NVMe: Fix admin IRQ claim on real hardware
[firefly-linux-kernel-4.4.55.git] / drivers / block / nvme.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17  */
18
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/errno.h>
23 #include <linux/fs.h>
24 #include <linux/genhd.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kdev_t.h>
29 #include <linux/kernel.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/moduleparam.h>
33 #include <linux/pci.h>
34 #include <linux/sched.h>
35 #include <linux/slab.h>
36 #include <linux/types.h>
37 #include <linux/version.h>
38
39 #define NVME_Q_DEPTH 1024
40 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
41 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
42 #define NVME_MINORS 64
43
44 static int nvme_major;
45 module_param(nvme_major, int, 0);
46
47 /*
48  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
49  */
50 struct nvme_dev {
51         struct list_head node;
52         struct nvme_queue **queues;
53         u32 __iomem *dbs;
54         struct pci_dev *pci_dev;
55         int instance;
56         int queue_count;
57         u32 ctrl_config;
58         struct msix_entry *entry;
59         struct nvme_bar __iomem *bar;
60         struct list_head namespaces;
61 };
62
63 /*
64  * An NVM Express namespace is equivalent to a SCSI LUN
65  */
66 struct nvme_ns {
67         struct list_head list;
68
69         struct nvme_dev *dev;
70         struct request_queue *queue;
71         struct gendisk *disk;
72
73         int ns_id;
74         int lba_shift;
75 };
76
77 /*
78  * An NVM Express queue.  Each device has at least two (one for admin
79  * commands and one for I/O commands).
80  */
81 struct nvme_queue {
82         struct device *q_dmadev;
83         spinlock_t q_lock;
84         struct nvme_command *sq_cmds;
85         volatile struct nvme_completion *cqes;
86         dma_addr_t sq_dma_addr;
87         dma_addr_t cq_dma_addr;
88         wait_queue_head_t sq_full;
89         struct bio_list sq_cong;
90         u32 __iomem *q_db;
91         u16 q_depth;
92         u16 cq_vector;
93         u16 sq_head;
94         u16 sq_tail;
95         u16 cq_head;
96         u16 cq_phase;
97         unsigned long cmdid_data[];
98 };
99
100 /*
101  * Check we didin't inadvertently grow the command struct
102  */
103 static inline void _nvme_check_size(void)
104 {
105         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
106         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
107         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
108         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
109         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
110         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
111         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
112         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
113         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
114 }
115
116 /**
117  * alloc_cmdid - Allocate a Command ID
118  * @param nvmeq The queue that will be used for this command
119  * @param ctx A pointer that will be passed to the handler
120  * @param handler The ID of the handler to call
121  *
122  * Allocate a Command ID for a queue.  The data passed in will
123  * be passed to the completion handler.  This is implemented by using
124  * the bottom two bits of the ctx pointer to store the handler ID.
125  * Passing in a pointer that's not 4-byte aligned will cause a BUG.
126  * We can change this if it becomes a problem.
127  */
128 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler)
129 {
130         int depth = nvmeq->q_depth;
131         unsigned long data = (unsigned long)ctx | handler;
132         int cmdid;
133
134         BUG_ON((unsigned long)ctx & 3);
135
136         do {
137                 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
138                 if (cmdid >= depth)
139                         return -EBUSY;
140         } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
141
142         nvmeq->cmdid_data[cmdid + BITS_TO_LONGS(depth)] = data;
143         return cmdid;
144 }
145
146 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
147                                                                 int handler)
148 {
149         int cmdid;
150         wait_event_killable(nvmeq->sq_full,
151                         (cmdid = alloc_cmdid(nvmeq, ctx, handler)) >= 0);
152         return (cmdid < 0) ? -EINTR : cmdid;
153 }
154
155 /* If you need more than four handlers, you'll need to change how
156  * alloc_cmdid and nvme_process_cq work
157  */
158 enum {
159         sync_completion_id = 0,
160         bio_completion_id,
161 };
162
163 static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid)
164 {
165         unsigned long data;
166
167         data = nvmeq->cmdid_data[cmdid + BITS_TO_LONGS(nvmeq->q_depth)];
168         clear_bit(cmdid, nvmeq->cmdid_data);
169         wake_up(&nvmeq->sq_full);
170         return data;
171 }
172
173 static struct nvme_queue *get_nvmeq(struct nvme_ns *ns)
174 {
175         int qid, cpu = get_cpu();
176         if (cpu < ns->dev->queue_count)
177                 qid = cpu + 1;
178         else
179                 qid = (cpu % rounddown_pow_of_two(ns->dev->queue_count)) + 1;
180         return ns->dev->queues[qid];
181 }
182
183 static void put_nvmeq(struct nvme_queue *nvmeq)
184 {
185         put_cpu();
186 }
187
188 /**
189  * nvme_submit_cmd: Copy a command into a queue and ring the doorbell
190  * @nvmeq: The queue to use
191  * @cmd: The command to send
192  *
193  * Safe to use from interrupt context
194  */
195 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
196 {
197         unsigned long flags;
198         u16 tail;
199         /* XXX: Need to check tail isn't going to overrun head */
200         spin_lock_irqsave(&nvmeq->q_lock, flags);
201         tail = nvmeq->sq_tail;
202         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
203         writel(tail, nvmeq->q_db);
204         if (++tail == nvmeq->q_depth)
205                 tail = 0;
206         nvmeq->sq_tail = tail;
207         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
208
209         return 0;
210 }
211
212 struct nvme_req_info {
213         struct bio *bio;
214         int nents;
215         struct scatterlist sg[0];
216 };
217
218 /* XXX: use a mempool */
219 static struct nvme_req_info *alloc_info(unsigned nseg, gfp_t gfp)
220 {
221         return kmalloc(sizeof(struct nvme_req_info) +
222                         sizeof(struct scatterlist) * nseg, gfp);
223 }
224
225 static void free_info(struct nvme_req_info *info)
226 {
227         kfree(info);
228 }
229
230 static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
231                                                 struct nvme_completion *cqe)
232 {
233         struct nvme_req_info *info = ctx;
234         struct bio *bio = info->bio;
235         u16 status = le16_to_cpup(&cqe->status) >> 1;
236
237         dma_unmap_sg(nvmeq->q_dmadev, info->sg, info->nents,
238                         bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
239         free_info(info);
240         bio_endio(bio, status ? -EIO : 0);
241 }
242
243 static int nvme_map_bio(struct device *dev, struct nvme_req_info *info,
244                 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
245 {
246         struct bio_vec *bvec;
247         struct scatterlist *sg = info->sg;
248         int i, nsegs;
249
250         sg_init_table(sg, psegs);
251         bio_for_each_segment(bvec, bio, i) {
252                 sg_set_page(sg, bvec->bv_page, bvec->bv_len, bvec->bv_offset);
253                 /* XXX: handle non-mergable here */
254                 nsegs++;
255         }
256         info->nents = nsegs;
257
258         return dma_map_sg(dev, info->sg, info->nents, dma_dir);
259 }
260
261 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
262                                                                 struct bio *bio)
263 {
264         struct nvme_rw_command *cmnd;
265         struct nvme_req_info *info;
266         enum dma_data_direction dma_dir;
267         int cmdid;
268         u16 control;
269         u32 dsmgmt;
270         unsigned long flags;
271         int psegs = bio_phys_segments(ns->queue, bio);
272
273         info = alloc_info(psegs, GFP_NOIO);
274         if (!info)
275                 goto congestion;
276         info->bio = bio;
277
278         cmdid = alloc_cmdid(nvmeq, info, bio_completion_id);
279         if (unlikely(cmdid < 0))
280                 goto free_info;
281
282         control = 0;
283         if (bio->bi_rw & REQ_FUA)
284                 control |= NVME_RW_FUA;
285         if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
286                 control |= NVME_RW_LR;
287
288         dsmgmt = 0;
289         if (bio->bi_rw & REQ_RAHEAD)
290                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
291
292         spin_lock_irqsave(&nvmeq->q_lock, flags);
293         cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail].rw;
294
295         if (bio_data_dir(bio)) {
296                 cmnd->opcode = nvme_cmd_write;
297                 dma_dir = DMA_TO_DEVICE;
298         } else {
299                 cmnd->opcode = nvme_cmd_read;
300                 dma_dir = DMA_FROM_DEVICE;
301         }
302
303         nvme_map_bio(nvmeq->q_dmadev, info, bio, dma_dir, psegs);
304
305         cmnd->flags = 1;
306         cmnd->command_id = cmdid;
307         cmnd->nsid = cpu_to_le32(ns->ns_id);
308         cmnd->prp1 = cpu_to_le64(sg_phys(info->sg));
309         /* XXX: Support more than one PRP */
310         cmnd->slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
311         cmnd->length = cpu_to_le16((bio->bi_size >> ns->lba_shift) - 1);
312         cmnd->control = cpu_to_le16(control);
313         cmnd->dsmgmt = cpu_to_le32(dsmgmt);
314
315         writel(nvmeq->sq_tail, nvmeq->q_db);
316         if (++nvmeq->sq_tail == nvmeq->q_depth)
317                 nvmeq->sq_tail = 0;
318
319         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
320
321         return 0;
322
323  free_info:
324         free_info(info);
325  congestion:
326         return -EBUSY;
327 }
328
329 /*
330  * NB: return value of non-zero would mean that we were a stacking driver.
331  * make_request must always succeed.
332  */
333 static int nvme_make_request(struct request_queue *q, struct bio *bio)
334 {
335         struct nvme_ns *ns = q->queuedata;
336         struct nvme_queue *nvmeq = get_nvmeq(ns);
337
338         if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
339                 blk_set_queue_congested(q, rw_is_sync(bio->bi_rw));
340                 bio_list_add(&nvmeq->sq_cong, bio);
341         }
342         put_nvmeq(nvmeq);
343
344         return 0;
345 }
346
347 struct sync_cmd_info {
348         struct task_struct *task;
349         u32 result;
350         int status;
351 };
352
353 static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
354                                                 struct nvme_completion *cqe)
355 {
356         struct sync_cmd_info *cmdinfo = ctx;
357         cmdinfo->result = le32_to_cpup(&cqe->result);
358         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
359         wake_up_process(cmdinfo->task);
360 }
361
362 typedef void (*completion_fn)(struct nvme_queue *, void *,
363                                                 struct nvme_completion *);
364
365 static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
366 {
367         u16 head, phase;
368
369         static const completion_fn completions[4] = {
370                 [sync_completion_id] = sync_completion,
371                 [bio_completion_id]  = bio_completion,
372         };
373
374         head = nvmeq->cq_head;
375         phase = nvmeq->cq_phase;
376
377         for (;;) {
378                 unsigned long data;
379                 void *ptr;
380                 unsigned char handler;
381                 struct nvme_completion cqe = nvmeq->cqes[head];
382                 if ((le16_to_cpu(cqe.status) & 1) != phase)
383                         break;
384                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
385                 if (++head == nvmeq->q_depth) {
386                         head = 0;
387                         phase = !phase;
388                 }
389
390                 data = free_cmdid(nvmeq, cqe.command_id);
391                 handler = data & 3;
392                 ptr = (void *)(data & ~3UL);
393                 completions[handler](nvmeq, ptr, &cqe);
394         }
395
396         /* If the controller ignores the cq head doorbell and continuously
397          * writes to the queue, it is theoretically possible to wrap around
398          * the queue twice and mistakenly return IRQ_NONE.  Linux only
399          * requires that 0.1% of your interrupts are handled, so this isn't
400          * a big problem.
401          */
402         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
403                 return IRQ_NONE;
404
405         writel(head, nvmeq->q_db + 1);
406         nvmeq->cq_head = head;
407         nvmeq->cq_phase = phase;
408
409         return IRQ_HANDLED;
410 }
411
412 static irqreturn_t nvme_irq(int irq, void *data)
413 {
414         return nvme_process_cq(data);
415 }
416
417 /*
418  * Returns 0 on success.  If the result is negative, it's a Linux error code;
419  * if the result is positive, it's an NVM Express status code
420  */
421 static int nvme_submit_sync_cmd(struct nvme_queue *q, struct nvme_command *cmd,
422                                                                 u32 *result)
423 {
424         int cmdid;
425         struct sync_cmd_info cmdinfo;
426
427         cmdinfo.task = current;
428         cmdinfo.status = -EINTR;
429
430         cmdid = alloc_cmdid_killable(q, &cmdinfo, sync_completion_id);
431         if (cmdid < 0)
432                 return cmdid;
433         cmd->common.command_id = cmdid;
434
435         set_current_state(TASK_UNINTERRUPTIBLE);
436         nvme_submit_cmd(q, cmd);
437         schedule();
438
439         if (result)
440                 *result = cmdinfo.result;
441
442         return cmdinfo.status;
443 }
444
445 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
446                                                                 u32 *result)
447 {
448         return nvme_submit_sync_cmd(dev->queues[0], cmd, result);
449 }
450
451 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
452 {
453         int status;
454         struct nvme_command c;
455
456         memset(&c, 0, sizeof(c));
457         c.delete_queue.opcode = opcode;
458         c.delete_queue.qid = cpu_to_le16(id);
459
460         status = nvme_submit_admin_cmd(dev, &c, NULL);
461         if (status)
462                 return -EIO;
463         return 0;
464 }
465
466 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
467                                                 struct nvme_queue *nvmeq)
468 {
469         int status;
470         struct nvme_command c;
471         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
472
473         memset(&c, 0, sizeof(c));
474         c.create_cq.opcode = nvme_admin_create_cq;
475         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
476         c.create_cq.cqid = cpu_to_le16(qid);
477         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
478         c.create_cq.cq_flags = cpu_to_le16(flags);
479         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
480
481         status = nvme_submit_admin_cmd(dev, &c, NULL);
482         if (status)
483                 return -EIO;
484         return 0;
485 }
486
487 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
488                                                 struct nvme_queue *nvmeq)
489 {
490         int status;
491         struct nvme_command c;
492         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
493
494         memset(&c, 0, sizeof(c));
495         c.create_sq.opcode = nvme_admin_create_sq;
496         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
497         c.create_sq.sqid = cpu_to_le16(qid);
498         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
499         c.create_sq.sq_flags = cpu_to_le16(flags);
500         c.create_sq.cqid = cpu_to_le16(qid);
501
502         status = nvme_submit_admin_cmd(dev, &c, NULL);
503         if (status)
504                 return -EIO;
505         return 0;
506 }
507
508 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
509 {
510         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
511 }
512
513 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
514 {
515         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
516 }
517
518 static void nvme_free_queue(struct nvme_dev *dev, int qid)
519 {
520         struct nvme_queue *nvmeq = dev->queues[qid];
521
522         free_irq(dev->entry[nvmeq->cq_vector].vector, nvmeq);
523
524         /* Don't tell the adapter to delete the admin queue */
525         if (qid) {
526                 adapter_delete_sq(dev, qid);
527                 adapter_delete_cq(dev, qid);
528         }
529
530         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
531                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
532         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
533                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
534         kfree(nvmeq);
535 }
536
537 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
538                                                         int depth, int vector)
539 {
540         struct device *dmadev = &dev->pci_dev->dev;
541         unsigned extra = (depth + BITS_TO_LONGS(depth)) * sizeof(long);
542         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
543         if (!nvmeq)
544                 return NULL;
545
546         nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
547                                         &nvmeq->cq_dma_addr, GFP_KERNEL);
548         if (!nvmeq->cqes)
549                 goto free_nvmeq;
550         memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
551
552         nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
553                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
554         if (!nvmeq->sq_cmds)
555                 goto free_cqdma;
556
557         nvmeq->q_dmadev = dmadev;
558         spin_lock_init(&nvmeq->q_lock);
559         nvmeq->cq_head = 0;
560         nvmeq->cq_phase = 1;
561         init_waitqueue_head(&nvmeq->sq_full);
562         bio_list_init(&nvmeq->sq_cong);
563         nvmeq->q_db = &dev->dbs[qid * 2];
564         nvmeq->q_depth = depth;
565         nvmeq->cq_vector = vector;
566
567         return nvmeq;
568
569  free_cqdma:
570         dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
571                                                         nvmeq->cq_dma_addr);
572  free_nvmeq:
573         kfree(nvmeq);
574         return NULL;
575 }
576
577 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
578                                                         const char *name)
579 {
580         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
581                                 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
582 }
583
584 static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
585                                         int qid, int cq_size, int vector)
586 {
587         int result;
588         struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
589
590         result = adapter_alloc_cq(dev, qid, nvmeq);
591         if (result < 0)
592                 goto free_nvmeq;
593
594         result = adapter_alloc_sq(dev, qid, nvmeq);
595         if (result < 0)
596                 goto release_cq;
597
598         result = queue_request_irq(dev, nvmeq, "nvme");
599         if (result < 0)
600                 goto release_sq;
601
602         return nvmeq;
603
604  release_sq:
605         adapter_delete_sq(dev, qid);
606  release_cq:
607         adapter_delete_cq(dev, qid);
608  free_nvmeq:
609         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
610                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
611         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
612                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
613         kfree(nvmeq);
614         return NULL;
615 }
616
617 static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
618 {
619         int result;
620         u32 aqa;
621         struct nvme_queue *nvmeq;
622
623         dev->dbs = ((void __iomem *)dev->bar) + 4096;
624
625         nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
626
627         aqa = nvmeq->q_depth - 1;
628         aqa |= aqa << 16;
629
630         dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
631         dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
632         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
633
634         writel(aqa, &dev->bar->aqa);
635         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
636         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
637         writel(dev->ctrl_config, &dev->bar->cc);
638
639         while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
640                 msleep(100);
641                 if (fatal_signal_pending(current))
642                         return -EINTR;
643         }
644
645         result = queue_request_irq(dev, nvmeq, "nvme admin");
646         dev->queues[0] = nvmeq;
647         return result;
648 }
649
650 static int nvme_identify(struct nvme_ns *ns, void __user *addr, int cns)
651 {
652         struct nvme_dev *dev = ns->dev;
653         int status;
654         struct nvme_command c;
655         void *page;
656         dma_addr_t dma_addr;
657
658         page = dma_alloc_coherent(&dev->pci_dev->dev, 4096, &dma_addr,
659                                                                 GFP_KERNEL);
660
661         memset(&c, 0, sizeof(c));
662         c.identify.opcode = nvme_admin_identify;
663         c.identify.nsid = cns ? 0 : cpu_to_le32(ns->ns_id);
664         c.identify.prp1 = cpu_to_le64(dma_addr);
665         c.identify.cns = cpu_to_le32(cns);
666
667         status = nvme_submit_admin_cmd(dev, &c, NULL);
668
669         if (status)
670                 status = -EIO;
671         else if (copy_to_user(addr, page, 4096))
672                 status = -EFAULT;
673
674         dma_free_coherent(&dev->pci_dev->dev, 4096, page, dma_addr);
675
676         return status;
677 }
678
679 static int nvme_get_range_type(struct nvme_ns *ns, void __user *addr)
680 {
681         struct nvme_dev *dev = ns->dev;
682         int status;
683         struct nvme_command c;
684         void *page;
685         dma_addr_t dma_addr;
686
687         page = dma_alloc_coherent(&dev->pci_dev->dev, 4096, &dma_addr,
688                                                                 GFP_KERNEL);
689
690         memset(&c, 0, sizeof(c));
691         c.features.opcode = nvme_admin_get_features;
692         c.features.nsid = cpu_to_le32(ns->ns_id);
693         c.features.prp1 = cpu_to_le64(dma_addr);
694         c.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
695
696         status = nvme_submit_admin_cmd(dev, &c, NULL);
697
698         /* XXX: Assuming first range for now */
699         if (status)
700                 status = -EIO;
701         else if (copy_to_user(addr, page, 64))
702                 status = -EFAULT;
703
704         dma_free_coherent(&dev->pci_dev->dev, 4096, page, dma_addr);
705
706         return status;
707 }
708
709 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
710                                                         unsigned long arg)
711 {
712         struct nvme_ns *ns = bdev->bd_disk->private_data;
713
714         switch (cmd) {
715         case NVME_IOCTL_IDENTIFY_NS:
716                 return nvme_identify(ns, (void __user *)arg, 0);
717         case NVME_IOCTL_IDENTIFY_CTRL:
718                 return nvme_identify(ns, (void __user *)arg, 1);
719         case NVME_IOCTL_GET_RANGE_TYPE:
720                 return nvme_get_range_type(ns, (void __user *)arg);
721         default:
722                 return -ENOTTY;
723         }
724 }
725
726 static const struct block_device_operations nvme_fops = {
727         .owner          = THIS_MODULE,
728         .ioctl          = nvme_ioctl,
729 };
730
731 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int index,
732                         struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
733 {
734         struct nvme_ns *ns;
735         struct gendisk *disk;
736         int lbaf;
737
738         if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
739                 return NULL;
740
741         ns = kzalloc(sizeof(*ns), GFP_KERNEL);
742         if (!ns)
743                 return NULL;
744         ns->queue = blk_alloc_queue(GFP_KERNEL);
745         if (!ns->queue)
746                 goto out_free_ns;
747         ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
748                                 QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
749         blk_queue_make_request(ns->queue, nvme_make_request);
750         ns->dev = dev;
751         ns->queue->queuedata = ns;
752
753         disk = alloc_disk(NVME_MINORS);
754         if (!disk)
755                 goto out_free_queue;
756         ns->ns_id = index;
757         ns->disk = disk;
758         lbaf = id->flbas & 0xf;
759         ns->lba_shift = id->lbaf[lbaf].ds;
760
761         disk->major = nvme_major;
762         disk->minors = NVME_MINORS;
763         disk->first_minor = NVME_MINORS * index;
764         disk->fops = &nvme_fops;
765         disk->private_data = ns;
766         disk->queue = ns->queue;
767         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, index);
768         set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
769
770         return ns;
771
772  out_free_queue:
773         blk_cleanup_queue(ns->queue);
774  out_free_ns:
775         kfree(ns);
776         return NULL;
777 }
778
779 static void nvme_ns_free(struct nvme_ns *ns)
780 {
781         put_disk(ns->disk);
782         blk_cleanup_queue(ns->queue);
783         kfree(ns);
784 }
785
786 static int set_queue_count(struct nvme_dev *dev, int count)
787 {
788         int status;
789         u32 result;
790         struct nvme_command c;
791         u32 q_count = (count - 1) | ((count - 1) << 16);
792
793         memset(&c, 0, sizeof(c));
794         c.features.opcode = nvme_admin_get_features;
795         c.features.fid = cpu_to_le32(NVME_FEAT_NUM_QUEUES);
796         c.features.dword11 = cpu_to_le32(q_count);
797
798         status = nvme_submit_admin_cmd(dev, &c, &result);
799         if (status)
800                 return -EIO;
801         return min(result & 0xffff, result >> 16) + 1;
802 }
803
804 static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
805 {
806         int result, cpu, i, nr_queues;
807
808         nr_queues = num_online_cpus();
809         result = set_queue_count(dev, nr_queues);
810         if (result < 0)
811                 return result;
812         if (result < nr_queues)
813                 nr_queues = result;
814
815         /* Deregister the admin queue's interrupt */
816         free_irq(dev->entry[0].vector, dev->queues[0]);
817
818         for (i = 0; i < nr_queues; i++)
819                 dev->entry[i].entry = i;
820         for (;;) {
821                 result = pci_enable_msix(dev->pci_dev, dev->entry, nr_queues);
822                 if (result == 0) {
823                         break;
824                 } else if (result > 0) {
825                         nr_queues = result;
826                         continue;
827                 } else {
828                         nr_queues = 1;
829                         break;
830                 }
831         }
832
833         result = queue_request_irq(dev, dev->queues[0], "nvme admin");
834         /* XXX: handle failure here */
835
836         cpu = cpumask_first(cpu_online_mask);
837         for (i = 0; i < nr_queues; i++) {
838                 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
839                 cpu = cpumask_next(cpu, cpu_online_mask);
840         }
841
842         for (i = 0; i < nr_queues; i++) {
843                 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
844                                                         NVME_Q_DEPTH, i);
845                 if (!dev->queues[i + 1])
846                         return -ENOMEM;
847                 dev->queue_count++;
848         }
849
850         return 0;
851 }
852
853 static void nvme_free_queues(struct nvme_dev *dev)
854 {
855         int i;
856
857         for (i = dev->queue_count - 1; i >= 0; i--)
858                 nvme_free_queue(dev, i);
859 }
860
861 static int __devinit nvme_dev_add(struct nvme_dev *dev)
862 {
863         int res, nn, i;
864         struct nvme_ns *ns, *next;
865         void *id;
866         dma_addr_t dma_addr;
867         struct nvme_command cid, crt;
868
869         res = nvme_setup_io_queues(dev);
870         if (res)
871                 return res;
872
873         /* XXX: Switch to a SG list once prp2 works */
874         id = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
875                                                                 GFP_KERNEL);
876
877         memset(&cid, 0, sizeof(cid));
878         cid.identify.opcode = nvme_admin_identify;
879         cid.identify.nsid = 0;
880         cid.identify.prp1 = cpu_to_le64(dma_addr);
881         cid.identify.cns = cpu_to_le32(1);
882
883         res = nvme_submit_admin_cmd(dev, &cid, NULL);
884         if (res) {
885                 res = -EIO;
886                 goto out_free;
887         }
888
889         nn = le32_to_cpup(&((struct nvme_id_ctrl *)id)->nn);
890
891         cid.identify.cns = 0;
892         memset(&crt, 0, sizeof(crt));
893         crt.features.opcode = nvme_admin_get_features;
894         crt.features.prp1 = cpu_to_le64(dma_addr + 4096);
895         crt.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
896
897         for (i = 0; i < nn; i++) {
898                 cid.identify.nsid = cpu_to_le32(i);
899                 res = nvme_submit_admin_cmd(dev, &cid, NULL);
900                 if (res)
901                         continue;
902
903                 if (((struct nvme_id_ns *)id)->ncap == 0)
904                         continue;
905
906                 crt.features.nsid = cpu_to_le32(i);
907                 res = nvme_submit_admin_cmd(dev, &crt, NULL);
908                 if (res)
909                         continue;
910
911                 ns = nvme_alloc_ns(dev, i, id, id + 4096);
912                 if (ns)
913                         list_add_tail(&ns->list, &dev->namespaces);
914         }
915         list_for_each_entry(ns, &dev->namespaces, list)
916                 add_disk(ns->disk);
917
918         dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
919         return 0;
920
921  out_free:
922         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
923                 list_del(&ns->list);
924                 nvme_ns_free(ns);
925         }
926
927         dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
928         return res;
929 }
930
931 static int nvme_dev_remove(struct nvme_dev *dev)
932 {
933         struct nvme_ns *ns, *next;
934
935         /* TODO: wait all I/O finished or cancel them */
936
937         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
938                 list_del(&ns->list);
939                 del_gendisk(ns->disk);
940                 nvme_ns_free(ns);
941         }
942
943         nvme_free_queues(dev);
944
945         return 0;
946 }
947
948 /* XXX: Use an ida or something to let remove / add work correctly */
949 static void nvme_set_instance(struct nvme_dev *dev)
950 {
951         static int instance;
952         dev->instance = instance++;
953 }
954
955 static void nvme_release_instance(struct nvme_dev *dev)
956 {
957 }
958
959 static int __devinit nvme_probe(struct pci_dev *pdev,
960                                                 const struct pci_device_id *id)
961 {
962         int result = -ENOMEM;
963         struct nvme_dev *dev;
964
965         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
966         if (!dev)
967                 return -ENOMEM;
968         dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
969                                                                 GFP_KERNEL);
970         if (!dev->entry)
971                 goto free;
972         dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
973                                                                 GFP_KERNEL);
974         if (!dev->queues)
975                 goto free;
976
977         INIT_LIST_HEAD(&dev->namespaces);
978         dev->pci_dev = pdev;
979         pci_set_drvdata(pdev, dev);
980         dma_set_mask(&dev->pci_dev->dev, DMA_BIT_MASK(64));
981         nvme_set_instance(dev);
982         dev->entry[0].vector = pdev->irq;
983
984         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
985         if (!dev->bar) {
986                 result = -ENOMEM;
987                 goto disable;
988         }
989
990         result = nvme_configure_admin_queue(dev);
991         if (result)
992                 goto unmap;
993         dev->queue_count++;
994
995         result = nvme_dev_add(dev);
996         if (result)
997                 goto delete;
998         return 0;
999
1000  delete:
1001         nvme_free_queues(dev);
1002  unmap:
1003         iounmap(dev->bar);
1004  disable:
1005         pci_disable_msix(pdev);
1006         nvme_release_instance(dev);
1007  free:
1008         kfree(dev->queues);
1009         kfree(dev->entry);
1010         kfree(dev);
1011         return result;
1012 }
1013
1014 static void __devexit nvme_remove(struct pci_dev *pdev)
1015 {
1016         struct nvme_dev *dev = pci_get_drvdata(pdev);
1017         nvme_dev_remove(dev);
1018         pci_disable_msix(pdev);
1019         iounmap(dev->bar);
1020         nvme_release_instance(dev);
1021         kfree(dev->queues);
1022         kfree(dev->entry);
1023         kfree(dev);
1024 }
1025
1026 /* These functions are yet to be implemented */
1027 #define nvme_error_detected NULL
1028 #define nvme_dump_registers NULL
1029 #define nvme_link_reset NULL
1030 #define nvme_slot_reset NULL
1031 #define nvme_error_resume NULL
1032 #define nvme_suspend NULL
1033 #define nvme_resume NULL
1034
1035 static struct pci_error_handlers nvme_err_handler = {
1036         .error_detected = nvme_error_detected,
1037         .mmio_enabled   = nvme_dump_registers,
1038         .link_reset     = nvme_link_reset,
1039         .slot_reset     = nvme_slot_reset,
1040         .resume         = nvme_error_resume,
1041 };
1042
1043 /* Move to pci_ids.h later */
1044 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
1045
1046 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1047         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1048         { 0, }
1049 };
1050 MODULE_DEVICE_TABLE(pci, nvme_id_table);
1051
1052 static struct pci_driver nvme_driver = {
1053         .name           = "nvme",
1054         .id_table       = nvme_id_table,
1055         .probe          = nvme_probe,
1056         .remove         = __devexit_p(nvme_remove),
1057         .suspend        = nvme_suspend,
1058         .resume         = nvme_resume,
1059         .err_handler    = &nvme_err_handler,
1060 };
1061
1062 static int __init nvme_init(void)
1063 {
1064         int result;
1065
1066         nvme_major = register_blkdev(nvme_major, "nvme");
1067         if (nvme_major <= 0)
1068                 return -EBUSY;
1069
1070         result = pci_register_driver(&nvme_driver);
1071         if (!result)
1072                 return 0;
1073
1074         unregister_blkdev(nvme_major, "nvme");
1075         return result;
1076 }
1077
1078 static void __exit nvme_exit(void)
1079 {
1080         pci_unregister_driver(&nvme_driver);
1081         unregister_blkdev(nvme_major, "nvme");
1082 }
1083
1084 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1085 MODULE_LICENSE("GPL");
1086 MODULE_VERSION("0.1");
1087 module_init(nvme_init);
1088 module_exit(nvme_exit);