NVMe: Detect commands that are completed twice
[firefly-linux-kernel-4.4.55.git] / drivers / block / nvme.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17  */
18
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/errno.h>
23 #include <linux/fs.h>
24 #include <linux/genhd.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kdev_t.h>
29 #include <linux/kernel.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/moduleparam.h>
33 #include <linux/pci.h>
34 #include <linux/poison.h>
35 #include <linux/sched.h>
36 #include <linux/slab.h>
37 #include <linux/types.h>
38 #include <linux/version.h>
39
40 #define NVME_Q_DEPTH 1024
41 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
42 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
43 #define NVME_MINORS 64
44
45 static int nvme_major;
46 module_param(nvme_major, int, 0);
47
48 static int use_threaded_interrupts;
49 module_param(use_threaded_interrupts, int, 0);
50
51 /*
52  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
53  */
54 struct nvme_dev {
55         struct nvme_queue **queues;
56         u32 __iomem *dbs;
57         struct pci_dev *pci_dev;
58         int instance;
59         int queue_count;
60         u32 ctrl_config;
61         struct msix_entry *entry;
62         struct nvme_bar __iomem *bar;
63         struct list_head namespaces;
64         char serial[20];
65         char model[40];
66         char firmware_rev[8];
67 };
68
69 /*
70  * An NVM Express namespace is equivalent to a SCSI LUN
71  */
72 struct nvme_ns {
73         struct list_head list;
74
75         struct nvme_dev *dev;
76         struct request_queue *queue;
77         struct gendisk *disk;
78
79         int ns_id;
80         int lba_shift;
81 };
82
83 /*
84  * An NVM Express queue.  Each device has at least two (one for admin
85  * commands and one for I/O commands).
86  */
87 struct nvme_queue {
88         struct device *q_dmadev;
89         spinlock_t q_lock;
90         struct nvme_command *sq_cmds;
91         volatile struct nvme_completion *cqes;
92         dma_addr_t sq_dma_addr;
93         dma_addr_t cq_dma_addr;
94         wait_queue_head_t sq_full;
95         struct bio_list sq_cong;
96         u32 __iomem *q_db;
97         u16 q_depth;
98         u16 cq_vector;
99         u16 sq_head;
100         u16 sq_tail;
101         u16 cq_head;
102         u16 cq_phase;
103         unsigned long cmdid_data[];
104 };
105
106 /*
107  * Check we didin't inadvertently grow the command struct
108  */
109 static inline void _nvme_check_size(void)
110 {
111         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
112         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
113         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
114         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
115         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
116         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
117         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
118         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
119         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
120 }
121
122 /**
123  * alloc_cmdid - Allocate a Command ID
124  * @param nvmeq The queue that will be used for this command
125  * @param ctx A pointer that will be passed to the handler
126  * @param handler The ID of the handler to call
127  *
128  * Allocate a Command ID for a queue.  The data passed in will
129  * be passed to the completion handler.  This is implemented by using
130  * the bottom two bits of the ctx pointer to store the handler ID.
131  * Passing in a pointer that's not 4-byte aligned will cause a BUG.
132  * We can change this if it becomes a problem.
133  */
134 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler)
135 {
136         int depth = nvmeq->q_depth;
137         unsigned long data = (unsigned long)ctx | handler;
138         int cmdid;
139
140         BUG_ON((unsigned long)ctx & 3);
141
142         do {
143                 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
144                 if (cmdid >= depth)
145                         return -EBUSY;
146         } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
147
148         nvmeq->cmdid_data[cmdid + BITS_TO_LONGS(depth)] = data;
149         return cmdid;
150 }
151
152 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
153                                                                 int handler)
154 {
155         int cmdid;
156         wait_event_killable(nvmeq->sq_full,
157                         (cmdid = alloc_cmdid(nvmeq, ctx, handler)) >= 0);
158         return (cmdid < 0) ? -EINTR : cmdid;
159 }
160
161 /* If you need more than four handlers, you'll need to change how
162  * alloc_cmdid and nvme_process_cq work.  Consider using a special
163  * CMD_CTX value instead, if that works for your situation.
164  */
165 enum {
166         sync_completion_id = 0,
167         bio_completion_id,
168 };
169
170 #define CMD_CTX_BASE            (POISON_POINTER_DELTA + sync_completion_id)
171 #define CMD_CTX_CANCELLED       (0x2008 + CMD_CTX_BASE)
172 #define CMD_CTX_COMPLETED       (0x2010 + CMD_CTX_BASE)
173
174 static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid)
175 {
176         unsigned long data;
177         unsigned offset = cmdid + BITS_TO_LONGS(nvmeq->q_depth);
178
179         data = nvmeq->cmdid_data[offset];
180         nvmeq->cmdid_data[offset] = CMD_CTX_COMPLETED;
181         clear_bit(cmdid, nvmeq->cmdid_data);
182         wake_up(&nvmeq->sq_full);
183         return data;
184 }
185
186 static void cancel_cmdid_data(struct nvme_queue *nvmeq, int cmdid)
187 {
188         unsigned offset = cmdid + BITS_TO_LONGS(nvmeq->q_depth);
189         nvmeq->cmdid_data[offset] = CMD_CTX_CANCELLED;
190 }
191
192 static struct nvme_queue *get_nvmeq(struct nvme_ns *ns)
193 {
194         int qid, cpu = get_cpu();
195         if (cpu < ns->dev->queue_count)
196                 qid = cpu + 1;
197         else
198                 qid = (cpu % rounddown_pow_of_two(ns->dev->queue_count)) + 1;
199         return ns->dev->queues[qid];
200 }
201
202 static void put_nvmeq(struct nvme_queue *nvmeq)
203 {
204         put_cpu();
205 }
206
207 /**
208  * nvme_submit_cmd: Copy a command into a queue and ring the doorbell
209  * @nvmeq: The queue to use
210  * @cmd: The command to send
211  *
212  * Safe to use from interrupt context
213  */
214 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
215 {
216         unsigned long flags;
217         u16 tail;
218         /* XXX: Need to check tail isn't going to overrun head */
219         spin_lock_irqsave(&nvmeq->q_lock, flags);
220         tail = nvmeq->sq_tail;
221         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
222         writel(tail, nvmeq->q_db);
223         if (++tail == nvmeq->q_depth)
224                 tail = 0;
225         nvmeq->sq_tail = tail;
226         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
227
228         return 0;
229 }
230
231 struct nvme_req_info {
232         struct bio *bio;
233         int nents;
234         struct scatterlist sg[0];
235 };
236
237 /* XXX: use a mempool */
238 static struct nvme_req_info *alloc_info(unsigned nseg, gfp_t gfp)
239 {
240         return kmalloc(sizeof(struct nvme_req_info) +
241                         sizeof(struct scatterlist) * nseg, gfp);
242 }
243
244 static void free_info(struct nvme_req_info *info)
245 {
246         kfree(info);
247 }
248
249 static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
250                                                 struct nvme_completion *cqe)
251 {
252         struct nvme_req_info *info = ctx;
253         struct bio *bio = info->bio;
254         u16 status = le16_to_cpup(&cqe->status) >> 1;
255
256         dma_unmap_sg(nvmeq->q_dmadev, info->sg, info->nents,
257                         bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
258         free_info(info);
259         bio_endio(bio, status ? -EIO : 0);
260 }
261
262 /* length is in bytes */
263 static void nvme_setup_prps(struct nvme_common_command *cmd,
264                                         struct scatterlist *sg, int length)
265 {
266         int dma_len = sg_dma_len(sg);
267         u64 dma_addr = sg_dma_address(sg);
268         int offset = offset_in_page(dma_addr);
269
270         cmd->prp1 = cpu_to_le64(dma_addr);
271         length -= (PAGE_SIZE - offset);
272         if (length <= 0)
273                 return;
274
275         dma_len -= (PAGE_SIZE - offset);
276         if (dma_len) {
277                 dma_addr += (PAGE_SIZE - offset);
278         } else {
279                 sg = sg_next(sg);
280                 dma_addr = sg_dma_address(sg);
281                 dma_len = sg_dma_len(sg);
282         }
283
284         if (length <= PAGE_SIZE) {
285                 cmd->prp2 = cpu_to_le64(dma_addr);
286                 return;
287         }
288
289         /* XXX: support PRP lists */
290 }
291
292 static int nvme_map_bio(struct device *dev, struct nvme_req_info *info,
293                 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
294 {
295         struct bio_vec *bvec;
296         struct scatterlist *sg = info->sg;
297         int i, nsegs;
298
299         sg_init_table(sg, psegs);
300         bio_for_each_segment(bvec, bio, i) {
301                 sg_set_page(sg, bvec->bv_page, bvec->bv_len, bvec->bv_offset);
302                 /* XXX: handle non-mergable here */
303                 nsegs++;
304         }
305         info->nents = nsegs;
306
307         return dma_map_sg(dev, info->sg, info->nents, dma_dir);
308 }
309
310 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
311                                                                 struct bio *bio)
312 {
313         struct nvme_command *cmnd;
314         struct nvme_req_info *info;
315         enum dma_data_direction dma_dir;
316         int cmdid;
317         u16 control;
318         u32 dsmgmt;
319         unsigned long flags;
320         int psegs = bio_phys_segments(ns->queue, bio);
321
322         info = alloc_info(psegs, GFP_NOIO);
323         if (!info)
324                 goto congestion;
325         info->bio = bio;
326
327         cmdid = alloc_cmdid(nvmeq, info, bio_completion_id);
328         if (unlikely(cmdid < 0))
329                 goto free_info;
330
331         control = 0;
332         if (bio->bi_rw & REQ_FUA)
333                 control |= NVME_RW_FUA;
334         if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
335                 control |= NVME_RW_LR;
336
337         dsmgmt = 0;
338         if (bio->bi_rw & REQ_RAHEAD)
339                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
340
341         spin_lock_irqsave(&nvmeq->q_lock, flags);
342         cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
343
344         memset(cmnd, 0, sizeof(*cmnd));
345         if (bio_data_dir(bio)) {
346                 cmnd->rw.opcode = nvme_cmd_write;
347                 dma_dir = DMA_TO_DEVICE;
348         } else {
349                 cmnd->rw.opcode = nvme_cmd_read;
350                 dma_dir = DMA_FROM_DEVICE;
351         }
352
353         nvme_map_bio(nvmeq->q_dmadev, info, bio, dma_dir, psegs);
354
355         cmnd->rw.flags = 1;
356         cmnd->rw.command_id = cmdid;
357         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
358         nvme_setup_prps(&cmnd->common, info->sg, bio->bi_size);
359         cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
360         cmnd->rw.length = cpu_to_le16((bio->bi_size >> ns->lba_shift) - 1);
361         cmnd->rw.control = cpu_to_le16(control);
362         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
363
364         writel(nvmeq->sq_tail, nvmeq->q_db);
365         if (++nvmeq->sq_tail == nvmeq->q_depth)
366                 nvmeq->sq_tail = 0;
367
368         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
369
370         return 0;
371
372  free_info:
373         free_info(info);
374  congestion:
375         return -EBUSY;
376 }
377
378 /*
379  * NB: return value of non-zero would mean that we were a stacking driver.
380  * make_request must always succeed.
381  */
382 static int nvme_make_request(struct request_queue *q, struct bio *bio)
383 {
384         struct nvme_ns *ns = q->queuedata;
385         struct nvme_queue *nvmeq = get_nvmeq(ns);
386
387         if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
388                 blk_set_queue_congested(q, rw_is_sync(bio->bi_rw));
389                 bio_list_add(&nvmeq->sq_cong, bio);
390         }
391         put_nvmeq(nvmeq);
392
393         return 0;
394 }
395
396 struct sync_cmd_info {
397         struct task_struct *task;
398         u32 result;
399         int status;
400 };
401
402 static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
403                                                 struct nvme_completion *cqe)
404 {
405         struct sync_cmd_info *cmdinfo = ctx;
406         if ((unsigned long)cmdinfo == CMD_CTX_CANCELLED)
407                 return;
408         if (unlikely((unsigned long)cmdinfo == CMD_CTX_COMPLETED)) {
409                 dev_warn(nvmeq->q_dmadev,
410                                 "completed id %d twice on queue %d\n",
411                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
412                 return;
413         }
414         cmdinfo->result = le32_to_cpup(&cqe->result);
415         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
416         wake_up_process(cmdinfo->task);
417 }
418
419 typedef void (*completion_fn)(struct nvme_queue *, void *,
420                                                 struct nvme_completion *);
421
422 static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
423 {
424         u16 head, phase;
425
426         static const completion_fn completions[4] = {
427                 [sync_completion_id] = sync_completion,
428                 [bio_completion_id]  = bio_completion,
429         };
430
431         head = nvmeq->cq_head;
432         phase = nvmeq->cq_phase;
433
434         for (;;) {
435                 unsigned long data;
436                 void *ptr;
437                 unsigned char handler;
438                 struct nvme_completion cqe = nvmeq->cqes[head];
439                 if ((le16_to_cpu(cqe.status) & 1) != phase)
440                         break;
441                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
442                 if (++head == nvmeq->q_depth) {
443                         head = 0;
444                         phase = !phase;
445                 }
446
447                 data = free_cmdid(nvmeq, cqe.command_id);
448                 handler = data & 3;
449                 ptr = (void *)(data & ~3UL);
450                 completions[handler](nvmeq, ptr, &cqe);
451         }
452
453         /* If the controller ignores the cq head doorbell and continuously
454          * writes to the queue, it is theoretically possible to wrap around
455          * the queue twice and mistakenly return IRQ_NONE.  Linux only
456          * requires that 0.1% of your interrupts are handled, so this isn't
457          * a big problem.
458          */
459         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
460                 return IRQ_NONE;
461
462         writel(head, nvmeq->q_db + 1);
463         nvmeq->cq_head = head;
464         nvmeq->cq_phase = phase;
465
466         return IRQ_HANDLED;
467 }
468
469 static irqreturn_t nvme_irq(int irq, void *data)
470 {
471         return nvme_process_cq(data);
472 }
473
474 static irqreturn_t nvme_irq_thread(int irq, void *data)
475 {
476         irqreturn_t result;
477         struct nvme_queue *nvmeq = data;
478         spin_lock(&nvmeq->q_lock);
479         result = nvme_process_cq(nvmeq);
480         spin_unlock(&nvmeq->q_lock);
481         return result;
482 }
483
484 static irqreturn_t nvme_irq_check(int irq, void *data)
485 {
486         struct nvme_queue *nvmeq = data;
487         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
488         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
489                 return IRQ_NONE;
490         return IRQ_WAKE_THREAD;
491 }
492
493 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
494 {
495         spin_lock_irq(&nvmeq->q_lock);
496         cancel_cmdid_data(nvmeq, cmdid);
497         spin_unlock_irq(&nvmeq->q_lock);
498 }
499
500 /*
501  * Returns 0 on success.  If the result is negative, it's a Linux error code;
502  * if the result is positive, it's an NVM Express status code
503  */
504 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
505                                         struct nvme_command *cmd, u32 *result)
506 {
507         int cmdid;
508         struct sync_cmd_info cmdinfo;
509
510         cmdinfo.task = current;
511         cmdinfo.status = -EINTR;
512
513         cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion_id);
514         if (cmdid < 0)
515                 return cmdid;
516         cmd->common.command_id = cmdid;
517
518         set_current_state(TASK_KILLABLE);
519         nvme_submit_cmd(nvmeq, cmd);
520         schedule();
521
522         if (cmdinfo.status == -EINTR) {
523                 nvme_abort_command(nvmeq, cmdid);
524                 return -EINTR;
525         }
526
527         if (result)
528                 *result = cmdinfo.result;
529
530         return cmdinfo.status;
531 }
532
533 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
534                                                                 u32 *result)
535 {
536         return nvme_submit_sync_cmd(dev->queues[0], cmd, result);
537 }
538
539 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
540 {
541         int status;
542         struct nvme_command c;
543
544         memset(&c, 0, sizeof(c));
545         c.delete_queue.opcode = opcode;
546         c.delete_queue.qid = cpu_to_le16(id);
547
548         status = nvme_submit_admin_cmd(dev, &c, NULL);
549         if (status)
550                 return -EIO;
551         return 0;
552 }
553
554 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
555                                                 struct nvme_queue *nvmeq)
556 {
557         int status;
558         struct nvme_command c;
559         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
560
561         memset(&c, 0, sizeof(c));
562         c.create_cq.opcode = nvme_admin_create_cq;
563         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
564         c.create_cq.cqid = cpu_to_le16(qid);
565         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
566         c.create_cq.cq_flags = cpu_to_le16(flags);
567         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
568
569         status = nvme_submit_admin_cmd(dev, &c, NULL);
570         if (status)
571                 return -EIO;
572         return 0;
573 }
574
575 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
576                                                 struct nvme_queue *nvmeq)
577 {
578         int status;
579         struct nvme_command c;
580         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
581
582         memset(&c, 0, sizeof(c));
583         c.create_sq.opcode = nvme_admin_create_sq;
584         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
585         c.create_sq.sqid = cpu_to_le16(qid);
586         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
587         c.create_sq.sq_flags = cpu_to_le16(flags);
588         c.create_sq.cqid = cpu_to_le16(qid);
589
590         status = nvme_submit_admin_cmd(dev, &c, NULL);
591         if (status)
592                 return -EIO;
593         return 0;
594 }
595
596 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
597 {
598         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
599 }
600
601 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
602 {
603         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
604 }
605
606 static void nvme_free_queue(struct nvme_dev *dev, int qid)
607 {
608         struct nvme_queue *nvmeq = dev->queues[qid];
609
610         free_irq(dev->entry[nvmeq->cq_vector].vector, nvmeq);
611
612         /* Don't tell the adapter to delete the admin queue */
613         if (qid) {
614                 adapter_delete_sq(dev, qid);
615                 adapter_delete_cq(dev, qid);
616         }
617
618         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
619                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
620         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
621                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
622         kfree(nvmeq);
623 }
624
625 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
626                                                         int depth, int vector)
627 {
628         struct device *dmadev = &dev->pci_dev->dev;
629         unsigned extra = (depth + BITS_TO_LONGS(depth)) * sizeof(long);
630         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
631         if (!nvmeq)
632                 return NULL;
633
634         nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
635                                         &nvmeq->cq_dma_addr, GFP_KERNEL);
636         if (!nvmeq->cqes)
637                 goto free_nvmeq;
638         memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
639
640         nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
641                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
642         if (!nvmeq->sq_cmds)
643                 goto free_cqdma;
644
645         nvmeq->q_dmadev = dmadev;
646         spin_lock_init(&nvmeq->q_lock);
647         nvmeq->cq_head = 0;
648         nvmeq->cq_phase = 1;
649         init_waitqueue_head(&nvmeq->sq_full);
650         bio_list_init(&nvmeq->sq_cong);
651         nvmeq->q_db = &dev->dbs[qid * 2];
652         nvmeq->q_depth = depth;
653         nvmeq->cq_vector = vector;
654
655         return nvmeq;
656
657  free_cqdma:
658         dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
659                                                         nvmeq->cq_dma_addr);
660  free_nvmeq:
661         kfree(nvmeq);
662         return NULL;
663 }
664
665 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
666                                                         const char *name)
667 {
668         if (use_threaded_interrupts)
669                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
670                                         nvme_irq_check, nvme_irq_thread,
671                                         IRQF_DISABLED | IRQF_SHARED,
672                                         name, nvmeq);
673         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
674                                 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
675 }
676
677 static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
678                                         int qid, int cq_size, int vector)
679 {
680         int result;
681         struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
682
683         if (!nvmeq)
684                 return NULL;
685
686         result = adapter_alloc_cq(dev, qid, nvmeq);
687         if (result < 0)
688                 goto free_nvmeq;
689
690         result = adapter_alloc_sq(dev, qid, nvmeq);
691         if (result < 0)
692                 goto release_cq;
693
694         result = queue_request_irq(dev, nvmeq, "nvme");
695         if (result < 0)
696                 goto release_sq;
697
698         return nvmeq;
699
700  release_sq:
701         adapter_delete_sq(dev, qid);
702  release_cq:
703         adapter_delete_cq(dev, qid);
704  free_nvmeq:
705         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
706                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
707         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
708                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
709         kfree(nvmeq);
710         return NULL;
711 }
712
713 static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
714 {
715         int result;
716         u32 aqa;
717         struct nvme_queue *nvmeq;
718
719         dev->dbs = ((void __iomem *)dev->bar) + 4096;
720
721         nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
722         if (!nvmeq)
723                 return -ENOMEM;
724
725         aqa = nvmeq->q_depth - 1;
726         aqa |= aqa << 16;
727
728         dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
729         dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
730         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
731
732         writel(0, &dev->bar->cc);
733         writel(aqa, &dev->bar->aqa);
734         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
735         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
736         writel(dev->ctrl_config, &dev->bar->cc);
737
738         while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
739                 msleep(100);
740                 if (fatal_signal_pending(current))
741                         return -EINTR;
742         }
743
744         result = queue_request_irq(dev, nvmeq, "nvme admin");
745         dev->queues[0] = nvmeq;
746         return result;
747 }
748
749 static int nvme_map_user_pages(struct nvme_dev *dev, int write,
750                                 unsigned long addr, unsigned length,
751                                 struct scatterlist **sgp)
752 {
753         int i, err, count, nents, offset;
754         struct scatterlist *sg;
755         struct page **pages;
756
757         if (addr & 3)
758                 return -EINVAL;
759         if (!length)
760                 return -EINVAL;
761
762         offset = offset_in_page(addr);
763         count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
764         pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
765
766         err = get_user_pages_fast(addr, count, 1, pages);
767         if (err < count) {
768                 count = err;
769                 err = -EFAULT;
770                 goto put_pages;
771         }
772
773         sg = kcalloc(count, sizeof(*sg), GFP_KERNEL);
774         sg_init_table(sg, count);
775         sg_set_page(&sg[0], pages[0], PAGE_SIZE - offset, offset);
776         length -= (PAGE_SIZE - offset);
777         for (i = 1; i < count; i++) {
778                 sg_set_page(&sg[i], pages[i], min_t(int, length, PAGE_SIZE), 0);
779                 length -= PAGE_SIZE;
780         }
781
782         err = -ENOMEM;
783         nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
784                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
785         if (!nents)
786                 goto put_pages;
787
788         kfree(pages);
789         *sgp = sg;
790         return nents;
791
792  put_pages:
793         for (i = 0; i < count; i++)
794                 put_page(pages[i]);
795         kfree(pages);
796         return err;
797 }
798
799 static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
800                                 unsigned long addr, int length,
801                                 struct scatterlist *sg, int nents)
802 {
803         int i, count;
804
805         count = DIV_ROUND_UP(offset_in_page(addr) + length, PAGE_SIZE);
806         dma_unmap_sg(&dev->pci_dev->dev, sg, nents, DMA_FROM_DEVICE);
807
808         for (i = 0; i < count; i++)
809                 put_page(sg_page(&sg[i]));
810 }
811
812 static int nvme_submit_user_admin_command(struct nvme_dev *dev,
813                                         unsigned long addr, unsigned length,
814                                         struct nvme_command *cmd)
815 {
816         int err, nents;
817         struct scatterlist *sg;
818
819         nents = nvme_map_user_pages(dev, 0, addr, length, &sg);
820         if (nents < 0)
821                 return nents;
822         nvme_setup_prps(&cmd->common, sg, length);
823         err = nvme_submit_admin_cmd(dev, cmd, NULL);
824         nvme_unmap_user_pages(dev, 0, addr, length, sg, nents);
825         return err ? -EIO : 0;
826 }
827
828 static int nvme_identify(struct nvme_ns *ns, unsigned long addr, int cns)
829 {
830         struct nvme_command c;
831
832         memset(&c, 0, sizeof(c));
833         c.identify.opcode = nvme_admin_identify;
834         c.identify.nsid = cns ? 0 : cpu_to_le32(ns->ns_id);
835         c.identify.cns = cpu_to_le32(cns);
836
837         return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
838 }
839
840 static int nvme_get_range_type(struct nvme_ns *ns, unsigned long addr)
841 {
842         struct nvme_command c;
843
844         memset(&c, 0, sizeof(c));
845         c.features.opcode = nvme_admin_get_features;
846         c.features.nsid = cpu_to_le32(ns->ns_id);
847         c.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
848
849         return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
850 }
851
852 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
853 {
854         struct nvme_dev *dev = ns->dev;
855         struct nvme_queue *nvmeq;
856         struct nvme_user_io io;
857         struct nvme_command c;
858         unsigned length;
859         u32 result;
860         int nents, status;
861         struct scatterlist *sg;
862
863         if (copy_from_user(&io, uio, sizeof(io)))
864                 return -EFAULT;
865         length = io.nblocks << io.block_shift;
866         nents = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length, &sg);
867         if (nents < 0)
868                 return nents;
869
870         memset(&c, 0, sizeof(c));
871         c.rw.opcode = io.opcode;
872         c.rw.flags = io.flags;
873         c.rw.nsid = cpu_to_le32(io.nsid);
874         c.rw.slba = cpu_to_le64(io.slba);
875         c.rw.length = cpu_to_le16(io.nblocks - 1);
876         c.rw.control = cpu_to_le16(io.control);
877         c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
878         c.rw.reftag = cpu_to_le32(io.reftag);   /* XXX: endian? */
879         c.rw.apptag = cpu_to_le16(io.apptag);
880         c.rw.appmask = cpu_to_le16(io.appmask);
881         /* XXX: metadata */
882         nvme_setup_prps(&c.common, sg, length);
883
884         nvmeq = get_nvmeq(ns);
885         /* Since nvme_submit_sync_cmd sleeps, we can't keep preemption
886          * disabled.  We may be preempted at any point, and be rescheduled
887          * to a different CPU.  That will cause cacheline bouncing, but no
888          * additional races since q_lock already protects against other CPUs.
889          */
890         put_nvmeq(nvmeq);
891         status = nvme_submit_sync_cmd(nvmeq, &c, &result);
892
893         nvme_unmap_user_pages(dev, io.opcode & 1, io.addr, length, sg, nents);
894         put_user(result, &uio->result);
895         return status;
896 }
897
898 static int nvme_download_firmware(struct nvme_ns *ns,
899                                                 struct nvme_dlfw __user *udlfw)
900 {
901         struct nvme_dev *dev = ns->dev;
902         struct nvme_dlfw dlfw;
903         struct nvme_command c;
904         int nents, status;
905         struct scatterlist *sg;
906
907         if (copy_from_user(&dlfw, udlfw, sizeof(dlfw)))
908                 return -EFAULT;
909         if (dlfw.length >= (1 << 30))
910                 return -EINVAL;
911
912         nents = nvme_map_user_pages(dev, 1, dlfw.addr, dlfw.length * 4, &sg);
913         if (nents < 0)
914                 return nents;
915
916         memset(&c, 0, sizeof(c));
917         c.dlfw.opcode = nvme_admin_download_fw;
918         c.dlfw.numd = cpu_to_le32(dlfw.length);
919         c.dlfw.offset = cpu_to_le32(dlfw.offset);
920         nvme_setup_prps(&c.common, sg, dlfw.length * 4);
921
922         status = nvme_submit_admin_cmd(dev, &c, NULL);
923         nvme_unmap_user_pages(dev, 0, dlfw.addr, dlfw.length * 4, sg, nents);
924         return status;
925 }
926
927 static int nvme_activate_firmware(struct nvme_ns *ns, unsigned long arg)
928 {
929         struct nvme_dev *dev = ns->dev;
930         struct nvme_command c;
931
932         memset(&c, 0, sizeof(c));
933         c.common.opcode = nvme_admin_activate_fw;
934         c.common.rsvd10[0] = cpu_to_le32(arg);
935
936         return nvme_submit_admin_cmd(dev, &c, NULL);
937 }
938
939 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
940                                                         unsigned long arg)
941 {
942         struct nvme_ns *ns = bdev->bd_disk->private_data;
943
944         switch (cmd) {
945         case NVME_IOCTL_IDENTIFY_NS:
946                 return nvme_identify(ns, arg, 0);
947         case NVME_IOCTL_IDENTIFY_CTRL:
948                 return nvme_identify(ns, arg, 1);
949         case NVME_IOCTL_GET_RANGE_TYPE:
950                 return nvme_get_range_type(ns, arg);
951         case NVME_IOCTL_SUBMIT_IO:
952                 return nvme_submit_io(ns, (void __user *)arg);
953         case NVME_IOCTL_DOWNLOAD_FW:
954                 return nvme_download_firmware(ns, (void __user *)arg);
955         case NVME_IOCTL_ACTIVATE_FW:
956                 return nvme_activate_firmware(ns, arg);
957         default:
958                 return -ENOTTY;
959         }
960 }
961
962 static const struct block_device_operations nvme_fops = {
963         .owner          = THIS_MODULE,
964         .ioctl          = nvme_ioctl,
965 };
966
967 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int index,
968                         struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
969 {
970         struct nvme_ns *ns;
971         struct gendisk *disk;
972         int lbaf;
973
974         if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
975                 return NULL;
976
977         ns = kzalloc(sizeof(*ns), GFP_KERNEL);
978         if (!ns)
979                 return NULL;
980         ns->queue = blk_alloc_queue(GFP_KERNEL);
981         if (!ns->queue)
982                 goto out_free_ns;
983         ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
984                                 QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
985         blk_queue_make_request(ns->queue, nvme_make_request);
986         ns->dev = dev;
987         ns->queue->queuedata = ns;
988
989         disk = alloc_disk(NVME_MINORS);
990         if (!disk)
991                 goto out_free_queue;
992         ns->ns_id = index;
993         ns->disk = disk;
994         lbaf = id->flbas & 0xf;
995         ns->lba_shift = id->lbaf[lbaf].ds;
996
997         disk->major = nvme_major;
998         disk->minors = NVME_MINORS;
999         disk->first_minor = NVME_MINORS * index;
1000         disk->fops = &nvme_fops;
1001         disk->private_data = ns;
1002         disk->queue = ns->queue;
1003         disk->driverfs_dev = &dev->pci_dev->dev;
1004         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, index);
1005         set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1006
1007         return ns;
1008
1009  out_free_queue:
1010         blk_cleanup_queue(ns->queue);
1011  out_free_ns:
1012         kfree(ns);
1013         return NULL;
1014 }
1015
1016 static void nvme_ns_free(struct nvme_ns *ns)
1017 {
1018         put_disk(ns->disk);
1019         blk_cleanup_queue(ns->queue);
1020         kfree(ns);
1021 }
1022
1023 static int set_queue_count(struct nvme_dev *dev, int count)
1024 {
1025         int status;
1026         u32 result;
1027         struct nvme_command c;
1028         u32 q_count = (count - 1) | ((count - 1) << 16);
1029
1030         memset(&c, 0, sizeof(c));
1031         c.features.opcode = nvme_admin_get_features;
1032         c.features.fid = cpu_to_le32(NVME_FEAT_NUM_QUEUES);
1033         c.features.dword11 = cpu_to_le32(q_count);
1034
1035         status = nvme_submit_admin_cmd(dev, &c, &result);
1036         if (status)
1037                 return -EIO;
1038         return min(result & 0xffff, result >> 16) + 1;
1039 }
1040
1041 static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1042 {
1043         int result, cpu, i, nr_queues;
1044
1045         nr_queues = num_online_cpus();
1046         result = set_queue_count(dev, nr_queues);
1047         if (result < 0)
1048                 return result;
1049         if (result < nr_queues)
1050                 nr_queues = result;
1051
1052         /* Deregister the admin queue's interrupt */
1053         free_irq(dev->entry[0].vector, dev->queues[0]);
1054
1055         for (i = 0; i < nr_queues; i++)
1056                 dev->entry[i].entry = i;
1057         for (;;) {
1058                 result = pci_enable_msix(dev->pci_dev, dev->entry, nr_queues);
1059                 if (result == 0) {
1060                         break;
1061                 } else if (result > 0) {
1062                         nr_queues = result;
1063                         continue;
1064                 } else {
1065                         nr_queues = 1;
1066                         break;
1067                 }
1068         }
1069
1070         result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1071         /* XXX: handle failure here */
1072
1073         cpu = cpumask_first(cpu_online_mask);
1074         for (i = 0; i < nr_queues; i++) {
1075                 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1076                 cpu = cpumask_next(cpu, cpu_online_mask);
1077         }
1078
1079         for (i = 0; i < nr_queues; i++) {
1080                 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1081                                                         NVME_Q_DEPTH, i);
1082                 if (!dev->queues[i + 1])
1083                         return -ENOMEM;
1084                 dev->queue_count++;
1085         }
1086
1087         return 0;
1088 }
1089
1090 static void nvme_free_queues(struct nvme_dev *dev)
1091 {
1092         int i;
1093
1094         for (i = dev->queue_count - 1; i >= 0; i--)
1095                 nvme_free_queue(dev, i);
1096 }
1097
1098 static int __devinit nvme_dev_add(struct nvme_dev *dev)
1099 {
1100         int res, nn, i;
1101         struct nvme_ns *ns, *next;
1102         struct nvme_id_ctrl *ctrl;
1103         void *id;
1104         dma_addr_t dma_addr;
1105         struct nvme_command cid, crt;
1106
1107         res = nvme_setup_io_queues(dev);
1108         if (res)
1109                 return res;
1110
1111         /* XXX: Switch to a SG list once prp2 works */
1112         id = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1113                                                                 GFP_KERNEL);
1114
1115         memset(&cid, 0, sizeof(cid));
1116         cid.identify.opcode = nvme_admin_identify;
1117         cid.identify.nsid = 0;
1118         cid.identify.prp1 = cpu_to_le64(dma_addr);
1119         cid.identify.cns = cpu_to_le32(1);
1120
1121         res = nvme_submit_admin_cmd(dev, &cid, NULL);
1122         if (res) {
1123                 res = -EIO;
1124                 goto out_free;
1125         }
1126
1127         ctrl = id;
1128         nn = le32_to_cpup(&ctrl->nn);
1129         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1130         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1131         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1132
1133         cid.identify.cns = 0;
1134         memset(&crt, 0, sizeof(crt));
1135         crt.features.opcode = nvme_admin_get_features;
1136         crt.features.prp1 = cpu_to_le64(dma_addr + 4096);
1137         crt.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
1138
1139         for (i = 0; i < nn; i++) {
1140                 cid.identify.nsid = cpu_to_le32(i);
1141                 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1142                 if (res)
1143                         continue;
1144
1145                 if (((struct nvme_id_ns *)id)->ncap == 0)
1146                         continue;
1147
1148                 crt.features.nsid = cpu_to_le32(i);
1149                 res = nvme_submit_admin_cmd(dev, &crt, NULL);
1150                 if (res)
1151                         continue;
1152
1153                 ns = nvme_alloc_ns(dev, i, id, id + 4096);
1154                 if (ns)
1155                         list_add_tail(&ns->list, &dev->namespaces);
1156         }
1157         list_for_each_entry(ns, &dev->namespaces, list)
1158                 add_disk(ns->disk);
1159
1160         dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1161         return 0;
1162
1163  out_free:
1164         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1165                 list_del(&ns->list);
1166                 nvme_ns_free(ns);
1167         }
1168
1169         dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1170         return res;
1171 }
1172
1173 static int nvme_dev_remove(struct nvme_dev *dev)
1174 {
1175         struct nvme_ns *ns, *next;
1176
1177         /* TODO: wait all I/O finished or cancel them */
1178
1179         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1180                 list_del(&ns->list);
1181                 del_gendisk(ns->disk);
1182                 nvme_ns_free(ns);
1183         }
1184
1185         nvme_free_queues(dev);
1186
1187         return 0;
1188 }
1189
1190 /* XXX: Use an ida or something to let remove / add work correctly */
1191 static void nvme_set_instance(struct nvme_dev *dev)
1192 {
1193         static int instance;
1194         dev->instance = instance++;
1195 }
1196
1197 static void nvme_release_instance(struct nvme_dev *dev)
1198 {
1199 }
1200
1201 static int __devinit nvme_probe(struct pci_dev *pdev,
1202                                                 const struct pci_device_id *id)
1203 {
1204         int bars, result = -ENOMEM;
1205         struct nvme_dev *dev;
1206
1207         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1208         if (!dev)
1209                 return -ENOMEM;
1210         dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1211                                                                 GFP_KERNEL);
1212         if (!dev->entry)
1213                 goto free;
1214         dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1215                                                                 GFP_KERNEL);
1216         if (!dev->queues)
1217                 goto free;
1218
1219         if (pci_enable_device_mem(pdev))
1220                 goto free;
1221         pci_set_master(pdev);
1222         bars = pci_select_bars(pdev, IORESOURCE_MEM);
1223         if (pci_request_selected_regions(pdev, bars, "nvme"))
1224                 goto disable;
1225
1226         INIT_LIST_HEAD(&dev->namespaces);
1227         dev->pci_dev = pdev;
1228         pci_set_drvdata(pdev, dev);
1229         dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1230         dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1231         nvme_set_instance(dev);
1232         dev->entry[0].vector = pdev->irq;
1233
1234         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1235         if (!dev->bar) {
1236                 result = -ENOMEM;
1237                 goto disable_msix;
1238         }
1239
1240         result = nvme_configure_admin_queue(dev);
1241         if (result)
1242                 goto unmap;
1243         dev->queue_count++;
1244
1245         result = nvme_dev_add(dev);
1246         if (result)
1247                 goto delete;
1248         return 0;
1249
1250  delete:
1251         nvme_free_queues(dev);
1252  unmap:
1253         iounmap(dev->bar);
1254  disable_msix:
1255         pci_disable_msix(pdev);
1256         nvme_release_instance(dev);
1257  disable:
1258         pci_disable_device(pdev);
1259         pci_release_regions(pdev);
1260  free:
1261         kfree(dev->queues);
1262         kfree(dev->entry);
1263         kfree(dev);
1264         return result;
1265 }
1266
1267 static void __devexit nvme_remove(struct pci_dev *pdev)
1268 {
1269         struct nvme_dev *dev = pci_get_drvdata(pdev);
1270         nvme_dev_remove(dev);
1271         pci_disable_msix(pdev);
1272         iounmap(dev->bar);
1273         nvme_release_instance(dev);
1274         pci_disable_device(pdev);
1275         pci_release_regions(pdev);
1276         kfree(dev->queues);
1277         kfree(dev->entry);
1278         kfree(dev);
1279 }
1280
1281 /* These functions are yet to be implemented */
1282 #define nvme_error_detected NULL
1283 #define nvme_dump_registers NULL
1284 #define nvme_link_reset NULL
1285 #define nvme_slot_reset NULL
1286 #define nvme_error_resume NULL
1287 #define nvme_suspend NULL
1288 #define nvme_resume NULL
1289
1290 static struct pci_error_handlers nvme_err_handler = {
1291         .error_detected = nvme_error_detected,
1292         .mmio_enabled   = nvme_dump_registers,
1293         .link_reset     = nvme_link_reset,
1294         .slot_reset     = nvme_slot_reset,
1295         .resume         = nvme_error_resume,
1296 };
1297
1298 /* Move to pci_ids.h later */
1299 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
1300
1301 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1302         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1303         { 0, }
1304 };
1305 MODULE_DEVICE_TABLE(pci, nvme_id_table);
1306
1307 static struct pci_driver nvme_driver = {
1308         .name           = "nvme",
1309         .id_table       = nvme_id_table,
1310         .probe          = nvme_probe,
1311         .remove         = __devexit_p(nvme_remove),
1312         .suspend        = nvme_suspend,
1313         .resume         = nvme_resume,
1314         .err_handler    = &nvme_err_handler,
1315 };
1316
1317 static int __init nvme_init(void)
1318 {
1319         int result;
1320
1321         nvme_major = register_blkdev(nvme_major, "nvme");
1322         if (nvme_major <= 0)
1323                 return -EBUSY;
1324
1325         result = pci_register_driver(&nvme_driver);
1326         if (!result)
1327                 return 0;
1328
1329         unregister_blkdev(nvme_major, "nvme");
1330         return result;
1331 }
1332
1333 static void __exit nvme_exit(void)
1334 {
1335         pci_unregister_driver(&nvme_driver);
1336         unregister_blkdev(nvme_major, "nvme");
1337 }
1338
1339 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1340 MODULE_LICENSE("GPL");
1341 MODULE_VERSION("0.2");
1342 module_init(nvme_init);
1343 module_exit(nvme_exit);