93ee55ee37750ba5993b0de66c31299cf7132edc
[firefly-linux-kernel-4.4.55.git] / drivers / block / nvme-core.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/nvme.h>
16 #include <linux/bio.h>
17 #include <linux/bitops.h>
18 #include <linux/blkdev.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kthread.h>
31 #include <linux/kernel.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/pci.h>
36 #include <linux/percpu.h>
37 #include <linux/poison.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <scsi/sg.h>
43 #include <asm-generic/io-64-nonatomic-lo-hi.h>
44
45 #include <trace/events/block.h>
46
47 #define NVME_Q_DEPTH            1024
48 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
49 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
50 #define ADMIN_TIMEOUT           (admin_timeout * HZ)
51 #define SHUTDOWN_TIMEOUT        (shutdown_timeout * HZ)
52 #define IOD_TIMEOUT             (retry_time * HZ)
53
54 static unsigned char admin_timeout = 60;
55 module_param(admin_timeout, byte, 0644);
56 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
57
58 unsigned char nvme_io_timeout = 30;
59 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
60 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
61
62 static unsigned char retry_time = 30;
63 module_param(retry_time, byte, 0644);
64 MODULE_PARM_DESC(retry_time, "time in seconds to retry failed I/O");
65
66 static unsigned char shutdown_timeout = 5;
67 module_param(shutdown_timeout, byte, 0644);
68 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
69
70 static int nvme_major;
71 module_param(nvme_major, int, 0);
72
73 static int use_threaded_interrupts;
74 module_param(use_threaded_interrupts, int, 0);
75
76 static DEFINE_SPINLOCK(dev_list_lock);
77 static LIST_HEAD(dev_list);
78 static struct task_struct *nvme_thread;
79 static struct workqueue_struct *nvme_workq;
80 static wait_queue_head_t nvme_kthread_wait;
81 static struct notifier_block nvme_nb;
82
83 static void nvme_reset_failed_dev(struct work_struct *ws);
84
85 struct async_cmd_info {
86         struct kthread_work work;
87         struct kthread_worker *worker;
88         u32 result;
89         int status;
90         void *ctx;
91 };
92
93 /*
94  * An NVM Express queue.  Each device has at least two (one for admin
95  * commands and one for I/O commands).
96  */
97 struct nvme_queue {
98         struct llist_node node;
99         struct device *q_dmadev;
100         struct nvme_dev *dev;
101         char irqname[24];       /* nvme4294967295-65535\0 */
102         spinlock_t q_lock;
103         struct nvme_command *sq_cmds;
104         volatile struct nvme_completion *cqes;
105         dma_addr_t sq_dma_addr;
106         dma_addr_t cq_dma_addr;
107         wait_queue_head_t sq_full;
108         wait_queue_t sq_cong_wait;
109         struct bio_list sq_cong;
110         struct list_head iod_bio;
111         u32 __iomem *q_db;
112         u16 q_depth;
113         u16 cq_vector;
114         u16 sq_head;
115         u16 sq_tail;
116         u16 cq_head;
117         u16 qid;
118         u8 cq_phase;
119         u8 cqe_seen;
120         u8 q_suspended;
121         cpumask_var_t cpu_mask;
122         struct async_cmd_info cmdinfo;
123         unsigned long cmdid_data[];
124 };
125
126 /*
127  * Check we didin't inadvertently grow the command struct
128  */
129 static inline void _nvme_check_size(void)
130 {
131         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
132         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
133         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
134         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
135         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
136         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
137         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
138         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
139         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
140         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
141         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
142         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
143 }
144
145 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
146                                                 struct nvme_completion *);
147
148 struct nvme_cmd_info {
149         nvme_completion_fn fn;
150         void *ctx;
151         unsigned long timeout;
152         int aborted;
153 };
154
155 static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
156 {
157         return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
158 }
159
160 static unsigned nvme_queue_extra(int depth)
161 {
162         return DIV_ROUND_UP(depth, 8) + (depth * sizeof(struct nvme_cmd_info));
163 }
164
165 /**
166  * alloc_cmdid() - Allocate a Command ID
167  * @nvmeq: The queue that will be used for this command
168  * @ctx: A pointer that will be passed to the handler
169  * @handler: The function to call on completion
170  *
171  * Allocate a Command ID for a queue.  The data passed in will
172  * be passed to the completion handler.  This is implemented by using
173  * the bottom two bits of the ctx pointer to store the handler ID.
174  * Passing in a pointer that's not 4-byte aligned will cause a BUG.
175  * We can change this if it becomes a problem.
176  *
177  * May be called with local interrupts disabled and the q_lock held,
178  * or with interrupts enabled and no locks held.
179  */
180 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
181                                 nvme_completion_fn handler, unsigned timeout)
182 {
183         int depth = nvmeq->q_depth - 1;
184         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
185         int cmdid;
186
187         do {
188                 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
189                 if (cmdid >= depth)
190                         return -EBUSY;
191         } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
192
193         info[cmdid].fn = handler;
194         info[cmdid].ctx = ctx;
195         info[cmdid].timeout = jiffies + timeout;
196         info[cmdid].aborted = 0;
197         return cmdid;
198 }
199
200 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
201                                 nvme_completion_fn handler, unsigned timeout)
202 {
203         int cmdid;
204         wait_event_killable(nvmeq->sq_full,
205                 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
206         return (cmdid < 0) ? -EINTR : cmdid;
207 }
208
209 /* Special values must be less than 0x1000 */
210 #define CMD_CTX_BASE            ((void *)POISON_POINTER_DELTA)
211 #define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
212 #define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
213 #define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
214 #define CMD_CTX_ABORT           (0x318 + CMD_CTX_BASE)
215 #define CMD_CTX_ASYNC           (0x31C + CMD_CTX_BASE)
216
217 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
218                                                 struct nvme_completion *cqe)
219 {
220         if (ctx == CMD_CTX_CANCELLED)
221                 return;
222         if (ctx == CMD_CTX_ABORT) {
223                 ++nvmeq->dev->abort_limit;
224                 return;
225         }
226         if (ctx == CMD_CTX_COMPLETED) {
227                 dev_warn(nvmeq->q_dmadev,
228                                 "completed id %d twice on queue %d\n",
229                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
230                 return;
231         }
232         if (ctx == CMD_CTX_INVALID) {
233                 dev_warn(nvmeq->q_dmadev,
234                                 "invalid id %d completed on queue %d\n",
235                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
236                 return;
237         }
238         if (ctx == CMD_CTX_ASYNC) {
239                 u32 result = le32_to_cpup(&cqe->result);
240                 u16 status = le16_to_cpup(&cqe->status) >> 1;
241
242                 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
243                         ++nvmeq->dev->event_limit;
244                 if (status == NVME_SC_SUCCESS)
245                         dev_warn(nvmeq->q_dmadev,
246                                 "async event result %08x\n", result);
247                 return;
248         }
249
250         dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
251 }
252
253 static void async_completion(struct nvme_queue *nvmeq, void *ctx,
254                                                 struct nvme_completion *cqe)
255 {
256         struct async_cmd_info *cmdinfo = ctx;
257         cmdinfo->result = le32_to_cpup(&cqe->result);
258         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
259         queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
260 }
261
262 /*
263  * Called with local interrupts disabled and the q_lock held.  May not sleep.
264  */
265 static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
266                                                 nvme_completion_fn *fn)
267 {
268         void *ctx;
269         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
270
271         if (cmdid >= nvmeq->q_depth || !info[cmdid].fn) {
272                 if (fn)
273                         *fn = special_completion;
274                 return CMD_CTX_INVALID;
275         }
276         if (fn)
277                 *fn = info[cmdid].fn;
278         ctx = info[cmdid].ctx;
279         info[cmdid].fn = special_completion;
280         info[cmdid].ctx = CMD_CTX_COMPLETED;
281         clear_bit(cmdid, nvmeq->cmdid_data);
282         wake_up(&nvmeq->sq_full);
283         return ctx;
284 }
285
286 static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
287                                                 nvme_completion_fn *fn)
288 {
289         void *ctx;
290         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
291         if (fn)
292                 *fn = info[cmdid].fn;
293         ctx = info[cmdid].ctx;
294         info[cmdid].fn = special_completion;
295         info[cmdid].ctx = CMD_CTX_CANCELLED;
296         return ctx;
297 }
298
299 static struct nvme_queue *raw_nvmeq(struct nvme_dev *dev, int qid)
300 {
301         return rcu_dereference_raw(dev->queues[qid]);
302 }
303
304 static struct nvme_queue *get_nvmeq(struct nvme_dev *dev) __acquires(RCU)
305 {
306         struct nvme_queue *nvmeq;
307         unsigned queue_id = get_cpu_var(*dev->io_queue);
308
309         rcu_read_lock();
310         nvmeq = rcu_dereference(dev->queues[queue_id]);
311         if (nvmeq)
312                 return nvmeq;
313
314         rcu_read_unlock();
315         put_cpu_var(*dev->io_queue);
316         return NULL;
317 }
318
319 static void put_nvmeq(struct nvme_queue *nvmeq) __releases(RCU)
320 {
321         rcu_read_unlock();
322         put_cpu_var(nvmeq->dev->io_queue);
323 }
324
325 static struct nvme_queue *lock_nvmeq(struct nvme_dev *dev, int q_idx)
326                                                         __acquires(RCU)
327 {
328         struct nvme_queue *nvmeq;
329
330         rcu_read_lock();
331         nvmeq = rcu_dereference(dev->queues[q_idx]);
332         if (nvmeq)
333                 return nvmeq;
334
335         rcu_read_unlock();
336         return NULL;
337 }
338
339 static void unlock_nvmeq(struct nvme_queue *nvmeq) __releases(RCU)
340 {
341         rcu_read_unlock();
342 }
343
344 /**
345  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
346  * @nvmeq: The queue to use
347  * @cmd: The command to send
348  *
349  * Safe to use from interrupt context
350  */
351 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
352 {
353         unsigned long flags;
354         u16 tail;
355         spin_lock_irqsave(&nvmeq->q_lock, flags);
356         if (nvmeq->q_suspended) {
357                 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
358                 return -EBUSY;
359         }
360         tail = nvmeq->sq_tail;
361         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
362         if (++tail == nvmeq->q_depth)
363                 tail = 0;
364         writel(tail, nvmeq->q_db);
365         nvmeq->sq_tail = tail;
366         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
367
368         return 0;
369 }
370
371 static __le64 **iod_list(struct nvme_iod *iod)
372 {
373         return ((void *)iod) + iod->offset;
374 }
375
376 /*
377  * Will slightly overestimate the number of pages needed.  This is OK
378  * as it only leads to a small amount of wasted memory for the lifetime of
379  * the I/O.
380  */
381 static int nvme_npages(unsigned size, struct nvme_dev *dev)
382 {
383         unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size);
384         return DIV_ROUND_UP(8 * nprps, dev->page_size - 8);
385 }
386
387 static struct nvme_iod *
388 nvme_alloc_iod(unsigned nseg, unsigned nbytes, struct nvme_dev *dev, gfp_t gfp)
389 {
390         struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
391                                 sizeof(__le64 *) * nvme_npages(nbytes, dev) +
392                                 sizeof(struct scatterlist) * nseg, gfp);
393
394         if (iod) {
395                 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
396                 iod->npages = -1;
397                 iod->length = nbytes;
398                 iod->nents = 0;
399                 iod->first_dma = 0ULL;
400                 iod->start_time = jiffies;
401         }
402
403         return iod;
404 }
405
406 void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
407 {
408         const int last_prp = dev->page_size / 8 - 1;
409         int i;
410         __le64 **list = iod_list(iod);
411         dma_addr_t prp_dma = iod->first_dma;
412
413         if (iod->npages == 0)
414                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
415         for (i = 0; i < iod->npages; i++) {
416                 __le64 *prp_list = list[i];
417                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
418                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
419                 prp_dma = next_prp_dma;
420         }
421         kfree(iod);
422 }
423
424 static void nvme_start_io_acct(struct bio *bio)
425 {
426         struct gendisk *disk = bio->bi_bdev->bd_disk;
427         if (blk_queue_io_stat(disk->queue)) {
428                 const int rw = bio_data_dir(bio);
429                 int cpu = part_stat_lock();
430                 part_round_stats(cpu, &disk->part0);
431                 part_stat_inc(cpu, &disk->part0, ios[rw]);
432                 part_stat_add(cpu, &disk->part0, sectors[rw],
433                                                         bio_sectors(bio));
434                 part_inc_in_flight(&disk->part0, rw);
435                 part_stat_unlock();
436         }
437 }
438
439 static void nvme_end_io_acct(struct bio *bio, unsigned long start_time)
440 {
441         struct gendisk *disk = bio->bi_bdev->bd_disk;
442         if (blk_queue_io_stat(disk->queue)) {
443                 const int rw = bio_data_dir(bio);
444                 unsigned long duration = jiffies - start_time;
445                 int cpu = part_stat_lock();
446                 part_stat_add(cpu, &disk->part0, ticks[rw], duration);
447                 part_round_stats(cpu, &disk->part0);
448                 part_dec_in_flight(&disk->part0, rw);
449                 part_stat_unlock();
450         }
451 }
452
453 static int nvme_error_status(u16 status)
454 {
455         switch (status & 0x7ff) {
456         case NVME_SC_SUCCESS:
457                 return 0;
458         case NVME_SC_CAP_EXCEEDED:
459                 return -ENOSPC;
460         default:
461                 return -EIO;
462         }
463 }
464
465 static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
466                                                 struct nvme_completion *cqe)
467 {
468         struct nvme_iod *iod = ctx;
469         struct bio *bio = iod->private;
470         u16 status = le16_to_cpup(&cqe->status) >> 1;
471         int error = 0;
472
473         if (unlikely(status)) {
474                 if (!(status & NVME_SC_DNR ||
475                                 bio->bi_rw & REQ_FAILFAST_MASK) &&
476                                 (jiffies - iod->start_time) < IOD_TIMEOUT) {
477                         if (!waitqueue_active(&nvmeq->sq_full))
478                                 add_wait_queue(&nvmeq->sq_full,
479                                                         &nvmeq->sq_cong_wait);
480                         list_add_tail(&iod->node, &nvmeq->iod_bio);
481                         wake_up(&nvmeq->sq_full);
482                         return;
483                 }
484                 error = nvme_error_status(status);
485         }
486         if (iod->nents) {
487                 dma_unmap_sg(nvmeq->q_dmadev, iod->sg, iod->nents,
488                         bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
489                 nvme_end_io_acct(bio, iod->start_time);
490         }
491         nvme_free_iod(nvmeq->dev, iod);
492
493         trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio, error);
494         bio_endio(bio, error);
495 }
496
497 /* length is in bytes.  gfp flags indicates whether we may sleep. */
498 int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod, int total_len,
499                                                                 gfp_t gfp)
500 {
501         struct dma_pool *pool;
502         int length = total_len;
503         struct scatterlist *sg = iod->sg;
504         int dma_len = sg_dma_len(sg);
505         u64 dma_addr = sg_dma_address(sg);
506         int offset = offset_in_page(dma_addr);
507         __le64 *prp_list;
508         __le64 **list = iod_list(iod);
509         dma_addr_t prp_dma;
510         int nprps, i;
511         u32 page_size = dev->page_size;
512
513         length -= (page_size - offset);
514         if (length <= 0)
515                 return total_len;
516
517         dma_len -= (page_size - offset);
518         if (dma_len) {
519                 dma_addr += (page_size - offset);
520         } else {
521                 sg = sg_next(sg);
522                 dma_addr = sg_dma_address(sg);
523                 dma_len = sg_dma_len(sg);
524         }
525
526         if (length <= page_size) {
527                 iod->first_dma = dma_addr;
528                 return total_len;
529         }
530
531         nprps = DIV_ROUND_UP(length, page_size);
532         if (nprps <= (256 / 8)) {
533                 pool = dev->prp_small_pool;
534                 iod->npages = 0;
535         } else {
536                 pool = dev->prp_page_pool;
537                 iod->npages = 1;
538         }
539
540         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
541         if (!prp_list) {
542                 iod->first_dma = dma_addr;
543                 iod->npages = -1;
544                 return (total_len - length) + page_size;
545         }
546         list[0] = prp_list;
547         iod->first_dma = prp_dma;
548         i = 0;
549         for (;;) {
550                 if (i == page_size >> 3) {
551                         __le64 *old_prp_list = prp_list;
552                         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
553                         if (!prp_list)
554                                 return total_len - length;
555                         list[iod->npages++] = prp_list;
556                         prp_list[0] = old_prp_list[i - 1];
557                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
558                         i = 1;
559                 }
560                 prp_list[i++] = cpu_to_le64(dma_addr);
561                 dma_len -= page_size;
562                 dma_addr += page_size;
563                 length -= page_size;
564                 if (length <= 0)
565                         break;
566                 if (dma_len > 0)
567                         continue;
568                 BUG_ON(dma_len < 0);
569                 sg = sg_next(sg);
570                 dma_addr = sg_dma_address(sg);
571                 dma_len = sg_dma_len(sg);
572         }
573
574         return total_len;
575 }
576
577 static int nvme_split_and_submit(struct bio *bio, struct nvme_queue *nvmeq,
578                                  int len)
579 {
580         struct bio *split = bio_split(bio, len >> 9, GFP_ATOMIC, NULL);
581         if (!split)
582                 return -ENOMEM;
583
584         trace_block_split(bdev_get_queue(bio->bi_bdev), bio,
585                                         split->bi_iter.bi_sector);
586         bio_chain(split, bio);
587
588         if (!waitqueue_active(&nvmeq->sq_full))
589                 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
590         bio_list_add(&nvmeq->sq_cong, split);
591         bio_list_add(&nvmeq->sq_cong, bio);
592         wake_up(&nvmeq->sq_full);
593
594         return 0;
595 }
596
597 /* NVMe scatterlists require no holes in the virtual address */
598 #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2)   ((vec2)->bv_offset || \
599                         (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
600
601 static int nvme_map_bio(struct nvme_queue *nvmeq, struct nvme_iod *iod,
602                 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
603 {
604         struct bio_vec bvec, bvprv;
605         struct bvec_iter iter;
606         struct scatterlist *sg = NULL;
607         int length = 0, nsegs = 0, split_len = bio->bi_iter.bi_size;
608         int first = 1;
609
610         if (nvmeq->dev->stripe_size)
611                 split_len = nvmeq->dev->stripe_size -
612                         ((bio->bi_iter.bi_sector << 9) &
613                          (nvmeq->dev->stripe_size - 1));
614
615         sg_init_table(iod->sg, psegs);
616         bio_for_each_segment(bvec, bio, iter) {
617                 if (!first && BIOVEC_PHYS_MERGEABLE(&bvprv, &bvec)) {
618                         sg->length += bvec.bv_len;
619                 } else {
620                         if (!first && BIOVEC_NOT_VIRT_MERGEABLE(&bvprv, &bvec))
621                                 return nvme_split_and_submit(bio, nvmeq,
622                                                              length);
623
624                         sg = sg ? sg + 1 : iod->sg;
625                         sg_set_page(sg, bvec.bv_page,
626                                     bvec.bv_len, bvec.bv_offset);
627                         nsegs++;
628                 }
629
630                 if (split_len - length < bvec.bv_len)
631                         return nvme_split_and_submit(bio, nvmeq, split_len);
632                 length += bvec.bv_len;
633                 bvprv = bvec;
634                 first = 0;
635         }
636         iod->nents = nsegs;
637         sg_mark_end(sg);
638         if (dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir) == 0)
639                 return -ENOMEM;
640
641         BUG_ON(length != bio->bi_iter.bi_size);
642         return length;
643 }
644
645 static int nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
646                 struct bio *bio, struct nvme_iod *iod, int cmdid)
647 {
648         struct nvme_dsm_range *range =
649                                 (struct nvme_dsm_range *)iod_list(iod)[0];
650         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
651
652         range->cattr = cpu_to_le32(0);
653         range->nlb = cpu_to_le32(bio->bi_iter.bi_size >> ns->lba_shift);
654         range->slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_iter.bi_sector));
655
656         memset(cmnd, 0, sizeof(*cmnd));
657         cmnd->dsm.opcode = nvme_cmd_dsm;
658         cmnd->dsm.command_id = cmdid;
659         cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
660         cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
661         cmnd->dsm.nr = 0;
662         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
663
664         if (++nvmeq->sq_tail == nvmeq->q_depth)
665                 nvmeq->sq_tail = 0;
666         writel(nvmeq->sq_tail, nvmeq->q_db);
667
668         return 0;
669 }
670
671 static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
672                                                                 int cmdid)
673 {
674         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
675
676         memset(cmnd, 0, sizeof(*cmnd));
677         cmnd->common.opcode = nvme_cmd_flush;
678         cmnd->common.command_id = cmdid;
679         cmnd->common.nsid = cpu_to_le32(ns->ns_id);
680
681         if (++nvmeq->sq_tail == nvmeq->q_depth)
682                 nvmeq->sq_tail = 0;
683         writel(nvmeq->sq_tail, nvmeq->q_db);
684
685         return 0;
686 }
687
688 static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod)
689 {
690         struct bio *bio = iod->private;
691         struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
692         struct nvme_command *cmnd;
693         int cmdid;
694         u16 control;
695         u32 dsmgmt;
696
697         cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
698         if (unlikely(cmdid < 0))
699                 return cmdid;
700
701         if (bio->bi_rw & REQ_DISCARD)
702                 return nvme_submit_discard(nvmeq, ns, bio, iod, cmdid);
703         if (bio->bi_rw & REQ_FLUSH)
704                 return nvme_submit_flush(nvmeq, ns, cmdid);
705
706         control = 0;
707         if (bio->bi_rw & REQ_FUA)
708                 control |= NVME_RW_FUA;
709         if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
710                 control |= NVME_RW_LR;
711
712         dsmgmt = 0;
713         if (bio->bi_rw & REQ_RAHEAD)
714                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
715
716         cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
717         memset(cmnd, 0, sizeof(*cmnd));
718
719         cmnd->rw.opcode = bio_data_dir(bio) ? nvme_cmd_write : nvme_cmd_read;
720         cmnd->rw.command_id = cmdid;
721         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
722         cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
723         cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
724         cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_iter.bi_sector));
725         cmnd->rw.length =
726                 cpu_to_le16((bio->bi_iter.bi_size >> ns->lba_shift) - 1);
727         cmnd->rw.control = cpu_to_le16(control);
728         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
729
730         if (++nvmeq->sq_tail == nvmeq->q_depth)
731                 nvmeq->sq_tail = 0;
732         writel(nvmeq->sq_tail, nvmeq->q_db);
733
734         return 0;
735 }
736
737 static int nvme_split_flush_data(struct nvme_queue *nvmeq, struct bio *bio)
738 {
739         struct bio *split = bio_clone(bio, GFP_ATOMIC);
740         if (!split)
741                 return -ENOMEM;
742
743         split->bi_iter.bi_size = 0;
744         split->bi_phys_segments = 0;
745         bio->bi_rw &= ~REQ_FLUSH;
746         bio_chain(split, bio);
747
748         if (!waitqueue_active(&nvmeq->sq_full))
749                 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
750         bio_list_add(&nvmeq->sq_cong, split);
751         bio_list_add(&nvmeq->sq_cong, bio);
752         wake_up_process(nvme_thread);
753
754         return 0;
755 }
756
757 /*
758  * Called with local interrupts disabled and the q_lock held.  May not sleep.
759  */
760 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
761                                                                 struct bio *bio)
762 {
763         struct nvme_iod *iod;
764         int psegs = bio_phys_segments(ns->queue, bio);
765         int result;
766
767         if ((bio->bi_rw & REQ_FLUSH) && psegs)
768                 return nvme_split_flush_data(nvmeq, bio);
769
770         iod = nvme_alloc_iod(psegs, bio->bi_iter.bi_size, ns->dev, GFP_ATOMIC);
771         if (!iod)
772                 return -ENOMEM;
773
774         iod->private = bio;
775         if (bio->bi_rw & REQ_DISCARD) {
776                 void *range;
777                 /*
778                  * We reuse the small pool to allocate the 16-byte range here
779                  * as it is not worth having a special pool for these or
780                  * additional cases to handle freeing the iod.
781                  */
782                 range = dma_pool_alloc(nvmeq->dev->prp_small_pool,
783                                                 GFP_ATOMIC,
784                                                 &iod->first_dma);
785                 if (!range) {
786                         result = -ENOMEM;
787                         goto free_iod;
788                 }
789                 iod_list(iod)[0] = (__le64 *)range;
790                 iod->npages = 0;
791         } else if (psegs) {
792                 result = nvme_map_bio(nvmeq, iod, bio,
793                         bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
794                         psegs);
795                 if (result <= 0)
796                         goto free_iod;
797                 if (nvme_setup_prps(nvmeq->dev, iod, result, GFP_ATOMIC) !=
798                                                                 result) {
799                         result = -ENOMEM;
800                         goto free_iod;
801                 }
802                 nvme_start_io_acct(bio);
803         }
804         if (unlikely(nvme_submit_iod(nvmeq, iod))) {
805                 if (!waitqueue_active(&nvmeq->sq_full))
806                         add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
807                 list_add_tail(&iod->node, &nvmeq->iod_bio);
808         }
809         return 0;
810
811  free_iod:
812         nvme_free_iod(nvmeq->dev, iod);
813         return result;
814 }
815
816 static int nvme_process_cq(struct nvme_queue *nvmeq)
817 {
818         u16 head, phase;
819
820         head = nvmeq->cq_head;
821         phase = nvmeq->cq_phase;
822
823         for (;;) {
824                 void *ctx;
825                 nvme_completion_fn fn;
826                 struct nvme_completion cqe = nvmeq->cqes[head];
827                 if ((le16_to_cpu(cqe.status) & 1) != phase)
828                         break;
829                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
830                 if (++head == nvmeq->q_depth) {
831                         head = 0;
832                         phase = !phase;
833                 }
834
835                 ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
836                 fn(nvmeq, ctx, &cqe);
837         }
838
839         /* If the controller ignores the cq head doorbell and continuously
840          * writes to the queue, it is theoretically possible to wrap around
841          * the queue twice and mistakenly return IRQ_NONE.  Linux only
842          * requires that 0.1% of your interrupts are handled, so this isn't
843          * a big problem.
844          */
845         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
846                 return 0;
847
848         writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
849         nvmeq->cq_head = head;
850         nvmeq->cq_phase = phase;
851
852         nvmeq->cqe_seen = 1;
853         return 1;
854 }
855
856 static void nvme_make_request(struct request_queue *q, struct bio *bio)
857 {
858         struct nvme_ns *ns = q->queuedata;
859         struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
860         int result = -EBUSY;
861
862         if (!nvmeq) {
863                 bio_endio(bio, -EIO);
864                 return;
865         }
866
867         spin_lock_irq(&nvmeq->q_lock);
868         if (!nvmeq->q_suspended && bio_list_empty(&nvmeq->sq_cong))
869                 result = nvme_submit_bio_queue(nvmeq, ns, bio);
870         if (unlikely(result)) {
871                 if (!waitqueue_active(&nvmeq->sq_full))
872                         add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
873                 bio_list_add(&nvmeq->sq_cong, bio);
874         }
875
876         nvme_process_cq(nvmeq);
877         spin_unlock_irq(&nvmeq->q_lock);
878         put_nvmeq(nvmeq);
879 }
880
881 static irqreturn_t nvme_irq(int irq, void *data)
882 {
883         irqreturn_t result;
884         struct nvme_queue *nvmeq = data;
885         spin_lock(&nvmeq->q_lock);
886         nvme_process_cq(nvmeq);
887         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
888         nvmeq->cqe_seen = 0;
889         spin_unlock(&nvmeq->q_lock);
890         return result;
891 }
892
893 static irqreturn_t nvme_irq_check(int irq, void *data)
894 {
895         struct nvme_queue *nvmeq = data;
896         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
897         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
898                 return IRQ_NONE;
899         return IRQ_WAKE_THREAD;
900 }
901
902 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
903 {
904         spin_lock_irq(&nvmeq->q_lock);
905         cancel_cmdid(nvmeq, cmdid, NULL);
906         spin_unlock_irq(&nvmeq->q_lock);
907 }
908
909 struct sync_cmd_info {
910         struct task_struct *task;
911         u32 result;
912         int status;
913 };
914
915 static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
916                                                 struct nvme_completion *cqe)
917 {
918         struct sync_cmd_info *cmdinfo = ctx;
919         cmdinfo->result = le32_to_cpup(&cqe->result);
920         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
921         wake_up_process(cmdinfo->task);
922 }
923
924 /*
925  * Returns 0 on success.  If the result is negative, it's a Linux error code;
926  * if the result is positive, it's an NVM Express status code
927  */
928 static int nvme_submit_sync_cmd(struct nvme_dev *dev, int q_idx,
929                                                 struct nvme_command *cmd,
930                                                 u32 *result, unsigned timeout)
931 {
932         int cmdid, ret;
933         struct sync_cmd_info cmdinfo;
934         struct nvme_queue *nvmeq;
935
936         nvmeq = lock_nvmeq(dev, q_idx);
937         if (!nvmeq)
938                 return -ENODEV;
939
940         cmdinfo.task = current;
941         cmdinfo.status = -EINTR;
942
943         cmdid = alloc_cmdid(nvmeq, &cmdinfo, sync_completion, timeout);
944         if (cmdid < 0) {
945                 unlock_nvmeq(nvmeq);
946                 return cmdid;
947         }
948         cmd->common.command_id = cmdid;
949
950         set_current_state(TASK_KILLABLE);
951         ret = nvme_submit_cmd(nvmeq, cmd);
952         if (ret) {
953                 free_cmdid(nvmeq, cmdid, NULL);
954                 unlock_nvmeq(nvmeq);
955                 set_current_state(TASK_RUNNING);
956                 return ret;
957         }
958         unlock_nvmeq(nvmeq);
959         schedule_timeout(timeout);
960
961         if (cmdinfo.status == -EINTR) {
962                 nvmeq = lock_nvmeq(dev, q_idx);
963                 if (nvmeq) {
964                         nvme_abort_command(nvmeq, cmdid);
965                         unlock_nvmeq(nvmeq);
966                 }
967                 return -EINTR;
968         }
969
970         if (result)
971                 *result = cmdinfo.result;
972
973         return cmdinfo.status;
974 }
975
976 static int nvme_submit_async_cmd(struct nvme_queue *nvmeq,
977                         struct nvme_command *cmd,
978                         struct async_cmd_info *cmdinfo, unsigned timeout)
979 {
980         int cmdid;
981
982         cmdid = alloc_cmdid_killable(nvmeq, cmdinfo, async_completion, timeout);
983         if (cmdid < 0)
984                 return cmdid;
985         cmdinfo->status = -EINTR;
986         cmd->common.command_id = cmdid;
987         return nvme_submit_cmd(nvmeq, cmd);
988 }
989
990 int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
991                                                                 u32 *result)
992 {
993         return nvme_submit_sync_cmd(dev, 0, cmd, result, ADMIN_TIMEOUT);
994 }
995
996 int nvme_submit_io_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
997                                                                 u32 *result)
998 {
999         return nvme_submit_sync_cmd(dev, this_cpu_read(*dev->io_queue), cmd,
1000                                                 result, NVME_IO_TIMEOUT);
1001 }
1002
1003 static int nvme_submit_admin_cmd_async(struct nvme_dev *dev,
1004                 struct nvme_command *cmd, struct async_cmd_info *cmdinfo)
1005 {
1006         return nvme_submit_async_cmd(raw_nvmeq(dev, 0), cmd, cmdinfo,
1007                                                                 ADMIN_TIMEOUT);
1008 }
1009
1010 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1011 {
1012         int status;
1013         struct nvme_command c;
1014
1015         memset(&c, 0, sizeof(c));
1016         c.delete_queue.opcode = opcode;
1017         c.delete_queue.qid = cpu_to_le16(id);
1018
1019         status = nvme_submit_admin_cmd(dev, &c, NULL);
1020         if (status)
1021                 return -EIO;
1022         return 0;
1023 }
1024
1025 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1026                                                 struct nvme_queue *nvmeq)
1027 {
1028         int status;
1029         struct nvme_command c;
1030         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1031
1032         memset(&c, 0, sizeof(c));
1033         c.create_cq.opcode = nvme_admin_create_cq;
1034         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1035         c.create_cq.cqid = cpu_to_le16(qid);
1036         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1037         c.create_cq.cq_flags = cpu_to_le16(flags);
1038         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1039
1040         status = nvme_submit_admin_cmd(dev, &c, NULL);
1041         if (status)
1042                 return -EIO;
1043         return 0;
1044 }
1045
1046 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1047                                                 struct nvme_queue *nvmeq)
1048 {
1049         int status;
1050         struct nvme_command c;
1051         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1052
1053         memset(&c, 0, sizeof(c));
1054         c.create_sq.opcode = nvme_admin_create_sq;
1055         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1056         c.create_sq.sqid = cpu_to_le16(qid);
1057         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1058         c.create_sq.sq_flags = cpu_to_le16(flags);
1059         c.create_sq.cqid = cpu_to_le16(qid);
1060
1061         status = nvme_submit_admin_cmd(dev, &c, NULL);
1062         if (status)
1063                 return -EIO;
1064         return 0;
1065 }
1066
1067 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1068 {
1069         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1070 }
1071
1072 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1073 {
1074         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1075 }
1076
1077 int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
1078                                                         dma_addr_t dma_addr)
1079 {
1080         struct nvme_command c;
1081
1082         memset(&c, 0, sizeof(c));
1083         c.identify.opcode = nvme_admin_identify;
1084         c.identify.nsid = cpu_to_le32(nsid);
1085         c.identify.prp1 = cpu_to_le64(dma_addr);
1086         c.identify.cns = cpu_to_le32(cns);
1087
1088         return nvme_submit_admin_cmd(dev, &c, NULL);
1089 }
1090
1091 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
1092                                         dma_addr_t dma_addr, u32 *result)
1093 {
1094         struct nvme_command c;
1095
1096         memset(&c, 0, sizeof(c));
1097         c.features.opcode = nvme_admin_get_features;
1098         c.features.nsid = cpu_to_le32(nsid);
1099         c.features.prp1 = cpu_to_le64(dma_addr);
1100         c.features.fid = cpu_to_le32(fid);
1101
1102         return nvme_submit_admin_cmd(dev, &c, result);
1103 }
1104
1105 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
1106                                         dma_addr_t dma_addr, u32 *result)
1107 {
1108         struct nvme_command c;
1109
1110         memset(&c, 0, sizeof(c));
1111         c.features.opcode = nvme_admin_set_features;
1112         c.features.prp1 = cpu_to_le64(dma_addr);
1113         c.features.fid = cpu_to_le32(fid);
1114         c.features.dword11 = cpu_to_le32(dword11);
1115
1116         return nvme_submit_admin_cmd(dev, &c, result);
1117 }
1118
1119 /**
1120  * nvme_abort_cmd - Attempt aborting a command
1121  * @cmdid: Command id of a timed out IO
1122  * @queue: The queue with timed out IO
1123  *
1124  * Schedule controller reset if the command was already aborted once before and
1125  * still hasn't been returned to the driver, or if this is the admin queue.
1126  */
1127 static void nvme_abort_cmd(int cmdid, struct nvme_queue *nvmeq)
1128 {
1129         int a_cmdid;
1130         struct nvme_command cmd;
1131         struct nvme_dev *dev = nvmeq->dev;
1132         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1133         struct nvme_queue *adminq;
1134
1135         if (!nvmeq->qid || info[cmdid].aborted) {
1136                 if (work_busy(&dev->reset_work))
1137                         return;
1138                 list_del_init(&dev->node);
1139                 dev_warn(&dev->pci_dev->dev,
1140                         "I/O %d QID %d timeout, reset controller\n", cmdid,
1141                                                                 nvmeq->qid);
1142                 dev->reset_workfn = nvme_reset_failed_dev;
1143                 queue_work(nvme_workq, &dev->reset_work);
1144                 return;
1145         }
1146
1147         if (!dev->abort_limit)
1148                 return;
1149
1150         adminq = rcu_dereference(dev->queues[0]);
1151         a_cmdid = alloc_cmdid(adminq, CMD_CTX_ABORT, special_completion,
1152                                                                 ADMIN_TIMEOUT);
1153         if (a_cmdid < 0)
1154                 return;
1155
1156         memset(&cmd, 0, sizeof(cmd));
1157         cmd.abort.opcode = nvme_admin_abort_cmd;
1158         cmd.abort.cid = cmdid;
1159         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1160         cmd.abort.command_id = a_cmdid;
1161
1162         --dev->abort_limit;
1163         info[cmdid].aborted = 1;
1164         info[cmdid].timeout = jiffies + ADMIN_TIMEOUT;
1165
1166         dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", cmdid,
1167                                                         nvmeq->qid);
1168         nvme_submit_cmd(adminq, &cmd);
1169 }
1170
1171 /**
1172  * nvme_cancel_ios - Cancel outstanding I/Os
1173  * @queue: The queue to cancel I/Os on
1174  * @timeout: True to only cancel I/Os which have timed out
1175  */
1176 static void nvme_cancel_ios(struct nvme_queue *nvmeq, bool timeout)
1177 {
1178         int depth = nvmeq->q_depth - 1;
1179         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1180         unsigned long now = jiffies;
1181         int cmdid;
1182
1183         for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
1184                 void *ctx;
1185                 nvme_completion_fn fn;
1186                 static struct nvme_completion cqe = {
1187                         .status = cpu_to_le16(NVME_SC_ABORT_REQ << 1),
1188                 };
1189
1190                 if (timeout && !time_after(now, info[cmdid].timeout))
1191                         continue;
1192                 if (info[cmdid].ctx == CMD_CTX_CANCELLED)
1193                         continue;
1194                 if (timeout && info[cmdid].ctx == CMD_CTX_ASYNC)
1195                         continue;
1196                 if (timeout && nvmeq->dev->initialized) {
1197                         nvme_abort_cmd(cmdid, nvmeq);
1198                         continue;
1199                 }
1200                 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n", cmdid,
1201                                                                 nvmeq->qid);
1202                 ctx = cancel_cmdid(nvmeq, cmdid, &fn);
1203                 fn(nvmeq, ctx, &cqe);
1204         }
1205 }
1206
1207 static void nvme_free_queue(struct nvme_queue *nvmeq)
1208 {
1209         spin_lock_irq(&nvmeq->q_lock);
1210         while (bio_list_peek(&nvmeq->sq_cong)) {
1211                 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1212                 bio_endio(bio, -EIO);
1213         }
1214         while (!list_empty(&nvmeq->iod_bio)) {
1215                 static struct nvme_completion cqe = {
1216                         .status = cpu_to_le16(
1217                                 (NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1),
1218                 };
1219                 struct nvme_iod *iod = list_first_entry(&nvmeq->iod_bio,
1220                                                         struct nvme_iod,
1221                                                         node);
1222                 list_del(&iod->node);
1223                 bio_completion(nvmeq, iod, &cqe);
1224         }
1225         spin_unlock_irq(&nvmeq->q_lock);
1226
1227         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1228                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1229         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1230                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1231         if (nvmeq->qid)
1232                 free_cpumask_var(nvmeq->cpu_mask);
1233         kfree(nvmeq);
1234 }
1235
1236 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1237 {
1238         LLIST_HEAD(q_list);
1239         struct nvme_queue *nvmeq, *next;
1240         struct llist_node *entry;
1241         int i;
1242
1243         for (i = dev->queue_count - 1; i >= lowest; i--) {
1244                 nvmeq = raw_nvmeq(dev, i);
1245                 RCU_INIT_POINTER(dev->queues[i], NULL);
1246                 llist_add(&nvmeq->node, &q_list);
1247                 dev->queue_count--;
1248         }
1249         synchronize_rcu();
1250         entry = llist_del_all(&q_list);
1251         llist_for_each_entry_safe(nvmeq, next, entry, node)
1252                 nvme_free_queue(nvmeq);
1253 }
1254
1255 /**
1256  * nvme_suspend_queue - put queue into suspended state
1257  * @nvmeq - queue to suspend
1258  *
1259  * Returns 1 if already suspended, 0 otherwise.
1260  */
1261 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1262 {
1263         int vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1264
1265         spin_lock_irq(&nvmeq->q_lock);
1266         if (nvmeq->q_suspended) {
1267                 spin_unlock_irq(&nvmeq->q_lock);
1268                 return 1;
1269         }
1270         nvmeq->q_suspended = 1;
1271         nvmeq->dev->online_queues--;
1272         spin_unlock_irq(&nvmeq->q_lock);
1273
1274         irq_set_affinity_hint(vector, NULL);
1275         free_irq(vector, nvmeq);
1276
1277         return 0;
1278 }
1279
1280 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1281 {
1282         spin_lock_irq(&nvmeq->q_lock);
1283         nvme_process_cq(nvmeq);
1284         nvme_cancel_ios(nvmeq, false);
1285         spin_unlock_irq(&nvmeq->q_lock);
1286 }
1287
1288 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1289 {
1290         struct nvme_queue *nvmeq = raw_nvmeq(dev, qid);
1291
1292         if (!nvmeq)
1293                 return;
1294         if (nvme_suspend_queue(nvmeq))
1295                 return;
1296
1297         /* Don't tell the adapter to delete the admin queue.
1298          * Don't tell a removed adapter to delete IO queues. */
1299         if (qid && readl(&dev->bar->csts) != -1) {
1300                 adapter_delete_sq(dev, qid);
1301                 adapter_delete_cq(dev, qid);
1302         }
1303         nvme_clear_queue(nvmeq);
1304 }
1305
1306 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1307                                                         int depth, int vector)
1308 {
1309         struct device *dmadev = &dev->pci_dev->dev;
1310         unsigned extra = nvme_queue_extra(depth);
1311         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
1312         if (!nvmeq)
1313                 return NULL;
1314
1315         nvmeq->cqes = dma_zalloc_coherent(dmadev, CQ_SIZE(depth),
1316                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1317         if (!nvmeq->cqes)
1318                 goto free_nvmeq;
1319
1320         nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
1321                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1322         if (!nvmeq->sq_cmds)
1323                 goto free_cqdma;
1324
1325         if (qid && !zalloc_cpumask_var(&nvmeq->cpu_mask, GFP_KERNEL))
1326                 goto free_sqdma;
1327
1328         nvmeq->q_dmadev = dmadev;
1329         nvmeq->dev = dev;
1330         snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1331                         dev->instance, qid);
1332         spin_lock_init(&nvmeq->q_lock);
1333         nvmeq->cq_head = 0;
1334         nvmeq->cq_phase = 1;
1335         init_waitqueue_head(&nvmeq->sq_full);
1336         bio_list_init(&nvmeq->sq_cong);
1337         INIT_LIST_HEAD(&nvmeq->iod_bio);
1338         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1339         nvmeq->q_depth = depth;
1340         nvmeq->cq_vector = vector;
1341         nvmeq->qid = qid;
1342         nvmeq->q_suspended = 1;
1343         dev->queue_count++;
1344         rcu_assign_pointer(dev->queues[qid], nvmeq);
1345
1346         return nvmeq;
1347
1348  free_sqdma:
1349         dma_free_coherent(dmadev, SQ_SIZE(depth), (void *)nvmeq->sq_cmds,
1350                                                         nvmeq->sq_dma_addr);
1351  free_cqdma:
1352         dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1353                                                         nvmeq->cq_dma_addr);
1354  free_nvmeq:
1355         kfree(nvmeq);
1356         return NULL;
1357 }
1358
1359 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1360                                                         const char *name)
1361 {
1362         if (use_threaded_interrupts)
1363                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1364                                         nvme_irq_check, nvme_irq, IRQF_SHARED,
1365                                         name, nvmeq);
1366         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1367                                 IRQF_SHARED, name, nvmeq);
1368 }
1369
1370 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1371 {
1372         struct nvme_dev *dev = nvmeq->dev;
1373         unsigned extra = nvme_queue_extra(nvmeq->q_depth);
1374
1375         spin_lock_irq(&nvmeq->q_lock);
1376         init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
1377         nvmeq->sq_tail = 0;
1378         nvmeq->cq_head = 0;
1379         nvmeq->cq_phase = 1;
1380         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1381         memset(nvmeq->cmdid_data, 0, extra);
1382         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1383         nvme_cancel_ios(nvmeq, false);
1384         nvmeq->q_suspended = 0;
1385         dev->online_queues++;
1386         spin_unlock_irq(&nvmeq->q_lock);
1387 }
1388
1389 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1390 {
1391         struct nvme_dev *dev = nvmeq->dev;
1392         int result;
1393
1394         result = adapter_alloc_cq(dev, qid, nvmeq);
1395         if (result < 0)
1396                 return result;
1397
1398         result = adapter_alloc_sq(dev, qid, nvmeq);
1399         if (result < 0)
1400                 goto release_cq;
1401
1402         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1403         if (result < 0)
1404                 goto release_sq;
1405
1406         nvme_init_queue(nvmeq, qid);
1407         return result;
1408
1409  release_sq:
1410         adapter_delete_sq(dev, qid);
1411  release_cq:
1412         adapter_delete_cq(dev, qid);
1413         return result;
1414 }
1415
1416 static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1417 {
1418         unsigned long timeout;
1419         u32 bit = enabled ? NVME_CSTS_RDY : 0;
1420
1421         timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1422
1423         while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1424                 msleep(100);
1425                 if (fatal_signal_pending(current))
1426                         return -EINTR;
1427                 if (time_after(jiffies, timeout)) {
1428                         dev_err(&dev->pci_dev->dev,
1429                                 "Device not ready; aborting %s\n", enabled ?
1430                                                 "initialisation" : "reset");
1431                         return -ENODEV;
1432                 }
1433         }
1434
1435         return 0;
1436 }
1437
1438 /*
1439  * If the device has been passed off to us in an enabled state, just clear
1440  * the enabled bit.  The spec says we should set the 'shutdown notification
1441  * bits', but doing so may cause the device to complete commands to the
1442  * admin queue ... and we don't know what memory that might be pointing at!
1443  */
1444 static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1445 {
1446         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1447         dev->ctrl_config &= ~NVME_CC_ENABLE;
1448         writel(dev->ctrl_config, &dev->bar->cc);
1449
1450         return nvme_wait_ready(dev, cap, false);
1451 }
1452
1453 static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1454 {
1455         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1456         dev->ctrl_config |= NVME_CC_ENABLE;
1457         writel(dev->ctrl_config, &dev->bar->cc);
1458
1459         return nvme_wait_ready(dev, cap, true);
1460 }
1461
1462 static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1463 {
1464         unsigned long timeout;
1465
1466         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1467         dev->ctrl_config |= NVME_CC_SHN_NORMAL;
1468
1469         writel(dev->ctrl_config, &dev->bar->cc);
1470
1471         timeout = SHUTDOWN_TIMEOUT + jiffies;
1472         while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1473                                                         NVME_CSTS_SHST_CMPLT) {
1474                 msleep(100);
1475                 if (fatal_signal_pending(current))
1476                         return -EINTR;
1477                 if (time_after(jiffies, timeout)) {
1478                         dev_err(&dev->pci_dev->dev,
1479                                 "Device shutdown incomplete; abort shutdown\n");
1480                         return -ENODEV;
1481                 }
1482         }
1483
1484         return 0;
1485 }
1486
1487 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1488 {
1489         int result;
1490         u32 aqa;
1491         u64 cap = readq(&dev->bar->cap);
1492         struct nvme_queue *nvmeq;
1493         unsigned page_shift = PAGE_SHIFT;
1494         unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
1495         unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
1496
1497         if (page_shift < dev_page_min) {
1498                 dev_err(&dev->pci_dev->dev,
1499                                 "Minimum device page size (%u) too large for "
1500                                 "host (%u)\n", 1 << dev_page_min,
1501                                 1 << page_shift);
1502                 return -ENODEV;
1503         }
1504         if (page_shift > dev_page_max) {
1505                 dev_info(&dev->pci_dev->dev,
1506                                 "Device maximum page size (%u) smaller than "
1507                                 "host (%u); enabling work-around\n",
1508                                 1 << dev_page_max, 1 << page_shift);
1509                 page_shift = dev_page_max;
1510         }
1511
1512         result = nvme_disable_ctrl(dev, cap);
1513         if (result < 0)
1514                 return result;
1515
1516         nvmeq = raw_nvmeq(dev, 0);
1517         if (!nvmeq) {
1518                 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
1519                 if (!nvmeq)
1520                         return -ENOMEM;
1521         }
1522
1523         aqa = nvmeq->q_depth - 1;
1524         aqa |= aqa << 16;
1525
1526         dev->page_size = 1 << page_shift;
1527
1528         dev->ctrl_config = NVME_CC_CSS_NVM;
1529         dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1530         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1531         dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1532
1533         writel(aqa, &dev->bar->aqa);
1534         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1535         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1536
1537         result = nvme_enable_ctrl(dev, cap);
1538         if (result)
1539                 return result;
1540
1541         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1542         if (result)
1543                 return result;
1544
1545         return result;
1546 }
1547
1548 struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1549                                 unsigned long addr, unsigned length)
1550 {
1551         int i, err, count, nents, offset;
1552         struct scatterlist *sg;
1553         struct page **pages;
1554         struct nvme_iod *iod;
1555
1556         if (addr & 3)
1557                 return ERR_PTR(-EINVAL);
1558         if (!length || length > INT_MAX - PAGE_SIZE)
1559                 return ERR_PTR(-EINVAL);
1560
1561         offset = offset_in_page(addr);
1562         count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1563         pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1564         if (!pages)
1565                 return ERR_PTR(-ENOMEM);
1566
1567         err = get_user_pages_fast(addr, count, 1, pages);
1568         if (err < count) {
1569                 count = err;
1570                 err = -EFAULT;
1571                 goto put_pages;
1572         }
1573
1574         err = -ENOMEM;
1575         iod = nvme_alloc_iod(count, length, dev, GFP_KERNEL);
1576         if (!iod)
1577                 goto put_pages;
1578
1579         sg = iod->sg;
1580         sg_init_table(sg, count);
1581         for (i = 0; i < count; i++) {
1582                 sg_set_page(&sg[i], pages[i],
1583                             min_t(unsigned, length, PAGE_SIZE - offset),
1584                             offset);
1585                 length -= (PAGE_SIZE - offset);
1586                 offset = 0;
1587         }
1588         sg_mark_end(&sg[i - 1]);
1589         iod->nents = count;
1590
1591         nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1592                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1593         if (!nents)
1594                 goto free_iod;
1595
1596         kfree(pages);
1597         return iod;
1598
1599  free_iod:
1600         kfree(iod);
1601  put_pages:
1602         for (i = 0; i < count; i++)
1603                 put_page(pages[i]);
1604         kfree(pages);
1605         return ERR_PTR(err);
1606 }
1607
1608 void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1609                         struct nvme_iod *iod)
1610 {
1611         int i;
1612
1613         dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1614                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1615
1616         for (i = 0; i < iod->nents; i++)
1617                 put_page(sg_page(&iod->sg[i]));
1618 }
1619
1620 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1621 {
1622         struct nvme_dev *dev = ns->dev;
1623         struct nvme_user_io io;
1624         struct nvme_command c;
1625         unsigned length, meta_len;
1626         int status, i;
1627         struct nvme_iod *iod, *meta_iod = NULL;
1628         dma_addr_t meta_dma_addr;
1629         void *meta, *uninitialized_var(meta_mem);
1630
1631         if (copy_from_user(&io, uio, sizeof(io)))
1632                 return -EFAULT;
1633         length = (io.nblocks + 1) << ns->lba_shift;
1634         meta_len = (io.nblocks + 1) * ns->ms;
1635
1636         if (meta_len && ((io.metadata & 3) || !io.metadata))
1637                 return -EINVAL;
1638
1639         switch (io.opcode) {
1640         case nvme_cmd_write:
1641         case nvme_cmd_read:
1642         case nvme_cmd_compare:
1643                 iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1644                 break;
1645         default:
1646                 return -EINVAL;
1647         }
1648
1649         if (IS_ERR(iod))
1650                 return PTR_ERR(iod);
1651
1652         memset(&c, 0, sizeof(c));
1653         c.rw.opcode = io.opcode;
1654         c.rw.flags = io.flags;
1655         c.rw.nsid = cpu_to_le32(ns->ns_id);
1656         c.rw.slba = cpu_to_le64(io.slba);
1657         c.rw.length = cpu_to_le16(io.nblocks);
1658         c.rw.control = cpu_to_le16(io.control);
1659         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1660         c.rw.reftag = cpu_to_le32(io.reftag);
1661         c.rw.apptag = cpu_to_le16(io.apptag);
1662         c.rw.appmask = cpu_to_le16(io.appmask);
1663
1664         if (meta_len) {
1665                 meta_iod = nvme_map_user_pages(dev, io.opcode & 1, io.metadata,
1666                                                                 meta_len);
1667                 if (IS_ERR(meta_iod)) {
1668                         status = PTR_ERR(meta_iod);
1669                         meta_iod = NULL;
1670                         goto unmap;
1671                 }
1672
1673                 meta_mem = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
1674                                                 &meta_dma_addr, GFP_KERNEL);
1675                 if (!meta_mem) {
1676                         status = -ENOMEM;
1677                         goto unmap;
1678                 }
1679
1680                 if (io.opcode & 1) {
1681                         int meta_offset = 0;
1682
1683                         for (i = 0; i < meta_iod->nents; i++) {
1684                                 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1685                                                 meta_iod->sg[i].offset;
1686                                 memcpy(meta_mem + meta_offset, meta,
1687                                                 meta_iod->sg[i].length);
1688                                 kunmap_atomic(meta);
1689                                 meta_offset += meta_iod->sg[i].length;
1690                         }
1691                 }
1692
1693                 c.rw.metadata = cpu_to_le64(meta_dma_addr);
1694         }
1695
1696         length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1697         c.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1698         c.rw.prp2 = cpu_to_le64(iod->first_dma);
1699
1700         if (length != (io.nblocks + 1) << ns->lba_shift)
1701                 status = -ENOMEM;
1702         else
1703                 status = nvme_submit_io_cmd(dev, &c, NULL);
1704
1705         if (meta_len) {
1706                 if (status == NVME_SC_SUCCESS && !(io.opcode & 1)) {
1707                         int meta_offset = 0;
1708
1709                         for (i = 0; i < meta_iod->nents; i++) {
1710                                 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1711                                                 meta_iod->sg[i].offset;
1712                                 memcpy(meta, meta_mem + meta_offset,
1713                                                 meta_iod->sg[i].length);
1714                                 kunmap_atomic(meta);
1715                                 meta_offset += meta_iod->sg[i].length;
1716                         }
1717                 }
1718
1719                 dma_free_coherent(&dev->pci_dev->dev, meta_len, meta_mem,
1720                                                                 meta_dma_addr);
1721         }
1722
1723  unmap:
1724         nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1725         nvme_free_iod(dev, iod);
1726
1727         if (meta_iod) {
1728                 nvme_unmap_user_pages(dev, io.opcode & 1, meta_iod);
1729                 nvme_free_iod(dev, meta_iod);
1730         }
1731
1732         return status;
1733 }
1734
1735 static int nvme_user_admin_cmd(struct nvme_dev *dev,
1736                                         struct nvme_admin_cmd __user *ucmd)
1737 {
1738         struct nvme_admin_cmd cmd;
1739         struct nvme_command c;
1740         int status, length;
1741         struct nvme_iod *uninitialized_var(iod);
1742         unsigned timeout;
1743
1744         if (!capable(CAP_SYS_ADMIN))
1745                 return -EACCES;
1746         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1747                 return -EFAULT;
1748
1749         memset(&c, 0, sizeof(c));
1750         c.common.opcode = cmd.opcode;
1751         c.common.flags = cmd.flags;
1752         c.common.nsid = cpu_to_le32(cmd.nsid);
1753         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1754         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1755         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1756         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1757         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1758         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1759         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1760         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1761
1762         length = cmd.data_len;
1763         if (cmd.data_len) {
1764                 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1765                                                                 length);
1766                 if (IS_ERR(iod))
1767                         return PTR_ERR(iod);
1768                 length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1769                 c.common.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1770                 c.common.prp2 = cpu_to_le64(iod->first_dma);
1771         }
1772
1773         timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
1774                                                                 ADMIN_TIMEOUT;
1775         if (length != cmd.data_len)
1776                 status = -ENOMEM;
1777         else
1778                 status = nvme_submit_sync_cmd(dev, 0, &c, &cmd.result, timeout);
1779
1780         if (cmd.data_len) {
1781                 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1782                 nvme_free_iod(dev, iod);
1783         }
1784
1785         if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
1786                                                         sizeof(cmd.result)))
1787                 status = -EFAULT;
1788
1789         return status;
1790 }
1791
1792 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1793                                                         unsigned long arg)
1794 {
1795         struct nvme_ns *ns = bdev->bd_disk->private_data;
1796
1797         switch (cmd) {
1798         case NVME_IOCTL_ID:
1799                 force_successful_syscall_return();
1800                 return ns->ns_id;
1801         case NVME_IOCTL_ADMIN_CMD:
1802                 return nvme_user_admin_cmd(ns->dev, (void __user *)arg);
1803         case NVME_IOCTL_SUBMIT_IO:
1804                 return nvme_submit_io(ns, (void __user *)arg);
1805         case SG_GET_VERSION_NUM:
1806                 return nvme_sg_get_version_num((void __user *)arg);
1807         case SG_IO:
1808                 return nvme_sg_io(ns, (void __user *)arg);
1809         default:
1810                 return -ENOTTY;
1811         }
1812 }
1813
1814 #ifdef CONFIG_COMPAT
1815 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1816                                         unsigned int cmd, unsigned long arg)
1817 {
1818         switch (cmd) {
1819         case SG_IO:
1820                 return -ENOIOCTLCMD;
1821         }
1822         return nvme_ioctl(bdev, mode, cmd, arg);
1823 }
1824 #else
1825 #define nvme_compat_ioctl       NULL
1826 #endif
1827
1828 static int nvme_open(struct block_device *bdev, fmode_t mode)
1829 {
1830         struct nvme_ns *ns = bdev->bd_disk->private_data;
1831         struct nvme_dev *dev = ns->dev;
1832
1833         kref_get(&dev->kref);
1834         return 0;
1835 }
1836
1837 static void nvme_free_dev(struct kref *kref);
1838
1839 static void nvme_release(struct gendisk *disk, fmode_t mode)
1840 {
1841         struct nvme_ns *ns = disk->private_data;
1842         struct nvme_dev *dev = ns->dev;
1843
1844         kref_put(&dev->kref, nvme_free_dev);
1845 }
1846
1847 static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
1848 {
1849         /* some standard values */
1850         geo->heads = 1 << 6;
1851         geo->sectors = 1 << 5;
1852         geo->cylinders = get_capacity(bd->bd_disk) >> 11;
1853         return 0;
1854 }
1855
1856 static int nvme_revalidate_disk(struct gendisk *disk)
1857 {
1858         struct nvme_ns *ns = disk->private_data;
1859         struct nvme_dev *dev = ns->dev;
1860         struct nvme_id_ns *id;
1861         dma_addr_t dma_addr;
1862         int lbaf;
1863
1864         id = dma_alloc_coherent(&dev->pci_dev->dev, 4096, &dma_addr,
1865                                                                 GFP_KERNEL);
1866         if (!id) {
1867                 dev_warn(&dev->pci_dev->dev, "%s: Memory alocation failure\n",
1868                                                                 __func__);
1869                 return 0;
1870         }
1871
1872         if (nvme_identify(dev, ns->ns_id, 0, dma_addr))
1873                 goto free;
1874
1875         lbaf = id->flbas & 0xf;
1876         ns->lba_shift = id->lbaf[lbaf].ds;
1877
1878         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1879         set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1880  free:
1881         dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1882         return 0;
1883 }
1884
1885 static const struct block_device_operations nvme_fops = {
1886         .owner          = THIS_MODULE,
1887         .ioctl          = nvme_ioctl,
1888         .compat_ioctl   = nvme_compat_ioctl,
1889         .open           = nvme_open,
1890         .release        = nvme_release,
1891         .getgeo         = nvme_getgeo,
1892         .revalidate_disk= nvme_revalidate_disk,
1893 };
1894
1895 static void nvme_resubmit_iods(struct nvme_queue *nvmeq)
1896 {
1897         struct nvme_iod *iod, *next;
1898
1899         list_for_each_entry_safe(iod, next, &nvmeq->iod_bio, node) {
1900                 if (unlikely(nvme_submit_iod(nvmeq, iod)))
1901                         break;
1902                 list_del(&iod->node);
1903                 if (bio_list_empty(&nvmeq->sq_cong) &&
1904                                                 list_empty(&nvmeq->iod_bio))
1905                         remove_wait_queue(&nvmeq->sq_full,
1906                                                 &nvmeq->sq_cong_wait);
1907         }
1908 }
1909
1910 static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1911 {
1912         while (bio_list_peek(&nvmeq->sq_cong)) {
1913                 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1914                 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1915
1916                 if (bio_list_empty(&nvmeq->sq_cong) &&
1917                                                 list_empty(&nvmeq->iod_bio))
1918                         remove_wait_queue(&nvmeq->sq_full,
1919                                                         &nvmeq->sq_cong_wait);
1920                 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1921                         if (!waitqueue_active(&nvmeq->sq_full))
1922                                 add_wait_queue(&nvmeq->sq_full,
1923                                                         &nvmeq->sq_cong_wait);
1924                         bio_list_add_head(&nvmeq->sq_cong, bio);
1925                         break;
1926                 }
1927         }
1928 }
1929
1930 static int nvme_submit_async_req(struct nvme_queue *nvmeq)
1931 {
1932         struct nvme_command *c;
1933         int cmdid;
1934
1935         cmdid = alloc_cmdid(nvmeq, CMD_CTX_ASYNC, special_completion, 0);
1936         if (cmdid < 0)
1937                 return cmdid;
1938
1939         c = &nvmeq->sq_cmds[nvmeq->sq_tail];
1940         memset(c, 0, sizeof(*c));
1941         c->common.opcode = nvme_admin_async_event;
1942         c->common.command_id = cmdid;
1943
1944         if (++nvmeq->sq_tail == nvmeq->q_depth)
1945                 nvmeq->sq_tail = 0;
1946         writel(nvmeq->sq_tail, nvmeq->q_db);
1947
1948         return 0;
1949 }
1950
1951 static int nvme_kthread(void *data)
1952 {
1953         struct nvme_dev *dev, *next;
1954
1955         while (!kthread_should_stop()) {
1956                 set_current_state(TASK_INTERRUPTIBLE);
1957                 spin_lock(&dev_list_lock);
1958                 list_for_each_entry_safe(dev, next, &dev_list, node) {
1959                         int i;
1960                         if (readl(&dev->bar->csts) & NVME_CSTS_CFS &&
1961                                                         dev->initialized) {
1962                                 if (work_busy(&dev->reset_work))
1963                                         continue;
1964                                 list_del_init(&dev->node);
1965                                 dev_warn(&dev->pci_dev->dev,
1966                                         "Failed status, reset controller\n");
1967                                 dev->reset_workfn = nvme_reset_failed_dev;
1968                                 queue_work(nvme_workq, &dev->reset_work);
1969                                 continue;
1970                         }
1971                         rcu_read_lock();
1972                         for (i = 0; i < dev->queue_count; i++) {
1973                                 struct nvme_queue *nvmeq =
1974                                                 rcu_dereference(dev->queues[i]);
1975                                 if (!nvmeq)
1976                                         continue;
1977                                 spin_lock_irq(&nvmeq->q_lock);
1978                                 if (nvmeq->q_suspended)
1979                                         goto unlock;
1980                                 nvme_process_cq(nvmeq);
1981                                 nvme_cancel_ios(nvmeq, true);
1982                                 nvme_resubmit_bios(nvmeq);
1983                                 nvme_resubmit_iods(nvmeq);
1984
1985                                 while ((i == 0) && (dev->event_limit > 0)) {
1986                                         if (nvme_submit_async_req(nvmeq))
1987                                                 break;
1988                                         dev->event_limit--;
1989                                 }
1990  unlock:
1991                                 spin_unlock_irq(&nvmeq->q_lock);
1992                         }
1993                         rcu_read_unlock();
1994                 }
1995                 spin_unlock(&dev_list_lock);
1996                 schedule_timeout(round_jiffies_relative(HZ));
1997         }
1998         return 0;
1999 }
2000
2001 static void nvme_config_discard(struct nvme_ns *ns)
2002 {
2003         u32 logical_block_size = queue_logical_block_size(ns->queue);
2004         ns->queue->limits.discard_zeroes_data = 0;
2005         ns->queue->limits.discard_alignment = logical_block_size;
2006         ns->queue->limits.discard_granularity = logical_block_size;
2007         ns->queue->limits.max_discard_sectors = 0xffffffff;
2008         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
2009 }
2010
2011 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid,
2012                         struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
2013 {
2014         struct nvme_ns *ns;
2015         struct gendisk *disk;
2016         int lbaf;
2017
2018         if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
2019                 return NULL;
2020
2021         ns = kzalloc(sizeof(*ns), GFP_KERNEL);
2022         if (!ns)
2023                 return NULL;
2024         ns->queue = blk_alloc_queue(GFP_KERNEL);
2025         if (!ns->queue)
2026                 goto out_free_ns;
2027         ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
2028         queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
2029         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2030         queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, ns->queue);
2031         blk_queue_make_request(ns->queue, nvme_make_request);
2032         ns->dev = dev;
2033         ns->queue->queuedata = ns;
2034
2035         disk = alloc_disk(0);
2036         if (!disk)
2037                 goto out_free_queue;
2038         ns->ns_id = nsid;
2039         ns->disk = disk;
2040         lbaf = id->flbas & 0xf;
2041         ns->lba_shift = id->lbaf[lbaf].ds;
2042         ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
2043         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2044         if (dev->max_hw_sectors)
2045                 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
2046         if (dev->vwc & NVME_CTRL_VWC_PRESENT)
2047                 blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
2048
2049         disk->major = nvme_major;
2050         disk->first_minor = 0;
2051         disk->fops = &nvme_fops;
2052         disk->private_data = ns;
2053         disk->queue = ns->queue;
2054         disk->driverfs_dev = &dev->pci_dev->dev;
2055         disk->flags = GENHD_FL_EXT_DEVT;
2056         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
2057         set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
2058
2059         if (dev->oncs & NVME_CTRL_ONCS_DSM)
2060                 nvme_config_discard(ns);
2061
2062         return ns;
2063
2064  out_free_queue:
2065         blk_cleanup_queue(ns->queue);
2066  out_free_ns:
2067         kfree(ns);
2068         return NULL;
2069 }
2070
2071 static int nvme_find_closest_node(int node)
2072 {
2073         int n, val, min_val = INT_MAX, best_node = node;
2074
2075         for_each_online_node(n) {
2076                 if (n == node)
2077                         continue;
2078                 val = node_distance(node, n);
2079                 if (val < min_val) {
2080                         min_val = val;
2081                         best_node = n;
2082                 }
2083         }
2084         return best_node;
2085 }
2086
2087 static void nvme_set_queue_cpus(cpumask_t *qmask, struct nvme_queue *nvmeq,
2088                                                                 int count)
2089 {
2090         int cpu;
2091         for_each_cpu(cpu, qmask) {
2092                 if (cpumask_weight(nvmeq->cpu_mask) >= count)
2093                         break;
2094                 if (!cpumask_test_and_set_cpu(cpu, nvmeq->cpu_mask))
2095                         *per_cpu_ptr(nvmeq->dev->io_queue, cpu) = nvmeq->qid;
2096         }
2097 }
2098
2099 static void nvme_add_cpus(cpumask_t *mask, const cpumask_t *unassigned_cpus,
2100         const cpumask_t *new_mask, struct nvme_queue *nvmeq, int cpus_per_queue)
2101 {
2102         int next_cpu;
2103         for_each_cpu(next_cpu, new_mask) {
2104                 cpumask_or(mask, mask, get_cpu_mask(next_cpu));
2105                 cpumask_or(mask, mask, topology_thread_cpumask(next_cpu));
2106                 cpumask_and(mask, mask, unassigned_cpus);
2107                 nvme_set_queue_cpus(mask, nvmeq, cpus_per_queue);
2108         }
2109 }
2110
2111 static void nvme_create_io_queues(struct nvme_dev *dev)
2112 {
2113         unsigned i, max;
2114
2115         max = min(dev->max_qid, num_online_cpus());
2116         for (i = dev->queue_count; i <= max; i++)
2117                 if (!nvme_alloc_queue(dev, i, dev->q_depth, i - 1))
2118                         break;
2119
2120         max = min(dev->queue_count - 1, num_online_cpus());
2121         for (i = dev->online_queues; i <= max; i++)
2122                 if (nvme_create_queue(raw_nvmeq(dev, i), i))
2123                         break;
2124 }
2125
2126 /*
2127  * If there are fewer queues than online cpus, this will try to optimally
2128  * assign a queue to multiple cpus by grouping cpus that are "close" together:
2129  * thread siblings, core, socket, closest node, then whatever else is
2130  * available.
2131  */
2132 static void nvme_assign_io_queues(struct nvme_dev *dev)
2133 {
2134         unsigned cpu, cpus_per_queue, queues, remainder, i;
2135         cpumask_var_t unassigned_cpus;
2136
2137         nvme_create_io_queues(dev);
2138
2139         queues = min(dev->online_queues - 1, num_online_cpus());
2140         if (!queues)
2141                 return;
2142
2143         cpus_per_queue = num_online_cpus() / queues;
2144         remainder = queues - (num_online_cpus() - queues * cpus_per_queue);
2145
2146         if (!alloc_cpumask_var(&unassigned_cpus, GFP_KERNEL))
2147                 return;
2148
2149         cpumask_copy(unassigned_cpus, cpu_online_mask);
2150         cpu = cpumask_first(unassigned_cpus);
2151         for (i = 1; i <= queues; i++) {
2152                 struct nvme_queue *nvmeq = lock_nvmeq(dev, i);
2153                 cpumask_t mask;
2154
2155                 cpumask_clear(nvmeq->cpu_mask);
2156                 if (!cpumask_weight(unassigned_cpus)) {
2157                         unlock_nvmeq(nvmeq);
2158                         break;
2159                 }
2160
2161                 mask = *get_cpu_mask(cpu);
2162                 nvme_set_queue_cpus(&mask, nvmeq, cpus_per_queue);
2163                 if (cpus_weight(mask) < cpus_per_queue)
2164                         nvme_add_cpus(&mask, unassigned_cpus,
2165                                 topology_thread_cpumask(cpu),
2166                                 nvmeq, cpus_per_queue);
2167                 if (cpus_weight(mask) < cpus_per_queue)
2168                         nvme_add_cpus(&mask, unassigned_cpus,
2169                                 topology_core_cpumask(cpu),
2170                                 nvmeq, cpus_per_queue);
2171                 if (cpus_weight(mask) < cpus_per_queue)
2172                         nvme_add_cpus(&mask, unassigned_cpus,
2173                                 cpumask_of_node(cpu_to_node(cpu)),
2174                                 nvmeq, cpus_per_queue);
2175                 if (cpus_weight(mask) < cpus_per_queue)
2176                         nvme_add_cpus(&mask, unassigned_cpus,
2177                                 cpumask_of_node(
2178                                         nvme_find_closest_node(
2179                                                 cpu_to_node(cpu))),
2180                                 nvmeq, cpus_per_queue);
2181                 if (cpus_weight(mask) < cpus_per_queue)
2182                         nvme_add_cpus(&mask, unassigned_cpus,
2183                                 unassigned_cpus,
2184                                 nvmeq, cpus_per_queue);
2185
2186                 WARN(cpumask_weight(nvmeq->cpu_mask) != cpus_per_queue,
2187                         "nvme%d qid:%d mis-matched queue-to-cpu assignment\n",
2188                         dev->instance, i);
2189
2190                 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2191                                                         nvmeq->cpu_mask);
2192                 cpumask_andnot(unassigned_cpus, unassigned_cpus,
2193                                                 nvmeq->cpu_mask);
2194                 cpu = cpumask_next(cpu, unassigned_cpus);
2195                 if (remainder && !--remainder)
2196                         cpus_per_queue++;
2197                 unlock_nvmeq(nvmeq);
2198         }
2199         WARN(cpumask_weight(unassigned_cpus), "nvme%d unassigned online cpus\n",
2200                                                                 dev->instance);
2201         i = 0;
2202         cpumask_andnot(unassigned_cpus, cpu_possible_mask, cpu_online_mask);
2203         for_each_cpu(cpu, unassigned_cpus)
2204                 *per_cpu_ptr(dev->io_queue, cpu) = (i++ % queues) + 1;
2205         free_cpumask_var(unassigned_cpus);
2206 }
2207
2208 static int set_queue_count(struct nvme_dev *dev, int count)
2209 {
2210         int status;
2211         u32 result;
2212         u32 q_count = (count - 1) | ((count - 1) << 16);
2213
2214         status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
2215                                                                 &result);
2216         if (status < 0)
2217                 return status;
2218         if (status > 0) {
2219                 dev_err(&dev->pci_dev->dev, "Could not set queue count (%d)\n",
2220                                                                         status);
2221                 return 0;
2222         }
2223         return min(result & 0xffff, result >> 16) + 1;
2224 }
2225
2226 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2227 {
2228         return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
2229 }
2230
2231 static void nvme_cpu_workfn(struct work_struct *work)
2232 {
2233         struct nvme_dev *dev = container_of(work, struct nvme_dev, cpu_work);
2234         if (dev->initialized)
2235                 nvme_assign_io_queues(dev);
2236 }
2237
2238 static int nvme_cpu_notify(struct notifier_block *self,
2239                                 unsigned long action, void *hcpu)
2240 {
2241         struct nvme_dev *dev;
2242
2243         switch (action) {
2244         case CPU_ONLINE:
2245         case CPU_DEAD:
2246                 spin_lock(&dev_list_lock);
2247                 list_for_each_entry(dev, &dev_list, node)
2248                         schedule_work(&dev->cpu_work);
2249                 spin_unlock(&dev_list_lock);
2250                 break;
2251         }
2252         return NOTIFY_OK;
2253 }
2254
2255 static int nvme_setup_io_queues(struct nvme_dev *dev)
2256 {
2257         struct nvme_queue *adminq = raw_nvmeq(dev, 0);
2258         struct pci_dev *pdev = dev->pci_dev;
2259         int result, i, vecs, nr_io_queues, size;
2260
2261         nr_io_queues = num_possible_cpus();
2262         result = set_queue_count(dev, nr_io_queues);
2263         if (result <= 0)
2264                 return result;
2265         if (result < nr_io_queues)
2266                 nr_io_queues = result;
2267
2268         size = db_bar_size(dev, nr_io_queues);
2269         if (size > 8192) {
2270                 iounmap(dev->bar);
2271                 do {
2272                         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2273                         if (dev->bar)
2274                                 break;
2275                         if (!--nr_io_queues)
2276                                 return -ENOMEM;
2277                         size = db_bar_size(dev, nr_io_queues);
2278                 } while (1);
2279                 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2280                 adminq->q_db = dev->dbs;
2281         }
2282
2283         /* Deregister the admin queue's interrupt */
2284         free_irq(dev->entry[0].vector, adminq);
2285
2286         for (i = 0; i < nr_io_queues; i++)
2287                 dev->entry[i].entry = i;
2288         vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2289         if (vecs < 0) {
2290                 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2291                 if (vecs < 0) {
2292                         vecs = 1;
2293                 } else {
2294                         for (i = 0; i < vecs; i++)
2295                                 dev->entry[i].vector = i + pdev->irq;
2296                 }
2297         }
2298
2299         /*
2300          * Should investigate if there's a performance win from allocating
2301          * more queues than interrupt vectors; it might allow the submission
2302          * path to scale better, even if the receive path is limited by the
2303          * number of interrupts.
2304          */
2305         nr_io_queues = vecs;
2306         dev->max_qid = nr_io_queues;
2307
2308         result = queue_request_irq(dev, adminq, adminq->irqname);
2309         if (result) {
2310                 adminq->q_suspended = 1;
2311                 goto free_queues;
2312         }
2313
2314         /* Free previously allocated queues that are no longer usable */
2315         nvme_free_queues(dev, nr_io_queues + 1);
2316         nvme_assign_io_queues(dev);
2317
2318         return 0;
2319
2320  free_queues:
2321         nvme_free_queues(dev, 1);
2322         return result;
2323 }
2324
2325 /*
2326  * Return: error value if an error occurred setting up the queues or calling
2327  * Identify Device.  0 if these succeeded, even if adding some of the
2328  * namespaces failed.  At the moment, these failures are silent.  TBD which
2329  * failures should be reported.
2330  */
2331 static int nvme_dev_add(struct nvme_dev *dev)
2332 {
2333         struct pci_dev *pdev = dev->pci_dev;
2334         int res;
2335         unsigned nn, i;
2336         struct nvme_ns *ns;
2337         struct nvme_id_ctrl *ctrl;
2338         struct nvme_id_ns *id_ns;
2339         void *mem;
2340         dma_addr_t dma_addr;
2341         int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
2342
2343         mem = dma_alloc_coherent(&pdev->dev, 8192, &dma_addr, GFP_KERNEL);
2344         if (!mem)
2345                 return -ENOMEM;
2346
2347         res = nvme_identify(dev, 0, 1, dma_addr);
2348         if (res) {
2349                 dev_err(&pdev->dev, "Identify Controller failed (%d)\n", res);
2350                 res = -EIO;
2351                 goto out;
2352         }
2353
2354         ctrl = mem;
2355         nn = le32_to_cpup(&ctrl->nn);
2356         dev->oncs = le16_to_cpup(&ctrl->oncs);
2357         dev->abort_limit = ctrl->acl + 1;
2358         dev->vwc = ctrl->vwc;
2359         dev->event_limit = min(ctrl->aerl + 1, 8);
2360         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2361         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2362         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
2363         if (ctrl->mdts)
2364                 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
2365         if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
2366                         (pdev->device == 0x0953) && ctrl->vs[3])
2367                 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
2368
2369         id_ns = mem;
2370         for (i = 1; i <= nn; i++) {
2371                 res = nvme_identify(dev, i, 0, dma_addr);
2372                 if (res)
2373                         continue;
2374
2375                 if (id_ns->ncap == 0)
2376                         continue;
2377
2378                 res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
2379                                                         dma_addr + 4096, NULL);
2380                 if (res)
2381                         memset(mem + 4096, 0, 4096);
2382
2383                 ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
2384                 if (ns)
2385                         list_add_tail(&ns->list, &dev->namespaces);
2386         }
2387         list_for_each_entry(ns, &dev->namespaces, list)
2388                 add_disk(ns->disk);
2389         res = 0;
2390
2391  out:
2392         dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
2393         return res;
2394 }
2395
2396 static int nvme_dev_map(struct nvme_dev *dev)
2397 {
2398         u64 cap;
2399         int bars, result = -ENOMEM;
2400         struct pci_dev *pdev = dev->pci_dev;
2401
2402         if (pci_enable_device_mem(pdev))
2403                 return result;
2404
2405         dev->entry[0].vector = pdev->irq;
2406         pci_set_master(pdev);
2407         bars = pci_select_bars(pdev, IORESOURCE_MEM);
2408         if (pci_request_selected_regions(pdev, bars, "nvme"))
2409                 goto disable_pci;
2410
2411         if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
2412             dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)))
2413                 goto disable;
2414
2415         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2416         if (!dev->bar)
2417                 goto disable;
2418         if (readl(&dev->bar->csts) == -1) {
2419                 result = -ENODEV;
2420                 goto unmap;
2421         }
2422         cap = readq(&dev->bar->cap);
2423         dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2424         dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
2425         dev->dbs = ((void __iomem *)dev->bar) + 4096;
2426
2427         return 0;
2428
2429  unmap:
2430         iounmap(dev->bar);
2431         dev->bar = NULL;
2432  disable:
2433         pci_release_regions(pdev);
2434  disable_pci:
2435         pci_disable_device(pdev);
2436         return result;
2437 }
2438
2439 static void nvme_dev_unmap(struct nvme_dev *dev)
2440 {
2441         if (dev->pci_dev->msi_enabled)
2442                 pci_disable_msi(dev->pci_dev);
2443         else if (dev->pci_dev->msix_enabled)
2444                 pci_disable_msix(dev->pci_dev);
2445
2446         if (dev->bar) {
2447                 iounmap(dev->bar);
2448                 dev->bar = NULL;
2449                 pci_release_regions(dev->pci_dev);
2450         }
2451
2452         if (pci_is_enabled(dev->pci_dev))
2453                 pci_disable_device(dev->pci_dev);
2454 }
2455
2456 struct nvme_delq_ctx {
2457         struct task_struct *waiter;
2458         struct kthread_worker *worker;
2459         atomic_t refcount;
2460 };
2461
2462 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2463 {
2464         dq->waiter = current;
2465         mb();
2466
2467         for (;;) {
2468                 set_current_state(TASK_KILLABLE);
2469                 if (!atomic_read(&dq->refcount))
2470                         break;
2471                 if (!schedule_timeout(ADMIN_TIMEOUT) ||
2472                                         fatal_signal_pending(current)) {
2473                         set_current_state(TASK_RUNNING);
2474
2475                         nvme_disable_ctrl(dev, readq(&dev->bar->cap));
2476                         nvme_disable_queue(dev, 0);
2477
2478                         send_sig(SIGKILL, dq->worker->task, 1);
2479                         flush_kthread_worker(dq->worker);
2480                         return;
2481                 }
2482         }
2483         set_current_state(TASK_RUNNING);
2484 }
2485
2486 static void nvme_put_dq(struct nvme_delq_ctx *dq)
2487 {
2488         atomic_dec(&dq->refcount);
2489         if (dq->waiter)
2490                 wake_up_process(dq->waiter);
2491 }
2492
2493 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2494 {
2495         atomic_inc(&dq->refcount);
2496         return dq;
2497 }
2498
2499 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2500 {
2501         struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
2502
2503         nvme_clear_queue(nvmeq);
2504         nvme_put_dq(dq);
2505 }
2506
2507 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2508                                                 kthread_work_func_t fn)
2509 {
2510         struct nvme_command c;
2511
2512         memset(&c, 0, sizeof(c));
2513         c.delete_queue.opcode = opcode;
2514         c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2515
2516         init_kthread_work(&nvmeq->cmdinfo.work, fn);
2517         return nvme_submit_admin_cmd_async(nvmeq->dev, &c, &nvmeq->cmdinfo);
2518 }
2519
2520 static void nvme_del_cq_work_handler(struct kthread_work *work)
2521 {
2522         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2523                                                         cmdinfo.work);
2524         nvme_del_queue_end(nvmeq);
2525 }
2526
2527 static int nvme_delete_cq(struct nvme_queue *nvmeq)
2528 {
2529         return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2530                                                 nvme_del_cq_work_handler);
2531 }
2532
2533 static void nvme_del_sq_work_handler(struct kthread_work *work)
2534 {
2535         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2536                                                         cmdinfo.work);
2537         int status = nvmeq->cmdinfo.status;
2538
2539         if (!status)
2540                 status = nvme_delete_cq(nvmeq);
2541         if (status)
2542                 nvme_del_queue_end(nvmeq);
2543 }
2544
2545 static int nvme_delete_sq(struct nvme_queue *nvmeq)
2546 {
2547         return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2548                                                 nvme_del_sq_work_handler);
2549 }
2550
2551 static void nvme_del_queue_start(struct kthread_work *work)
2552 {
2553         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2554                                                         cmdinfo.work);
2555         allow_signal(SIGKILL);
2556         if (nvme_delete_sq(nvmeq))
2557                 nvme_del_queue_end(nvmeq);
2558 }
2559
2560 static void nvme_disable_io_queues(struct nvme_dev *dev)
2561 {
2562         int i;
2563         DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2564         struct nvme_delq_ctx dq;
2565         struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2566                                         &worker, "nvme%d", dev->instance);
2567
2568         if (IS_ERR(kworker_task)) {
2569                 dev_err(&dev->pci_dev->dev,
2570                         "Failed to create queue del task\n");
2571                 for (i = dev->queue_count - 1; i > 0; i--)
2572                         nvme_disable_queue(dev, i);
2573                 return;
2574         }
2575
2576         dq.waiter = NULL;
2577         atomic_set(&dq.refcount, 0);
2578         dq.worker = &worker;
2579         for (i = dev->queue_count - 1; i > 0; i--) {
2580                 struct nvme_queue *nvmeq = raw_nvmeq(dev, i);
2581
2582                 if (nvme_suspend_queue(nvmeq))
2583                         continue;
2584                 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2585                 nvmeq->cmdinfo.worker = dq.worker;
2586                 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2587                 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2588         }
2589         nvme_wait_dq(&dq, dev);
2590         kthread_stop(kworker_task);
2591 }
2592
2593 /*
2594 * Remove the node from the device list and check
2595 * for whether or not we need to stop the nvme_thread.
2596 */
2597 static void nvme_dev_list_remove(struct nvme_dev *dev)
2598 {
2599         struct task_struct *tmp = NULL;
2600
2601         spin_lock(&dev_list_lock);
2602         list_del_init(&dev->node);
2603         if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2604                 tmp = nvme_thread;
2605                 nvme_thread = NULL;
2606         }
2607         spin_unlock(&dev_list_lock);
2608
2609         if (tmp)
2610                 kthread_stop(tmp);
2611 }
2612
2613 static void nvme_dev_shutdown(struct nvme_dev *dev)
2614 {
2615         int i;
2616         u32 csts = -1;
2617
2618         dev->initialized = 0;
2619         nvme_dev_list_remove(dev);
2620
2621         if (dev->bar)
2622                 csts = readl(&dev->bar->csts);
2623         if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
2624                 for (i = dev->queue_count - 1; i >= 0; i--) {
2625                         struct nvme_queue *nvmeq = raw_nvmeq(dev, i);
2626                         nvme_suspend_queue(nvmeq);
2627                         nvme_clear_queue(nvmeq);
2628                 }
2629         } else {
2630                 nvme_disable_io_queues(dev);
2631                 nvme_shutdown_ctrl(dev);
2632                 nvme_disable_queue(dev, 0);
2633         }
2634         nvme_dev_unmap(dev);
2635 }
2636
2637 static void nvme_dev_remove(struct nvme_dev *dev)
2638 {
2639         struct nvme_ns *ns;
2640
2641         list_for_each_entry(ns, &dev->namespaces, list) {
2642                 if (ns->disk->flags & GENHD_FL_UP)
2643                         del_gendisk(ns->disk);
2644                 if (!blk_queue_dying(ns->queue))
2645                         blk_cleanup_queue(ns->queue);
2646         }
2647 }
2648
2649 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2650 {
2651         struct device *dmadev = &dev->pci_dev->dev;
2652         dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
2653                                                 PAGE_SIZE, PAGE_SIZE, 0);
2654         if (!dev->prp_page_pool)
2655                 return -ENOMEM;
2656
2657         /* Optimisation for I/Os between 4k and 128k */
2658         dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
2659                                                 256, 256, 0);
2660         if (!dev->prp_small_pool) {
2661                 dma_pool_destroy(dev->prp_page_pool);
2662                 return -ENOMEM;
2663         }
2664         return 0;
2665 }
2666
2667 static void nvme_release_prp_pools(struct nvme_dev *dev)
2668 {
2669         dma_pool_destroy(dev->prp_page_pool);
2670         dma_pool_destroy(dev->prp_small_pool);
2671 }
2672
2673 static DEFINE_IDA(nvme_instance_ida);
2674
2675 static int nvme_set_instance(struct nvme_dev *dev)
2676 {
2677         int instance, error;
2678
2679         do {
2680                 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2681                         return -ENODEV;
2682
2683                 spin_lock(&dev_list_lock);
2684                 error = ida_get_new(&nvme_instance_ida, &instance);
2685                 spin_unlock(&dev_list_lock);
2686         } while (error == -EAGAIN);
2687
2688         if (error)
2689                 return -ENODEV;
2690
2691         dev->instance = instance;
2692         return 0;
2693 }
2694
2695 static void nvme_release_instance(struct nvme_dev *dev)
2696 {
2697         spin_lock(&dev_list_lock);
2698         ida_remove(&nvme_instance_ida, dev->instance);
2699         spin_unlock(&dev_list_lock);
2700 }
2701
2702 static void nvme_free_namespaces(struct nvme_dev *dev)
2703 {
2704         struct nvme_ns *ns, *next;
2705
2706         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
2707                 list_del(&ns->list);
2708                 put_disk(ns->disk);
2709                 kfree(ns);
2710         }
2711 }
2712
2713 static void nvme_free_dev(struct kref *kref)
2714 {
2715         struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
2716
2717         pci_dev_put(dev->pci_dev);
2718         nvme_free_namespaces(dev);
2719         free_percpu(dev->io_queue);
2720         kfree(dev->queues);
2721         kfree(dev->entry);
2722         kfree(dev);
2723 }
2724
2725 static int nvme_dev_open(struct inode *inode, struct file *f)
2726 {
2727         struct nvme_dev *dev = container_of(f->private_data, struct nvme_dev,
2728                                                                 miscdev);
2729         kref_get(&dev->kref);
2730         f->private_data = dev;
2731         return 0;
2732 }
2733
2734 static int nvme_dev_release(struct inode *inode, struct file *f)
2735 {
2736         struct nvme_dev *dev = f->private_data;
2737         kref_put(&dev->kref, nvme_free_dev);
2738         return 0;
2739 }
2740
2741 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2742 {
2743         struct nvme_dev *dev = f->private_data;
2744         switch (cmd) {
2745         case NVME_IOCTL_ADMIN_CMD:
2746                 return nvme_user_admin_cmd(dev, (void __user *)arg);
2747         default:
2748                 return -ENOTTY;
2749         }
2750 }
2751
2752 static const struct file_operations nvme_dev_fops = {
2753         .owner          = THIS_MODULE,
2754         .open           = nvme_dev_open,
2755         .release        = nvme_dev_release,
2756         .unlocked_ioctl = nvme_dev_ioctl,
2757         .compat_ioctl   = nvme_dev_ioctl,
2758 };
2759
2760 static int nvme_dev_start(struct nvme_dev *dev)
2761 {
2762         int result;
2763         bool start_thread = false;
2764
2765         result = nvme_dev_map(dev);
2766         if (result)
2767                 return result;
2768
2769         result = nvme_configure_admin_queue(dev);
2770         if (result)
2771                 goto unmap;
2772
2773         spin_lock(&dev_list_lock);
2774         if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2775                 start_thread = true;
2776                 nvme_thread = NULL;
2777         }
2778         list_add(&dev->node, &dev_list);
2779         spin_unlock(&dev_list_lock);
2780
2781         if (start_thread) {
2782                 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2783                 wake_up(&nvme_kthread_wait);
2784         } else
2785                 wait_event_killable(nvme_kthread_wait, nvme_thread);
2786
2787         if (IS_ERR_OR_NULL(nvme_thread)) {
2788                 result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2789                 goto disable;
2790         }
2791         nvme_init_queue(raw_nvmeq(dev, 0), 0);
2792
2793         result = nvme_setup_io_queues(dev);
2794         if (result)
2795                 goto disable;
2796
2797         return result;
2798
2799  disable:
2800         nvme_disable_queue(dev, 0);
2801         nvme_dev_list_remove(dev);
2802  unmap:
2803         nvme_dev_unmap(dev);
2804         return result;
2805 }
2806
2807 static int nvme_remove_dead_ctrl(void *arg)
2808 {
2809         struct nvme_dev *dev = (struct nvme_dev *)arg;
2810         struct pci_dev *pdev = dev->pci_dev;
2811
2812         if (pci_get_drvdata(pdev))
2813                 pci_stop_and_remove_bus_device_locked(pdev);
2814         kref_put(&dev->kref, nvme_free_dev);
2815         return 0;
2816 }
2817
2818 static void nvme_remove_disks(struct work_struct *ws)
2819 {
2820         struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2821
2822         nvme_free_queues(dev, 1);
2823         nvme_dev_remove(dev);
2824 }
2825
2826 static int nvme_dev_resume(struct nvme_dev *dev)
2827 {
2828         int ret;
2829
2830         ret = nvme_dev_start(dev);
2831         if (ret)
2832                 return ret;
2833         if (dev->online_queues < 2) {
2834                 spin_lock(&dev_list_lock);
2835                 dev->reset_workfn = nvme_remove_disks;
2836                 queue_work(nvme_workq, &dev->reset_work);
2837                 spin_unlock(&dev_list_lock);
2838         }
2839         dev->initialized = 1;
2840         return 0;
2841 }
2842
2843 static void nvme_dev_reset(struct nvme_dev *dev)
2844 {
2845         nvme_dev_shutdown(dev);
2846         if (nvme_dev_resume(dev)) {
2847                 dev_err(&dev->pci_dev->dev, "Device failed to resume\n");
2848                 kref_get(&dev->kref);
2849                 if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
2850                                                         dev->instance))) {
2851                         dev_err(&dev->pci_dev->dev,
2852                                 "Failed to start controller remove task\n");
2853                         kref_put(&dev->kref, nvme_free_dev);
2854                 }
2855         }
2856 }
2857
2858 static void nvme_reset_failed_dev(struct work_struct *ws)
2859 {
2860         struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2861         nvme_dev_reset(dev);
2862 }
2863
2864 static void nvme_reset_workfn(struct work_struct *work)
2865 {
2866         struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
2867         dev->reset_workfn(work);
2868 }
2869
2870 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2871 {
2872         int result = -ENOMEM;
2873         struct nvme_dev *dev;
2874
2875         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2876         if (!dev)
2877                 return -ENOMEM;
2878         dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
2879                                                                 GFP_KERNEL);
2880         if (!dev->entry)
2881                 goto free;
2882         dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
2883                                                                 GFP_KERNEL);
2884         if (!dev->queues)
2885                 goto free;
2886         dev->io_queue = alloc_percpu(unsigned short);
2887         if (!dev->io_queue)
2888                 goto free;
2889
2890         INIT_LIST_HEAD(&dev->namespaces);
2891         dev->reset_workfn = nvme_reset_failed_dev;
2892         INIT_WORK(&dev->reset_work, nvme_reset_workfn);
2893         INIT_WORK(&dev->cpu_work, nvme_cpu_workfn);
2894         dev->pci_dev = pci_dev_get(pdev);
2895         pci_set_drvdata(pdev, dev);
2896         result = nvme_set_instance(dev);
2897         if (result)
2898                 goto put_pci;
2899
2900         result = nvme_setup_prp_pools(dev);
2901         if (result)
2902                 goto release;
2903
2904         kref_init(&dev->kref);
2905         result = nvme_dev_start(dev);
2906         if (result)
2907                 goto release_pools;
2908
2909         if (dev->online_queues > 1)
2910                 result = nvme_dev_add(dev);
2911         if (result)
2912                 goto shutdown;
2913
2914         scnprintf(dev->name, sizeof(dev->name), "nvme%d", dev->instance);
2915         dev->miscdev.minor = MISC_DYNAMIC_MINOR;
2916         dev->miscdev.parent = &pdev->dev;
2917         dev->miscdev.name = dev->name;
2918         dev->miscdev.fops = &nvme_dev_fops;
2919         result = misc_register(&dev->miscdev);
2920         if (result)
2921                 goto remove;
2922
2923         dev->initialized = 1;
2924         return 0;
2925
2926  remove:
2927         nvme_dev_remove(dev);
2928         nvme_free_namespaces(dev);
2929  shutdown:
2930         nvme_dev_shutdown(dev);
2931  release_pools:
2932         nvme_free_queues(dev, 0);
2933         nvme_release_prp_pools(dev);
2934  release:
2935         nvme_release_instance(dev);
2936  put_pci:
2937         pci_dev_put(dev->pci_dev);
2938  free:
2939         free_percpu(dev->io_queue);
2940         kfree(dev->queues);
2941         kfree(dev->entry);
2942         kfree(dev);
2943         return result;
2944 }
2945
2946 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2947 {
2948         struct nvme_dev *dev = pci_get_drvdata(pdev);
2949
2950         if (prepare)
2951                 nvme_dev_shutdown(dev);
2952         else
2953                 nvme_dev_resume(dev);
2954 }
2955
2956 static void nvme_shutdown(struct pci_dev *pdev)
2957 {
2958         struct nvme_dev *dev = pci_get_drvdata(pdev);
2959         nvme_dev_shutdown(dev);
2960 }
2961
2962 static void nvme_remove(struct pci_dev *pdev)
2963 {
2964         struct nvme_dev *dev = pci_get_drvdata(pdev);
2965
2966         spin_lock(&dev_list_lock);
2967         list_del_init(&dev->node);
2968         spin_unlock(&dev_list_lock);
2969
2970         pci_set_drvdata(pdev, NULL);
2971         flush_work(&dev->reset_work);
2972         flush_work(&dev->cpu_work);
2973         misc_deregister(&dev->miscdev);
2974         nvme_dev_shutdown(dev);
2975         nvme_free_queues(dev, 0);
2976         nvme_dev_remove(dev);
2977         nvme_release_instance(dev);
2978         nvme_release_prp_pools(dev);
2979         kref_put(&dev->kref, nvme_free_dev);
2980 }
2981
2982 /* These functions are yet to be implemented */
2983 #define nvme_error_detected NULL
2984 #define nvme_dump_registers NULL
2985 #define nvme_link_reset NULL
2986 #define nvme_slot_reset NULL
2987 #define nvme_error_resume NULL
2988
2989 #ifdef CONFIG_PM_SLEEP
2990 static int nvme_suspend(struct device *dev)
2991 {
2992         struct pci_dev *pdev = to_pci_dev(dev);
2993         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2994
2995         nvme_dev_shutdown(ndev);
2996         return 0;
2997 }
2998
2999 static int nvme_resume(struct device *dev)
3000 {
3001         struct pci_dev *pdev = to_pci_dev(dev);
3002         struct nvme_dev *ndev = pci_get_drvdata(pdev);
3003
3004         if (nvme_dev_resume(ndev) && !work_busy(&ndev->reset_work)) {
3005                 ndev->reset_workfn = nvme_reset_failed_dev;
3006                 queue_work(nvme_workq, &ndev->reset_work);
3007         }
3008         return 0;
3009 }
3010 #endif
3011
3012 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
3013
3014 static const struct pci_error_handlers nvme_err_handler = {
3015         .error_detected = nvme_error_detected,
3016         .mmio_enabled   = nvme_dump_registers,
3017         .link_reset     = nvme_link_reset,
3018         .slot_reset     = nvme_slot_reset,
3019         .resume         = nvme_error_resume,
3020         .reset_notify   = nvme_reset_notify,
3021 };
3022
3023 /* Move to pci_ids.h later */
3024 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
3025
3026 static const struct pci_device_id nvme_id_table[] = {
3027         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3028         { 0, }
3029 };
3030 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3031
3032 static struct pci_driver nvme_driver = {
3033         .name           = "nvme",
3034         .id_table       = nvme_id_table,
3035         .probe          = nvme_probe,
3036         .remove         = nvme_remove,
3037         .shutdown       = nvme_shutdown,
3038         .driver         = {
3039                 .pm     = &nvme_dev_pm_ops,
3040         },
3041         .err_handler    = &nvme_err_handler,
3042 };
3043
3044 static int __init nvme_init(void)
3045 {
3046         int result;
3047
3048         init_waitqueue_head(&nvme_kthread_wait);
3049
3050         nvme_workq = create_singlethread_workqueue("nvme");
3051         if (!nvme_workq)
3052                 return -ENOMEM;
3053
3054         result = register_blkdev(nvme_major, "nvme");
3055         if (result < 0)
3056                 goto kill_workq;
3057         else if (result > 0)
3058                 nvme_major = result;
3059
3060         nvme_nb.notifier_call = &nvme_cpu_notify;
3061         result = register_hotcpu_notifier(&nvme_nb);
3062         if (result)
3063                 goto unregister_blkdev;
3064
3065         result = pci_register_driver(&nvme_driver);
3066         if (result)
3067                 goto unregister_hotcpu;
3068         return 0;
3069
3070  unregister_hotcpu:
3071         unregister_hotcpu_notifier(&nvme_nb);
3072  unregister_blkdev:
3073         unregister_blkdev(nvme_major, "nvme");
3074  kill_workq:
3075         destroy_workqueue(nvme_workq);
3076         return result;
3077 }
3078
3079 static void __exit nvme_exit(void)
3080 {
3081         pci_unregister_driver(&nvme_driver);
3082         unregister_hotcpu_notifier(&nvme_nb);
3083         unregister_blkdev(nvme_major, "nvme");
3084         destroy_workqueue(nvme_workq);
3085         BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
3086         _nvme_check_size();
3087 }
3088
3089 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3090 MODULE_LICENSE("GPL");
3091 MODULE_VERSION("0.9");
3092 module_init(nvme_init);
3093 module_exit(nvme_exit);