NVMe: Reference count admin queue usage
[firefly-linux-kernel-4.4.55.git] / drivers / block / nvme-core.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/nvme.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kthread.h>
31 #include <linux/kernel.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/types.h>
41 #include <scsi/sg.h>
42 #include <asm-generic/io-64-nonatomic-lo-hi.h>
43
44 #define NVME_Q_DEPTH            1024
45 #define NVME_AQ_DEPTH           64
46 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
47 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
48 #define ADMIN_TIMEOUT           (admin_timeout * HZ)
49 #define SHUTDOWN_TIMEOUT        (shutdown_timeout * HZ)
50 #define IOD_TIMEOUT             (retry_time * HZ)
51
52 static unsigned char admin_timeout = 60;
53 module_param(admin_timeout, byte, 0644);
54 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
55
56 unsigned char nvme_io_timeout = 30;
57 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
58 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
59
60 static unsigned char retry_time = 30;
61 module_param(retry_time, byte, 0644);
62 MODULE_PARM_DESC(retry_time, "time in seconds to retry failed I/O");
63
64 static unsigned char shutdown_timeout = 5;
65 module_param(shutdown_timeout, byte, 0644);
66 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
67
68 static int nvme_major;
69 module_param(nvme_major, int, 0);
70
71 static int use_threaded_interrupts;
72 module_param(use_threaded_interrupts, int, 0);
73
74 static DEFINE_SPINLOCK(dev_list_lock);
75 static LIST_HEAD(dev_list);
76 static struct task_struct *nvme_thread;
77 static struct workqueue_struct *nvme_workq;
78 static wait_queue_head_t nvme_kthread_wait;
79 static struct notifier_block nvme_nb;
80
81 static void nvme_reset_failed_dev(struct work_struct *ws);
82 static int nvme_process_cq(struct nvme_queue *nvmeq);
83
84 struct async_cmd_info {
85         struct kthread_work work;
86         struct kthread_worker *worker;
87         struct request *req;
88         u32 result;
89         int status;
90         void *ctx;
91 };
92
93 /*
94  * An NVM Express queue.  Each device has at least two (one for admin
95  * commands and one for I/O commands).
96  */
97 struct nvme_queue {
98         struct llist_node node;
99         struct device *q_dmadev;
100         struct nvme_dev *dev;
101         char irqname[24];       /* nvme4294967295-65535\0 */
102         spinlock_t q_lock;
103         struct nvme_command *sq_cmds;
104         volatile struct nvme_completion *cqes;
105         dma_addr_t sq_dma_addr;
106         dma_addr_t cq_dma_addr;
107         u32 __iomem *q_db;
108         u16 q_depth;
109         u16 cq_vector;
110         u16 sq_head;
111         u16 sq_tail;
112         u16 cq_head;
113         u16 qid;
114         u8 cq_phase;
115         u8 cqe_seen;
116         struct async_cmd_info cmdinfo;
117         struct blk_mq_hw_ctx *hctx;
118 };
119
120 /*
121  * Check we didin't inadvertently grow the command struct
122  */
123 static inline void _nvme_check_size(void)
124 {
125         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
126         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
127         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
128         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
129         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
130         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
131         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
132         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
133         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
134         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
135         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
136         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
137 }
138
139 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
140                                                 struct nvme_completion *);
141
142 struct nvme_cmd_info {
143         nvme_completion_fn fn;
144         void *ctx;
145         int aborted;
146         struct nvme_queue *nvmeq;
147 };
148
149 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
150                                 unsigned int hctx_idx)
151 {
152         struct nvme_dev *dev = data;
153         struct nvme_queue *nvmeq = dev->queues[0];
154
155         WARN_ON(nvmeq->hctx);
156         nvmeq->hctx = hctx;
157         hctx->driver_data = nvmeq;
158         return 0;
159 }
160
161 static int nvme_admin_init_request(void *data, struct request *req,
162                                 unsigned int hctx_idx, unsigned int rq_idx,
163                                 unsigned int numa_node)
164 {
165         struct nvme_dev *dev = data;
166         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
167         struct nvme_queue *nvmeq = dev->queues[0];
168
169         BUG_ON(!nvmeq);
170         cmd->nvmeq = nvmeq;
171         return 0;
172 }
173
174 static void nvme_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
175 {
176         struct nvme_queue *nvmeq = hctx->driver_data;
177
178         nvmeq->hctx = NULL;
179 }
180
181 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
182                           unsigned int hctx_idx)
183 {
184         struct nvme_dev *dev = data;
185         struct nvme_queue *nvmeq = dev->queues[
186                                         (hctx_idx % dev->queue_count) + 1];
187
188         if (!nvmeq->hctx)
189                 nvmeq->hctx = hctx;
190
191         /* nvmeq queues are shared between namespaces. We assume here that
192          * blk-mq map the tags so they match up with the nvme queue tags. */
193         WARN_ON(nvmeq->hctx->tags != hctx->tags);
194
195         hctx->driver_data = nvmeq;
196         return 0;
197 }
198
199 static int nvme_init_request(void *data, struct request *req,
200                                 unsigned int hctx_idx, unsigned int rq_idx,
201                                 unsigned int numa_node)
202 {
203         struct nvme_dev *dev = data;
204         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
205         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
206
207         BUG_ON(!nvmeq);
208         cmd->nvmeq = nvmeq;
209         return 0;
210 }
211
212 static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
213                                 nvme_completion_fn handler)
214 {
215         cmd->fn = handler;
216         cmd->ctx = ctx;
217         cmd->aborted = 0;
218         blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
219 }
220
221 /* Special values must be less than 0x1000 */
222 #define CMD_CTX_BASE            ((void *)POISON_POINTER_DELTA)
223 #define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
224 #define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
225 #define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
226
227 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
228                                                 struct nvme_completion *cqe)
229 {
230         if (ctx == CMD_CTX_CANCELLED)
231                 return;
232         if (ctx == CMD_CTX_COMPLETED) {
233                 dev_warn(nvmeq->q_dmadev,
234                                 "completed id %d twice on queue %d\n",
235                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
236                 return;
237         }
238         if (ctx == CMD_CTX_INVALID) {
239                 dev_warn(nvmeq->q_dmadev,
240                                 "invalid id %d completed on queue %d\n",
241                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
242                 return;
243         }
244         dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
245 }
246
247 static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
248 {
249         void *ctx;
250
251         if (fn)
252                 *fn = cmd->fn;
253         ctx = cmd->ctx;
254         cmd->fn = special_completion;
255         cmd->ctx = CMD_CTX_CANCELLED;
256         return ctx;
257 }
258
259 static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
260                                                 struct nvme_completion *cqe)
261 {
262         struct request *req = ctx;
263
264         u32 result = le32_to_cpup(&cqe->result);
265         u16 status = le16_to_cpup(&cqe->status) >> 1;
266
267         if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
268                 ++nvmeq->dev->event_limit;
269         if (status == NVME_SC_SUCCESS)
270                 dev_warn(nvmeq->q_dmadev,
271                         "async event result %08x\n", result);
272
273         blk_mq_free_hctx_request(nvmeq->hctx, req);
274 }
275
276 static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
277                                                 struct nvme_completion *cqe)
278 {
279         struct request *req = ctx;
280
281         u16 status = le16_to_cpup(&cqe->status) >> 1;
282         u32 result = le32_to_cpup(&cqe->result);
283
284         blk_mq_free_hctx_request(nvmeq->hctx, req);
285
286         dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
287         ++nvmeq->dev->abort_limit;
288 }
289
290 static void async_completion(struct nvme_queue *nvmeq, void *ctx,
291                                                 struct nvme_completion *cqe)
292 {
293         struct async_cmd_info *cmdinfo = ctx;
294         cmdinfo->result = le32_to_cpup(&cqe->result);
295         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
296         queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
297         blk_mq_free_hctx_request(nvmeq->hctx, cmdinfo->req);
298 }
299
300 static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
301                                   unsigned int tag)
302 {
303         struct blk_mq_hw_ctx *hctx = nvmeq->hctx;
304         struct request *req = blk_mq_tag_to_rq(hctx->tags, tag);
305
306         return blk_mq_rq_to_pdu(req);
307 }
308
309 /*
310  * Called with local interrupts disabled and the q_lock held.  May not sleep.
311  */
312 static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
313                                                 nvme_completion_fn *fn)
314 {
315         struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
316         void *ctx;
317         if (tag >= nvmeq->q_depth) {
318                 *fn = special_completion;
319                 return CMD_CTX_INVALID;
320         }
321         if (fn)
322                 *fn = cmd->fn;
323         ctx = cmd->ctx;
324         cmd->fn = special_completion;
325         cmd->ctx = CMD_CTX_COMPLETED;
326         return ctx;
327 }
328
329 /**
330  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
331  * @nvmeq: The queue to use
332  * @cmd: The command to send
333  *
334  * Safe to use from interrupt context
335  */
336 static int __nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
337 {
338         u16 tail = nvmeq->sq_tail;
339
340         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
341         if (++tail == nvmeq->q_depth)
342                 tail = 0;
343         writel(tail, nvmeq->q_db);
344         nvmeq->sq_tail = tail;
345
346         return 0;
347 }
348
349 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
350 {
351         unsigned long flags;
352         int ret;
353         spin_lock_irqsave(&nvmeq->q_lock, flags);
354         ret = __nvme_submit_cmd(nvmeq, cmd);
355         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
356         return ret;
357 }
358
359 static __le64 **iod_list(struct nvme_iod *iod)
360 {
361         return ((void *)iod) + iod->offset;
362 }
363
364 /*
365  * Will slightly overestimate the number of pages needed.  This is OK
366  * as it only leads to a small amount of wasted memory for the lifetime of
367  * the I/O.
368  */
369 static int nvme_npages(unsigned size, struct nvme_dev *dev)
370 {
371         unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size);
372         return DIV_ROUND_UP(8 * nprps, dev->page_size - 8);
373 }
374
375 static struct nvme_iod *
376 nvme_alloc_iod(unsigned nseg, unsigned nbytes, struct nvme_dev *dev, gfp_t gfp)
377 {
378         struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
379                                 sizeof(__le64 *) * nvme_npages(nbytes, dev) +
380                                 sizeof(struct scatterlist) * nseg, gfp);
381
382         if (iod) {
383                 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
384                 iod->npages = -1;
385                 iod->length = nbytes;
386                 iod->nents = 0;
387                 iod->first_dma = 0ULL;
388         }
389
390         return iod;
391 }
392
393 void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
394 {
395         const int last_prp = dev->page_size / 8 - 1;
396         int i;
397         __le64 **list = iod_list(iod);
398         dma_addr_t prp_dma = iod->first_dma;
399
400         if (iod->npages == 0)
401                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
402         for (i = 0; i < iod->npages; i++) {
403                 __le64 *prp_list = list[i];
404                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
405                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
406                 prp_dma = next_prp_dma;
407         }
408         kfree(iod);
409 }
410
411 static int nvme_error_status(u16 status)
412 {
413         switch (status & 0x7ff) {
414         case NVME_SC_SUCCESS:
415                 return 0;
416         case NVME_SC_CAP_EXCEEDED:
417                 return -ENOSPC;
418         default:
419                 return -EIO;
420         }
421 }
422
423 static void req_completion(struct nvme_queue *nvmeq, void *ctx,
424                                                 struct nvme_completion *cqe)
425 {
426         struct nvme_iod *iod = ctx;
427         struct request *req = iod->private;
428         struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
429
430         u16 status = le16_to_cpup(&cqe->status) >> 1;
431
432         if (unlikely(status)) {
433                 if (!(status & NVME_SC_DNR || blk_noretry_request(req))
434                     && (jiffies - req->start_time) < req->timeout) {
435                         blk_mq_requeue_request(req);
436                         blk_mq_kick_requeue_list(req->q);
437                         return;
438                 }
439                 req->errors = nvme_error_status(status);
440         } else
441                 req->errors = 0;
442
443         if (cmd_rq->aborted)
444                 dev_warn(&nvmeq->dev->pci_dev->dev,
445                         "completing aborted command with status:%04x\n",
446                         status);
447
448         if (iod->nents)
449                 dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->sg, iod->nents,
450                         rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
451         nvme_free_iod(nvmeq->dev, iod);
452
453         blk_mq_complete_request(req);
454 }
455
456 /* length is in bytes.  gfp flags indicates whether we may sleep. */
457 int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod, int total_len,
458                                                                 gfp_t gfp)
459 {
460         struct dma_pool *pool;
461         int length = total_len;
462         struct scatterlist *sg = iod->sg;
463         int dma_len = sg_dma_len(sg);
464         u64 dma_addr = sg_dma_address(sg);
465         int offset = offset_in_page(dma_addr);
466         __le64 *prp_list;
467         __le64 **list = iod_list(iod);
468         dma_addr_t prp_dma;
469         int nprps, i;
470         u32 page_size = dev->page_size;
471
472         length -= (page_size - offset);
473         if (length <= 0)
474                 return total_len;
475
476         dma_len -= (page_size - offset);
477         if (dma_len) {
478                 dma_addr += (page_size - offset);
479         } else {
480                 sg = sg_next(sg);
481                 dma_addr = sg_dma_address(sg);
482                 dma_len = sg_dma_len(sg);
483         }
484
485         if (length <= page_size) {
486                 iod->first_dma = dma_addr;
487                 return total_len;
488         }
489
490         nprps = DIV_ROUND_UP(length, page_size);
491         if (nprps <= (256 / 8)) {
492                 pool = dev->prp_small_pool;
493                 iod->npages = 0;
494         } else {
495                 pool = dev->prp_page_pool;
496                 iod->npages = 1;
497         }
498
499         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
500         if (!prp_list) {
501                 iod->first_dma = dma_addr;
502                 iod->npages = -1;
503                 return (total_len - length) + page_size;
504         }
505         list[0] = prp_list;
506         iod->first_dma = prp_dma;
507         i = 0;
508         for (;;) {
509                 if (i == page_size >> 3) {
510                         __le64 *old_prp_list = prp_list;
511                         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
512                         if (!prp_list)
513                                 return total_len - length;
514                         list[iod->npages++] = prp_list;
515                         prp_list[0] = old_prp_list[i - 1];
516                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
517                         i = 1;
518                 }
519                 prp_list[i++] = cpu_to_le64(dma_addr);
520                 dma_len -= page_size;
521                 dma_addr += page_size;
522                 length -= page_size;
523                 if (length <= 0)
524                         break;
525                 if (dma_len > 0)
526                         continue;
527                 BUG_ON(dma_len < 0);
528                 sg = sg_next(sg);
529                 dma_addr = sg_dma_address(sg);
530                 dma_len = sg_dma_len(sg);
531         }
532
533         return total_len;
534 }
535
536 /*
537  * We reuse the small pool to allocate the 16-byte range here as it is not
538  * worth having a special pool for these or additional cases to handle freeing
539  * the iod.
540  */
541 static void nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
542                 struct request *req, struct nvme_iod *iod)
543 {
544         struct nvme_dsm_range *range =
545                                 (struct nvme_dsm_range *)iod_list(iod)[0];
546         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
547
548         range->cattr = cpu_to_le32(0);
549         range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
550         range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
551
552         memset(cmnd, 0, sizeof(*cmnd));
553         cmnd->dsm.opcode = nvme_cmd_dsm;
554         cmnd->dsm.command_id = req->tag;
555         cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
556         cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
557         cmnd->dsm.nr = 0;
558         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
559
560         if (++nvmeq->sq_tail == nvmeq->q_depth)
561                 nvmeq->sq_tail = 0;
562         writel(nvmeq->sq_tail, nvmeq->q_db);
563 }
564
565 static void nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
566                                                                 int cmdid)
567 {
568         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
569
570         memset(cmnd, 0, sizeof(*cmnd));
571         cmnd->common.opcode = nvme_cmd_flush;
572         cmnd->common.command_id = cmdid;
573         cmnd->common.nsid = cpu_to_le32(ns->ns_id);
574
575         if (++nvmeq->sq_tail == nvmeq->q_depth)
576                 nvmeq->sq_tail = 0;
577         writel(nvmeq->sq_tail, nvmeq->q_db);
578 }
579
580 static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod,
581                                                         struct nvme_ns *ns)
582 {
583         struct request *req = iod->private;
584         struct nvme_command *cmnd;
585         u16 control = 0;
586         u32 dsmgmt = 0;
587
588         if (req->cmd_flags & REQ_FUA)
589                 control |= NVME_RW_FUA;
590         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
591                 control |= NVME_RW_LR;
592
593         if (req->cmd_flags & REQ_RAHEAD)
594                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
595
596         cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
597         memset(cmnd, 0, sizeof(*cmnd));
598
599         cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
600         cmnd->rw.command_id = req->tag;
601         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
602         cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
603         cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
604         cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
605         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
606         cmnd->rw.control = cpu_to_le16(control);
607         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
608
609         if (++nvmeq->sq_tail == nvmeq->q_depth)
610                 nvmeq->sq_tail = 0;
611         writel(nvmeq->sq_tail, nvmeq->q_db);
612
613         return 0;
614 }
615
616 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
617                          const struct blk_mq_queue_data *bd)
618 {
619         struct nvme_ns *ns = hctx->queue->queuedata;
620         struct nvme_queue *nvmeq = hctx->driver_data;
621         struct request *req = bd->rq;
622         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
623         struct nvme_iod *iod;
624         int psegs = req->nr_phys_segments;
625         enum dma_data_direction dma_dir;
626         unsigned size = !(req->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(req) :
627                                                 sizeof(struct nvme_dsm_range);
628
629         iod = nvme_alloc_iod(psegs, size, ns->dev, GFP_ATOMIC);
630         if (!iod)
631                 return BLK_MQ_RQ_QUEUE_BUSY;
632
633         iod->private = req;
634
635         if (req->cmd_flags & REQ_DISCARD) {
636                 void *range;
637                 /*
638                  * We reuse the small pool to allocate the 16-byte range here
639                  * as it is not worth having a special pool for these or
640                  * additional cases to handle freeing the iod.
641                  */
642                 range = dma_pool_alloc(nvmeq->dev->prp_small_pool,
643                                                 GFP_ATOMIC,
644                                                 &iod->first_dma);
645                 if (!range)
646                         goto retry_cmd;
647                 iod_list(iod)[0] = (__le64 *)range;
648                 iod->npages = 0;
649         } else if (psegs) {
650                 dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
651
652                 sg_init_table(iod->sg, psegs);
653                 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
654                 if (!iod->nents)
655                         goto error_cmd;
656
657                 if (!dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir))
658                         goto retry_cmd;
659
660                 if (blk_rq_bytes(req) !=
661                     nvme_setup_prps(nvmeq->dev, iod, blk_rq_bytes(req), GFP_ATOMIC)) {
662                         dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->sg,
663                                         iod->nents, dma_dir);
664                         goto retry_cmd;
665                 }
666         }
667
668         nvme_set_info(cmd, iod, req_completion);
669         spin_lock_irq(&nvmeq->q_lock);
670         if (req->cmd_flags & REQ_DISCARD)
671                 nvme_submit_discard(nvmeq, ns, req, iod);
672         else if (req->cmd_flags & REQ_FLUSH)
673                 nvme_submit_flush(nvmeq, ns, req->tag);
674         else
675                 nvme_submit_iod(nvmeq, iod, ns);
676
677         nvme_process_cq(nvmeq);
678         spin_unlock_irq(&nvmeq->q_lock);
679         return BLK_MQ_RQ_QUEUE_OK;
680
681  error_cmd:
682         nvme_free_iod(nvmeq->dev, iod);
683         return BLK_MQ_RQ_QUEUE_ERROR;
684  retry_cmd:
685         nvme_free_iod(nvmeq->dev, iod);
686         return BLK_MQ_RQ_QUEUE_BUSY;
687 }
688
689 static int nvme_process_cq(struct nvme_queue *nvmeq)
690 {
691         u16 head, phase;
692
693         head = nvmeq->cq_head;
694         phase = nvmeq->cq_phase;
695
696         for (;;) {
697                 void *ctx;
698                 nvme_completion_fn fn;
699                 struct nvme_completion cqe = nvmeq->cqes[head];
700                 if ((le16_to_cpu(cqe.status) & 1) != phase)
701                         break;
702                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
703                 if (++head == nvmeq->q_depth) {
704                         head = 0;
705                         phase = !phase;
706                 }
707                 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
708                 fn(nvmeq, ctx, &cqe);
709         }
710
711         /* If the controller ignores the cq head doorbell and continuously
712          * writes to the queue, it is theoretically possible to wrap around
713          * the queue twice and mistakenly return IRQ_NONE.  Linux only
714          * requires that 0.1% of your interrupts are handled, so this isn't
715          * a big problem.
716          */
717         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
718                 return 0;
719
720         writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
721         nvmeq->cq_head = head;
722         nvmeq->cq_phase = phase;
723
724         nvmeq->cqe_seen = 1;
725         return 1;
726 }
727
728 /* Admin queue isn't initialized as a request queue. If at some point this
729  * happens anyway, make sure to notify the user */
730 static int nvme_admin_queue_rq(struct blk_mq_hw_ctx *hctx,
731                                const struct blk_mq_queue_data *bd)
732 {
733         WARN_ON_ONCE(1);
734         return BLK_MQ_RQ_QUEUE_ERROR;
735 }
736
737 static irqreturn_t nvme_irq(int irq, void *data)
738 {
739         irqreturn_t result;
740         struct nvme_queue *nvmeq = data;
741         spin_lock(&nvmeq->q_lock);
742         nvme_process_cq(nvmeq);
743         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
744         nvmeq->cqe_seen = 0;
745         spin_unlock(&nvmeq->q_lock);
746         return result;
747 }
748
749 static irqreturn_t nvme_irq_check(int irq, void *data)
750 {
751         struct nvme_queue *nvmeq = data;
752         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
753         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
754                 return IRQ_NONE;
755         return IRQ_WAKE_THREAD;
756 }
757
758 static void nvme_abort_cmd_info(struct nvme_queue *nvmeq, struct nvme_cmd_info *
759                                                                 cmd_info)
760 {
761         spin_lock_irq(&nvmeq->q_lock);
762         cancel_cmd_info(cmd_info, NULL);
763         spin_unlock_irq(&nvmeq->q_lock);
764 }
765
766 struct sync_cmd_info {
767         struct task_struct *task;
768         u32 result;
769         int status;
770 };
771
772 static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
773                                                 struct nvme_completion *cqe)
774 {
775         struct sync_cmd_info *cmdinfo = ctx;
776         cmdinfo->result = le32_to_cpup(&cqe->result);
777         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
778         wake_up_process(cmdinfo->task);
779 }
780
781 /*
782  * Returns 0 on success.  If the result is negative, it's a Linux error code;
783  * if the result is positive, it's an NVM Express status code
784  */
785 static int nvme_submit_sync_cmd(struct request *req, struct nvme_command *cmd,
786                                                 u32 *result, unsigned timeout)
787 {
788         int ret;
789         struct sync_cmd_info cmdinfo;
790         struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
791         struct nvme_queue *nvmeq = cmd_rq->nvmeq;
792
793         cmdinfo.task = current;
794         cmdinfo.status = -EINTR;
795
796         cmd->common.command_id = req->tag;
797
798         nvme_set_info(cmd_rq, &cmdinfo, sync_completion);
799
800         set_current_state(TASK_KILLABLE);
801         ret = nvme_submit_cmd(nvmeq, cmd);
802         if (ret) {
803                 nvme_finish_cmd(nvmeq, req->tag, NULL);
804                 set_current_state(TASK_RUNNING);
805         }
806         ret = schedule_timeout(timeout);
807
808         /*
809          * Ensure that sync_completion has either run, or that it will
810          * never run.
811          */
812         nvme_abort_cmd_info(nvmeq, blk_mq_rq_to_pdu(req));
813
814         /*
815          * We never got the completion
816          */
817         if (cmdinfo.status == -EINTR)
818                 return -EINTR;
819
820         if (result)
821                 *result = cmdinfo.result;
822
823         return cmdinfo.status;
824 }
825
826 static int nvme_submit_async_admin_req(struct nvme_dev *dev)
827 {
828         struct nvme_queue *nvmeq = dev->queues[0];
829         struct nvme_command c;
830         struct nvme_cmd_info *cmd_info;
831         struct request *req;
832
833         req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC, false);
834         if (IS_ERR(req))
835                 return PTR_ERR(req);
836
837         req->cmd_flags |= REQ_NO_TIMEOUT;
838         cmd_info = blk_mq_rq_to_pdu(req);
839         nvme_set_info(cmd_info, req, async_req_completion);
840
841         memset(&c, 0, sizeof(c));
842         c.common.opcode = nvme_admin_async_event;
843         c.common.command_id = req->tag;
844
845         return __nvme_submit_cmd(nvmeq, &c);
846 }
847
848 static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
849                         struct nvme_command *cmd,
850                         struct async_cmd_info *cmdinfo, unsigned timeout)
851 {
852         struct nvme_queue *nvmeq = dev->queues[0];
853         struct request *req;
854         struct nvme_cmd_info *cmd_rq;
855
856         req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
857         if (IS_ERR(req))
858                 return PTR_ERR(req);
859
860         req->timeout = timeout;
861         cmd_rq = blk_mq_rq_to_pdu(req);
862         cmdinfo->req = req;
863         nvme_set_info(cmd_rq, cmdinfo, async_completion);
864         cmdinfo->status = -EINTR;
865
866         cmd->common.command_id = req->tag;
867
868         return nvme_submit_cmd(nvmeq, cmd);
869 }
870
871 static int __nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
872                                                 u32 *result, unsigned timeout)
873 {
874         int res;
875         struct request *req;
876
877         req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
878         if (IS_ERR(req))
879                 return PTR_ERR(req);
880         res = nvme_submit_sync_cmd(req, cmd, result, timeout);
881         blk_mq_free_request(req);
882         return res;
883 }
884
885 int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
886                                                                 u32 *result)
887 {
888         return __nvme_submit_admin_cmd(dev, cmd, result, ADMIN_TIMEOUT);
889 }
890
891 int nvme_submit_io_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
892                                         struct nvme_command *cmd, u32 *result)
893 {
894         int res;
895         struct request *req;
896
897         req = blk_mq_alloc_request(ns->queue, WRITE, (GFP_KERNEL|__GFP_WAIT),
898                                                                         false);
899         if (IS_ERR(req))
900                 return PTR_ERR(req);
901         res = nvme_submit_sync_cmd(req, cmd, result, NVME_IO_TIMEOUT);
902         blk_mq_free_request(req);
903         return res;
904 }
905
906 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
907 {
908         struct nvme_command c;
909
910         memset(&c, 0, sizeof(c));
911         c.delete_queue.opcode = opcode;
912         c.delete_queue.qid = cpu_to_le16(id);
913
914         return nvme_submit_admin_cmd(dev, &c, NULL);
915 }
916
917 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
918                                                 struct nvme_queue *nvmeq)
919 {
920         struct nvme_command c;
921         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
922
923         memset(&c, 0, sizeof(c));
924         c.create_cq.opcode = nvme_admin_create_cq;
925         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
926         c.create_cq.cqid = cpu_to_le16(qid);
927         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
928         c.create_cq.cq_flags = cpu_to_le16(flags);
929         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
930
931         return nvme_submit_admin_cmd(dev, &c, NULL);
932 }
933
934 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
935                                                 struct nvme_queue *nvmeq)
936 {
937         struct nvme_command c;
938         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
939
940         memset(&c, 0, sizeof(c));
941         c.create_sq.opcode = nvme_admin_create_sq;
942         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
943         c.create_sq.sqid = cpu_to_le16(qid);
944         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
945         c.create_sq.sq_flags = cpu_to_le16(flags);
946         c.create_sq.cqid = cpu_to_le16(qid);
947
948         return nvme_submit_admin_cmd(dev, &c, NULL);
949 }
950
951 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
952 {
953         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
954 }
955
956 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
957 {
958         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
959 }
960
961 int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
962                                                         dma_addr_t dma_addr)
963 {
964         struct nvme_command c;
965
966         memset(&c, 0, sizeof(c));
967         c.identify.opcode = nvme_admin_identify;
968         c.identify.nsid = cpu_to_le32(nsid);
969         c.identify.prp1 = cpu_to_le64(dma_addr);
970         c.identify.cns = cpu_to_le32(cns);
971
972         return nvme_submit_admin_cmd(dev, &c, NULL);
973 }
974
975 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
976                                         dma_addr_t dma_addr, u32 *result)
977 {
978         struct nvme_command c;
979
980         memset(&c, 0, sizeof(c));
981         c.features.opcode = nvme_admin_get_features;
982         c.features.nsid = cpu_to_le32(nsid);
983         c.features.prp1 = cpu_to_le64(dma_addr);
984         c.features.fid = cpu_to_le32(fid);
985
986         return nvme_submit_admin_cmd(dev, &c, result);
987 }
988
989 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
990                                         dma_addr_t dma_addr, u32 *result)
991 {
992         struct nvme_command c;
993
994         memset(&c, 0, sizeof(c));
995         c.features.opcode = nvme_admin_set_features;
996         c.features.prp1 = cpu_to_le64(dma_addr);
997         c.features.fid = cpu_to_le32(fid);
998         c.features.dword11 = cpu_to_le32(dword11);
999
1000         return nvme_submit_admin_cmd(dev, &c, result);
1001 }
1002
1003 /**
1004  * nvme_abort_req - Attempt aborting a request
1005  *
1006  * Schedule controller reset if the command was already aborted once before and
1007  * still hasn't been returned to the driver, or if this is the admin queue.
1008  */
1009 static void nvme_abort_req(struct request *req)
1010 {
1011         struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1012         struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1013         struct nvme_dev *dev = nvmeq->dev;
1014         struct request *abort_req;
1015         struct nvme_cmd_info *abort_cmd;
1016         struct nvme_command cmd;
1017
1018         if (!nvmeq->qid || cmd_rq->aborted) {
1019                 if (work_busy(&dev->reset_work))
1020                         return;
1021                 list_del_init(&dev->node);
1022                 dev_warn(&dev->pci_dev->dev,
1023                         "I/O %d QID %d timeout, reset controller\n",
1024                                                         req->tag, nvmeq->qid);
1025                 dev->reset_workfn = nvme_reset_failed_dev;
1026                 queue_work(nvme_workq, &dev->reset_work);
1027                 return;
1028         }
1029
1030         if (!dev->abort_limit)
1031                 return;
1032
1033         abort_req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC,
1034                                                                         false);
1035         if (IS_ERR(abort_req))
1036                 return;
1037
1038         abort_cmd = blk_mq_rq_to_pdu(abort_req);
1039         nvme_set_info(abort_cmd, abort_req, abort_completion);
1040
1041         memset(&cmd, 0, sizeof(cmd));
1042         cmd.abort.opcode = nvme_admin_abort_cmd;
1043         cmd.abort.cid = req->tag;
1044         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1045         cmd.abort.command_id = abort_req->tag;
1046
1047         --dev->abort_limit;
1048         cmd_rq->aborted = 1;
1049
1050         dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
1051                                                         nvmeq->qid);
1052         if (nvme_submit_cmd(dev->queues[0], &cmd) < 0) {
1053                 dev_warn(nvmeq->q_dmadev,
1054                                 "Could not abort I/O %d QID %d",
1055                                 req->tag, nvmeq->qid);
1056                 blk_mq_free_request(abort_req);
1057         }
1058 }
1059
1060 static void nvme_cancel_queue_ios(struct blk_mq_hw_ctx *hctx,
1061                                 struct request *req, void *data, bool reserved)
1062 {
1063         struct nvme_queue *nvmeq = data;
1064         void *ctx;
1065         nvme_completion_fn fn;
1066         struct nvme_cmd_info *cmd;
1067         static struct nvme_completion cqe = {
1068                 .status = cpu_to_le16(NVME_SC_ABORT_REQ << 1),
1069         };
1070
1071         cmd = blk_mq_rq_to_pdu(req);
1072
1073         if (cmd->ctx == CMD_CTX_CANCELLED)
1074                 return;
1075
1076         dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1077                                                 req->tag, nvmeq->qid);
1078         ctx = cancel_cmd_info(cmd, &fn);
1079         fn(nvmeq, ctx, &cqe);
1080 }
1081
1082 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1083 {
1084         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1085         struct nvme_queue *nvmeq = cmd->nvmeq;
1086
1087         dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1088                                                         nvmeq->qid);
1089
1090         if (!nvmeq->dev->initialized) {
1091                 /*
1092                  * Force cancelled command frees the request, which requires we
1093                  * return BLK_EH_NOT_HANDLED.
1094                  */
1095                 nvme_cancel_queue_ios(nvmeq->hctx, req, nvmeq, reserved);
1096                 return BLK_EH_NOT_HANDLED;
1097         }
1098         nvme_abort_req(req);
1099
1100         /*
1101          * The aborted req will be completed on receiving the abort req.
1102          * We enable the timer again. If hit twice, it'll cause a device reset,
1103          * as the device then is in a faulty state.
1104          */
1105         return BLK_EH_RESET_TIMER;
1106 }
1107
1108 static void nvme_free_queue(struct nvme_queue *nvmeq)
1109 {
1110         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1111                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1112         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1113                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1114         kfree(nvmeq);
1115 }
1116
1117 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1118 {
1119         LLIST_HEAD(q_list);
1120         struct nvme_queue *nvmeq, *next;
1121         struct llist_node *entry;
1122         int i;
1123
1124         for (i = dev->queue_count - 1; i >= lowest; i--) {
1125                 struct nvme_queue *nvmeq = dev->queues[i];
1126                 llist_add(&nvmeq->node, &q_list);
1127                 dev->queue_count--;
1128                 dev->queues[i] = NULL;
1129         }
1130         synchronize_rcu();
1131         entry = llist_del_all(&q_list);
1132         llist_for_each_entry_safe(nvmeq, next, entry, node)
1133                 nvme_free_queue(nvmeq);
1134 }
1135
1136 /**
1137  * nvme_suspend_queue - put queue into suspended state
1138  * @nvmeq - queue to suspend
1139  */
1140 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1141 {
1142         int vector;
1143
1144         spin_lock_irq(&nvmeq->q_lock);
1145         if (nvmeq->cq_vector == -1) {
1146                 spin_unlock_irq(&nvmeq->q_lock);
1147                 return 1;
1148         }
1149         vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1150         nvmeq->dev->online_queues--;
1151         nvmeq->cq_vector = -1;
1152         spin_unlock_irq(&nvmeq->q_lock);
1153
1154         irq_set_affinity_hint(vector, NULL);
1155         free_irq(vector, nvmeq);
1156
1157         return 0;
1158 }
1159
1160 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1161 {
1162         struct blk_mq_hw_ctx *hctx = nvmeq->hctx;
1163
1164         spin_lock_irq(&nvmeq->q_lock);
1165         nvme_process_cq(nvmeq);
1166         if (hctx && hctx->tags)
1167                 blk_mq_tag_busy_iter(hctx, nvme_cancel_queue_ios, nvmeq);
1168         spin_unlock_irq(&nvmeq->q_lock);
1169 }
1170
1171 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1172 {
1173         struct nvme_queue *nvmeq = dev->queues[qid];
1174
1175         if (!nvmeq)
1176                 return;
1177         if (nvme_suspend_queue(nvmeq))
1178                 return;
1179
1180         /* Don't tell the adapter to delete the admin queue.
1181          * Don't tell a removed adapter to delete IO queues. */
1182         if (qid && readl(&dev->bar->csts) != -1) {
1183                 adapter_delete_sq(dev, qid);
1184                 adapter_delete_cq(dev, qid);
1185         }
1186         nvme_clear_queue(nvmeq);
1187 }
1188
1189 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1190                                                         int depth)
1191 {
1192         struct device *dmadev = &dev->pci_dev->dev;
1193         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1194         if (!nvmeq)
1195                 return NULL;
1196
1197         nvmeq->cqes = dma_zalloc_coherent(dmadev, CQ_SIZE(depth),
1198                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1199         if (!nvmeq->cqes)
1200                 goto free_nvmeq;
1201
1202         nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
1203                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1204         if (!nvmeq->sq_cmds)
1205                 goto free_cqdma;
1206
1207         nvmeq->q_dmadev = dmadev;
1208         nvmeq->dev = dev;
1209         snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1210                         dev->instance, qid);
1211         spin_lock_init(&nvmeq->q_lock);
1212         nvmeq->cq_head = 0;
1213         nvmeq->cq_phase = 1;
1214         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1215         nvmeq->q_depth = depth;
1216         nvmeq->qid = qid;
1217         dev->queue_count++;
1218         dev->queues[qid] = nvmeq;
1219
1220         return nvmeq;
1221
1222  free_cqdma:
1223         dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1224                                                         nvmeq->cq_dma_addr);
1225  free_nvmeq:
1226         kfree(nvmeq);
1227         return NULL;
1228 }
1229
1230 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1231                                                         const char *name)
1232 {
1233         if (use_threaded_interrupts)
1234                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1235                                         nvme_irq_check, nvme_irq, IRQF_SHARED,
1236                                         name, nvmeq);
1237         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1238                                 IRQF_SHARED, name, nvmeq);
1239 }
1240
1241 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1242 {
1243         struct nvme_dev *dev = nvmeq->dev;
1244
1245         spin_lock_irq(&nvmeq->q_lock);
1246         nvmeq->sq_tail = 0;
1247         nvmeq->cq_head = 0;
1248         nvmeq->cq_phase = 1;
1249         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1250         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1251         dev->online_queues++;
1252         spin_unlock_irq(&nvmeq->q_lock);
1253 }
1254
1255 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1256 {
1257         struct nvme_dev *dev = nvmeq->dev;
1258         int result;
1259
1260         nvmeq->cq_vector = qid - 1;
1261         result = adapter_alloc_cq(dev, qid, nvmeq);
1262         if (result < 0)
1263                 return result;
1264
1265         result = adapter_alloc_sq(dev, qid, nvmeq);
1266         if (result < 0)
1267                 goto release_cq;
1268
1269         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1270         if (result < 0)
1271                 goto release_sq;
1272
1273         nvme_init_queue(nvmeq, qid);
1274         return result;
1275
1276  release_sq:
1277         adapter_delete_sq(dev, qid);
1278  release_cq:
1279         adapter_delete_cq(dev, qid);
1280         return result;
1281 }
1282
1283 static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1284 {
1285         unsigned long timeout;
1286         u32 bit = enabled ? NVME_CSTS_RDY : 0;
1287
1288         timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1289
1290         while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1291                 msleep(100);
1292                 if (fatal_signal_pending(current))
1293                         return -EINTR;
1294                 if (time_after(jiffies, timeout)) {
1295                         dev_err(&dev->pci_dev->dev,
1296                                 "Device not ready; aborting %s\n", enabled ?
1297                                                 "initialisation" : "reset");
1298                         return -ENODEV;
1299                 }
1300         }
1301
1302         return 0;
1303 }
1304
1305 /*
1306  * If the device has been passed off to us in an enabled state, just clear
1307  * the enabled bit.  The spec says we should set the 'shutdown notification
1308  * bits', but doing so may cause the device to complete commands to the
1309  * admin queue ... and we don't know what memory that might be pointing at!
1310  */
1311 static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1312 {
1313         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1314         dev->ctrl_config &= ~NVME_CC_ENABLE;
1315         writel(dev->ctrl_config, &dev->bar->cc);
1316
1317         return nvme_wait_ready(dev, cap, false);
1318 }
1319
1320 static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1321 {
1322         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1323         dev->ctrl_config |= NVME_CC_ENABLE;
1324         writel(dev->ctrl_config, &dev->bar->cc);
1325
1326         return nvme_wait_ready(dev, cap, true);
1327 }
1328
1329 static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1330 {
1331         unsigned long timeout;
1332
1333         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1334         dev->ctrl_config |= NVME_CC_SHN_NORMAL;
1335
1336         writel(dev->ctrl_config, &dev->bar->cc);
1337
1338         timeout = SHUTDOWN_TIMEOUT + jiffies;
1339         while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1340                                                         NVME_CSTS_SHST_CMPLT) {
1341                 msleep(100);
1342                 if (fatal_signal_pending(current))
1343                         return -EINTR;
1344                 if (time_after(jiffies, timeout)) {
1345                         dev_err(&dev->pci_dev->dev,
1346                                 "Device shutdown incomplete; abort shutdown\n");
1347                         return -ENODEV;
1348                 }
1349         }
1350
1351         return 0;
1352 }
1353
1354 static struct blk_mq_ops nvme_mq_admin_ops = {
1355         .queue_rq       = nvme_admin_queue_rq,
1356         .map_queue      = blk_mq_map_queue,
1357         .init_hctx      = nvme_admin_init_hctx,
1358         .exit_hctx      = nvme_exit_hctx,
1359         .init_request   = nvme_admin_init_request,
1360         .timeout        = nvme_timeout,
1361 };
1362
1363 static struct blk_mq_ops nvme_mq_ops = {
1364         .queue_rq       = nvme_queue_rq,
1365         .map_queue      = blk_mq_map_queue,
1366         .init_hctx      = nvme_init_hctx,
1367         .exit_hctx      = nvme_exit_hctx,
1368         .init_request   = nvme_init_request,
1369         .timeout        = nvme_timeout,
1370 };
1371
1372 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1373 {
1374         if (dev->admin_q && !blk_queue_dying(dev->admin_q)) {
1375                 blk_cleanup_queue(dev->admin_q);
1376                 blk_mq_free_tag_set(&dev->admin_tagset);
1377         }
1378 }
1379
1380 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1381 {
1382         if (!dev->admin_q) {
1383                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1384                 dev->admin_tagset.nr_hw_queues = 1;
1385                 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1386                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1387                 dev->admin_tagset.numa_node = dev_to_node(&dev->pci_dev->dev);
1388                 dev->admin_tagset.cmd_size = sizeof(struct nvme_cmd_info);
1389                 dev->admin_tagset.driver_data = dev;
1390
1391                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1392                         return -ENOMEM;
1393
1394                 dev->admin_q = blk_mq_init_queue(&dev->admin_tagset);
1395                 if (IS_ERR(dev->admin_q)) {
1396                         blk_mq_free_tag_set(&dev->admin_tagset);
1397                         return -ENOMEM;
1398                 }
1399                 if (!blk_get_queue(dev->admin_q)) {
1400                         nvme_dev_remove_admin(dev);
1401                         return -ENODEV;
1402                 }
1403         }
1404
1405         return 0;
1406 }
1407
1408 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1409 {
1410         int result;
1411         u32 aqa;
1412         u64 cap = readq(&dev->bar->cap);
1413         struct nvme_queue *nvmeq;
1414         unsigned page_shift = PAGE_SHIFT;
1415         unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
1416         unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
1417
1418         if (page_shift < dev_page_min) {
1419                 dev_err(&dev->pci_dev->dev,
1420                                 "Minimum device page size (%u) too large for "
1421                                 "host (%u)\n", 1 << dev_page_min,
1422                                 1 << page_shift);
1423                 return -ENODEV;
1424         }
1425         if (page_shift > dev_page_max) {
1426                 dev_info(&dev->pci_dev->dev,
1427                                 "Device maximum page size (%u) smaller than "
1428                                 "host (%u); enabling work-around\n",
1429                                 1 << dev_page_max, 1 << page_shift);
1430                 page_shift = dev_page_max;
1431         }
1432
1433         result = nvme_disable_ctrl(dev, cap);
1434         if (result < 0)
1435                 return result;
1436
1437         nvmeq = dev->queues[0];
1438         if (!nvmeq) {
1439                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1440                 if (!nvmeq)
1441                         return -ENOMEM;
1442         }
1443
1444         aqa = nvmeq->q_depth - 1;
1445         aqa |= aqa << 16;
1446
1447         dev->page_size = 1 << page_shift;
1448
1449         dev->ctrl_config = NVME_CC_CSS_NVM;
1450         dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1451         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1452         dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1453
1454         writel(aqa, &dev->bar->aqa);
1455         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1456         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1457
1458         result = nvme_enable_ctrl(dev, cap);
1459         if (result)
1460                 goto free_nvmeq;
1461
1462         result = nvme_alloc_admin_tags(dev);
1463         if (result)
1464                 goto free_nvmeq;
1465
1466         nvmeq->cq_vector = 0;
1467         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1468         if (result)
1469                 goto free_tags;
1470
1471         return result;
1472
1473  free_tags:
1474         nvme_dev_remove_admin(dev);
1475  free_nvmeq:
1476         nvme_free_queues(dev, 0);
1477         return result;
1478 }
1479
1480 struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1481                                 unsigned long addr, unsigned length)
1482 {
1483         int i, err, count, nents, offset;
1484         struct scatterlist *sg;
1485         struct page **pages;
1486         struct nvme_iod *iod;
1487
1488         if (addr & 3)
1489                 return ERR_PTR(-EINVAL);
1490         if (!length || length > INT_MAX - PAGE_SIZE)
1491                 return ERR_PTR(-EINVAL);
1492
1493         offset = offset_in_page(addr);
1494         count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1495         pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1496         if (!pages)
1497                 return ERR_PTR(-ENOMEM);
1498
1499         err = get_user_pages_fast(addr, count, 1, pages);
1500         if (err < count) {
1501                 count = err;
1502                 err = -EFAULT;
1503                 goto put_pages;
1504         }
1505
1506         err = -ENOMEM;
1507         iod = nvme_alloc_iod(count, length, dev, GFP_KERNEL);
1508         if (!iod)
1509                 goto put_pages;
1510
1511         sg = iod->sg;
1512         sg_init_table(sg, count);
1513         for (i = 0; i < count; i++) {
1514                 sg_set_page(&sg[i], pages[i],
1515                             min_t(unsigned, length, PAGE_SIZE - offset),
1516                             offset);
1517                 length -= (PAGE_SIZE - offset);
1518                 offset = 0;
1519         }
1520         sg_mark_end(&sg[i - 1]);
1521         iod->nents = count;
1522
1523         nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1524                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1525         if (!nents)
1526                 goto free_iod;
1527
1528         kfree(pages);
1529         return iod;
1530
1531  free_iod:
1532         kfree(iod);
1533  put_pages:
1534         for (i = 0; i < count; i++)
1535                 put_page(pages[i]);
1536         kfree(pages);
1537         return ERR_PTR(err);
1538 }
1539
1540 void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1541                         struct nvme_iod *iod)
1542 {
1543         int i;
1544
1545         dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1546                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1547
1548         for (i = 0; i < iod->nents; i++)
1549                 put_page(sg_page(&iod->sg[i]));
1550 }
1551
1552 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1553 {
1554         struct nvme_dev *dev = ns->dev;
1555         struct nvme_user_io io;
1556         struct nvme_command c;
1557         unsigned length, meta_len;
1558         int status, i;
1559         struct nvme_iod *iod, *meta_iod = NULL;
1560         dma_addr_t meta_dma_addr;
1561         void *meta, *uninitialized_var(meta_mem);
1562
1563         if (copy_from_user(&io, uio, sizeof(io)))
1564                 return -EFAULT;
1565         length = (io.nblocks + 1) << ns->lba_shift;
1566         meta_len = (io.nblocks + 1) * ns->ms;
1567
1568         if (meta_len && ((io.metadata & 3) || !io.metadata))
1569                 return -EINVAL;
1570
1571         switch (io.opcode) {
1572         case nvme_cmd_write:
1573         case nvme_cmd_read:
1574         case nvme_cmd_compare:
1575                 iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1576                 break;
1577         default:
1578                 return -EINVAL;
1579         }
1580
1581         if (IS_ERR(iod))
1582                 return PTR_ERR(iod);
1583
1584         memset(&c, 0, sizeof(c));
1585         c.rw.opcode = io.opcode;
1586         c.rw.flags = io.flags;
1587         c.rw.nsid = cpu_to_le32(ns->ns_id);
1588         c.rw.slba = cpu_to_le64(io.slba);
1589         c.rw.length = cpu_to_le16(io.nblocks);
1590         c.rw.control = cpu_to_le16(io.control);
1591         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1592         c.rw.reftag = cpu_to_le32(io.reftag);
1593         c.rw.apptag = cpu_to_le16(io.apptag);
1594         c.rw.appmask = cpu_to_le16(io.appmask);
1595
1596         if (meta_len) {
1597                 meta_iod = nvme_map_user_pages(dev, io.opcode & 1, io.metadata,
1598                                                                 meta_len);
1599                 if (IS_ERR(meta_iod)) {
1600                         status = PTR_ERR(meta_iod);
1601                         meta_iod = NULL;
1602                         goto unmap;
1603                 }
1604
1605                 meta_mem = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
1606                                                 &meta_dma_addr, GFP_KERNEL);
1607                 if (!meta_mem) {
1608                         status = -ENOMEM;
1609                         goto unmap;
1610                 }
1611
1612                 if (io.opcode & 1) {
1613                         int meta_offset = 0;
1614
1615                         for (i = 0; i < meta_iod->nents; i++) {
1616                                 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1617                                                 meta_iod->sg[i].offset;
1618                                 memcpy(meta_mem + meta_offset, meta,
1619                                                 meta_iod->sg[i].length);
1620                                 kunmap_atomic(meta);
1621                                 meta_offset += meta_iod->sg[i].length;
1622                         }
1623                 }
1624
1625                 c.rw.metadata = cpu_to_le64(meta_dma_addr);
1626         }
1627
1628         length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1629         c.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1630         c.rw.prp2 = cpu_to_le64(iod->first_dma);
1631
1632         if (length != (io.nblocks + 1) << ns->lba_shift)
1633                 status = -ENOMEM;
1634         else
1635                 status = nvme_submit_io_cmd(dev, ns, &c, NULL);
1636
1637         if (meta_len) {
1638                 if (status == NVME_SC_SUCCESS && !(io.opcode & 1)) {
1639                         int meta_offset = 0;
1640
1641                         for (i = 0; i < meta_iod->nents; i++) {
1642                                 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1643                                                 meta_iod->sg[i].offset;
1644                                 memcpy(meta, meta_mem + meta_offset,
1645                                                 meta_iod->sg[i].length);
1646                                 kunmap_atomic(meta);
1647                                 meta_offset += meta_iod->sg[i].length;
1648                         }
1649                 }
1650
1651                 dma_free_coherent(&dev->pci_dev->dev, meta_len, meta_mem,
1652                                                                 meta_dma_addr);
1653         }
1654
1655  unmap:
1656         nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1657         nvme_free_iod(dev, iod);
1658
1659         if (meta_iod) {
1660                 nvme_unmap_user_pages(dev, io.opcode & 1, meta_iod);
1661                 nvme_free_iod(dev, meta_iod);
1662         }
1663
1664         return status;
1665 }
1666
1667 static int nvme_user_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1668                         struct nvme_passthru_cmd __user *ucmd)
1669 {
1670         struct nvme_passthru_cmd cmd;
1671         struct nvme_command c;
1672         int status, length;
1673         struct nvme_iod *uninitialized_var(iod);
1674         unsigned timeout;
1675
1676         if (!capable(CAP_SYS_ADMIN))
1677                 return -EACCES;
1678         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1679                 return -EFAULT;
1680
1681         memset(&c, 0, sizeof(c));
1682         c.common.opcode = cmd.opcode;
1683         c.common.flags = cmd.flags;
1684         c.common.nsid = cpu_to_le32(cmd.nsid);
1685         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1686         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1687         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1688         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1689         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1690         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1691         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1692         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1693
1694         length = cmd.data_len;
1695         if (cmd.data_len) {
1696                 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1697                                                                 length);
1698                 if (IS_ERR(iod))
1699                         return PTR_ERR(iod);
1700                 length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1701                 c.common.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1702                 c.common.prp2 = cpu_to_le64(iod->first_dma);
1703         }
1704
1705         timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
1706                                                                 ADMIN_TIMEOUT;
1707
1708         if (length != cmd.data_len)
1709                 status = -ENOMEM;
1710         else if (ns) {
1711                 struct request *req;
1712
1713                 req = blk_mq_alloc_request(ns->queue, WRITE,
1714                                                 (GFP_KERNEL|__GFP_WAIT), false);
1715                 if (IS_ERR(req))
1716                         status = PTR_ERR(req);
1717                 else {
1718                         status = nvme_submit_sync_cmd(req, &c, &cmd.result,
1719                                                                 timeout);
1720                         blk_mq_free_request(req);
1721                 }
1722         } else
1723                 status = __nvme_submit_admin_cmd(dev, &c, &cmd.result, timeout);
1724
1725         if (cmd.data_len) {
1726                 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1727                 nvme_free_iod(dev, iod);
1728         }
1729
1730         if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
1731                                                         sizeof(cmd.result)))
1732                 status = -EFAULT;
1733
1734         return status;
1735 }
1736
1737 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1738                                                         unsigned long arg)
1739 {
1740         struct nvme_ns *ns = bdev->bd_disk->private_data;
1741
1742         switch (cmd) {
1743         case NVME_IOCTL_ID:
1744                 force_successful_syscall_return();
1745                 return ns->ns_id;
1746         case NVME_IOCTL_ADMIN_CMD:
1747                 return nvme_user_cmd(ns->dev, NULL, (void __user *)arg);
1748         case NVME_IOCTL_IO_CMD:
1749                 return nvme_user_cmd(ns->dev, ns, (void __user *)arg);
1750         case NVME_IOCTL_SUBMIT_IO:
1751                 return nvme_submit_io(ns, (void __user *)arg);
1752         case SG_GET_VERSION_NUM:
1753                 return nvme_sg_get_version_num((void __user *)arg);
1754         case SG_IO:
1755                 return nvme_sg_io(ns, (void __user *)arg);
1756         default:
1757                 return -ENOTTY;
1758         }
1759 }
1760
1761 #ifdef CONFIG_COMPAT
1762 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1763                                         unsigned int cmd, unsigned long arg)
1764 {
1765         switch (cmd) {
1766         case SG_IO:
1767                 return -ENOIOCTLCMD;
1768         }
1769         return nvme_ioctl(bdev, mode, cmd, arg);
1770 }
1771 #else
1772 #define nvme_compat_ioctl       NULL
1773 #endif
1774
1775 static int nvme_open(struct block_device *bdev, fmode_t mode)
1776 {
1777         int ret = 0;
1778         struct nvme_ns *ns;
1779
1780         spin_lock(&dev_list_lock);
1781         ns = bdev->bd_disk->private_data;
1782         if (!ns)
1783                 ret = -ENXIO;
1784         else if (!kref_get_unless_zero(&ns->dev->kref))
1785                 ret = -ENXIO;
1786         spin_unlock(&dev_list_lock);
1787
1788         return ret;
1789 }
1790
1791 static void nvme_free_dev(struct kref *kref);
1792
1793 static void nvme_release(struct gendisk *disk, fmode_t mode)
1794 {
1795         struct nvme_ns *ns = disk->private_data;
1796         struct nvme_dev *dev = ns->dev;
1797
1798         kref_put(&dev->kref, nvme_free_dev);
1799 }
1800
1801 static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
1802 {
1803         /* some standard values */
1804         geo->heads = 1 << 6;
1805         geo->sectors = 1 << 5;
1806         geo->cylinders = get_capacity(bd->bd_disk) >> 11;
1807         return 0;
1808 }
1809
1810 static int nvme_revalidate_disk(struct gendisk *disk)
1811 {
1812         struct nvme_ns *ns = disk->private_data;
1813         struct nvme_dev *dev = ns->dev;
1814         struct nvme_id_ns *id;
1815         dma_addr_t dma_addr;
1816         int lbaf;
1817
1818         id = dma_alloc_coherent(&dev->pci_dev->dev, 4096, &dma_addr,
1819                                                                 GFP_KERNEL);
1820         if (!id) {
1821                 dev_warn(&dev->pci_dev->dev, "%s: Memory alocation failure\n",
1822                                                                 __func__);
1823                 return 0;
1824         }
1825
1826         if (nvme_identify(dev, ns->ns_id, 0, dma_addr))
1827                 goto free;
1828
1829         lbaf = id->flbas & 0xf;
1830         ns->lba_shift = id->lbaf[lbaf].ds;
1831
1832         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1833         set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1834  free:
1835         dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1836         return 0;
1837 }
1838
1839 static const struct block_device_operations nvme_fops = {
1840         .owner          = THIS_MODULE,
1841         .ioctl          = nvme_ioctl,
1842         .compat_ioctl   = nvme_compat_ioctl,
1843         .open           = nvme_open,
1844         .release        = nvme_release,
1845         .getgeo         = nvme_getgeo,
1846         .revalidate_disk= nvme_revalidate_disk,
1847 };
1848
1849 static int nvme_kthread(void *data)
1850 {
1851         struct nvme_dev *dev, *next;
1852
1853         while (!kthread_should_stop()) {
1854                 set_current_state(TASK_INTERRUPTIBLE);
1855                 spin_lock(&dev_list_lock);
1856                 list_for_each_entry_safe(dev, next, &dev_list, node) {
1857                         int i;
1858                         if (readl(&dev->bar->csts) & NVME_CSTS_CFS &&
1859                                                         dev->initialized) {
1860                                 if (work_busy(&dev->reset_work))
1861                                         continue;
1862                                 list_del_init(&dev->node);
1863                                 dev_warn(&dev->pci_dev->dev,
1864                                         "Failed status: %x, reset controller\n",
1865                                         readl(&dev->bar->csts));
1866                                 dev->reset_workfn = nvme_reset_failed_dev;
1867                                 queue_work(nvme_workq, &dev->reset_work);
1868                                 continue;
1869                         }
1870                         for (i = 0; i < dev->queue_count; i++) {
1871                                 struct nvme_queue *nvmeq = dev->queues[i];
1872                                 if (!nvmeq)
1873                                         continue;
1874                                 spin_lock_irq(&nvmeq->q_lock);
1875                                 nvme_process_cq(nvmeq);
1876
1877                                 while ((i == 0) && (dev->event_limit > 0)) {
1878                                         if (nvme_submit_async_admin_req(dev))
1879                                                 break;
1880                                         dev->event_limit--;
1881                                 }
1882                                 spin_unlock_irq(&nvmeq->q_lock);
1883                         }
1884                 }
1885                 spin_unlock(&dev_list_lock);
1886                 schedule_timeout(round_jiffies_relative(HZ));
1887         }
1888         return 0;
1889 }
1890
1891 static void nvme_config_discard(struct nvme_ns *ns)
1892 {
1893         u32 logical_block_size = queue_logical_block_size(ns->queue);
1894         ns->queue->limits.discard_zeroes_data = 0;
1895         ns->queue->limits.discard_alignment = logical_block_size;
1896         ns->queue->limits.discard_granularity = logical_block_size;
1897         ns->queue->limits.max_discard_sectors = 0xffffffff;
1898         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1899 }
1900
1901 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid,
1902                         struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1903 {
1904         struct nvme_ns *ns;
1905         struct gendisk *disk;
1906         int node = dev_to_node(&dev->pci_dev->dev);
1907         int lbaf;
1908
1909         if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1910                 return NULL;
1911
1912         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
1913         if (!ns)
1914                 return NULL;
1915         ns->queue = blk_mq_init_queue(&dev->tagset);
1916         if (IS_ERR(ns->queue))
1917                 goto out_free_ns;
1918         queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1919         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1920         queue_flag_set_unlocked(QUEUE_FLAG_SG_GAPS, ns->queue);
1921         ns->dev = dev;
1922         ns->queue->queuedata = ns;
1923
1924         disk = alloc_disk_node(0, node);
1925         if (!disk)
1926                 goto out_free_queue;
1927
1928         ns->ns_id = nsid;
1929         ns->disk = disk;
1930         lbaf = id->flbas & 0xf;
1931         ns->lba_shift = id->lbaf[lbaf].ds;
1932         ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1933         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1934         if (dev->max_hw_sectors)
1935                 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
1936         if (dev->stripe_size)
1937                 blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9);
1938         if (dev->vwc & NVME_CTRL_VWC_PRESENT)
1939                 blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
1940
1941         disk->major = nvme_major;
1942         disk->first_minor = 0;
1943         disk->fops = &nvme_fops;
1944         disk->private_data = ns;
1945         disk->queue = ns->queue;
1946         disk->driverfs_dev = &dev->pci_dev->dev;
1947         disk->flags = GENHD_FL_EXT_DEVT;
1948         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
1949         set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1950
1951         if (dev->oncs & NVME_CTRL_ONCS_DSM)
1952                 nvme_config_discard(ns);
1953
1954         return ns;
1955
1956  out_free_queue:
1957         blk_cleanup_queue(ns->queue);
1958  out_free_ns:
1959         kfree(ns);
1960         return NULL;
1961 }
1962
1963 static void nvme_create_io_queues(struct nvme_dev *dev)
1964 {
1965         unsigned i;
1966
1967         for (i = dev->queue_count; i <= dev->max_qid; i++)
1968                 if (!nvme_alloc_queue(dev, i, dev->q_depth))
1969                         break;
1970
1971         for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
1972                 if (nvme_create_queue(dev->queues[i], i))
1973                         break;
1974 }
1975
1976 static int set_queue_count(struct nvme_dev *dev, int count)
1977 {
1978         int status;
1979         u32 result;
1980         u32 q_count = (count - 1) | ((count - 1) << 16);
1981
1982         status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
1983                                                                 &result);
1984         if (status < 0)
1985                 return status;
1986         if (status > 0) {
1987                 dev_err(&dev->pci_dev->dev, "Could not set queue count (%d)\n",
1988                                                                         status);
1989                 return 0;
1990         }
1991         return min(result & 0xffff, result >> 16) + 1;
1992 }
1993
1994 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1995 {
1996         return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1997 }
1998
1999 static int nvme_setup_io_queues(struct nvme_dev *dev)
2000 {
2001         struct nvme_queue *adminq = dev->queues[0];
2002         struct pci_dev *pdev = dev->pci_dev;
2003         int result, i, vecs, nr_io_queues, size;
2004
2005         nr_io_queues = num_possible_cpus();
2006         result = set_queue_count(dev, nr_io_queues);
2007         if (result <= 0)
2008                 return result;
2009         if (result < nr_io_queues)
2010                 nr_io_queues = result;
2011
2012         size = db_bar_size(dev, nr_io_queues);
2013         if (size > 8192) {
2014                 iounmap(dev->bar);
2015                 do {
2016                         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2017                         if (dev->bar)
2018                                 break;
2019                         if (!--nr_io_queues)
2020                                 return -ENOMEM;
2021                         size = db_bar_size(dev, nr_io_queues);
2022                 } while (1);
2023                 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2024                 adminq->q_db = dev->dbs;
2025         }
2026
2027         /* Deregister the admin queue's interrupt */
2028         free_irq(dev->entry[0].vector, adminq);
2029
2030         /*
2031          * If we enable msix early due to not intx, disable it again before
2032          * setting up the full range we need.
2033          */
2034         if (!pdev->irq)
2035                 pci_disable_msix(pdev);
2036
2037         for (i = 0; i < nr_io_queues; i++)
2038                 dev->entry[i].entry = i;
2039         vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2040         if (vecs < 0) {
2041                 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2042                 if (vecs < 0) {
2043                         vecs = 1;
2044                 } else {
2045                         for (i = 0; i < vecs; i++)
2046                                 dev->entry[i].vector = i + pdev->irq;
2047                 }
2048         }
2049
2050         /*
2051          * Should investigate if there's a performance win from allocating
2052          * more queues than interrupt vectors; it might allow the submission
2053          * path to scale better, even if the receive path is limited by the
2054          * number of interrupts.
2055          */
2056         nr_io_queues = vecs;
2057         dev->max_qid = nr_io_queues;
2058
2059         result = queue_request_irq(dev, adminq, adminq->irqname);
2060         if (result)
2061                 goto free_queues;
2062
2063         /* Free previously allocated queues that are no longer usable */
2064         nvme_free_queues(dev, nr_io_queues + 1);
2065         nvme_create_io_queues(dev);
2066
2067         return 0;
2068
2069  free_queues:
2070         nvme_free_queues(dev, 1);
2071         return result;
2072 }
2073
2074 /*
2075  * Return: error value if an error occurred setting up the queues or calling
2076  * Identify Device.  0 if these succeeded, even if adding some of the
2077  * namespaces failed.  At the moment, these failures are silent.  TBD which
2078  * failures should be reported.
2079  */
2080 static int nvme_dev_add(struct nvme_dev *dev)
2081 {
2082         struct pci_dev *pdev = dev->pci_dev;
2083         int res;
2084         unsigned nn, i;
2085         struct nvme_ns *ns;
2086         struct nvme_id_ctrl *ctrl;
2087         struct nvme_id_ns *id_ns;
2088         void *mem;
2089         dma_addr_t dma_addr;
2090         int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
2091
2092         mem = dma_alloc_coherent(&pdev->dev, 8192, &dma_addr, GFP_KERNEL);
2093         if (!mem)
2094                 return -ENOMEM;
2095
2096         res = nvme_identify(dev, 0, 1, dma_addr);
2097         if (res) {
2098                 dev_err(&pdev->dev, "Identify Controller failed (%d)\n", res);
2099                 res = -EIO;
2100                 goto out;
2101         }
2102
2103         ctrl = mem;
2104         nn = le32_to_cpup(&ctrl->nn);
2105         dev->oncs = le16_to_cpup(&ctrl->oncs);
2106         dev->abort_limit = ctrl->acl + 1;
2107         dev->vwc = ctrl->vwc;
2108         dev->event_limit = min(ctrl->aerl + 1, 8);
2109         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2110         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2111         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
2112         if (ctrl->mdts)
2113                 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
2114         if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
2115                         (pdev->device == 0x0953) && ctrl->vs[3]) {
2116                 unsigned int max_hw_sectors;
2117
2118                 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
2119                 max_hw_sectors = dev->stripe_size >> (shift - 9);
2120                 if (dev->max_hw_sectors) {
2121                         dev->max_hw_sectors = min(max_hw_sectors,
2122                                                         dev->max_hw_sectors);
2123                 } else
2124                         dev->max_hw_sectors = max_hw_sectors;
2125         }
2126
2127         dev->tagset.ops = &nvme_mq_ops;
2128         dev->tagset.nr_hw_queues = dev->online_queues - 1;
2129         dev->tagset.timeout = NVME_IO_TIMEOUT;
2130         dev->tagset.numa_node = dev_to_node(&dev->pci_dev->dev);
2131         dev->tagset.queue_depth =
2132                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2133         dev->tagset.cmd_size = sizeof(struct nvme_cmd_info);
2134         dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2135         dev->tagset.driver_data = dev;
2136
2137         if (blk_mq_alloc_tag_set(&dev->tagset))
2138                 goto out;
2139
2140         id_ns = mem;
2141         for (i = 1; i <= nn; i++) {
2142                 res = nvme_identify(dev, i, 0, dma_addr);
2143                 if (res)
2144                         continue;
2145
2146                 if (id_ns->ncap == 0)
2147                         continue;
2148
2149                 res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
2150                                                         dma_addr + 4096, NULL);
2151                 if (res)
2152                         memset(mem + 4096, 0, 4096);
2153
2154                 ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
2155                 if (ns)
2156                         list_add_tail(&ns->list, &dev->namespaces);
2157         }
2158         list_for_each_entry(ns, &dev->namespaces, list)
2159                 add_disk(ns->disk);
2160         res = 0;
2161
2162  out:
2163         dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
2164         return res;
2165 }
2166
2167 static int nvme_dev_map(struct nvme_dev *dev)
2168 {
2169         u64 cap;
2170         int bars, result = -ENOMEM;
2171         struct pci_dev *pdev = dev->pci_dev;
2172
2173         if (pci_enable_device_mem(pdev))
2174                 return result;
2175
2176         dev->entry[0].vector = pdev->irq;
2177         pci_set_master(pdev);
2178         bars = pci_select_bars(pdev, IORESOURCE_MEM);
2179         if (!bars)
2180                 goto disable_pci;
2181
2182         if (pci_request_selected_regions(pdev, bars, "nvme"))
2183                 goto disable_pci;
2184
2185         if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
2186             dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)))
2187                 goto disable;
2188
2189         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2190         if (!dev->bar)
2191                 goto disable;
2192
2193         if (readl(&dev->bar->csts) == -1) {
2194                 result = -ENODEV;
2195                 goto unmap;
2196         }
2197
2198         /*
2199          * Some devices don't advertse INTx interrupts, pre-enable a single
2200          * MSIX vec for setup. We'll adjust this later.
2201          */
2202         if (!pdev->irq) {
2203                 result = pci_enable_msix(pdev, dev->entry, 1);
2204                 if (result < 0)
2205                         goto unmap;
2206         }
2207
2208         cap = readq(&dev->bar->cap);
2209         dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2210         dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
2211         dev->dbs = ((void __iomem *)dev->bar) + 4096;
2212
2213         return 0;
2214
2215  unmap:
2216         iounmap(dev->bar);
2217         dev->bar = NULL;
2218  disable:
2219         pci_release_regions(pdev);
2220  disable_pci:
2221         pci_disable_device(pdev);
2222         return result;
2223 }
2224
2225 static void nvme_dev_unmap(struct nvme_dev *dev)
2226 {
2227         if (dev->pci_dev->msi_enabled)
2228                 pci_disable_msi(dev->pci_dev);
2229         else if (dev->pci_dev->msix_enabled)
2230                 pci_disable_msix(dev->pci_dev);
2231
2232         if (dev->bar) {
2233                 iounmap(dev->bar);
2234                 dev->bar = NULL;
2235                 pci_release_regions(dev->pci_dev);
2236         }
2237
2238         if (pci_is_enabled(dev->pci_dev))
2239                 pci_disable_device(dev->pci_dev);
2240 }
2241
2242 struct nvme_delq_ctx {
2243         struct task_struct *waiter;
2244         struct kthread_worker *worker;
2245         atomic_t refcount;
2246 };
2247
2248 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2249 {
2250         dq->waiter = current;
2251         mb();
2252
2253         for (;;) {
2254                 set_current_state(TASK_KILLABLE);
2255                 if (!atomic_read(&dq->refcount))
2256                         break;
2257                 if (!schedule_timeout(ADMIN_TIMEOUT) ||
2258                                         fatal_signal_pending(current)) {
2259                         set_current_state(TASK_RUNNING);
2260
2261                         nvme_disable_ctrl(dev, readq(&dev->bar->cap));
2262                         nvme_disable_queue(dev, 0);
2263
2264                         send_sig(SIGKILL, dq->worker->task, 1);
2265                         flush_kthread_worker(dq->worker);
2266                         return;
2267                 }
2268         }
2269         set_current_state(TASK_RUNNING);
2270 }
2271
2272 static void nvme_put_dq(struct nvme_delq_ctx *dq)
2273 {
2274         atomic_dec(&dq->refcount);
2275         if (dq->waiter)
2276                 wake_up_process(dq->waiter);
2277 }
2278
2279 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2280 {
2281         atomic_inc(&dq->refcount);
2282         return dq;
2283 }
2284
2285 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2286 {
2287         struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
2288
2289         nvme_clear_queue(nvmeq);
2290         nvme_put_dq(dq);
2291 }
2292
2293 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2294                                                 kthread_work_func_t fn)
2295 {
2296         struct nvme_command c;
2297
2298         memset(&c, 0, sizeof(c));
2299         c.delete_queue.opcode = opcode;
2300         c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2301
2302         init_kthread_work(&nvmeq->cmdinfo.work, fn);
2303         return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
2304                                                                 ADMIN_TIMEOUT);
2305 }
2306
2307 static void nvme_del_cq_work_handler(struct kthread_work *work)
2308 {
2309         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2310                                                         cmdinfo.work);
2311         nvme_del_queue_end(nvmeq);
2312 }
2313
2314 static int nvme_delete_cq(struct nvme_queue *nvmeq)
2315 {
2316         return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2317                                                 nvme_del_cq_work_handler);
2318 }
2319
2320 static void nvme_del_sq_work_handler(struct kthread_work *work)
2321 {
2322         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2323                                                         cmdinfo.work);
2324         int status = nvmeq->cmdinfo.status;
2325
2326         if (!status)
2327                 status = nvme_delete_cq(nvmeq);
2328         if (status)
2329                 nvme_del_queue_end(nvmeq);
2330 }
2331
2332 static int nvme_delete_sq(struct nvme_queue *nvmeq)
2333 {
2334         return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2335                                                 nvme_del_sq_work_handler);
2336 }
2337
2338 static void nvme_del_queue_start(struct kthread_work *work)
2339 {
2340         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2341                                                         cmdinfo.work);
2342         allow_signal(SIGKILL);
2343         if (nvme_delete_sq(nvmeq))
2344                 nvme_del_queue_end(nvmeq);
2345 }
2346
2347 static void nvme_disable_io_queues(struct nvme_dev *dev)
2348 {
2349         int i;
2350         DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2351         struct nvme_delq_ctx dq;
2352         struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2353                                         &worker, "nvme%d", dev->instance);
2354
2355         if (IS_ERR(kworker_task)) {
2356                 dev_err(&dev->pci_dev->dev,
2357                         "Failed to create queue del task\n");
2358                 for (i = dev->queue_count - 1; i > 0; i--)
2359                         nvme_disable_queue(dev, i);
2360                 return;
2361         }
2362
2363         dq.waiter = NULL;
2364         atomic_set(&dq.refcount, 0);
2365         dq.worker = &worker;
2366         for (i = dev->queue_count - 1; i > 0; i--) {
2367                 struct nvme_queue *nvmeq = dev->queues[i];
2368
2369                 if (nvme_suspend_queue(nvmeq))
2370                         continue;
2371                 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2372                 nvmeq->cmdinfo.worker = dq.worker;
2373                 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2374                 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2375         }
2376         nvme_wait_dq(&dq, dev);
2377         kthread_stop(kworker_task);
2378 }
2379
2380 /*
2381 * Remove the node from the device list and check
2382 * for whether or not we need to stop the nvme_thread.
2383 */
2384 static void nvme_dev_list_remove(struct nvme_dev *dev)
2385 {
2386         struct task_struct *tmp = NULL;
2387
2388         spin_lock(&dev_list_lock);
2389         list_del_init(&dev->node);
2390         if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2391                 tmp = nvme_thread;
2392                 nvme_thread = NULL;
2393         }
2394         spin_unlock(&dev_list_lock);
2395
2396         if (tmp)
2397                 kthread_stop(tmp);
2398 }
2399
2400 static void nvme_dev_shutdown(struct nvme_dev *dev)
2401 {
2402         int i;
2403         u32 csts = -1;
2404
2405         dev->initialized = 0;
2406         nvme_dev_list_remove(dev);
2407
2408         if (dev->bar)
2409                 csts = readl(&dev->bar->csts);
2410         if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
2411                 for (i = dev->queue_count - 1; i >= 0; i--) {
2412                         struct nvme_queue *nvmeq = dev->queues[i];
2413                         nvme_suspend_queue(nvmeq);
2414                         nvme_clear_queue(nvmeq);
2415                 }
2416         } else {
2417                 nvme_disable_io_queues(dev);
2418                 nvme_shutdown_ctrl(dev);
2419                 nvme_disable_queue(dev, 0);
2420         }
2421         nvme_dev_unmap(dev);
2422 }
2423
2424 static void nvme_dev_remove(struct nvme_dev *dev)
2425 {
2426         struct nvme_ns *ns;
2427
2428         list_for_each_entry(ns, &dev->namespaces, list) {
2429                 if (ns->disk->flags & GENHD_FL_UP)
2430                         del_gendisk(ns->disk);
2431                 if (!blk_queue_dying(ns->queue))
2432                         blk_cleanup_queue(ns->queue);
2433         }
2434 }
2435
2436 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2437 {
2438         struct device *dmadev = &dev->pci_dev->dev;
2439         dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
2440                                                 PAGE_SIZE, PAGE_SIZE, 0);
2441         if (!dev->prp_page_pool)
2442                 return -ENOMEM;
2443
2444         /* Optimisation for I/Os between 4k and 128k */
2445         dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
2446                                                 256, 256, 0);
2447         if (!dev->prp_small_pool) {
2448                 dma_pool_destroy(dev->prp_page_pool);
2449                 return -ENOMEM;
2450         }
2451         return 0;
2452 }
2453
2454 static void nvme_release_prp_pools(struct nvme_dev *dev)
2455 {
2456         dma_pool_destroy(dev->prp_page_pool);
2457         dma_pool_destroy(dev->prp_small_pool);
2458 }
2459
2460 static DEFINE_IDA(nvme_instance_ida);
2461
2462 static int nvme_set_instance(struct nvme_dev *dev)
2463 {
2464         int instance, error;
2465
2466         do {
2467                 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2468                         return -ENODEV;
2469
2470                 spin_lock(&dev_list_lock);
2471                 error = ida_get_new(&nvme_instance_ida, &instance);
2472                 spin_unlock(&dev_list_lock);
2473         } while (error == -EAGAIN);
2474
2475         if (error)
2476                 return -ENODEV;
2477
2478         dev->instance = instance;
2479         return 0;
2480 }
2481
2482 static void nvme_release_instance(struct nvme_dev *dev)
2483 {
2484         spin_lock(&dev_list_lock);
2485         ida_remove(&nvme_instance_ida, dev->instance);
2486         spin_unlock(&dev_list_lock);
2487 }
2488
2489 static void nvme_free_namespaces(struct nvme_dev *dev)
2490 {
2491         struct nvme_ns *ns, *next;
2492
2493         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
2494                 list_del(&ns->list);
2495
2496                 spin_lock(&dev_list_lock);
2497                 ns->disk->private_data = NULL;
2498                 spin_unlock(&dev_list_lock);
2499
2500                 put_disk(ns->disk);
2501                 kfree(ns);
2502         }
2503 }
2504
2505 static void nvme_free_dev(struct kref *kref)
2506 {
2507         struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
2508
2509         pci_dev_put(dev->pci_dev);
2510         nvme_free_namespaces(dev);
2511         nvme_release_instance(dev);
2512         blk_mq_free_tag_set(&dev->tagset);
2513         blk_put_queue(dev->admin_q);
2514         kfree(dev->queues);
2515         kfree(dev->entry);
2516         kfree(dev);
2517 }
2518
2519 static int nvme_dev_open(struct inode *inode, struct file *f)
2520 {
2521         struct nvme_dev *dev = container_of(f->private_data, struct nvme_dev,
2522                                                                 miscdev);
2523         kref_get(&dev->kref);
2524         f->private_data = dev;
2525         return 0;
2526 }
2527
2528 static int nvme_dev_release(struct inode *inode, struct file *f)
2529 {
2530         struct nvme_dev *dev = f->private_data;
2531         kref_put(&dev->kref, nvme_free_dev);
2532         return 0;
2533 }
2534
2535 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2536 {
2537         struct nvme_dev *dev = f->private_data;
2538         struct nvme_ns *ns;
2539
2540         switch (cmd) {
2541         case NVME_IOCTL_ADMIN_CMD:
2542                 return nvme_user_cmd(dev, NULL, (void __user *)arg);
2543         case NVME_IOCTL_IO_CMD:
2544                 if (list_empty(&dev->namespaces))
2545                         return -ENOTTY;
2546                 ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
2547                 return nvme_user_cmd(dev, ns, (void __user *)arg);
2548         default:
2549                 return -ENOTTY;
2550         }
2551 }
2552
2553 static const struct file_operations nvme_dev_fops = {
2554         .owner          = THIS_MODULE,
2555         .open           = nvme_dev_open,
2556         .release        = nvme_dev_release,
2557         .unlocked_ioctl = nvme_dev_ioctl,
2558         .compat_ioctl   = nvme_dev_ioctl,
2559 };
2560
2561 static void nvme_set_irq_hints(struct nvme_dev *dev)
2562 {
2563         struct nvme_queue *nvmeq;
2564         int i;
2565
2566         for (i = 0; i < dev->online_queues; i++) {
2567                 nvmeq = dev->queues[i];
2568
2569                 if (!nvmeq->hctx)
2570                         continue;
2571
2572                 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2573                                                         nvmeq->hctx->cpumask);
2574         }
2575 }
2576
2577 static int nvme_dev_start(struct nvme_dev *dev)
2578 {
2579         int result;
2580         bool start_thread = false;
2581
2582         result = nvme_dev_map(dev);
2583         if (result)
2584                 return result;
2585
2586         result = nvme_configure_admin_queue(dev);
2587         if (result)
2588                 goto unmap;
2589
2590         spin_lock(&dev_list_lock);
2591         if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2592                 start_thread = true;
2593                 nvme_thread = NULL;
2594         }
2595         list_add(&dev->node, &dev_list);
2596         spin_unlock(&dev_list_lock);
2597
2598         if (start_thread) {
2599                 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2600                 wake_up_all(&nvme_kthread_wait);
2601         } else
2602                 wait_event_killable(nvme_kthread_wait, nvme_thread);
2603
2604         if (IS_ERR_OR_NULL(nvme_thread)) {
2605                 result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2606                 goto disable;
2607         }
2608
2609         nvme_init_queue(dev->queues[0], 0);
2610
2611         result = nvme_setup_io_queues(dev);
2612         if (result)
2613                 goto disable;
2614
2615         nvme_set_irq_hints(dev);
2616
2617         return result;
2618
2619  disable:
2620         nvme_disable_queue(dev, 0);
2621         nvme_dev_list_remove(dev);
2622  unmap:
2623         nvme_dev_unmap(dev);
2624         return result;
2625 }
2626
2627 static int nvme_remove_dead_ctrl(void *arg)
2628 {
2629         struct nvme_dev *dev = (struct nvme_dev *)arg;
2630         struct pci_dev *pdev = dev->pci_dev;
2631
2632         if (pci_get_drvdata(pdev))
2633                 pci_stop_and_remove_bus_device_locked(pdev);
2634         kref_put(&dev->kref, nvme_free_dev);
2635         return 0;
2636 }
2637
2638 static void nvme_remove_disks(struct work_struct *ws)
2639 {
2640         struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2641
2642         nvme_free_queues(dev, 1);
2643         nvme_dev_remove(dev);
2644 }
2645
2646 static int nvme_dev_resume(struct nvme_dev *dev)
2647 {
2648         int ret;
2649
2650         ret = nvme_dev_start(dev);
2651         if (ret)
2652                 return ret;
2653         if (dev->online_queues < 2) {
2654                 spin_lock(&dev_list_lock);
2655                 dev->reset_workfn = nvme_remove_disks;
2656                 queue_work(nvme_workq, &dev->reset_work);
2657                 spin_unlock(&dev_list_lock);
2658         }
2659         dev->initialized = 1;
2660         return 0;
2661 }
2662
2663 static void nvme_dev_reset(struct nvme_dev *dev)
2664 {
2665         nvme_dev_shutdown(dev);
2666         if (nvme_dev_resume(dev)) {
2667                 dev_warn(&dev->pci_dev->dev, "Device failed to resume\n");
2668                 kref_get(&dev->kref);
2669                 if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
2670                                                         dev->instance))) {
2671                         dev_err(&dev->pci_dev->dev,
2672                                 "Failed to start controller remove task\n");
2673                         kref_put(&dev->kref, nvme_free_dev);
2674                 }
2675         }
2676 }
2677
2678 static void nvme_reset_failed_dev(struct work_struct *ws)
2679 {
2680         struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2681         nvme_dev_reset(dev);
2682 }
2683
2684 static void nvme_reset_workfn(struct work_struct *work)
2685 {
2686         struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
2687         dev->reset_workfn(work);
2688 }
2689
2690 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2691 {
2692         int node, result = -ENOMEM;
2693         struct nvme_dev *dev;
2694
2695         node = dev_to_node(&pdev->dev);
2696         if (node == NUMA_NO_NODE)
2697                 set_dev_node(&pdev->dev, 0);
2698
2699         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2700         if (!dev)
2701                 return -ENOMEM;
2702         dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2703                                                         GFP_KERNEL, node);
2704         if (!dev->entry)
2705                 goto free;
2706         dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2707                                                         GFP_KERNEL, node);
2708         if (!dev->queues)
2709                 goto free;
2710
2711         INIT_LIST_HEAD(&dev->namespaces);
2712         dev->reset_workfn = nvme_reset_failed_dev;
2713         INIT_WORK(&dev->reset_work, nvme_reset_workfn);
2714         dev->pci_dev = pci_dev_get(pdev);
2715         pci_set_drvdata(pdev, dev);
2716         result = nvme_set_instance(dev);
2717         if (result)
2718                 goto put_pci;
2719
2720         result = nvme_setup_prp_pools(dev);
2721         if (result)
2722                 goto release;
2723
2724         kref_init(&dev->kref);
2725         result = nvme_dev_start(dev);
2726         if (result)
2727                 goto release_pools;
2728
2729         if (dev->online_queues > 1)
2730                 result = nvme_dev_add(dev);
2731         if (result)
2732                 goto shutdown;
2733
2734         scnprintf(dev->name, sizeof(dev->name), "nvme%d", dev->instance);
2735         dev->miscdev.minor = MISC_DYNAMIC_MINOR;
2736         dev->miscdev.parent = &pdev->dev;
2737         dev->miscdev.name = dev->name;
2738         dev->miscdev.fops = &nvme_dev_fops;
2739         result = misc_register(&dev->miscdev);
2740         if (result)
2741                 goto remove;
2742
2743         nvme_set_irq_hints(dev);
2744
2745         dev->initialized = 1;
2746         return 0;
2747
2748  remove:
2749         nvme_dev_remove(dev);
2750         nvme_dev_remove_admin(dev);
2751         nvme_free_namespaces(dev);
2752  shutdown:
2753         nvme_dev_shutdown(dev);
2754  release_pools:
2755         nvme_free_queues(dev, 0);
2756         nvme_release_prp_pools(dev);
2757  release:
2758         nvme_release_instance(dev);
2759  put_pci:
2760         pci_dev_put(dev->pci_dev);
2761  free:
2762         kfree(dev->queues);
2763         kfree(dev->entry);
2764         kfree(dev);
2765         return result;
2766 }
2767
2768 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2769 {
2770         struct nvme_dev *dev = pci_get_drvdata(pdev);
2771
2772         if (prepare)
2773                 nvme_dev_shutdown(dev);
2774         else
2775                 nvme_dev_resume(dev);
2776 }
2777
2778 static void nvme_shutdown(struct pci_dev *pdev)
2779 {
2780         struct nvme_dev *dev = pci_get_drvdata(pdev);
2781         nvme_dev_shutdown(dev);
2782 }
2783
2784 static void nvme_remove(struct pci_dev *pdev)
2785 {
2786         struct nvme_dev *dev = pci_get_drvdata(pdev);
2787
2788         spin_lock(&dev_list_lock);
2789         list_del_init(&dev->node);
2790         spin_unlock(&dev_list_lock);
2791
2792         pci_set_drvdata(pdev, NULL);
2793         flush_work(&dev->reset_work);
2794         misc_deregister(&dev->miscdev);
2795         nvme_dev_remove(dev);
2796         nvme_dev_shutdown(dev);
2797         nvme_dev_remove_admin(dev);
2798         nvme_free_queues(dev, 0);
2799         nvme_release_prp_pools(dev);
2800         kref_put(&dev->kref, nvme_free_dev);
2801 }
2802
2803 /* These functions are yet to be implemented */
2804 #define nvme_error_detected NULL
2805 #define nvme_dump_registers NULL
2806 #define nvme_link_reset NULL
2807 #define nvme_slot_reset NULL
2808 #define nvme_error_resume NULL
2809
2810 #ifdef CONFIG_PM_SLEEP
2811 static int nvme_suspend(struct device *dev)
2812 {
2813         struct pci_dev *pdev = to_pci_dev(dev);
2814         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2815
2816         nvme_dev_shutdown(ndev);
2817         return 0;
2818 }
2819
2820 static int nvme_resume(struct device *dev)
2821 {
2822         struct pci_dev *pdev = to_pci_dev(dev);
2823         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2824
2825         if (nvme_dev_resume(ndev) && !work_busy(&ndev->reset_work)) {
2826                 ndev->reset_workfn = nvme_reset_failed_dev;
2827                 queue_work(nvme_workq, &ndev->reset_work);
2828         }
2829         return 0;
2830 }
2831 #endif
2832
2833 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2834
2835 static const struct pci_error_handlers nvme_err_handler = {
2836         .error_detected = nvme_error_detected,
2837         .mmio_enabled   = nvme_dump_registers,
2838         .link_reset     = nvme_link_reset,
2839         .slot_reset     = nvme_slot_reset,
2840         .resume         = nvme_error_resume,
2841         .reset_notify   = nvme_reset_notify,
2842 };
2843
2844 /* Move to pci_ids.h later */
2845 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
2846
2847 static const struct pci_device_id nvme_id_table[] = {
2848         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2849         { 0, }
2850 };
2851 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2852
2853 static struct pci_driver nvme_driver = {
2854         .name           = "nvme",
2855         .id_table       = nvme_id_table,
2856         .probe          = nvme_probe,
2857         .remove         = nvme_remove,
2858         .shutdown       = nvme_shutdown,
2859         .driver         = {
2860                 .pm     = &nvme_dev_pm_ops,
2861         },
2862         .err_handler    = &nvme_err_handler,
2863 };
2864
2865 static int __init nvme_init(void)
2866 {
2867         int result;
2868
2869         init_waitqueue_head(&nvme_kthread_wait);
2870
2871         nvme_workq = create_singlethread_workqueue("nvme");
2872         if (!nvme_workq)
2873                 return -ENOMEM;
2874
2875         result = register_blkdev(nvme_major, "nvme");
2876         if (result < 0)
2877                 goto kill_workq;
2878         else if (result > 0)
2879                 nvme_major = result;
2880
2881         result = pci_register_driver(&nvme_driver);
2882         if (result)
2883                 goto unregister_blkdev;
2884         return 0;
2885
2886  unregister_blkdev:
2887         unregister_blkdev(nvme_major, "nvme");
2888  kill_workq:
2889         destroy_workqueue(nvme_workq);
2890         return result;
2891 }
2892
2893 static void __exit nvme_exit(void)
2894 {
2895         pci_unregister_driver(&nvme_driver);
2896         unregister_hotcpu_notifier(&nvme_nb);
2897         unregister_blkdev(nvme_major, "nvme");
2898         destroy_workqueue(nvme_workq);
2899         BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
2900         _nvme_check_size();
2901 }
2902
2903 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2904 MODULE_LICENSE("GPL");
2905 MODULE_VERSION("1.0");
2906 module_init(nvme_init);
2907 module_exit(nvme_exit);