NVMe: Handle physical merging of bvec entries
[firefly-linux-kernel-4.4.55.git] / drivers / block / nvme.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17  */
18
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/errno.h>
23 #include <linux/fs.h>
24 #include <linux/genhd.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kdev_t.h>
29 #include <linux/kernel.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/moduleparam.h>
33 #include <linux/pci.h>
34 #include <linux/poison.h>
35 #include <linux/sched.h>
36 #include <linux/slab.h>
37 #include <linux/types.h>
38 #include <linux/version.h>
39
40 #define NVME_Q_DEPTH 1024
41 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
42 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
43 #define NVME_MINORS 64
44 #define IO_TIMEOUT      (5 * HZ)
45 #define ADMIN_TIMEOUT   (60 * HZ)
46
47 static int nvme_major;
48 module_param(nvme_major, int, 0);
49
50 static int use_threaded_interrupts;
51 module_param(use_threaded_interrupts, int, 0);
52
53 /*
54  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
55  */
56 struct nvme_dev {
57         struct nvme_queue **queues;
58         u32 __iomem *dbs;
59         struct pci_dev *pci_dev;
60         struct dma_pool *prp_page_pool;
61         struct dma_pool *prp_small_pool;
62         int instance;
63         int queue_count;
64         u32 ctrl_config;
65         struct msix_entry *entry;
66         struct nvme_bar __iomem *bar;
67         struct list_head namespaces;
68         char serial[20];
69         char model[40];
70         char firmware_rev[8];
71 };
72
73 /*
74  * An NVM Express namespace is equivalent to a SCSI LUN
75  */
76 struct nvme_ns {
77         struct list_head list;
78
79         struct nvme_dev *dev;
80         struct request_queue *queue;
81         struct gendisk *disk;
82
83         int ns_id;
84         int lba_shift;
85 };
86
87 /*
88  * An NVM Express queue.  Each device has at least two (one for admin
89  * commands and one for I/O commands).
90  */
91 struct nvme_queue {
92         struct device *q_dmadev;
93         struct nvme_dev *dev;
94         spinlock_t q_lock;
95         struct nvme_command *sq_cmds;
96         volatile struct nvme_completion *cqes;
97         dma_addr_t sq_dma_addr;
98         dma_addr_t cq_dma_addr;
99         wait_queue_head_t sq_full;
100         struct bio_list sq_cong;
101         u32 __iomem *q_db;
102         u16 q_depth;
103         u16 cq_vector;
104         u16 sq_head;
105         u16 sq_tail;
106         u16 cq_head;
107         u16 cq_phase;
108         unsigned long cmdid_data[];
109 };
110
111 static void nvme_resubmit_bio(struct nvme_queue *nvmeq, struct bio *bio);
112
113 /*
114  * Check we didin't inadvertently grow the command struct
115  */
116 static inline void _nvme_check_size(void)
117 {
118         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
119         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
120         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
121         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
122         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
123         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
124         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
125         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
126         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
127 }
128
129 struct nvme_cmd_info {
130         unsigned long ctx;
131         unsigned long timeout;
132 };
133
134 static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
135 {
136         return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
137 }
138
139 /**
140  * alloc_cmdid - Allocate a Command ID
141  * @param nvmeq The queue that will be used for this command
142  * @param ctx A pointer that will be passed to the handler
143  * @param handler The ID of the handler to call
144  *
145  * Allocate a Command ID for a queue.  The data passed in will
146  * be passed to the completion handler.  This is implemented by using
147  * the bottom two bits of the ctx pointer to store the handler ID.
148  * Passing in a pointer that's not 4-byte aligned will cause a BUG.
149  * We can change this if it becomes a problem.
150  */
151 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler,
152                                                         unsigned timeout)
153 {
154         int depth = nvmeq->q_depth;
155         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
156         int cmdid;
157
158         BUG_ON((unsigned long)ctx & 3);
159
160         do {
161                 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
162                 if (cmdid >= depth)
163                         return -EBUSY;
164         } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
165
166         info[cmdid].ctx = (unsigned long)ctx | handler;
167         info[cmdid].timeout = jiffies + timeout;
168         return cmdid;
169 }
170
171 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
172                                                 int handler, unsigned timeout)
173 {
174         int cmdid;
175         wait_event_killable(nvmeq->sq_full,
176                 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
177         return (cmdid < 0) ? -EINTR : cmdid;
178 }
179
180 /* If you need more than four handlers, you'll need to change how
181  * alloc_cmdid and nvme_process_cq work.  Consider using a special
182  * CMD_CTX value instead, if that works for your situation.
183  */
184 enum {
185         sync_completion_id = 0,
186         bio_completion_id,
187 };
188
189 #define CMD_CTX_BASE            (POISON_POINTER_DELTA + sync_completion_id)
190 #define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
191 #define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
192 #define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
193
194 static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid)
195 {
196         unsigned long data;
197         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
198
199         if (cmdid >= nvmeq->q_depth)
200                 return CMD_CTX_INVALID;
201         data = info[cmdid].ctx;
202         info[cmdid].ctx = CMD_CTX_COMPLETED;
203         clear_bit(cmdid, nvmeq->cmdid_data);
204         wake_up(&nvmeq->sq_full);
205         return data;
206 }
207
208 static void cancel_cmdid_data(struct nvme_queue *nvmeq, int cmdid)
209 {
210         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
211         info[cmdid].ctx = CMD_CTX_CANCELLED;
212 }
213
214 static struct nvme_queue *get_nvmeq(struct nvme_ns *ns)
215 {
216         int qid, cpu = get_cpu();
217         if (cpu < ns->dev->queue_count)
218                 qid = cpu + 1;
219         else
220                 qid = (cpu % rounddown_pow_of_two(ns->dev->queue_count)) + 1;
221         return ns->dev->queues[qid];
222 }
223
224 static void put_nvmeq(struct nvme_queue *nvmeq)
225 {
226         put_cpu();
227 }
228
229 /**
230  * nvme_submit_cmd: Copy a command into a queue and ring the doorbell
231  * @nvmeq: The queue to use
232  * @cmd: The command to send
233  *
234  * Safe to use from interrupt context
235  */
236 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
237 {
238         unsigned long flags;
239         u16 tail;
240         /* XXX: Need to check tail isn't going to overrun head */
241         spin_lock_irqsave(&nvmeq->q_lock, flags);
242         tail = nvmeq->sq_tail;
243         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
244         writel(tail, nvmeq->q_db);
245         if (++tail == nvmeq->q_depth)
246                 tail = 0;
247         nvmeq->sq_tail = tail;
248         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
249
250         return 0;
251 }
252
253 struct nvme_prps {
254         int npages;
255         dma_addr_t first_dma;
256         __le64 *list[0];
257 };
258
259 static void nvme_free_prps(struct nvme_dev *dev, struct nvme_prps *prps)
260 {
261         const int last_prp = PAGE_SIZE / 8 - 1;
262         int i;
263         dma_addr_t prp_dma;
264
265         if (!prps)
266                 return;
267
268         prp_dma = prps->first_dma;
269
270         if (prps->npages == 0)
271                 dma_pool_free(dev->prp_small_pool, prps->list[0], prp_dma);
272         for (i = 0; i < prps->npages; i++) {
273                 __le64 *prp_list = prps->list[i];
274                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
275                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
276                 prp_dma = next_prp_dma;
277         }
278         kfree(prps);
279 }
280
281 struct nvme_bio {
282         struct bio *bio;
283         int nents;
284         struct nvme_prps *prps;
285         struct scatterlist sg[0];
286 };
287
288 /* XXX: use a mempool */
289 static struct nvme_bio *alloc_nbio(unsigned nseg, gfp_t gfp)
290 {
291         return kzalloc(sizeof(struct nvme_bio) +
292                         sizeof(struct scatterlist) * nseg, gfp);
293 }
294
295 static void free_nbio(struct nvme_queue *nvmeq, struct nvme_bio *nbio)
296 {
297         nvme_free_prps(nvmeq->dev, nbio->prps);
298         kfree(nbio);
299 }
300
301 static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
302                                                 struct nvme_completion *cqe)
303 {
304         struct nvme_bio *nbio = ctx;
305         struct bio *bio = nbio->bio;
306         u16 status = le16_to_cpup(&cqe->status) >> 1;
307
308         dma_unmap_sg(nvmeq->q_dmadev, nbio->sg, nbio->nents,
309                         bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
310         free_nbio(nvmeq, nbio);
311         bio_endio(bio, status ? -EIO : 0);
312         bio = bio_list_pop(&nvmeq->sq_cong);
313         if (bio)
314                 nvme_resubmit_bio(nvmeq, bio);
315 }
316
317 /* length is in bytes */
318 static struct nvme_prps *nvme_setup_prps(struct nvme_dev *dev,
319                                         struct nvme_common_command *cmd,
320                                         struct scatterlist *sg, int length)
321 {
322         struct dma_pool *pool;
323         int dma_len = sg_dma_len(sg);
324         u64 dma_addr = sg_dma_address(sg);
325         int offset = offset_in_page(dma_addr);
326         __le64 *prp_list;
327         dma_addr_t prp_dma;
328         int nprps, npages, i, prp_page;
329         struct nvme_prps *prps = NULL;
330
331         cmd->prp1 = cpu_to_le64(dma_addr);
332         length -= (PAGE_SIZE - offset);
333         if (length <= 0)
334                 return prps;
335
336         dma_len -= (PAGE_SIZE - offset);
337         if (dma_len) {
338                 dma_addr += (PAGE_SIZE - offset);
339         } else {
340                 sg = sg_next(sg);
341                 dma_addr = sg_dma_address(sg);
342                 dma_len = sg_dma_len(sg);
343         }
344
345         if (length <= PAGE_SIZE) {
346                 cmd->prp2 = cpu_to_le64(dma_addr);
347                 return prps;
348         }
349
350         nprps = DIV_ROUND_UP(length, PAGE_SIZE);
351         npages = DIV_ROUND_UP(8 * nprps, PAGE_SIZE);
352         prps = kmalloc(sizeof(*prps) + sizeof(__le64 *) * npages, GFP_ATOMIC);
353         prp_page = 0;
354         if (nprps <= (256 / 8)) {
355                 pool = dev->prp_small_pool;
356                 prps->npages = 0;
357         } else {
358                 pool = dev->prp_page_pool;
359                 prps->npages = npages;
360         }
361
362         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
363         prps->list[prp_page++] = prp_list;
364         prps->first_dma = prp_dma;
365         cmd->prp2 = cpu_to_le64(prp_dma);
366         i = 0;
367         for (;;) {
368                 if (i == PAGE_SIZE / 8 - 1) {
369                         __le64 *old_prp_list = prp_list;
370                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
371                         prps->list[prp_page++] = prp_list;
372                         old_prp_list[i] = cpu_to_le64(prp_dma);
373                         i = 0;
374                 }
375                 prp_list[i++] = cpu_to_le64(dma_addr);
376                 dma_len -= PAGE_SIZE;
377                 dma_addr += PAGE_SIZE;
378                 length -= PAGE_SIZE;
379                 if (length <= 0)
380                         break;
381                 if (dma_len > 0)
382                         continue;
383                 BUG_ON(dma_len < 0);
384                 sg = sg_next(sg);
385                 dma_addr = sg_dma_address(sg);
386                 dma_len = sg_dma_len(sg);
387         }
388
389         return prps;
390 }
391
392 static int nvme_map_bio(struct device *dev, struct nvme_bio *nbio,
393                 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
394 {
395         struct bio_vec *bvec, *bvprv = NULL;
396         struct scatterlist *sg = NULL;
397         int i, nsegs = 0;
398
399         sg_init_table(nbio->sg, psegs);
400         bio_for_each_segment(bvec, bio, i) {
401                 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
402                         sg->length += bvec->bv_len;
403                 } else {
404                         /* Check bvprv && offset == 0 */
405                         sg = sg ? sg + 1 : nbio->sg;
406                         sg_set_page(sg, bvec->bv_page, bvec->bv_len,
407                                                         bvec->bv_offset);
408                         nsegs++;
409                 }
410                 bvprv = bvec;
411         }
412         nbio->nents = nsegs;
413         sg_mark_end(sg);
414         return dma_map_sg(dev, nbio->sg, nbio->nents, dma_dir);
415 }
416
417 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
418                                                                 struct bio *bio)
419 {
420         struct nvme_command *cmnd;
421         struct nvme_bio *nbio;
422         enum dma_data_direction dma_dir;
423         int cmdid;
424         u16 control;
425         u32 dsmgmt;
426         unsigned long flags;
427         int psegs = bio_phys_segments(ns->queue, bio);
428
429         nbio = alloc_nbio(psegs, GFP_NOIO);
430         if (!nbio)
431                 goto congestion;
432         nbio->bio = bio;
433
434         cmdid = alloc_cmdid(nvmeq, nbio, bio_completion_id, IO_TIMEOUT);
435         if (unlikely(cmdid < 0))
436                 goto free_nbio;
437
438         control = 0;
439         if (bio->bi_rw & REQ_FUA)
440                 control |= NVME_RW_FUA;
441         if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
442                 control |= NVME_RW_LR;
443
444         dsmgmt = 0;
445         if (bio->bi_rw & REQ_RAHEAD)
446                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
447
448         spin_lock_irqsave(&nvmeq->q_lock, flags);
449         cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
450
451         memset(cmnd, 0, sizeof(*cmnd));
452         if (bio_data_dir(bio)) {
453                 cmnd->rw.opcode = nvme_cmd_write;
454                 dma_dir = DMA_TO_DEVICE;
455         } else {
456                 cmnd->rw.opcode = nvme_cmd_read;
457                 dma_dir = DMA_FROM_DEVICE;
458         }
459
460         if (nvme_map_bio(nvmeq->q_dmadev, nbio, bio, dma_dir, psegs) == 0)
461                 goto mapping_failed;
462
463         cmnd->rw.flags = 1;
464         cmnd->rw.command_id = cmdid;
465         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
466         nbio->prps = nvme_setup_prps(nvmeq->dev, &cmnd->common, nbio->sg,
467                                                                 bio->bi_size);
468         cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
469         cmnd->rw.length = cpu_to_le16((bio->bi_size >> ns->lba_shift) - 1);
470         cmnd->rw.control = cpu_to_le16(control);
471         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
472
473         writel(nvmeq->sq_tail, nvmeq->q_db);
474         if (++nvmeq->sq_tail == nvmeq->q_depth)
475                 nvmeq->sq_tail = 0;
476
477         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
478
479         return 0;
480
481  mapping_failed:
482         free_nbio(nvmeq, nbio);
483         bio_endio(bio, -ENOMEM);
484         return 0;
485
486  free_nbio:
487         free_nbio(nvmeq, nbio);
488  congestion:
489         return -EBUSY;
490 }
491
492 static void nvme_resubmit_bio(struct nvme_queue *nvmeq, struct bio *bio)
493 {
494         struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
495         if (nvme_submit_bio_queue(nvmeq, ns, bio))
496                 bio_list_add_head(&nvmeq->sq_cong, bio);
497         else if (bio_list_empty(&nvmeq->sq_cong))
498                 blk_clear_queue_congested(ns->queue, rw_is_sync(bio->bi_rw));
499         /* XXX: Need to duplicate the logic from __freed_request here */
500 }
501
502 /*
503  * NB: return value of non-zero would mean that we were a stacking driver.
504  * make_request must always succeed.
505  */
506 static int nvme_make_request(struct request_queue *q, struct bio *bio)
507 {
508         struct nvme_ns *ns = q->queuedata;
509         struct nvme_queue *nvmeq = get_nvmeq(ns);
510
511         if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
512                 blk_set_queue_congested(q, rw_is_sync(bio->bi_rw));
513                 spin_lock_irq(&nvmeq->q_lock);
514                 bio_list_add(&nvmeq->sq_cong, bio);
515                 spin_unlock_irq(&nvmeq->q_lock);
516         }
517         put_nvmeq(nvmeq);
518
519         return 0;
520 }
521
522 struct sync_cmd_info {
523         struct task_struct *task;
524         u32 result;
525         int status;
526 };
527
528 static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
529                                                 struct nvme_completion *cqe)
530 {
531         struct sync_cmd_info *cmdinfo = ctx;
532         if ((unsigned long)cmdinfo == CMD_CTX_CANCELLED)
533                 return;
534         if (unlikely((unsigned long)cmdinfo == CMD_CTX_COMPLETED)) {
535                 dev_warn(nvmeq->q_dmadev,
536                                 "completed id %d twice on queue %d\n",
537                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
538                 return;
539         }
540         if (unlikely((unsigned long)cmdinfo == CMD_CTX_INVALID)) {
541                 dev_warn(nvmeq->q_dmadev,
542                                 "invalid id %d completed on queue %d\n",
543                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
544                 return;
545         }
546         cmdinfo->result = le32_to_cpup(&cqe->result);
547         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
548         wake_up_process(cmdinfo->task);
549 }
550
551 typedef void (*completion_fn)(struct nvme_queue *, void *,
552                                                 struct nvme_completion *);
553
554 static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
555 {
556         u16 head, phase;
557
558         static const completion_fn completions[4] = {
559                 [sync_completion_id] = sync_completion,
560                 [bio_completion_id]  = bio_completion,
561         };
562
563         head = nvmeq->cq_head;
564         phase = nvmeq->cq_phase;
565
566         for (;;) {
567                 unsigned long data;
568                 void *ptr;
569                 unsigned char handler;
570                 struct nvme_completion cqe = nvmeq->cqes[head];
571                 if ((le16_to_cpu(cqe.status) & 1) != phase)
572                         break;
573                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
574                 if (++head == nvmeq->q_depth) {
575                         head = 0;
576                         phase = !phase;
577                 }
578
579                 data = free_cmdid(nvmeq, cqe.command_id);
580                 handler = data & 3;
581                 ptr = (void *)(data & ~3UL);
582                 completions[handler](nvmeq, ptr, &cqe);
583         }
584
585         /* If the controller ignores the cq head doorbell and continuously
586          * writes to the queue, it is theoretically possible to wrap around
587          * the queue twice and mistakenly return IRQ_NONE.  Linux only
588          * requires that 0.1% of your interrupts are handled, so this isn't
589          * a big problem.
590          */
591         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
592                 return IRQ_NONE;
593
594         writel(head, nvmeq->q_db + 1);
595         nvmeq->cq_head = head;
596         nvmeq->cq_phase = phase;
597
598         return IRQ_HANDLED;
599 }
600
601 static irqreturn_t nvme_irq(int irq, void *data)
602 {
603         irqreturn_t result;
604         struct nvme_queue *nvmeq = data;
605         spin_lock(&nvmeq->q_lock);
606         result = nvme_process_cq(nvmeq);
607         spin_unlock(&nvmeq->q_lock);
608         return result;
609 }
610
611 static irqreturn_t nvme_irq_check(int irq, void *data)
612 {
613         struct nvme_queue *nvmeq = data;
614         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
615         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
616                 return IRQ_NONE;
617         return IRQ_WAKE_THREAD;
618 }
619
620 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
621 {
622         spin_lock_irq(&nvmeq->q_lock);
623         cancel_cmdid_data(nvmeq, cmdid);
624         spin_unlock_irq(&nvmeq->q_lock);
625 }
626
627 /*
628  * Returns 0 on success.  If the result is negative, it's a Linux error code;
629  * if the result is positive, it's an NVM Express status code
630  */
631 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
632                         struct nvme_command *cmd, u32 *result, unsigned timeout)
633 {
634         int cmdid;
635         struct sync_cmd_info cmdinfo;
636
637         cmdinfo.task = current;
638         cmdinfo.status = -EINTR;
639
640         cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion_id,
641                                                                 timeout);
642         if (cmdid < 0)
643                 return cmdid;
644         cmd->common.command_id = cmdid;
645
646         set_current_state(TASK_KILLABLE);
647         nvme_submit_cmd(nvmeq, cmd);
648         schedule();
649
650         if (cmdinfo.status == -EINTR) {
651                 nvme_abort_command(nvmeq, cmdid);
652                 return -EINTR;
653         }
654
655         if (result)
656                 *result = cmdinfo.result;
657
658         return cmdinfo.status;
659 }
660
661 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
662                                                                 u32 *result)
663 {
664         return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
665 }
666
667 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
668 {
669         int status;
670         struct nvme_command c;
671
672         memset(&c, 0, sizeof(c));
673         c.delete_queue.opcode = opcode;
674         c.delete_queue.qid = cpu_to_le16(id);
675
676         status = nvme_submit_admin_cmd(dev, &c, NULL);
677         if (status)
678                 return -EIO;
679         return 0;
680 }
681
682 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
683                                                 struct nvme_queue *nvmeq)
684 {
685         int status;
686         struct nvme_command c;
687         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
688
689         memset(&c, 0, sizeof(c));
690         c.create_cq.opcode = nvme_admin_create_cq;
691         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
692         c.create_cq.cqid = cpu_to_le16(qid);
693         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
694         c.create_cq.cq_flags = cpu_to_le16(flags);
695         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
696
697         status = nvme_submit_admin_cmd(dev, &c, NULL);
698         if (status)
699                 return -EIO;
700         return 0;
701 }
702
703 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
704                                                 struct nvme_queue *nvmeq)
705 {
706         int status;
707         struct nvme_command c;
708         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
709
710         memset(&c, 0, sizeof(c));
711         c.create_sq.opcode = nvme_admin_create_sq;
712         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
713         c.create_sq.sqid = cpu_to_le16(qid);
714         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
715         c.create_sq.sq_flags = cpu_to_le16(flags);
716         c.create_sq.cqid = cpu_to_le16(qid);
717
718         status = nvme_submit_admin_cmd(dev, &c, NULL);
719         if (status)
720                 return -EIO;
721         return 0;
722 }
723
724 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
725 {
726         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
727 }
728
729 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
730 {
731         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
732 }
733
734 static void nvme_free_queue(struct nvme_dev *dev, int qid)
735 {
736         struct nvme_queue *nvmeq = dev->queues[qid];
737
738         free_irq(dev->entry[nvmeq->cq_vector].vector, nvmeq);
739
740         /* Don't tell the adapter to delete the admin queue */
741         if (qid) {
742                 adapter_delete_sq(dev, qid);
743                 adapter_delete_cq(dev, qid);
744         }
745
746         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
747                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
748         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
749                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
750         kfree(nvmeq);
751 }
752
753 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
754                                                         int depth, int vector)
755 {
756         struct device *dmadev = &dev->pci_dev->dev;
757         unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info));
758         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
759         if (!nvmeq)
760                 return NULL;
761
762         nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
763                                         &nvmeq->cq_dma_addr, GFP_KERNEL);
764         if (!nvmeq->cqes)
765                 goto free_nvmeq;
766         memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
767
768         nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
769                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
770         if (!nvmeq->sq_cmds)
771                 goto free_cqdma;
772
773         nvmeq->q_dmadev = dmadev;
774         nvmeq->dev = dev;
775         spin_lock_init(&nvmeq->q_lock);
776         nvmeq->cq_head = 0;
777         nvmeq->cq_phase = 1;
778         init_waitqueue_head(&nvmeq->sq_full);
779         bio_list_init(&nvmeq->sq_cong);
780         nvmeq->q_db = &dev->dbs[qid * 2];
781         nvmeq->q_depth = depth;
782         nvmeq->cq_vector = vector;
783
784         return nvmeq;
785
786  free_cqdma:
787         dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
788                                                         nvmeq->cq_dma_addr);
789  free_nvmeq:
790         kfree(nvmeq);
791         return NULL;
792 }
793
794 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
795                                                         const char *name)
796 {
797         if (use_threaded_interrupts)
798                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
799                                         nvme_irq_check, nvme_irq,
800                                         IRQF_DISABLED | IRQF_SHARED,
801                                         name, nvmeq);
802         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
803                                 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
804 }
805
806 static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
807                                         int qid, int cq_size, int vector)
808 {
809         int result;
810         struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
811
812         if (!nvmeq)
813                 return NULL;
814
815         result = adapter_alloc_cq(dev, qid, nvmeq);
816         if (result < 0)
817                 goto free_nvmeq;
818
819         result = adapter_alloc_sq(dev, qid, nvmeq);
820         if (result < 0)
821                 goto release_cq;
822
823         result = queue_request_irq(dev, nvmeq, "nvme");
824         if (result < 0)
825                 goto release_sq;
826
827         return nvmeq;
828
829  release_sq:
830         adapter_delete_sq(dev, qid);
831  release_cq:
832         adapter_delete_cq(dev, qid);
833  free_nvmeq:
834         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
835                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
836         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
837                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
838         kfree(nvmeq);
839         return NULL;
840 }
841
842 static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
843 {
844         int result;
845         u32 aqa;
846         struct nvme_queue *nvmeq;
847
848         dev->dbs = ((void __iomem *)dev->bar) + 4096;
849
850         nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
851         if (!nvmeq)
852                 return -ENOMEM;
853
854         aqa = nvmeq->q_depth - 1;
855         aqa |= aqa << 16;
856
857         dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
858         dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
859         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
860
861         writel(0, &dev->bar->cc);
862         writel(aqa, &dev->bar->aqa);
863         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
864         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
865         writel(dev->ctrl_config, &dev->bar->cc);
866
867         while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
868                 msleep(100);
869                 if (fatal_signal_pending(current))
870                         return -EINTR;
871         }
872
873         result = queue_request_irq(dev, nvmeq, "nvme admin");
874         dev->queues[0] = nvmeq;
875         return result;
876 }
877
878 static int nvme_map_user_pages(struct nvme_dev *dev, int write,
879                                 unsigned long addr, unsigned length,
880                                 struct scatterlist **sgp)
881 {
882         int i, err, count, nents, offset;
883         struct scatterlist *sg;
884         struct page **pages;
885
886         if (addr & 3)
887                 return -EINVAL;
888         if (!length)
889                 return -EINVAL;
890
891         offset = offset_in_page(addr);
892         count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
893         pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
894
895         err = get_user_pages_fast(addr, count, 1, pages);
896         if (err < count) {
897                 count = err;
898                 err = -EFAULT;
899                 goto put_pages;
900         }
901
902         sg = kcalloc(count, sizeof(*sg), GFP_KERNEL);
903         sg_init_table(sg, count);
904         sg_set_page(&sg[0], pages[0], PAGE_SIZE - offset, offset);
905         length -= (PAGE_SIZE - offset);
906         for (i = 1; i < count; i++) {
907                 sg_set_page(&sg[i], pages[i], min_t(int, length, PAGE_SIZE), 0);
908                 length -= PAGE_SIZE;
909         }
910
911         err = -ENOMEM;
912         nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
913                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
914         if (!nents)
915                 goto put_pages;
916
917         kfree(pages);
918         *sgp = sg;
919         return nents;
920
921  put_pages:
922         for (i = 0; i < count; i++)
923                 put_page(pages[i]);
924         kfree(pages);
925         return err;
926 }
927
928 static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
929                                 unsigned long addr, int length,
930                                 struct scatterlist *sg, int nents)
931 {
932         int i, count;
933
934         count = DIV_ROUND_UP(offset_in_page(addr) + length, PAGE_SIZE);
935         dma_unmap_sg(&dev->pci_dev->dev, sg, nents, DMA_FROM_DEVICE);
936
937         for (i = 0; i < count; i++)
938                 put_page(sg_page(&sg[i]));
939 }
940
941 static int nvme_submit_user_admin_command(struct nvme_dev *dev,
942                                         unsigned long addr, unsigned length,
943                                         struct nvme_command *cmd)
944 {
945         int err, nents;
946         struct scatterlist *sg;
947         struct nvme_prps *prps;
948
949         nents = nvme_map_user_pages(dev, 0, addr, length, &sg);
950         if (nents < 0)
951                 return nents;
952         prps = nvme_setup_prps(dev, &cmd->common, sg, length);
953         err = nvme_submit_admin_cmd(dev, cmd, NULL);
954         nvme_unmap_user_pages(dev, 0, addr, length, sg, nents);
955         nvme_free_prps(dev, prps);
956         return err ? -EIO : 0;
957 }
958
959 static int nvme_identify(struct nvme_ns *ns, unsigned long addr, int cns)
960 {
961         struct nvme_command c;
962
963         memset(&c, 0, sizeof(c));
964         c.identify.opcode = nvme_admin_identify;
965         c.identify.nsid = cns ? 0 : cpu_to_le32(ns->ns_id);
966         c.identify.cns = cpu_to_le32(cns);
967
968         return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
969 }
970
971 static int nvme_get_range_type(struct nvme_ns *ns, unsigned long addr)
972 {
973         struct nvme_command c;
974
975         memset(&c, 0, sizeof(c));
976         c.features.opcode = nvme_admin_get_features;
977         c.features.nsid = cpu_to_le32(ns->ns_id);
978         c.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
979
980         return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
981 }
982
983 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
984 {
985         struct nvme_dev *dev = ns->dev;
986         struct nvme_queue *nvmeq;
987         struct nvme_user_io io;
988         struct nvme_command c;
989         unsigned length;
990         u32 result;
991         int nents, status;
992         struct scatterlist *sg;
993         struct nvme_prps *prps;
994
995         if (copy_from_user(&io, uio, sizeof(io)))
996                 return -EFAULT;
997         length = io.nblocks << io.block_shift;
998         nents = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length, &sg);
999         if (nents < 0)
1000                 return nents;
1001
1002         memset(&c, 0, sizeof(c));
1003         c.rw.opcode = io.opcode;
1004         c.rw.flags = io.flags;
1005         c.rw.nsid = cpu_to_le32(io.nsid);
1006         c.rw.slba = cpu_to_le64(io.slba);
1007         c.rw.length = cpu_to_le16(io.nblocks - 1);
1008         c.rw.control = cpu_to_le16(io.control);
1009         c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
1010         c.rw.reftag = cpu_to_le32(io.reftag);   /* XXX: endian? */
1011         c.rw.apptag = cpu_to_le16(io.apptag);
1012         c.rw.appmask = cpu_to_le16(io.appmask);
1013         /* XXX: metadata */
1014         prps = nvme_setup_prps(dev, &c.common, sg, length);
1015
1016         nvmeq = get_nvmeq(ns);
1017         /* Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1018          * disabled.  We may be preempted at any point, and be rescheduled
1019          * to a different CPU.  That will cause cacheline bouncing, but no
1020          * additional races since q_lock already protects against other CPUs.
1021          */
1022         put_nvmeq(nvmeq);
1023         status = nvme_submit_sync_cmd(nvmeq, &c, &result, IO_TIMEOUT);
1024
1025         nvme_unmap_user_pages(dev, io.opcode & 1, io.addr, length, sg, nents);
1026         nvme_free_prps(dev, prps);
1027         put_user(result, &uio->result);
1028         return status;
1029 }
1030
1031 static int nvme_download_firmware(struct nvme_ns *ns,
1032                                                 struct nvme_dlfw __user *udlfw)
1033 {
1034         struct nvme_dev *dev = ns->dev;
1035         struct nvme_dlfw dlfw;
1036         struct nvme_command c;
1037         int nents, status;
1038         struct scatterlist *sg;
1039         struct nvme_prps *prps;
1040
1041         if (copy_from_user(&dlfw, udlfw, sizeof(dlfw)))
1042                 return -EFAULT;
1043         if (dlfw.length >= (1 << 30))
1044                 return -EINVAL;
1045
1046         nents = nvme_map_user_pages(dev, 1, dlfw.addr, dlfw.length * 4, &sg);
1047         if (nents < 0)
1048                 return nents;
1049
1050         memset(&c, 0, sizeof(c));
1051         c.dlfw.opcode = nvme_admin_download_fw;
1052         c.dlfw.numd = cpu_to_le32(dlfw.length);
1053         c.dlfw.offset = cpu_to_le32(dlfw.offset);
1054         prps = nvme_setup_prps(dev, &c.common, sg, dlfw.length * 4);
1055
1056         status = nvme_submit_admin_cmd(dev, &c, NULL);
1057         nvme_unmap_user_pages(dev, 0, dlfw.addr, dlfw.length * 4, sg, nents);
1058         nvme_free_prps(dev, prps);
1059         return status;
1060 }
1061
1062 static int nvme_activate_firmware(struct nvme_ns *ns, unsigned long arg)
1063 {
1064         struct nvme_dev *dev = ns->dev;
1065         struct nvme_command c;
1066
1067         memset(&c, 0, sizeof(c));
1068         c.common.opcode = nvme_admin_activate_fw;
1069         c.common.rsvd10[0] = cpu_to_le32(arg);
1070
1071         return nvme_submit_admin_cmd(dev, &c, NULL);
1072 }
1073
1074 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1075                                                         unsigned long arg)
1076 {
1077         struct nvme_ns *ns = bdev->bd_disk->private_data;
1078
1079         switch (cmd) {
1080         case NVME_IOCTL_IDENTIFY_NS:
1081                 return nvme_identify(ns, arg, 0);
1082         case NVME_IOCTL_IDENTIFY_CTRL:
1083                 return nvme_identify(ns, arg, 1);
1084         case NVME_IOCTL_GET_RANGE_TYPE:
1085                 return nvme_get_range_type(ns, arg);
1086         case NVME_IOCTL_SUBMIT_IO:
1087                 return nvme_submit_io(ns, (void __user *)arg);
1088         case NVME_IOCTL_DOWNLOAD_FW:
1089                 return nvme_download_firmware(ns, (void __user *)arg);
1090         case NVME_IOCTL_ACTIVATE_FW:
1091                 return nvme_activate_firmware(ns, arg);
1092         default:
1093                 return -ENOTTY;
1094         }
1095 }
1096
1097 static const struct block_device_operations nvme_fops = {
1098         .owner          = THIS_MODULE,
1099         .ioctl          = nvme_ioctl,
1100 };
1101
1102 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int index,
1103                         struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1104 {
1105         struct nvme_ns *ns;
1106         struct gendisk *disk;
1107         int lbaf;
1108
1109         if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1110                 return NULL;
1111
1112         ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1113         if (!ns)
1114                 return NULL;
1115         ns->queue = blk_alloc_queue(GFP_KERNEL);
1116         if (!ns->queue)
1117                 goto out_free_ns;
1118         ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
1119                                 QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
1120         blk_queue_make_request(ns->queue, nvme_make_request);
1121         ns->dev = dev;
1122         ns->queue->queuedata = ns;
1123
1124         disk = alloc_disk(NVME_MINORS);
1125         if (!disk)
1126                 goto out_free_queue;
1127         ns->ns_id = index;
1128         ns->disk = disk;
1129         lbaf = id->flbas & 0xf;
1130         ns->lba_shift = id->lbaf[lbaf].ds;
1131
1132         disk->major = nvme_major;
1133         disk->minors = NVME_MINORS;
1134         disk->first_minor = NVME_MINORS * index;
1135         disk->fops = &nvme_fops;
1136         disk->private_data = ns;
1137         disk->queue = ns->queue;
1138         disk->driverfs_dev = &dev->pci_dev->dev;
1139         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, index);
1140         set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1141
1142         return ns;
1143
1144  out_free_queue:
1145         blk_cleanup_queue(ns->queue);
1146  out_free_ns:
1147         kfree(ns);
1148         return NULL;
1149 }
1150
1151 static void nvme_ns_free(struct nvme_ns *ns)
1152 {
1153         put_disk(ns->disk);
1154         blk_cleanup_queue(ns->queue);
1155         kfree(ns);
1156 }
1157
1158 static int set_queue_count(struct nvme_dev *dev, int count)
1159 {
1160         int status;
1161         u32 result;
1162         struct nvme_command c;
1163         u32 q_count = (count - 1) | ((count - 1) << 16);
1164
1165         memset(&c, 0, sizeof(c));
1166         c.features.opcode = nvme_admin_get_features;
1167         c.features.fid = cpu_to_le32(NVME_FEAT_NUM_QUEUES);
1168         c.features.dword11 = cpu_to_le32(q_count);
1169
1170         status = nvme_submit_admin_cmd(dev, &c, &result);
1171         if (status)
1172                 return -EIO;
1173         return min(result & 0xffff, result >> 16) + 1;
1174 }
1175
1176 static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1177 {
1178         int result, cpu, i, nr_queues;
1179
1180         nr_queues = num_online_cpus();
1181         result = set_queue_count(dev, nr_queues);
1182         if (result < 0)
1183                 return result;
1184         if (result < nr_queues)
1185                 nr_queues = result;
1186
1187         /* Deregister the admin queue's interrupt */
1188         free_irq(dev->entry[0].vector, dev->queues[0]);
1189
1190         for (i = 0; i < nr_queues; i++)
1191                 dev->entry[i].entry = i;
1192         for (;;) {
1193                 result = pci_enable_msix(dev->pci_dev, dev->entry, nr_queues);
1194                 if (result == 0) {
1195                         break;
1196                 } else if (result > 0) {
1197                         nr_queues = result;
1198                         continue;
1199                 } else {
1200                         nr_queues = 1;
1201                         break;
1202                 }
1203         }
1204
1205         result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1206         /* XXX: handle failure here */
1207
1208         cpu = cpumask_first(cpu_online_mask);
1209         for (i = 0; i < nr_queues; i++) {
1210                 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1211                 cpu = cpumask_next(cpu, cpu_online_mask);
1212         }
1213
1214         for (i = 0; i < nr_queues; i++) {
1215                 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1216                                                         NVME_Q_DEPTH, i);
1217                 if (!dev->queues[i + 1])
1218                         return -ENOMEM;
1219                 dev->queue_count++;
1220         }
1221
1222         return 0;
1223 }
1224
1225 static void nvme_free_queues(struct nvme_dev *dev)
1226 {
1227         int i;
1228
1229         for (i = dev->queue_count - 1; i >= 0; i--)
1230                 nvme_free_queue(dev, i);
1231 }
1232
1233 static int __devinit nvme_dev_add(struct nvme_dev *dev)
1234 {
1235         int res, nn, i;
1236         struct nvme_ns *ns, *next;
1237         struct nvme_id_ctrl *ctrl;
1238         void *id;
1239         dma_addr_t dma_addr;
1240         struct nvme_command cid, crt;
1241
1242         res = nvme_setup_io_queues(dev);
1243         if (res)
1244                 return res;
1245
1246         /* XXX: Switch to a SG list once prp2 works */
1247         id = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1248                                                                 GFP_KERNEL);
1249
1250         memset(&cid, 0, sizeof(cid));
1251         cid.identify.opcode = nvme_admin_identify;
1252         cid.identify.nsid = 0;
1253         cid.identify.prp1 = cpu_to_le64(dma_addr);
1254         cid.identify.cns = cpu_to_le32(1);
1255
1256         res = nvme_submit_admin_cmd(dev, &cid, NULL);
1257         if (res) {
1258                 res = -EIO;
1259                 goto out_free;
1260         }
1261
1262         ctrl = id;
1263         nn = le32_to_cpup(&ctrl->nn);
1264         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1265         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1266         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1267
1268         cid.identify.cns = 0;
1269         memset(&crt, 0, sizeof(crt));
1270         crt.features.opcode = nvme_admin_get_features;
1271         crt.features.prp1 = cpu_to_le64(dma_addr + 4096);
1272         crt.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
1273
1274         for (i = 0; i < nn; i++) {
1275                 cid.identify.nsid = cpu_to_le32(i);
1276                 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1277                 if (res)
1278                         continue;
1279
1280                 if (((struct nvme_id_ns *)id)->ncap == 0)
1281                         continue;
1282
1283                 crt.features.nsid = cpu_to_le32(i);
1284                 res = nvme_submit_admin_cmd(dev, &crt, NULL);
1285                 if (res)
1286                         continue;
1287
1288                 ns = nvme_alloc_ns(dev, i, id, id + 4096);
1289                 if (ns)
1290                         list_add_tail(&ns->list, &dev->namespaces);
1291         }
1292         list_for_each_entry(ns, &dev->namespaces, list)
1293                 add_disk(ns->disk);
1294
1295         dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1296         return 0;
1297
1298  out_free:
1299         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1300                 list_del(&ns->list);
1301                 nvme_ns_free(ns);
1302         }
1303
1304         dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1305         return res;
1306 }
1307
1308 static int nvme_dev_remove(struct nvme_dev *dev)
1309 {
1310         struct nvme_ns *ns, *next;
1311
1312         /* TODO: wait all I/O finished or cancel them */
1313
1314         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1315                 list_del(&ns->list);
1316                 del_gendisk(ns->disk);
1317                 nvme_ns_free(ns);
1318         }
1319
1320         nvme_free_queues(dev);
1321
1322         return 0;
1323 }
1324
1325 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1326 {
1327         struct device *dmadev = &dev->pci_dev->dev;
1328         dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1329                                                 PAGE_SIZE, PAGE_SIZE, 0);
1330         if (!dev->prp_page_pool)
1331                 return -ENOMEM;
1332
1333         /* Optimisation for I/Os between 4k and 128k */
1334         dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1335                                                 256, 256, 0);
1336         if (!dev->prp_small_pool) {
1337                 dma_pool_destroy(dev->prp_page_pool);
1338                 return -ENOMEM;
1339         }
1340         return 0;
1341 }
1342
1343 static void nvme_release_prp_pools(struct nvme_dev *dev)
1344 {
1345         dma_pool_destroy(dev->prp_page_pool);
1346         dma_pool_destroy(dev->prp_small_pool);
1347 }
1348
1349 /* XXX: Use an ida or something to let remove / add work correctly */
1350 static void nvme_set_instance(struct nvme_dev *dev)
1351 {
1352         static int instance;
1353         dev->instance = instance++;
1354 }
1355
1356 static void nvme_release_instance(struct nvme_dev *dev)
1357 {
1358 }
1359
1360 static int __devinit nvme_probe(struct pci_dev *pdev,
1361                                                 const struct pci_device_id *id)
1362 {
1363         int bars, result = -ENOMEM;
1364         struct nvme_dev *dev;
1365
1366         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1367         if (!dev)
1368                 return -ENOMEM;
1369         dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1370                                                                 GFP_KERNEL);
1371         if (!dev->entry)
1372                 goto free;
1373         dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1374                                                                 GFP_KERNEL);
1375         if (!dev->queues)
1376                 goto free;
1377
1378         if (pci_enable_device_mem(pdev))
1379                 goto free;
1380         pci_set_master(pdev);
1381         bars = pci_select_bars(pdev, IORESOURCE_MEM);
1382         if (pci_request_selected_regions(pdev, bars, "nvme"))
1383                 goto disable;
1384
1385         INIT_LIST_HEAD(&dev->namespaces);
1386         dev->pci_dev = pdev;
1387         pci_set_drvdata(pdev, dev);
1388         dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1389         dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1390         nvme_set_instance(dev);
1391         dev->entry[0].vector = pdev->irq;
1392
1393         result = nvme_setup_prp_pools(dev);
1394         if (result)
1395                 goto disable_msix;
1396
1397         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1398         if (!dev->bar) {
1399                 result = -ENOMEM;
1400                 goto disable_msix;
1401         }
1402
1403         result = nvme_configure_admin_queue(dev);
1404         if (result)
1405                 goto unmap;
1406         dev->queue_count++;
1407
1408         result = nvme_dev_add(dev);
1409         if (result)
1410                 goto delete;
1411         return 0;
1412
1413  delete:
1414         nvme_free_queues(dev);
1415  unmap:
1416         iounmap(dev->bar);
1417  disable_msix:
1418         pci_disable_msix(pdev);
1419         nvme_release_instance(dev);
1420         nvme_release_prp_pools(dev);
1421  disable:
1422         pci_disable_device(pdev);
1423         pci_release_regions(pdev);
1424  free:
1425         kfree(dev->queues);
1426         kfree(dev->entry);
1427         kfree(dev);
1428         return result;
1429 }
1430
1431 static void __devexit nvme_remove(struct pci_dev *pdev)
1432 {
1433         struct nvme_dev *dev = pci_get_drvdata(pdev);
1434         nvme_dev_remove(dev);
1435         pci_disable_msix(pdev);
1436         iounmap(dev->bar);
1437         nvme_release_instance(dev);
1438         nvme_release_prp_pools(dev);
1439         pci_disable_device(pdev);
1440         pci_release_regions(pdev);
1441         kfree(dev->queues);
1442         kfree(dev->entry);
1443         kfree(dev);
1444 }
1445
1446 /* These functions are yet to be implemented */
1447 #define nvme_error_detected NULL
1448 #define nvme_dump_registers NULL
1449 #define nvme_link_reset NULL
1450 #define nvme_slot_reset NULL
1451 #define nvme_error_resume NULL
1452 #define nvme_suspend NULL
1453 #define nvme_resume NULL
1454
1455 static struct pci_error_handlers nvme_err_handler = {
1456         .error_detected = nvme_error_detected,
1457         .mmio_enabled   = nvme_dump_registers,
1458         .link_reset     = nvme_link_reset,
1459         .slot_reset     = nvme_slot_reset,
1460         .resume         = nvme_error_resume,
1461 };
1462
1463 /* Move to pci_ids.h later */
1464 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
1465
1466 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1467         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1468         { 0, }
1469 };
1470 MODULE_DEVICE_TABLE(pci, nvme_id_table);
1471
1472 static struct pci_driver nvme_driver = {
1473         .name           = "nvme",
1474         .id_table       = nvme_id_table,
1475         .probe          = nvme_probe,
1476         .remove         = __devexit_p(nvme_remove),
1477         .suspend        = nvme_suspend,
1478         .resume         = nvme_resume,
1479         .err_handler    = &nvme_err_handler,
1480 };
1481
1482 static int __init nvme_init(void)
1483 {
1484         int result;
1485
1486         nvme_major = register_blkdev(nvme_major, "nvme");
1487         if (nvme_major <= 0)
1488                 return -EBUSY;
1489
1490         result = pci_register_driver(&nvme_driver);
1491         if (!result)
1492                 return 0;
1493
1494         unregister_blkdev(nvme_major, "nvme");
1495         return result;
1496 }
1497
1498 static void __exit nvme_exit(void)
1499 {
1500         pci_unregister_driver(&nvme_driver);
1501         unregister_blkdev(nvme_major, "nvme");
1502 }
1503
1504 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1505 MODULE_LICENSE("GPL");
1506 MODULE_VERSION("0.2");
1507 module_init(nvme_init);
1508 module_exit(nvme_exit);