IR: Make MDString inherit from Metadata
[oota-llvm.git] / docs / Vectorizers.rst
1 ==========================
2 Auto-Vectorization in LLVM
3 ==========================
4
5 .. contents::
6    :local:
7
8 LLVM has two vectorizers: The :ref:`Loop Vectorizer <loop-vectorizer>`,
9 which operates on Loops, and the :ref:`SLP Vectorizer
10 <slp-vectorizer>`. These vectorizers
11 focus on different optimization opportunities and use different techniques.
12 The SLP vectorizer merges multiple scalars that are found in the code into
13 vectors while the Loop Vectorizer widens instructions in loops
14 to operate on multiple consecutive iterations.
15
16 Both the Loop Vectorizer and the SLP Vectorizer are enabled by default.
17
18 .. _loop-vectorizer:
19
20 The Loop Vectorizer
21 ===================
22
23 Usage
24 -----
25
26 The Loop Vectorizer is enabled by default, but it can be disabled
27 through clang using the command line flag:
28
29 .. code-block:: console
30
31    $ clang ... -fno-vectorize  file.c
32
33 Command line flags
34 ^^^^^^^^^^^^^^^^^^
35
36 The loop vectorizer uses a cost model to decide on the optimal vectorization factor
37 and unroll factor. However, users of the vectorizer can force the vectorizer to use
38 specific values. Both 'clang' and 'opt' support the flags below.
39
40 Users can control the vectorization SIMD width using the command line flag "-force-vector-width".
41
42 .. code-block:: console
43
44   $ clang  -mllvm -force-vector-width=8 ...
45   $ opt -loop-vectorize -force-vector-width=8 ...
46
47 Users can control the unroll factor using the command line flag "-force-vector-unroll"
48
49 .. code-block:: console
50
51   $ clang  -mllvm -force-vector-unroll=2 ...
52   $ opt -loop-vectorize -force-vector-unroll=2 ...
53
54 Pragma loop hint directives
55 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
56
57 The ``#pragma clang loop`` directive allows loop vectorization hints to be
58 specified for the subsequent for, while, do-while, or c++11 range-based for
59 loop. The directive allows vectorization and interleaving to be enabled or
60 disabled. Vector width as well as interleave count can also be manually
61 specified. The following example explicitly enables vectorization and
62 interleaving:
63
64 .. code-block:: c++
65
66   #pragma clang loop vectorize(enable) interleave(enable)
67   while(...) {
68     ...
69   }
70
71 The following example implicitly enables vectorization and interleaving by
72 specifying a vector width and interleaving count:
73
74 .. code-block:: c++
75
76   #pragma clang loop vectorize_width(2) interleave_count(2)
77   for(...) {
78     ...
79   }
80
81 See the Clang
82 `language extensions
83 <http://clang.llvm.org/docs/LanguageExtensions.html#extensions-for-loop-hint-optimizations>`_
84 for details.
85
86 Diagnostics
87 -----------
88
89 Many loops cannot be vectorized including loops with complicated control flow,
90 unvectorizable types, and unvectorizable calls. The loop vectorizer generates
91 optimization remarks which can be queried using command line options to identify
92 and diagnose loops that are skipped by the loop-vectorizer.
93
94 Optimization remarks are enabled using:
95
96 ``-Rpass=loop-vectorize`` identifies loops that were successfully vectorized.
97
98 ``-Rpass-missed=loop-vectorize`` identifies loops that failed vectorization and
99 indicates if vectorization was specified.
100
101 ``-Rpass-analysis=loop-vectorize`` identifies the statements that caused
102 vectorization to fail.
103
104 Consider the following loop:
105
106 .. code-block:: c++
107
108   #pragma clang loop vectorize(enable)
109   for (int i = 0; i < Length; i++) {
110     switch(A[i]) {
111     case 0: A[i] = i*2; break;
112     case 1: A[i] = i;   break;
113     default: A[i] = 0;
114     }
115   }
116
117 The command line ``-Rpass-missed=loop-vectorized`` prints the remark:
118
119 .. code-block:: console
120
121   no_switch.cpp:4:5: remark: loop not vectorized: vectorization is explicitly enabled [-Rpass-missed=loop-vectorize]
122
123 And the command line ``-Rpass-analysis=loop-vectorize`` indicates that the
124 switch statement cannot be vectorized.
125
126 .. code-block:: console
127
128   no_switch.cpp:4:5: remark: loop not vectorized: loop contains a switch statement [-Rpass-analysis=loop-vectorize]
129     switch(A[i]) {
130     ^
131
132 To ensure line and column numbers are produced include the command line options
133 ``-gline-tables-only`` and ``-gcolumn-info``. See the Clang `user manual
134 <http://clang.llvm.org/docs/UsersManual.html#options-to-emit-optimization-reports>`_
135 for details
136
137 Features
138 --------
139
140 The LLVM Loop Vectorizer has a number of features that allow it to vectorize
141 complex loops.
142
143 Loops with unknown trip count
144 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
145
146 The Loop Vectorizer supports loops with an unknown trip count.
147 In the loop below, the iteration ``start`` and ``finish`` points are unknown,
148 and the Loop Vectorizer has a mechanism to vectorize loops that do not start
149 at zero. In this example, 'n' may not be a multiple of the vector width, and
150 the vectorizer has to execute the last few iterations as scalar code. Keeping
151 a scalar copy of the loop increases the code size.
152
153 .. code-block:: c++
154
155   void bar(float *A, float* B, float K, int start, int end) {
156     for (int i = start; i < end; ++i)
157       A[i] *= B[i] + K;
158   }
159
160 Runtime Checks of Pointers
161 ^^^^^^^^^^^^^^^^^^^^^^^^^^
162
163 In the example below, if the pointers A and B point to consecutive addresses,
164 then it is illegal to vectorize the code because some elements of A will be
165 written before they are read from array B.
166
167 Some programmers use the 'restrict' keyword to notify the compiler that the
168 pointers are disjointed, but in our example, the Loop Vectorizer has no way of
169 knowing that the pointers A and B are unique. The Loop Vectorizer handles this
170 loop by placing code that checks, at runtime, if the arrays A and B point to
171 disjointed memory locations. If arrays A and B overlap, then the scalar version
172 of the loop is executed.
173
174 .. code-block:: c++
175
176   void bar(float *A, float* B, float K, int n) {
177     for (int i = 0; i < n; ++i)
178       A[i] *= B[i] + K;
179   }
180
181
182 Reductions
183 ^^^^^^^^^^
184
185 In this example the ``sum`` variable is used by consecutive iterations of
186 the loop. Normally, this would prevent vectorization, but the vectorizer can
187 detect that 'sum' is a reduction variable. The variable 'sum' becomes a vector
188 of integers, and at the end of the loop the elements of the array are added
189 together to create the correct result. We support a number of different
190 reduction operations, such as addition, multiplication, XOR, AND and OR.
191
192 .. code-block:: c++
193
194   int foo(int *A, int *B, int n) {
195     unsigned sum = 0;
196     for (int i = 0; i < n; ++i)
197       sum += A[i] + 5;
198     return sum;
199   }
200
201 We support floating point reduction operations when `-ffast-math` is used.
202
203 Inductions
204 ^^^^^^^^^^
205
206 In this example the value of the induction variable ``i`` is saved into an
207 array. The Loop Vectorizer knows to vectorize induction variables.
208
209 .. code-block:: c++
210
211   void bar(float *A, float* B, float K, int n) {
212     for (int i = 0; i < n; ++i)
213       A[i] = i;
214   }
215
216 If Conversion
217 ^^^^^^^^^^^^^
218
219 The Loop Vectorizer is able to "flatten" the IF statement in the code and
220 generate a single stream of instructions. The Loop Vectorizer supports any
221 control flow in the innermost loop. The innermost loop may contain complex
222 nesting of IFs, ELSEs and even GOTOs.
223
224 .. code-block:: c++
225
226   int foo(int *A, int *B, int n) {
227     unsigned sum = 0;
228     for (int i = 0; i < n; ++i)
229       if (A[i] > B[i])
230         sum += A[i] + 5;
231     return sum;
232   }
233
234 Pointer Induction Variables
235 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
236
237 This example uses the "accumulate" function of the standard c++ library. This
238 loop uses C++ iterators, which are pointers, and not integer indices.
239 The Loop Vectorizer detects pointer induction variables and can vectorize
240 this loop. This feature is important because many C++ programs use iterators.
241
242 .. code-block:: c++
243
244   int baz(int *A, int n) {
245     return std::accumulate(A, A + n, 0);
246   }
247
248 Reverse Iterators
249 ^^^^^^^^^^^^^^^^^
250
251 The Loop Vectorizer can vectorize loops that count backwards.
252
253 .. code-block:: c++
254
255   int foo(int *A, int *B, int n) {
256     for (int i = n; i > 0; --i)
257       A[i] +=1;
258   }
259
260 Scatter / Gather
261 ^^^^^^^^^^^^^^^^
262
263 The Loop Vectorizer can vectorize code that becomes a sequence of scalar instructions 
264 that scatter/gathers memory.
265
266 .. code-block:: c++
267
268   int foo(int * A, int * B, int n) {
269     for (intptr_t i = 0; i < n; ++i)
270         A[i] += B[i * 4];
271   }
272
273 In many situations the cost model will inform LLVM that this is not beneficial
274 and LLVM will only vectorize such code if forced with "-mllvm -force-vector-width=#".
275
276 Vectorization of Mixed Types
277 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
278
279 The Loop Vectorizer can vectorize programs with mixed types. The Vectorizer
280 cost model can estimate the cost of the type conversion and decide if
281 vectorization is profitable.
282
283 .. code-block:: c++
284
285   int foo(int *A, char *B, int n, int k) {
286     for (int i = 0; i < n; ++i)
287       A[i] += 4 * B[i];
288   }
289
290 Global Structures Alias Analysis
291 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
292
293 Access to global structures can also be vectorized, with alias analysis being
294 used to make sure accesses don't alias. Run-time checks can also be added on
295 pointer access to structure members.
296
297 Many variations are supported, but some that rely on undefined behaviour being
298 ignored (as other compilers do) are still being left un-vectorized.
299
300 .. code-block:: c++
301
302   struct { int A[100], K, B[100]; } Foo;
303
304   int foo() {
305     for (int i = 0; i < 100; ++i)
306       Foo.A[i] = Foo.B[i] + 100;
307   }
308
309 Vectorization of function calls
310 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
311
312 The Loop Vectorize can vectorize intrinsic math functions.
313 See the table below for a list of these functions.
314
315 +-----+-----+---------+
316 | pow | exp |  exp2   |
317 +-----+-----+---------+
318 | sin | cos |  sqrt   |
319 +-----+-----+---------+
320 | log |log2 |  log10  |
321 +-----+-----+---------+
322 |fabs |floor|  ceil   |
323 +-----+-----+---------+
324 |fma  |trunc|nearbyint|
325 +-----+-----+---------+
326 |     |     | fmuladd |
327 +-----+-----+---------+
328
329 The loop vectorizer knows about special instructions on the target and will
330 vectorize a loop containing a function call that maps to the instructions. For
331 example, the loop below will be vectorized on Intel x86 if the SSE4.1 roundps
332 instruction is available.
333
334 .. code-block:: c++
335
336   void foo(float *f) {
337     for (int i = 0; i != 1024; ++i)
338       f[i] = floorf(f[i]);
339   }
340
341 Partial unrolling during vectorization
342 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
343
344 Modern processors feature multiple execution units, and only programs that contain a
345 high degree of parallelism can fully utilize the entire width of the machine. 
346 The Loop Vectorizer increases the instruction level parallelism (ILP) by 
347 performing partial-unrolling of loops.
348
349 In the example below the entire array is accumulated into the variable 'sum'.
350 This is inefficient because only a single execution port can be used by the processor.
351 By unrolling the code the Loop Vectorizer allows two or more execution ports
352 to be used simultaneously.
353
354 .. code-block:: c++
355
356   int foo(int *A, int *B, int n) {
357     unsigned sum = 0;
358     for (int i = 0; i < n; ++i)
359         sum += A[i];
360     return sum;
361   }
362
363 The Loop Vectorizer uses a cost model to decide when it is profitable to unroll loops.
364 The decision to unroll the loop depends on the register pressure and the generated code size. 
365
366 Performance
367 -----------
368
369 This section shows the the execution time of Clang on a simple benchmark:
370 `gcc-loops <http://llvm.org/viewvc/llvm-project/test-suite/trunk/SingleSource/UnitTests/Vectorizer/>`_.
371 This benchmarks is a collection of loops from the GCC autovectorization
372 `page <http://gcc.gnu.org/projects/tree-ssa/vectorization.html>`_ by Dorit Nuzman.
373
374 The chart below compares GCC-4.7, ICC-13, and Clang-SVN with and without loop vectorization at -O3, tuned for "corei7-avx", running on a Sandybridge iMac.
375 The Y-axis shows the time in msec. Lower is better. The last column shows the geomean of all the kernels.
376
377 .. image:: gcc-loops.png
378
379 And Linpack-pc with the same configuration. Result is Mflops, higher is better.
380
381 .. image:: linpack-pc.png
382
383 .. _slp-vectorizer:
384
385 The SLP Vectorizer
386 ==================
387
388 Details
389 -------
390
391 The goal of SLP vectorization (a.k.a. superword-level parallelism) is
392 to combine similar independent instructions
393 into vector instructions. Memory accesses, arithmetic operations, comparison
394 operations, PHI-nodes, can all be vectorized using this technique.
395
396 For example, the following function performs very similar operations on its
397 inputs (a1, b1) and (a2, b2). The basic-block vectorizer may combine these
398 into vector operations.
399
400 .. code-block:: c++
401
402   void foo(int a1, int a2, int b1, int b2, int *A) {
403     A[0] = a1*(a1 + b1)/b1 + 50*b1/a1;
404     A[1] = a2*(a2 + b2)/b2 + 50*b2/a2;
405   }
406
407 The SLP-vectorizer processes the code bottom-up, across basic blocks, in search of scalars to combine.
408
409 Usage
410 ------
411
412 The SLP Vectorizer is enabled by default, but it can be disabled
413 through clang using the command line flag:
414
415 .. code-block:: console
416
417    $ clang -fno-slp-vectorize file.c
418
419 LLVM has a second basic block vectorization phase
420 which is more compile-time intensive (The BB vectorizer). This optimization
421 can be enabled through clang using the command line flag:
422
423 .. code-block:: console
424
425    $ clang -fslp-vectorize-aggressive file.c
426