-&gt;getParent()-&gt;getInstList(), ii,
1837                     new AllocaInst(Type::IntTy, 0, "ptrToReplacedInt"));
1838 </pre></div></li>
1839 </ul>
1840
1841 <p><i>Replacing multiple uses of <tt>User</tt>s and <tt>Value</tt>s</i></p>
1842
1843 <p>You can use <tt>Value::replaceAllUsesWith</tt> and
1844 <tt>User::replaceUsesOfWith</tt> to change more than one use at a time.  See the
1845 doxygen documentation for the <a href="/doxygen/classllvm_1_1Value.html">Value Class</a>
1846 and <a href="/doxygen/classllvm_1_1User.html">User Class</a>, respectively, for more
1847 information.</p>
1848
1849 <!-- Value::replaceAllUsesWith User::replaceUsesOfWith Point out:
1850 include/llvm/Transforms/Utils/ especially BasicBlockUtils.h with:
1851 ReplaceInstWithValue, ReplaceInstWithInst -->
1852
1853 </div>
1854
1855 <!-- *********************************************************************** -->
1856 <div class="doc_section">
1857   <a name="advanced">Advanced Topics</a>
1858 </div>
1859 <!-- *********************************************************************** -->
1860
1861 <div class="doc_text">
1862 <p>
1863 This section describes some of the advanced or obscure API's that most clients
1864 do not need to be aware of.  These API's tend manage the inner workings of the
1865 LLVM system, and only need to be accessed in unusual circumstances.
1866 </p>
1867 </div>
1868
1869 <!-- ======================================================================= -->
1870 <div class="doc_subsection">
1871   <a name="TypeResolve">LLVM Type Resolution</a>
1872 </div>
1873
1874 <div class="doc_text">
1875
1876 <p>
1877 The LLVM type system has a very simple goal: allow clients to compare types for
1878 structural equality with a simple pointer comparison (aka a shallow compare).
1879 This goal makes clients much simpler and faster, and is used throughout the LLVM
1880 system.
1881 </p>
1882
1883 <p>
1884 Unfortunately achieving this goal is not a simple matter.  In particular,
1885 recursive types and late resolution of opaque types makes the situation very
1886 difficult to handle.  Fortunately, for the most part, our implementation makes
1887 most clients able to be completely unaware of the nasty internal details.  The
1888 primary case where clients are exposed to the inner workings of it are when
1889 building a recursive type.  In addition to this case, the LLVM bytecode reader,
1890 assembly parser, and linker also have to be aware of the inner workings of this
1891 system.
1892 </p>
1893
1894 <p>
1895 For our purposes below, we need three concepts.  First, an "Opaque Type" is 
1896 exactly as defined in the <a href="LangRef.html#t_opaque">language 
1897 reference</a>.  Second an "Abstract Type" is any type which includes an 
1898 opaque type as part of its type graph (for example "<tt>{ opaque, i32 }</tt>").
1899 Third, a concrete type is a type that is not an abstract type (e.g. "<tt>{ i32, 
1900 float }</tt>").
1901 </p>
1902
1903 </div>
1904
1905 <!-- ______________________________________________________________________ -->
1906 <div class="doc_subsubsection">
1907   <a name="BuildRecType">Basic Recursive Type Construction</a>
1908 </div>
1909
1910 <div class="doc_text">
1911
1912 <p>
1913 Because the most common question is "how do I build a recursive type with LLVM",
1914 we answer it now and explain it as we go.  Here we include enough to cause this
1915 to be emitted to an output .ll file:
1916 </p>
1917
1918 <div class="doc_code">
1919 <pre>
1920 %mylist = type { %mylist*, i32 }
1921 </pre>
1922 </div>
1923
1924 <p>
1925 To build this, use the following LLVM APIs:
1926 </p>
1927
1928 <div class="doc_code">
1929 <pre>
1930 // <i>Create the initial outer struct</i>
1931 <a href="#PATypeHolder">PATypeHolder</a> StructTy = OpaqueType::get();
1932 std::vector&lt;const Type*&gt; Elts;
1933 Elts.push_back(PointerType::get(StructTy));
1934 Elts.push_back(Type::IntTy);
1935 StructType *NewSTy = StructType::get(Elts);
1936
1937 // <i>At this point, NewSTy = "{ opaque*, i32 }". Tell VMCore that</i>
1938 // <i>the struct and the opaque type are actually the same.</i>
1939 cast&lt;OpaqueType&gt;(StructTy.get())-&gt;<a href="#refineAbstractTypeTo">refineAbstractTypeTo</a>(NewSTy);
1940
1941 // <i>NewSTy is potentially invalidated, but StructTy (a <a href="#PATypeHolder">PATypeHolder</a>) is</i>
1942 // <i>kept up-to-date</i>
1943 NewSTy = cast&lt;StructType&gt;(StructTy.get());
1944
1945 // <i>Add a name for the type to the module symbol table (optional)</i>
1946 MyModule-&gt;addTypeName("mylist", NewSTy);
1947 </pre>
1948 </div>
1949
1950 <p>
1951 This code shows the basic approach used to build recursive types: build a
1952 non-recursive type using 'opaque', then use type unification to close the cycle.
1953 The type unification step is performed by the <tt><a
1954 href="#refineAbstractTypeTo">refineAbstractTypeTo</a></tt> method, which is
1955 described next.  After that, we describe the <a
1956 href="#PATypeHolder">PATypeHolder class</a>.
1957 </p>
1958
1959 </div>
1960
1961 <!-- ______________________________________________________________________ -->
1962 <div class="doc_subsubsection">
1963   <a name="refineAbstractTypeTo">The <tt>refineAbstractTypeTo</tt> method</a>
1964 </div>
1965
1966 <div class="doc_text">
1967 <p>
1968 The <tt>refineAbstractTypeTo</tt> method starts the type unification process.
1969 While this method is actually a member of the DerivedType class, it is most
1970 often used on OpaqueType instances.  Type unification is actually a recursive
1971 process.  After unification, types can become structurally isomorphic to
1972 existing types, and all duplicates are deleted (to preserve pointer equality).
1973 </p>
1974
1975 <p>
1976 In the example above, the OpaqueType object is definitely deleted.
1977 Additionally, if there is an "{ \2*, i32}" type already created in the system,
1978 the pointer and struct type created are <b>also</b> deleted.  Obviously whenever
1979 a type is deleted, any "Type*" pointers in the program are invalidated.  As
1980 such, it is safest to avoid having <i>any</i> "Type*" pointers to abstract types
1981 live across a call to <tt>refineAbstractTypeTo</tt> (note that non-abstract
1982 types can never move or be deleted).  To deal with this, the <a
1983 href="#PATypeHolder">PATypeHolder</a> class is used to maintain a stable
1984 reference to a possibly refined type, and the <a
1985 href="#AbstractTypeUser">AbstractTypeUser</a> class is used to update more
1986 complex datastructures.
1987 </p>
1988
1989 </div>
1990
1991 <!-- ______________________________________________________________________ -->
1992 <div class="doc_subsubsection">
1993   <a name="PATypeHolder">The PATypeHolder Class</a>
1994 </div>
1995
1996 <div class="doc_text">
1997 <p>
1998 PATypeHolder is a form of a "smart pointer" for Type objects.  When VMCore
1999 happily goes about nuking types that become isomorphic to existing types, it
2000 automatically updates all PATypeHolder objects to point to the new type.  In the
2001 example above, this allows the code to maintain a pointer to the resultant
2002 resolved recursive type, even though the Type*'s are potentially invalidated.
2003 </p>
2004
2005 <p>
2006 PATypeHolder is an extremely light-weight object that uses a lazy union-find
2007 implementation to update pointers.  For example the pointer from a Value to its
2008 Type is maintained by PATypeHolder objects.
2009 </p>
2010
2011 </div>
2012
2013 <!-- ______________________________________________________________________ -->
2014 <div class="doc_subsubsection">
2015   <a name="AbstractTypeUser">The AbstractTypeUser Class</a>
2016 </div>
2017
2018 <div class="doc_text">
2019
2020 <p>
2021 Some data structures need more to perform more complex updates when types get
2022 resolved.  The <a href="#SymbolTable">SymbolTable</a> class, for example, needs
2023 move and potentially merge type planes in its representation when a pointer
2024 changes.</p>
2025
2026 <p>
2027 To support this, a class can derive from the AbstractTypeUser class.  This class
2028 allows it to get callbacks when certain types are resolved.  To register to get
2029 callbacks for a particular type, the DerivedType::{add/remove}AbstractTypeUser
2030 methods can be called on a type.  Note that these methods only work for <i>
2031   abstract</i> types.  Concrete types (those that do not include any opaque 
2032 objects) can never be refined.
2033 </p>
2034 </div>
2035
2036
2037 <!-- ======================================================================= -->
2038 <div class="doc_subsection">
2039   <a name="SymbolTable">The <tt>SymbolTable</tt> class</a>
2040 </div>
2041
2042 <div class="doc_text">
2043 <p>This class provides a symbol table that the <a
2044 href="#Function"><tt>Function</tt></a> and <a href="#Module">
2045 <tt>Module</tt></a> classes use for naming definitions. The symbol table can
2046 provide a name for any <a href="#Value"><tt>Value</tt></a>. 
2047 <tt>SymbolTable</tt> is an abstract data type. It hides the data it contains 
2048 and provides access to it through a controlled interface.</p>
2049
2050 <p>Note that the <tt>SymbolTable</tt> class should not be directly accessed 
2051 by most clients.  It should only be used when iteration over the symbol table 
2052 names themselves are required, which is very special purpose.  Note that not 
2053 all LLVM
2054 <a href="#Value">Value</a>s have names, and those without names (i.e. they have
2055 an empty name) do not exist in the symbol table.
2056 </p>
2057
2058 <p>To use the <tt>SymbolTable</tt> well, you need to understand the 
2059 structure of the information it holds. The class contains two 
2060 <tt>std::map</tt> objects. The first, <tt>pmap</tt>, is a map of 
2061 <tt>Type*</tt> to maps of name (<tt>std::string</tt>) to <tt>Value*</tt>. 
2062 Thus, Values are stored in two-dimensions and accessed by <tt>Type</tt> and 
2063 name.</p> 
2064
2065 <p>The interface of this class provides three basic types of operations:
2066 <ol>
2067   <li><em>Accessors</em>. Accessors provide read-only access to information
2068   such as finding a value for a name with the 
2069   <a href="#SymbolTable_lookup">lookup</a> method.</li> 
2070   <li><em>Mutators</em>. Mutators allow the user to add information to the
2071   <tt>SymbolTable</tt> with methods like 
2072   <a href="#SymbolTable_insert"><tt>insert</tt></a>.</li>
2073   <li><em>Iterators</em>. Iterators allow the user to traverse the content
2074   of the symbol table in well defined ways, such as the method
2075   <a href="#SymbolTable_plane_begin"><tt>plane_begin</tt></a>.</li>
2076 </ol>
2077
2078 <h3>Accessors</h3>
2079 <dl>
2080   <dt><tt>Value* lookup(const Type* Ty, const std::string&amp; name) const</tt>:
2081   </dt>
2082   <dd>The <tt>lookup</tt> method searches the type plane given by the
2083   <tt>Ty</tt> parameter for a <tt>Value</tt> with the provided <tt>name</tt>.
2084   If a suitable <tt>Value</tt> is not found, null is returned.</dd>
2085
2086   <dt><tt>bool isEmpty() const</tt>:</dt>
2087   <dd>This function returns true if both the value and types maps are
2088   empty</dd>
2089 </dl>
2090
2091 <h3>Mutators</h3>
2092 <dl>
2093   <dt><tt>void insert(Value *Val)</tt>:</dt>
2094   <dd>This method adds the provided value to the symbol table.  The Value must
2095   have both a name and a type which are extracted and used to place the value
2096   in the correct type plane under the value's name.</dd>
2097
2098   <dt><tt>void insert(const std::string&amp; Name, Value *Val)</tt>:</dt>
2099   <dd> Inserts a constant or type into the symbol table with the specified
2100   name. There can be a many to one mapping between names and constants
2101   or types.</dd>
2102
2103   <dt><tt>void remove(Value* Val)</tt>:</dt>
2104  <dd> This method removes a named value from the symbol table. The
2105   type and name of the Value are extracted from \p N and used to
2106   lookup the Value in the correct type plane. If the Value is
2107   not in the symbol table, this method silently ignores the
2108   request.</dd>
2109
2110   <dt><tt>Value* remove(const std::string&amp; Name, Value *Val)</tt>:</dt>
2111   <dd> Remove a constant or type with the specified name from the 
2112   symbol table.</dd>
2113
2114   <dt><tt>Value *remove(const value_iterator&amp; It)</tt>:</dt>
2115   <dd> Removes a specific value from the symbol table. 
2116   Returns the removed value.</dd>
2117
2118   <dt><tt>bool strip()</tt>:</dt>
2119   <dd> This method will strip the symbol table of its names leaving
2120   the type and values. </dd>
2121
2122   <dt><tt>void clear()</tt>:</dt>
2123   <dd>Empty the symbol table completely.</dd>
2124 </dl>
2125
2126 <h3>Iteration</h3>
2127 <p>The following functions describe three types of iterators you can obtain
2128 the beginning or end of the sequence for both const and non-const. It is
2129 important to keep track of the different kinds of iterators. There are
2130 three idioms worth pointing out:</p>
2131
2132 <table>
2133   <tr><th>Units</th><th>Iterator</th><th>Idiom</th></tr>
2134   <tr>
2135     <td align="left">Planes Of name/Value maps</td><td>PI</td>
2136     <td align="left"><pre><tt>
2137 for (SymbolTable::plane_const_iterator PI = ST.plane_begin(),
2138      PE = ST.plane_end(); PI != PE; ++PI ) {
2139   PI-&gt;first  // <i>This is the Type* of the plane</i>
2140   PI-&gt;second // <i>This is the SymbolTable::ValueMap of name/Value pairs</i>
2141 }
2142     </tt></pre></td>
2143   </tr>
2144   <tr>
2145     <td align="left">name/Value pairs in a plane</td><td>VI</td>
2146     <td align="left"><pre><tt>
2147 for (SymbolTable::value_const_iterator VI = ST.value_begin(SomeType),
2148      VE = ST.value_end(SomeType); VI != VE; ++VI ) {
2149   VI-&gt;first  // <i>This is the name of the Value</i>
2150   VI-&gt;second // <i>This is the Value* value associated with the name</i>
2151 }
2152     </tt></pre></td>
2153   </tr>
2154 </table>
2155
2156 <p>Using the recommended iterator names and idioms will help you avoid
2157 making mistakes. Of particular note, make sure that whenever you use
2158 value_begin(SomeType) that you always compare the resulting iterator
2159 with value_end(SomeType) not value_end(SomeOtherType) or else you 
2160 will loop infinitely.</p>
2161
2162 <dl>
2163
2164   <dt><tt>plane_iterator plane_begin()</tt>:</dt>
2165   <dd>Get an iterator that starts at the beginning of the type planes.
2166   The iterator will iterate over the Type/ValueMap pairs in the
2167   type planes. </dd>
2168
2169   <dt><tt>plane_const_iterator plane_begin() const</tt>:</dt>
2170   <dd>Get a const_iterator that starts at the beginning of the type 
2171   planes.  The iterator will iterate over the Type/ValueMap pairs 
2172   in the type planes. </dd>
2173
2174   <dt><tt>plane_iterator plane_end()</tt>:</dt>
2175   <dd>Get an iterator at the end of the type planes. This serves as
2176   the marker for end of iteration over the type planes.</dd>
2177
2178   <dt><tt>plane_const_iterator plane_end() const</tt>:</dt>
2179   <dd>Get a const_iterator at the end of the type planes. This serves as
2180   the marker for end of iteration over the type planes.</dd>
2181
2182   <dt><tt>value_iterator value_begin(const Type *Typ)</tt>:</dt>
2183   <dd>Get an iterator that starts at the beginning of a type plane.
2184   The iterator will iterate over the name/value pairs in the type plane.
2185   Note: The type plane must already exist before using this.</dd>
2186
2187   <dt><tt>value_const_iterator value_begin(const Type *Typ) const</tt>:</dt>
2188   <dd>Get a const_iterator that starts at the beginning of a type plane.
2189   The iterator will iterate over the name/value pairs in the type plane.
2190   Note: The type plane must already exist before using this.</dd>
2191
2192   <dt><tt>value_iterator value_end(const Type *Typ)</tt>:</dt>
2193   <dd>Get an iterator to the end of a type plane. This serves as the marker
2194   for end of iteration of the type plane.
2195   Note: The type plane must already exist before using this.</dd>
2196
2197   <dt><tt>value_const_iterator value_end(const Type *Typ) const</tt>:</dt>
2198   <dd>Get a const_iterator to the end of a type plane. This serves as the
2199   marker for end of iteration of the type plane.
2200   Note: the type plane must already exist before using this.</dd>
2201
2202   <dt><tt>plane_const_iterator find(const Type* Typ ) const</tt>:</dt>
2203   <dd>This method returns a plane_const_iterator for iteration over
2204   the type planes starting at a specific plane, given by \p Ty.</dd>
2205
2206   <dt><tt>plane_iterator find( const Type* Typ </tt>:</dt>
2207   <dd>This method returns a plane_iterator for iteration over the
2208   type planes starting at a specific plane, given by \p Ty.</dd>
2209
2210 </dl>
2211 </div>
2212
2213
2214
2215 <!-- *********************************************************************** -->
2216 <div class="doc_section">
2217   <a name="coreclasses">The Core LLVM Class Hierarchy Reference </a>
2218 </div>
2219 <!-- *********************************************************************** -->
2220
2221 <div class="doc_text">
2222 <p><tt>#include "<a href="/doxygen/Type_8h-source.html">llvm/Type.h</a>"</tt>
2223 <br>doxygen info: <a href="/doxygen/classllvm_1_1Type.html">Type Class</a></p>
2224
2225 <p>The Core LLVM classes are the primary means of representing the program
2226 being inspected or transformed.  The core LLVM classes are defined in
2227 header files in the <tt>include/llvm/</tt> directory, and implemented in
2228 the <tt>lib/VMCore</tt> directory.</p>
2229
2230 </div>
2231
2232 <!-- ======================================================================= -->
2233 <div class="doc_subsection">
2234   <a name="Type">The <tt>Type</tt> class and Derived Types</a>
2235 </div>
2236
2237 <div class="doc_text">
2238
2239   <p><tt>Type</tt> is a superclass of all type classes. Every <tt>Value</tt> has
2240   a <tt>Type</tt>. <tt>Type</tt> cannot be instantiated directly but only
2241   through its subclasses. Certain primitive types (<tt>VoidType</tt>,
2242   <tt>LabelType</tt>, <tt>FloatType</tt> and <tt>DoubleType</tt>) have hidden 
2243   subclasses. They are hidden because they offer no useful functionality beyond
2244   what the <tt>Type</tt> class offers except to distinguish themselves from 
2245   other subclasses of <tt>Type</tt>.</p>
2246   <p>All other types are subclasses of <tt>DerivedType</tt>.  Types can be 
2247   named, but this is not a requirement. There exists exactly 
2248   one instance of a given shape at any one time.  This allows type equality to
2249   be performed with address equality of the Type Instance. That is, given two 
2250   <tt>Type*</tt> values, the types are identical if the pointers are identical.
2251   </p>
2252 </div>
2253
2254 <!-- _______________________________________________________________________ -->
2255 <div class="doc_subsubsection">
2256   <a name="m_Value">Important Public Methods</a>
2257 </div>
2258
2259 <div class="doc_text">
2260
2261 <ul>
2262   <li><tt>bool isInteger() const</tt>: Returns true for any integer type.</li>
2263
2264   <li><tt>bool isFloatingPoint()</tt>: Return true if this is one of the two
2265   floating point types.</li>
2266
2267   <li><tt>bool isAbstract()</tt>: Return true if the type is abstract (contains
2268   an OpaqueType anywhere in its definition).</li>
2269
2270   <li><tt>bool isSized()</tt>: Return true if the type has known size. Things
2271   that don't have a size are abstract types, labels and void.</li>
2272
2273 </ul>
2274 </div>
2275
2276 <!-- _______________________________________________________________________ -->
2277 <div class="doc_subsubsection">
2278   <a name="m_Value">Important Derived Types</a>
2279 </div>
2280 <div class="doc_text">
2281 <dl>
2282   <dt><tt>IntegerType</tt></dt>
2283   <dd>Subclass of DerivedType that represents integer types of any bit width. 
2284   Any bit width between <tt>IntegerType::MIN_INT_BITS</tt> (1) and 
2285   <tt>IntegerType::MAX_INT_BITS</tt> (~8 million) can be represented.
2286   <ul>
2287     <li><tt>static const IntegerType* get(unsigned NumBits)</tt>: get an integer
2288     type of a specific bit width.</li>
2289     <li><tt>unsigned getBitWidth() const</tt>: Get the bit width of an integer
2290     type.</li>
2291   </ul>
2292   </dd>
2293   <dt><tt>SequentialType</tt></dt>
2294   <dd>This is subclassed by ArrayType and PointerType
2295     <ul>
2296       <li><tt>const Type * getElementType() const</tt>: Returns the type of each
2297       of the elements in the sequential type. </li>
2298     </ul>
2299   </dd>
2300   <dt><tt>ArrayType</tt></dt>
2301   <dd>This is a subclass of SequentialType and defines the interface for array 
2302   types.
2303     <ul>
2304       <li><tt>unsigned getNumElements() const</tt>: Returns the number of 
2305       elements in the array. </li>
2306     </ul>
2307   </dd>
2308   <dt><tt>PointerType</tt></dt>
2309   <dd>Subclass of SequentialType for pointer types.</dd>
2310   <dt><tt>PackedType</tt></dt>
2311   <dd>Subclass of SequentialType for packed (vector) types. A 
2312   packed type is similar to an ArrayType but is distinguished because it is 
2313   a first class type wherease ArrayType is not. Packed types are used for 
2314   vector operations and are usually small vectors of of an integer or floating 
2315   point type.</dd>
2316   <dt><tt>StructType</tt></dt>
2317   <dd>Subclass of DerivedTypes for struct types.</dd>
2318   <dt><tt>FunctionType</tt></dt>
2319   <dd>Subclass of DerivedTypes for function types.
2320     <ul>
2321       <li><tt>bool isVarArg() const</tt>: Returns true if its a vararg
2322       function</li>
2323       <li><tt> const Type * getReturnType() const</tt>: Returns the
2324       return type of the function.</li>
2325       <li><tt>const Type * getParamType (unsigned i)</tt>: Returns
2326       the type of the ith parameter.</li>
2327       <li><tt> const unsigned getNumParams() const</tt>: Returns the
2328       number of formal parameters.</li>
2329     </ul>
2330   </dd>
2331   <dt><tt>OpaqueType</tt></dt>
2332   <dd>Sublcass of DerivedType for abstract types. This class 
2333   defines no content and is used as a placeholder for some other type. Note 
2334   that OpaqueType is used (temporarily) during type resolution for forward 
2335   references of types. Once the referenced type is resolved, the OpaqueType 
2336   is replaced with the actual type. OpaqueType can also be used for data 
2337   abstraction. At link time opaque types can be resolved to actual types 
2338   of the same name.</dd>
2339 </dl>
2340 </div>
2341
2342
2343
2344 <!-- ======================================================================= -->
2345 <div class="doc_subsection">
2346   <a name="Module">The <tt>Module</tt> class</a>
2347 </div>
2348
2349 <div class="doc_text">
2350
2351 <p><tt>#include "<a
2352 href="/doxygen/Module_8h-source.html">llvm/Module.h</a>"</tt><br> doxygen info:
2353 <a href="/doxygen/classllvm_1_1Module.html">Module Class</a></p>
2354
2355 <p>The <tt>Module</tt> class represents the top level structure present in LLVM
2356 programs.  An LLVM module is effectively either a translation unit of the
2357 original program or a combination of several translation units merged by the
2358 linker.  The <tt>Module</tt> class keeps track of a list of <a
2359 href="#Function"><tt>Function</tt></a>s, a list of <a
2360 href="#GlobalVariable"><tt>GlobalVariable</tt></a>s, and a <a
2361 href="#SymbolTable"><tt>SymbolTable</tt></a>.  Additionally, it contains a few
2362 helpful member functions that try to make common operations easy.</p>
2363
2364 </div>
2365
2366 <!-- _______________________________________________________________________ -->
2367 <div class="doc_subsubsection">
2368   <a name="m_Module">Important Public Members of the <tt>Module</tt> class</a>
2369 </div>
2370
2371 <div class="doc_text">
2372
2373 <ul>
2374   <li><tt>Module::Module(std::string name = "")</tt></li>
2375 </ul>
2376
2377 <p>Constructing a <a href="#Module">Module</a> is easy. You can optionally
2378 provide a name for it (probably based on the name of the translation unit).</p>
2379
2380 <ul>
2381   <li><tt>Module::iterator</tt> - Typedef for function list iterator<br>
2382     <tt>Module::const_iterator</tt> - Typedef for const_iterator.<br>
2383
2384     <tt>begin()</tt>, <tt>end()</tt>
2385     <tt>size()</tt>, <tt>empty()</tt>
2386
2387     <p>These are forwarding methods that make it easy to access the contents of
2388     a <tt>Module</tt> object's <a href="#Function"><tt>Function</tt></a>
2389     list.</p></li>
2390
2391   <li><tt>Module::FunctionListType &amp;getFunctionList()</tt>
2392
2393     <p> Returns the list of <a href="#Function"><tt>Function</tt></a>s.  This is
2394     necessary to use when you need to update the list or perform a complex
2395     action that doesn't have a forwarding method.</p>
2396
2397     <p><!--  Global Variable --></p></li> 
2398 </ul>
2399
2400 <hr>
2401
2402 <ul>
2403   <li><tt>Module::global_iterator</tt> - Typedef for global variable list iterator<br>
2404
2405     <tt>Module::const_global_iterator</tt> - Typedef for const_iterator.<br>
2406
2407     <tt>global_begin()</tt>, <tt>global_end()</tt>
2408     <tt>global_size()</tt>, <tt>global_empty()</tt>
2409
2410     <p> These are forwarding methods that make it easy to access the contents of
2411     a <tt>Module</tt> object's <a
2412     href="#GlobalVariable"><tt>GlobalVariable</tt></a> list.</p></li>
2413
2414   <li><tt>Module::GlobalListType &amp;getGlobalList()</tt>
2415
2416     <p>Returns the list of <a
2417     href="#GlobalVariable"><tt>GlobalVariable</tt></a>s.  This is necessary to
2418     use when you need to update the list or perform a complex action that
2419     doesn't have a forwarding method.</p>
2420
2421     <p><!--  Symbol table stuff --> </p></li>
2422 </ul>
2423
2424 <hr>
2425
2426 <ul>
2427   <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
2428
2429     <p>Return a reference to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
2430     for this <tt>Module</tt>.</p>
2431
2432     <p><!--  Convenience methods --></p></li>
2433 </ul>
2434
2435 <hr>
2436
2437 <ul>
2438   <li><tt><a href="#Function">Function</a> *getFunction(const std::string
2439   &amp;Name, const <a href="#FunctionType">FunctionType</a> *Ty)</tt>
2440
2441     <p>Look up the specified function in the <tt>Module</tt> <a
2442     href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, return
2443     <tt>null</tt>.</p></li>
2444
2445   <li><tt><a href="#Function">Function</a> *getOrInsertFunction(const
2446   std::string &amp;Name, const <a href="#FunctionType">FunctionType</a> *T)</tt>
2447
2448     <p>Look up the specified function in the <tt>Module</tt> <a
2449     href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, add an
2450     external declaration for the function and return it.</p></li>
2451
2452   <li><tt>std::string getTypeName(const <a href="#Type">Type</a> *Ty)</tt>
2453
2454     <p>If there is at least one entry in the <a
2455     href="#SymbolTable"><tt>SymbolTable</tt></a> for the specified <a
2456     href="#Type"><tt>Type</tt></a>, return it.  Otherwise return the empty
2457     string.</p></li>
2458
2459   <li><tt>bool addTypeName(const std::string &amp;Name, const <a
2460   href="#Type">Type</a> *Ty)</tt>
2461
2462     <p>Insert an entry in the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
2463     mapping <tt>Name</tt> to <tt>Ty</tt>. If there is already an entry for this
2464     name, true is returned and the <a
2465     href="#SymbolTable"><tt>SymbolTable</tt></a> is not modified.</p></li>
2466 </ul>
2467
2468 </div>
2469
2470
2471 <!-- ======================================================================= -->
2472 <div class="doc_subsection">
2473   <a name="Value">The <tt>Value</tt> class</a>
2474 </div>
2475
2476 <div class="doc_text">
2477
2478 <p><tt>#include "<a href="/doxygen/Value_8h-source.html">llvm/Value.h</a>"</tt>
2479 <br> 
2480 doxygen info: <a href="/doxygen/classllvm_1_1Value.html">Value Class</a></p>
2481
2482 <p>The <tt>Value</tt> class is the most important class in the LLVM Source
2483 base.  It represents a typed value that may be used (among other things) as an
2484 operand to an instruction.  There are many different types of <tt>Value</tt>s,
2485 such as <a href="#Constant"><tt>Constant</tt></a>s,<a
2486 href="#Argument"><tt>Argument</tt></a>s. Even <a
2487 href="#Instruction"><tt>Instruction</tt></a>s and <a
2488 href="#Function"><tt>Function</tt></a>s are <tt>Value</tt>s.</p>
2489
2490 <p>A particular <tt>Value</tt> may be used many times in the LLVM representation
2491 for a program.  For example, an incoming argument to a function (represented
2492 with an instance of the <a href="#Argument">Argument</a> class) is "used" by
2493 every instruction in the function that references the argument.  To keep track
2494 of this relationship, the <tt>Value</tt> class keeps a list of all of the <a
2495 href="#User"><tt>User</tt></a>s that is using it (the <a
2496 href="#User"><tt>User</tt></a> class is a base class for all nodes in the LLVM
2497 graph that can refer to <tt>Value</tt>s).  This use list is how LLVM represents
2498 def-use information in the program, and is accessible through the <tt>use_</tt>*
2499 methods, shown below.</p>
2500
2501 <p>Because LLVM is a typed representation, every LLVM <tt>Value</tt> is typed,
2502 and this <a href="#Type">Type</a> is available through the <tt>getType()</tt>
2503 method. In addition, all LLVM values can be named.  The "name" of the
2504 <tt>Value</tt> is a symbolic string printed in the LLVM code:</p>
2505
2506 <div class="doc_code">
2507 <pre>
2508 %<b>foo</b> = add i32 1, 2
2509 </pre>
2510 </div>
2511
2512 <p><a name="#nameWarning">The name of this instruction is "foo".</a> <b>NOTE</b>
2513 that the name of any value may be missing (an empty string), so names should
2514 <b>ONLY</b> be used for debugging (making the source code easier to read,
2515 debugging printouts), they should not be used to keep track of values or map
2516 between them.  For this purpose, use a <tt>std::map</tt> of pointers to the
2517 <tt>Value</tt> itself instead.</p>
2518
2519 <p>One important aspect of LLVM is that there is no distinction between an SSA
2520 variable and the operation that produces it.  Because of this, any reference to
2521 the value produced by an instruction (or the value available as an incoming
2522 argument, for example) is represented as a direct pointer to the instance of
2523 the class that
2524 represents this value.  Although this may take some getting used to, it
2525 simplifies the representation and makes it easier to manipulate.</p>
2526
2527 </div>
2528
2529 <!-- _______________________________________________________________________ -->
2530 <div class="doc_subsubsection">
2531   <a name="m_Value">Important Public Members of the <tt>Value</tt> class</a>
2532 </div>
2533
2534 <div class="doc_text">
2535
2536 <ul>
2537   <li><tt>Value::use_iterator</tt> - Typedef for iterator over the
2538 use-list<br>
2539     <tt>Value::use_const_iterator</tt> - Typedef for const_iterator over
2540 the use-list<br>
2541     <tt>unsigned use_size()</tt> - Returns the number of users of the
2542 value.<br>
2543     <tt>bool use_empty()</tt> - Returns true if there are no users.<br>
2544     <tt>use_iterator use_begin()</tt> - Get an iterator to the start of
2545 the use-list.<br>
2546     <tt>use_iterator use_end()</tt> - Get an iterator to the end of the
2547 use-list.<br>
2548     <tt><a href="#User">User</a> *use_back()</tt> - Returns the last
2549 element in the list.
2550     <p> These methods are the interface to access the def-use
2551 information in LLVM.  As with all other iterators in LLVM, the naming
2552 conventions follow the conventions defined by the <a href="#stl">STL</a>.</p>
2553   </li>
2554   <li><tt><a href="#Type">Type</a> *getType() const</tt>
2555     <p>This method returns the Type of the Value.</p>
2556   </li>
2557   <li><tt>bool hasName() const</tt><br>
2558     <tt>std::string getName() const</tt><br>
2559     <tt>void setName(const std::string &amp;Name)</tt>
2560     <p> This family of methods is used to access and assign a name to a <tt>Value</tt>,
2561 be aware of the <a href="#nameWarning">precaution above</a>.</p>
2562   </li>
2563   <li><tt>void replaceAllUsesWith(Value *V)</tt>
2564
2565     <p>This method traverses the use list of a <tt>Value</tt> changing all <a
2566     href="#User"><tt>User</tt>s</a> of the current value to refer to
2567     "<tt>V</tt>" instead.  For example, if you detect that an instruction always
2568     produces a constant value (for example through constant folding), you can
2569     replace all uses of the instruction with the constant like this:</p>
2570
2571 <div class="doc_code">
2572 <pre>
2573 Inst-&gt;replaceAllUsesWith(ConstVal);
2574 </pre>
2575 </div>
2576
2577 </ul>
2578
2579 </div>
2580
2581 <!-- ======================================================================= -->
2582 <div class="doc_subsection">
2583   <a name="User">The <tt>User</tt> class</a>
2584 </div>
2585
2586 <div class="doc_text">
2587   
2588 <p>
2589 <tt>#include "<a href="/doxygen/User_8h-source.html">llvm/User.h</a>"</tt><br>
2590 doxygen info: <a href="/doxygen/classllvm_1_1User.html">User Class</a><br>
2591 Superclass: <a href="#Value"><tt>Value</tt></a></p>
2592
2593 <p>The <tt>User</tt> class is the common base class of all LLVM nodes that may
2594 refer to <a href="#Value"><tt>Value</tt></a>s.  It exposes a list of "Operands"
2595 that are all of the <a href="#Value"><tt>Value</tt></a>s that the User is
2596 referring to.  The <tt>User</tt> class itself is a subclass of
2597 <tt>Value</tt>.</p>
2598
2599 <p>The operands of a <tt>User</tt> point directly to the LLVM <a
2600 href="#Value"><tt>Value</tt></a> that it refers to.  Because LLVM uses Static
2601 Single Assignment (SSA) form, there can only be one definition referred to,
2602 allowing this direct connection.  This connection provides the use-def
2603 information in LLVM.</p>
2604
2605 </div>
2606
2607 <!-- _______________________________________________________________________ -->
2608 <div class="doc_subsubsection">
2609   <a name="m_User">Important Public Members of the <tt>User</tt> class</a>
2610 </div>
2611
2612 <div class="doc_text">
2613
2614 <p>The <tt>User</tt> class exposes the operand list in two ways: through
2615 an index access interface and through an iterator based interface.</p>
2616
2617 <ul>
2618   <li><tt>Value *getOperand(unsigned i)</tt><br>
2619     <tt>unsigned getNumOperands()</tt>
2620     <p> These two methods expose the operands of the <tt>User</tt> in a
2621 convenient form for direct access.</p></li>
2622
2623   <li><tt>User::op_iterator</tt> - Typedef for iterator over the operand
2624 list<br>
2625     <tt>op_iterator op_begin()</tt> - Get an iterator to the start of 
2626 the operand list.<br>
2627     <tt>op_iterator op_end()</tt> - Get an iterator to the end of the
2628 operand list.
2629     <p> Together, these methods make up the iterator based interface to
2630 the operands of a <tt>User</tt>.</p></li>
2631 </ul>
2632
2633 </div>    
2634
2635 <!-- ======================================================================= -->
2636 <div class="doc_subsection">
2637   <a name="Instruction">The <tt>Instruction</tt> class</a>
2638 </div>
2639
2640 <div class="doc_text">
2641
2642 <p><tt>#include "</tt><tt><a
2643 href="/doxygen/Instruction_8h-source.html">llvm/Instruction.h</a>"</tt><br>
2644 doxygen info: <a href="/doxygen/classllvm_1_1Instruction.html">Instruction Class</a><br>
2645 Superclasses: <a href="#User"><tt>User</tt></a>, <a
2646 href="#Value"><tt>Value</tt></a></p>
2647
2648 <p>The <tt>Instruction</tt> class is the common base class for all LLVM
2649 instructions.  It provides only a few methods, but is a very commonly used
2650 class.  The primary data tracked by the <tt>Instruction</tt> class itself is the
2651 opcode (instruction type) and the parent <a
2652 href="#BasicBlock"><tt>BasicBlock</tt></a> the <tt>Instruction</tt> is embedded
2653 into.  To represent a specific type of instruction, one of many subclasses of
2654 <tt>Instruction</tt> are used.</p>
2655
2656 <p> Because the <tt>Instruction</tt> class subclasses the <a
2657 href="#User"><tt>User</tt></a> class, its operands can be accessed in the same
2658 way as for other <a href="#User"><tt>User</tt></a>s (with the
2659 <tt>getOperand()</tt>/<tt>getNumOperands()</tt> and
2660 <tt>op_begin()</tt>/<tt>op_end()</tt> methods).</p> <p> An important file for
2661 the <tt>Instruction</tt> class is the <tt>llvm/Instruction.def</tt> file. This
2662 file contains some meta-data about the various different types of instructions
2663 in LLVM.  It describes the enum values that are used as opcodes (for example
2664 <tt>Instruction::Add</tt> and <tt>Instruction::ICmp</tt>), as well as the
2665 concrete sub-classes of <tt>Instruction</tt> that implement the instruction (for
2666 example <tt><a href="#BinaryOperator">BinaryOperator</a></tt> and <tt><a
2667 href="#CmpInst">CmpInst</a></tt>).  Unfortunately, the use of macros in
2668 this file confuses doxygen, so these enum values don't show up correctly in the
2669 <a href="/doxygen/classllvm_1_1Instruction.html">doxygen output</a>.</p>
2670
2671 </div>
2672
2673 <!-- _______________________________________________________________________ -->
2674 <div class="doc_subsubsection">
2675   <a name="s_Instruction">Important Subclasses of the <tt>Instruction</tt>
2676   class</a>
2677 </div>
2678 <div class="doc_text">
2679   <ul>
2680     <li><tt><a name="BinaryOperator">BinaryOperator</a></tt>
2681     <p>This subclasses represents all two operand instructions whose operands
2682     must be the same type, except for the comparison instructions.</p></li>
2683     <li><tt><a name="CastInst">CastInst</a></tt>
2684     <p>This subclass is the parent of the 12 casting instructions. It provides
2685     common operations on cast instructions.</p>
2686     <li><tt><a name="CmpInst">CmpInst</a></tt>
2687     <p>This subclass respresents the two comparison instructions, 
2688     <a href="LangRef.html#i_icmp">ICmpInst</a> (integer opreands), and
2689     <a href="LangRef.html#i_fcmp">FCmpInst</a> (floating point operands).</p>
2690     <li><tt><a name="TerminatorInst">TerminatorInst</a></tt>
2691     <p>This subclass is the parent of all terminator instructions (those which
2692     can terminate a block).</p>
2693   </ul>
2694   </div>
2695
2696 <!-- _______________________________________________________________________ -->
2697 <div class="doc_subsubsection">
2698   <a name="m_Instruction">Important Public Members of the <tt>Instruction</tt>
2699   class</a>
2700 </div>
2701
2702 <div class="doc_text">
2703
2704 <ul>
2705   <li><tt><a href="#BasicBlock">BasicBlock</a> *getParent()</tt>
2706     <p>Returns the <a href="#BasicBlock"><tt>BasicBlock</tt></a> that
2707 this  <tt>Instruction</tt> is embedded into.</p></li>
2708   <li><tt>bool mayWriteToMemory()</tt>
2709     <p>Returns true if the instruction writes to memory, i.e. it is a
2710       <tt>call</tt>,<tt>free</tt>,<tt>invoke</tt>, or <tt>store</tt>.</p></li>
2711   <li><tt>unsigned getOpcode()</tt>
2712     <p>Returns the opcode for the <tt>Instruction</tt>.</p></li>
2713   <li><tt><a href="#Instruction">Instruction</a> *clone() const</tt>
2714     <p>Returns another instance of the specified instruction, identical
2715 in all ways to the original except that the instruction has no parent
2716 (ie it's not embedded into a <a href="#BasicBlock"><tt>BasicBlock</tt></a>),
2717 and it has no name</p></li>
2718 </ul>
2719
2720 </div>
2721
2722 <!-- ======================================================================= -->
2723 <div class="doc_subsection">
2724   <a name="Constant">The <tt>Constant</tt> class and subclasses</a>
2725 </div>
2726
2727 <div class="doc_text">
2728
2729 <p>Constant represents a base class for different types of constants. It
2730 is subclassed by ConstantInt, ConstantArray, etc. for representing 
2731 the various types of Constants.  <a href="#GlobalValue">GlobalValue</a> is also
2732 a subclass, which represents the address of a global variable or function.
2733 </p>
2734
2735 </div>
2736
2737 <!-- _______________________________________________________________________ -->
2738 <div class="doc_subsubsection">Important Subclasses of Constant </div>
2739 <div class="doc_text">
2740 <ul>
2741   <li>ConstantInt : This subclass of Constant represents an integer constant of
2742   any width.
2743     <ul>
2744       <li><tt>int64_t getSExtValue() const</tt>: Returns the underlying value of
2745       this constant as a sign extended signed integer value.</li>
2746       <li><tt>uint64_t getZExtValue() const</tt>: Returns the underlying value 
2747       of this constant as a zero extended unsigned integer value.</li>
2748       <li><tt>static ConstantInt* get(const Type *Ty, uint64_t Val)</tt>: 
2749       Returns the ConstantInt object that represents the value provided by 
2750       <tt>Val</tt> for integer type <tt>Ty</tt>.</li>
2751     </ul>
2752   </li>
2753   <li>ConstantFP : This class represents a floating point constant.
2754     <ul>
2755       <li><tt>double getValue() const</tt>: Returns the underlying value of 
2756       this constant. </li>
2757     </ul>
2758   </li>
2759   <li>ConstantArray : This represents a constant array.
2760     <ul>
2761       <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns 
2762       a vector of component constants that makeup this array. </li>
2763     </ul>
2764   </li>
2765   <li>ConstantStruct : This represents a constant struct.
2766     <ul>
2767       <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns 
2768       a vector of component constants that makeup this array. </li>
2769     </ul>
2770   </li>
2771   <li>GlobalValue : This represents either a global variable or a function. In 
2772   either case, the value is a constant fixed address (after linking). 
2773   </li>
2774 </ul>
2775 </div>
2776
2777
2778 <!-- ======================================================================= -->
2779 <div class="doc_subsection">
2780   <a name="GlobalValue">The <tt>GlobalValue</tt> class</a>
2781 </div>
2782
2783 <div class="doc_text">
2784
2785 <p><tt>#include "<a
2786 href="/doxygen/GlobalValue_8h-source.html">llvm/GlobalValue.h</a>"</tt><br>
2787 doxygen info: <a href="/doxygen/classllvm_1_1GlobalValue.html">GlobalValue
2788 Class</a><br>
2789 Superclasses: <a href="#Constant"><tt>Constant</tt></a>, 
2790 <a href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a></p>
2791
2792 <p>Global values (<a href="#GlobalVariable"><tt>GlobalVariable</tt></a>s or <a
2793 href="#Function"><tt>Function</tt></a>s) are the only LLVM values that are
2794 visible in the bodies of all <a href="#Function"><tt>Function</tt></a>s.
2795 Because they are visible at global scope, they are also subject to linking with
2796 other globals defined in different translation units.  To control the linking
2797 process, <tt>GlobalValue</tt>s know their linkage rules. Specifically,
2798 <tt>GlobalValue</tt>s know whether they have internal or external linkage, as
2799 defined by the <tt>LinkageTypes</tt> enumeration.</p>
2800
2801 <p>If a <tt>GlobalValue</tt> has internal linkage (equivalent to being
2802 <tt>static</tt> in C), it is not visible to code outside the current translation
2803 unit, and does not participate in linking.  If it has external linkage, it is
2804 visible to external code, and does participate in linking.  In addition to
2805 linkage information, <tt>GlobalValue</tt>s keep track of which <a
2806 href="#Module"><tt>Module</tt></a> they are currently part of.</p>
2807
2808 <p>Because <tt>GlobalValue</tt>s are memory objects, they are always referred to
2809 by their <b>address</b>. As such, the <a href="#Type"><tt>Type</tt></a> of a
2810 global is always a pointer to its contents. It is important to remember this
2811 when using the <tt>GetElementPtrInst</tt> instruction because this pointer must
2812 be dereferenced first. For example, if you have a <tt>GlobalVariable</tt> (a
2813 subclass of <tt>GlobalValue)</tt> that is an array of 24 ints, type <tt>[24 x
2814 i32]</tt>, then the <tt>GlobalVariable</tt> is a pointer to that array. Although
2815 the address of the first element of this array and the value of the
2816 <tt>GlobalVariable</tt> are the same, they have different types. The
2817 <tt>GlobalVariable</tt>'s type is <tt>[24 x i32]</tt>. The first element's type
2818 is <tt>i32.</tt> Because of this, accessing a global value requires you to
2819 dereference the pointer with <tt>GetElementPtrInst</tt> first, then its elements
2820 can be accessed. This is explained in the <a href="LangRef.html#globalvars">LLVM
2821 Language Reference Manual</a>.</p>
2822
2823 </div>
2824
2825 <!-- _______________________________________________________________________ -->
2826 <div class="doc_subsubsection">
2827   <a name="m_GlobalValue">Important Public Members of the <tt>GlobalValue</tt>
2828   class</a>
2829 </div>
2830
2831 <div class="doc_text">
2832
2833 <ul>
2834   <li><tt>bool hasInternalLinkage() const</tt><br>
2835     <tt>bool hasExternalLinkage() const</tt><br>
2836     <tt>void setInternalLinkage(bool HasInternalLinkage)</tt>
2837     <p> These methods manipulate the linkage characteristics of the <tt>GlobalValue</tt>.</p>
2838     <p> </p>
2839   </li>
2840   <li><tt><a href="#Module">Module</a> *getParent()</tt>
2841     <p> This returns the <a href="#Module"><tt>Module</tt></a> that the
2842 GlobalValue is currently embedded into.</p></li>
2843 </ul>
2844
2845 </div>
2846
2847 <!-- ======================================================================= -->
2848 <div class="doc_subsection">
2849   <a name="Function">The <tt>Function</tt> class</a>
2850 </div>
2851
2852 <div class="doc_text">
2853
2854 <p><tt>#include "<a
2855 href="/doxygen/Function_8h-source.html">llvm/Function.h</a>"</tt><br> doxygen
2856 info: <a href="/doxygen/classllvm_1_1Function.html">Function Class</a><br>
2857 Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, 
2858 <a href="#Constant"><tt>Constant</tt></a>, 
2859 <a href="#User"><tt>User</tt></a>, 
2860 <a href="#Value"><tt>Value</tt></a></p>
2861
2862 <p>The <tt>Function</tt> class represents a single procedure in LLVM.  It is
2863 actually one of the more complex classes in the LLVM heirarchy because it must
2864 keep track of a large amount of data.  The <tt>Function</tt> class keeps track
2865 of a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, a list of formal 
2866 <a href="#Argument"><tt>Argument</tt></a>s, and a 
2867 <a href="#SymbolTable"><tt>SymbolTable</tt></a>.</p>
2868
2869 <p>The list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s is the most
2870 commonly used part of <tt>Function</tt> objects.  The list imposes an implicit
2871 ordering of the blocks in the function, which indicate how the code will be
2872 layed out by the backend.  Additionally, the first <a
2873 href="#BasicBlock"><tt>BasicBlock</tt></a> is the implicit entry node for the
2874 <tt>Function</tt>.  It is not legal in LLVM to explicitly branch to this initial
2875 block.  There are no implicit exit nodes, and in fact there may be multiple exit
2876 nodes from a single <tt>Function</tt>.  If the <a
2877 href="#BasicBlock"><tt>BasicBlock</tt></a> list is empty, this indicates that
2878 the <tt>Function</tt> is actually a function declaration: the actual body of the
2879 function hasn't been linked in yet.</p>
2880
2881 <p>In addition to a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, the
2882 <tt>Function</tt> class also keeps track of the list of formal <a
2883 href="#Argument"><tt>Argument</tt></a>s that the function receives.  This
2884 container manages the lifetime of the <a href="#Argument"><tt>Argument</tt></a>
2885 nodes, just like the <a href="#BasicBlock"><tt>BasicBlock</tt></a> list does for
2886 the <a href="#BasicBlock"><tt>BasicBlock</tt></a>s.</p>
2887
2888 <p>The <a href="#SymbolTable"><tt>SymbolTable</tt></a> is a very rarely used
2889 LLVM feature that is only used when you have to look up a value by name.  Aside
2890 from that, the <a href="#SymbolTable"><tt>SymbolTable</tt></a> is used
2891 internally to make sure that there are not conflicts between the names of <a
2892 href="#Instruction"><tt>Instruction</tt></a>s, <a
2893 href="#BasicBlock"><tt>BasicBlock</tt></a>s, or <a
2894 href="#Argument"><tt>Argument</tt></a>s in the function body.</p>
2895
2896 <p>Note that <tt>Function</tt> is a <a href="#GlobalValue">GlobalValue</a>
2897 and therefore also a <a href="#Constant">Constant</a>. The value of the function
2898 is its address (after linking) which is guaranteed to be constant.</p>
2899 </div>
2900
2901 <!-- _______________________________________________________________________ -->
2902 <div class="doc_subsubsection">
2903   <a name="m_Function">Important Public Members of the <tt>Function</tt>
2904   class</a>
2905 </div>
2906
2907 <div class="doc_text">
2908
2909 <ul>
2910   <li><tt>Function(const </tt><tt><a href="#FunctionType">FunctionType</a>
2911   *Ty, LinkageTypes Linkage, const std::string &amp;N = "", Module* Parent = 0)</tt>
2912
2913     <p>Constructor used when you need to create new <tt>Function</tt>s to add
2914     the the program.  The constructor must specify the type of the function to
2915     create and what type of linkage the function should have. The <a 
2916     href="#FunctionType"><tt>FunctionType</tt></a> argument
2917     specifies the formal arguments and return value for the function. The same
2918     <a href="#FunctionTypel"><tt>FunctionType</tt></a> value can be used to
2919     create multiple functions. The <tt>Parent</tt> argument specifies the Module
2920     in which the function is defined. If this argument is provided, the function
2921     will automatically be inserted into that module's list of
2922     functions.</p></li>
2923
2924   <li><tt>bool isExternal()</tt>
2925
2926     <p>Return whether or not the <tt>Function</tt> has a body defined.  If the
2927     function is "external", it does not have a body, and thus must be resolved
2928     by linking with a function defined in a different translation unit.</p></li>
2929
2930   <li><tt>Function::iterator</tt> - Typedef for basic block list iterator<br>
2931     <tt>Function::const_iterator</tt> - Typedef for const_iterator.<br>
2932
2933     <tt>begin()</tt>, <tt>end()</tt>
2934     <tt>size()</tt>, <tt>empty()</tt>
2935
2936     <p>These are forwarding methods that make it easy to access the contents of
2937     a <tt>Function</tt> object's <a href="#BasicBlock"><tt>BasicBlock</tt></a>
2938     list.</p></li>
2939
2940   <li><tt>Function::BasicBlockListType &amp;getBasicBlockList()</tt>
2941
2942     <p>Returns the list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s.  This
2943     is necessary to use when you need to update the list or perform a complex
2944     action that doesn't have a forwarding method.</p></li>
2945
2946   <li><tt>Function::arg_iterator</tt> - Typedef for the argument list
2947 iterator<br>
2948     <tt>Function::const_arg_iterator</tt> - Typedef for const_iterator.<br>
2949
2950     <tt>arg_begin()</tt>, <tt>arg_end()</tt>
2951     <tt>arg_size()</tt>, <tt>arg_empty()</tt>
2952
2953     <p>These are forwarding methods that make it easy to access the contents of
2954     a <tt>Function</tt> object's <a href="#Argument"><tt>Argument</tt></a>
2955     list.</p></li>
2956
2957   <li><tt>Function::ArgumentListType &amp;getArgumentList()</tt>
2958
2959     <p>Returns the list of <a href="#Argument"><tt>Argument</tt></a>s.  This is
2960     necessary to use when you need to update the list or perform a complex
2961     action that doesn't have a forwarding method.</p></li>
2962
2963   <li><tt><a href="#BasicBlock">BasicBlock</a> &amp;getEntryBlock()</tt>
2964
2965     <p>Returns the entry <a href="#BasicBlock"><tt>BasicBlock</tt></a> for the
2966     function.  Because the entry block for the function is always the first
2967     block, this returns the first block of the <tt>Function</tt>.</p></li>
2968
2969   <li><tt><a href="#Type">Type</a> *getReturnType()</tt><br>
2970     <tt><a href="#FunctionType">FunctionType</a> *getFunctionType()</tt>
2971
2972     <p>This traverses the <a href="#Type"><tt>Type</tt></a> of the
2973     <tt>Function</tt> and returns the return type of the function, or the <a
2974     href="#FunctionType"><tt>FunctionType</tt></a> of the actual
2975     function.</p></li>
2976
2977   <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
2978
2979     <p> Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
2980     for this <tt>Function</tt>.</p></li>
2981 </ul>
2982
2983 </div>
2984
2985 <!-- ======================================================================= -->
2986 <div class="doc_subsection">
2987   <a name="GlobalVariable">The <tt>GlobalVariable</tt> class</a>
2988 </div>
2989
2990 <div class="doc_text">
2991
2992 <p><tt>#include "<a
2993 href="/doxygen/GlobalVariable_8h-source.html">llvm/GlobalVariable.h</a>"</tt>
2994 <br>
2995 doxygen info: <a href="/doxygen/classllvm_1_1GlobalVariable.html">GlobalVariable
2996  Class</a><br>
2997 Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, 
2998 <a href="#Constant"><tt>Constant</tt></a>,
2999 <a href="#User"><tt>User</tt></a>,
3000 <a href="#Value"><tt>Value</tt></a></p>
3001
3002 <p>Global variables are represented with the (suprise suprise)
3003 <tt>GlobalVariable</tt> class. Like functions, <tt>GlobalVariable</tt>s are also
3004 subclasses of <a href="#GlobalValue"><tt>GlobalValue</tt></a>, and as such are
3005 always referenced by their address (global values must live in memory, so their
3006 "name" refers to their constant address). See 
3007 <a href="#GlobalValue"><tt>GlobalValue</tt></a> for more on this.  Global 
3008 variables may have an initial value (which must be a 
3009 <a href="#Constant"><tt>Constant</tt></a>), and if they have an initializer, 
3010 they may be marked as "constant" themselves (indicating that their contents 
3011 never change at runtime).</p>
3012 </div>
3013
3014 <!-- _______________________________________________________________________ -->
3015 <div class="doc_subsubsection">
3016   <a name="m_GlobalVariable">Important Public Members of the
3017   <tt>GlobalVariable</tt> class</a>
3018 </div>
3019
3020 <div class="doc_text">
3021
3022 <ul>
3023   <li><tt>GlobalVariable(const </tt><tt><a href="#Type">Type</a> *Ty, bool
3024   isConstant, LinkageTypes&amp; Linkage, <a href="#Constant">Constant</a>
3025   *Initializer = 0, const std::string &amp;Name = "", Module* Parent = 0)</tt>
3026
3027     <p>Create a new global variable of the specified type. If
3028     <tt>isConstant</tt> is true then the global variable will be marked as
3029     unchanging for the program. The Linkage parameter specifies the type of
3030     linkage (internal, external, weak, linkonce, appending) for the variable. If
3031     the linkage is InternalLinkage, WeakLinkage, or LinkOnceLinkage,&nbsp; then
3032     the resultant global variable will have internal linkage.  AppendingLinkage
3033     concatenates together all instances (in different translation units) of the
3034     variable into a single variable but is only applicable to arrays.  &nbsp;See
3035     the <a href="LangRef.html#modulestructure">LLVM Language Reference</a> for
3036     further details on linkage types. Optionally an initializer, a name, and the
3037     module to put the variable into may be specified for the global variable as
3038     well.</p></li>
3039
3040   <li><tt>bool isConstant() const</tt>
3041
3042     <p>Returns true if this is a global variable that is known not to
3043     be modified at runtime.</p></li>
3044
3045   <li><tt>bool hasInitializer()</tt>
3046
3047     <p>Returns true if this <tt>GlobalVariable</tt> has an intializer.</p></li>
3048
3049   <li><tt><a href="#Constant">Constant</a> *getInitializer()</tt>
3050
3051     <p>Returns the intial value for a <tt>GlobalVariable</tt>.  It is not legal
3052     to call this method if there is no initializer.</p></li>
3053 </ul>
3054
3055 </div>
3056
3057
3058 <!-- ======================================================================= -->
3059 <div class="doc_subsection">
3060   <a name="BasicBlock">The <tt>BasicBlock</tt> class</a>
3061 </div>
3062
3063 <div class="doc_text">
3064
3065 <p><tt>#include "<a
3066 href="/doxygen/BasicBlock_8h-source.html">llvm/BasicBlock.h</a>"</tt><br>
3067 doxygen info: <a href="/doxygen/structllvm_1_1BasicBlock.html">BasicBlock
3068 Class</a><br>
3069 Superclass: <a href="#Value"><tt>Value</tt></a></p>
3070
3071 <p>This class represents a single entry multiple exit section of the code,
3072 commonly known as a basic block by the compiler community.  The
3073 <tt>BasicBlock</tt> class maintains a list of <a
3074 href="#Instruction"><tt>Instruction</tt></a>s, which form the body of the block.
3075 Matching the language definition, the last element of this list of instructions
3076 is always a terminator instruction (a subclass of the <a
3077 href="#TerminatorInst"><tt>TerminatorInst</tt></a> class).</p>
3078
3079 <p>In addition to tracking the list of instructions that make up the block, the
3080 <tt>BasicBlock</tt> class also keeps track of the <a
3081 href="#Function"><tt>Function</tt></a> that it is embedded into.</p>
3082
3083 <p>Note that <tt>BasicBlock</tt>s themselves are <a
3084 href="#Value"><tt>Value</tt></a>s, because they are referenced by instructions
3085 like branches and can go in the switch tables. <tt>BasicBlock</tt>s have type
3086 <tt>label</tt>.</p>
3087
3088 </div>
3089
3090 <!-- _______________________________________________________________________ -->
3091 <div class="doc_subsubsection">
3092   <a name="m_BasicBlock">Important Public Members of the <tt>BasicBlock</tt>
3093   class</a>
3094 </div>
3095
3096 <div class="doc_text">
3097 <ul>
3098
3099 <li><tt>BasicBlock(const std::string &amp;Name = "", </tt><tt><a
3100  href="#Function">Function</a> *Parent = 0)</tt>
3101
3102 <p>The <tt>BasicBlock</tt> constructor is used to create new basic blocks for
3103 insertion into a function.  The constructor optionally takes a name for the new
3104 block, and a <a href="#Function"><tt>Function</tt></a> to insert it into.  If
3105 the <tt>Parent</tt> parameter is specified, the new <tt>BasicBlock</tt> is
3106 automatically inserted at the end of the specified <a
3107 href="#Function"><tt>Function</tt></a>, if not specified, the BasicBlock must be
3108 manually inserted into the <a href="#Function"><tt>Function</tt></a>.</p></li>
3109
3110 <li><tt>BasicBlock::iterator</tt> - Typedef for instruction list iterator<br>
3111 <tt>BasicBlock::const_iterator</tt> - Typedef for const_iterator.<br>
3112 <tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
3113 <tt>size()</tt>, <tt>empty()</tt>
3114 STL-style functions for accessing the instruction list.
3115
3116 <p>These methods and typedefs are forwarding functions that have the same
3117 semantics as the standard library methods of the same names.  These methods
3118 expose the underlying instruction list of a basic block in a way that is easy to
3119 manipulate.  To get the full complement of container operations (including
3120 operations to update the list), you must use the <tt>getInstList()</tt>
3121 method.</p></li>
3122
3123 <li><tt>BasicBlock::InstListType &amp;getInstList()</tt>
3124
3125 <p>This method is used to get access to the underlying container that actually
3126 holds the Instructions.  This method must be used when there isn't a forwarding
3127 function in the <tt>BasicBlock</tt> class for the operation that you would like
3128 to perform.  Because there are no forwarding functions for "updating"
3129 operations, you need to use this if you want to update the contents of a
3130 <tt>BasicBlock</tt>.</p></li>
3131
3132 <li><tt><a href="#Function">Function</a> *getParent()</tt>
3133
3134 <p> Returns a pointer to <a href="#Function"><tt>Function</tt></a> the block is
3135 embedded into, or a null pointer if it is homeless.</p></li>
3136
3137 <li><tt><a href="#TerminatorInst">TerminatorInst</a> *getTerminator()</tt>
3138
3139 <p> Returns a pointer to the terminator instruction that appears at the end of
3140 the <tt>BasicBlock</tt>.  If there is no terminator instruction, or if the last
3141 instruction in the block is not a terminator, then a null pointer is
3142 returned.</p></li>
3143
3144 </ul>
3145
3146 </div>
3147
3148
3149 <!-- ======================================================================= -->
3150 <div class="doc_subsection">
3151   <a name="Argument">The <tt>Argument</tt> class</a>
3152 </div>
3153
3154 <div class="doc_text">
3155
3156 <p>This subclass of Value defines the interface for incoming formal
3157 arguments to a function. A Function maintains a list of its formal
3158 arguments. An argument has a pointer to the parent Function.</p>
3159
3160 </div>
3161
3162 <!-- *********************************************************************** -->
3163 <hr>
3164 <address>
3165   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
3166   src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
3167   <a href="http://validator.w3.org/check/referer"><img
3168   src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!" /></a>
3169
3170   <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a> and
3171   <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
3172   <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
3173   Last modified: $Date$
3174 </address>
3175
3176 </body>
3177 </html>