2 * Register map access API
4 * Copyright 2011 Wolfson Microelectronics plc
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/rbtree.h>
19 #include <linux/sched.h>
21 #define CREATE_TRACE_POINTS
22 #include <trace/events/regmap.h>
27 * Sometimes for failures during very early init the trace
28 * infrastructure isn't available early enough to be used. For this
29 * sort of problem defining LOG_DEVICE will add printks for basic
30 * register I/O on a specific device.
34 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
35 unsigned int mask, unsigned int val,
38 static int _regmap_bus_read(void *context, unsigned int reg,
40 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
42 static int _regmap_bus_raw_write(void *context, unsigned int reg,
45 bool regmap_reg_in_ranges(unsigned int reg,
46 const struct regmap_range *ranges,
49 const struct regmap_range *r;
52 for (i = 0, r = ranges; i < nranges; i++, r++)
53 if (regmap_reg_in_range(reg, r))
57 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
59 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
60 const struct regmap_access_table *table)
62 /* Check "no ranges" first */
63 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
66 /* In case zero "yes ranges" are supplied, any reg is OK */
67 if (!table->n_yes_ranges)
70 return regmap_reg_in_ranges(reg, table->yes_ranges,
73 EXPORT_SYMBOL_GPL(regmap_check_range_table);
75 bool regmap_writeable(struct regmap *map, unsigned int reg)
77 if (map->max_register && reg > map->max_register)
80 if (map->writeable_reg)
81 return map->writeable_reg(map->dev, reg);
84 return regmap_check_range_table(map, reg, map->wr_table);
89 bool regmap_readable(struct regmap *map, unsigned int reg)
91 if (map->max_register && reg > map->max_register)
94 if (map->format.format_write)
97 if (map->readable_reg)
98 return map->readable_reg(map->dev, reg);
101 return regmap_check_range_table(map, reg, map->rd_table);
106 bool regmap_volatile(struct regmap *map, unsigned int reg)
108 if (!regmap_readable(map, reg))
111 if (map->volatile_reg)
112 return map->volatile_reg(map->dev, reg);
114 if (map->volatile_table)
115 return regmap_check_range_table(map, reg, map->volatile_table);
123 bool regmap_precious(struct regmap *map, unsigned int reg)
125 if (!regmap_readable(map, reg))
128 if (map->precious_reg)
129 return map->precious_reg(map->dev, reg);
131 if (map->precious_table)
132 return regmap_check_range_table(map, reg, map->precious_table);
137 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
142 for (i = 0; i < num; i++)
143 if (!regmap_volatile(map, reg + i))
149 static void regmap_format_2_6_write(struct regmap *map,
150 unsigned int reg, unsigned int val)
152 u8 *out = map->work_buf;
154 *out = (reg << 6) | val;
157 static void regmap_format_4_12_write(struct regmap *map,
158 unsigned int reg, unsigned int val)
160 __be16 *out = map->work_buf;
161 *out = cpu_to_be16((reg << 12) | val);
164 static void regmap_format_7_9_write(struct regmap *map,
165 unsigned int reg, unsigned int val)
167 __be16 *out = map->work_buf;
168 *out = cpu_to_be16((reg << 9) | val);
171 static void regmap_format_10_14_write(struct regmap *map,
172 unsigned int reg, unsigned int val)
174 u8 *out = map->work_buf;
177 out[1] = (val >> 8) | (reg << 6);
181 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
188 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
192 b[0] = cpu_to_be16(val << shift);
195 static void regmap_format_16_native(void *buf, unsigned int val,
198 *(u16 *)buf = val << shift;
201 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
212 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
216 b[0] = cpu_to_be32(val << shift);
219 static void regmap_format_32_native(void *buf, unsigned int val,
222 *(u32 *)buf = val << shift;
225 static void regmap_parse_inplace_noop(void *buf)
229 static unsigned int regmap_parse_8(const void *buf)
236 static unsigned int regmap_parse_16_be(const void *buf)
238 const __be16 *b = buf;
240 return be16_to_cpu(b[0]);
243 static void regmap_parse_16_be_inplace(void *buf)
247 b[0] = be16_to_cpu(b[0]);
250 static unsigned int regmap_parse_16_native(const void *buf)
255 static unsigned int regmap_parse_24(const void *buf)
258 unsigned int ret = b[2];
259 ret |= ((unsigned int)b[1]) << 8;
260 ret |= ((unsigned int)b[0]) << 16;
265 static unsigned int regmap_parse_32_be(const void *buf)
267 const __be32 *b = buf;
269 return be32_to_cpu(b[0]);
272 static void regmap_parse_32_be_inplace(void *buf)
276 b[0] = be32_to_cpu(b[0]);
279 static unsigned int regmap_parse_32_native(const void *buf)
284 static void regmap_lock_mutex(void *__map)
286 struct regmap *map = __map;
287 mutex_lock(&map->mutex);
290 static void regmap_unlock_mutex(void *__map)
292 struct regmap *map = __map;
293 mutex_unlock(&map->mutex);
296 static void regmap_lock_spinlock(void *__map)
297 __acquires(&map->spinlock)
299 struct regmap *map = __map;
302 spin_lock_irqsave(&map->spinlock, flags);
303 map->spinlock_flags = flags;
306 static void regmap_unlock_spinlock(void *__map)
307 __releases(&map->spinlock)
309 struct regmap *map = __map;
310 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
313 static void dev_get_regmap_release(struct device *dev, void *res)
316 * We don't actually have anything to do here; the goal here
317 * is not to manage the regmap but to provide a simple way to
318 * get the regmap back given a struct device.
322 static bool _regmap_range_add(struct regmap *map,
323 struct regmap_range_node *data)
325 struct rb_root *root = &map->range_tree;
326 struct rb_node **new = &(root->rb_node), *parent = NULL;
329 struct regmap_range_node *this =
330 container_of(*new, struct regmap_range_node, node);
333 if (data->range_max < this->range_min)
334 new = &((*new)->rb_left);
335 else if (data->range_min > this->range_max)
336 new = &((*new)->rb_right);
341 rb_link_node(&data->node, parent, new);
342 rb_insert_color(&data->node, root);
347 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
350 struct rb_node *node = map->range_tree.rb_node;
353 struct regmap_range_node *this =
354 container_of(node, struct regmap_range_node, node);
356 if (reg < this->range_min)
357 node = node->rb_left;
358 else if (reg > this->range_max)
359 node = node->rb_right;
367 static void regmap_range_exit(struct regmap *map)
369 struct rb_node *next;
370 struct regmap_range_node *range_node;
372 next = rb_first(&map->range_tree);
374 range_node = rb_entry(next, struct regmap_range_node, node);
375 next = rb_next(&range_node->node);
376 rb_erase(&range_node->node, &map->range_tree);
380 kfree(map->selector_work_buf);
384 * regmap_init(): Initialise register map
386 * @dev: Device that will be interacted with
387 * @bus: Bus-specific callbacks to use with device
388 * @bus_context: Data passed to bus-specific callbacks
389 * @config: Configuration for register map
391 * The return value will be an ERR_PTR() on error or a valid pointer to
392 * a struct regmap. This function should generally not be called
393 * directly, it should be called by bus-specific init functions.
395 struct regmap *regmap_init(struct device *dev,
396 const struct regmap_bus *bus,
398 const struct regmap_config *config)
400 struct regmap *map, **m;
402 enum regmap_endian reg_endian, val_endian;
408 map = kzalloc(sizeof(*map), GFP_KERNEL);
414 if (config->lock && config->unlock) {
415 map->lock = config->lock;
416 map->unlock = config->unlock;
417 map->lock_arg = config->lock_arg;
419 if ((bus && bus->fast_io) ||
421 spin_lock_init(&map->spinlock);
422 map->lock = regmap_lock_spinlock;
423 map->unlock = regmap_unlock_spinlock;
425 mutex_init(&map->mutex);
426 map->lock = regmap_lock_mutex;
427 map->unlock = regmap_unlock_mutex;
431 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
432 map->format.pad_bytes = config->pad_bits / 8;
433 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
434 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
435 config->val_bits + config->pad_bits, 8);
436 map->reg_shift = config->pad_bits % 8;
437 if (config->reg_stride)
438 map->reg_stride = config->reg_stride;
441 map->use_single_rw = config->use_single_rw;
444 map->bus_context = bus_context;
445 map->max_register = config->max_register;
446 map->wr_table = config->wr_table;
447 map->rd_table = config->rd_table;
448 map->volatile_table = config->volatile_table;
449 map->precious_table = config->precious_table;
450 map->writeable_reg = config->writeable_reg;
451 map->readable_reg = config->readable_reg;
452 map->volatile_reg = config->volatile_reg;
453 map->precious_reg = config->precious_reg;
454 map->cache_type = config->cache_type;
455 map->name = config->name;
457 spin_lock_init(&map->async_lock);
458 INIT_LIST_HEAD(&map->async_list);
459 INIT_LIST_HEAD(&map->async_free);
460 init_waitqueue_head(&map->async_waitq);
462 if (config->read_flag_mask || config->write_flag_mask) {
463 map->read_flag_mask = config->read_flag_mask;
464 map->write_flag_mask = config->write_flag_mask;
466 map->read_flag_mask = bus->read_flag_mask;
470 map->reg_read = config->reg_read;
471 map->reg_write = config->reg_write;
473 map->defer_caching = false;
474 goto skip_format_initialization;
476 map->reg_read = _regmap_bus_read;
479 reg_endian = config->reg_format_endian;
480 if (reg_endian == REGMAP_ENDIAN_DEFAULT)
481 reg_endian = bus->reg_format_endian_default;
482 if (reg_endian == REGMAP_ENDIAN_DEFAULT)
483 reg_endian = REGMAP_ENDIAN_BIG;
485 val_endian = config->val_format_endian;
486 if (val_endian == REGMAP_ENDIAN_DEFAULT)
487 val_endian = bus->val_format_endian_default;
488 if (val_endian == REGMAP_ENDIAN_DEFAULT)
489 val_endian = REGMAP_ENDIAN_BIG;
491 switch (config->reg_bits + map->reg_shift) {
493 switch (config->val_bits) {
495 map->format.format_write = regmap_format_2_6_write;
503 switch (config->val_bits) {
505 map->format.format_write = regmap_format_4_12_write;
513 switch (config->val_bits) {
515 map->format.format_write = regmap_format_7_9_write;
523 switch (config->val_bits) {
525 map->format.format_write = regmap_format_10_14_write;
533 map->format.format_reg = regmap_format_8;
537 switch (reg_endian) {
538 case REGMAP_ENDIAN_BIG:
539 map->format.format_reg = regmap_format_16_be;
541 case REGMAP_ENDIAN_NATIVE:
542 map->format.format_reg = regmap_format_16_native;
550 if (reg_endian != REGMAP_ENDIAN_BIG)
552 map->format.format_reg = regmap_format_24;
556 switch (reg_endian) {
557 case REGMAP_ENDIAN_BIG:
558 map->format.format_reg = regmap_format_32_be;
560 case REGMAP_ENDIAN_NATIVE:
561 map->format.format_reg = regmap_format_32_native;
572 if (val_endian == REGMAP_ENDIAN_NATIVE)
573 map->format.parse_inplace = regmap_parse_inplace_noop;
575 switch (config->val_bits) {
577 map->format.format_val = regmap_format_8;
578 map->format.parse_val = regmap_parse_8;
579 map->format.parse_inplace = regmap_parse_inplace_noop;
582 switch (val_endian) {
583 case REGMAP_ENDIAN_BIG:
584 map->format.format_val = regmap_format_16_be;
585 map->format.parse_val = regmap_parse_16_be;
586 map->format.parse_inplace = regmap_parse_16_be_inplace;
588 case REGMAP_ENDIAN_NATIVE:
589 map->format.format_val = regmap_format_16_native;
590 map->format.parse_val = regmap_parse_16_native;
597 if (val_endian != REGMAP_ENDIAN_BIG)
599 map->format.format_val = regmap_format_24;
600 map->format.parse_val = regmap_parse_24;
603 switch (val_endian) {
604 case REGMAP_ENDIAN_BIG:
605 map->format.format_val = regmap_format_32_be;
606 map->format.parse_val = regmap_parse_32_be;
607 map->format.parse_inplace = regmap_parse_32_be_inplace;
609 case REGMAP_ENDIAN_NATIVE:
610 map->format.format_val = regmap_format_32_native;
611 map->format.parse_val = regmap_parse_32_native;
619 if (map->format.format_write) {
620 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
621 (val_endian != REGMAP_ENDIAN_BIG))
623 map->use_single_rw = true;
626 if (!map->format.format_write &&
627 !(map->format.format_reg && map->format.format_val))
630 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
631 if (map->work_buf == NULL) {
636 if (map->format.format_write) {
637 map->defer_caching = false;
638 map->reg_write = _regmap_bus_formatted_write;
639 } else if (map->format.format_val) {
640 map->defer_caching = true;
641 map->reg_write = _regmap_bus_raw_write;
644 skip_format_initialization:
646 map->range_tree = RB_ROOT;
647 for (i = 0; i < config->num_ranges; i++) {
648 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
649 struct regmap_range_node *new;
652 if (range_cfg->range_max < range_cfg->range_min) {
653 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
654 range_cfg->range_max, range_cfg->range_min);
658 if (range_cfg->range_max > map->max_register) {
659 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
660 range_cfg->range_max, map->max_register);
664 if (range_cfg->selector_reg > map->max_register) {
666 "Invalid range %d: selector out of map\n", i);
670 if (range_cfg->window_len == 0) {
671 dev_err(map->dev, "Invalid range %d: window_len 0\n",
676 /* Make sure, that this register range has no selector
677 or data window within its boundary */
678 for (j = 0; j < config->num_ranges; j++) {
679 unsigned sel_reg = config->ranges[j].selector_reg;
680 unsigned win_min = config->ranges[j].window_start;
681 unsigned win_max = win_min +
682 config->ranges[j].window_len - 1;
684 /* Allow data window inside its own virtual range */
688 if (range_cfg->range_min <= sel_reg &&
689 sel_reg <= range_cfg->range_max) {
691 "Range %d: selector for %d in window\n",
696 if (!(win_max < range_cfg->range_min ||
697 win_min > range_cfg->range_max)) {
699 "Range %d: window for %d in window\n",
705 new = kzalloc(sizeof(*new), GFP_KERNEL);
712 new->name = range_cfg->name;
713 new->range_min = range_cfg->range_min;
714 new->range_max = range_cfg->range_max;
715 new->selector_reg = range_cfg->selector_reg;
716 new->selector_mask = range_cfg->selector_mask;
717 new->selector_shift = range_cfg->selector_shift;
718 new->window_start = range_cfg->window_start;
719 new->window_len = range_cfg->window_len;
721 if (_regmap_range_add(map, new) == false) {
722 dev_err(map->dev, "Failed to add range %d\n", i);
727 if (map->selector_work_buf == NULL) {
728 map->selector_work_buf =
729 kzalloc(map->format.buf_size, GFP_KERNEL);
730 if (map->selector_work_buf == NULL) {
737 regmap_debugfs_init(map, config->name);
739 ret = regcache_init(map, config);
743 /* Add a devres resource for dev_get_regmap() */
744 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
755 regmap_debugfs_exit(map);
758 regmap_range_exit(map);
759 kfree(map->work_buf);
765 EXPORT_SYMBOL_GPL(regmap_init);
767 static void devm_regmap_release(struct device *dev, void *res)
769 regmap_exit(*(struct regmap **)res);
773 * devm_regmap_init(): Initialise managed register map
775 * @dev: Device that will be interacted with
776 * @bus: Bus-specific callbacks to use with device
777 * @bus_context: Data passed to bus-specific callbacks
778 * @config: Configuration for register map
780 * The return value will be an ERR_PTR() on error or a valid pointer
781 * to a struct regmap. This function should generally not be called
782 * directly, it should be called by bus-specific init functions. The
783 * map will be automatically freed by the device management code.
785 struct regmap *devm_regmap_init(struct device *dev,
786 const struct regmap_bus *bus,
788 const struct regmap_config *config)
790 struct regmap **ptr, *regmap;
792 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
794 return ERR_PTR(-ENOMEM);
796 regmap = regmap_init(dev, bus, bus_context, config);
797 if (!IS_ERR(regmap)) {
799 devres_add(dev, ptr);
806 EXPORT_SYMBOL_GPL(devm_regmap_init);
808 static void regmap_field_init(struct regmap_field *rm_field,
809 struct regmap *regmap, struct reg_field reg_field)
811 int field_bits = reg_field.msb - reg_field.lsb + 1;
812 rm_field->regmap = regmap;
813 rm_field->reg = reg_field.reg;
814 rm_field->shift = reg_field.lsb;
815 rm_field->mask = ((BIT(field_bits) - 1) << reg_field.lsb);
816 rm_field->id_size = reg_field.id_size;
817 rm_field->id_offset = reg_field.id_offset;
821 * devm_regmap_field_alloc(): Allocate and initialise a register field
824 * @dev: Device that will be interacted with
825 * @regmap: regmap bank in which this register field is located.
826 * @reg_field: Register field with in the bank.
828 * The return value will be an ERR_PTR() on error or a valid pointer
829 * to a struct regmap_field. The regmap_field will be automatically freed
830 * by the device management code.
832 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
833 struct regmap *regmap, struct reg_field reg_field)
835 struct regmap_field *rm_field = devm_kzalloc(dev,
836 sizeof(*rm_field), GFP_KERNEL);
838 return ERR_PTR(-ENOMEM);
840 regmap_field_init(rm_field, regmap, reg_field);
845 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
848 * devm_regmap_field_free(): Free register field allocated using
849 * devm_regmap_field_alloc. Usally drivers need not call this function,
850 * as the memory allocated via devm will be freed as per device-driver
853 * @dev: Device that will be interacted with
854 * @field: regmap field which should be freed.
856 void devm_regmap_field_free(struct device *dev,
857 struct regmap_field *field)
859 devm_kfree(dev, field);
861 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
864 * regmap_field_alloc(): Allocate and initialise a register field
867 * @regmap: regmap bank in which this register field is located.
868 * @reg_field: Register field with in the bank.
870 * The return value will be an ERR_PTR() on error or a valid pointer
871 * to a struct regmap_field. The regmap_field should be freed by the
872 * user once its finished working with it using regmap_field_free().
874 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
875 struct reg_field reg_field)
877 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
880 return ERR_PTR(-ENOMEM);
882 regmap_field_init(rm_field, regmap, reg_field);
886 EXPORT_SYMBOL_GPL(regmap_field_alloc);
889 * regmap_field_free(): Free register field allocated using regmap_field_alloc
891 * @field: regmap field which should be freed.
893 void regmap_field_free(struct regmap_field *field)
897 EXPORT_SYMBOL_GPL(regmap_field_free);
900 * regmap_reinit_cache(): Reinitialise the current register cache
902 * @map: Register map to operate on.
903 * @config: New configuration. Only the cache data will be used.
905 * Discard any existing register cache for the map and initialize a
906 * new cache. This can be used to restore the cache to defaults or to
907 * update the cache configuration to reflect runtime discovery of the
910 * No explicit locking is done here, the user needs to ensure that
911 * this function will not race with other calls to regmap.
913 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
916 regmap_debugfs_exit(map);
918 map->max_register = config->max_register;
919 map->writeable_reg = config->writeable_reg;
920 map->readable_reg = config->readable_reg;
921 map->volatile_reg = config->volatile_reg;
922 map->precious_reg = config->precious_reg;
923 map->cache_type = config->cache_type;
925 regmap_debugfs_init(map, config->name);
927 map->cache_bypass = false;
928 map->cache_only = false;
930 return regcache_init(map, config);
932 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
935 * regmap_exit(): Free a previously allocated register map
937 void regmap_exit(struct regmap *map)
939 struct regmap_async *async;
942 regmap_debugfs_exit(map);
943 regmap_range_exit(map);
944 if (map->bus && map->bus->free_context)
945 map->bus->free_context(map->bus_context);
946 kfree(map->work_buf);
947 while (!list_empty(&map->async_free)) {
948 async = list_first_entry_or_null(&map->async_free,
951 list_del(&async->list);
952 kfree(async->work_buf);
957 EXPORT_SYMBOL_GPL(regmap_exit);
959 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
961 struct regmap **r = res;
967 /* If the user didn't specify a name match any */
969 return (*r)->name == data;
975 * dev_get_regmap(): Obtain the regmap (if any) for a device
977 * @dev: Device to retrieve the map for
978 * @name: Optional name for the register map, usually NULL.
980 * Returns the regmap for the device if one is present, or NULL. If
981 * name is specified then it must match the name specified when
982 * registering the device, if it is NULL then the first regmap found
983 * will be used. Devices with multiple register maps are very rare,
984 * generic code should normally not need to specify a name.
986 struct regmap *dev_get_regmap(struct device *dev, const char *name)
988 struct regmap **r = devres_find(dev, dev_get_regmap_release,
989 dev_get_regmap_match, (void *)name);
995 EXPORT_SYMBOL_GPL(dev_get_regmap);
997 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
998 struct regmap_range_node *range,
999 unsigned int val_num)
1001 void *orig_work_buf;
1002 unsigned int win_offset;
1003 unsigned int win_page;
1007 win_offset = (*reg - range->range_min) % range->window_len;
1008 win_page = (*reg - range->range_min) / range->window_len;
1011 /* Bulk write shouldn't cross range boundary */
1012 if (*reg + val_num - 1 > range->range_max)
1015 /* ... or single page boundary */
1016 if (val_num > range->window_len - win_offset)
1020 /* It is possible to have selector register inside data window.
1021 In that case, selector register is located on every page and
1022 it needs no page switching, when accessed alone. */
1024 range->window_start + win_offset != range->selector_reg) {
1025 /* Use separate work_buf during page switching */
1026 orig_work_buf = map->work_buf;
1027 map->work_buf = map->selector_work_buf;
1029 ret = _regmap_update_bits(map, range->selector_reg,
1030 range->selector_mask,
1031 win_page << range->selector_shift,
1034 map->work_buf = orig_work_buf;
1040 *reg = range->window_start + win_offset;
1045 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1046 const void *val, size_t val_len)
1048 struct regmap_range_node *range;
1049 unsigned long flags;
1050 u8 *u8 = map->work_buf;
1051 void *work_val = map->work_buf + map->format.reg_bytes +
1052 map->format.pad_bytes;
1054 int ret = -ENOTSUPP;
1060 /* Check for unwritable registers before we start */
1061 if (map->writeable_reg)
1062 for (i = 0; i < val_len / map->format.val_bytes; i++)
1063 if (!map->writeable_reg(map->dev,
1064 reg + (i * map->reg_stride)))
1067 if (!map->cache_bypass && map->format.parse_val) {
1069 int val_bytes = map->format.val_bytes;
1070 for (i = 0; i < val_len / val_bytes; i++) {
1071 ival = map->format.parse_val(val + (i * val_bytes));
1072 ret = regcache_write(map, reg + (i * map->reg_stride),
1076 "Error in caching of register: %x ret: %d\n",
1081 if (map->cache_only) {
1082 map->cache_dirty = true;
1087 range = _regmap_range_lookup(map, reg);
1089 int val_num = val_len / map->format.val_bytes;
1090 int win_offset = (reg - range->range_min) % range->window_len;
1091 int win_residue = range->window_len - win_offset;
1093 /* If the write goes beyond the end of the window split it */
1094 while (val_num > win_residue) {
1095 dev_dbg(map->dev, "Writing window %d/%zu\n",
1096 win_residue, val_len / map->format.val_bytes);
1097 ret = _regmap_raw_write(map, reg, val, win_residue *
1098 map->format.val_bytes);
1103 val_num -= win_residue;
1104 val += win_residue * map->format.val_bytes;
1105 val_len -= win_residue * map->format.val_bytes;
1107 win_offset = (reg - range->range_min) %
1109 win_residue = range->window_len - win_offset;
1112 ret = _regmap_select_page(map, ®, range, val_num);
1117 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1119 u8[0] |= map->write_flag_mask;
1122 * Essentially all I/O mechanisms will be faster with a single
1123 * buffer to write. Since register syncs often generate raw
1124 * writes of single registers optimise that case.
1126 if (val != work_val && val_len == map->format.val_bytes) {
1127 memcpy(work_val, val, map->format.val_bytes);
1131 if (map->async && map->bus->async_write) {
1132 struct regmap_async *async;
1134 trace_regmap_async_write_start(map->dev, reg, val_len);
1136 spin_lock_irqsave(&map->async_lock, flags);
1137 async = list_first_entry_or_null(&map->async_free,
1138 struct regmap_async,
1141 list_del(&async->list);
1142 spin_unlock_irqrestore(&map->async_lock, flags);
1145 async = map->bus->async_alloc();
1149 async->work_buf = kzalloc(map->format.buf_size,
1150 GFP_KERNEL | GFP_DMA);
1151 if (!async->work_buf) {
1159 /* If the caller supplied the value we can use it safely. */
1160 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1161 map->format.reg_bytes + map->format.val_bytes);
1163 spin_lock_irqsave(&map->async_lock, flags);
1164 list_add_tail(&async->list, &map->async_list);
1165 spin_unlock_irqrestore(&map->async_lock, flags);
1167 if (val != work_val)
1168 ret = map->bus->async_write(map->bus_context,
1170 map->format.reg_bytes +
1171 map->format.pad_bytes,
1172 val, val_len, async);
1174 ret = map->bus->async_write(map->bus_context,
1176 map->format.reg_bytes +
1177 map->format.pad_bytes +
1178 val_len, NULL, 0, async);
1181 dev_err(map->dev, "Failed to schedule write: %d\n",
1184 spin_lock_irqsave(&map->async_lock, flags);
1185 list_move(&async->list, &map->async_free);
1186 spin_unlock_irqrestore(&map->async_lock, flags);
1192 trace_regmap_hw_write_start(map->dev, reg,
1193 val_len / map->format.val_bytes);
1195 /* If we're doing a single register write we can probably just
1196 * send the work_buf directly, otherwise try to do a gather
1199 if (val == work_val)
1200 ret = map->bus->write(map->bus_context, map->work_buf,
1201 map->format.reg_bytes +
1202 map->format.pad_bytes +
1204 else if (map->bus->gather_write)
1205 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1206 map->format.reg_bytes +
1207 map->format.pad_bytes,
1210 /* If that didn't work fall back on linearising by hand. */
1211 if (ret == -ENOTSUPP) {
1212 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1213 buf = kzalloc(len, GFP_KERNEL);
1217 memcpy(buf, map->work_buf, map->format.reg_bytes);
1218 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1220 ret = map->bus->write(map->bus_context, buf, len);
1225 trace_regmap_hw_write_done(map->dev, reg,
1226 val_len / map->format.val_bytes);
1232 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1234 * @map: Map to check.
1236 bool regmap_can_raw_write(struct regmap *map)
1238 return map->bus && map->format.format_val && map->format.format_reg;
1240 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1242 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1246 struct regmap_range_node *range;
1247 struct regmap *map = context;
1249 WARN_ON(!map->bus || !map->format.format_write);
1251 range = _regmap_range_lookup(map, reg);
1253 ret = _regmap_select_page(map, ®, range, 1);
1258 map->format.format_write(map, reg, val);
1260 trace_regmap_hw_write_start(map->dev, reg, 1);
1262 ret = map->bus->write(map->bus_context, map->work_buf,
1263 map->format.buf_size);
1265 trace_regmap_hw_write_done(map->dev, reg, 1);
1270 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1273 struct regmap *map = context;
1275 WARN_ON(!map->bus || !map->format.format_val);
1277 map->format.format_val(map->work_buf + map->format.reg_bytes
1278 + map->format.pad_bytes, val, 0);
1279 return _regmap_raw_write(map, reg,
1281 map->format.reg_bytes +
1282 map->format.pad_bytes,
1283 map->format.val_bytes);
1286 static inline void *_regmap_map_get_context(struct regmap *map)
1288 return (map->bus) ? map : map->bus_context;
1291 int _regmap_write(struct regmap *map, unsigned int reg,
1295 void *context = _regmap_map_get_context(map);
1297 if (!regmap_writeable(map, reg))
1300 if (!map->cache_bypass && !map->defer_caching) {
1301 ret = regcache_write(map, reg, val);
1304 if (map->cache_only) {
1305 map->cache_dirty = true;
1311 if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1312 dev_info(map->dev, "%x <= %x\n", reg, val);
1315 trace_regmap_reg_write(map->dev, reg, val);
1317 return map->reg_write(context, reg, val);
1321 * regmap_write(): Write a value to a single register
1323 * @map: Register map to write to
1324 * @reg: Register to write to
1325 * @val: Value to be written
1327 * A value of zero will be returned on success, a negative errno will
1328 * be returned in error cases.
1330 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1334 if (reg % map->reg_stride)
1337 map->lock(map->lock_arg);
1339 ret = _regmap_write(map, reg, val);
1341 map->unlock(map->lock_arg);
1345 EXPORT_SYMBOL_GPL(regmap_write);
1348 * regmap_write_async(): Write a value to a single register asynchronously
1350 * @map: Register map to write to
1351 * @reg: Register to write to
1352 * @val: Value to be written
1354 * A value of zero will be returned on success, a negative errno will
1355 * be returned in error cases.
1357 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1361 if (reg % map->reg_stride)
1364 map->lock(map->lock_arg);
1368 ret = _regmap_write(map, reg, val);
1372 map->unlock(map->lock_arg);
1376 EXPORT_SYMBOL_GPL(regmap_write_async);
1379 * regmap_raw_write(): Write raw values to one or more registers
1381 * @map: Register map to write to
1382 * @reg: Initial register to write to
1383 * @val: Block of data to be written, laid out for direct transmission to the
1385 * @val_len: Length of data pointed to by val.
1387 * This function is intended to be used for things like firmware
1388 * download where a large block of data needs to be transferred to the
1389 * device. No formatting will be done on the data provided.
1391 * A value of zero will be returned on success, a negative errno will
1392 * be returned in error cases.
1394 int regmap_raw_write(struct regmap *map, unsigned int reg,
1395 const void *val, size_t val_len)
1399 if (!regmap_can_raw_write(map))
1401 if (val_len % map->format.val_bytes)
1404 map->lock(map->lock_arg);
1406 ret = _regmap_raw_write(map, reg, val, val_len);
1408 map->unlock(map->lock_arg);
1412 EXPORT_SYMBOL_GPL(regmap_raw_write);
1415 * regmap_field_write(): Write a value to a single register field
1417 * @field: Register field to write to
1418 * @val: Value to be written
1420 * A value of zero will be returned on success, a negative errno will
1421 * be returned in error cases.
1423 int regmap_field_write(struct regmap_field *field, unsigned int val)
1425 return regmap_update_bits(field->regmap, field->reg,
1426 field->mask, val << field->shift);
1428 EXPORT_SYMBOL_GPL(regmap_field_write);
1431 * regmap_field_update_bits(): Perform a read/modify/write cycle
1432 * on the register field
1434 * @field: Register field to write to
1435 * @mask: Bitmask to change
1436 * @val: Value to be written
1438 * A value of zero will be returned on success, a negative errno will
1439 * be returned in error cases.
1441 int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
1443 mask = (mask << field->shift) & field->mask;
1445 return regmap_update_bits(field->regmap, field->reg,
1446 mask, val << field->shift);
1448 EXPORT_SYMBOL_GPL(regmap_field_update_bits);
1451 * regmap_fields_write(): Write a value to a single register field with port ID
1453 * @field: Register field to write to
1455 * @val: Value to be written
1457 * A value of zero will be returned on success, a negative errno will
1458 * be returned in error cases.
1460 int regmap_fields_write(struct regmap_field *field, unsigned int id,
1463 if (id >= field->id_size)
1466 return regmap_update_bits(field->regmap,
1467 field->reg + (field->id_offset * id),
1468 field->mask, val << field->shift);
1470 EXPORT_SYMBOL_GPL(regmap_fields_write);
1473 * regmap_fields_update_bits(): Perform a read/modify/write cycle
1474 * on the register field
1476 * @field: Register field to write to
1478 * @mask: Bitmask to change
1479 * @val: Value to be written
1481 * A value of zero will be returned on success, a negative errno will
1482 * be returned in error cases.
1484 int regmap_fields_update_bits(struct regmap_field *field, unsigned int id,
1485 unsigned int mask, unsigned int val)
1487 if (id >= field->id_size)
1490 mask = (mask << field->shift) & field->mask;
1492 return regmap_update_bits(field->regmap,
1493 field->reg + (field->id_offset * id),
1494 mask, val << field->shift);
1496 EXPORT_SYMBOL_GPL(regmap_fields_update_bits);
1499 * regmap_bulk_write(): Write multiple registers to the device
1501 * @map: Register map to write to
1502 * @reg: First register to be write from
1503 * @val: Block of data to be written, in native register size for device
1504 * @val_count: Number of registers to write
1506 * This function is intended to be used for writing a large block of
1507 * data to the device either in single transfer or multiple transfer.
1509 * A value of zero will be returned on success, a negative errno will
1510 * be returned in error cases.
1512 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1516 size_t val_bytes = map->format.val_bytes;
1521 if (!map->format.parse_inplace)
1523 if (reg % map->reg_stride)
1526 map->lock(map->lock_arg);
1528 /* No formatting is require if val_byte is 1 */
1529 if (val_bytes == 1) {
1532 wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
1535 dev_err(map->dev, "Error in memory allocation\n");
1538 for (i = 0; i < val_count * val_bytes; i += val_bytes)
1539 map->format.parse_inplace(wval + i);
1542 * Some devices does not support bulk write, for
1543 * them we have a series of single write operations.
1545 if (map->use_single_rw) {
1546 for (i = 0; i < val_count; i++) {
1547 ret = _regmap_raw_write(map,
1548 reg + (i * map->reg_stride),
1549 val + (i * val_bytes),
1555 ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1562 map->unlock(map->lock_arg);
1565 EXPORT_SYMBOL_GPL(regmap_bulk_write);
1568 * regmap_multi_reg_write(): Write multiple registers to the device
1570 * where the set of register are supplied in any order
1572 * @map: Register map to write to
1573 * @regs: Array of structures containing register,value to be written
1574 * @num_regs: Number of registers to write
1576 * This function is intended to be used for writing a large block of data
1577 * atomically to the device in single transfer for those I2C client devices
1578 * that implement this alternative block write mode.
1580 * A value of zero will be returned on success, a negative errno will
1581 * be returned in error cases.
1583 int regmap_multi_reg_write(struct regmap *map, struct reg_default *regs,
1588 for (i = 0; i < num_regs; i++) {
1589 int reg = regs[i].reg;
1590 if (reg % map->reg_stride)
1594 map->lock(map->lock_arg);
1596 for (i = 0; i < num_regs; i++) {
1597 ret = _regmap_write(map, regs[i].reg, regs[i].def);
1602 map->unlock(map->lock_arg);
1606 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
1609 * regmap_raw_write_async(): Write raw values to one or more registers
1612 * @map: Register map to write to
1613 * @reg: Initial register to write to
1614 * @val: Block of data to be written, laid out for direct transmission to the
1615 * device. Must be valid until regmap_async_complete() is called.
1616 * @val_len: Length of data pointed to by val.
1618 * This function is intended to be used for things like firmware
1619 * download where a large block of data needs to be transferred to the
1620 * device. No formatting will be done on the data provided.
1622 * If supported by the underlying bus the write will be scheduled
1623 * asynchronously, helping maximise I/O speed on higher speed buses
1624 * like SPI. regmap_async_complete() can be called to ensure that all
1625 * asynchrnous writes have been completed.
1627 * A value of zero will be returned on success, a negative errno will
1628 * be returned in error cases.
1630 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
1631 const void *val, size_t val_len)
1635 if (val_len % map->format.val_bytes)
1637 if (reg % map->reg_stride)
1640 map->lock(map->lock_arg);
1644 ret = _regmap_raw_write(map, reg, val, val_len);
1648 map->unlock(map->lock_arg);
1652 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
1654 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
1655 unsigned int val_len)
1657 struct regmap_range_node *range;
1658 u8 *u8 = map->work_buf;
1663 range = _regmap_range_lookup(map, reg);
1665 ret = _regmap_select_page(map, ®, range,
1666 val_len / map->format.val_bytes);
1671 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1674 * Some buses or devices flag reads by setting the high bits in the
1675 * register addresss; since it's always the high bits for all
1676 * current formats we can do this here rather than in
1677 * formatting. This may break if we get interesting formats.
1679 u8[0] |= map->read_flag_mask;
1681 trace_regmap_hw_read_start(map->dev, reg,
1682 val_len / map->format.val_bytes);
1684 ret = map->bus->read(map->bus_context, map->work_buf,
1685 map->format.reg_bytes + map->format.pad_bytes,
1688 trace_regmap_hw_read_done(map->dev, reg,
1689 val_len / map->format.val_bytes);
1694 static int _regmap_bus_read(void *context, unsigned int reg,
1698 struct regmap *map = context;
1700 if (!map->format.parse_val)
1703 ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
1705 *val = map->format.parse_val(map->work_buf);
1710 static int _regmap_read(struct regmap *map, unsigned int reg,
1714 void *context = _regmap_map_get_context(map);
1716 WARN_ON(!map->reg_read);
1718 if (!map->cache_bypass) {
1719 ret = regcache_read(map, reg, val);
1724 if (map->cache_only)
1727 ret = map->reg_read(context, reg, val);
1730 if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1731 dev_info(map->dev, "%x => %x\n", reg, *val);
1734 trace_regmap_reg_read(map->dev, reg, *val);
1736 if (!map->cache_bypass)
1737 regcache_write(map, reg, *val);
1744 * regmap_read(): Read a value from a single register
1746 * @map: Register map to read from
1747 * @reg: Register to be read from
1748 * @val: Pointer to store read value
1750 * A value of zero will be returned on success, a negative errno will
1751 * be returned in error cases.
1753 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
1757 if (reg % map->reg_stride)
1760 map->lock(map->lock_arg);
1762 ret = _regmap_read(map, reg, val);
1764 map->unlock(map->lock_arg);
1768 EXPORT_SYMBOL_GPL(regmap_read);
1771 * regmap_raw_read(): Read raw data from the device
1773 * @map: Register map to read from
1774 * @reg: First register to be read from
1775 * @val: Pointer to store read value
1776 * @val_len: Size of data to read
1778 * A value of zero will be returned on success, a negative errno will
1779 * be returned in error cases.
1781 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
1784 size_t val_bytes = map->format.val_bytes;
1785 size_t val_count = val_len / val_bytes;
1791 if (val_len % map->format.val_bytes)
1793 if (reg % map->reg_stride)
1796 map->lock(map->lock_arg);
1798 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
1799 map->cache_type == REGCACHE_NONE) {
1800 /* Physical block read if there's no cache involved */
1801 ret = _regmap_raw_read(map, reg, val, val_len);
1804 /* Otherwise go word by word for the cache; should be low
1805 * cost as we expect to hit the cache.
1807 for (i = 0; i < val_count; i++) {
1808 ret = _regmap_read(map, reg + (i * map->reg_stride),
1813 map->format.format_val(val + (i * val_bytes), v, 0);
1818 map->unlock(map->lock_arg);
1822 EXPORT_SYMBOL_GPL(regmap_raw_read);
1825 * regmap_field_read(): Read a value to a single register field
1827 * @field: Register field to read from
1828 * @val: Pointer to store read value
1830 * A value of zero will be returned on success, a negative errno will
1831 * be returned in error cases.
1833 int regmap_field_read(struct regmap_field *field, unsigned int *val)
1836 unsigned int reg_val;
1837 ret = regmap_read(field->regmap, field->reg, ®_val);
1841 reg_val &= field->mask;
1842 reg_val >>= field->shift;
1847 EXPORT_SYMBOL_GPL(regmap_field_read);
1850 * regmap_fields_read(): Read a value to a single register field with port ID
1852 * @field: Register field to read from
1854 * @val: Pointer to store read value
1856 * A value of zero will be returned on success, a negative errno will
1857 * be returned in error cases.
1859 int regmap_fields_read(struct regmap_field *field, unsigned int id,
1863 unsigned int reg_val;
1865 if (id >= field->id_size)
1868 ret = regmap_read(field->regmap,
1869 field->reg + (field->id_offset * id),
1874 reg_val &= field->mask;
1875 reg_val >>= field->shift;
1880 EXPORT_SYMBOL_GPL(regmap_fields_read);
1883 * regmap_bulk_read(): Read multiple registers from the device
1885 * @map: Register map to read from
1886 * @reg: First register to be read from
1887 * @val: Pointer to store read value, in native register size for device
1888 * @val_count: Number of registers to read
1890 * A value of zero will be returned on success, a negative errno will
1891 * be returned in error cases.
1893 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
1897 size_t val_bytes = map->format.val_bytes;
1898 bool vol = regmap_volatile_range(map, reg, val_count);
1902 if (!map->format.parse_inplace)
1904 if (reg % map->reg_stride)
1907 if (vol || map->cache_type == REGCACHE_NONE) {
1909 * Some devices does not support bulk read, for
1910 * them we have a series of single read operations.
1912 if (map->use_single_rw) {
1913 for (i = 0; i < val_count; i++) {
1914 ret = regmap_raw_read(map,
1915 reg + (i * map->reg_stride),
1916 val + (i * val_bytes),
1922 ret = regmap_raw_read(map, reg, val,
1923 val_bytes * val_count);
1928 for (i = 0; i < val_count * val_bytes; i += val_bytes)
1929 map->format.parse_inplace(val + i);
1931 for (i = 0; i < val_count; i++) {
1933 ret = regmap_read(map, reg + (i * map->reg_stride),
1937 memcpy(val + (i * val_bytes), &ival, val_bytes);
1943 EXPORT_SYMBOL_GPL(regmap_bulk_read);
1945 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
1946 unsigned int mask, unsigned int val,
1950 unsigned int tmp, orig;
1952 ret = _regmap_read(map, reg, &orig);
1960 ret = _regmap_write(map, reg, tmp);
1970 * regmap_update_bits: Perform a read/modify/write cycle on the register map
1972 * @map: Register map to update
1973 * @reg: Register to update
1974 * @mask: Bitmask to change
1975 * @val: New value for bitmask
1977 * Returns zero for success, a negative number on error.
1979 int regmap_update_bits(struct regmap *map, unsigned int reg,
1980 unsigned int mask, unsigned int val)
1985 map->lock(map->lock_arg);
1986 ret = _regmap_update_bits(map, reg, mask, val, &change);
1987 map->unlock(map->lock_arg);
1991 EXPORT_SYMBOL_GPL(regmap_update_bits);
1994 * regmap_update_bits_async: Perform a read/modify/write cycle on the register
1995 * map asynchronously
1997 * @map: Register map to update
1998 * @reg: Register to update
1999 * @mask: Bitmask to change
2000 * @val: New value for bitmask
2002 * With most buses the read must be done synchronously so this is most
2003 * useful for devices with a cache which do not need to interact with
2004 * the hardware to determine the current register value.
2006 * Returns zero for success, a negative number on error.
2008 int regmap_update_bits_async(struct regmap *map, unsigned int reg,
2009 unsigned int mask, unsigned int val)
2014 map->lock(map->lock_arg);
2018 ret = _regmap_update_bits(map, reg, mask, val, &change);
2022 map->unlock(map->lock_arg);
2026 EXPORT_SYMBOL_GPL(regmap_update_bits_async);
2029 * regmap_update_bits_check: Perform a read/modify/write cycle on the
2030 * register map and report if updated
2032 * @map: Register map to update
2033 * @reg: Register to update
2034 * @mask: Bitmask to change
2035 * @val: New value for bitmask
2036 * @change: Boolean indicating if a write was done
2038 * Returns zero for success, a negative number on error.
2040 int regmap_update_bits_check(struct regmap *map, unsigned int reg,
2041 unsigned int mask, unsigned int val,
2046 map->lock(map->lock_arg);
2047 ret = _regmap_update_bits(map, reg, mask, val, change);
2048 map->unlock(map->lock_arg);
2051 EXPORT_SYMBOL_GPL(regmap_update_bits_check);
2054 * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
2055 * register map asynchronously and report if
2058 * @map: Register map to update
2059 * @reg: Register to update
2060 * @mask: Bitmask to change
2061 * @val: New value for bitmask
2062 * @change: Boolean indicating if a write was done
2064 * With most buses the read must be done synchronously so this is most
2065 * useful for devices with a cache which do not need to interact with
2066 * the hardware to determine the current register value.
2068 * Returns zero for success, a negative number on error.
2070 int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
2071 unsigned int mask, unsigned int val,
2076 map->lock(map->lock_arg);
2080 ret = _regmap_update_bits(map, reg, mask, val, change);
2084 map->unlock(map->lock_arg);
2088 EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);
2090 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2092 struct regmap *map = async->map;
2095 trace_regmap_async_io_complete(map->dev);
2097 spin_lock(&map->async_lock);
2098 list_move(&async->list, &map->async_free);
2099 wake = list_empty(&map->async_list);
2102 map->async_ret = ret;
2104 spin_unlock(&map->async_lock);
2107 wake_up(&map->async_waitq);
2109 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2111 static int regmap_async_is_done(struct regmap *map)
2113 unsigned long flags;
2116 spin_lock_irqsave(&map->async_lock, flags);
2117 ret = list_empty(&map->async_list);
2118 spin_unlock_irqrestore(&map->async_lock, flags);
2124 * regmap_async_complete: Ensure all asynchronous I/O has completed.
2126 * @map: Map to operate on.
2128 * Blocks until any pending asynchronous I/O has completed. Returns
2129 * an error code for any failed I/O operations.
2131 int regmap_async_complete(struct regmap *map)
2133 unsigned long flags;
2136 /* Nothing to do with no async support */
2137 if (!map->bus || !map->bus->async_write)
2140 trace_regmap_async_complete_start(map->dev);
2142 wait_event(map->async_waitq, regmap_async_is_done(map));
2144 spin_lock_irqsave(&map->async_lock, flags);
2145 ret = map->async_ret;
2147 spin_unlock_irqrestore(&map->async_lock, flags);
2149 trace_regmap_async_complete_done(map->dev);
2153 EXPORT_SYMBOL_GPL(regmap_async_complete);
2156 * regmap_register_patch: Register and apply register updates to be applied
2157 * on device initialistion
2159 * @map: Register map to apply updates to.
2160 * @regs: Values to update.
2161 * @num_regs: Number of entries in regs.
2163 * Register a set of register updates to be applied to the device
2164 * whenever the device registers are synchronised with the cache and
2165 * apply them immediately. Typically this is used to apply
2166 * corrections to be applied to the device defaults on startup, such
2167 * as the updates some vendors provide to undocumented registers.
2169 int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
2172 struct reg_default *p;
2176 map->lock(map->lock_arg);
2178 bypass = map->cache_bypass;
2180 map->cache_bypass = true;
2183 /* Write out first; it's useful to apply even if we fail later. */
2184 for (i = 0; i < num_regs; i++) {
2185 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2187 dev_err(map->dev, "Failed to write %x = %x: %d\n",
2188 regs[i].reg, regs[i].def, ret);
2193 p = krealloc(map->patch,
2194 sizeof(struct reg_default) * (map->patch_regs + num_regs),
2197 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2199 map->patch_regs += num_regs;
2206 map->cache_bypass = bypass;
2208 map->unlock(map->lock_arg);
2210 regmap_async_complete(map);
2214 EXPORT_SYMBOL_GPL(regmap_register_patch);
2217 * regmap_get_val_bytes(): Report the size of a register value
2219 * Report the size of a register value, mainly intended to for use by
2220 * generic infrastructure built on top of regmap.
2222 int regmap_get_val_bytes(struct regmap *map)
2224 if (map->format.format_write)
2227 return map->format.val_bytes;
2229 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2231 static int __init regmap_initcall(void)
2233 regmap_debugfs_initcall();
2237 postcore_initcall(regmap_initcall);