NVMe: Adhere to request queue block accounting enable/disable
[firefly-linux-kernel-4.4.55.git] / drivers / block / nvme-core.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/nvme.h>
16 #include <linux/bio.h>
17 #include <linux/bitops.h>
18 #include <linux/blkdev.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kthread.h>
31 #include <linux/kernel.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/pci.h>
36 #include <linux/percpu.h>
37 #include <linux/poison.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <scsi/sg.h>
43 #include <asm-generic/io-64-nonatomic-lo-hi.h>
44
45 #include <trace/events/block.h>
46
47 #define NVME_Q_DEPTH            1024
48 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
49 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
50 #define ADMIN_TIMEOUT           (admin_timeout * HZ)
51 #define IOD_TIMEOUT             (retry_time * HZ)
52
53 static unsigned char admin_timeout = 60;
54 module_param(admin_timeout, byte, 0644);
55 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
56
57 unsigned char io_timeout = 30;
58 module_param(io_timeout, byte, 0644);
59 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
60
61 static unsigned char retry_time = 30;
62 module_param(retry_time, byte, 0644);
63 MODULE_PARM_DESC(retry_time, "time in seconds to retry failed I/O");
64
65 static int nvme_major;
66 module_param(nvme_major, int, 0);
67
68 static int use_threaded_interrupts;
69 module_param(use_threaded_interrupts, int, 0);
70
71 static DEFINE_SPINLOCK(dev_list_lock);
72 static LIST_HEAD(dev_list);
73 static struct task_struct *nvme_thread;
74 static struct workqueue_struct *nvme_workq;
75 static wait_queue_head_t nvme_kthread_wait;
76
77 static void nvme_reset_failed_dev(struct work_struct *ws);
78
79 struct async_cmd_info {
80         struct kthread_work work;
81         struct kthread_worker *worker;
82         u32 result;
83         int status;
84         void *ctx;
85 };
86
87 /*
88  * An NVM Express queue.  Each device has at least two (one for admin
89  * commands and one for I/O commands).
90  */
91 struct nvme_queue {
92         struct rcu_head r_head;
93         struct device *q_dmadev;
94         struct nvme_dev *dev;
95         char irqname[24];       /* nvme4294967295-65535\0 */
96         spinlock_t q_lock;
97         struct nvme_command *sq_cmds;
98         volatile struct nvme_completion *cqes;
99         dma_addr_t sq_dma_addr;
100         dma_addr_t cq_dma_addr;
101         wait_queue_head_t sq_full;
102         wait_queue_t sq_cong_wait;
103         struct bio_list sq_cong;
104         struct list_head iod_bio;
105         u32 __iomem *q_db;
106         u16 q_depth;
107         u16 cq_vector;
108         u16 sq_head;
109         u16 sq_tail;
110         u16 cq_head;
111         u16 qid;
112         u8 cq_phase;
113         u8 cqe_seen;
114         u8 q_suspended;
115         cpumask_var_t cpu_mask;
116         struct async_cmd_info cmdinfo;
117         unsigned long cmdid_data[];
118 };
119
120 /*
121  * Check we didin't inadvertently grow the command struct
122  */
123 static inline void _nvme_check_size(void)
124 {
125         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
126         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
127         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
128         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
129         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
130         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
131         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
132         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
133         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
134         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
135         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
136         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
137 }
138
139 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
140                                                 struct nvme_completion *);
141
142 struct nvme_cmd_info {
143         nvme_completion_fn fn;
144         void *ctx;
145         unsigned long timeout;
146         int aborted;
147 };
148
149 static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
150 {
151         return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
152 }
153
154 static unsigned nvme_queue_extra(int depth)
155 {
156         return DIV_ROUND_UP(depth, 8) + (depth * sizeof(struct nvme_cmd_info));
157 }
158
159 /**
160  * alloc_cmdid() - Allocate a Command ID
161  * @nvmeq: The queue that will be used for this command
162  * @ctx: A pointer that will be passed to the handler
163  * @handler: The function to call on completion
164  *
165  * Allocate a Command ID for a queue.  The data passed in will
166  * be passed to the completion handler.  This is implemented by using
167  * the bottom two bits of the ctx pointer to store the handler ID.
168  * Passing in a pointer that's not 4-byte aligned will cause a BUG.
169  * We can change this if it becomes a problem.
170  *
171  * May be called with local interrupts disabled and the q_lock held,
172  * or with interrupts enabled and no locks held.
173  */
174 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
175                                 nvme_completion_fn handler, unsigned timeout)
176 {
177         int depth = nvmeq->q_depth - 1;
178         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
179         int cmdid;
180
181         do {
182                 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
183                 if (cmdid >= depth)
184                         return -EBUSY;
185         } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
186
187         info[cmdid].fn = handler;
188         info[cmdid].ctx = ctx;
189         info[cmdid].timeout = jiffies + timeout;
190         info[cmdid].aborted = 0;
191         return cmdid;
192 }
193
194 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
195                                 nvme_completion_fn handler, unsigned timeout)
196 {
197         int cmdid;
198         wait_event_killable(nvmeq->sq_full,
199                 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
200         return (cmdid < 0) ? -EINTR : cmdid;
201 }
202
203 /* Special values must be less than 0x1000 */
204 #define CMD_CTX_BASE            ((void *)POISON_POINTER_DELTA)
205 #define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
206 #define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
207 #define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
208 #define CMD_CTX_ABORT           (0x318 + CMD_CTX_BASE)
209
210 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
211                                                 struct nvme_completion *cqe)
212 {
213         if (ctx == CMD_CTX_CANCELLED)
214                 return;
215         if (ctx == CMD_CTX_ABORT) {
216                 ++nvmeq->dev->abort_limit;
217                 return;
218         }
219         if (ctx == CMD_CTX_COMPLETED) {
220                 dev_warn(nvmeq->q_dmadev,
221                                 "completed id %d twice on queue %d\n",
222                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
223                 return;
224         }
225         if (ctx == CMD_CTX_INVALID) {
226                 dev_warn(nvmeq->q_dmadev,
227                                 "invalid id %d completed on queue %d\n",
228                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
229                 return;
230         }
231
232         dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
233 }
234
235 static void async_completion(struct nvme_queue *nvmeq, void *ctx,
236                                                 struct nvme_completion *cqe)
237 {
238         struct async_cmd_info *cmdinfo = ctx;
239         cmdinfo->result = le32_to_cpup(&cqe->result);
240         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
241         queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
242 }
243
244 /*
245  * Called with local interrupts disabled and the q_lock held.  May not sleep.
246  */
247 static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
248                                                 nvme_completion_fn *fn)
249 {
250         void *ctx;
251         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
252
253         if (cmdid >= nvmeq->q_depth || !info[cmdid].fn) {
254                 if (fn)
255                         *fn = special_completion;
256                 return CMD_CTX_INVALID;
257         }
258         if (fn)
259                 *fn = info[cmdid].fn;
260         ctx = info[cmdid].ctx;
261         info[cmdid].fn = special_completion;
262         info[cmdid].ctx = CMD_CTX_COMPLETED;
263         clear_bit(cmdid, nvmeq->cmdid_data);
264         wake_up(&nvmeq->sq_full);
265         return ctx;
266 }
267
268 static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
269                                                 nvme_completion_fn *fn)
270 {
271         void *ctx;
272         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
273         if (fn)
274                 *fn = info[cmdid].fn;
275         ctx = info[cmdid].ctx;
276         info[cmdid].fn = special_completion;
277         info[cmdid].ctx = CMD_CTX_CANCELLED;
278         return ctx;
279 }
280
281 static struct nvme_queue *raw_nvmeq(struct nvme_dev *dev, int qid)
282 {
283         return rcu_dereference_raw(dev->queues[qid]);
284 }
285
286 static struct nvme_queue *get_nvmeq(struct nvme_dev *dev) __acquires(RCU)
287 {
288         struct nvme_queue *nvmeq;
289         unsigned queue_id = get_cpu_var(*dev->io_queue);
290
291         rcu_read_lock();
292         nvmeq = rcu_dereference(dev->queues[queue_id]);
293         if (nvmeq)
294                 return nvmeq;
295
296         rcu_read_unlock();
297         put_cpu_var(*dev->io_queue);
298         return NULL;
299 }
300
301 static void put_nvmeq(struct nvme_queue *nvmeq) __releases(RCU)
302 {
303         rcu_read_unlock();
304         put_cpu_var(nvmeq->dev->io_queue);
305 }
306
307 static struct nvme_queue *lock_nvmeq(struct nvme_dev *dev, int q_idx)
308                                                         __acquires(RCU)
309 {
310         struct nvme_queue *nvmeq;
311
312         rcu_read_lock();
313         nvmeq = rcu_dereference(dev->queues[q_idx]);
314         if (nvmeq)
315                 return nvmeq;
316
317         rcu_read_unlock();
318         return NULL;
319 }
320
321 static void unlock_nvmeq(struct nvme_queue *nvmeq) __releases(RCU)
322 {
323         rcu_read_unlock();
324 }
325
326 /**
327  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
328  * @nvmeq: The queue to use
329  * @cmd: The command to send
330  *
331  * Safe to use from interrupt context
332  */
333 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
334 {
335         unsigned long flags;
336         u16 tail;
337         spin_lock_irqsave(&nvmeq->q_lock, flags);
338         if (nvmeq->q_suspended) {
339                 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
340                 return -EBUSY;
341         }
342         tail = nvmeq->sq_tail;
343         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
344         if (++tail == nvmeq->q_depth)
345                 tail = 0;
346         writel(tail, nvmeq->q_db);
347         nvmeq->sq_tail = tail;
348         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
349
350         return 0;
351 }
352
353 static __le64 **iod_list(struct nvme_iod *iod)
354 {
355         return ((void *)iod) + iod->offset;
356 }
357
358 /*
359  * Will slightly overestimate the number of pages needed.  This is OK
360  * as it only leads to a small amount of wasted memory for the lifetime of
361  * the I/O.
362  */
363 static int nvme_npages(unsigned size)
364 {
365         unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
366         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
367 }
368
369 static struct nvme_iod *
370 nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
371 {
372         struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
373                                 sizeof(__le64 *) * nvme_npages(nbytes) +
374                                 sizeof(struct scatterlist) * nseg, gfp);
375
376         if (iod) {
377                 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
378                 iod->npages = -1;
379                 iod->length = nbytes;
380                 iod->nents = 0;
381                 iod->first_dma = 0ULL;
382                 iod->start_time = jiffies;
383         }
384
385         return iod;
386 }
387
388 void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
389 {
390         const int last_prp = PAGE_SIZE / 8 - 1;
391         int i;
392         __le64 **list = iod_list(iod);
393         dma_addr_t prp_dma = iod->first_dma;
394
395         if (iod->npages == 0)
396                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
397         for (i = 0; i < iod->npages; i++) {
398                 __le64 *prp_list = list[i];
399                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
400                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
401                 prp_dma = next_prp_dma;
402         }
403         kfree(iod);
404 }
405
406 static void nvme_start_io_acct(struct bio *bio)
407 {
408         struct gendisk *disk = bio->bi_bdev->bd_disk;
409         if (blk_queue_io_stat(disk->queue)) {
410                 const int rw = bio_data_dir(bio);
411                 int cpu = part_stat_lock();
412                 part_round_stats(cpu, &disk->part0);
413                 part_stat_inc(cpu, &disk->part0, ios[rw]);
414                 part_stat_add(cpu, &disk->part0, sectors[rw],
415                                                         bio_sectors(bio));
416                 part_inc_in_flight(&disk->part0, rw);
417                 part_stat_unlock();
418         }
419 }
420
421 static void nvme_end_io_acct(struct bio *bio, unsigned long start_time)
422 {
423         struct gendisk *disk = bio->bi_bdev->bd_disk;
424         if (blk_queue_io_stat(disk->queue)) {
425                 const int rw = bio_data_dir(bio);
426                 unsigned long duration = jiffies - start_time;
427                 int cpu = part_stat_lock();
428                 part_stat_add(cpu, &disk->part0, ticks[rw], duration);
429                 part_round_stats(cpu, &disk->part0);
430                 part_dec_in_flight(&disk->part0, rw);
431                 part_stat_unlock();
432         }
433 }
434
435 static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
436                                                 struct nvme_completion *cqe)
437 {
438         struct nvme_iod *iod = ctx;
439         struct bio *bio = iod->private;
440         u16 status = le16_to_cpup(&cqe->status) >> 1;
441         int error = 0;
442
443         if (unlikely(status)) {
444                 if (!(status & NVME_SC_DNR ||
445                                 bio->bi_rw & REQ_FAILFAST_MASK) &&
446                                 (jiffies - iod->start_time) < IOD_TIMEOUT) {
447                         if (!waitqueue_active(&nvmeq->sq_full))
448                                 add_wait_queue(&nvmeq->sq_full,
449                                                         &nvmeq->sq_cong_wait);
450                         list_add_tail(&iod->node, &nvmeq->iod_bio);
451                         wake_up(&nvmeq->sq_full);
452                         return;
453                 }
454                 error = -EIO;
455         }
456         if (iod->nents) {
457                 dma_unmap_sg(nvmeq->q_dmadev, iod->sg, iod->nents,
458                         bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
459                 nvme_end_io_acct(bio, iod->start_time);
460         }
461         nvme_free_iod(nvmeq->dev, iod);
462
463         trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio, error);
464         bio_endio(bio, error);
465 }
466
467 /* length is in bytes.  gfp flags indicates whether we may sleep. */
468 int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod, int total_len,
469                                                                 gfp_t gfp)
470 {
471         struct dma_pool *pool;
472         int length = total_len;
473         struct scatterlist *sg = iod->sg;
474         int dma_len = sg_dma_len(sg);
475         u64 dma_addr = sg_dma_address(sg);
476         int offset = offset_in_page(dma_addr);
477         __le64 *prp_list;
478         __le64 **list = iod_list(iod);
479         dma_addr_t prp_dma;
480         int nprps, i;
481
482         length -= (PAGE_SIZE - offset);
483         if (length <= 0)
484                 return total_len;
485
486         dma_len -= (PAGE_SIZE - offset);
487         if (dma_len) {
488                 dma_addr += (PAGE_SIZE - offset);
489         } else {
490                 sg = sg_next(sg);
491                 dma_addr = sg_dma_address(sg);
492                 dma_len = sg_dma_len(sg);
493         }
494
495         if (length <= PAGE_SIZE) {
496                 iod->first_dma = dma_addr;
497                 return total_len;
498         }
499
500         nprps = DIV_ROUND_UP(length, PAGE_SIZE);
501         if (nprps <= (256 / 8)) {
502                 pool = dev->prp_small_pool;
503                 iod->npages = 0;
504         } else {
505                 pool = dev->prp_page_pool;
506                 iod->npages = 1;
507         }
508
509         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
510         if (!prp_list) {
511                 iod->first_dma = dma_addr;
512                 iod->npages = -1;
513                 return (total_len - length) + PAGE_SIZE;
514         }
515         list[0] = prp_list;
516         iod->first_dma = prp_dma;
517         i = 0;
518         for (;;) {
519                 if (i == PAGE_SIZE / 8) {
520                         __le64 *old_prp_list = prp_list;
521                         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
522                         if (!prp_list)
523                                 return total_len - length;
524                         list[iod->npages++] = prp_list;
525                         prp_list[0] = old_prp_list[i - 1];
526                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
527                         i = 1;
528                 }
529                 prp_list[i++] = cpu_to_le64(dma_addr);
530                 dma_len -= PAGE_SIZE;
531                 dma_addr += PAGE_SIZE;
532                 length -= PAGE_SIZE;
533                 if (length <= 0)
534                         break;
535                 if (dma_len > 0)
536                         continue;
537                 BUG_ON(dma_len < 0);
538                 sg = sg_next(sg);
539                 dma_addr = sg_dma_address(sg);
540                 dma_len = sg_dma_len(sg);
541         }
542
543         return total_len;
544 }
545
546 static int nvme_split_and_submit(struct bio *bio, struct nvme_queue *nvmeq,
547                                  int len)
548 {
549         struct bio *split = bio_split(bio, len >> 9, GFP_ATOMIC, NULL);
550         if (!split)
551                 return -ENOMEM;
552
553         trace_block_split(bdev_get_queue(bio->bi_bdev), bio,
554                                         split->bi_iter.bi_sector);
555         bio_chain(split, bio);
556
557         if (!waitqueue_active(&nvmeq->sq_full))
558                 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
559         bio_list_add(&nvmeq->sq_cong, split);
560         bio_list_add(&nvmeq->sq_cong, bio);
561         wake_up(&nvmeq->sq_full);
562
563         return 0;
564 }
565
566 /* NVMe scatterlists require no holes in the virtual address */
567 #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2)   ((vec2)->bv_offset || \
568                         (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
569
570 static int nvme_map_bio(struct nvme_queue *nvmeq, struct nvme_iod *iod,
571                 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
572 {
573         struct bio_vec bvec, bvprv;
574         struct bvec_iter iter;
575         struct scatterlist *sg = NULL;
576         int length = 0, nsegs = 0, split_len = bio->bi_iter.bi_size;
577         int first = 1;
578
579         if (nvmeq->dev->stripe_size)
580                 split_len = nvmeq->dev->stripe_size -
581                         ((bio->bi_iter.bi_sector << 9) &
582                          (nvmeq->dev->stripe_size - 1));
583
584         sg_init_table(iod->sg, psegs);
585         bio_for_each_segment(bvec, bio, iter) {
586                 if (!first && BIOVEC_PHYS_MERGEABLE(&bvprv, &bvec)) {
587                         sg->length += bvec.bv_len;
588                 } else {
589                         if (!first && BIOVEC_NOT_VIRT_MERGEABLE(&bvprv, &bvec))
590                                 return nvme_split_and_submit(bio, nvmeq,
591                                                              length);
592
593                         sg = sg ? sg + 1 : iod->sg;
594                         sg_set_page(sg, bvec.bv_page,
595                                     bvec.bv_len, bvec.bv_offset);
596                         nsegs++;
597                 }
598
599                 if (split_len - length < bvec.bv_len)
600                         return nvme_split_and_submit(bio, nvmeq, split_len);
601                 length += bvec.bv_len;
602                 bvprv = bvec;
603                 first = 0;
604         }
605         iod->nents = nsegs;
606         sg_mark_end(sg);
607         if (dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir) == 0)
608                 return -ENOMEM;
609
610         BUG_ON(length != bio->bi_iter.bi_size);
611         return length;
612 }
613
614 static int nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
615                 struct bio *bio, struct nvme_iod *iod, int cmdid)
616 {
617         struct nvme_dsm_range *range =
618                                 (struct nvme_dsm_range *)iod_list(iod)[0];
619         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
620
621         range->cattr = cpu_to_le32(0);
622         range->nlb = cpu_to_le32(bio->bi_iter.bi_size >> ns->lba_shift);
623         range->slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_iter.bi_sector));
624
625         memset(cmnd, 0, sizeof(*cmnd));
626         cmnd->dsm.opcode = nvme_cmd_dsm;
627         cmnd->dsm.command_id = cmdid;
628         cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
629         cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
630         cmnd->dsm.nr = 0;
631         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
632
633         if (++nvmeq->sq_tail == nvmeq->q_depth)
634                 nvmeq->sq_tail = 0;
635         writel(nvmeq->sq_tail, nvmeq->q_db);
636
637         return 0;
638 }
639
640 static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
641                                                                 int cmdid)
642 {
643         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
644
645         memset(cmnd, 0, sizeof(*cmnd));
646         cmnd->common.opcode = nvme_cmd_flush;
647         cmnd->common.command_id = cmdid;
648         cmnd->common.nsid = cpu_to_le32(ns->ns_id);
649
650         if (++nvmeq->sq_tail == nvmeq->q_depth)
651                 nvmeq->sq_tail = 0;
652         writel(nvmeq->sq_tail, nvmeq->q_db);
653
654         return 0;
655 }
656
657 static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod)
658 {
659         struct bio *bio = iod->private;
660         struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
661         struct nvme_command *cmnd;
662         int cmdid;
663         u16 control;
664         u32 dsmgmt;
665
666         cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
667         if (unlikely(cmdid < 0))
668                 return cmdid;
669
670         if (bio->bi_rw & REQ_DISCARD)
671                 return nvme_submit_discard(nvmeq, ns, bio, iod, cmdid);
672         if (bio->bi_rw & REQ_FLUSH)
673                 return nvme_submit_flush(nvmeq, ns, cmdid);
674
675         control = 0;
676         if (bio->bi_rw & REQ_FUA)
677                 control |= NVME_RW_FUA;
678         if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
679                 control |= NVME_RW_LR;
680
681         dsmgmt = 0;
682         if (bio->bi_rw & REQ_RAHEAD)
683                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
684
685         cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
686         memset(cmnd, 0, sizeof(*cmnd));
687
688         cmnd->rw.opcode = bio_data_dir(bio) ? nvme_cmd_write : nvme_cmd_read;
689         cmnd->rw.command_id = cmdid;
690         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
691         cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
692         cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
693         cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_iter.bi_sector));
694         cmnd->rw.length =
695                 cpu_to_le16((bio->bi_iter.bi_size >> ns->lba_shift) - 1);
696         cmnd->rw.control = cpu_to_le16(control);
697         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
698
699         if (++nvmeq->sq_tail == nvmeq->q_depth)
700                 nvmeq->sq_tail = 0;
701         writel(nvmeq->sq_tail, nvmeq->q_db);
702
703         return 0;
704 }
705
706 static int nvme_split_flush_data(struct nvme_queue *nvmeq, struct bio *bio)
707 {
708         struct bio *split = bio_clone(bio, GFP_ATOMIC);
709         if (!split)
710                 return -ENOMEM;
711
712         split->bi_iter.bi_size = 0;
713         split->bi_phys_segments = 0;
714         bio->bi_rw &= ~REQ_FLUSH;
715         bio_chain(split, bio);
716
717         if (!waitqueue_active(&nvmeq->sq_full))
718                 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
719         bio_list_add(&nvmeq->sq_cong, split);
720         bio_list_add(&nvmeq->sq_cong, bio);
721         wake_up_process(nvme_thread);
722
723         return 0;
724 }
725
726 /*
727  * Called with local interrupts disabled and the q_lock held.  May not sleep.
728  */
729 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
730                                                                 struct bio *bio)
731 {
732         struct nvme_iod *iod;
733         int psegs = bio_phys_segments(ns->queue, bio);
734         int result;
735
736         if ((bio->bi_rw & REQ_FLUSH) && psegs)
737                 return nvme_split_flush_data(nvmeq, bio);
738
739         iod = nvme_alloc_iod(psegs, bio->bi_iter.bi_size, GFP_ATOMIC);
740         if (!iod)
741                 return -ENOMEM;
742
743         iod->private = bio;
744         if (bio->bi_rw & REQ_DISCARD) {
745                 void *range;
746                 /*
747                  * We reuse the small pool to allocate the 16-byte range here
748                  * as it is not worth having a special pool for these or
749                  * additional cases to handle freeing the iod.
750                  */
751                 range = dma_pool_alloc(nvmeq->dev->prp_small_pool,
752                                                 GFP_ATOMIC,
753                                                 &iod->first_dma);
754                 if (!range) {
755                         result = -ENOMEM;
756                         goto free_iod;
757                 }
758                 iod_list(iod)[0] = (__le64 *)range;
759                 iod->npages = 0;
760         } else if (psegs) {
761                 result = nvme_map_bio(nvmeq, iod, bio,
762                         bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
763                         psegs);
764                 if (result <= 0)
765                         goto free_iod;
766                 if (nvme_setup_prps(nvmeq->dev, iod, result, GFP_ATOMIC) !=
767                                                                 result) {
768                         result = -ENOMEM;
769                         goto free_iod;
770                 }
771                 nvme_start_io_acct(bio);
772         }
773         if (unlikely(nvme_submit_iod(nvmeq, iod))) {
774                 if (!waitqueue_active(&nvmeq->sq_full))
775                         add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
776                 list_add_tail(&iod->node, &nvmeq->iod_bio);
777         }
778         return 0;
779
780  free_iod:
781         nvme_free_iod(nvmeq->dev, iod);
782         return result;
783 }
784
785 static int nvme_process_cq(struct nvme_queue *nvmeq)
786 {
787         u16 head, phase;
788
789         head = nvmeq->cq_head;
790         phase = nvmeq->cq_phase;
791
792         for (;;) {
793                 void *ctx;
794                 nvme_completion_fn fn;
795                 struct nvme_completion cqe = nvmeq->cqes[head];
796                 if ((le16_to_cpu(cqe.status) & 1) != phase)
797                         break;
798                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
799                 if (++head == nvmeq->q_depth) {
800                         head = 0;
801                         phase = !phase;
802                 }
803
804                 ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
805                 fn(nvmeq, ctx, &cqe);
806         }
807
808         /* If the controller ignores the cq head doorbell and continuously
809          * writes to the queue, it is theoretically possible to wrap around
810          * the queue twice and mistakenly return IRQ_NONE.  Linux only
811          * requires that 0.1% of your interrupts are handled, so this isn't
812          * a big problem.
813          */
814         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
815                 return 0;
816
817         writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
818         nvmeq->cq_head = head;
819         nvmeq->cq_phase = phase;
820
821         nvmeq->cqe_seen = 1;
822         return 1;
823 }
824
825 static void nvme_make_request(struct request_queue *q, struct bio *bio)
826 {
827         struct nvme_ns *ns = q->queuedata;
828         struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
829         int result = -EBUSY;
830
831         if (!nvmeq) {
832                 bio_endio(bio, -EIO);
833                 return;
834         }
835
836         spin_lock_irq(&nvmeq->q_lock);
837         if (!nvmeq->q_suspended && bio_list_empty(&nvmeq->sq_cong))
838                 result = nvme_submit_bio_queue(nvmeq, ns, bio);
839         if (unlikely(result)) {
840                 if (!waitqueue_active(&nvmeq->sq_full))
841                         add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
842                 bio_list_add(&nvmeq->sq_cong, bio);
843         }
844
845         nvme_process_cq(nvmeq);
846         spin_unlock_irq(&nvmeq->q_lock);
847         put_nvmeq(nvmeq);
848 }
849
850 static irqreturn_t nvme_irq(int irq, void *data)
851 {
852         irqreturn_t result;
853         struct nvme_queue *nvmeq = data;
854         spin_lock(&nvmeq->q_lock);
855         nvme_process_cq(nvmeq);
856         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
857         nvmeq->cqe_seen = 0;
858         spin_unlock(&nvmeq->q_lock);
859         return result;
860 }
861
862 static irqreturn_t nvme_irq_check(int irq, void *data)
863 {
864         struct nvme_queue *nvmeq = data;
865         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
866         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
867                 return IRQ_NONE;
868         return IRQ_WAKE_THREAD;
869 }
870
871 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
872 {
873         spin_lock_irq(&nvmeq->q_lock);
874         cancel_cmdid(nvmeq, cmdid, NULL);
875         spin_unlock_irq(&nvmeq->q_lock);
876 }
877
878 struct sync_cmd_info {
879         struct task_struct *task;
880         u32 result;
881         int status;
882 };
883
884 static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
885                                                 struct nvme_completion *cqe)
886 {
887         struct sync_cmd_info *cmdinfo = ctx;
888         cmdinfo->result = le32_to_cpup(&cqe->result);
889         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
890         wake_up_process(cmdinfo->task);
891 }
892
893 /*
894  * Returns 0 on success.  If the result is negative, it's a Linux error code;
895  * if the result is positive, it's an NVM Express status code
896  */
897 static int nvme_submit_sync_cmd(struct nvme_dev *dev, int q_idx,
898                                                 struct nvme_command *cmd,
899                                                 u32 *result, unsigned timeout)
900 {
901         int cmdid, ret;
902         struct sync_cmd_info cmdinfo;
903         struct nvme_queue *nvmeq;
904
905         nvmeq = lock_nvmeq(dev, q_idx);
906         if (!nvmeq)
907                 return -ENODEV;
908
909         cmdinfo.task = current;
910         cmdinfo.status = -EINTR;
911
912         cmdid = alloc_cmdid(nvmeq, &cmdinfo, sync_completion, timeout);
913         if (cmdid < 0) {
914                 unlock_nvmeq(nvmeq);
915                 return cmdid;
916         }
917         cmd->common.command_id = cmdid;
918
919         set_current_state(TASK_KILLABLE);
920         ret = nvme_submit_cmd(nvmeq, cmd);
921         if (ret) {
922                 free_cmdid(nvmeq, cmdid, NULL);
923                 unlock_nvmeq(nvmeq);
924                 set_current_state(TASK_RUNNING);
925                 return ret;
926         }
927         unlock_nvmeq(nvmeq);
928         schedule_timeout(timeout);
929
930         if (cmdinfo.status == -EINTR) {
931                 nvmeq = lock_nvmeq(dev, q_idx);
932                 if (nvmeq) {
933                         nvme_abort_command(nvmeq, cmdid);
934                         unlock_nvmeq(nvmeq);
935                 }
936                 return -EINTR;
937         }
938
939         if (result)
940                 *result = cmdinfo.result;
941
942         return cmdinfo.status;
943 }
944
945 static int nvme_submit_async_cmd(struct nvme_queue *nvmeq,
946                         struct nvme_command *cmd,
947                         struct async_cmd_info *cmdinfo, unsigned timeout)
948 {
949         int cmdid;
950
951         cmdid = alloc_cmdid_killable(nvmeq, cmdinfo, async_completion, timeout);
952         if (cmdid < 0)
953                 return cmdid;
954         cmdinfo->status = -EINTR;
955         cmd->common.command_id = cmdid;
956         return nvme_submit_cmd(nvmeq, cmd);
957 }
958
959 int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
960                                                                 u32 *result)
961 {
962         return nvme_submit_sync_cmd(dev, 0, cmd, result, ADMIN_TIMEOUT);
963 }
964
965 int nvme_submit_io_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
966                                                                 u32 *result)
967 {
968         return nvme_submit_sync_cmd(dev, smp_processor_id() + 1, cmd, result,
969                                                         NVME_IO_TIMEOUT);
970 }
971
972 static int nvme_submit_admin_cmd_async(struct nvme_dev *dev,
973                 struct nvme_command *cmd, struct async_cmd_info *cmdinfo)
974 {
975         return nvme_submit_async_cmd(raw_nvmeq(dev, 0), cmd, cmdinfo,
976                                                                 ADMIN_TIMEOUT);
977 }
978
979 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
980 {
981         int status;
982         struct nvme_command c;
983
984         memset(&c, 0, sizeof(c));
985         c.delete_queue.opcode = opcode;
986         c.delete_queue.qid = cpu_to_le16(id);
987
988         status = nvme_submit_admin_cmd(dev, &c, NULL);
989         if (status)
990                 return -EIO;
991         return 0;
992 }
993
994 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
995                                                 struct nvme_queue *nvmeq)
996 {
997         int status;
998         struct nvme_command c;
999         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1000
1001         memset(&c, 0, sizeof(c));
1002         c.create_cq.opcode = nvme_admin_create_cq;
1003         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1004         c.create_cq.cqid = cpu_to_le16(qid);
1005         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1006         c.create_cq.cq_flags = cpu_to_le16(flags);
1007         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1008
1009         status = nvme_submit_admin_cmd(dev, &c, NULL);
1010         if (status)
1011                 return -EIO;
1012         return 0;
1013 }
1014
1015 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1016                                                 struct nvme_queue *nvmeq)
1017 {
1018         int status;
1019         struct nvme_command c;
1020         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1021
1022         memset(&c, 0, sizeof(c));
1023         c.create_sq.opcode = nvme_admin_create_sq;
1024         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1025         c.create_sq.sqid = cpu_to_le16(qid);
1026         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1027         c.create_sq.sq_flags = cpu_to_le16(flags);
1028         c.create_sq.cqid = cpu_to_le16(qid);
1029
1030         status = nvme_submit_admin_cmd(dev, &c, NULL);
1031         if (status)
1032                 return -EIO;
1033         return 0;
1034 }
1035
1036 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1037 {
1038         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1039 }
1040
1041 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1042 {
1043         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1044 }
1045
1046 int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
1047                                                         dma_addr_t dma_addr)
1048 {
1049         struct nvme_command c;
1050
1051         memset(&c, 0, sizeof(c));
1052         c.identify.opcode = nvme_admin_identify;
1053         c.identify.nsid = cpu_to_le32(nsid);
1054         c.identify.prp1 = cpu_to_le64(dma_addr);
1055         c.identify.cns = cpu_to_le32(cns);
1056
1057         return nvme_submit_admin_cmd(dev, &c, NULL);
1058 }
1059
1060 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
1061                                         dma_addr_t dma_addr, u32 *result)
1062 {
1063         struct nvme_command c;
1064
1065         memset(&c, 0, sizeof(c));
1066         c.features.opcode = nvme_admin_get_features;
1067         c.features.nsid = cpu_to_le32(nsid);
1068         c.features.prp1 = cpu_to_le64(dma_addr);
1069         c.features.fid = cpu_to_le32(fid);
1070
1071         return nvme_submit_admin_cmd(dev, &c, result);
1072 }
1073
1074 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
1075                                         dma_addr_t dma_addr, u32 *result)
1076 {
1077         struct nvme_command c;
1078
1079         memset(&c, 0, sizeof(c));
1080         c.features.opcode = nvme_admin_set_features;
1081         c.features.prp1 = cpu_to_le64(dma_addr);
1082         c.features.fid = cpu_to_le32(fid);
1083         c.features.dword11 = cpu_to_le32(dword11);
1084
1085         return nvme_submit_admin_cmd(dev, &c, result);
1086 }
1087
1088 /**
1089  * nvme_abort_cmd - Attempt aborting a command
1090  * @cmdid: Command id of a timed out IO
1091  * @queue: The queue with timed out IO
1092  *
1093  * Schedule controller reset if the command was already aborted once before and
1094  * still hasn't been returned to the driver, or if this is the admin queue.
1095  */
1096 static void nvme_abort_cmd(int cmdid, struct nvme_queue *nvmeq)
1097 {
1098         int a_cmdid;
1099         struct nvme_command cmd;
1100         struct nvme_dev *dev = nvmeq->dev;
1101         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1102         struct nvme_queue *adminq;
1103
1104         if (!nvmeq->qid || info[cmdid].aborted) {
1105                 if (work_busy(&dev->reset_work))
1106                         return;
1107                 list_del_init(&dev->node);
1108                 dev_warn(&dev->pci_dev->dev,
1109                         "I/O %d QID %d timeout, reset controller\n", cmdid,
1110                                                                 nvmeq->qid);
1111                 dev->reset_workfn = nvme_reset_failed_dev;
1112                 queue_work(nvme_workq, &dev->reset_work);
1113                 return;
1114         }
1115
1116         if (!dev->abort_limit)
1117                 return;
1118
1119         adminq = rcu_dereference(dev->queues[0]);
1120         a_cmdid = alloc_cmdid(adminq, CMD_CTX_ABORT, special_completion,
1121                                                                 ADMIN_TIMEOUT);
1122         if (a_cmdid < 0)
1123                 return;
1124
1125         memset(&cmd, 0, sizeof(cmd));
1126         cmd.abort.opcode = nvme_admin_abort_cmd;
1127         cmd.abort.cid = cmdid;
1128         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1129         cmd.abort.command_id = a_cmdid;
1130
1131         --dev->abort_limit;
1132         info[cmdid].aborted = 1;
1133         info[cmdid].timeout = jiffies + ADMIN_TIMEOUT;
1134
1135         dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", cmdid,
1136                                                         nvmeq->qid);
1137         nvme_submit_cmd(adminq, &cmd);
1138 }
1139
1140 /**
1141  * nvme_cancel_ios - Cancel outstanding I/Os
1142  * @queue: The queue to cancel I/Os on
1143  * @timeout: True to only cancel I/Os which have timed out
1144  */
1145 static void nvme_cancel_ios(struct nvme_queue *nvmeq, bool timeout)
1146 {
1147         int depth = nvmeq->q_depth - 1;
1148         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1149         unsigned long now = jiffies;
1150         int cmdid;
1151
1152         for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
1153                 void *ctx;
1154                 nvme_completion_fn fn;
1155                 static struct nvme_completion cqe = {
1156                         .status = cpu_to_le16(NVME_SC_ABORT_REQ << 1),
1157                 };
1158
1159                 if (timeout && !time_after(now, info[cmdid].timeout))
1160                         continue;
1161                 if (info[cmdid].ctx == CMD_CTX_CANCELLED)
1162                         continue;
1163                 if (timeout && nvmeq->dev->initialized) {
1164                         nvme_abort_cmd(cmdid, nvmeq);
1165                         continue;
1166                 }
1167                 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n", cmdid,
1168                                                                 nvmeq->qid);
1169                 ctx = cancel_cmdid(nvmeq, cmdid, &fn);
1170                 fn(nvmeq, ctx, &cqe);
1171         }
1172 }
1173
1174 static void nvme_free_queue(struct rcu_head *r)
1175 {
1176         struct nvme_queue *nvmeq = container_of(r, struct nvme_queue, r_head);
1177
1178         spin_lock_irq(&nvmeq->q_lock);
1179         while (bio_list_peek(&nvmeq->sq_cong)) {
1180                 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1181                 bio_endio(bio, -EIO);
1182         }
1183         while (!list_empty(&nvmeq->iod_bio)) {
1184                 static struct nvme_completion cqe = {
1185                         .status = cpu_to_le16(
1186                                 (NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1),
1187                 };
1188                 struct nvme_iod *iod = list_first_entry(&nvmeq->iod_bio,
1189                                                         struct nvme_iod,
1190                                                         node);
1191                 list_del(&iod->node);
1192                 bio_completion(nvmeq, iod, &cqe);
1193         }
1194         spin_unlock_irq(&nvmeq->q_lock);
1195
1196         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1197                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1198         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1199                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1200         if (nvmeq->qid)
1201                 free_cpumask_var(nvmeq->cpu_mask);
1202         kfree(nvmeq);
1203 }
1204
1205 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1206 {
1207         int i;
1208
1209         for (i = dev->queue_count - 1; i >= lowest; i--) {
1210                 struct nvme_queue *nvmeq = raw_nvmeq(dev, i);
1211                 rcu_assign_pointer(dev->queues[i], NULL);
1212                 call_rcu(&nvmeq->r_head, nvme_free_queue);
1213                 dev->queue_count--;
1214         }
1215 }
1216
1217 /**
1218  * nvme_suspend_queue - put queue into suspended state
1219  * @nvmeq - queue to suspend
1220  *
1221  * Returns 1 if already suspended, 0 otherwise.
1222  */
1223 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1224 {
1225         int vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1226
1227         spin_lock_irq(&nvmeq->q_lock);
1228         if (nvmeq->q_suspended) {
1229                 spin_unlock_irq(&nvmeq->q_lock);
1230                 return 1;
1231         }
1232         nvmeq->q_suspended = 1;
1233         nvmeq->dev->online_queues--;
1234         spin_unlock_irq(&nvmeq->q_lock);
1235
1236         irq_set_affinity_hint(vector, NULL);
1237         free_irq(vector, nvmeq);
1238
1239         return 0;
1240 }
1241
1242 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1243 {
1244         spin_lock_irq(&nvmeq->q_lock);
1245         nvme_process_cq(nvmeq);
1246         nvme_cancel_ios(nvmeq, false);
1247         spin_unlock_irq(&nvmeq->q_lock);
1248 }
1249
1250 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1251 {
1252         struct nvme_queue *nvmeq = raw_nvmeq(dev, qid);
1253
1254         if (!nvmeq)
1255                 return;
1256         if (nvme_suspend_queue(nvmeq))
1257                 return;
1258
1259         /* Don't tell the adapter to delete the admin queue.
1260          * Don't tell a removed adapter to delete IO queues. */
1261         if (qid && readl(&dev->bar->csts) != -1) {
1262                 adapter_delete_sq(dev, qid);
1263                 adapter_delete_cq(dev, qid);
1264         }
1265         nvme_clear_queue(nvmeq);
1266 }
1267
1268 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1269                                                         int depth, int vector)
1270 {
1271         struct device *dmadev = &dev->pci_dev->dev;
1272         unsigned extra = nvme_queue_extra(depth);
1273         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
1274         if (!nvmeq)
1275                 return NULL;
1276
1277         nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
1278                                         &nvmeq->cq_dma_addr, GFP_KERNEL);
1279         if (!nvmeq->cqes)
1280                 goto free_nvmeq;
1281         memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
1282
1283         nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
1284                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1285         if (!nvmeq->sq_cmds)
1286                 goto free_cqdma;
1287
1288         if (qid && !zalloc_cpumask_var(&nvmeq->cpu_mask, GFP_KERNEL))
1289                 goto free_sqdma;
1290
1291         nvmeq->q_dmadev = dmadev;
1292         nvmeq->dev = dev;
1293         snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1294                         dev->instance, qid);
1295         spin_lock_init(&nvmeq->q_lock);
1296         nvmeq->cq_head = 0;
1297         nvmeq->cq_phase = 1;
1298         init_waitqueue_head(&nvmeq->sq_full);
1299         init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
1300         bio_list_init(&nvmeq->sq_cong);
1301         INIT_LIST_HEAD(&nvmeq->iod_bio);
1302         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1303         nvmeq->q_depth = depth;
1304         nvmeq->cq_vector = vector;
1305         nvmeq->qid = qid;
1306         nvmeq->q_suspended = 1;
1307         dev->queue_count++;
1308         rcu_assign_pointer(dev->queues[qid], nvmeq);
1309
1310         return nvmeq;
1311
1312  free_sqdma:
1313         dma_free_coherent(dmadev, SQ_SIZE(depth), (void *)nvmeq->sq_cmds,
1314                                                         nvmeq->sq_dma_addr);
1315  free_cqdma:
1316         dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1317                                                         nvmeq->cq_dma_addr);
1318  free_nvmeq:
1319         kfree(nvmeq);
1320         return NULL;
1321 }
1322
1323 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1324                                                         const char *name)
1325 {
1326         if (use_threaded_interrupts)
1327                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1328                                         nvme_irq_check, nvme_irq, IRQF_SHARED,
1329                                         name, nvmeq);
1330         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1331                                 IRQF_SHARED, name, nvmeq);
1332 }
1333
1334 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1335 {
1336         struct nvme_dev *dev = nvmeq->dev;
1337         unsigned extra = nvme_queue_extra(nvmeq->q_depth);
1338
1339         nvmeq->sq_tail = 0;
1340         nvmeq->cq_head = 0;
1341         nvmeq->cq_phase = 1;
1342         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1343         memset(nvmeq->cmdid_data, 0, extra);
1344         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1345         nvme_cancel_ios(nvmeq, false);
1346         nvmeq->q_suspended = 0;
1347         dev->online_queues++;
1348 }
1349
1350 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1351 {
1352         struct nvme_dev *dev = nvmeq->dev;
1353         int result;
1354
1355         result = adapter_alloc_cq(dev, qid, nvmeq);
1356         if (result < 0)
1357                 return result;
1358
1359         result = adapter_alloc_sq(dev, qid, nvmeq);
1360         if (result < 0)
1361                 goto release_cq;
1362
1363         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1364         if (result < 0)
1365                 goto release_sq;
1366
1367         spin_lock_irq(&nvmeq->q_lock);
1368         nvme_init_queue(nvmeq, qid);
1369         spin_unlock_irq(&nvmeq->q_lock);
1370
1371         return result;
1372
1373  release_sq:
1374         adapter_delete_sq(dev, qid);
1375  release_cq:
1376         adapter_delete_cq(dev, qid);
1377         return result;
1378 }
1379
1380 static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1381 {
1382         unsigned long timeout;
1383         u32 bit = enabled ? NVME_CSTS_RDY : 0;
1384
1385         timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1386
1387         while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1388                 msleep(100);
1389                 if (fatal_signal_pending(current))
1390                         return -EINTR;
1391                 if (time_after(jiffies, timeout)) {
1392                         dev_err(&dev->pci_dev->dev,
1393                                 "Device not ready; aborting %s\n", enabled ?
1394                                                 "initialisation" : "reset");
1395                         return -ENODEV;
1396                 }
1397         }
1398
1399         return 0;
1400 }
1401
1402 /*
1403  * If the device has been passed off to us in an enabled state, just clear
1404  * the enabled bit.  The spec says we should set the 'shutdown notification
1405  * bits', but doing so may cause the device to complete commands to the
1406  * admin queue ... and we don't know what memory that might be pointing at!
1407  */
1408 static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1409 {
1410         u32 cc = readl(&dev->bar->cc);
1411
1412         if (cc & NVME_CC_ENABLE)
1413                 writel(cc & ~NVME_CC_ENABLE, &dev->bar->cc);
1414         return nvme_wait_ready(dev, cap, false);
1415 }
1416
1417 static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1418 {
1419         return nvme_wait_ready(dev, cap, true);
1420 }
1421
1422 static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1423 {
1424         unsigned long timeout;
1425         u32 cc;
1426
1427         cc = (readl(&dev->bar->cc) & ~NVME_CC_SHN_MASK) | NVME_CC_SHN_NORMAL;
1428         writel(cc, &dev->bar->cc);
1429
1430         timeout = 2 * HZ + jiffies;
1431         while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1432                                                         NVME_CSTS_SHST_CMPLT) {
1433                 msleep(100);
1434                 if (fatal_signal_pending(current))
1435                         return -EINTR;
1436                 if (time_after(jiffies, timeout)) {
1437                         dev_err(&dev->pci_dev->dev,
1438                                 "Device shutdown incomplete; abort shutdown\n");
1439                         return -ENODEV;
1440                 }
1441         }
1442
1443         return 0;
1444 }
1445
1446 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1447 {
1448         int result;
1449         u32 aqa;
1450         u64 cap = readq(&dev->bar->cap);
1451         struct nvme_queue *nvmeq;
1452
1453         result = nvme_disable_ctrl(dev, cap);
1454         if (result < 0)
1455                 return result;
1456
1457         nvmeq = raw_nvmeq(dev, 0);
1458         if (!nvmeq) {
1459                 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
1460                 if (!nvmeq)
1461                         return -ENOMEM;
1462         }
1463
1464         aqa = nvmeq->q_depth - 1;
1465         aqa |= aqa << 16;
1466
1467         dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
1468         dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
1469         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1470         dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1471
1472         writel(aqa, &dev->bar->aqa);
1473         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1474         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1475         writel(dev->ctrl_config, &dev->bar->cc);
1476
1477         result = nvme_enable_ctrl(dev, cap);
1478         if (result)
1479                 return result;
1480
1481         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1482         if (result)
1483                 return result;
1484
1485         spin_lock_irq(&nvmeq->q_lock);
1486         nvme_init_queue(nvmeq, 0);
1487         spin_unlock_irq(&nvmeq->q_lock);
1488         return result;
1489 }
1490
1491 struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1492                                 unsigned long addr, unsigned length)
1493 {
1494         int i, err, count, nents, offset;
1495         struct scatterlist *sg;
1496         struct page **pages;
1497         struct nvme_iod *iod;
1498
1499         if (addr & 3)
1500                 return ERR_PTR(-EINVAL);
1501         if (!length || length > INT_MAX - PAGE_SIZE)
1502                 return ERR_PTR(-EINVAL);
1503
1504         offset = offset_in_page(addr);
1505         count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1506         pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1507         if (!pages)
1508                 return ERR_PTR(-ENOMEM);
1509
1510         err = get_user_pages_fast(addr, count, 1, pages);
1511         if (err < count) {
1512                 count = err;
1513                 err = -EFAULT;
1514                 goto put_pages;
1515         }
1516
1517         err = -ENOMEM;
1518         iod = nvme_alloc_iod(count, length, GFP_KERNEL);
1519         if (!iod)
1520                 goto put_pages;
1521
1522         sg = iod->sg;
1523         sg_init_table(sg, count);
1524         for (i = 0; i < count; i++) {
1525                 sg_set_page(&sg[i], pages[i],
1526                             min_t(unsigned, length, PAGE_SIZE - offset),
1527                             offset);
1528                 length -= (PAGE_SIZE - offset);
1529                 offset = 0;
1530         }
1531         sg_mark_end(&sg[i - 1]);
1532         iod->nents = count;
1533
1534         nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1535                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1536         if (!nents)
1537                 goto free_iod;
1538
1539         kfree(pages);
1540         return iod;
1541
1542  free_iod:
1543         kfree(iod);
1544  put_pages:
1545         for (i = 0; i < count; i++)
1546                 put_page(pages[i]);
1547         kfree(pages);
1548         return ERR_PTR(err);
1549 }
1550
1551 void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1552                         struct nvme_iod *iod)
1553 {
1554         int i;
1555
1556         dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1557                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1558
1559         for (i = 0; i < iod->nents; i++)
1560                 put_page(sg_page(&iod->sg[i]));
1561 }
1562
1563 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1564 {
1565         struct nvme_dev *dev = ns->dev;
1566         struct nvme_user_io io;
1567         struct nvme_command c;
1568         unsigned length, meta_len;
1569         int status, i;
1570         struct nvme_iod *iod, *meta_iod = NULL;
1571         dma_addr_t meta_dma_addr;
1572         void *meta, *uninitialized_var(meta_mem);
1573
1574         if (copy_from_user(&io, uio, sizeof(io)))
1575                 return -EFAULT;
1576         length = (io.nblocks + 1) << ns->lba_shift;
1577         meta_len = (io.nblocks + 1) * ns->ms;
1578
1579         if (meta_len && ((io.metadata & 3) || !io.metadata))
1580                 return -EINVAL;
1581
1582         switch (io.opcode) {
1583         case nvme_cmd_write:
1584         case nvme_cmd_read:
1585         case nvme_cmd_compare:
1586                 iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1587                 break;
1588         default:
1589                 return -EINVAL;
1590         }
1591
1592         if (IS_ERR(iod))
1593                 return PTR_ERR(iod);
1594
1595         memset(&c, 0, sizeof(c));
1596         c.rw.opcode = io.opcode;
1597         c.rw.flags = io.flags;
1598         c.rw.nsid = cpu_to_le32(ns->ns_id);
1599         c.rw.slba = cpu_to_le64(io.slba);
1600         c.rw.length = cpu_to_le16(io.nblocks);
1601         c.rw.control = cpu_to_le16(io.control);
1602         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1603         c.rw.reftag = cpu_to_le32(io.reftag);
1604         c.rw.apptag = cpu_to_le16(io.apptag);
1605         c.rw.appmask = cpu_to_le16(io.appmask);
1606
1607         if (meta_len) {
1608                 meta_iod = nvme_map_user_pages(dev, io.opcode & 1, io.metadata,
1609                                                                 meta_len);
1610                 if (IS_ERR(meta_iod)) {
1611                         status = PTR_ERR(meta_iod);
1612                         meta_iod = NULL;
1613                         goto unmap;
1614                 }
1615
1616                 meta_mem = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
1617                                                 &meta_dma_addr, GFP_KERNEL);
1618                 if (!meta_mem) {
1619                         status = -ENOMEM;
1620                         goto unmap;
1621                 }
1622
1623                 if (io.opcode & 1) {
1624                         int meta_offset = 0;
1625
1626                         for (i = 0; i < meta_iod->nents; i++) {
1627                                 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1628                                                 meta_iod->sg[i].offset;
1629                                 memcpy(meta_mem + meta_offset, meta,
1630                                                 meta_iod->sg[i].length);
1631                                 kunmap_atomic(meta);
1632                                 meta_offset += meta_iod->sg[i].length;
1633                         }
1634                 }
1635
1636                 c.rw.metadata = cpu_to_le64(meta_dma_addr);
1637         }
1638
1639         length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1640         c.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1641         c.rw.prp2 = cpu_to_le64(iod->first_dma);
1642
1643         if (length != (io.nblocks + 1) << ns->lba_shift)
1644                 status = -ENOMEM;
1645         else
1646                 status = nvme_submit_io_cmd(dev, &c, NULL);
1647
1648         if (meta_len) {
1649                 if (status == NVME_SC_SUCCESS && !(io.opcode & 1)) {
1650                         int meta_offset = 0;
1651
1652                         for (i = 0; i < meta_iod->nents; i++) {
1653                                 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1654                                                 meta_iod->sg[i].offset;
1655                                 memcpy(meta, meta_mem + meta_offset,
1656                                                 meta_iod->sg[i].length);
1657                                 kunmap_atomic(meta);
1658                                 meta_offset += meta_iod->sg[i].length;
1659                         }
1660                 }
1661
1662                 dma_free_coherent(&dev->pci_dev->dev, meta_len, meta_mem,
1663                                                                 meta_dma_addr);
1664         }
1665
1666  unmap:
1667         nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1668         nvme_free_iod(dev, iod);
1669
1670         if (meta_iod) {
1671                 nvme_unmap_user_pages(dev, io.opcode & 1, meta_iod);
1672                 nvme_free_iod(dev, meta_iod);
1673         }
1674
1675         return status;
1676 }
1677
1678 static int nvme_user_admin_cmd(struct nvme_dev *dev,
1679                                         struct nvme_admin_cmd __user *ucmd)
1680 {
1681         struct nvme_admin_cmd cmd;
1682         struct nvme_command c;
1683         int status, length;
1684         struct nvme_iod *uninitialized_var(iod);
1685         unsigned timeout;
1686
1687         if (!capable(CAP_SYS_ADMIN))
1688                 return -EACCES;
1689         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1690                 return -EFAULT;
1691
1692         memset(&c, 0, sizeof(c));
1693         c.common.opcode = cmd.opcode;
1694         c.common.flags = cmd.flags;
1695         c.common.nsid = cpu_to_le32(cmd.nsid);
1696         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1697         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1698         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1699         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1700         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1701         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1702         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1703         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1704
1705         length = cmd.data_len;
1706         if (cmd.data_len) {
1707                 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1708                                                                 length);
1709                 if (IS_ERR(iod))
1710                         return PTR_ERR(iod);
1711                 length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1712                 c.common.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1713                 c.common.prp2 = cpu_to_le64(iod->first_dma);
1714         }
1715
1716         timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
1717                                                                 ADMIN_TIMEOUT;
1718         if (length != cmd.data_len)
1719                 status = -ENOMEM;
1720         else
1721                 status = nvme_submit_sync_cmd(dev, 0, &c, &cmd.result, timeout);
1722
1723         if (cmd.data_len) {
1724                 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1725                 nvme_free_iod(dev, iod);
1726         }
1727
1728         if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
1729                                                         sizeof(cmd.result)))
1730                 status = -EFAULT;
1731
1732         return status;
1733 }
1734
1735 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1736                                                         unsigned long arg)
1737 {
1738         struct nvme_ns *ns = bdev->bd_disk->private_data;
1739
1740         switch (cmd) {
1741         case NVME_IOCTL_ID:
1742                 force_successful_syscall_return();
1743                 return ns->ns_id;
1744         case NVME_IOCTL_ADMIN_CMD:
1745                 return nvme_user_admin_cmd(ns->dev, (void __user *)arg);
1746         case NVME_IOCTL_SUBMIT_IO:
1747                 return nvme_submit_io(ns, (void __user *)arg);
1748         case SG_GET_VERSION_NUM:
1749                 return nvme_sg_get_version_num((void __user *)arg);
1750         case SG_IO:
1751                 return nvme_sg_io(ns, (void __user *)arg);
1752         default:
1753                 return -ENOTTY;
1754         }
1755 }
1756
1757 #ifdef CONFIG_COMPAT
1758 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1759                                         unsigned int cmd, unsigned long arg)
1760 {
1761         struct nvme_ns *ns = bdev->bd_disk->private_data;
1762
1763         switch (cmd) {
1764         case SG_IO:
1765                 return nvme_sg_io32(ns, arg);
1766         }
1767         return nvme_ioctl(bdev, mode, cmd, arg);
1768 }
1769 #else
1770 #define nvme_compat_ioctl       NULL
1771 #endif
1772
1773 static int nvme_open(struct block_device *bdev, fmode_t mode)
1774 {
1775         struct nvme_ns *ns = bdev->bd_disk->private_data;
1776         struct nvme_dev *dev = ns->dev;
1777
1778         kref_get(&dev->kref);
1779         return 0;
1780 }
1781
1782 static void nvme_free_dev(struct kref *kref);
1783
1784 static void nvme_release(struct gendisk *disk, fmode_t mode)
1785 {
1786         struct nvme_ns *ns = disk->private_data;
1787         struct nvme_dev *dev = ns->dev;
1788
1789         kref_put(&dev->kref, nvme_free_dev);
1790 }
1791
1792 static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
1793 {
1794         /* some standard values */
1795         geo->heads = 1 << 6;
1796         geo->sectors = 1 << 5;
1797         geo->cylinders = get_capacity(bd->bd_disk) >> 11;
1798         return 0;
1799 }
1800
1801 static const struct block_device_operations nvme_fops = {
1802         .owner          = THIS_MODULE,
1803         .ioctl          = nvme_ioctl,
1804         .compat_ioctl   = nvme_compat_ioctl,
1805         .open           = nvme_open,
1806         .release        = nvme_release,
1807         .getgeo         = nvme_getgeo,
1808 };
1809
1810 static void nvme_resubmit_iods(struct nvme_queue *nvmeq)
1811 {
1812         struct nvme_iod *iod, *next;
1813
1814         list_for_each_entry_safe(iod, next, &nvmeq->iod_bio, node) {
1815                 if (unlikely(nvme_submit_iod(nvmeq, iod)))
1816                         break;
1817                 list_del(&iod->node);
1818                 if (bio_list_empty(&nvmeq->sq_cong) &&
1819                                                 list_empty(&nvmeq->iod_bio))
1820                         remove_wait_queue(&nvmeq->sq_full,
1821                                                 &nvmeq->sq_cong_wait);
1822         }
1823 }
1824
1825 static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1826 {
1827         while (bio_list_peek(&nvmeq->sq_cong)) {
1828                 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1829                 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1830
1831                 if (bio_list_empty(&nvmeq->sq_cong) &&
1832                                                 list_empty(&nvmeq->iod_bio))
1833                         remove_wait_queue(&nvmeq->sq_full,
1834                                                         &nvmeq->sq_cong_wait);
1835                 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1836                         if (!waitqueue_active(&nvmeq->sq_full))
1837                                 add_wait_queue(&nvmeq->sq_full,
1838                                                         &nvmeq->sq_cong_wait);
1839                         bio_list_add_head(&nvmeq->sq_cong, bio);
1840                         break;
1841                 }
1842         }
1843 }
1844
1845 static int nvme_kthread(void *data)
1846 {
1847         struct nvme_dev *dev, *next;
1848
1849         while (!kthread_should_stop()) {
1850                 set_current_state(TASK_INTERRUPTIBLE);
1851                 spin_lock(&dev_list_lock);
1852                 list_for_each_entry_safe(dev, next, &dev_list, node) {
1853                         int i;
1854                         if (readl(&dev->bar->csts) & NVME_CSTS_CFS &&
1855                                                         dev->initialized) {
1856                                 if (work_busy(&dev->reset_work))
1857                                         continue;
1858                                 list_del_init(&dev->node);
1859                                 dev_warn(&dev->pci_dev->dev,
1860                                         "Failed status, reset controller\n");
1861                                 dev->reset_workfn = nvme_reset_failed_dev;
1862                                 queue_work(nvme_workq, &dev->reset_work);
1863                                 continue;
1864                         }
1865                         rcu_read_lock();
1866                         for (i = 0; i < dev->queue_count; i++) {
1867                                 struct nvme_queue *nvmeq =
1868                                                 rcu_dereference(dev->queues[i]);
1869                                 if (!nvmeq)
1870                                         continue;
1871                                 spin_lock_irq(&nvmeq->q_lock);
1872                                 if (nvmeq->q_suspended)
1873                                         goto unlock;
1874                                 nvme_process_cq(nvmeq);
1875                                 nvme_cancel_ios(nvmeq, true);
1876                                 nvme_resubmit_bios(nvmeq);
1877                                 nvme_resubmit_iods(nvmeq);
1878  unlock:
1879                                 spin_unlock_irq(&nvmeq->q_lock);
1880                         }
1881                         rcu_read_unlock();
1882                 }
1883                 spin_unlock(&dev_list_lock);
1884                 schedule_timeout(round_jiffies_relative(HZ));
1885         }
1886         return 0;
1887 }
1888
1889 static void nvme_config_discard(struct nvme_ns *ns)
1890 {
1891         u32 logical_block_size = queue_logical_block_size(ns->queue);
1892         ns->queue->limits.discard_zeroes_data = 0;
1893         ns->queue->limits.discard_alignment = logical_block_size;
1894         ns->queue->limits.discard_granularity = logical_block_size;
1895         ns->queue->limits.max_discard_sectors = 0xffffffff;
1896         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1897 }
1898
1899 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid,
1900                         struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1901 {
1902         struct nvme_ns *ns;
1903         struct gendisk *disk;
1904         int lbaf;
1905
1906         if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1907                 return NULL;
1908
1909         ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1910         if (!ns)
1911                 return NULL;
1912         ns->queue = blk_alloc_queue(GFP_KERNEL);
1913         if (!ns->queue)
1914                 goto out_free_ns;
1915         ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
1916         queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1917         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1918         blk_queue_make_request(ns->queue, nvme_make_request);
1919         ns->dev = dev;
1920         ns->queue->queuedata = ns;
1921
1922         disk = alloc_disk(0);
1923         if (!disk)
1924                 goto out_free_queue;
1925         ns->ns_id = nsid;
1926         ns->disk = disk;
1927         lbaf = id->flbas & 0xf;
1928         ns->lba_shift = id->lbaf[lbaf].ds;
1929         ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1930         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1931         if (dev->max_hw_sectors)
1932                 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
1933         if (dev->vwc & NVME_CTRL_VWC_PRESENT)
1934                 blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
1935
1936         disk->major = nvme_major;
1937         disk->first_minor = 0;
1938         disk->fops = &nvme_fops;
1939         disk->private_data = ns;
1940         disk->queue = ns->queue;
1941         disk->driverfs_dev = &dev->pci_dev->dev;
1942         disk->flags = GENHD_FL_EXT_DEVT;
1943         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
1944         set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1945
1946         if (dev->oncs & NVME_CTRL_ONCS_DSM)
1947                 nvme_config_discard(ns);
1948
1949         return ns;
1950
1951  out_free_queue:
1952         blk_cleanup_queue(ns->queue);
1953  out_free_ns:
1954         kfree(ns);
1955         return NULL;
1956 }
1957
1958 static int nvme_find_closest_node(int node)
1959 {
1960         int n, val, min_val = INT_MAX, best_node = node;
1961
1962         for_each_online_node(n) {
1963                 if (n == node)
1964                         continue;
1965                 val = node_distance(node, n);
1966                 if (val < min_val) {
1967                         min_val = val;
1968                         best_node = n;
1969                 }
1970         }
1971         return best_node;
1972 }
1973
1974 static void nvme_set_queue_cpus(cpumask_t *qmask, struct nvme_queue *nvmeq,
1975                                                                 int count)
1976 {
1977         int cpu;
1978         for_each_cpu(cpu, qmask) {
1979                 if (cpumask_weight(nvmeq->cpu_mask) >= count)
1980                         break;
1981                 if (!cpumask_test_and_set_cpu(cpu, nvmeq->cpu_mask))
1982                         *per_cpu_ptr(nvmeq->dev->io_queue, cpu) = nvmeq->qid;
1983         }
1984 }
1985
1986 static void nvme_add_cpus(cpumask_t *mask, const cpumask_t *unassigned_cpus,
1987         const cpumask_t *new_mask, struct nvme_queue *nvmeq, int cpus_per_queue)
1988 {
1989         int next_cpu;
1990         for_each_cpu(next_cpu, new_mask) {
1991                 cpumask_or(mask, mask, get_cpu_mask(next_cpu));
1992                 cpumask_or(mask, mask, topology_thread_cpumask(next_cpu));
1993                 cpumask_and(mask, mask, unassigned_cpus);
1994                 nvme_set_queue_cpus(mask, nvmeq, cpus_per_queue);
1995         }
1996 }
1997
1998 static void nvme_create_io_queues(struct nvme_dev *dev)
1999 {
2000         unsigned i, max;
2001
2002         max = min(dev->max_qid, num_online_cpus());
2003         for (i = dev->queue_count; i <= max; i++)
2004                 if (!nvme_alloc_queue(dev, i, dev->q_depth, i - 1))
2005                         break;
2006
2007         max = min(dev->queue_count - 1, num_online_cpus());
2008         for (i = dev->online_queues; i <= max; i++)
2009                 if (nvme_create_queue(raw_nvmeq(dev, i), i))
2010                         break;
2011 }
2012
2013 /*
2014  * If there are fewer queues than online cpus, this will try to optimally
2015  * assign a queue to multiple cpus by grouping cpus that are "close" together:
2016  * thread siblings, core, socket, closest node, then whatever else is
2017  * available.
2018  */
2019 static void nvme_assign_io_queues(struct nvme_dev *dev)
2020 {
2021         unsigned cpu, cpus_per_queue, queues, remainder, i;
2022         cpumask_var_t unassigned_cpus;
2023
2024         nvme_create_io_queues(dev);
2025
2026         queues = min(dev->online_queues - 1, num_online_cpus());
2027         if (!queues)
2028                 return;
2029
2030         cpus_per_queue = num_online_cpus() / queues;
2031         remainder = queues - (num_online_cpus() - queues * cpus_per_queue);
2032
2033         if (!alloc_cpumask_var(&unassigned_cpus, GFP_KERNEL))
2034                 return;
2035
2036         cpumask_copy(unassigned_cpus, cpu_online_mask);
2037         cpu = cpumask_first(unassigned_cpus);
2038         for (i = 1; i <= queues; i++) {
2039                 struct nvme_queue *nvmeq = lock_nvmeq(dev, i);
2040                 cpumask_t mask;
2041
2042                 cpumask_clear(nvmeq->cpu_mask);
2043                 if (!cpumask_weight(unassigned_cpus)) {
2044                         unlock_nvmeq(nvmeq);
2045                         break;
2046                 }
2047
2048                 mask = *get_cpu_mask(cpu);
2049                 nvme_set_queue_cpus(&mask, nvmeq, cpus_per_queue);
2050                 if (cpus_weight(mask) < cpus_per_queue)
2051                         nvme_add_cpus(&mask, unassigned_cpus,
2052                                 topology_thread_cpumask(cpu),
2053                                 nvmeq, cpus_per_queue);
2054                 if (cpus_weight(mask) < cpus_per_queue)
2055                         nvme_add_cpus(&mask, unassigned_cpus,
2056                                 topology_core_cpumask(cpu),
2057                                 nvmeq, cpus_per_queue);
2058                 if (cpus_weight(mask) < cpus_per_queue)
2059                         nvme_add_cpus(&mask, unassigned_cpus,
2060                                 cpumask_of_node(cpu_to_node(cpu)),
2061                                 nvmeq, cpus_per_queue);
2062                 if (cpus_weight(mask) < cpus_per_queue)
2063                         nvme_add_cpus(&mask, unassigned_cpus,
2064                                 cpumask_of_node(
2065                                         nvme_find_closest_node(
2066                                                 cpu_to_node(cpu))),
2067                                 nvmeq, cpus_per_queue);
2068                 if (cpus_weight(mask) < cpus_per_queue)
2069                         nvme_add_cpus(&mask, unassigned_cpus,
2070                                 unassigned_cpus,
2071                                 nvmeq, cpus_per_queue);
2072
2073                 WARN(cpumask_weight(nvmeq->cpu_mask) != cpus_per_queue,
2074                         "nvme%d qid:%d mis-matched queue-to-cpu assignment\n",
2075                         dev->instance, i);
2076
2077                 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2078                                                         nvmeq->cpu_mask);
2079                 cpumask_andnot(unassigned_cpus, unassigned_cpus,
2080                                                 nvmeq->cpu_mask);
2081                 cpu = cpumask_next(cpu, unassigned_cpus);
2082                 if (remainder && !--remainder)
2083                         cpus_per_queue++;
2084                 unlock_nvmeq(nvmeq);
2085         }
2086         WARN(cpumask_weight(unassigned_cpus), "nvme%d unassigned online cpus\n",
2087                                                                 dev->instance);
2088         i = 0;
2089         cpumask_andnot(unassigned_cpus, cpu_possible_mask, cpu_online_mask);
2090         for_each_cpu(cpu, unassigned_cpus)
2091                 *per_cpu_ptr(dev->io_queue, cpu) = (i++ % queues) + 1;
2092         free_cpumask_var(unassigned_cpus);
2093 }
2094
2095 static int set_queue_count(struct nvme_dev *dev, int count)
2096 {
2097         int status;
2098         u32 result;
2099         u32 q_count = (count - 1) | ((count - 1) << 16);
2100
2101         status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
2102                                                                 &result);
2103         if (status < 0)
2104                 return status;
2105         if (status > 0) {
2106                 dev_err(&dev->pci_dev->dev, "Could not set queue count (%d)\n",
2107                                                                         status);
2108                 return -EBUSY;
2109         }
2110         return min(result & 0xffff, result >> 16) + 1;
2111 }
2112
2113 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2114 {
2115         return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
2116 }
2117
2118 static int nvme_cpu_notify(struct notifier_block *self,
2119                                 unsigned long action, void *hcpu)
2120 {
2121         struct nvme_dev *dev = container_of(self, struct nvme_dev, nb);
2122         switch (action) {
2123         case CPU_ONLINE:
2124         case CPU_DEAD:
2125                 nvme_assign_io_queues(dev);
2126                 break;
2127         }
2128         return NOTIFY_OK;
2129 }
2130
2131 static int nvme_setup_io_queues(struct nvme_dev *dev)
2132 {
2133         struct nvme_queue *adminq = raw_nvmeq(dev, 0);
2134         struct pci_dev *pdev = dev->pci_dev;
2135         int result, i, vecs, nr_io_queues, size;
2136
2137         nr_io_queues = num_possible_cpus();
2138         result = set_queue_count(dev, nr_io_queues);
2139         if (result < 0)
2140                 return result;
2141         if (result < nr_io_queues)
2142                 nr_io_queues = result;
2143
2144         size = db_bar_size(dev, nr_io_queues);
2145         if (size > 8192) {
2146                 iounmap(dev->bar);
2147                 do {
2148                         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2149                         if (dev->bar)
2150                                 break;
2151                         if (!--nr_io_queues)
2152                                 return -ENOMEM;
2153                         size = db_bar_size(dev, nr_io_queues);
2154                 } while (1);
2155                 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2156                 adminq->q_db = dev->dbs;
2157         }
2158
2159         /* Deregister the admin queue's interrupt */
2160         free_irq(dev->entry[0].vector, adminq);
2161
2162         for (i = 0; i < nr_io_queues; i++)
2163                 dev->entry[i].entry = i;
2164         vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2165         if (vecs < 0) {
2166                 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2167                 if (vecs < 0) {
2168                         vecs = 1;
2169                 } else {
2170                         for (i = 0; i < vecs; i++)
2171                                 dev->entry[i].vector = i + pdev->irq;
2172                 }
2173         }
2174
2175         /*
2176          * Should investigate if there's a performance win from allocating
2177          * more queues than interrupt vectors; it might allow the submission
2178          * path to scale better, even if the receive path is limited by the
2179          * number of interrupts.
2180          */
2181         nr_io_queues = vecs;
2182         dev->max_qid = nr_io_queues;
2183
2184         result = queue_request_irq(dev, adminq, adminq->irqname);
2185         if (result) {
2186                 adminq->q_suspended = 1;
2187                 goto free_queues;
2188         }
2189
2190         /* Free previously allocated queues that are no longer usable */
2191         nvme_free_queues(dev, nr_io_queues + 1);
2192         nvme_assign_io_queues(dev);
2193
2194         dev->nb.notifier_call = &nvme_cpu_notify;
2195         result = register_hotcpu_notifier(&dev->nb);
2196         if (result)
2197                 goto free_queues;
2198
2199         return 0;
2200
2201  free_queues:
2202         nvme_free_queues(dev, 1);
2203         return result;
2204 }
2205
2206 /*
2207  * Return: error value if an error occurred setting up the queues or calling
2208  * Identify Device.  0 if these succeeded, even if adding some of the
2209  * namespaces failed.  At the moment, these failures are silent.  TBD which
2210  * failures should be reported.
2211  */
2212 static int nvme_dev_add(struct nvme_dev *dev)
2213 {
2214         struct pci_dev *pdev = dev->pci_dev;
2215         int res;
2216         unsigned nn, i;
2217         struct nvme_ns *ns;
2218         struct nvme_id_ctrl *ctrl;
2219         struct nvme_id_ns *id_ns;
2220         void *mem;
2221         dma_addr_t dma_addr;
2222         int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
2223
2224         mem = dma_alloc_coherent(&pdev->dev, 8192, &dma_addr, GFP_KERNEL);
2225         if (!mem)
2226                 return -ENOMEM;
2227
2228         res = nvme_identify(dev, 0, 1, dma_addr);
2229         if (res) {
2230                 dev_err(&pdev->dev, "Identify Controller failed (%d)\n", res);
2231                 res = -EIO;
2232                 goto out;
2233         }
2234
2235         ctrl = mem;
2236         nn = le32_to_cpup(&ctrl->nn);
2237         dev->oncs = le16_to_cpup(&ctrl->oncs);
2238         dev->abort_limit = ctrl->acl + 1;
2239         dev->vwc = ctrl->vwc;
2240         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2241         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2242         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
2243         if (ctrl->mdts)
2244                 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
2245         if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
2246                         (pdev->device == 0x0953) && ctrl->vs[3])
2247                 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
2248
2249         id_ns = mem;
2250         for (i = 1; i <= nn; i++) {
2251                 res = nvme_identify(dev, i, 0, dma_addr);
2252                 if (res)
2253                         continue;
2254
2255                 if (id_ns->ncap == 0)
2256                         continue;
2257
2258                 res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
2259                                                         dma_addr + 4096, NULL);
2260                 if (res)
2261                         memset(mem + 4096, 0, 4096);
2262
2263                 ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
2264                 if (ns)
2265                         list_add_tail(&ns->list, &dev->namespaces);
2266         }
2267         list_for_each_entry(ns, &dev->namespaces, list)
2268                 add_disk(ns->disk);
2269         res = 0;
2270
2271  out:
2272         dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
2273         return res;
2274 }
2275
2276 static int nvme_dev_map(struct nvme_dev *dev)
2277 {
2278         u64 cap;
2279         int bars, result = -ENOMEM;
2280         struct pci_dev *pdev = dev->pci_dev;
2281
2282         if (pci_enable_device_mem(pdev))
2283                 return result;
2284
2285         dev->entry[0].vector = pdev->irq;
2286         pci_set_master(pdev);
2287         bars = pci_select_bars(pdev, IORESOURCE_MEM);
2288         if (pci_request_selected_regions(pdev, bars, "nvme"))
2289                 goto disable_pci;
2290
2291         if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
2292             dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)))
2293                 goto disable;
2294
2295         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2296         if (!dev->bar)
2297                 goto disable;
2298         if (readl(&dev->bar->csts) == -1) {
2299                 result = -ENODEV;
2300                 goto unmap;
2301         }
2302         cap = readq(&dev->bar->cap);
2303         dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2304         dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
2305         dev->dbs = ((void __iomem *)dev->bar) + 4096;
2306
2307         return 0;
2308
2309  unmap:
2310         iounmap(dev->bar);
2311         dev->bar = NULL;
2312  disable:
2313         pci_release_regions(pdev);
2314  disable_pci:
2315         pci_disable_device(pdev);
2316         return result;
2317 }
2318
2319 static void nvme_dev_unmap(struct nvme_dev *dev)
2320 {
2321         if (dev->pci_dev->msi_enabled)
2322                 pci_disable_msi(dev->pci_dev);
2323         else if (dev->pci_dev->msix_enabled)
2324                 pci_disable_msix(dev->pci_dev);
2325
2326         if (dev->bar) {
2327                 iounmap(dev->bar);
2328                 dev->bar = NULL;
2329                 pci_release_regions(dev->pci_dev);
2330         }
2331
2332         if (pci_is_enabled(dev->pci_dev))
2333                 pci_disable_device(dev->pci_dev);
2334 }
2335
2336 struct nvme_delq_ctx {
2337         struct task_struct *waiter;
2338         struct kthread_worker *worker;
2339         atomic_t refcount;
2340 };
2341
2342 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2343 {
2344         dq->waiter = current;
2345         mb();
2346
2347         for (;;) {
2348                 set_current_state(TASK_KILLABLE);
2349                 if (!atomic_read(&dq->refcount))
2350                         break;
2351                 if (!schedule_timeout(ADMIN_TIMEOUT) ||
2352                                         fatal_signal_pending(current)) {
2353                         set_current_state(TASK_RUNNING);
2354
2355                         nvme_disable_ctrl(dev, readq(&dev->bar->cap));
2356                         nvme_disable_queue(dev, 0);
2357
2358                         send_sig(SIGKILL, dq->worker->task, 1);
2359                         flush_kthread_worker(dq->worker);
2360                         return;
2361                 }
2362         }
2363         set_current_state(TASK_RUNNING);
2364 }
2365
2366 static void nvme_put_dq(struct nvme_delq_ctx *dq)
2367 {
2368         atomic_dec(&dq->refcount);
2369         if (dq->waiter)
2370                 wake_up_process(dq->waiter);
2371 }
2372
2373 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2374 {
2375         atomic_inc(&dq->refcount);
2376         return dq;
2377 }
2378
2379 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2380 {
2381         struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
2382
2383         nvme_clear_queue(nvmeq);
2384         nvme_put_dq(dq);
2385 }
2386
2387 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2388                                                 kthread_work_func_t fn)
2389 {
2390         struct nvme_command c;
2391
2392         memset(&c, 0, sizeof(c));
2393         c.delete_queue.opcode = opcode;
2394         c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2395
2396         init_kthread_work(&nvmeq->cmdinfo.work, fn);
2397         return nvme_submit_admin_cmd_async(nvmeq->dev, &c, &nvmeq->cmdinfo);
2398 }
2399
2400 static void nvme_del_cq_work_handler(struct kthread_work *work)
2401 {
2402         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2403                                                         cmdinfo.work);
2404         nvme_del_queue_end(nvmeq);
2405 }
2406
2407 static int nvme_delete_cq(struct nvme_queue *nvmeq)
2408 {
2409         return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2410                                                 nvme_del_cq_work_handler);
2411 }
2412
2413 static void nvme_del_sq_work_handler(struct kthread_work *work)
2414 {
2415         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2416                                                         cmdinfo.work);
2417         int status = nvmeq->cmdinfo.status;
2418
2419         if (!status)
2420                 status = nvme_delete_cq(nvmeq);
2421         if (status)
2422                 nvme_del_queue_end(nvmeq);
2423 }
2424
2425 static int nvme_delete_sq(struct nvme_queue *nvmeq)
2426 {
2427         return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2428                                                 nvme_del_sq_work_handler);
2429 }
2430
2431 static void nvme_del_queue_start(struct kthread_work *work)
2432 {
2433         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2434                                                         cmdinfo.work);
2435         allow_signal(SIGKILL);
2436         if (nvme_delete_sq(nvmeq))
2437                 nvme_del_queue_end(nvmeq);
2438 }
2439
2440 static void nvme_disable_io_queues(struct nvme_dev *dev)
2441 {
2442         int i;
2443         DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2444         struct nvme_delq_ctx dq;
2445         struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2446                                         &worker, "nvme%d", dev->instance);
2447
2448         if (IS_ERR(kworker_task)) {
2449                 dev_err(&dev->pci_dev->dev,
2450                         "Failed to create queue del task\n");
2451                 for (i = dev->queue_count - 1; i > 0; i--)
2452                         nvme_disable_queue(dev, i);
2453                 return;
2454         }
2455
2456         dq.waiter = NULL;
2457         atomic_set(&dq.refcount, 0);
2458         dq.worker = &worker;
2459         for (i = dev->queue_count - 1; i > 0; i--) {
2460                 struct nvme_queue *nvmeq = raw_nvmeq(dev, i);
2461
2462                 if (nvme_suspend_queue(nvmeq))
2463                         continue;
2464                 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2465                 nvmeq->cmdinfo.worker = dq.worker;
2466                 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2467                 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2468         }
2469         nvme_wait_dq(&dq, dev);
2470         kthread_stop(kworker_task);
2471 }
2472
2473 /*
2474 * Remove the node from the device list and check
2475 * for whether or not we need to stop the nvme_thread.
2476 */
2477 static void nvme_dev_list_remove(struct nvme_dev *dev)
2478 {
2479         struct task_struct *tmp = NULL;
2480
2481         spin_lock(&dev_list_lock);
2482         list_del_init(&dev->node);
2483         if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2484                 tmp = nvme_thread;
2485                 nvme_thread = NULL;
2486         }
2487         spin_unlock(&dev_list_lock);
2488
2489         if (tmp)
2490                 kthread_stop(tmp);
2491 }
2492
2493 static void nvme_dev_shutdown(struct nvme_dev *dev)
2494 {
2495         int i;
2496
2497         dev->initialized = 0;
2498         unregister_hotcpu_notifier(&dev->nb);
2499
2500         nvme_dev_list_remove(dev);
2501
2502         if (!dev->bar || (dev->bar && readl(&dev->bar->csts) == -1)) {
2503                 for (i = dev->queue_count - 1; i >= 0; i--) {
2504                         struct nvme_queue *nvmeq = raw_nvmeq(dev, i);
2505                         nvme_suspend_queue(nvmeq);
2506                         nvme_clear_queue(nvmeq);
2507                 }
2508         } else {
2509                 nvme_disable_io_queues(dev);
2510                 nvme_shutdown_ctrl(dev);
2511                 nvme_disable_queue(dev, 0);
2512         }
2513         nvme_dev_unmap(dev);
2514 }
2515
2516 static void nvme_dev_remove(struct nvme_dev *dev)
2517 {
2518         struct nvme_ns *ns;
2519
2520         list_for_each_entry(ns, &dev->namespaces, list) {
2521                 if (ns->disk->flags & GENHD_FL_UP)
2522                         del_gendisk(ns->disk);
2523                 if (!blk_queue_dying(ns->queue))
2524                         blk_cleanup_queue(ns->queue);
2525         }
2526 }
2527
2528 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2529 {
2530         struct device *dmadev = &dev->pci_dev->dev;
2531         dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
2532                                                 PAGE_SIZE, PAGE_SIZE, 0);
2533         if (!dev->prp_page_pool)
2534                 return -ENOMEM;
2535
2536         /* Optimisation for I/Os between 4k and 128k */
2537         dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
2538                                                 256, 256, 0);
2539         if (!dev->prp_small_pool) {
2540                 dma_pool_destroy(dev->prp_page_pool);
2541                 return -ENOMEM;
2542         }
2543         return 0;
2544 }
2545
2546 static void nvme_release_prp_pools(struct nvme_dev *dev)
2547 {
2548         dma_pool_destroy(dev->prp_page_pool);
2549         dma_pool_destroy(dev->prp_small_pool);
2550 }
2551
2552 static DEFINE_IDA(nvme_instance_ida);
2553
2554 static int nvme_set_instance(struct nvme_dev *dev)
2555 {
2556         int instance, error;
2557
2558         do {
2559                 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2560                         return -ENODEV;
2561
2562                 spin_lock(&dev_list_lock);
2563                 error = ida_get_new(&nvme_instance_ida, &instance);
2564                 spin_unlock(&dev_list_lock);
2565         } while (error == -EAGAIN);
2566
2567         if (error)
2568                 return -ENODEV;
2569
2570         dev->instance = instance;
2571         return 0;
2572 }
2573
2574 static void nvme_release_instance(struct nvme_dev *dev)
2575 {
2576         spin_lock(&dev_list_lock);
2577         ida_remove(&nvme_instance_ida, dev->instance);
2578         spin_unlock(&dev_list_lock);
2579 }
2580
2581 static void nvme_free_namespaces(struct nvme_dev *dev)
2582 {
2583         struct nvme_ns *ns, *next;
2584
2585         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
2586                 list_del(&ns->list);
2587                 put_disk(ns->disk);
2588                 kfree(ns);
2589         }
2590 }
2591
2592 static void nvme_free_dev(struct kref *kref)
2593 {
2594         struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
2595
2596         nvme_free_namespaces(dev);
2597         free_percpu(dev->io_queue);
2598         kfree(dev->queues);
2599         kfree(dev->entry);
2600         kfree(dev);
2601 }
2602
2603 static int nvme_dev_open(struct inode *inode, struct file *f)
2604 {
2605         struct nvme_dev *dev = container_of(f->private_data, struct nvme_dev,
2606                                                                 miscdev);
2607         kref_get(&dev->kref);
2608         f->private_data = dev;
2609         return 0;
2610 }
2611
2612 static int nvme_dev_release(struct inode *inode, struct file *f)
2613 {
2614         struct nvme_dev *dev = f->private_data;
2615         kref_put(&dev->kref, nvme_free_dev);
2616         return 0;
2617 }
2618
2619 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2620 {
2621         struct nvme_dev *dev = f->private_data;
2622         switch (cmd) {
2623         case NVME_IOCTL_ADMIN_CMD:
2624                 return nvme_user_admin_cmd(dev, (void __user *)arg);
2625         default:
2626                 return -ENOTTY;
2627         }
2628 }
2629
2630 static const struct file_operations nvme_dev_fops = {
2631         .owner          = THIS_MODULE,
2632         .open           = nvme_dev_open,
2633         .release        = nvme_dev_release,
2634         .unlocked_ioctl = nvme_dev_ioctl,
2635         .compat_ioctl   = nvme_dev_ioctl,
2636 };
2637
2638 static int nvme_dev_start(struct nvme_dev *dev)
2639 {
2640         int result;
2641         bool start_thread = false;
2642
2643         result = nvme_dev_map(dev);
2644         if (result)
2645                 return result;
2646
2647         result = nvme_configure_admin_queue(dev);
2648         if (result)
2649                 goto unmap;
2650
2651         spin_lock(&dev_list_lock);
2652         if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2653                 start_thread = true;
2654                 nvme_thread = NULL;
2655         }
2656         list_add(&dev->node, &dev_list);
2657         spin_unlock(&dev_list_lock);
2658
2659         if (start_thread) {
2660                 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2661                 wake_up(&nvme_kthread_wait);
2662         } else
2663                 wait_event_killable(nvme_kthread_wait, nvme_thread);
2664
2665         if (IS_ERR_OR_NULL(nvme_thread)) {
2666                 result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2667                 goto disable;
2668         }
2669
2670         result = nvme_setup_io_queues(dev);
2671         if (result && result != -EBUSY)
2672                 goto disable;
2673
2674         return result;
2675
2676  disable:
2677         nvme_disable_queue(dev, 0);
2678         nvme_dev_list_remove(dev);
2679  unmap:
2680         nvme_dev_unmap(dev);
2681         return result;
2682 }
2683
2684 static int nvme_remove_dead_ctrl(void *arg)
2685 {
2686         struct nvme_dev *dev = (struct nvme_dev *)arg;
2687         struct pci_dev *pdev = dev->pci_dev;
2688
2689         if (pci_get_drvdata(pdev))
2690                 pci_stop_and_remove_bus_device(pdev);
2691         kref_put(&dev->kref, nvme_free_dev);
2692         return 0;
2693 }
2694
2695 static void nvme_remove_disks(struct work_struct *ws)
2696 {
2697         struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2698
2699         nvme_dev_remove(dev);
2700         nvme_free_queues(dev, 1);
2701 }
2702
2703 static int nvme_dev_resume(struct nvme_dev *dev)
2704 {
2705         int ret;
2706
2707         ret = nvme_dev_start(dev);
2708         if (ret && ret != -EBUSY)
2709                 return ret;
2710         if (ret == -EBUSY) {
2711                 spin_lock(&dev_list_lock);
2712                 dev->reset_workfn = nvme_remove_disks;
2713                 queue_work(nvme_workq, &dev->reset_work);
2714                 spin_unlock(&dev_list_lock);
2715         }
2716         dev->initialized = 1;
2717         return 0;
2718 }
2719
2720 static void nvme_dev_reset(struct nvme_dev *dev)
2721 {
2722         nvme_dev_shutdown(dev);
2723         if (nvme_dev_resume(dev)) {
2724                 dev_err(&dev->pci_dev->dev, "Device failed to resume\n");
2725                 kref_get(&dev->kref);
2726                 if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
2727                                                         dev->instance))) {
2728                         dev_err(&dev->pci_dev->dev,
2729                                 "Failed to start controller remove task\n");
2730                         kref_put(&dev->kref, nvme_free_dev);
2731                 }
2732         }
2733 }
2734
2735 static void nvme_reset_failed_dev(struct work_struct *ws)
2736 {
2737         struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2738         nvme_dev_reset(dev);
2739 }
2740
2741 static void nvme_reset_workfn(struct work_struct *work)
2742 {
2743         struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
2744         dev->reset_workfn(work);
2745 }
2746
2747 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2748 {
2749         int result = -ENOMEM;
2750         struct nvme_dev *dev;
2751
2752         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2753         if (!dev)
2754                 return -ENOMEM;
2755         dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
2756                                                                 GFP_KERNEL);
2757         if (!dev->entry)
2758                 goto free;
2759         dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
2760                                                                 GFP_KERNEL);
2761         if (!dev->queues)
2762                 goto free;
2763         dev->io_queue = alloc_percpu(unsigned short);
2764         if (!dev->io_queue)
2765                 goto free;
2766
2767         INIT_LIST_HEAD(&dev->namespaces);
2768         dev->reset_workfn = nvme_reset_failed_dev;
2769         INIT_WORK(&dev->reset_work, nvme_reset_workfn);
2770         dev->pci_dev = pdev;
2771         pci_set_drvdata(pdev, dev);
2772         result = nvme_set_instance(dev);
2773         if (result)
2774                 goto free;
2775
2776         result = nvme_setup_prp_pools(dev);
2777         if (result)
2778                 goto release;
2779
2780         kref_init(&dev->kref);
2781         result = nvme_dev_start(dev);
2782         if (result) {
2783                 if (result == -EBUSY)
2784                         goto create_cdev;
2785                 goto release_pools;
2786         }
2787
2788         result = nvme_dev_add(dev);
2789         if (result)
2790                 goto shutdown;
2791
2792  create_cdev:
2793         scnprintf(dev->name, sizeof(dev->name), "nvme%d", dev->instance);
2794         dev->miscdev.minor = MISC_DYNAMIC_MINOR;
2795         dev->miscdev.parent = &pdev->dev;
2796         dev->miscdev.name = dev->name;
2797         dev->miscdev.fops = &nvme_dev_fops;
2798         result = misc_register(&dev->miscdev);
2799         if (result)
2800                 goto remove;
2801
2802         dev->initialized = 1;
2803         return 0;
2804
2805  remove:
2806         nvme_dev_remove(dev);
2807         nvme_free_namespaces(dev);
2808  shutdown:
2809         nvme_dev_shutdown(dev);
2810  release_pools:
2811         nvme_free_queues(dev, 0);
2812         nvme_release_prp_pools(dev);
2813  release:
2814         nvme_release_instance(dev);
2815  free:
2816         free_percpu(dev->io_queue);
2817         kfree(dev->queues);
2818         kfree(dev->entry);
2819         kfree(dev);
2820         return result;
2821 }
2822
2823 static void nvme_shutdown(struct pci_dev *pdev)
2824 {
2825         struct nvme_dev *dev = pci_get_drvdata(pdev);
2826         nvme_dev_shutdown(dev);
2827 }
2828
2829 static void nvme_remove(struct pci_dev *pdev)
2830 {
2831         struct nvme_dev *dev = pci_get_drvdata(pdev);
2832
2833         spin_lock(&dev_list_lock);
2834         list_del_init(&dev->node);
2835         spin_unlock(&dev_list_lock);
2836
2837         pci_set_drvdata(pdev, NULL);
2838         flush_work(&dev->reset_work);
2839         misc_deregister(&dev->miscdev);
2840         nvme_dev_remove(dev);
2841         nvme_dev_shutdown(dev);
2842         nvme_free_queues(dev, 0);
2843         rcu_barrier();
2844         nvme_release_instance(dev);
2845         nvme_release_prp_pools(dev);
2846         kref_put(&dev->kref, nvme_free_dev);
2847 }
2848
2849 /* These functions are yet to be implemented */
2850 #define nvme_error_detected NULL
2851 #define nvme_dump_registers NULL
2852 #define nvme_link_reset NULL
2853 #define nvme_slot_reset NULL
2854 #define nvme_error_resume NULL
2855
2856 #ifdef CONFIG_PM_SLEEP
2857 static int nvme_suspend(struct device *dev)
2858 {
2859         struct pci_dev *pdev = to_pci_dev(dev);
2860         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2861
2862         nvme_dev_shutdown(ndev);
2863         return 0;
2864 }
2865
2866 static int nvme_resume(struct device *dev)
2867 {
2868         struct pci_dev *pdev = to_pci_dev(dev);
2869         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2870
2871         if (nvme_dev_resume(ndev) && !work_busy(&ndev->reset_work)) {
2872                 ndev->reset_workfn = nvme_reset_failed_dev;
2873                 queue_work(nvme_workq, &ndev->reset_work);
2874         }
2875         return 0;
2876 }
2877 #endif
2878
2879 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2880
2881 static const struct pci_error_handlers nvme_err_handler = {
2882         .error_detected = nvme_error_detected,
2883         .mmio_enabled   = nvme_dump_registers,
2884         .link_reset     = nvme_link_reset,
2885         .slot_reset     = nvme_slot_reset,
2886         .resume         = nvme_error_resume,
2887 };
2888
2889 /* Move to pci_ids.h later */
2890 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
2891
2892 static const struct pci_device_id nvme_id_table[] = {
2893         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2894         { 0, }
2895 };
2896 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2897
2898 static struct pci_driver nvme_driver = {
2899         .name           = "nvme",
2900         .id_table       = nvme_id_table,
2901         .probe          = nvme_probe,
2902         .remove         = nvme_remove,
2903         .shutdown       = nvme_shutdown,
2904         .driver         = {
2905                 .pm     = &nvme_dev_pm_ops,
2906         },
2907         .err_handler    = &nvme_err_handler,
2908 };
2909
2910 static int __init nvme_init(void)
2911 {
2912         int result;
2913
2914         init_waitqueue_head(&nvme_kthread_wait);
2915
2916         nvme_workq = create_singlethread_workqueue("nvme");
2917         if (!nvme_workq)
2918                 return -ENOMEM;
2919
2920         result = register_blkdev(nvme_major, "nvme");
2921         if (result < 0)
2922                 goto kill_workq;
2923         else if (result > 0)
2924                 nvme_major = result;
2925
2926         result = pci_register_driver(&nvme_driver);
2927         if (result)
2928                 goto unregister_blkdev;
2929         return 0;
2930
2931  unregister_blkdev:
2932         unregister_blkdev(nvme_major, "nvme");
2933  kill_workq:
2934         destroy_workqueue(nvme_workq);
2935         return result;
2936 }
2937
2938 static void __exit nvme_exit(void)
2939 {
2940         pci_unregister_driver(&nvme_driver);
2941         unregister_blkdev(nvme_major, "nvme");
2942         destroy_workqueue(nvme_workq);
2943         BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
2944         _nvme_check_size();
2945 }
2946
2947 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2948 MODULE_LICENSE("GPL");
2949 MODULE_VERSION("0.9");
2950 module_init(nvme_init);
2951 module_exit(nvme_exit);