ACPI/PAD: Use explicit broadcast control function
[firefly-linux-kernel-4.4.55.git] / drivers / acpi / acpi_pad.c
1 /*
2  * acpi_pad.c ACPI Processor Aggregator Driver
3  *
4  * Copyright (c) 2009, Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/cpumask.h>
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/types.h>
26 #include <linux/kthread.h>
27 #include <linux/freezer.h>
28 #include <linux/cpu.h>
29 #include <linux/tick.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <asm/mwait.h>
33
34 #define ACPI_PROCESSOR_AGGREGATOR_CLASS "acpi_pad"
35 #define ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME "Processor Aggregator"
36 #define ACPI_PROCESSOR_AGGREGATOR_NOTIFY 0x80
37 static DEFINE_MUTEX(isolated_cpus_lock);
38 static DEFINE_MUTEX(round_robin_lock);
39
40 static unsigned long power_saving_mwait_eax;
41
42 static unsigned char tsc_detected_unstable;
43 static unsigned char tsc_marked_unstable;
44
45 static void power_saving_mwait_init(void)
46 {
47         unsigned int eax, ebx, ecx, edx;
48         unsigned int highest_cstate = 0;
49         unsigned int highest_subcstate = 0;
50         int i;
51
52         if (!boot_cpu_has(X86_FEATURE_MWAIT))
53                 return;
54         if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
55                 return;
56
57         cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
58
59         if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
60             !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
61                 return;
62
63         edx >>= MWAIT_SUBSTATE_SIZE;
64         for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
65                 if (edx & MWAIT_SUBSTATE_MASK) {
66                         highest_cstate = i;
67                         highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
68                 }
69         }
70         power_saving_mwait_eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
71                 (highest_subcstate - 1);
72
73 #if defined(CONFIG_X86)
74         switch (boot_cpu_data.x86_vendor) {
75         case X86_VENDOR_AMD:
76         case X86_VENDOR_INTEL:
77                 /*
78                  * AMD Fam10h TSC will tick in all
79                  * C/P/S0/S1 states when this bit is set.
80                  */
81                 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
82                         tsc_detected_unstable = 1;
83                 break;
84         default:
85                 /* TSC could halt in idle */
86                 tsc_detected_unstable = 1;
87         }
88 #endif
89 }
90
91 static unsigned long cpu_weight[NR_CPUS];
92 static int tsk_in_cpu[NR_CPUS] = {[0 ... NR_CPUS-1] = -1};
93 static DECLARE_BITMAP(pad_busy_cpus_bits, NR_CPUS);
94 static void round_robin_cpu(unsigned int tsk_index)
95 {
96         struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
97         cpumask_var_t tmp;
98         int cpu;
99         unsigned long min_weight = -1;
100         unsigned long uninitialized_var(preferred_cpu);
101
102         if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
103                 return;
104
105         mutex_lock(&round_robin_lock);
106         cpumask_clear(tmp);
107         for_each_cpu(cpu, pad_busy_cpus)
108                 cpumask_or(tmp, tmp, topology_thread_cpumask(cpu));
109         cpumask_andnot(tmp, cpu_online_mask, tmp);
110         /* avoid HT sibilings if possible */
111         if (cpumask_empty(tmp))
112                 cpumask_andnot(tmp, cpu_online_mask, pad_busy_cpus);
113         if (cpumask_empty(tmp)) {
114                 mutex_unlock(&round_robin_lock);
115                 return;
116         }
117         for_each_cpu(cpu, tmp) {
118                 if (cpu_weight[cpu] < min_weight) {
119                         min_weight = cpu_weight[cpu];
120                         preferred_cpu = cpu;
121                 }
122         }
123
124         if (tsk_in_cpu[tsk_index] != -1)
125                 cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
126         tsk_in_cpu[tsk_index] = preferred_cpu;
127         cpumask_set_cpu(preferred_cpu, pad_busy_cpus);
128         cpu_weight[preferred_cpu]++;
129         mutex_unlock(&round_robin_lock);
130
131         set_cpus_allowed_ptr(current, cpumask_of(preferred_cpu));
132 }
133
134 static void exit_round_robin(unsigned int tsk_index)
135 {
136         struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
137         cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
138         tsk_in_cpu[tsk_index] = -1;
139 }
140
141 static unsigned int idle_pct = 5; /* percentage */
142 static unsigned int round_robin_time = 1; /* second */
143 static int power_saving_thread(void *data)
144 {
145         struct sched_param param = {.sched_priority = 1};
146         int do_sleep;
147         unsigned int tsk_index = (unsigned long)data;
148         u64 last_jiffies = 0;
149
150         sched_setscheduler(current, SCHED_RR, &param);
151
152         while (!kthread_should_stop()) {
153                 int cpu;
154                 unsigned long expire_time;
155
156                 try_to_freeze();
157
158                 /* round robin to cpus */
159                 expire_time = last_jiffies + round_robin_time * HZ;
160                 if (time_before(expire_time, jiffies)) {
161                         last_jiffies = jiffies;
162                         round_robin_cpu(tsk_index);
163                 }
164
165                 do_sleep = 0;
166
167                 expire_time = jiffies + HZ * (100 - idle_pct) / 100;
168
169                 while (!need_resched()) {
170                         if (tsc_detected_unstable && !tsc_marked_unstable) {
171                                 /* TSC could halt in idle, so notify users */
172                                 mark_tsc_unstable("TSC halts in idle");
173                                 tsc_marked_unstable = 1;
174                         }
175                         local_irq_disable();
176                         tick_broadcast_enable();
177                         cpu = smp_processor_id();
178                         clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
179                         stop_critical_timings();
180
181                         mwait_idle_with_hints(power_saving_mwait_eax, 1);
182
183                         start_critical_timings();
184                         clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
185                         local_irq_enable();
186
187                         if (time_before(expire_time, jiffies)) {
188                                 do_sleep = 1;
189                                 break;
190                         }
191                 }
192
193                 /*
194                  * current sched_rt has threshold for rt task running time.
195                  * When a rt task uses 95% CPU time, the rt thread will be
196                  * scheduled out for 5% CPU time to not starve other tasks. But
197                  * the mechanism only works when all CPUs have RT task running,
198                  * as if one CPU hasn't RT task, RT task from other CPUs will
199                  * borrow CPU time from this CPU and cause RT task use > 95%
200                  * CPU time. To make 'avoid starvation' work, takes a nap here.
201                  */
202                 if (unlikely(do_sleep))
203                         schedule_timeout_killable(HZ * idle_pct / 100);
204
205                 /* If an external event has set the need_resched flag, then
206                  * we need to deal with it, or this loop will continue to
207                  * spin without calling __mwait().
208                  */
209                 if (unlikely(need_resched()))
210                         schedule();
211         }
212
213         exit_round_robin(tsk_index);
214         return 0;
215 }
216
217 static struct task_struct *ps_tsks[NR_CPUS];
218 static unsigned int ps_tsk_num;
219 static int create_power_saving_task(void)
220 {
221         int rc;
222
223         ps_tsks[ps_tsk_num] = kthread_run(power_saving_thread,
224                 (void *)(unsigned long)ps_tsk_num,
225                 "acpi_pad/%d", ps_tsk_num);
226
227         if (IS_ERR(ps_tsks[ps_tsk_num])) {
228                 rc = PTR_ERR(ps_tsks[ps_tsk_num]);
229                 ps_tsks[ps_tsk_num] = NULL;
230         } else {
231                 rc = 0;
232                 ps_tsk_num++;
233         }
234
235         return rc;
236 }
237
238 static void destroy_power_saving_task(void)
239 {
240         if (ps_tsk_num > 0) {
241                 ps_tsk_num--;
242                 kthread_stop(ps_tsks[ps_tsk_num]);
243                 ps_tsks[ps_tsk_num] = NULL;
244         }
245 }
246
247 static void set_power_saving_task_num(unsigned int num)
248 {
249         if (num > ps_tsk_num) {
250                 while (ps_tsk_num < num) {
251                         if (create_power_saving_task())
252                                 return;
253                 }
254         } else if (num < ps_tsk_num) {
255                 while (ps_tsk_num > num)
256                         destroy_power_saving_task();
257         }
258 }
259
260 static void acpi_pad_idle_cpus(unsigned int num_cpus)
261 {
262         get_online_cpus();
263
264         num_cpus = min_t(unsigned int, num_cpus, num_online_cpus());
265         set_power_saving_task_num(num_cpus);
266
267         put_online_cpus();
268 }
269
270 static uint32_t acpi_pad_idle_cpus_num(void)
271 {
272         return ps_tsk_num;
273 }
274
275 static ssize_t acpi_pad_rrtime_store(struct device *dev,
276         struct device_attribute *attr, const char *buf, size_t count)
277 {
278         unsigned long num;
279         if (kstrtoul(buf, 0, &num))
280                 return -EINVAL;
281         if (num < 1 || num >= 100)
282                 return -EINVAL;
283         mutex_lock(&isolated_cpus_lock);
284         round_robin_time = num;
285         mutex_unlock(&isolated_cpus_lock);
286         return count;
287 }
288
289 static ssize_t acpi_pad_rrtime_show(struct device *dev,
290         struct device_attribute *attr, char *buf)
291 {
292         return scnprintf(buf, PAGE_SIZE, "%d\n", round_robin_time);
293 }
294 static DEVICE_ATTR(rrtime, S_IRUGO|S_IWUSR,
295         acpi_pad_rrtime_show,
296         acpi_pad_rrtime_store);
297
298 static ssize_t acpi_pad_idlepct_store(struct device *dev,
299         struct device_attribute *attr, const char *buf, size_t count)
300 {
301         unsigned long num;
302         if (kstrtoul(buf, 0, &num))
303                 return -EINVAL;
304         if (num < 1 || num >= 100)
305                 return -EINVAL;
306         mutex_lock(&isolated_cpus_lock);
307         idle_pct = num;
308         mutex_unlock(&isolated_cpus_lock);
309         return count;
310 }
311
312 static ssize_t acpi_pad_idlepct_show(struct device *dev,
313         struct device_attribute *attr, char *buf)
314 {
315         return scnprintf(buf, PAGE_SIZE, "%d\n", idle_pct);
316 }
317 static DEVICE_ATTR(idlepct, S_IRUGO|S_IWUSR,
318         acpi_pad_idlepct_show,
319         acpi_pad_idlepct_store);
320
321 static ssize_t acpi_pad_idlecpus_store(struct device *dev,
322         struct device_attribute *attr, const char *buf, size_t count)
323 {
324         unsigned long num;
325         if (kstrtoul(buf, 0, &num))
326                 return -EINVAL;
327         mutex_lock(&isolated_cpus_lock);
328         acpi_pad_idle_cpus(num);
329         mutex_unlock(&isolated_cpus_lock);
330         return count;
331 }
332
333 static ssize_t acpi_pad_idlecpus_show(struct device *dev,
334         struct device_attribute *attr, char *buf)
335 {
336         return cpumap_print_to_pagebuf(false, buf,
337                                        to_cpumask(pad_busy_cpus_bits));
338 }
339
340 static DEVICE_ATTR(idlecpus, S_IRUGO|S_IWUSR,
341         acpi_pad_idlecpus_show,
342         acpi_pad_idlecpus_store);
343
344 static int acpi_pad_add_sysfs(struct acpi_device *device)
345 {
346         int result;
347
348         result = device_create_file(&device->dev, &dev_attr_idlecpus);
349         if (result)
350                 return -ENODEV;
351         result = device_create_file(&device->dev, &dev_attr_idlepct);
352         if (result) {
353                 device_remove_file(&device->dev, &dev_attr_idlecpus);
354                 return -ENODEV;
355         }
356         result = device_create_file(&device->dev, &dev_attr_rrtime);
357         if (result) {
358                 device_remove_file(&device->dev, &dev_attr_idlecpus);
359                 device_remove_file(&device->dev, &dev_attr_idlepct);
360                 return -ENODEV;
361         }
362         return 0;
363 }
364
365 static void acpi_pad_remove_sysfs(struct acpi_device *device)
366 {
367         device_remove_file(&device->dev, &dev_attr_idlecpus);
368         device_remove_file(&device->dev, &dev_attr_idlepct);
369         device_remove_file(&device->dev, &dev_attr_rrtime);
370 }
371
372 /*
373  * Query firmware how many CPUs should be idle
374  * return -1 on failure
375  */
376 static int acpi_pad_pur(acpi_handle handle)
377 {
378         struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
379         union acpi_object *package;
380         int num = -1;
381
382         if (ACPI_FAILURE(acpi_evaluate_object(handle, "_PUR", NULL, &buffer)))
383                 return num;
384
385         if (!buffer.length || !buffer.pointer)
386                 return num;
387
388         package = buffer.pointer;
389
390         if (package->type == ACPI_TYPE_PACKAGE &&
391                 package->package.count == 2 &&
392                 package->package.elements[0].integer.value == 1) /* rev 1 */
393
394                 num = package->package.elements[1].integer.value;
395
396         kfree(buffer.pointer);
397         return num;
398 }
399
400 static void acpi_pad_handle_notify(acpi_handle handle)
401 {
402         int num_cpus;
403         uint32_t idle_cpus;
404         struct acpi_buffer param = {
405                 .length = 4,
406                 .pointer = (void *)&idle_cpus,
407         };
408
409         mutex_lock(&isolated_cpus_lock);
410         num_cpus = acpi_pad_pur(handle);
411         if (num_cpus < 0) {
412                 mutex_unlock(&isolated_cpus_lock);
413                 return;
414         }
415         acpi_pad_idle_cpus(num_cpus);
416         idle_cpus = acpi_pad_idle_cpus_num();
417         acpi_evaluate_ost(handle, ACPI_PROCESSOR_AGGREGATOR_NOTIFY, 0, &param);
418         mutex_unlock(&isolated_cpus_lock);
419 }
420
421 static void acpi_pad_notify(acpi_handle handle, u32 event,
422         void *data)
423 {
424         struct acpi_device *device = data;
425
426         switch (event) {
427         case ACPI_PROCESSOR_AGGREGATOR_NOTIFY:
428                 acpi_pad_handle_notify(handle);
429                 acpi_bus_generate_netlink_event(device->pnp.device_class,
430                         dev_name(&device->dev), event, 0);
431                 break;
432         default:
433                 pr_warn("Unsupported event [0x%x]\n", event);
434                 break;
435         }
436 }
437
438 static int acpi_pad_add(struct acpi_device *device)
439 {
440         acpi_status status;
441
442         strcpy(acpi_device_name(device), ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME);
443         strcpy(acpi_device_class(device), ACPI_PROCESSOR_AGGREGATOR_CLASS);
444
445         if (acpi_pad_add_sysfs(device))
446                 return -ENODEV;
447
448         status = acpi_install_notify_handler(device->handle,
449                 ACPI_DEVICE_NOTIFY, acpi_pad_notify, device);
450         if (ACPI_FAILURE(status)) {
451                 acpi_pad_remove_sysfs(device);
452                 return -ENODEV;
453         }
454
455         return 0;
456 }
457
458 static int acpi_pad_remove(struct acpi_device *device)
459 {
460         mutex_lock(&isolated_cpus_lock);
461         acpi_pad_idle_cpus(0);
462         mutex_unlock(&isolated_cpus_lock);
463
464         acpi_remove_notify_handler(device->handle,
465                 ACPI_DEVICE_NOTIFY, acpi_pad_notify);
466         acpi_pad_remove_sysfs(device);
467         return 0;
468 }
469
470 static const struct acpi_device_id pad_device_ids[] = {
471         {"ACPI000C", 0},
472         {"", 0},
473 };
474 MODULE_DEVICE_TABLE(acpi, pad_device_ids);
475
476 static struct acpi_driver acpi_pad_driver = {
477         .name = "processor_aggregator",
478         .class = ACPI_PROCESSOR_AGGREGATOR_CLASS,
479         .ids = pad_device_ids,
480         .ops = {
481                 .add = acpi_pad_add,
482                 .remove = acpi_pad_remove,
483         },
484 };
485
486 static int __init acpi_pad_init(void)
487 {
488         power_saving_mwait_init();
489         if (power_saving_mwait_eax == 0)
490                 return -EINVAL;
491
492         return acpi_bus_register_driver(&acpi_pad_driver);
493 }
494
495 static void __exit acpi_pad_exit(void)
496 {
497         acpi_bus_unregister_driver(&acpi_pad_driver);
498 }
499
500 module_init(acpi_pad_init);
501 module_exit(acpi_pad_exit);
502 MODULE_AUTHOR("Shaohua Li<shaohua.li@intel.com>");
503 MODULE_DESCRIPTION("ACPI Processor Aggregator Driver");
504 MODULE_LICENSE("GPL");