Merge tag v3.10.42 into linux-linaro-lsk
[firefly-linux-kernel-4.4.55.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44
45 #include "rbd_types.h"
46
47 #define RBD_DEBUG       /* Activate rbd_assert() calls */
48
49 /*
50  * The basic unit of block I/O is a sector.  It is interpreted in a
51  * number of contexts in Linux (blk, bio, genhd), but the default is
52  * universally 512 bytes.  These symbols are just slightly more
53  * meaningful than the bare numbers they represent.
54  */
55 #define SECTOR_SHIFT    9
56 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
57
58 /*
59  * Increment the given counter and return its updated value.
60  * If the counter is already 0 it will not be incremented.
61  * If the counter is already at its maximum value returns
62  * -EINVAL without updating it.
63  */
64 static int atomic_inc_return_safe(atomic_t *v)
65 {
66         unsigned int counter;
67
68         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
69         if (counter <= (unsigned int)INT_MAX)
70                 return (int)counter;
71
72         atomic_dec(v);
73
74         return -EINVAL;
75 }
76
77 /* Decrement the counter.  Return the resulting value, or -EINVAL */
78 static int atomic_dec_return_safe(atomic_t *v)
79 {
80         int counter;
81
82         counter = atomic_dec_return(v);
83         if (counter >= 0)
84                 return counter;
85
86         atomic_inc(v);
87
88         return -EINVAL;
89 }
90
91 #define RBD_DRV_NAME "rbd"
92 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
93
94 #define RBD_MINORS_PER_MAJOR    256             /* max minors per blkdev */
95
96 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
97 #define RBD_MAX_SNAP_NAME_LEN   \
98                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
99
100 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
101
102 #define RBD_SNAP_HEAD_NAME      "-"
103
104 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
105
106 /* This allows a single page to hold an image name sent by OSD */
107 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
108 #define RBD_IMAGE_ID_LEN_MAX    64
109
110 #define RBD_OBJ_PREFIX_LEN_MAX  64
111
112 /* Feature bits */
113
114 #define RBD_FEATURE_LAYERING    (1<<0)
115 #define RBD_FEATURE_STRIPINGV2  (1<<1)
116 #define RBD_FEATURES_ALL \
117             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
118
119 /* Features supported by this (client software) implementation. */
120
121 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
122
123 /*
124  * An RBD device name will be "rbd#", where the "rbd" comes from
125  * RBD_DRV_NAME above, and # is a unique integer identifier.
126  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
127  * enough to hold all possible device names.
128  */
129 #define DEV_NAME_LEN            32
130 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
131
132 /*
133  * block device image metadata (in-memory version)
134  */
135 struct rbd_image_header {
136         /* These six fields never change for a given rbd image */
137         char *object_prefix;
138         __u8 obj_order;
139         __u8 crypt_type;
140         __u8 comp_type;
141         u64 stripe_unit;
142         u64 stripe_count;
143         u64 features;           /* Might be changeable someday? */
144
145         /* The remaining fields need to be updated occasionally */
146         u64 image_size;
147         struct ceph_snap_context *snapc;
148         char *snap_names;       /* format 1 only */
149         u64 *snap_sizes;        /* format 1 only */
150 };
151
152 /*
153  * An rbd image specification.
154  *
155  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
156  * identify an image.  Each rbd_dev structure includes a pointer to
157  * an rbd_spec structure that encapsulates this identity.
158  *
159  * Each of the id's in an rbd_spec has an associated name.  For a
160  * user-mapped image, the names are supplied and the id's associated
161  * with them are looked up.  For a layered image, a parent image is
162  * defined by the tuple, and the names are looked up.
163  *
164  * An rbd_dev structure contains a parent_spec pointer which is
165  * non-null if the image it represents is a child in a layered
166  * image.  This pointer will refer to the rbd_spec structure used
167  * by the parent rbd_dev for its own identity (i.e., the structure
168  * is shared between the parent and child).
169  *
170  * Since these structures are populated once, during the discovery
171  * phase of image construction, they are effectively immutable so
172  * we make no effort to synchronize access to them.
173  *
174  * Note that code herein does not assume the image name is known (it
175  * could be a null pointer).
176  */
177 struct rbd_spec {
178         u64             pool_id;
179         const char      *pool_name;
180
181         const char      *image_id;
182         const char      *image_name;
183
184         u64             snap_id;
185         const char      *snap_name;
186
187         struct kref     kref;
188 };
189
190 /*
191  * an instance of the client.  multiple devices may share an rbd client.
192  */
193 struct rbd_client {
194         struct ceph_client      *client;
195         struct kref             kref;
196         struct list_head        node;
197 };
198
199 struct rbd_img_request;
200 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
201
202 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
203
204 struct rbd_obj_request;
205 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
206
207 enum obj_request_type {
208         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
209 };
210
211 enum obj_req_flags {
212         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
213         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
214         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
215         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
216 };
217
218 struct rbd_obj_request {
219         const char              *object_name;
220         u64                     offset;         /* object start byte */
221         u64                     length;         /* bytes from offset */
222         unsigned long           flags;
223
224         /*
225          * An object request associated with an image will have its
226          * img_data flag set; a standalone object request will not.
227          *
228          * A standalone object request will have which == BAD_WHICH
229          * and a null obj_request pointer.
230          *
231          * An object request initiated in support of a layered image
232          * object (to check for its existence before a write) will
233          * have which == BAD_WHICH and a non-null obj_request pointer.
234          *
235          * Finally, an object request for rbd image data will have
236          * which != BAD_WHICH, and will have a non-null img_request
237          * pointer.  The value of which will be in the range
238          * 0..(img_request->obj_request_count-1).
239          */
240         union {
241                 struct rbd_obj_request  *obj_request;   /* STAT op */
242                 struct {
243                         struct rbd_img_request  *img_request;
244                         u64                     img_offset;
245                         /* links for img_request->obj_requests list */
246                         struct list_head        links;
247                 };
248         };
249         u32                     which;          /* posn image request list */
250
251         enum obj_request_type   type;
252         union {
253                 struct bio      *bio_list;
254                 struct {
255                         struct page     **pages;
256                         u32             page_count;
257                 };
258         };
259         struct page             **copyup_pages;
260         u32                     copyup_page_count;
261
262         struct ceph_osd_request *osd_req;
263
264         u64                     xferred;        /* bytes transferred */
265         int                     result;
266
267         rbd_obj_callback_t      callback;
268         struct completion       completion;
269
270         struct kref             kref;
271 };
272
273 enum img_req_flags {
274         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
275         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
276         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
277 };
278
279 struct rbd_img_request {
280         struct rbd_device       *rbd_dev;
281         u64                     offset; /* starting image byte offset */
282         u64                     length; /* byte count from offset */
283         unsigned long           flags;
284         union {
285                 u64                     snap_id;        /* for reads */
286                 struct ceph_snap_context *snapc;        /* for writes */
287         };
288         union {
289                 struct request          *rq;            /* block request */
290                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
291         };
292         struct page             **copyup_pages;
293         u32                     copyup_page_count;
294         spinlock_t              completion_lock;/* protects next_completion */
295         u32                     next_completion;
296         rbd_img_callback_t      callback;
297         u64                     xferred;/* aggregate bytes transferred */
298         int                     result; /* first nonzero obj_request result */
299
300         u32                     obj_request_count;
301         struct list_head        obj_requests;   /* rbd_obj_request structs */
302
303         struct kref             kref;
304 };
305
306 #define for_each_obj_request(ireq, oreq) \
307         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
308 #define for_each_obj_request_from(ireq, oreq) \
309         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
310 #define for_each_obj_request_safe(ireq, oreq, n) \
311         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
312
313 struct rbd_mapping {
314         u64                     size;
315         u64                     features;
316         bool                    read_only;
317 };
318
319 /*
320  * a single device
321  */
322 struct rbd_device {
323         int                     dev_id;         /* blkdev unique id */
324
325         int                     major;          /* blkdev assigned major */
326         struct gendisk          *disk;          /* blkdev's gendisk and rq */
327
328         u32                     image_format;   /* Either 1 or 2 */
329         struct rbd_client       *rbd_client;
330
331         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
332
333         spinlock_t              lock;           /* queue, flags, open_count */
334
335         struct rbd_image_header header;
336         unsigned long           flags;          /* possibly lock protected */
337         struct rbd_spec         *spec;
338
339         char                    *header_name;
340
341         struct ceph_file_layout layout;
342
343         struct ceph_osd_event   *watch_event;
344         struct rbd_obj_request  *watch_request;
345
346         struct rbd_spec         *parent_spec;
347         u64                     parent_overlap;
348         atomic_t                parent_ref;
349         struct rbd_device       *parent;
350
351         /* protects updating the header */
352         struct rw_semaphore     header_rwsem;
353
354         struct rbd_mapping      mapping;
355
356         struct list_head        node;
357
358         /* sysfs related */
359         struct device           dev;
360         unsigned long           open_count;     /* protected by lock */
361 };
362
363 /*
364  * Flag bits for rbd_dev->flags.  If atomicity is required,
365  * rbd_dev->lock is used to protect access.
366  *
367  * Currently, only the "removing" flag (which is coupled with the
368  * "open_count" field) requires atomic access.
369  */
370 enum rbd_dev_flags {
371         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
372         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
373 };
374
375 static DEFINE_MUTEX(ctl_mutex);   /* Serialize open/close/setup/teardown */
376
377 static LIST_HEAD(rbd_dev_list);    /* devices */
378 static DEFINE_SPINLOCK(rbd_dev_list_lock);
379
380 static LIST_HEAD(rbd_client_list);              /* clients */
381 static DEFINE_SPINLOCK(rbd_client_list_lock);
382
383 /* Slab caches for frequently-allocated structures */
384
385 static struct kmem_cache        *rbd_img_request_cache;
386 static struct kmem_cache        *rbd_obj_request_cache;
387 static struct kmem_cache        *rbd_segment_name_cache;
388
389 static int rbd_img_request_submit(struct rbd_img_request *img_request);
390
391 static void rbd_dev_device_release(struct device *dev);
392
393 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
394                        size_t count);
395 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
396                           size_t count);
397 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
398 static void rbd_spec_put(struct rbd_spec *spec);
399
400 static struct bus_attribute rbd_bus_attrs[] = {
401         __ATTR(add, S_IWUSR, NULL, rbd_add),
402         __ATTR(remove, S_IWUSR, NULL, rbd_remove),
403         __ATTR_NULL
404 };
405
406 static struct bus_type rbd_bus_type = {
407         .name           = "rbd",
408         .bus_attrs      = rbd_bus_attrs,
409 };
410
411 static void rbd_root_dev_release(struct device *dev)
412 {
413 }
414
415 static struct device rbd_root_dev = {
416         .init_name =    "rbd",
417         .release =      rbd_root_dev_release,
418 };
419
420 static __printf(2, 3)
421 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
422 {
423         struct va_format vaf;
424         va_list args;
425
426         va_start(args, fmt);
427         vaf.fmt = fmt;
428         vaf.va = &args;
429
430         if (!rbd_dev)
431                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
432         else if (rbd_dev->disk)
433                 printk(KERN_WARNING "%s: %s: %pV\n",
434                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
435         else if (rbd_dev->spec && rbd_dev->spec->image_name)
436                 printk(KERN_WARNING "%s: image %s: %pV\n",
437                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
438         else if (rbd_dev->spec && rbd_dev->spec->image_id)
439                 printk(KERN_WARNING "%s: id %s: %pV\n",
440                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
441         else    /* punt */
442                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
443                         RBD_DRV_NAME, rbd_dev, &vaf);
444         va_end(args);
445 }
446
447 #ifdef RBD_DEBUG
448 #define rbd_assert(expr)                                                \
449                 if (unlikely(!(expr))) {                                \
450                         printk(KERN_ERR "\nAssertion failure in %s() "  \
451                                                 "at line %d:\n\n"       \
452                                         "\trbd_assert(%s);\n\n",        \
453                                         __func__, __LINE__, #expr);     \
454                         BUG();                                          \
455                 }
456 #else /* !RBD_DEBUG */
457 #  define rbd_assert(expr)      ((void) 0)
458 #endif /* !RBD_DEBUG */
459
460 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
461 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
462 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
463
464 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
465 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
466 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
467 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
468                                         u64 snap_id);
469 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
470                                 u8 *order, u64 *snap_size);
471 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
472                 u64 *snap_features);
473 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
474
475 static int rbd_open(struct block_device *bdev, fmode_t mode)
476 {
477         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
478         bool removing = false;
479
480         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
481                 return -EROFS;
482
483         spin_lock_irq(&rbd_dev->lock);
484         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
485                 removing = true;
486         else
487                 rbd_dev->open_count++;
488         spin_unlock_irq(&rbd_dev->lock);
489         if (removing)
490                 return -ENOENT;
491
492         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
493         (void) get_device(&rbd_dev->dev);
494         set_device_ro(bdev, rbd_dev->mapping.read_only);
495         mutex_unlock(&ctl_mutex);
496
497         return 0;
498 }
499
500 static void rbd_release(struct gendisk *disk, fmode_t mode)
501 {
502         struct rbd_device *rbd_dev = disk->private_data;
503         unsigned long open_count_before;
504
505         spin_lock_irq(&rbd_dev->lock);
506         open_count_before = rbd_dev->open_count--;
507         spin_unlock_irq(&rbd_dev->lock);
508         rbd_assert(open_count_before > 0);
509
510         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
511         put_device(&rbd_dev->dev);
512         mutex_unlock(&ctl_mutex);
513 }
514
515 static const struct block_device_operations rbd_bd_ops = {
516         .owner                  = THIS_MODULE,
517         .open                   = rbd_open,
518         .release                = rbd_release,
519 };
520
521 /*
522  * Initialize an rbd client instance.  Success or not, this function
523  * consumes ceph_opts.
524  */
525 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
526 {
527         struct rbd_client *rbdc;
528         int ret = -ENOMEM;
529
530         dout("%s:\n", __func__);
531         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
532         if (!rbdc)
533                 goto out_opt;
534
535         kref_init(&rbdc->kref);
536         INIT_LIST_HEAD(&rbdc->node);
537
538         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
539
540         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
541         if (IS_ERR(rbdc->client))
542                 goto out_mutex;
543         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
544
545         ret = ceph_open_session(rbdc->client);
546         if (ret < 0)
547                 goto out_err;
548
549         spin_lock(&rbd_client_list_lock);
550         list_add_tail(&rbdc->node, &rbd_client_list);
551         spin_unlock(&rbd_client_list_lock);
552
553         mutex_unlock(&ctl_mutex);
554         dout("%s: rbdc %p\n", __func__, rbdc);
555
556         return rbdc;
557
558 out_err:
559         ceph_destroy_client(rbdc->client);
560 out_mutex:
561         mutex_unlock(&ctl_mutex);
562         kfree(rbdc);
563 out_opt:
564         if (ceph_opts)
565                 ceph_destroy_options(ceph_opts);
566         dout("%s: error %d\n", __func__, ret);
567
568         return ERR_PTR(ret);
569 }
570
571 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
572 {
573         kref_get(&rbdc->kref);
574
575         return rbdc;
576 }
577
578 /*
579  * Find a ceph client with specific addr and configuration.  If
580  * found, bump its reference count.
581  */
582 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
583 {
584         struct rbd_client *client_node;
585         bool found = false;
586
587         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
588                 return NULL;
589
590         spin_lock(&rbd_client_list_lock);
591         list_for_each_entry(client_node, &rbd_client_list, node) {
592                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
593                         __rbd_get_client(client_node);
594
595                         found = true;
596                         break;
597                 }
598         }
599         spin_unlock(&rbd_client_list_lock);
600
601         return found ? client_node : NULL;
602 }
603
604 /*
605  * mount options
606  */
607 enum {
608         Opt_last_int,
609         /* int args above */
610         Opt_last_string,
611         /* string args above */
612         Opt_read_only,
613         Opt_read_write,
614         /* Boolean args above */
615         Opt_last_bool,
616 };
617
618 static match_table_t rbd_opts_tokens = {
619         /* int args above */
620         /* string args above */
621         {Opt_read_only, "read_only"},
622         {Opt_read_only, "ro"},          /* Alternate spelling */
623         {Opt_read_write, "read_write"},
624         {Opt_read_write, "rw"},         /* Alternate spelling */
625         /* Boolean args above */
626         {-1, NULL}
627 };
628
629 struct rbd_options {
630         bool    read_only;
631 };
632
633 #define RBD_READ_ONLY_DEFAULT   false
634
635 static int parse_rbd_opts_token(char *c, void *private)
636 {
637         struct rbd_options *rbd_opts = private;
638         substring_t argstr[MAX_OPT_ARGS];
639         int token, intval, ret;
640
641         token = match_token(c, rbd_opts_tokens, argstr);
642         if (token < 0)
643                 return -EINVAL;
644
645         if (token < Opt_last_int) {
646                 ret = match_int(&argstr[0], &intval);
647                 if (ret < 0) {
648                         pr_err("bad mount option arg (not int) "
649                                "at '%s'\n", c);
650                         return ret;
651                 }
652                 dout("got int token %d val %d\n", token, intval);
653         } else if (token > Opt_last_int && token < Opt_last_string) {
654                 dout("got string token %d val %s\n", token,
655                      argstr[0].from);
656         } else if (token > Opt_last_string && token < Opt_last_bool) {
657                 dout("got Boolean token %d\n", token);
658         } else {
659                 dout("got token %d\n", token);
660         }
661
662         switch (token) {
663         case Opt_read_only:
664                 rbd_opts->read_only = true;
665                 break;
666         case Opt_read_write:
667                 rbd_opts->read_only = false;
668                 break;
669         default:
670                 rbd_assert(false);
671                 break;
672         }
673         return 0;
674 }
675
676 /*
677  * Get a ceph client with specific addr and configuration, if one does
678  * not exist create it.  Either way, ceph_opts is consumed by this
679  * function.
680  */
681 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
682 {
683         struct rbd_client *rbdc;
684
685         rbdc = rbd_client_find(ceph_opts);
686         if (rbdc)       /* using an existing client */
687                 ceph_destroy_options(ceph_opts);
688         else
689                 rbdc = rbd_client_create(ceph_opts);
690
691         return rbdc;
692 }
693
694 /*
695  * Destroy ceph client
696  *
697  * Caller must hold rbd_client_list_lock.
698  */
699 static void rbd_client_release(struct kref *kref)
700 {
701         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
702
703         dout("%s: rbdc %p\n", __func__, rbdc);
704         spin_lock(&rbd_client_list_lock);
705         list_del(&rbdc->node);
706         spin_unlock(&rbd_client_list_lock);
707
708         ceph_destroy_client(rbdc->client);
709         kfree(rbdc);
710 }
711
712 /*
713  * Drop reference to ceph client node. If it's not referenced anymore, release
714  * it.
715  */
716 static void rbd_put_client(struct rbd_client *rbdc)
717 {
718         if (rbdc)
719                 kref_put(&rbdc->kref, rbd_client_release);
720 }
721
722 static bool rbd_image_format_valid(u32 image_format)
723 {
724         return image_format == 1 || image_format == 2;
725 }
726
727 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
728 {
729         size_t size;
730         u32 snap_count;
731
732         /* The header has to start with the magic rbd header text */
733         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
734                 return false;
735
736         /* The bio layer requires at least sector-sized I/O */
737
738         if (ondisk->options.order < SECTOR_SHIFT)
739                 return false;
740
741         /* If we use u64 in a few spots we may be able to loosen this */
742
743         if (ondisk->options.order > 8 * sizeof (int) - 1)
744                 return false;
745
746         /*
747          * The size of a snapshot header has to fit in a size_t, and
748          * that limits the number of snapshots.
749          */
750         snap_count = le32_to_cpu(ondisk->snap_count);
751         size = SIZE_MAX - sizeof (struct ceph_snap_context);
752         if (snap_count > size / sizeof (__le64))
753                 return false;
754
755         /*
756          * Not only that, but the size of the entire the snapshot
757          * header must also be representable in a size_t.
758          */
759         size -= snap_count * sizeof (__le64);
760         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
761                 return false;
762
763         return true;
764 }
765
766 /*
767  * Fill an rbd image header with information from the given format 1
768  * on-disk header.
769  */
770 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
771                                  struct rbd_image_header_ondisk *ondisk)
772 {
773         struct rbd_image_header *header = &rbd_dev->header;
774         bool first_time = header->object_prefix == NULL;
775         struct ceph_snap_context *snapc;
776         char *object_prefix = NULL;
777         char *snap_names = NULL;
778         u64 *snap_sizes = NULL;
779         u32 snap_count;
780         size_t size;
781         int ret = -ENOMEM;
782         u32 i;
783
784         /* Allocate this now to avoid having to handle failure below */
785
786         if (first_time) {
787                 size_t len;
788
789                 len = strnlen(ondisk->object_prefix,
790                                 sizeof (ondisk->object_prefix));
791                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
792                 if (!object_prefix)
793                         return -ENOMEM;
794                 memcpy(object_prefix, ondisk->object_prefix, len);
795                 object_prefix[len] = '\0';
796         }
797
798         /* Allocate the snapshot context and fill it in */
799
800         snap_count = le32_to_cpu(ondisk->snap_count);
801         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
802         if (!snapc)
803                 goto out_err;
804         snapc->seq = le64_to_cpu(ondisk->snap_seq);
805         if (snap_count) {
806                 struct rbd_image_snap_ondisk *snaps;
807                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
808
809                 /* We'll keep a copy of the snapshot names... */
810
811                 if (snap_names_len > (u64)SIZE_MAX)
812                         goto out_2big;
813                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
814                 if (!snap_names)
815                         goto out_err;
816
817                 /* ...as well as the array of their sizes. */
818
819                 size = snap_count * sizeof (*header->snap_sizes);
820                 snap_sizes = kmalloc(size, GFP_KERNEL);
821                 if (!snap_sizes)
822                         goto out_err;
823
824                 /*
825                  * Copy the names, and fill in each snapshot's id
826                  * and size.
827                  *
828                  * Note that rbd_dev_v1_header_info() guarantees the
829                  * ondisk buffer we're working with has
830                  * snap_names_len bytes beyond the end of the
831                  * snapshot id array, this memcpy() is safe.
832                  */
833                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
834                 snaps = ondisk->snaps;
835                 for (i = 0; i < snap_count; i++) {
836                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
837                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
838                 }
839         }
840
841         /* We won't fail any more, fill in the header */
842
843         down_write(&rbd_dev->header_rwsem);
844         if (first_time) {
845                 header->object_prefix = object_prefix;
846                 header->obj_order = ondisk->options.order;
847                 header->crypt_type = ondisk->options.crypt_type;
848                 header->comp_type = ondisk->options.comp_type;
849                 /* The rest aren't used for format 1 images */
850                 header->stripe_unit = 0;
851                 header->stripe_count = 0;
852                 header->features = 0;
853         } else {
854                 ceph_put_snap_context(header->snapc);
855                 kfree(header->snap_names);
856                 kfree(header->snap_sizes);
857         }
858
859         /* The remaining fields always get updated (when we refresh) */
860
861         header->image_size = le64_to_cpu(ondisk->image_size);
862         header->snapc = snapc;
863         header->snap_names = snap_names;
864         header->snap_sizes = snap_sizes;
865
866         /* Make sure mapping size is consistent with header info */
867
868         if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
869                 if (rbd_dev->mapping.size != header->image_size)
870                         rbd_dev->mapping.size = header->image_size;
871
872         up_write(&rbd_dev->header_rwsem);
873
874         return 0;
875 out_2big:
876         ret = -EIO;
877 out_err:
878         kfree(snap_sizes);
879         kfree(snap_names);
880         ceph_put_snap_context(snapc);
881         kfree(object_prefix);
882
883         return ret;
884 }
885
886 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
887 {
888         const char *snap_name;
889
890         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
891
892         /* Skip over names until we find the one we are looking for */
893
894         snap_name = rbd_dev->header.snap_names;
895         while (which--)
896                 snap_name += strlen(snap_name) + 1;
897
898         return kstrdup(snap_name, GFP_KERNEL);
899 }
900
901 /*
902  * Snapshot id comparison function for use with qsort()/bsearch().
903  * Note that result is for snapshots in *descending* order.
904  */
905 static int snapid_compare_reverse(const void *s1, const void *s2)
906 {
907         u64 snap_id1 = *(u64 *)s1;
908         u64 snap_id2 = *(u64 *)s2;
909
910         if (snap_id1 < snap_id2)
911                 return 1;
912         return snap_id1 == snap_id2 ? 0 : -1;
913 }
914
915 /*
916  * Search a snapshot context to see if the given snapshot id is
917  * present.
918  *
919  * Returns the position of the snapshot id in the array if it's found,
920  * or BAD_SNAP_INDEX otherwise.
921  *
922  * Note: The snapshot array is in kept sorted (by the osd) in
923  * reverse order, highest snapshot id first.
924  */
925 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
926 {
927         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
928         u64 *found;
929
930         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
931                                 sizeof (snap_id), snapid_compare_reverse);
932
933         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
934 }
935
936 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
937                                         u64 snap_id)
938 {
939         u32 which;
940         const char *snap_name;
941
942         which = rbd_dev_snap_index(rbd_dev, snap_id);
943         if (which == BAD_SNAP_INDEX)
944                 return ERR_PTR(-ENOENT);
945
946         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
947         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
948 }
949
950 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
951 {
952         if (snap_id == CEPH_NOSNAP)
953                 return RBD_SNAP_HEAD_NAME;
954
955         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
956         if (rbd_dev->image_format == 1)
957                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
958
959         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
960 }
961
962 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
963                                 u64 *snap_size)
964 {
965         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
966         if (snap_id == CEPH_NOSNAP) {
967                 *snap_size = rbd_dev->header.image_size;
968         } else if (rbd_dev->image_format == 1) {
969                 u32 which;
970
971                 which = rbd_dev_snap_index(rbd_dev, snap_id);
972                 if (which == BAD_SNAP_INDEX)
973                         return -ENOENT;
974
975                 *snap_size = rbd_dev->header.snap_sizes[which];
976         } else {
977                 u64 size = 0;
978                 int ret;
979
980                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
981                 if (ret)
982                         return ret;
983
984                 *snap_size = size;
985         }
986         return 0;
987 }
988
989 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
990                         u64 *snap_features)
991 {
992         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
993         if (snap_id == CEPH_NOSNAP) {
994                 *snap_features = rbd_dev->header.features;
995         } else if (rbd_dev->image_format == 1) {
996                 *snap_features = 0;     /* No features for format 1 */
997         } else {
998                 u64 features = 0;
999                 int ret;
1000
1001                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1002                 if (ret)
1003                         return ret;
1004
1005                 *snap_features = features;
1006         }
1007         return 0;
1008 }
1009
1010 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1011 {
1012         u64 snap_id = rbd_dev->spec->snap_id;
1013         u64 size = 0;
1014         u64 features = 0;
1015         int ret;
1016
1017         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1018         if (ret)
1019                 return ret;
1020         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1021         if (ret)
1022                 return ret;
1023
1024         rbd_dev->mapping.size = size;
1025         rbd_dev->mapping.features = features;
1026
1027         return 0;
1028 }
1029
1030 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1031 {
1032         rbd_dev->mapping.size = 0;
1033         rbd_dev->mapping.features = 0;
1034 }
1035
1036 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1037 {
1038         char *name;
1039         u64 segment;
1040         int ret;
1041         char *name_format;
1042
1043         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1044         if (!name)
1045                 return NULL;
1046         segment = offset >> rbd_dev->header.obj_order;
1047         name_format = "%s.%012llx";
1048         if (rbd_dev->image_format == 2)
1049                 name_format = "%s.%016llx";
1050         ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, name_format,
1051                         rbd_dev->header.object_prefix, segment);
1052         if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
1053                 pr_err("error formatting segment name for #%llu (%d)\n",
1054                         segment, ret);
1055                 kfree(name);
1056                 name = NULL;
1057         }
1058
1059         return name;
1060 }
1061
1062 static void rbd_segment_name_free(const char *name)
1063 {
1064         /* The explicit cast here is needed to drop the const qualifier */
1065
1066         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1067 }
1068
1069 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1070 {
1071         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1072
1073         return offset & (segment_size - 1);
1074 }
1075
1076 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1077                                 u64 offset, u64 length)
1078 {
1079         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1080
1081         offset &= segment_size - 1;
1082
1083         rbd_assert(length <= U64_MAX - offset);
1084         if (offset + length > segment_size)
1085                 length = segment_size - offset;
1086
1087         return length;
1088 }
1089
1090 /*
1091  * returns the size of an object in the image
1092  */
1093 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1094 {
1095         return 1 << header->obj_order;
1096 }
1097
1098 /*
1099  * bio helpers
1100  */
1101
1102 static void bio_chain_put(struct bio *chain)
1103 {
1104         struct bio *tmp;
1105
1106         while (chain) {
1107                 tmp = chain;
1108                 chain = chain->bi_next;
1109                 bio_put(tmp);
1110         }
1111 }
1112
1113 /*
1114  * zeros a bio chain, starting at specific offset
1115  */
1116 static void zero_bio_chain(struct bio *chain, int start_ofs)
1117 {
1118         struct bio_vec *bv;
1119         unsigned long flags;
1120         void *buf;
1121         int i;
1122         int pos = 0;
1123
1124         while (chain) {
1125                 bio_for_each_segment(bv, chain, i) {
1126                         if (pos + bv->bv_len > start_ofs) {
1127                                 int remainder = max(start_ofs - pos, 0);
1128                                 buf = bvec_kmap_irq(bv, &flags);
1129                                 memset(buf + remainder, 0,
1130                                        bv->bv_len - remainder);
1131                                 flush_dcache_page(bv->bv_page);
1132                                 bvec_kunmap_irq(buf, &flags);
1133                         }
1134                         pos += bv->bv_len;
1135                 }
1136
1137                 chain = chain->bi_next;
1138         }
1139 }
1140
1141 /*
1142  * similar to zero_bio_chain(), zeros data defined by a page array,
1143  * starting at the given byte offset from the start of the array and
1144  * continuing up to the given end offset.  The pages array is
1145  * assumed to be big enough to hold all bytes up to the end.
1146  */
1147 static void zero_pages(struct page **pages, u64 offset, u64 end)
1148 {
1149         struct page **page = &pages[offset >> PAGE_SHIFT];
1150
1151         rbd_assert(end > offset);
1152         rbd_assert(end - offset <= (u64)SIZE_MAX);
1153         while (offset < end) {
1154                 size_t page_offset;
1155                 size_t length;
1156                 unsigned long flags;
1157                 void *kaddr;
1158
1159                 page_offset = (size_t)(offset & ~PAGE_MASK);
1160                 length = min(PAGE_SIZE - page_offset, (size_t)(end - offset));
1161                 local_irq_save(flags);
1162                 kaddr = kmap_atomic(*page);
1163                 memset(kaddr + page_offset, 0, length);
1164                 flush_dcache_page(*page);
1165                 kunmap_atomic(kaddr);
1166                 local_irq_restore(flags);
1167
1168                 offset += length;
1169                 page++;
1170         }
1171 }
1172
1173 /*
1174  * Clone a portion of a bio, starting at the given byte offset
1175  * and continuing for the number of bytes indicated.
1176  */
1177 static struct bio *bio_clone_range(struct bio *bio_src,
1178                                         unsigned int offset,
1179                                         unsigned int len,
1180                                         gfp_t gfpmask)
1181 {
1182         struct bio_vec *bv;
1183         unsigned int resid;
1184         unsigned short idx;
1185         unsigned int voff;
1186         unsigned short end_idx;
1187         unsigned short vcnt;
1188         struct bio *bio;
1189
1190         /* Handle the easy case for the caller */
1191
1192         if (!offset && len == bio_src->bi_size)
1193                 return bio_clone(bio_src, gfpmask);
1194
1195         if (WARN_ON_ONCE(!len))
1196                 return NULL;
1197         if (WARN_ON_ONCE(len > bio_src->bi_size))
1198                 return NULL;
1199         if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
1200                 return NULL;
1201
1202         /* Find first affected segment... */
1203
1204         resid = offset;
1205         bio_for_each_segment(bv, bio_src, idx) {
1206                 if (resid < bv->bv_len)
1207                         break;
1208                 resid -= bv->bv_len;
1209         }
1210         voff = resid;
1211
1212         /* ...and the last affected segment */
1213
1214         resid += len;
1215         __bio_for_each_segment(bv, bio_src, end_idx, idx) {
1216                 if (resid <= bv->bv_len)
1217                         break;
1218                 resid -= bv->bv_len;
1219         }
1220         vcnt = end_idx - idx + 1;
1221
1222         /* Build the clone */
1223
1224         bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1225         if (!bio)
1226                 return NULL;    /* ENOMEM */
1227
1228         bio->bi_bdev = bio_src->bi_bdev;
1229         bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1230         bio->bi_rw = bio_src->bi_rw;
1231         bio->bi_flags |= 1 << BIO_CLONED;
1232
1233         /*
1234          * Copy over our part of the bio_vec, then update the first
1235          * and last (or only) entries.
1236          */
1237         memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1238                         vcnt * sizeof (struct bio_vec));
1239         bio->bi_io_vec[0].bv_offset += voff;
1240         if (vcnt > 1) {
1241                 bio->bi_io_vec[0].bv_len -= voff;
1242                 bio->bi_io_vec[vcnt - 1].bv_len = resid;
1243         } else {
1244                 bio->bi_io_vec[0].bv_len = len;
1245         }
1246
1247         bio->bi_vcnt = vcnt;
1248         bio->bi_size = len;
1249         bio->bi_idx = 0;
1250
1251         return bio;
1252 }
1253
1254 /*
1255  * Clone a portion of a bio chain, starting at the given byte offset
1256  * into the first bio in the source chain and continuing for the
1257  * number of bytes indicated.  The result is another bio chain of
1258  * exactly the given length, or a null pointer on error.
1259  *
1260  * The bio_src and offset parameters are both in-out.  On entry they
1261  * refer to the first source bio and the offset into that bio where
1262  * the start of data to be cloned is located.
1263  *
1264  * On return, bio_src is updated to refer to the bio in the source
1265  * chain that contains first un-cloned byte, and *offset will
1266  * contain the offset of that byte within that bio.
1267  */
1268 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1269                                         unsigned int *offset,
1270                                         unsigned int len,
1271                                         gfp_t gfpmask)
1272 {
1273         struct bio *bi = *bio_src;
1274         unsigned int off = *offset;
1275         struct bio *chain = NULL;
1276         struct bio **end;
1277
1278         /* Build up a chain of clone bios up to the limit */
1279
1280         if (!bi || off >= bi->bi_size || !len)
1281                 return NULL;            /* Nothing to clone */
1282
1283         end = &chain;
1284         while (len) {
1285                 unsigned int bi_size;
1286                 struct bio *bio;
1287
1288                 if (!bi) {
1289                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1290                         goto out_err;   /* EINVAL; ran out of bio's */
1291                 }
1292                 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1293                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1294                 if (!bio)
1295                         goto out_err;   /* ENOMEM */
1296
1297                 *end = bio;
1298                 end = &bio->bi_next;
1299
1300                 off += bi_size;
1301                 if (off == bi->bi_size) {
1302                         bi = bi->bi_next;
1303                         off = 0;
1304                 }
1305                 len -= bi_size;
1306         }
1307         *bio_src = bi;
1308         *offset = off;
1309
1310         return chain;
1311 out_err:
1312         bio_chain_put(chain);
1313
1314         return NULL;
1315 }
1316
1317 /*
1318  * The default/initial value for all object request flags is 0.  For
1319  * each flag, once its value is set to 1 it is never reset to 0
1320  * again.
1321  */
1322 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1323 {
1324         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1325                 struct rbd_device *rbd_dev;
1326
1327                 rbd_dev = obj_request->img_request->rbd_dev;
1328                 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1329                         obj_request);
1330         }
1331 }
1332
1333 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1334 {
1335         smp_mb();
1336         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1337 }
1338
1339 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1340 {
1341         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1342                 struct rbd_device *rbd_dev = NULL;
1343
1344                 if (obj_request_img_data_test(obj_request))
1345                         rbd_dev = obj_request->img_request->rbd_dev;
1346                 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1347                         obj_request);
1348         }
1349 }
1350
1351 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1352 {
1353         smp_mb();
1354         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1355 }
1356
1357 /*
1358  * This sets the KNOWN flag after (possibly) setting the EXISTS
1359  * flag.  The latter is set based on the "exists" value provided.
1360  *
1361  * Note that for our purposes once an object exists it never goes
1362  * away again.  It's possible that the response from two existence
1363  * checks are separated by the creation of the target object, and
1364  * the first ("doesn't exist") response arrives *after* the second
1365  * ("does exist").  In that case we ignore the second one.
1366  */
1367 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1368                                 bool exists)
1369 {
1370         if (exists)
1371                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1372         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1373         smp_mb();
1374 }
1375
1376 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1377 {
1378         smp_mb();
1379         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1380 }
1381
1382 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1383 {
1384         smp_mb();
1385         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1386 }
1387
1388 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1389 {
1390         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1391                 atomic_read(&obj_request->kref.refcount));
1392         kref_get(&obj_request->kref);
1393 }
1394
1395 static void rbd_obj_request_destroy(struct kref *kref);
1396 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1397 {
1398         rbd_assert(obj_request != NULL);
1399         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1400                 atomic_read(&obj_request->kref.refcount));
1401         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1402 }
1403
1404 static bool img_request_child_test(struct rbd_img_request *img_request);
1405 static void rbd_parent_request_destroy(struct kref *kref);
1406 static void rbd_img_request_destroy(struct kref *kref);
1407 static void rbd_img_request_put(struct rbd_img_request *img_request)
1408 {
1409         rbd_assert(img_request != NULL);
1410         dout("%s: img %p (was %d)\n", __func__, img_request,
1411                 atomic_read(&img_request->kref.refcount));
1412         if (img_request_child_test(img_request))
1413                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1414         else
1415                 kref_put(&img_request->kref, rbd_img_request_destroy);
1416 }
1417
1418 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1419                                         struct rbd_obj_request *obj_request)
1420 {
1421         rbd_assert(obj_request->img_request == NULL);
1422
1423         /* Image request now owns object's original reference */
1424         obj_request->img_request = img_request;
1425         obj_request->which = img_request->obj_request_count;
1426         rbd_assert(!obj_request_img_data_test(obj_request));
1427         obj_request_img_data_set(obj_request);
1428         rbd_assert(obj_request->which != BAD_WHICH);
1429         img_request->obj_request_count++;
1430         list_add_tail(&obj_request->links, &img_request->obj_requests);
1431         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1432                 obj_request->which);
1433 }
1434
1435 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1436                                         struct rbd_obj_request *obj_request)
1437 {
1438         rbd_assert(obj_request->which != BAD_WHICH);
1439
1440         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1441                 obj_request->which);
1442         list_del(&obj_request->links);
1443         rbd_assert(img_request->obj_request_count > 0);
1444         img_request->obj_request_count--;
1445         rbd_assert(obj_request->which == img_request->obj_request_count);
1446         obj_request->which = BAD_WHICH;
1447         rbd_assert(obj_request_img_data_test(obj_request));
1448         rbd_assert(obj_request->img_request == img_request);
1449         obj_request->img_request = NULL;
1450         obj_request->callback = NULL;
1451         rbd_obj_request_put(obj_request);
1452 }
1453
1454 static bool obj_request_type_valid(enum obj_request_type type)
1455 {
1456         switch (type) {
1457         case OBJ_REQUEST_NODATA:
1458         case OBJ_REQUEST_BIO:
1459         case OBJ_REQUEST_PAGES:
1460                 return true;
1461         default:
1462                 return false;
1463         }
1464 }
1465
1466 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1467                                 struct rbd_obj_request *obj_request)
1468 {
1469         dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1470
1471         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1472 }
1473
1474 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1475 {
1476
1477         dout("%s: img %p\n", __func__, img_request);
1478
1479         /*
1480          * If no error occurred, compute the aggregate transfer
1481          * count for the image request.  We could instead use
1482          * atomic64_cmpxchg() to update it as each object request
1483          * completes; not clear which way is better off hand.
1484          */
1485         if (!img_request->result) {
1486                 struct rbd_obj_request *obj_request;
1487                 u64 xferred = 0;
1488
1489                 for_each_obj_request(img_request, obj_request)
1490                         xferred += obj_request->xferred;
1491                 img_request->xferred = xferred;
1492         }
1493
1494         if (img_request->callback)
1495                 img_request->callback(img_request);
1496         else
1497                 rbd_img_request_put(img_request);
1498 }
1499
1500 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1501
1502 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1503 {
1504         dout("%s: obj %p\n", __func__, obj_request);
1505
1506         return wait_for_completion_interruptible(&obj_request->completion);
1507 }
1508
1509 /*
1510  * The default/initial value for all image request flags is 0.  Each
1511  * is conditionally set to 1 at image request initialization time
1512  * and currently never change thereafter.
1513  */
1514 static void img_request_write_set(struct rbd_img_request *img_request)
1515 {
1516         set_bit(IMG_REQ_WRITE, &img_request->flags);
1517         smp_mb();
1518 }
1519
1520 static bool img_request_write_test(struct rbd_img_request *img_request)
1521 {
1522         smp_mb();
1523         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1524 }
1525
1526 static void img_request_child_set(struct rbd_img_request *img_request)
1527 {
1528         set_bit(IMG_REQ_CHILD, &img_request->flags);
1529         smp_mb();
1530 }
1531
1532 static void img_request_child_clear(struct rbd_img_request *img_request)
1533 {
1534         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1535         smp_mb();
1536 }
1537
1538 static bool img_request_child_test(struct rbd_img_request *img_request)
1539 {
1540         smp_mb();
1541         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1542 }
1543
1544 static void img_request_layered_set(struct rbd_img_request *img_request)
1545 {
1546         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1547         smp_mb();
1548 }
1549
1550 static void img_request_layered_clear(struct rbd_img_request *img_request)
1551 {
1552         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1553         smp_mb();
1554 }
1555
1556 static bool img_request_layered_test(struct rbd_img_request *img_request)
1557 {
1558         smp_mb();
1559         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1560 }
1561
1562 static void
1563 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1564 {
1565         u64 xferred = obj_request->xferred;
1566         u64 length = obj_request->length;
1567
1568         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1569                 obj_request, obj_request->img_request, obj_request->result,
1570                 xferred, length);
1571         /*
1572          * ENOENT means a hole in the image.  We zero-fill the entire
1573          * length of the request.  A short read also implies zero-fill
1574          * to the end of the request.  An error requires the whole
1575          * length of the request to be reported finished with an error
1576          * to the block layer.  In each case we update the xferred
1577          * count to indicate the whole request was satisfied.
1578          */
1579         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1580         if (obj_request->result == -ENOENT) {
1581                 if (obj_request->type == OBJ_REQUEST_BIO)
1582                         zero_bio_chain(obj_request->bio_list, 0);
1583                 else
1584                         zero_pages(obj_request->pages, 0, length);
1585                 obj_request->result = 0;
1586         } else if (xferred < length && !obj_request->result) {
1587                 if (obj_request->type == OBJ_REQUEST_BIO)
1588                         zero_bio_chain(obj_request->bio_list, xferred);
1589                 else
1590                         zero_pages(obj_request->pages, xferred, length);
1591         }
1592         obj_request->xferred = length;
1593         obj_request_done_set(obj_request);
1594 }
1595
1596 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1597 {
1598         dout("%s: obj %p cb %p\n", __func__, obj_request,
1599                 obj_request->callback);
1600         if (obj_request->callback)
1601                 obj_request->callback(obj_request);
1602         else
1603                 complete_all(&obj_request->completion);
1604 }
1605
1606 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1607 {
1608         dout("%s: obj %p\n", __func__, obj_request);
1609         obj_request_done_set(obj_request);
1610 }
1611
1612 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1613 {
1614         struct rbd_img_request *img_request = NULL;
1615         struct rbd_device *rbd_dev = NULL;
1616         bool layered = false;
1617
1618         if (obj_request_img_data_test(obj_request)) {
1619                 img_request = obj_request->img_request;
1620                 layered = img_request && img_request_layered_test(img_request);
1621                 rbd_dev = img_request->rbd_dev;
1622         }
1623
1624         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1625                 obj_request, img_request, obj_request->result,
1626                 obj_request->xferred, obj_request->length);
1627         if (layered && obj_request->result == -ENOENT &&
1628                         obj_request->img_offset < rbd_dev->parent_overlap)
1629                 rbd_img_parent_read(obj_request);
1630         else if (img_request)
1631                 rbd_img_obj_request_read_callback(obj_request);
1632         else
1633                 obj_request_done_set(obj_request);
1634 }
1635
1636 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1637 {
1638         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1639                 obj_request->result, obj_request->length);
1640         /*
1641          * There is no such thing as a successful short write.  Set
1642          * it to our originally-requested length.
1643          */
1644         obj_request->xferred = obj_request->length;
1645         obj_request_done_set(obj_request);
1646 }
1647
1648 /*
1649  * For a simple stat call there's nothing to do.  We'll do more if
1650  * this is part of a write sequence for a layered image.
1651  */
1652 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1653 {
1654         dout("%s: obj %p\n", __func__, obj_request);
1655         obj_request_done_set(obj_request);
1656 }
1657
1658 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1659                                 struct ceph_msg *msg)
1660 {
1661         struct rbd_obj_request *obj_request = osd_req->r_priv;
1662         u16 opcode;
1663
1664         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1665         rbd_assert(osd_req == obj_request->osd_req);
1666         if (obj_request_img_data_test(obj_request)) {
1667                 rbd_assert(obj_request->img_request);
1668                 rbd_assert(obj_request->which != BAD_WHICH);
1669         } else {
1670                 rbd_assert(obj_request->which == BAD_WHICH);
1671         }
1672
1673         if (osd_req->r_result < 0)
1674                 obj_request->result = osd_req->r_result;
1675
1676         BUG_ON(osd_req->r_num_ops > 2);
1677
1678         /*
1679          * We support a 64-bit length, but ultimately it has to be
1680          * passed to blk_end_request(), which takes an unsigned int.
1681          */
1682         obj_request->xferred = osd_req->r_reply_op_len[0];
1683         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1684         opcode = osd_req->r_ops[0].op;
1685         switch (opcode) {
1686         case CEPH_OSD_OP_READ:
1687                 rbd_osd_read_callback(obj_request);
1688                 break;
1689         case CEPH_OSD_OP_WRITE:
1690                 rbd_osd_write_callback(obj_request);
1691                 break;
1692         case CEPH_OSD_OP_STAT:
1693                 rbd_osd_stat_callback(obj_request);
1694                 break;
1695         case CEPH_OSD_OP_CALL:
1696         case CEPH_OSD_OP_NOTIFY_ACK:
1697         case CEPH_OSD_OP_WATCH:
1698                 rbd_osd_trivial_callback(obj_request);
1699                 break;
1700         default:
1701                 rbd_warn(NULL, "%s: unsupported op %hu\n",
1702                         obj_request->object_name, (unsigned short) opcode);
1703                 break;
1704         }
1705
1706         if (obj_request_done_test(obj_request))
1707                 rbd_obj_request_complete(obj_request);
1708 }
1709
1710 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1711 {
1712         struct rbd_img_request *img_request = obj_request->img_request;
1713         struct ceph_osd_request *osd_req = obj_request->osd_req;
1714         u64 snap_id;
1715
1716         rbd_assert(osd_req != NULL);
1717
1718         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1719         ceph_osdc_build_request(osd_req, obj_request->offset,
1720                         NULL, snap_id, NULL);
1721 }
1722
1723 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1724 {
1725         struct rbd_img_request *img_request = obj_request->img_request;
1726         struct ceph_osd_request *osd_req = obj_request->osd_req;
1727         struct ceph_snap_context *snapc;
1728         struct timespec mtime = CURRENT_TIME;
1729
1730         rbd_assert(osd_req != NULL);
1731
1732         snapc = img_request ? img_request->snapc : NULL;
1733         ceph_osdc_build_request(osd_req, obj_request->offset,
1734                         snapc, CEPH_NOSNAP, &mtime);
1735 }
1736
1737 static struct ceph_osd_request *rbd_osd_req_create(
1738                                         struct rbd_device *rbd_dev,
1739                                         bool write_request,
1740                                         struct rbd_obj_request *obj_request)
1741 {
1742         struct ceph_snap_context *snapc = NULL;
1743         struct ceph_osd_client *osdc;
1744         struct ceph_osd_request *osd_req;
1745
1746         if (obj_request_img_data_test(obj_request)) {
1747                 struct rbd_img_request *img_request = obj_request->img_request;
1748
1749                 rbd_assert(write_request ==
1750                                 img_request_write_test(img_request));
1751                 if (write_request)
1752                         snapc = img_request->snapc;
1753         }
1754
1755         /* Allocate and initialize the request, for the single op */
1756
1757         osdc = &rbd_dev->rbd_client->client->osdc;
1758         osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1759         if (!osd_req)
1760                 return NULL;    /* ENOMEM */
1761
1762         if (write_request)
1763                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1764         else
1765                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1766
1767         osd_req->r_callback = rbd_osd_req_callback;
1768         osd_req->r_priv = obj_request;
1769
1770         osd_req->r_oid_len = strlen(obj_request->object_name);
1771         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1772         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1773
1774         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1775
1776         return osd_req;
1777 }
1778
1779 /*
1780  * Create a copyup osd request based on the information in the
1781  * object request supplied.  A copyup request has two osd ops,
1782  * a copyup method call, and a "normal" write request.
1783  */
1784 static struct ceph_osd_request *
1785 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1786 {
1787         struct rbd_img_request *img_request;
1788         struct ceph_snap_context *snapc;
1789         struct rbd_device *rbd_dev;
1790         struct ceph_osd_client *osdc;
1791         struct ceph_osd_request *osd_req;
1792
1793         rbd_assert(obj_request_img_data_test(obj_request));
1794         img_request = obj_request->img_request;
1795         rbd_assert(img_request);
1796         rbd_assert(img_request_write_test(img_request));
1797
1798         /* Allocate and initialize the request, for the two ops */
1799
1800         snapc = img_request->snapc;
1801         rbd_dev = img_request->rbd_dev;
1802         osdc = &rbd_dev->rbd_client->client->osdc;
1803         osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1804         if (!osd_req)
1805                 return NULL;    /* ENOMEM */
1806
1807         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1808         osd_req->r_callback = rbd_osd_req_callback;
1809         osd_req->r_priv = obj_request;
1810
1811         osd_req->r_oid_len = strlen(obj_request->object_name);
1812         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1813         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1814
1815         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1816
1817         return osd_req;
1818 }
1819
1820
1821 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1822 {
1823         ceph_osdc_put_request(osd_req);
1824 }
1825
1826 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1827
1828 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1829                                                 u64 offset, u64 length,
1830                                                 enum obj_request_type type)
1831 {
1832         struct rbd_obj_request *obj_request;
1833         size_t size;
1834         char *name;
1835
1836         rbd_assert(obj_request_type_valid(type));
1837
1838         size = strlen(object_name) + 1;
1839         name = kmalloc(size, GFP_KERNEL);
1840         if (!name)
1841                 return NULL;
1842
1843         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1844         if (!obj_request) {
1845                 kfree(name);
1846                 return NULL;
1847         }
1848
1849         obj_request->object_name = memcpy(name, object_name, size);
1850         obj_request->offset = offset;
1851         obj_request->length = length;
1852         obj_request->flags = 0;
1853         obj_request->which = BAD_WHICH;
1854         obj_request->type = type;
1855         INIT_LIST_HEAD(&obj_request->links);
1856         init_completion(&obj_request->completion);
1857         kref_init(&obj_request->kref);
1858
1859         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1860                 offset, length, (int)type, obj_request);
1861
1862         return obj_request;
1863 }
1864
1865 static void rbd_obj_request_destroy(struct kref *kref)
1866 {
1867         struct rbd_obj_request *obj_request;
1868
1869         obj_request = container_of(kref, struct rbd_obj_request, kref);
1870
1871         dout("%s: obj %p\n", __func__, obj_request);
1872
1873         rbd_assert(obj_request->img_request == NULL);
1874         rbd_assert(obj_request->which == BAD_WHICH);
1875
1876         if (obj_request->osd_req)
1877                 rbd_osd_req_destroy(obj_request->osd_req);
1878
1879         rbd_assert(obj_request_type_valid(obj_request->type));
1880         switch (obj_request->type) {
1881         case OBJ_REQUEST_NODATA:
1882                 break;          /* Nothing to do */
1883         case OBJ_REQUEST_BIO:
1884                 if (obj_request->bio_list)
1885                         bio_chain_put(obj_request->bio_list);
1886                 break;
1887         case OBJ_REQUEST_PAGES:
1888                 if (obj_request->pages)
1889                         ceph_release_page_vector(obj_request->pages,
1890                                                 obj_request->page_count);
1891                 break;
1892         }
1893
1894         kfree(obj_request->object_name);
1895         obj_request->object_name = NULL;
1896         kmem_cache_free(rbd_obj_request_cache, obj_request);
1897 }
1898
1899 /* It's OK to call this for a device with no parent */
1900
1901 static void rbd_spec_put(struct rbd_spec *spec);
1902 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1903 {
1904         rbd_dev_remove_parent(rbd_dev);
1905         rbd_spec_put(rbd_dev->parent_spec);
1906         rbd_dev->parent_spec = NULL;
1907         rbd_dev->parent_overlap = 0;
1908 }
1909
1910 /*
1911  * Parent image reference counting is used to determine when an
1912  * image's parent fields can be safely torn down--after there are no
1913  * more in-flight requests to the parent image.  When the last
1914  * reference is dropped, cleaning them up is safe.
1915  */
1916 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1917 {
1918         int counter;
1919
1920         if (!rbd_dev->parent_spec)
1921                 return;
1922
1923         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1924         if (counter > 0)
1925                 return;
1926
1927         /* Last reference; clean up parent data structures */
1928
1929         if (!counter)
1930                 rbd_dev_unparent(rbd_dev);
1931         else
1932                 rbd_warn(rbd_dev, "parent reference underflow\n");
1933 }
1934
1935 /*
1936  * If an image has a non-zero parent overlap, get a reference to its
1937  * parent.
1938  *
1939  * We must get the reference before checking for the overlap to
1940  * coordinate properly with zeroing the parent overlap in
1941  * rbd_dev_v2_parent_info() when an image gets flattened.  We
1942  * drop it again if there is no overlap.
1943  *
1944  * Returns true if the rbd device has a parent with a non-zero
1945  * overlap and a reference for it was successfully taken, or
1946  * false otherwise.
1947  */
1948 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1949 {
1950         int counter;
1951
1952         if (!rbd_dev->parent_spec)
1953                 return false;
1954
1955         counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1956         if (counter > 0 && rbd_dev->parent_overlap)
1957                 return true;
1958
1959         /* Image was flattened, but parent is not yet torn down */
1960
1961         if (counter < 0)
1962                 rbd_warn(rbd_dev, "parent reference overflow\n");
1963
1964         return false;
1965 }
1966
1967 /*
1968  * Caller is responsible for filling in the list of object requests
1969  * that comprises the image request, and the Linux request pointer
1970  * (if there is one).
1971  */
1972 static struct rbd_img_request *rbd_img_request_create(
1973                                         struct rbd_device *rbd_dev,
1974                                         u64 offset, u64 length,
1975                                         bool write_request)
1976 {
1977         struct rbd_img_request *img_request;
1978
1979         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1980         if (!img_request)
1981                 return NULL;
1982
1983         if (write_request) {
1984                 down_read(&rbd_dev->header_rwsem);
1985                 ceph_get_snap_context(rbd_dev->header.snapc);
1986                 up_read(&rbd_dev->header_rwsem);
1987         }
1988
1989         img_request->rq = NULL;
1990         img_request->rbd_dev = rbd_dev;
1991         img_request->offset = offset;
1992         img_request->length = length;
1993         img_request->flags = 0;
1994         if (write_request) {
1995                 img_request_write_set(img_request);
1996                 img_request->snapc = rbd_dev->header.snapc;
1997         } else {
1998                 img_request->snap_id = rbd_dev->spec->snap_id;
1999         }
2000         if (rbd_dev_parent_get(rbd_dev))
2001                 img_request_layered_set(img_request);
2002         spin_lock_init(&img_request->completion_lock);
2003         img_request->next_completion = 0;
2004         img_request->callback = NULL;
2005         img_request->result = 0;
2006         img_request->obj_request_count = 0;
2007         INIT_LIST_HEAD(&img_request->obj_requests);
2008         kref_init(&img_request->kref);
2009
2010         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2011                 write_request ? "write" : "read", offset, length,
2012                 img_request);
2013
2014         return img_request;
2015 }
2016
2017 static void rbd_img_request_destroy(struct kref *kref)
2018 {
2019         struct rbd_img_request *img_request;
2020         struct rbd_obj_request *obj_request;
2021         struct rbd_obj_request *next_obj_request;
2022
2023         img_request = container_of(kref, struct rbd_img_request, kref);
2024
2025         dout("%s: img %p\n", __func__, img_request);
2026
2027         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2028                 rbd_img_obj_request_del(img_request, obj_request);
2029         rbd_assert(img_request->obj_request_count == 0);
2030
2031         if (img_request_layered_test(img_request)) {
2032                 img_request_layered_clear(img_request);
2033                 rbd_dev_parent_put(img_request->rbd_dev);
2034         }
2035
2036         if (img_request_write_test(img_request))
2037                 ceph_put_snap_context(img_request->snapc);
2038
2039         kmem_cache_free(rbd_img_request_cache, img_request);
2040 }
2041
2042 static struct rbd_img_request *rbd_parent_request_create(
2043                                         struct rbd_obj_request *obj_request,
2044                                         u64 img_offset, u64 length)
2045 {
2046         struct rbd_img_request *parent_request;
2047         struct rbd_device *rbd_dev;
2048
2049         rbd_assert(obj_request->img_request);
2050         rbd_dev = obj_request->img_request->rbd_dev;
2051
2052         parent_request = rbd_img_request_create(rbd_dev->parent,
2053                                                 img_offset, length, false);
2054         if (!parent_request)
2055                 return NULL;
2056
2057         img_request_child_set(parent_request);
2058         rbd_obj_request_get(obj_request);
2059         parent_request->obj_request = obj_request;
2060
2061         return parent_request;
2062 }
2063
2064 static void rbd_parent_request_destroy(struct kref *kref)
2065 {
2066         struct rbd_img_request *parent_request;
2067         struct rbd_obj_request *orig_request;
2068
2069         parent_request = container_of(kref, struct rbd_img_request, kref);
2070         orig_request = parent_request->obj_request;
2071
2072         parent_request->obj_request = NULL;
2073         rbd_obj_request_put(orig_request);
2074         img_request_child_clear(parent_request);
2075
2076         rbd_img_request_destroy(kref);
2077 }
2078
2079 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2080 {
2081         struct rbd_img_request *img_request;
2082         unsigned int xferred;
2083         int result;
2084         bool more;
2085
2086         rbd_assert(obj_request_img_data_test(obj_request));
2087         img_request = obj_request->img_request;
2088
2089         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2090         xferred = (unsigned int)obj_request->xferred;
2091         result = obj_request->result;
2092         if (result) {
2093                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2094
2095                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2096                         img_request_write_test(img_request) ? "write" : "read",
2097                         obj_request->length, obj_request->img_offset,
2098                         obj_request->offset);
2099                 rbd_warn(rbd_dev, "  result %d xferred %x\n",
2100                         result, xferred);
2101                 if (!img_request->result)
2102                         img_request->result = result;
2103         }
2104
2105         /* Image object requests don't own their page array */
2106
2107         if (obj_request->type == OBJ_REQUEST_PAGES) {
2108                 obj_request->pages = NULL;
2109                 obj_request->page_count = 0;
2110         }
2111
2112         if (img_request_child_test(img_request)) {
2113                 rbd_assert(img_request->obj_request != NULL);
2114                 more = obj_request->which < img_request->obj_request_count - 1;
2115         } else {
2116                 rbd_assert(img_request->rq != NULL);
2117                 more = blk_end_request(img_request->rq, result, xferred);
2118         }
2119
2120         return more;
2121 }
2122
2123 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2124 {
2125         struct rbd_img_request *img_request;
2126         u32 which = obj_request->which;
2127         bool more = true;
2128
2129         rbd_assert(obj_request_img_data_test(obj_request));
2130         img_request = obj_request->img_request;
2131
2132         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2133         rbd_assert(img_request != NULL);
2134         rbd_assert(img_request->obj_request_count > 0);
2135         rbd_assert(which != BAD_WHICH);
2136         rbd_assert(which < img_request->obj_request_count);
2137         rbd_assert(which >= img_request->next_completion);
2138
2139         spin_lock_irq(&img_request->completion_lock);
2140         if (which != img_request->next_completion)
2141                 goto out;
2142
2143         for_each_obj_request_from(img_request, obj_request) {
2144                 rbd_assert(more);
2145                 rbd_assert(which < img_request->obj_request_count);
2146
2147                 if (!obj_request_done_test(obj_request))
2148                         break;
2149                 more = rbd_img_obj_end_request(obj_request);
2150                 which++;
2151         }
2152
2153         rbd_assert(more ^ (which == img_request->obj_request_count));
2154         img_request->next_completion = which;
2155 out:
2156         spin_unlock_irq(&img_request->completion_lock);
2157
2158         if (!more)
2159                 rbd_img_request_complete(img_request);
2160 }
2161
2162 /*
2163  * Split up an image request into one or more object requests, each
2164  * to a different object.  The "type" parameter indicates whether
2165  * "data_desc" is the pointer to the head of a list of bio
2166  * structures, or the base of a page array.  In either case this
2167  * function assumes data_desc describes memory sufficient to hold
2168  * all data described by the image request.
2169  */
2170 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2171                                         enum obj_request_type type,
2172                                         void *data_desc)
2173 {
2174         struct rbd_device *rbd_dev = img_request->rbd_dev;
2175         struct rbd_obj_request *obj_request = NULL;
2176         struct rbd_obj_request *next_obj_request;
2177         bool write_request = img_request_write_test(img_request);
2178         struct bio *bio_list = 0;
2179         unsigned int bio_offset = 0;
2180         struct page **pages = 0;
2181         u64 img_offset;
2182         u64 resid;
2183         u16 opcode;
2184
2185         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2186                 (int)type, data_desc);
2187
2188         opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2189         img_offset = img_request->offset;
2190         resid = img_request->length;
2191         rbd_assert(resid > 0);
2192
2193         if (type == OBJ_REQUEST_BIO) {
2194                 bio_list = data_desc;
2195                 rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
2196         } else {
2197                 rbd_assert(type == OBJ_REQUEST_PAGES);
2198                 pages = data_desc;
2199         }
2200
2201         while (resid) {
2202                 struct ceph_osd_request *osd_req;
2203                 const char *object_name;
2204                 u64 offset;
2205                 u64 length;
2206
2207                 object_name = rbd_segment_name(rbd_dev, img_offset);
2208                 if (!object_name)
2209                         goto out_unwind;
2210                 offset = rbd_segment_offset(rbd_dev, img_offset);
2211                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2212                 obj_request = rbd_obj_request_create(object_name,
2213                                                 offset, length, type);
2214                 /* object request has its own copy of the object name */
2215                 rbd_segment_name_free(object_name);
2216                 if (!obj_request)
2217                         goto out_unwind;
2218                 /*
2219                  * set obj_request->img_request before creating the
2220                  * osd_request so that it gets the right snapc
2221                  */
2222                 rbd_img_obj_request_add(img_request, obj_request);
2223
2224                 if (type == OBJ_REQUEST_BIO) {
2225                         unsigned int clone_size;
2226
2227                         rbd_assert(length <= (u64)UINT_MAX);
2228                         clone_size = (unsigned int)length;
2229                         obj_request->bio_list =
2230                                         bio_chain_clone_range(&bio_list,
2231                                                                 &bio_offset,
2232                                                                 clone_size,
2233                                                                 GFP_ATOMIC);
2234                         if (!obj_request->bio_list)
2235                                 goto out_partial;
2236                 } else {
2237                         unsigned int page_count;
2238
2239                         obj_request->pages = pages;
2240                         page_count = (u32)calc_pages_for(offset, length);
2241                         obj_request->page_count = page_count;
2242                         if ((offset + length) & ~PAGE_MASK)
2243                                 page_count--;   /* more on last page */
2244                         pages += page_count;
2245                 }
2246
2247                 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2248                                                 obj_request);
2249                 if (!osd_req)
2250                         goto out_partial;
2251                 obj_request->osd_req = osd_req;
2252                 obj_request->callback = rbd_img_obj_callback;
2253
2254                 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2255                                                 0, 0);
2256                 if (type == OBJ_REQUEST_BIO)
2257                         osd_req_op_extent_osd_data_bio(osd_req, 0,
2258                                         obj_request->bio_list, length);
2259                 else
2260                         osd_req_op_extent_osd_data_pages(osd_req, 0,
2261                                         obj_request->pages, length,
2262                                         offset & ~PAGE_MASK, false, false);
2263
2264                 if (write_request)
2265                         rbd_osd_req_format_write(obj_request);
2266                 else
2267                         rbd_osd_req_format_read(obj_request);
2268
2269                 obj_request->img_offset = img_offset;
2270
2271                 img_offset += length;
2272                 resid -= length;
2273         }
2274
2275         return 0;
2276
2277 out_partial:
2278         rbd_obj_request_put(obj_request);
2279 out_unwind:
2280         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2281                 rbd_img_obj_request_del(img_request, obj_request);
2282
2283         return -ENOMEM;
2284 }
2285
2286 static void
2287 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2288 {
2289         struct rbd_img_request *img_request;
2290         struct rbd_device *rbd_dev;
2291         struct page **pages;
2292         u32 page_count;
2293
2294         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2295         rbd_assert(obj_request_img_data_test(obj_request));
2296         img_request = obj_request->img_request;
2297         rbd_assert(img_request);
2298
2299         rbd_dev = img_request->rbd_dev;
2300         rbd_assert(rbd_dev);
2301
2302         pages = obj_request->copyup_pages;
2303         rbd_assert(pages != NULL);
2304         obj_request->copyup_pages = NULL;
2305         page_count = obj_request->copyup_page_count;
2306         rbd_assert(page_count);
2307         obj_request->copyup_page_count = 0;
2308         ceph_release_page_vector(pages, page_count);
2309
2310         /*
2311          * We want the transfer count to reflect the size of the
2312          * original write request.  There is no such thing as a
2313          * successful short write, so if the request was successful
2314          * we can just set it to the originally-requested length.
2315          */
2316         if (!obj_request->result)
2317                 obj_request->xferred = obj_request->length;
2318
2319         /* Finish up with the normal image object callback */
2320
2321         rbd_img_obj_callback(obj_request);
2322 }
2323
2324 static void
2325 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2326 {
2327         struct rbd_obj_request *orig_request;
2328         struct ceph_osd_request *osd_req;
2329         struct ceph_osd_client *osdc;
2330         struct rbd_device *rbd_dev;
2331         struct page **pages;
2332         u32 page_count;
2333         int img_result;
2334         u64 parent_length;
2335         u64 offset;
2336         u64 length;
2337
2338         rbd_assert(img_request_child_test(img_request));
2339
2340         /* First get what we need from the image request */
2341
2342         pages = img_request->copyup_pages;
2343         rbd_assert(pages != NULL);
2344         img_request->copyup_pages = NULL;
2345         page_count = img_request->copyup_page_count;
2346         rbd_assert(page_count);
2347         img_request->copyup_page_count = 0;
2348
2349         orig_request = img_request->obj_request;
2350         rbd_assert(orig_request != NULL);
2351         rbd_assert(obj_request_type_valid(orig_request->type));
2352         img_result = img_request->result;
2353         parent_length = img_request->length;
2354         rbd_assert(parent_length == img_request->xferred);
2355         rbd_img_request_put(img_request);
2356
2357         rbd_assert(orig_request->img_request);
2358         rbd_dev = orig_request->img_request->rbd_dev;
2359         rbd_assert(rbd_dev);
2360
2361         /*
2362          * If the overlap has become 0 (most likely because the
2363          * image has been flattened) we need to free the pages
2364          * and re-submit the original write request.
2365          */
2366         if (!rbd_dev->parent_overlap) {
2367                 struct ceph_osd_client *osdc;
2368
2369                 ceph_release_page_vector(pages, page_count);
2370                 osdc = &rbd_dev->rbd_client->client->osdc;
2371                 img_result = rbd_obj_request_submit(osdc, orig_request);
2372                 if (!img_result)
2373                         return;
2374         }
2375
2376         if (img_result)
2377                 goto out_err;
2378
2379         /*
2380          * The original osd request is of no use to use any more.
2381          * We need a new one that can hold the two ops in a copyup
2382          * request.  Allocate the new copyup osd request for the
2383          * original request, and release the old one.
2384          */
2385         img_result = -ENOMEM;
2386         osd_req = rbd_osd_req_create_copyup(orig_request);
2387         if (!osd_req)
2388                 goto out_err;
2389         rbd_osd_req_destroy(orig_request->osd_req);
2390         orig_request->osd_req = osd_req;
2391         orig_request->copyup_pages = pages;
2392         orig_request->copyup_page_count = page_count;
2393
2394         /* Initialize the copyup op */
2395
2396         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2397         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2398                                                 false, false);
2399
2400         /* Then the original write request op */
2401
2402         offset = orig_request->offset;
2403         length = orig_request->length;
2404         osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2405                                         offset, length, 0, 0);
2406         if (orig_request->type == OBJ_REQUEST_BIO)
2407                 osd_req_op_extent_osd_data_bio(osd_req, 1,
2408                                         orig_request->bio_list, length);
2409         else
2410                 osd_req_op_extent_osd_data_pages(osd_req, 1,
2411                                         orig_request->pages, length,
2412                                         offset & ~PAGE_MASK, false, false);
2413
2414         rbd_osd_req_format_write(orig_request);
2415
2416         /* All set, send it off. */
2417
2418         orig_request->callback = rbd_img_obj_copyup_callback;
2419         osdc = &rbd_dev->rbd_client->client->osdc;
2420         img_result = rbd_obj_request_submit(osdc, orig_request);
2421         if (!img_result)
2422                 return;
2423 out_err:
2424         /* Record the error code and complete the request */
2425
2426         orig_request->result = img_result;
2427         orig_request->xferred = 0;
2428         obj_request_done_set(orig_request);
2429         rbd_obj_request_complete(orig_request);
2430 }
2431
2432 /*
2433  * Read from the parent image the range of data that covers the
2434  * entire target of the given object request.  This is used for
2435  * satisfying a layered image write request when the target of an
2436  * object request from the image request does not exist.
2437  *
2438  * A page array big enough to hold the returned data is allocated
2439  * and supplied to rbd_img_request_fill() as the "data descriptor."
2440  * When the read completes, this page array will be transferred to
2441  * the original object request for the copyup operation.
2442  *
2443  * If an error occurs, record it as the result of the original
2444  * object request and mark it done so it gets completed.
2445  */
2446 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2447 {
2448         struct rbd_img_request *img_request = NULL;
2449         struct rbd_img_request *parent_request = NULL;
2450         struct rbd_device *rbd_dev;
2451         u64 img_offset;
2452         u64 length;
2453         struct page **pages = NULL;
2454         u32 page_count;
2455         int result;
2456
2457         rbd_assert(obj_request_img_data_test(obj_request));
2458         rbd_assert(obj_request_type_valid(obj_request->type));
2459
2460         img_request = obj_request->img_request;
2461         rbd_assert(img_request != NULL);
2462         rbd_dev = img_request->rbd_dev;
2463         rbd_assert(rbd_dev->parent != NULL);
2464
2465         /*
2466          * Determine the byte range covered by the object in the
2467          * child image to which the original request was to be sent.
2468          */
2469         img_offset = obj_request->img_offset - obj_request->offset;
2470         length = (u64)1 << rbd_dev->header.obj_order;
2471
2472         /*
2473          * There is no defined parent data beyond the parent
2474          * overlap, so limit what we read at that boundary if
2475          * necessary.
2476          */
2477         if (img_offset + length > rbd_dev->parent_overlap) {
2478                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2479                 length = rbd_dev->parent_overlap - img_offset;
2480         }
2481
2482         /*
2483          * Allocate a page array big enough to receive the data read
2484          * from the parent.
2485          */
2486         page_count = (u32)calc_pages_for(0, length);
2487         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2488         if (IS_ERR(pages)) {
2489                 result = PTR_ERR(pages);
2490                 pages = NULL;
2491                 goto out_err;
2492         }
2493
2494         result = -ENOMEM;
2495         parent_request = rbd_parent_request_create(obj_request,
2496                                                 img_offset, length);
2497         if (!parent_request)
2498                 goto out_err;
2499
2500         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2501         if (result)
2502                 goto out_err;
2503         parent_request->copyup_pages = pages;
2504         parent_request->copyup_page_count = page_count;
2505
2506         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2507         result = rbd_img_request_submit(parent_request);
2508         if (!result)
2509                 return 0;
2510
2511         parent_request->copyup_pages = NULL;
2512         parent_request->copyup_page_count = 0;
2513         parent_request->obj_request = NULL;
2514         rbd_obj_request_put(obj_request);
2515 out_err:
2516         if (pages)
2517                 ceph_release_page_vector(pages, page_count);
2518         if (parent_request)
2519                 rbd_img_request_put(parent_request);
2520         obj_request->result = result;
2521         obj_request->xferred = 0;
2522         obj_request_done_set(obj_request);
2523
2524         return result;
2525 }
2526
2527 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2528 {
2529         struct rbd_obj_request *orig_request;
2530         struct rbd_device *rbd_dev;
2531         int result;
2532
2533         rbd_assert(!obj_request_img_data_test(obj_request));
2534
2535         /*
2536          * All we need from the object request is the original
2537          * request and the result of the STAT op.  Grab those, then
2538          * we're done with the request.
2539          */
2540         orig_request = obj_request->obj_request;
2541         obj_request->obj_request = NULL;
2542         rbd_assert(orig_request);
2543         rbd_assert(orig_request->img_request);
2544
2545         result = obj_request->result;
2546         obj_request->result = 0;
2547
2548         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2549                 obj_request, orig_request, result,
2550                 obj_request->xferred, obj_request->length);
2551         rbd_obj_request_put(obj_request);
2552
2553         /*
2554          * If the overlap has become 0 (most likely because the
2555          * image has been flattened) we need to free the pages
2556          * and re-submit the original write request.
2557          */
2558         rbd_dev = orig_request->img_request->rbd_dev;
2559         if (!rbd_dev->parent_overlap) {
2560                 struct ceph_osd_client *osdc;
2561
2562                 rbd_obj_request_put(orig_request);
2563                 osdc = &rbd_dev->rbd_client->client->osdc;
2564                 result = rbd_obj_request_submit(osdc, orig_request);
2565                 if (!result)
2566                         return;
2567         }
2568
2569         /*
2570          * Our only purpose here is to determine whether the object
2571          * exists, and we don't want to treat the non-existence as
2572          * an error.  If something else comes back, transfer the
2573          * error to the original request and complete it now.
2574          */
2575         if (!result) {
2576                 obj_request_existence_set(orig_request, true);
2577         } else if (result == -ENOENT) {
2578                 obj_request_existence_set(orig_request, false);
2579         } else if (result) {
2580                 orig_request->result = result;
2581                 goto out;
2582         }
2583
2584         /*
2585          * Resubmit the original request now that we have recorded
2586          * whether the target object exists.
2587          */
2588         orig_request->result = rbd_img_obj_request_submit(orig_request);
2589 out:
2590         if (orig_request->result)
2591                 rbd_obj_request_complete(orig_request);
2592         rbd_obj_request_put(orig_request);
2593 }
2594
2595 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2596 {
2597         struct rbd_obj_request *stat_request;
2598         struct rbd_device *rbd_dev;
2599         struct ceph_osd_client *osdc;
2600         struct page **pages = NULL;
2601         u32 page_count;
2602         size_t size;
2603         int ret;
2604
2605         /*
2606          * The response data for a STAT call consists of:
2607          *     le64 length;
2608          *     struct {
2609          *         le32 tv_sec;
2610          *         le32 tv_nsec;
2611          *     } mtime;
2612          */
2613         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2614         page_count = (u32)calc_pages_for(0, size);
2615         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2616         if (IS_ERR(pages))
2617                 return PTR_ERR(pages);
2618
2619         ret = -ENOMEM;
2620         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2621                                                         OBJ_REQUEST_PAGES);
2622         if (!stat_request)
2623                 goto out;
2624
2625         rbd_obj_request_get(obj_request);
2626         stat_request->obj_request = obj_request;
2627         stat_request->pages = pages;
2628         stat_request->page_count = page_count;
2629
2630         rbd_assert(obj_request->img_request);
2631         rbd_dev = obj_request->img_request->rbd_dev;
2632         stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2633                                                 stat_request);
2634         if (!stat_request->osd_req)
2635                 goto out;
2636         stat_request->callback = rbd_img_obj_exists_callback;
2637
2638         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2639         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2640                                         false, false);
2641         rbd_osd_req_format_read(stat_request);
2642
2643         osdc = &rbd_dev->rbd_client->client->osdc;
2644         ret = rbd_obj_request_submit(osdc, stat_request);
2645 out:
2646         if (ret)
2647                 rbd_obj_request_put(obj_request);
2648
2649         return ret;
2650 }
2651
2652 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2653 {
2654         struct rbd_img_request *img_request;
2655         struct rbd_device *rbd_dev;
2656         bool known;
2657
2658         rbd_assert(obj_request_img_data_test(obj_request));
2659
2660         img_request = obj_request->img_request;
2661         rbd_assert(img_request);
2662         rbd_dev = img_request->rbd_dev;
2663
2664         /*
2665          * Only writes to layered images need special handling.
2666          * Reads and non-layered writes are simple object requests.
2667          * Layered writes that start beyond the end of the overlap
2668          * with the parent have no parent data, so they too are
2669          * simple object requests.  Finally, if the target object is
2670          * known to already exist, its parent data has already been
2671          * copied, so a write to the object can also be handled as a
2672          * simple object request.
2673          */
2674         if (!img_request_write_test(img_request) ||
2675                 !img_request_layered_test(img_request) ||
2676                 rbd_dev->parent_overlap <= obj_request->img_offset ||
2677                 ((known = obj_request_known_test(obj_request)) &&
2678                         obj_request_exists_test(obj_request))) {
2679
2680                 struct rbd_device *rbd_dev;
2681                 struct ceph_osd_client *osdc;
2682
2683                 rbd_dev = obj_request->img_request->rbd_dev;
2684                 osdc = &rbd_dev->rbd_client->client->osdc;
2685
2686                 return rbd_obj_request_submit(osdc, obj_request);
2687         }
2688
2689         /*
2690          * It's a layered write.  The target object might exist but
2691          * we may not know that yet.  If we know it doesn't exist,
2692          * start by reading the data for the full target object from
2693          * the parent so we can use it for a copyup to the target.
2694          */
2695         if (known)
2696                 return rbd_img_obj_parent_read_full(obj_request);
2697
2698         /* We don't know whether the target exists.  Go find out. */
2699
2700         return rbd_img_obj_exists_submit(obj_request);
2701 }
2702
2703 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2704 {
2705         struct rbd_obj_request *obj_request;
2706         struct rbd_obj_request *next_obj_request;
2707
2708         dout("%s: img %p\n", __func__, img_request);
2709         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2710                 int ret;
2711
2712                 ret = rbd_img_obj_request_submit(obj_request);
2713                 if (ret)
2714                         return ret;
2715         }
2716
2717         return 0;
2718 }
2719
2720 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2721 {
2722         struct rbd_obj_request *obj_request;
2723         struct rbd_device *rbd_dev;
2724         u64 obj_end;
2725         u64 img_xferred;
2726         int img_result;
2727
2728         rbd_assert(img_request_child_test(img_request));
2729
2730         /* First get what we need from the image request and release it */
2731
2732         obj_request = img_request->obj_request;
2733         img_xferred = img_request->xferred;
2734         img_result = img_request->result;
2735         rbd_img_request_put(img_request);
2736
2737         /*
2738          * If the overlap has become 0 (most likely because the
2739          * image has been flattened) we need to re-submit the
2740          * original request.
2741          */
2742         rbd_assert(obj_request);
2743         rbd_assert(obj_request->img_request);
2744         rbd_dev = obj_request->img_request->rbd_dev;
2745         if (!rbd_dev->parent_overlap) {
2746                 struct ceph_osd_client *osdc;
2747
2748                 osdc = &rbd_dev->rbd_client->client->osdc;
2749                 img_result = rbd_obj_request_submit(osdc, obj_request);
2750                 if (!img_result)
2751                         return;
2752         }
2753
2754         obj_request->result = img_result;
2755         if (obj_request->result)
2756                 goto out;
2757
2758         /*
2759          * We need to zero anything beyond the parent overlap
2760          * boundary.  Since rbd_img_obj_request_read_callback()
2761          * will zero anything beyond the end of a short read, an
2762          * easy way to do this is to pretend the data from the
2763          * parent came up short--ending at the overlap boundary.
2764          */
2765         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2766         obj_end = obj_request->img_offset + obj_request->length;
2767         if (obj_end > rbd_dev->parent_overlap) {
2768                 u64 xferred = 0;
2769
2770                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2771                         xferred = rbd_dev->parent_overlap -
2772                                         obj_request->img_offset;
2773
2774                 obj_request->xferred = min(img_xferred, xferred);
2775         } else {
2776                 obj_request->xferred = img_xferred;
2777         }
2778 out:
2779         rbd_img_obj_request_read_callback(obj_request);
2780         rbd_obj_request_complete(obj_request);
2781 }
2782
2783 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2784 {
2785         struct rbd_img_request *img_request;
2786         int result;
2787
2788         rbd_assert(obj_request_img_data_test(obj_request));
2789         rbd_assert(obj_request->img_request != NULL);
2790         rbd_assert(obj_request->result == (s32) -ENOENT);
2791         rbd_assert(obj_request_type_valid(obj_request->type));
2792
2793         /* rbd_read_finish(obj_request, obj_request->length); */
2794         img_request = rbd_parent_request_create(obj_request,
2795                                                 obj_request->img_offset,
2796                                                 obj_request->length);
2797         result = -ENOMEM;
2798         if (!img_request)
2799                 goto out_err;
2800
2801         if (obj_request->type == OBJ_REQUEST_BIO)
2802                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2803                                                 obj_request->bio_list);
2804         else
2805                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2806                                                 obj_request->pages);
2807         if (result)
2808                 goto out_err;
2809
2810         img_request->callback = rbd_img_parent_read_callback;
2811         result = rbd_img_request_submit(img_request);
2812         if (result)
2813                 goto out_err;
2814
2815         return;
2816 out_err:
2817         if (img_request)
2818                 rbd_img_request_put(img_request);
2819         obj_request->result = result;
2820         obj_request->xferred = 0;
2821         obj_request_done_set(obj_request);
2822 }
2823
2824 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
2825 {
2826         struct rbd_obj_request *obj_request;
2827         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2828         int ret;
2829
2830         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2831                                                         OBJ_REQUEST_NODATA);
2832         if (!obj_request)
2833                 return -ENOMEM;
2834
2835         ret = -ENOMEM;
2836         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2837         if (!obj_request->osd_req)
2838                 goto out;
2839
2840         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2841                                         notify_id, 0, 0);
2842         rbd_osd_req_format_read(obj_request);
2843
2844         ret = rbd_obj_request_submit(osdc, obj_request);
2845         if (ret)
2846                 goto out;
2847         ret = rbd_obj_request_wait(obj_request);
2848 out:
2849         rbd_obj_request_put(obj_request);
2850
2851         return ret;
2852 }
2853
2854 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2855 {
2856         struct rbd_device *rbd_dev = (struct rbd_device *)data;
2857         int ret;
2858
2859         if (!rbd_dev)
2860                 return;
2861
2862         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2863                 rbd_dev->header_name, (unsigned long long)notify_id,
2864                 (unsigned int)opcode);
2865         ret = rbd_dev_refresh(rbd_dev);
2866         if (ret)
2867                 rbd_warn(rbd_dev, ": header refresh error (%d)\n", ret);
2868
2869         rbd_obj_notify_ack_sync(rbd_dev, notify_id);
2870 }
2871
2872 /*
2873  * Request sync osd watch/unwatch.  The value of "start" determines
2874  * whether a watch request is being initiated or torn down.
2875  */
2876 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start)
2877 {
2878         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2879         struct rbd_obj_request *obj_request;
2880         int ret;
2881
2882         rbd_assert(start ^ !!rbd_dev->watch_event);
2883         rbd_assert(start ^ !!rbd_dev->watch_request);
2884
2885         if (start) {
2886                 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2887                                                 &rbd_dev->watch_event);
2888                 if (ret < 0)
2889                         return ret;
2890                 rbd_assert(rbd_dev->watch_event != NULL);
2891         }
2892
2893         ret = -ENOMEM;
2894         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2895                                                         OBJ_REQUEST_NODATA);
2896         if (!obj_request)
2897                 goto out_cancel;
2898
2899         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2900         if (!obj_request->osd_req)
2901                 goto out_cancel;
2902
2903         if (start)
2904                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2905         else
2906                 ceph_osdc_unregister_linger_request(osdc,
2907                                         rbd_dev->watch_request->osd_req);
2908
2909         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2910                                 rbd_dev->watch_event->cookie, 0, start ? 1 : 0);
2911         rbd_osd_req_format_write(obj_request);
2912
2913         ret = rbd_obj_request_submit(osdc, obj_request);
2914         if (ret)
2915                 goto out_cancel;
2916         ret = rbd_obj_request_wait(obj_request);
2917         if (ret)
2918                 goto out_cancel;
2919         ret = obj_request->result;
2920         if (ret)
2921                 goto out_cancel;
2922
2923         /*
2924          * A watch request is set to linger, so the underlying osd
2925          * request won't go away until we unregister it.  We retain
2926          * a pointer to the object request during that time (in
2927          * rbd_dev->watch_request), so we'll keep a reference to
2928          * it.  We'll drop that reference (below) after we've
2929          * unregistered it.
2930          */
2931         if (start) {
2932                 rbd_dev->watch_request = obj_request;
2933
2934                 return 0;
2935         }
2936
2937         /* We have successfully torn down the watch request */
2938
2939         rbd_obj_request_put(rbd_dev->watch_request);
2940         rbd_dev->watch_request = NULL;
2941 out_cancel:
2942         /* Cancel the event if we're tearing down, or on error */
2943         ceph_osdc_cancel_event(rbd_dev->watch_event);
2944         rbd_dev->watch_event = NULL;
2945         if (obj_request)
2946                 rbd_obj_request_put(obj_request);
2947
2948         return ret;
2949 }
2950
2951 /*
2952  * Synchronous osd object method call.  Returns the number of bytes
2953  * returned in the outbound buffer, or a negative error code.
2954  */
2955 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2956                              const char *object_name,
2957                              const char *class_name,
2958                              const char *method_name,
2959                              const void *outbound,
2960                              size_t outbound_size,
2961                              void *inbound,
2962                              size_t inbound_size)
2963 {
2964         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2965         struct rbd_obj_request *obj_request;
2966         struct page **pages;
2967         u32 page_count;
2968         int ret;
2969
2970         /*
2971          * Method calls are ultimately read operations.  The result
2972          * should placed into the inbound buffer provided.  They
2973          * also supply outbound data--parameters for the object
2974          * method.  Currently if this is present it will be a
2975          * snapshot id.
2976          */
2977         page_count = (u32)calc_pages_for(0, inbound_size);
2978         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2979         if (IS_ERR(pages))
2980                 return PTR_ERR(pages);
2981
2982         ret = -ENOMEM;
2983         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2984                                                         OBJ_REQUEST_PAGES);
2985         if (!obj_request)
2986                 goto out;
2987
2988         obj_request->pages = pages;
2989         obj_request->page_count = page_count;
2990
2991         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2992         if (!obj_request->osd_req)
2993                 goto out;
2994
2995         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
2996                                         class_name, method_name);
2997         if (outbound_size) {
2998                 struct ceph_pagelist *pagelist;
2999
3000                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3001                 if (!pagelist)
3002                         goto out;
3003
3004                 ceph_pagelist_init(pagelist);
3005                 ceph_pagelist_append(pagelist, outbound, outbound_size);
3006                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3007                                                 pagelist);
3008         }
3009         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3010                                         obj_request->pages, inbound_size,
3011                                         0, false, false);
3012         rbd_osd_req_format_read(obj_request);
3013
3014         ret = rbd_obj_request_submit(osdc, obj_request);
3015         if (ret)
3016                 goto out;
3017         ret = rbd_obj_request_wait(obj_request);
3018         if (ret)
3019                 goto out;
3020
3021         ret = obj_request->result;
3022         if (ret < 0)
3023                 goto out;
3024
3025         rbd_assert(obj_request->xferred < (u64)INT_MAX);
3026         ret = (int)obj_request->xferred;
3027         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3028 out:
3029         if (obj_request)
3030                 rbd_obj_request_put(obj_request);
3031         else
3032                 ceph_release_page_vector(pages, page_count);
3033
3034         return ret;
3035 }
3036
3037 static void rbd_request_fn(struct request_queue *q)
3038                 __releases(q->queue_lock) __acquires(q->queue_lock)
3039 {
3040         struct rbd_device *rbd_dev = q->queuedata;
3041         bool read_only = rbd_dev->mapping.read_only;
3042         struct request *rq;
3043         int result;
3044
3045         while ((rq = blk_fetch_request(q))) {
3046                 bool write_request = rq_data_dir(rq) == WRITE;
3047                 struct rbd_img_request *img_request;
3048                 u64 offset;
3049                 u64 length;
3050
3051                 /* Ignore any non-FS requests that filter through. */
3052
3053                 if (rq->cmd_type != REQ_TYPE_FS) {
3054                         dout("%s: non-fs request type %d\n", __func__,
3055                                 (int) rq->cmd_type);
3056                         __blk_end_request_all(rq, 0);
3057                         continue;
3058                 }
3059
3060                 /* Ignore/skip any zero-length requests */
3061
3062                 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3063                 length = (u64) blk_rq_bytes(rq);
3064
3065                 if (!length) {
3066                         dout("%s: zero-length request\n", __func__);
3067                         __blk_end_request_all(rq, 0);
3068                         continue;
3069                 }
3070
3071                 spin_unlock_irq(q->queue_lock);
3072
3073                 /* Disallow writes to a read-only device */
3074
3075                 if (write_request) {
3076                         result = -EROFS;
3077                         if (read_only)
3078                                 goto end_request;
3079                         rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3080                 }
3081
3082                 /*
3083                  * Quit early if the mapped snapshot no longer
3084                  * exists.  It's still possible the snapshot will
3085                  * have disappeared by the time our request arrives
3086                  * at the osd, but there's no sense in sending it if
3087                  * we already know.
3088                  */
3089                 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3090                         dout("request for non-existent snapshot");
3091                         rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3092                         result = -ENXIO;
3093                         goto end_request;
3094                 }
3095
3096                 result = -EINVAL;
3097                 if (offset && length > U64_MAX - offset + 1) {
3098                         rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3099                                 offset, length);
3100                         goto end_request;       /* Shouldn't happen */
3101                 }
3102
3103                 result = -EIO;
3104                 if (offset + length > rbd_dev->mapping.size) {
3105                         rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3106                                 offset, length, rbd_dev->mapping.size);
3107                         goto end_request;
3108                 }
3109
3110                 result = -ENOMEM;
3111                 img_request = rbd_img_request_create(rbd_dev, offset, length,
3112                                                         write_request);
3113                 if (!img_request)
3114                         goto end_request;
3115
3116                 img_request->rq = rq;
3117
3118                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3119                                                 rq->bio);
3120                 if (!result)
3121                         result = rbd_img_request_submit(img_request);
3122                 if (result)
3123                         rbd_img_request_put(img_request);
3124 end_request:
3125                 spin_lock_irq(q->queue_lock);
3126                 if (result < 0) {
3127                         rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3128                                 write_request ? "write" : "read",
3129                                 length, offset, result);
3130
3131                         __blk_end_request_all(rq, result);
3132                 }
3133         }
3134 }
3135
3136 /*
3137  * a queue callback. Makes sure that we don't create a bio that spans across
3138  * multiple osd objects. One exception would be with a single page bios,
3139  * which we handle later at bio_chain_clone_range()
3140  */
3141 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3142                           struct bio_vec *bvec)
3143 {
3144         struct rbd_device *rbd_dev = q->queuedata;
3145         sector_t sector_offset;
3146         sector_t sectors_per_obj;
3147         sector_t obj_sector_offset;
3148         int ret;
3149
3150         /*
3151          * Find how far into its rbd object the partition-relative
3152          * bio start sector is to offset relative to the enclosing
3153          * device.
3154          */
3155         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3156         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3157         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3158
3159         /*
3160          * Compute the number of bytes from that offset to the end
3161          * of the object.  Account for what's already used by the bio.
3162          */
3163         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3164         if (ret > bmd->bi_size)
3165                 ret -= bmd->bi_size;
3166         else
3167                 ret = 0;
3168
3169         /*
3170          * Don't send back more than was asked for.  And if the bio
3171          * was empty, let the whole thing through because:  "Note
3172          * that a block device *must* allow a single page to be
3173          * added to an empty bio."
3174          */
3175         rbd_assert(bvec->bv_len <= PAGE_SIZE);
3176         if (ret > (int) bvec->bv_len || !bmd->bi_size)
3177                 ret = (int) bvec->bv_len;
3178
3179         return ret;
3180 }
3181
3182 static void rbd_free_disk(struct rbd_device *rbd_dev)
3183 {
3184         struct gendisk *disk = rbd_dev->disk;
3185
3186         if (!disk)
3187                 return;
3188
3189         rbd_dev->disk = NULL;
3190         if (disk->flags & GENHD_FL_UP) {
3191                 del_gendisk(disk);
3192                 if (disk->queue)
3193                         blk_cleanup_queue(disk->queue);
3194         }
3195         put_disk(disk);
3196 }
3197
3198 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3199                                 const char *object_name,
3200                                 u64 offset, u64 length, void *buf)
3201
3202 {
3203         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3204         struct rbd_obj_request *obj_request;
3205         struct page **pages = NULL;
3206         u32 page_count;
3207         size_t size;
3208         int ret;
3209
3210         page_count = (u32) calc_pages_for(offset, length);
3211         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3212         if (IS_ERR(pages))
3213                 ret = PTR_ERR(pages);
3214
3215         ret = -ENOMEM;
3216         obj_request = rbd_obj_request_create(object_name, offset, length,
3217                                                         OBJ_REQUEST_PAGES);
3218         if (!obj_request)
3219                 goto out;
3220
3221         obj_request->pages = pages;
3222         obj_request->page_count = page_count;
3223
3224         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3225         if (!obj_request->osd_req)
3226                 goto out;
3227
3228         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3229                                         offset, length, 0, 0);
3230         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3231                                         obj_request->pages,
3232                                         obj_request->length,
3233                                         obj_request->offset & ~PAGE_MASK,
3234                                         false, false);
3235         rbd_osd_req_format_read(obj_request);
3236
3237         ret = rbd_obj_request_submit(osdc, obj_request);
3238         if (ret)
3239                 goto out;
3240         ret = rbd_obj_request_wait(obj_request);
3241         if (ret)
3242                 goto out;
3243
3244         ret = obj_request->result;
3245         if (ret < 0)
3246                 goto out;
3247
3248         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3249         size = (size_t) obj_request->xferred;
3250         ceph_copy_from_page_vector(pages, buf, 0, size);
3251         rbd_assert(size <= (size_t)INT_MAX);
3252         ret = (int)size;
3253 out:
3254         if (obj_request)
3255                 rbd_obj_request_put(obj_request);
3256         else
3257                 ceph_release_page_vector(pages, page_count);
3258
3259         return ret;
3260 }
3261
3262 /*
3263  * Read the complete header for the given rbd device.  On successful
3264  * return, the rbd_dev->header field will contain up-to-date
3265  * information about the image.
3266  */
3267 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3268 {
3269         struct rbd_image_header_ondisk *ondisk = NULL;
3270         u32 snap_count = 0;
3271         u64 names_size = 0;
3272         u32 want_count;
3273         int ret;
3274
3275         /*
3276          * The complete header will include an array of its 64-bit
3277          * snapshot ids, followed by the names of those snapshots as
3278          * a contiguous block of NUL-terminated strings.  Note that
3279          * the number of snapshots could change by the time we read
3280          * it in, in which case we re-read it.
3281          */
3282         do {
3283                 size_t size;
3284
3285                 kfree(ondisk);
3286
3287                 size = sizeof (*ondisk);
3288                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3289                 size += names_size;
3290                 ondisk = kmalloc(size, GFP_KERNEL);
3291                 if (!ondisk)
3292                         return -ENOMEM;
3293
3294                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3295                                        0, size, ondisk);
3296                 if (ret < 0)
3297                         goto out;
3298                 if ((size_t)ret < size) {
3299                         ret = -ENXIO;
3300                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3301                                 size, ret);
3302                         goto out;
3303                 }
3304                 if (!rbd_dev_ondisk_valid(ondisk)) {
3305                         ret = -ENXIO;
3306                         rbd_warn(rbd_dev, "invalid header");
3307                         goto out;
3308                 }
3309
3310                 names_size = le64_to_cpu(ondisk->snap_names_len);
3311                 want_count = snap_count;
3312                 snap_count = le32_to_cpu(ondisk->snap_count);
3313         } while (snap_count != want_count);
3314
3315         ret = rbd_header_from_disk(rbd_dev, ondisk);
3316 out:
3317         kfree(ondisk);
3318
3319         return ret;
3320 }
3321
3322 /*
3323  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3324  * has disappeared from the (just updated) snapshot context.
3325  */
3326 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3327 {
3328         u64 snap_id;
3329
3330         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3331                 return;
3332
3333         snap_id = rbd_dev->spec->snap_id;
3334         if (snap_id == CEPH_NOSNAP)
3335                 return;
3336
3337         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3338                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3339 }
3340
3341 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3342 {
3343         sector_t size;
3344         bool removing;
3345
3346         /*
3347          * Don't hold the lock while doing disk operations,
3348          * or lock ordering will conflict with the bdev mutex via:
3349          * rbd_add() -> blkdev_get() -> rbd_open()
3350          */
3351         spin_lock_irq(&rbd_dev->lock);
3352         removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3353         spin_unlock_irq(&rbd_dev->lock);
3354         /*
3355          * If the device is being removed, rbd_dev->disk has
3356          * been destroyed, so don't try to update its size
3357          */
3358         if (!removing) {
3359                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3360                 dout("setting size to %llu sectors", (unsigned long long)size);
3361                 set_capacity(rbd_dev->disk, size);
3362                 revalidate_disk(rbd_dev->disk);
3363         }
3364 }
3365
3366 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3367 {
3368         u64 mapping_size;
3369         int ret;
3370
3371         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3372         mapping_size = rbd_dev->mapping.size;
3373         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3374         if (rbd_dev->image_format == 1)
3375                 ret = rbd_dev_v1_header_info(rbd_dev);
3376         else
3377                 ret = rbd_dev_v2_header_info(rbd_dev);
3378
3379         /* If it's a mapped snapshot, validate its EXISTS flag */
3380
3381         rbd_exists_validate(rbd_dev);
3382         mutex_unlock(&ctl_mutex);
3383         if (mapping_size != rbd_dev->mapping.size) {
3384                 rbd_dev_update_size(rbd_dev);
3385         }
3386
3387         return ret;
3388 }
3389
3390 static int rbd_init_disk(struct rbd_device *rbd_dev)
3391 {
3392         struct gendisk *disk;
3393         struct request_queue *q;
3394         u64 segment_size;
3395
3396         /* create gendisk info */
3397         disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3398         if (!disk)
3399                 return -ENOMEM;
3400
3401         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3402                  rbd_dev->dev_id);
3403         disk->major = rbd_dev->major;
3404         disk->first_minor = 0;
3405         disk->fops = &rbd_bd_ops;
3406         disk->private_data = rbd_dev;
3407
3408         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3409         if (!q)
3410                 goto out_disk;
3411
3412         /* We use the default size, but let's be explicit about it. */
3413         blk_queue_physical_block_size(q, SECTOR_SIZE);
3414
3415         /* set io sizes to object size */
3416         segment_size = rbd_obj_bytes(&rbd_dev->header);
3417         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3418         blk_queue_max_segment_size(q, segment_size);
3419         blk_queue_io_min(q, segment_size);
3420         blk_queue_io_opt(q, segment_size);
3421
3422         blk_queue_merge_bvec(q, rbd_merge_bvec);
3423         disk->queue = q;
3424
3425         q->queuedata = rbd_dev;
3426
3427         rbd_dev->disk = disk;
3428
3429         return 0;
3430 out_disk:
3431         put_disk(disk);
3432
3433         return -ENOMEM;
3434 }
3435
3436 /*
3437   sysfs
3438 */
3439
3440 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3441 {
3442         return container_of(dev, struct rbd_device, dev);
3443 }
3444
3445 static ssize_t rbd_size_show(struct device *dev,
3446                              struct device_attribute *attr, char *buf)
3447 {
3448         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3449
3450         return sprintf(buf, "%llu\n",
3451                 (unsigned long long)rbd_dev->mapping.size);
3452 }
3453
3454 /*
3455  * Note this shows the features for whatever's mapped, which is not
3456  * necessarily the base image.
3457  */
3458 static ssize_t rbd_features_show(struct device *dev,
3459                              struct device_attribute *attr, char *buf)
3460 {
3461         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3462
3463         return sprintf(buf, "0x%016llx\n",
3464                         (unsigned long long)rbd_dev->mapping.features);
3465 }
3466
3467 static ssize_t rbd_major_show(struct device *dev,
3468                               struct device_attribute *attr, char *buf)
3469 {
3470         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3471
3472         if (rbd_dev->major)
3473                 return sprintf(buf, "%d\n", rbd_dev->major);
3474
3475         return sprintf(buf, "(none)\n");
3476
3477 }
3478
3479 static ssize_t rbd_client_id_show(struct device *dev,
3480                                   struct device_attribute *attr, char *buf)
3481 {
3482         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3483
3484         return sprintf(buf, "client%lld\n",
3485                         ceph_client_id(rbd_dev->rbd_client->client));
3486 }
3487
3488 static ssize_t rbd_pool_show(struct device *dev,
3489                              struct device_attribute *attr, char *buf)
3490 {
3491         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3492
3493         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3494 }
3495
3496 static ssize_t rbd_pool_id_show(struct device *dev,
3497                              struct device_attribute *attr, char *buf)
3498 {
3499         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3500
3501         return sprintf(buf, "%llu\n",
3502                         (unsigned long long) rbd_dev->spec->pool_id);
3503 }
3504
3505 static ssize_t rbd_name_show(struct device *dev,
3506                              struct device_attribute *attr, char *buf)
3507 {
3508         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3509
3510         if (rbd_dev->spec->image_name)
3511                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3512
3513         return sprintf(buf, "(unknown)\n");
3514 }
3515
3516 static ssize_t rbd_image_id_show(struct device *dev,
3517                              struct device_attribute *attr, char *buf)
3518 {
3519         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3520
3521         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3522 }
3523
3524 /*
3525  * Shows the name of the currently-mapped snapshot (or
3526  * RBD_SNAP_HEAD_NAME for the base image).
3527  */
3528 static ssize_t rbd_snap_show(struct device *dev,
3529                              struct device_attribute *attr,
3530                              char *buf)
3531 {
3532         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3533
3534         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3535 }
3536
3537 /*
3538  * For an rbd v2 image, shows the pool id, image id, and snapshot id
3539  * for the parent image.  If there is no parent, simply shows
3540  * "(no parent image)".
3541  */
3542 static ssize_t rbd_parent_show(struct device *dev,
3543                              struct device_attribute *attr,
3544                              char *buf)
3545 {
3546         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3547         struct rbd_spec *spec = rbd_dev->parent_spec;
3548         int count;
3549         char *bufp = buf;
3550
3551         if (!spec)
3552                 return sprintf(buf, "(no parent image)\n");
3553
3554         count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3555                         (unsigned long long) spec->pool_id, spec->pool_name);
3556         if (count < 0)
3557                 return count;
3558         bufp += count;
3559
3560         count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3561                         spec->image_name ? spec->image_name : "(unknown)");
3562         if (count < 0)
3563                 return count;
3564         bufp += count;
3565
3566         count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3567                         (unsigned long long) spec->snap_id, spec->snap_name);
3568         if (count < 0)
3569                 return count;
3570         bufp += count;
3571
3572         count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3573         if (count < 0)
3574                 return count;
3575         bufp += count;
3576
3577         return (ssize_t) (bufp - buf);
3578 }
3579
3580 static ssize_t rbd_image_refresh(struct device *dev,
3581                                  struct device_attribute *attr,
3582                                  const char *buf,
3583                                  size_t size)
3584 {
3585         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3586         int ret;
3587
3588         ret = rbd_dev_refresh(rbd_dev);
3589         if (ret)
3590                 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3591
3592         return ret < 0 ? ret : size;
3593 }
3594
3595 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3596 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3597 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3598 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3599 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3600 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3601 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3602 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3603 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3604 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3605 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3606
3607 static struct attribute *rbd_attrs[] = {
3608         &dev_attr_size.attr,
3609         &dev_attr_features.attr,
3610         &dev_attr_major.attr,
3611         &dev_attr_client_id.attr,
3612         &dev_attr_pool.attr,
3613         &dev_attr_pool_id.attr,
3614         &dev_attr_name.attr,
3615         &dev_attr_image_id.attr,
3616         &dev_attr_current_snap.attr,
3617         &dev_attr_parent.attr,
3618         &dev_attr_refresh.attr,
3619         NULL
3620 };
3621
3622 static struct attribute_group rbd_attr_group = {
3623         .attrs = rbd_attrs,
3624 };
3625
3626 static const struct attribute_group *rbd_attr_groups[] = {
3627         &rbd_attr_group,
3628         NULL
3629 };
3630
3631 static void rbd_sysfs_dev_release(struct device *dev)
3632 {
3633 }
3634
3635 static struct device_type rbd_device_type = {
3636         .name           = "rbd",
3637         .groups         = rbd_attr_groups,
3638         .release        = rbd_sysfs_dev_release,
3639 };
3640
3641 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3642 {
3643         kref_get(&spec->kref);
3644
3645         return spec;
3646 }
3647
3648 static void rbd_spec_free(struct kref *kref);
3649 static void rbd_spec_put(struct rbd_spec *spec)
3650 {
3651         if (spec)
3652                 kref_put(&spec->kref, rbd_spec_free);
3653 }
3654
3655 static struct rbd_spec *rbd_spec_alloc(void)
3656 {
3657         struct rbd_spec *spec;
3658
3659         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3660         if (!spec)
3661                 return NULL;
3662         kref_init(&spec->kref);
3663
3664         return spec;
3665 }
3666
3667 static void rbd_spec_free(struct kref *kref)
3668 {
3669         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3670
3671         kfree(spec->pool_name);
3672         kfree(spec->image_id);
3673         kfree(spec->image_name);
3674         kfree(spec->snap_name);
3675         kfree(spec);
3676 }
3677
3678 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3679                                 struct rbd_spec *spec)
3680 {
3681         struct rbd_device *rbd_dev;
3682
3683         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3684         if (!rbd_dev)
3685                 return NULL;
3686
3687         spin_lock_init(&rbd_dev->lock);
3688         rbd_dev->flags = 0;
3689         atomic_set(&rbd_dev->parent_ref, 0);
3690         INIT_LIST_HEAD(&rbd_dev->node);
3691         init_rwsem(&rbd_dev->header_rwsem);
3692
3693         rbd_dev->spec = spec;
3694         rbd_dev->rbd_client = rbdc;
3695
3696         /* Initialize the layout used for all rbd requests */
3697
3698         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3699         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3700         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3701         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3702
3703         return rbd_dev;
3704 }
3705
3706 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3707 {
3708         rbd_put_client(rbd_dev->rbd_client);
3709         rbd_spec_put(rbd_dev->spec);
3710         kfree(rbd_dev);
3711 }
3712
3713 /*
3714  * Get the size and object order for an image snapshot, or if
3715  * snap_id is CEPH_NOSNAP, gets this information for the base
3716  * image.
3717  */
3718 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3719                                 u8 *order, u64 *snap_size)
3720 {
3721         __le64 snapid = cpu_to_le64(snap_id);
3722         int ret;
3723         struct {
3724                 u8 order;
3725                 __le64 size;
3726         } __attribute__ ((packed)) size_buf = { 0 };
3727
3728         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3729                                 "rbd", "get_size",
3730                                 &snapid, sizeof (snapid),
3731                                 &size_buf, sizeof (size_buf));
3732         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3733         if (ret < 0)
3734                 return ret;
3735         if (ret < sizeof (size_buf))
3736                 return -ERANGE;
3737
3738         if (order) {
3739                 *order = size_buf.order;
3740                 dout("  order %u", (unsigned int)*order);
3741         }
3742         *snap_size = le64_to_cpu(size_buf.size);
3743
3744         dout("  snap_id 0x%016llx snap_size = %llu\n",
3745                 (unsigned long long)snap_id,
3746                 (unsigned long long)*snap_size);
3747
3748         return 0;
3749 }
3750
3751 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3752 {
3753         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3754                                         &rbd_dev->header.obj_order,
3755                                         &rbd_dev->header.image_size);
3756 }
3757
3758 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3759 {
3760         void *reply_buf;
3761         int ret;
3762         void *p;
3763
3764         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3765         if (!reply_buf)
3766                 return -ENOMEM;
3767
3768         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3769                                 "rbd", "get_object_prefix", NULL, 0,
3770                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3771         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3772         if (ret < 0)
3773                 goto out;
3774
3775         p = reply_buf;
3776         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3777                                                 p + ret, NULL, GFP_NOIO);
3778         ret = 0;
3779
3780         if (IS_ERR(rbd_dev->header.object_prefix)) {
3781                 ret = PTR_ERR(rbd_dev->header.object_prefix);
3782                 rbd_dev->header.object_prefix = NULL;
3783         } else {
3784                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3785         }
3786 out:
3787         kfree(reply_buf);
3788
3789         return ret;
3790 }
3791
3792 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3793                 u64 *snap_features)
3794 {
3795         __le64 snapid = cpu_to_le64(snap_id);
3796         struct {
3797                 __le64 features;
3798                 __le64 incompat;
3799         } __attribute__ ((packed)) features_buf = { 0 };
3800         u64 incompat;
3801         int ret;
3802
3803         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3804                                 "rbd", "get_features",
3805                                 &snapid, sizeof (snapid),
3806                                 &features_buf, sizeof (features_buf));
3807         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3808         if (ret < 0)
3809                 return ret;
3810         if (ret < sizeof (features_buf))
3811                 return -ERANGE;
3812
3813         incompat = le64_to_cpu(features_buf.incompat);
3814         if (incompat & ~RBD_FEATURES_SUPPORTED)
3815                 return -ENXIO;
3816
3817         *snap_features = le64_to_cpu(features_buf.features);
3818
3819         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3820                 (unsigned long long)snap_id,
3821                 (unsigned long long)*snap_features,
3822                 (unsigned long long)le64_to_cpu(features_buf.incompat));
3823
3824         return 0;
3825 }
3826
3827 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3828 {
3829         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3830                                                 &rbd_dev->header.features);
3831 }
3832
3833 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3834 {
3835         struct rbd_spec *parent_spec;
3836         size_t size;
3837         void *reply_buf = NULL;
3838         __le64 snapid;
3839         void *p;
3840         void *end;
3841         u64 pool_id;
3842         char *image_id;
3843         u64 overlap;
3844         int ret;
3845
3846         parent_spec = rbd_spec_alloc();
3847         if (!parent_spec)
3848                 return -ENOMEM;
3849
3850         size = sizeof (__le64) +                                /* pool_id */
3851                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
3852                 sizeof (__le64) +                               /* snap_id */
3853                 sizeof (__le64);                                /* overlap */
3854         reply_buf = kmalloc(size, GFP_KERNEL);
3855         if (!reply_buf) {
3856                 ret = -ENOMEM;
3857                 goto out_err;
3858         }
3859
3860         snapid = cpu_to_le64(CEPH_NOSNAP);
3861         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3862                                 "rbd", "get_parent",
3863                                 &snapid, sizeof (snapid),
3864                                 reply_buf, size);
3865         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3866         if (ret < 0)
3867                 goto out_err;
3868
3869         p = reply_buf;
3870         end = reply_buf + ret;
3871         ret = -ERANGE;
3872         ceph_decode_64_safe(&p, end, pool_id, out_err);
3873         if (pool_id == CEPH_NOPOOL) {
3874                 /*
3875                  * Either the parent never existed, or we have
3876                  * record of it but the image got flattened so it no
3877                  * longer has a parent.  When the parent of a
3878                  * layered image disappears we immediately set the
3879                  * overlap to 0.  The effect of this is that all new
3880                  * requests will be treated as if the image had no
3881                  * parent.
3882                  */
3883                 if (rbd_dev->parent_overlap) {
3884                         rbd_dev->parent_overlap = 0;
3885                         smp_mb();
3886                         rbd_dev_parent_put(rbd_dev);
3887                         pr_info("%s: clone image has been flattened\n",
3888                                 rbd_dev->disk->disk_name);
3889                 }
3890
3891                 goto out;       /* No parent?  No problem. */
3892         }
3893
3894         /* The ceph file layout needs to fit pool id in 32 bits */
3895
3896         ret = -EIO;
3897         if (pool_id > (u64)U32_MAX) {
3898                 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3899                         (unsigned long long)pool_id, U32_MAX);
3900                 goto out_err;
3901         }
3902         parent_spec->pool_id = pool_id;
3903
3904         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3905         if (IS_ERR(image_id)) {
3906                 ret = PTR_ERR(image_id);
3907                 goto out_err;
3908         }
3909         parent_spec->image_id = image_id;
3910         ceph_decode_64_safe(&p, end, parent_spec->snap_id, out_err);
3911         ceph_decode_64_safe(&p, end, overlap, out_err);
3912
3913         if (overlap) {
3914                 rbd_spec_put(rbd_dev->parent_spec);
3915                 rbd_dev->parent_spec = parent_spec;
3916                 parent_spec = NULL;     /* rbd_dev now owns this */
3917                 rbd_dev->parent_overlap = overlap;
3918         } else {
3919                 rbd_warn(rbd_dev, "ignoring parent of clone with overlap 0\n");
3920         }
3921 out:
3922         ret = 0;
3923 out_err:
3924         kfree(reply_buf);
3925         rbd_spec_put(parent_spec);
3926
3927         return ret;
3928 }
3929
3930 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3931 {
3932         struct {
3933                 __le64 stripe_unit;
3934                 __le64 stripe_count;
3935         } __attribute__ ((packed)) striping_info_buf = { 0 };
3936         size_t size = sizeof (striping_info_buf);
3937         void *p;
3938         u64 obj_size;
3939         u64 stripe_unit;
3940         u64 stripe_count;
3941         int ret;
3942
3943         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3944                                 "rbd", "get_stripe_unit_count", NULL, 0,
3945                                 (char *)&striping_info_buf, size);
3946         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3947         if (ret < 0)
3948                 return ret;
3949         if (ret < size)
3950                 return -ERANGE;
3951
3952         /*
3953          * We don't actually support the "fancy striping" feature
3954          * (STRIPINGV2) yet, but if the striping sizes are the
3955          * defaults the behavior is the same as before.  So find
3956          * out, and only fail if the image has non-default values.
3957          */
3958         ret = -EINVAL;
3959         obj_size = (u64)1 << rbd_dev->header.obj_order;
3960         p = &striping_info_buf;
3961         stripe_unit = ceph_decode_64(&p);
3962         if (stripe_unit != obj_size) {
3963                 rbd_warn(rbd_dev, "unsupported stripe unit "
3964                                 "(got %llu want %llu)",
3965                                 stripe_unit, obj_size);
3966                 return -EINVAL;
3967         }
3968         stripe_count = ceph_decode_64(&p);
3969         if (stripe_count != 1) {
3970                 rbd_warn(rbd_dev, "unsupported stripe count "
3971                                 "(got %llu want 1)", stripe_count);
3972                 return -EINVAL;
3973         }
3974         rbd_dev->header.stripe_unit = stripe_unit;
3975         rbd_dev->header.stripe_count = stripe_count;
3976
3977         return 0;
3978 }
3979
3980 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
3981 {
3982         size_t image_id_size;
3983         char *image_id;
3984         void *p;
3985         void *end;
3986         size_t size;
3987         void *reply_buf = NULL;
3988         size_t len = 0;
3989         char *image_name = NULL;
3990         int ret;
3991
3992         rbd_assert(!rbd_dev->spec->image_name);
3993
3994         len = strlen(rbd_dev->spec->image_id);
3995         image_id_size = sizeof (__le32) + len;
3996         image_id = kmalloc(image_id_size, GFP_KERNEL);
3997         if (!image_id)
3998                 return NULL;
3999
4000         p = image_id;
4001         end = image_id + image_id_size;
4002         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4003
4004         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4005         reply_buf = kmalloc(size, GFP_KERNEL);
4006         if (!reply_buf)
4007                 goto out;
4008
4009         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4010                                 "rbd", "dir_get_name",
4011                                 image_id, image_id_size,
4012                                 reply_buf, size);
4013         if (ret < 0)
4014                 goto out;
4015         p = reply_buf;
4016         end = reply_buf + ret;
4017
4018         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4019         if (IS_ERR(image_name))
4020                 image_name = NULL;
4021         else
4022                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4023 out:
4024         kfree(reply_buf);
4025         kfree(image_id);
4026
4027         return image_name;
4028 }
4029
4030 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4031 {
4032         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4033         const char *snap_name;
4034         u32 which = 0;
4035
4036         /* Skip over names until we find the one we are looking for */
4037
4038         snap_name = rbd_dev->header.snap_names;
4039         while (which < snapc->num_snaps) {
4040                 if (!strcmp(name, snap_name))
4041                         return snapc->snaps[which];
4042                 snap_name += strlen(snap_name) + 1;
4043                 which++;
4044         }
4045         return CEPH_NOSNAP;
4046 }
4047
4048 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4049 {
4050         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4051         u32 which;
4052         bool found = false;
4053         u64 snap_id;
4054
4055         for (which = 0; !found && which < snapc->num_snaps; which++) {
4056                 const char *snap_name;
4057
4058                 snap_id = snapc->snaps[which];
4059                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4060                 if (IS_ERR(snap_name)) {
4061                         /* ignore no-longer existing snapshots */
4062                         if (PTR_ERR(snap_name) == -ENOENT)
4063                                 continue;
4064                         else
4065                                 break;
4066                 }
4067                 found = !strcmp(name, snap_name);
4068                 kfree(snap_name);
4069         }
4070         return found ? snap_id : CEPH_NOSNAP;
4071 }
4072
4073 /*
4074  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4075  * no snapshot by that name is found, or if an error occurs.
4076  */
4077 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4078 {
4079         if (rbd_dev->image_format == 1)
4080                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4081
4082         return rbd_v2_snap_id_by_name(rbd_dev, name);
4083 }
4084
4085 /*
4086  * When an rbd image has a parent image, it is identified by the
4087  * pool, image, and snapshot ids (not names).  This function fills
4088  * in the names for those ids.  (It's OK if we can't figure out the
4089  * name for an image id, but the pool and snapshot ids should always
4090  * exist and have names.)  All names in an rbd spec are dynamically
4091  * allocated.
4092  *
4093  * When an image being mapped (not a parent) is probed, we have the
4094  * pool name and pool id, image name and image id, and the snapshot
4095  * name.  The only thing we're missing is the snapshot id.
4096  */
4097 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4098 {
4099         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4100         struct rbd_spec *spec = rbd_dev->spec;
4101         const char *pool_name;
4102         const char *image_name;
4103         const char *snap_name;
4104         int ret;
4105
4106         /*
4107          * An image being mapped will have the pool name (etc.), but
4108          * we need to look up the snapshot id.
4109          */
4110         if (spec->pool_name) {
4111                 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4112                         u64 snap_id;
4113
4114                         snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4115                         if (snap_id == CEPH_NOSNAP)
4116                                 return -ENOENT;
4117                         spec->snap_id = snap_id;
4118                 } else {
4119                         spec->snap_id = CEPH_NOSNAP;
4120                 }
4121
4122                 return 0;
4123         }
4124
4125         /* Get the pool name; we have to make our own copy of this */
4126
4127         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4128         if (!pool_name) {
4129                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4130                 return -EIO;
4131         }
4132         pool_name = kstrdup(pool_name, GFP_KERNEL);
4133         if (!pool_name)
4134                 return -ENOMEM;
4135
4136         /* Fetch the image name; tolerate failure here */
4137
4138         image_name = rbd_dev_image_name(rbd_dev);
4139         if (!image_name)
4140                 rbd_warn(rbd_dev, "unable to get image name");
4141
4142         /* Look up the snapshot name, and make a copy */
4143
4144         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4145         if (IS_ERR(snap_name)) {
4146                 ret = PTR_ERR(snap_name);
4147                 goto out_err;
4148         }
4149
4150         spec->pool_name = pool_name;
4151         spec->image_name = image_name;
4152         spec->snap_name = snap_name;
4153
4154         return 0;
4155 out_err:
4156         kfree(image_name);
4157         kfree(pool_name);
4158
4159         return ret;
4160 }
4161
4162 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4163 {
4164         size_t size;
4165         int ret;
4166         void *reply_buf;
4167         void *p;
4168         void *end;
4169         u64 seq;
4170         u32 snap_count;
4171         struct ceph_snap_context *snapc;
4172         u32 i;
4173
4174         /*
4175          * We'll need room for the seq value (maximum snapshot id),
4176          * snapshot count, and array of that many snapshot ids.
4177          * For now we have a fixed upper limit on the number we're
4178          * prepared to receive.
4179          */
4180         size = sizeof (__le64) + sizeof (__le32) +
4181                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4182         reply_buf = kzalloc(size, GFP_KERNEL);
4183         if (!reply_buf)
4184                 return -ENOMEM;
4185
4186         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4187                                 "rbd", "get_snapcontext", NULL, 0,
4188                                 reply_buf, size);
4189         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4190         if (ret < 0)
4191                 goto out;
4192
4193         p = reply_buf;
4194         end = reply_buf + ret;
4195         ret = -ERANGE;
4196         ceph_decode_64_safe(&p, end, seq, out);
4197         ceph_decode_32_safe(&p, end, snap_count, out);
4198
4199         /*
4200          * Make sure the reported number of snapshot ids wouldn't go
4201          * beyond the end of our buffer.  But before checking that,
4202          * make sure the computed size of the snapshot context we
4203          * allocate is representable in a size_t.
4204          */
4205         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4206                                  / sizeof (u64)) {
4207                 ret = -EINVAL;
4208                 goto out;
4209         }
4210         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4211                 goto out;
4212         ret = 0;
4213
4214         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4215         if (!snapc) {
4216                 ret = -ENOMEM;
4217                 goto out;
4218         }
4219         snapc->seq = seq;
4220         for (i = 0; i < snap_count; i++)
4221                 snapc->snaps[i] = ceph_decode_64(&p);
4222
4223         ceph_put_snap_context(rbd_dev->header.snapc);
4224         rbd_dev->header.snapc = snapc;
4225
4226         dout("  snap context seq = %llu, snap_count = %u\n",
4227                 (unsigned long long)seq, (unsigned int)snap_count);
4228 out:
4229         kfree(reply_buf);
4230
4231         return ret;
4232 }
4233
4234 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4235                                         u64 snap_id)
4236 {
4237         size_t size;
4238         void *reply_buf;
4239         __le64 snapid;
4240         int ret;
4241         void *p;
4242         void *end;
4243         char *snap_name;
4244
4245         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4246         reply_buf = kmalloc(size, GFP_KERNEL);
4247         if (!reply_buf)
4248                 return ERR_PTR(-ENOMEM);
4249
4250         snapid = cpu_to_le64(snap_id);
4251         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4252                                 "rbd", "get_snapshot_name",
4253                                 &snapid, sizeof (snapid),
4254                                 reply_buf, size);
4255         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4256         if (ret < 0) {
4257                 snap_name = ERR_PTR(ret);
4258                 goto out;
4259         }
4260
4261         p = reply_buf;
4262         end = reply_buf + ret;
4263         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4264         if (IS_ERR(snap_name))
4265                 goto out;
4266
4267         dout("  snap_id 0x%016llx snap_name = %s\n",
4268                 (unsigned long long)snap_id, snap_name);
4269 out:
4270         kfree(reply_buf);
4271
4272         return snap_name;
4273 }
4274
4275 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4276 {
4277         bool first_time = rbd_dev->header.object_prefix == NULL;
4278         int ret;
4279
4280         down_write(&rbd_dev->header_rwsem);
4281
4282         ret = rbd_dev_v2_image_size(rbd_dev);
4283         if (ret)
4284                 goto out;
4285
4286         if (first_time) {
4287                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4288                 if (ret)
4289                         goto out;
4290         }
4291
4292         /*
4293          * If the image supports layering, get the parent info.  We
4294          * need to probe the first time regardless.  Thereafter we
4295          * only need to if there's a parent, to see if it has
4296          * disappeared due to the mapped image getting flattened.
4297          */
4298         if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4299                         (first_time || rbd_dev->parent_spec)) {
4300                 bool warn;
4301
4302                 ret = rbd_dev_v2_parent_info(rbd_dev);
4303                 if (ret)
4304                         goto out;
4305
4306                 /*
4307                  * Print a warning if this is the initial probe and
4308                  * the image has a parent.  Don't print it if the
4309                  * image now being probed is itself a parent.  We
4310                  * can tell at this point because we won't know its
4311                  * pool name yet (just its pool id).
4312                  */
4313                 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4314                 if (first_time && warn)
4315                         rbd_warn(rbd_dev, "WARNING: kernel layering "
4316                                         "is EXPERIMENTAL!");
4317         }
4318
4319         if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4320                 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4321                         rbd_dev->mapping.size = rbd_dev->header.image_size;
4322
4323         ret = rbd_dev_v2_snap_context(rbd_dev);
4324         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4325 out:
4326         up_write(&rbd_dev->header_rwsem);
4327
4328         return ret;
4329 }
4330
4331 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4332 {
4333         struct device *dev;
4334         int ret;
4335
4336         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4337
4338         dev = &rbd_dev->dev;
4339         dev->bus = &rbd_bus_type;
4340         dev->type = &rbd_device_type;
4341         dev->parent = &rbd_root_dev;
4342         dev->release = rbd_dev_device_release;
4343         dev_set_name(dev, "%d", rbd_dev->dev_id);
4344         ret = device_register(dev);
4345
4346         mutex_unlock(&ctl_mutex);
4347
4348         return ret;
4349 }
4350
4351 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4352 {
4353         device_unregister(&rbd_dev->dev);
4354 }
4355
4356 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4357
4358 /*
4359  * Get a unique rbd identifier for the given new rbd_dev, and add
4360  * the rbd_dev to the global list.  The minimum rbd id is 1.
4361  */
4362 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4363 {
4364         rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4365
4366         spin_lock(&rbd_dev_list_lock);
4367         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4368         spin_unlock(&rbd_dev_list_lock);
4369         dout("rbd_dev %p given dev id %llu\n", rbd_dev,
4370                 (unsigned long long) rbd_dev->dev_id);
4371 }
4372
4373 /*
4374  * Remove an rbd_dev from the global list, and record that its
4375  * identifier is no longer in use.
4376  */
4377 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4378 {
4379         struct list_head *tmp;
4380         int rbd_id = rbd_dev->dev_id;
4381         int max_id;
4382
4383         rbd_assert(rbd_id > 0);
4384
4385         dout("rbd_dev %p released dev id %llu\n", rbd_dev,
4386                 (unsigned long long) rbd_dev->dev_id);
4387         spin_lock(&rbd_dev_list_lock);
4388         list_del_init(&rbd_dev->node);
4389
4390         /*
4391          * If the id being "put" is not the current maximum, there
4392          * is nothing special we need to do.
4393          */
4394         if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4395                 spin_unlock(&rbd_dev_list_lock);
4396                 return;
4397         }
4398
4399         /*
4400          * We need to update the current maximum id.  Search the
4401          * list to find out what it is.  We're more likely to find
4402          * the maximum at the end, so search the list backward.
4403          */
4404         max_id = 0;
4405         list_for_each_prev(tmp, &rbd_dev_list) {
4406                 struct rbd_device *rbd_dev;
4407
4408                 rbd_dev = list_entry(tmp, struct rbd_device, node);
4409                 if (rbd_dev->dev_id > max_id)
4410                         max_id = rbd_dev->dev_id;
4411         }
4412         spin_unlock(&rbd_dev_list_lock);
4413
4414         /*
4415          * The max id could have been updated by rbd_dev_id_get(), in
4416          * which case it now accurately reflects the new maximum.
4417          * Be careful not to overwrite the maximum value in that
4418          * case.
4419          */
4420         atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4421         dout("  max dev id has been reset\n");
4422 }
4423
4424 /*
4425  * Skips over white space at *buf, and updates *buf to point to the
4426  * first found non-space character (if any). Returns the length of
4427  * the token (string of non-white space characters) found.  Note
4428  * that *buf must be terminated with '\0'.
4429  */
4430 static inline size_t next_token(const char **buf)
4431 {
4432         /*
4433         * These are the characters that produce nonzero for
4434         * isspace() in the "C" and "POSIX" locales.
4435         */
4436         const char *spaces = " \f\n\r\t\v";
4437
4438         *buf += strspn(*buf, spaces);   /* Find start of token */
4439
4440         return strcspn(*buf, spaces);   /* Return token length */
4441 }
4442
4443 /*
4444  * Finds the next token in *buf, and if the provided token buffer is
4445  * big enough, copies the found token into it.  The result, if
4446  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4447  * must be terminated with '\0' on entry.
4448  *
4449  * Returns the length of the token found (not including the '\0').
4450  * Return value will be 0 if no token is found, and it will be >=
4451  * token_size if the token would not fit.
4452  *
4453  * The *buf pointer will be updated to point beyond the end of the
4454  * found token.  Note that this occurs even if the token buffer is
4455  * too small to hold it.
4456  */
4457 static inline size_t copy_token(const char **buf,
4458                                 char *token,
4459                                 size_t token_size)
4460 {
4461         size_t len;
4462
4463         len = next_token(buf);
4464         if (len < token_size) {
4465                 memcpy(token, *buf, len);
4466                 *(token + len) = '\0';
4467         }
4468         *buf += len;
4469
4470         return len;
4471 }
4472
4473 /*
4474  * Finds the next token in *buf, dynamically allocates a buffer big
4475  * enough to hold a copy of it, and copies the token into the new
4476  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4477  * that a duplicate buffer is created even for a zero-length token.
4478  *
4479  * Returns a pointer to the newly-allocated duplicate, or a null
4480  * pointer if memory for the duplicate was not available.  If
4481  * the lenp argument is a non-null pointer, the length of the token
4482  * (not including the '\0') is returned in *lenp.
4483  *
4484  * If successful, the *buf pointer will be updated to point beyond
4485  * the end of the found token.
4486  *
4487  * Note: uses GFP_KERNEL for allocation.
4488  */
4489 static inline char *dup_token(const char **buf, size_t *lenp)
4490 {
4491         char *dup;
4492         size_t len;
4493
4494         len = next_token(buf);
4495         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4496         if (!dup)
4497                 return NULL;
4498         *(dup + len) = '\0';
4499         *buf += len;
4500
4501         if (lenp)
4502                 *lenp = len;
4503
4504         return dup;
4505 }
4506
4507 /*
4508  * Parse the options provided for an "rbd add" (i.e., rbd image
4509  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4510  * and the data written is passed here via a NUL-terminated buffer.
4511  * Returns 0 if successful or an error code otherwise.
4512  *
4513  * The information extracted from these options is recorded in
4514  * the other parameters which return dynamically-allocated
4515  * structures:
4516  *  ceph_opts
4517  *      The address of a pointer that will refer to a ceph options
4518  *      structure.  Caller must release the returned pointer using
4519  *      ceph_destroy_options() when it is no longer needed.
4520  *  rbd_opts
4521  *      Address of an rbd options pointer.  Fully initialized by
4522  *      this function; caller must release with kfree().
4523  *  spec
4524  *      Address of an rbd image specification pointer.  Fully
4525  *      initialized by this function based on parsed options.
4526  *      Caller must release with rbd_spec_put().
4527  *
4528  * The options passed take this form:
4529  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4530  * where:
4531  *  <mon_addrs>
4532  *      A comma-separated list of one or more monitor addresses.
4533  *      A monitor address is an ip address, optionally followed
4534  *      by a port number (separated by a colon).
4535  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4536  *  <options>
4537  *      A comma-separated list of ceph and/or rbd options.
4538  *  <pool_name>
4539  *      The name of the rados pool containing the rbd image.
4540  *  <image_name>
4541  *      The name of the image in that pool to map.
4542  *  <snap_id>
4543  *      An optional snapshot id.  If provided, the mapping will
4544  *      present data from the image at the time that snapshot was
4545  *      created.  The image head is used if no snapshot id is
4546  *      provided.  Snapshot mappings are always read-only.
4547  */
4548 static int rbd_add_parse_args(const char *buf,
4549                                 struct ceph_options **ceph_opts,
4550                                 struct rbd_options **opts,
4551                                 struct rbd_spec **rbd_spec)
4552 {
4553         size_t len;
4554         char *options;
4555         const char *mon_addrs;
4556         char *snap_name;
4557         size_t mon_addrs_size;
4558         struct rbd_spec *spec = NULL;
4559         struct rbd_options *rbd_opts = NULL;
4560         struct ceph_options *copts;
4561         int ret;
4562
4563         /* The first four tokens are required */
4564
4565         len = next_token(&buf);
4566         if (!len) {
4567                 rbd_warn(NULL, "no monitor address(es) provided");
4568                 return -EINVAL;
4569         }
4570         mon_addrs = buf;
4571         mon_addrs_size = len + 1;
4572         buf += len;
4573
4574         ret = -EINVAL;
4575         options = dup_token(&buf, NULL);
4576         if (!options)
4577                 return -ENOMEM;
4578         if (!*options) {
4579                 rbd_warn(NULL, "no options provided");
4580                 goto out_err;
4581         }
4582
4583         spec = rbd_spec_alloc();
4584         if (!spec)
4585                 goto out_mem;
4586
4587         spec->pool_name = dup_token(&buf, NULL);
4588         if (!spec->pool_name)
4589                 goto out_mem;
4590         if (!*spec->pool_name) {
4591                 rbd_warn(NULL, "no pool name provided");
4592                 goto out_err;
4593         }
4594
4595         spec->image_name = dup_token(&buf, NULL);
4596         if (!spec->image_name)
4597                 goto out_mem;
4598         if (!*spec->image_name) {
4599                 rbd_warn(NULL, "no image name provided");
4600                 goto out_err;
4601         }
4602
4603         /*
4604          * Snapshot name is optional; default is to use "-"
4605          * (indicating the head/no snapshot).
4606          */
4607         len = next_token(&buf);
4608         if (!len) {
4609                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4610                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4611         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4612                 ret = -ENAMETOOLONG;
4613                 goto out_err;
4614         }
4615         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4616         if (!snap_name)
4617                 goto out_mem;
4618         *(snap_name + len) = '\0';
4619         spec->snap_name = snap_name;
4620
4621         /* Initialize all rbd options to the defaults */
4622
4623         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4624         if (!rbd_opts)
4625                 goto out_mem;
4626
4627         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4628
4629         copts = ceph_parse_options(options, mon_addrs,
4630                                         mon_addrs + mon_addrs_size - 1,
4631                                         parse_rbd_opts_token, rbd_opts);
4632         if (IS_ERR(copts)) {
4633                 ret = PTR_ERR(copts);
4634                 goto out_err;
4635         }
4636         kfree(options);
4637
4638         *ceph_opts = copts;
4639         *opts = rbd_opts;
4640         *rbd_spec = spec;
4641
4642         return 0;
4643 out_mem:
4644         ret = -ENOMEM;
4645 out_err:
4646         kfree(rbd_opts);
4647         rbd_spec_put(spec);
4648         kfree(options);
4649
4650         return ret;
4651 }
4652
4653 /*
4654  * An rbd format 2 image has a unique identifier, distinct from the
4655  * name given to it by the user.  Internally, that identifier is
4656  * what's used to specify the names of objects related to the image.
4657  *
4658  * A special "rbd id" object is used to map an rbd image name to its
4659  * id.  If that object doesn't exist, then there is no v2 rbd image
4660  * with the supplied name.
4661  *
4662  * This function will record the given rbd_dev's image_id field if
4663  * it can be determined, and in that case will return 0.  If any
4664  * errors occur a negative errno will be returned and the rbd_dev's
4665  * image_id field will be unchanged (and should be NULL).
4666  */
4667 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4668 {
4669         int ret;
4670         size_t size;
4671         char *object_name;
4672         void *response;
4673         char *image_id;
4674
4675         /*
4676          * When probing a parent image, the image id is already
4677          * known (and the image name likely is not).  There's no
4678          * need to fetch the image id again in this case.  We
4679          * do still need to set the image format though.
4680          */
4681         if (rbd_dev->spec->image_id) {
4682                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4683
4684                 return 0;
4685         }
4686
4687         /*
4688          * First, see if the format 2 image id file exists, and if
4689          * so, get the image's persistent id from it.
4690          */
4691         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4692         object_name = kmalloc(size, GFP_NOIO);
4693         if (!object_name)
4694                 return -ENOMEM;
4695         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4696         dout("rbd id object name is %s\n", object_name);
4697
4698         /* Response will be an encoded string, which includes a length */
4699
4700         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4701         response = kzalloc(size, GFP_NOIO);
4702         if (!response) {
4703                 ret = -ENOMEM;
4704                 goto out;
4705         }
4706
4707         /* If it doesn't exist we'll assume it's a format 1 image */
4708
4709         ret = rbd_obj_method_sync(rbd_dev, object_name,
4710                                 "rbd", "get_id", NULL, 0,
4711                                 response, RBD_IMAGE_ID_LEN_MAX);
4712         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4713         if (ret == -ENOENT) {
4714                 image_id = kstrdup("", GFP_KERNEL);
4715                 ret = image_id ? 0 : -ENOMEM;
4716                 if (!ret)
4717                         rbd_dev->image_format = 1;
4718         } else if (ret > sizeof (__le32)) {
4719                 void *p = response;
4720
4721                 image_id = ceph_extract_encoded_string(&p, p + ret,
4722                                                 NULL, GFP_NOIO);
4723                 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4724                 if (!ret)
4725                         rbd_dev->image_format = 2;
4726         } else {
4727                 ret = -EINVAL;
4728         }
4729
4730         if (!ret) {
4731                 rbd_dev->spec->image_id = image_id;
4732                 dout("image_id is %s\n", image_id);
4733         }
4734 out:
4735         kfree(response);
4736         kfree(object_name);
4737
4738         return ret;
4739 }
4740
4741 /*
4742  * Undo whatever state changes are made by v1 or v2 header info
4743  * call.
4744  */
4745 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4746 {
4747         struct rbd_image_header *header;
4748
4749         /* Drop parent reference unless it's already been done (or none) */
4750
4751         if (rbd_dev->parent_overlap)
4752                 rbd_dev_parent_put(rbd_dev);
4753
4754         /* Free dynamic fields from the header, then zero it out */
4755
4756         header = &rbd_dev->header;
4757         ceph_put_snap_context(header->snapc);
4758         kfree(header->snap_sizes);
4759         kfree(header->snap_names);
4760         kfree(header->object_prefix);
4761         memset(header, 0, sizeof (*header));
4762 }
4763
4764 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4765 {
4766         int ret;
4767
4768         ret = rbd_dev_v2_object_prefix(rbd_dev);
4769         if (ret)
4770                 goto out_err;
4771
4772         /*
4773          * Get the and check features for the image.  Currently the
4774          * features are assumed to never change.
4775          */
4776         ret = rbd_dev_v2_features(rbd_dev);
4777         if (ret)
4778                 goto out_err;
4779
4780         /* If the image supports fancy striping, get its parameters */
4781
4782         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4783                 ret = rbd_dev_v2_striping_info(rbd_dev);
4784                 if (ret < 0)
4785                         goto out_err;
4786         }
4787         /* No support for crypto and compression type format 2 images */
4788
4789         return 0;
4790 out_err:
4791         rbd_dev->header.features = 0;
4792         kfree(rbd_dev->header.object_prefix);
4793         rbd_dev->header.object_prefix = NULL;
4794
4795         return ret;
4796 }
4797
4798 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4799 {
4800         struct rbd_device *parent = NULL;
4801         struct rbd_spec *parent_spec;
4802         struct rbd_client *rbdc;
4803         int ret;
4804
4805         if (!rbd_dev->parent_spec)
4806                 return 0;
4807         /*
4808          * We need to pass a reference to the client and the parent
4809          * spec when creating the parent rbd_dev.  Images related by
4810          * parent/child relationships always share both.
4811          */
4812         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4813         rbdc = __rbd_get_client(rbd_dev->rbd_client);
4814
4815         ret = -ENOMEM;
4816         parent = rbd_dev_create(rbdc, parent_spec);
4817         if (!parent)
4818                 goto out_err;
4819
4820         ret = rbd_dev_image_probe(parent, false);
4821         if (ret < 0)
4822                 goto out_err;
4823         rbd_dev->parent = parent;
4824         atomic_set(&rbd_dev->parent_ref, 1);
4825
4826         return 0;
4827 out_err:
4828         if (parent) {
4829                 rbd_dev_unparent(rbd_dev);
4830                 kfree(rbd_dev->header_name);
4831                 rbd_dev_destroy(parent);
4832         } else {
4833                 rbd_put_client(rbdc);
4834                 rbd_spec_put(parent_spec);
4835         }
4836
4837         return ret;
4838 }
4839
4840 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4841 {
4842         int ret;
4843
4844         /* generate unique id: find highest unique id, add one */
4845         rbd_dev_id_get(rbd_dev);
4846
4847         /* Fill in the device name, now that we have its id. */
4848         BUILD_BUG_ON(DEV_NAME_LEN
4849                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4850         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4851
4852         /* Get our block major device number. */
4853
4854         ret = register_blkdev(0, rbd_dev->name);
4855         if (ret < 0)
4856                 goto err_out_id;
4857         rbd_dev->major = ret;
4858
4859         /* Set up the blkdev mapping. */
4860
4861         ret = rbd_init_disk(rbd_dev);
4862         if (ret)
4863                 goto err_out_blkdev;
4864
4865         ret = rbd_dev_mapping_set(rbd_dev);
4866         if (ret)
4867                 goto err_out_disk;
4868         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4869
4870         ret = rbd_bus_add_dev(rbd_dev);
4871         if (ret)
4872                 goto err_out_mapping;
4873
4874         /* Everything's ready.  Announce the disk to the world. */
4875
4876         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4877         add_disk(rbd_dev->disk);
4878
4879         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4880                 (unsigned long long) rbd_dev->mapping.size);
4881
4882         return ret;
4883
4884 err_out_mapping:
4885         rbd_dev_mapping_clear(rbd_dev);
4886 err_out_disk:
4887         rbd_free_disk(rbd_dev);
4888 err_out_blkdev:
4889         unregister_blkdev(rbd_dev->major, rbd_dev->name);
4890 err_out_id:
4891         rbd_dev_id_put(rbd_dev);
4892         rbd_dev_mapping_clear(rbd_dev);
4893
4894         return ret;
4895 }
4896
4897 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4898 {
4899         struct rbd_spec *spec = rbd_dev->spec;
4900         size_t size;
4901
4902         /* Record the header object name for this rbd image. */
4903
4904         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4905
4906         if (rbd_dev->image_format == 1)
4907                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4908         else
4909                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4910
4911         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4912         if (!rbd_dev->header_name)
4913                 return -ENOMEM;
4914
4915         if (rbd_dev->image_format == 1)
4916                 sprintf(rbd_dev->header_name, "%s%s",
4917                         spec->image_name, RBD_SUFFIX);
4918         else
4919                 sprintf(rbd_dev->header_name, "%s%s",
4920                         RBD_HEADER_PREFIX, spec->image_id);
4921         return 0;
4922 }
4923
4924 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4925 {
4926         rbd_dev_unprobe(rbd_dev);
4927         kfree(rbd_dev->header_name);
4928         rbd_dev->header_name = NULL;
4929         rbd_dev->image_format = 0;
4930         kfree(rbd_dev->spec->image_id);
4931         rbd_dev->spec->image_id = NULL;
4932
4933         rbd_dev_destroy(rbd_dev);
4934 }
4935
4936 /*
4937  * Probe for the existence of the header object for the given rbd
4938  * device.  If this image is the one being mapped (i.e., not a
4939  * parent), initiate a watch on its header object before using that
4940  * object to get detailed information about the rbd image.
4941  */
4942 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
4943 {
4944         int ret;
4945         int tmp;
4946
4947         /*
4948          * Get the id from the image id object.  Unless there's an
4949          * error, rbd_dev->spec->image_id will be filled in with
4950          * a dynamically-allocated string, and rbd_dev->image_format
4951          * will be set to either 1 or 2.
4952          */
4953         ret = rbd_dev_image_id(rbd_dev);
4954         if (ret)
4955                 return ret;
4956         rbd_assert(rbd_dev->spec->image_id);
4957         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4958
4959         ret = rbd_dev_header_name(rbd_dev);
4960         if (ret)
4961                 goto err_out_format;
4962
4963         if (mapping) {
4964                 ret = rbd_dev_header_watch_sync(rbd_dev, true);
4965                 if (ret)
4966                         goto out_header_name;
4967         }
4968
4969         if (rbd_dev->image_format == 1)
4970                 ret = rbd_dev_v1_header_info(rbd_dev);
4971         else
4972                 ret = rbd_dev_v2_header_info(rbd_dev);
4973         if (ret)
4974                 goto err_out_watch;
4975
4976         ret = rbd_dev_spec_update(rbd_dev);
4977         if (ret)
4978                 goto err_out_probe;
4979
4980         ret = rbd_dev_probe_parent(rbd_dev);
4981         if (ret)
4982                 goto err_out_probe;
4983
4984         dout("discovered format %u image, header name is %s\n",
4985                 rbd_dev->image_format, rbd_dev->header_name);
4986
4987         return 0;
4988 err_out_probe:
4989         rbd_dev_unprobe(rbd_dev);
4990 err_out_watch:
4991         if (mapping) {
4992                 tmp = rbd_dev_header_watch_sync(rbd_dev, false);
4993                 if (tmp)
4994                         rbd_warn(rbd_dev, "unable to tear down "
4995                                         "watch request (%d)\n", tmp);
4996         }
4997 out_header_name:
4998         kfree(rbd_dev->header_name);
4999         rbd_dev->header_name = NULL;
5000 err_out_format:
5001         rbd_dev->image_format = 0;
5002         kfree(rbd_dev->spec->image_id);
5003         rbd_dev->spec->image_id = NULL;
5004
5005         dout("probe failed, returning %d\n", ret);
5006
5007         return ret;
5008 }
5009
5010 static ssize_t rbd_add(struct bus_type *bus,
5011                        const char *buf,
5012                        size_t count)
5013 {
5014         struct rbd_device *rbd_dev = NULL;
5015         struct ceph_options *ceph_opts = NULL;
5016         struct rbd_options *rbd_opts = NULL;
5017         struct rbd_spec *spec = NULL;
5018         struct rbd_client *rbdc;
5019         struct ceph_osd_client *osdc;
5020         bool read_only;
5021         int rc = -ENOMEM;
5022
5023         if (!try_module_get(THIS_MODULE))
5024                 return -ENODEV;
5025
5026         /* parse add command */
5027         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5028         if (rc < 0)
5029                 goto err_out_module;
5030         read_only = rbd_opts->read_only;
5031         kfree(rbd_opts);
5032         rbd_opts = NULL;        /* done with this */
5033
5034         rbdc = rbd_get_client(ceph_opts);
5035         if (IS_ERR(rbdc)) {
5036                 rc = PTR_ERR(rbdc);
5037                 goto err_out_args;
5038         }
5039
5040         /* pick the pool */
5041         osdc = &rbdc->client->osdc;
5042         rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
5043         if (rc < 0)
5044                 goto err_out_client;
5045         spec->pool_id = (u64)rc;
5046
5047         /* The ceph file layout needs to fit pool id in 32 bits */
5048
5049         if (spec->pool_id > (u64)U32_MAX) {
5050                 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5051                                 (unsigned long long)spec->pool_id, U32_MAX);
5052                 rc = -EIO;
5053                 goto err_out_client;
5054         }
5055
5056         rbd_dev = rbd_dev_create(rbdc, spec);
5057         if (!rbd_dev)
5058                 goto err_out_client;
5059         rbdc = NULL;            /* rbd_dev now owns this */
5060         spec = NULL;            /* rbd_dev now owns this */
5061
5062         rc = rbd_dev_image_probe(rbd_dev, true);
5063         if (rc < 0)
5064                 goto err_out_rbd_dev;
5065
5066         /* If we are mapping a snapshot it must be marked read-only */
5067
5068         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5069                 read_only = true;
5070         rbd_dev->mapping.read_only = read_only;
5071
5072         rc = rbd_dev_device_setup(rbd_dev);
5073         if (rc) {
5074                 rbd_dev_image_release(rbd_dev);
5075                 goto err_out_module;
5076         }
5077
5078         return count;
5079
5080 err_out_rbd_dev:
5081         rbd_dev_destroy(rbd_dev);
5082 err_out_client:
5083         rbd_put_client(rbdc);
5084 err_out_args:
5085         rbd_spec_put(spec);
5086 err_out_module:
5087         module_put(THIS_MODULE);
5088
5089         dout("Error adding device %s\n", buf);
5090
5091         return (ssize_t)rc;
5092 }
5093
5094 static void rbd_dev_device_release(struct device *dev)
5095 {
5096         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5097
5098         rbd_free_disk(rbd_dev);
5099         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5100         rbd_dev_mapping_clear(rbd_dev);
5101         unregister_blkdev(rbd_dev->major, rbd_dev->name);
5102         rbd_dev->major = 0;
5103         rbd_dev_id_put(rbd_dev);
5104         rbd_dev_mapping_clear(rbd_dev);
5105 }
5106
5107 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5108 {
5109         while (rbd_dev->parent) {
5110                 struct rbd_device *first = rbd_dev;
5111                 struct rbd_device *second = first->parent;
5112                 struct rbd_device *third;
5113
5114                 /*
5115                  * Follow to the parent with no grandparent and
5116                  * remove it.
5117                  */
5118                 while (second && (third = second->parent)) {
5119                         first = second;
5120                         second = third;
5121                 }
5122                 rbd_assert(second);
5123                 rbd_dev_image_release(second);
5124                 first->parent = NULL;
5125                 first->parent_overlap = 0;
5126
5127                 rbd_assert(first->parent_spec);
5128                 rbd_spec_put(first->parent_spec);
5129                 first->parent_spec = NULL;
5130         }
5131 }
5132
5133 static ssize_t rbd_remove(struct bus_type *bus,
5134                           const char *buf,
5135                           size_t count)
5136 {
5137         struct rbd_device *rbd_dev = NULL;
5138         struct list_head *tmp;
5139         int dev_id;
5140         unsigned long ul;
5141         bool already = false;
5142         int ret;
5143
5144         ret = strict_strtoul(buf, 10, &ul);
5145         if (ret)
5146                 return ret;
5147
5148         /* convert to int; abort if we lost anything in the conversion */
5149         dev_id = (int)ul;
5150         if (dev_id != ul)
5151                 return -EINVAL;
5152
5153         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
5154
5155         ret = -ENOENT;
5156         spin_lock(&rbd_dev_list_lock);
5157         list_for_each(tmp, &rbd_dev_list) {
5158                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5159                 if (rbd_dev->dev_id == dev_id) {
5160                         ret = 0;
5161                         break;
5162                 }
5163         }
5164         if (!ret) {
5165                 spin_lock_irq(&rbd_dev->lock);
5166                 if (rbd_dev->open_count)
5167                         ret = -EBUSY;
5168                 else
5169                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5170                                                         &rbd_dev->flags);
5171                 spin_unlock_irq(&rbd_dev->lock);
5172         }
5173         spin_unlock(&rbd_dev_list_lock);
5174         if (ret < 0 || already)
5175                 goto done;
5176
5177         ret = rbd_dev_header_watch_sync(rbd_dev, false);
5178         if (ret)
5179                 rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret);
5180
5181         /*
5182          * flush remaining watch callbacks - these must be complete
5183          * before the osd_client is shutdown
5184          */
5185         dout("%s: flushing notifies", __func__);
5186         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5187         /*
5188          * Don't free anything from rbd_dev->disk until after all
5189          * notifies are completely processed. Otherwise
5190          * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5191          * in a potential use after free of rbd_dev->disk or rbd_dev.
5192          */
5193         rbd_bus_del_dev(rbd_dev);
5194         rbd_dev_image_release(rbd_dev);
5195         module_put(THIS_MODULE);
5196         ret = count;
5197 done:
5198         mutex_unlock(&ctl_mutex);
5199
5200         return ret;
5201 }
5202
5203 /*
5204  * create control files in sysfs
5205  * /sys/bus/rbd/...
5206  */
5207 static int rbd_sysfs_init(void)
5208 {
5209         int ret;
5210
5211         ret = device_register(&rbd_root_dev);
5212         if (ret < 0)
5213                 return ret;
5214
5215         ret = bus_register(&rbd_bus_type);
5216         if (ret < 0)
5217                 device_unregister(&rbd_root_dev);
5218
5219         return ret;
5220 }
5221
5222 static void rbd_sysfs_cleanup(void)
5223 {
5224         bus_unregister(&rbd_bus_type);
5225         device_unregister(&rbd_root_dev);
5226 }
5227
5228 static int rbd_slab_init(void)
5229 {
5230         rbd_assert(!rbd_img_request_cache);
5231         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5232                                         sizeof (struct rbd_img_request),
5233                                         __alignof__(struct rbd_img_request),
5234                                         0, NULL);
5235         if (!rbd_img_request_cache)
5236                 return -ENOMEM;
5237
5238         rbd_assert(!rbd_obj_request_cache);
5239         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5240                                         sizeof (struct rbd_obj_request),
5241                                         __alignof__(struct rbd_obj_request),
5242                                         0, NULL);
5243         if (!rbd_obj_request_cache)
5244                 goto out_err;
5245
5246         rbd_assert(!rbd_segment_name_cache);
5247         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5248                                         MAX_OBJ_NAME_SIZE + 1, 1, 0, NULL);
5249         if (rbd_segment_name_cache)
5250                 return 0;
5251 out_err:
5252         if (rbd_obj_request_cache) {
5253                 kmem_cache_destroy(rbd_obj_request_cache);
5254                 rbd_obj_request_cache = NULL;
5255         }
5256
5257         kmem_cache_destroy(rbd_img_request_cache);
5258         rbd_img_request_cache = NULL;
5259
5260         return -ENOMEM;
5261 }
5262
5263 static void rbd_slab_exit(void)
5264 {
5265         rbd_assert(rbd_segment_name_cache);
5266         kmem_cache_destroy(rbd_segment_name_cache);
5267         rbd_segment_name_cache = NULL;
5268
5269         rbd_assert(rbd_obj_request_cache);
5270         kmem_cache_destroy(rbd_obj_request_cache);
5271         rbd_obj_request_cache = NULL;
5272
5273         rbd_assert(rbd_img_request_cache);
5274         kmem_cache_destroy(rbd_img_request_cache);
5275         rbd_img_request_cache = NULL;
5276 }
5277
5278 static int __init rbd_init(void)
5279 {
5280         int rc;
5281
5282         if (!libceph_compatible(NULL)) {
5283                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5284
5285                 return -EINVAL;
5286         }
5287         rc = rbd_slab_init();
5288         if (rc)
5289                 return rc;
5290         rc = rbd_sysfs_init();
5291         if (rc)
5292                 rbd_slab_exit();
5293         else
5294                 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
5295
5296         return rc;
5297 }
5298
5299 static void __exit rbd_exit(void)
5300 {
5301         rbd_sysfs_cleanup();
5302         rbd_slab_exit();
5303 }
5304
5305 module_init(rbd_init);
5306 module_exit(rbd_exit);
5307
5308 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5309 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5310 MODULE_DESCRIPTION("rados block device");
5311
5312 /* following authorship retained from original osdblk.c */
5313 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5314
5315 MODULE_LICENSE("GPL");