rbd: rbd_obj_request_wait() should cancel the request if interrupted
[firefly-linux-kernel-4.4.55.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44 #include <linux/idr.h>
45
46 #include "rbd_types.h"
47
48 #define RBD_DEBUG       /* Activate rbd_assert() calls */
49
50 /*
51  * The basic unit of block I/O is a sector.  It is interpreted in a
52  * number of contexts in Linux (blk, bio, genhd), but the default is
53  * universally 512 bytes.  These symbols are just slightly more
54  * meaningful than the bare numbers they represent.
55  */
56 #define SECTOR_SHIFT    9
57 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
58
59 /*
60  * Increment the given counter and return its updated value.
61  * If the counter is already 0 it will not be incremented.
62  * If the counter is already at its maximum value returns
63  * -EINVAL without updating it.
64  */
65 static int atomic_inc_return_safe(atomic_t *v)
66 {
67         unsigned int counter;
68
69         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
70         if (counter <= (unsigned int)INT_MAX)
71                 return (int)counter;
72
73         atomic_dec(v);
74
75         return -EINVAL;
76 }
77
78 /* Decrement the counter.  Return the resulting value, or -EINVAL */
79 static int atomic_dec_return_safe(atomic_t *v)
80 {
81         int counter;
82
83         counter = atomic_dec_return(v);
84         if (counter >= 0)
85                 return counter;
86
87         atomic_inc(v);
88
89         return -EINVAL;
90 }
91
92 #define RBD_DRV_NAME "rbd"
93
94 #define RBD_MINORS_PER_MAJOR            256
95 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
96
97 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
98 #define RBD_MAX_SNAP_NAME_LEN   \
99                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
100
101 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
102
103 #define RBD_SNAP_HEAD_NAME      "-"
104
105 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
106
107 /* This allows a single page to hold an image name sent by OSD */
108 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
109 #define RBD_IMAGE_ID_LEN_MAX    64
110
111 #define RBD_OBJ_PREFIX_LEN_MAX  64
112
113 /* Feature bits */
114
115 #define RBD_FEATURE_LAYERING    (1<<0)
116 #define RBD_FEATURE_STRIPINGV2  (1<<1)
117 #define RBD_FEATURES_ALL \
118             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
119
120 /* Features supported by this (client software) implementation. */
121
122 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
123
124 /*
125  * An RBD device name will be "rbd#", where the "rbd" comes from
126  * RBD_DRV_NAME above, and # is a unique integer identifier.
127  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
128  * enough to hold all possible device names.
129  */
130 #define DEV_NAME_LEN            32
131 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
132
133 /*
134  * block device image metadata (in-memory version)
135  */
136 struct rbd_image_header {
137         /* These six fields never change for a given rbd image */
138         char *object_prefix;
139         __u8 obj_order;
140         __u8 crypt_type;
141         __u8 comp_type;
142         u64 stripe_unit;
143         u64 stripe_count;
144         u64 features;           /* Might be changeable someday? */
145
146         /* The remaining fields need to be updated occasionally */
147         u64 image_size;
148         struct ceph_snap_context *snapc;
149         char *snap_names;       /* format 1 only */
150         u64 *snap_sizes;        /* format 1 only */
151 };
152
153 /*
154  * An rbd image specification.
155  *
156  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
157  * identify an image.  Each rbd_dev structure includes a pointer to
158  * an rbd_spec structure that encapsulates this identity.
159  *
160  * Each of the id's in an rbd_spec has an associated name.  For a
161  * user-mapped image, the names are supplied and the id's associated
162  * with them are looked up.  For a layered image, a parent image is
163  * defined by the tuple, and the names are looked up.
164  *
165  * An rbd_dev structure contains a parent_spec pointer which is
166  * non-null if the image it represents is a child in a layered
167  * image.  This pointer will refer to the rbd_spec structure used
168  * by the parent rbd_dev for its own identity (i.e., the structure
169  * is shared between the parent and child).
170  *
171  * Since these structures are populated once, during the discovery
172  * phase of image construction, they are effectively immutable so
173  * we make no effort to synchronize access to them.
174  *
175  * Note that code herein does not assume the image name is known (it
176  * could be a null pointer).
177  */
178 struct rbd_spec {
179         u64             pool_id;
180         const char      *pool_name;
181
182         const char      *image_id;
183         const char      *image_name;
184
185         u64             snap_id;
186         const char      *snap_name;
187
188         struct kref     kref;
189 };
190
191 /*
192  * an instance of the client.  multiple devices may share an rbd client.
193  */
194 struct rbd_client {
195         struct ceph_client      *client;
196         struct kref             kref;
197         struct list_head        node;
198 };
199
200 struct rbd_img_request;
201 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
202
203 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
204
205 struct rbd_obj_request;
206 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
207
208 enum obj_request_type {
209         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
210 };
211
212 enum obj_req_flags {
213         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
214         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
215         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
216         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
217 };
218
219 struct rbd_obj_request {
220         const char              *object_name;
221         u64                     offset;         /* object start byte */
222         u64                     length;         /* bytes from offset */
223         unsigned long           flags;
224
225         /*
226          * An object request associated with an image will have its
227          * img_data flag set; a standalone object request will not.
228          *
229          * A standalone object request will have which == BAD_WHICH
230          * and a null obj_request pointer.
231          *
232          * An object request initiated in support of a layered image
233          * object (to check for its existence before a write) will
234          * have which == BAD_WHICH and a non-null obj_request pointer.
235          *
236          * Finally, an object request for rbd image data will have
237          * which != BAD_WHICH, and will have a non-null img_request
238          * pointer.  The value of which will be in the range
239          * 0..(img_request->obj_request_count-1).
240          */
241         union {
242                 struct rbd_obj_request  *obj_request;   /* STAT op */
243                 struct {
244                         struct rbd_img_request  *img_request;
245                         u64                     img_offset;
246                         /* links for img_request->obj_requests list */
247                         struct list_head        links;
248                 };
249         };
250         u32                     which;          /* posn image request list */
251
252         enum obj_request_type   type;
253         union {
254                 struct bio      *bio_list;
255                 struct {
256                         struct page     **pages;
257                         u32             page_count;
258                 };
259         };
260         struct page             **copyup_pages;
261         u32                     copyup_page_count;
262
263         struct ceph_osd_request *osd_req;
264
265         u64                     xferred;        /* bytes transferred */
266         int                     result;
267
268         rbd_obj_callback_t      callback;
269         struct completion       completion;
270
271         struct kref             kref;
272 };
273
274 enum img_req_flags {
275         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
276         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
277         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
278 };
279
280 struct rbd_img_request {
281         struct rbd_device       *rbd_dev;
282         u64                     offset; /* starting image byte offset */
283         u64                     length; /* byte count from offset */
284         unsigned long           flags;
285         union {
286                 u64                     snap_id;        /* for reads */
287                 struct ceph_snap_context *snapc;        /* for writes */
288         };
289         union {
290                 struct request          *rq;            /* block request */
291                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
292         };
293         struct page             **copyup_pages;
294         u32                     copyup_page_count;
295         spinlock_t              completion_lock;/* protects next_completion */
296         u32                     next_completion;
297         rbd_img_callback_t      callback;
298         u64                     xferred;/* aggregate bytes transferred */
299         int                     result; /* first nonzero obj_request result */
300
301         u32                     obj_request_count;
302         struct list_head        obj_requests;   /* rbd_obj_request structs */
303
304         struct kref             kref;
305 };
306
307 #define for_each_obj_request(ireq, oreq) \
308         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
309 #define for_each_obj_request_from(ireq, oreq) \
310         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
311 #define for_each_obj_request_safe(ireq, oreq, n) \
312         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
313
314 struct rbd_mapping {
315         u64                     size;
316         u64                     features;
317         bool                    read_only;
318 };
319
320 /*
321  * a single device
322  */
323 struct rbd_device {
324         int                     dev_id;         /* blkdev unique id */
325
326         int                     major;          /* blkdev assigned major */
327         int                     minor;
328         struct gendisk          *disk;          /* blkdev's gendisk and rq */
329
330         u32                     image_format;   /* Either 1 or 2 */
331         struct rbd_client       *rbd_client;
332
333         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
334
335         spinlock_t              lock;           /* queue, flags, open_count */
336
337         struct rbd_image_header header;
338         unsigned long           flags;          /* possibly lock protected */
339         struct rbd_spec         *spec;
340
341         char                    *header_name;
342
343         struct ceph_file_layout layout;
344
345         struct ceph_osd_event   *watch_event;
346         struct rbd_obj_request  *watch_request;
347
348         struct rbd_spec         *parent_spec;
349         u64                     parent_overlap;
350         atomic_t                parent_ref;
351         struct rbd_device       *parent;
352
353         /* protects updating the header */
354         struct rw_semaphore     header_rwsem;
355
356         struct rbd_mapping      mapping;
357
358         struct list_head        node;
359
360         /* sysfs related */
361         struct device           dev;
362         unsigned long           open_count;     /* protected by lock */
363 };
364
365 /*
366  * Flag bits for rbd_dev->flags.  If atomicity is required,
367  * rbd_dev->lock is used to protect access.
368  *
369  * Currently, only the "removing" flag (which is coupled with the
370  * "open_count" field) requires atomic access.
371  */
372 enum rbd_dev_flags {
373         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
374         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
375 };
376
377 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
378
379 static LIST_HEAD(rbd_dev_list);    /* devices */
380 static DEFINE_SPINLOCK(rbd_dev_list_lock);
381
382 static LIST_HEAD(rbd_client_list);              /* clients */
383 static DEFINE_SPINLOCK(rbd_client_list_lock);
384
385 /* Slab caches for frequently-allocated structures */
386
387 static struct kmem_cache        *rbd_img_request_cache;
388 static struct kmem_cache        *rbd_obj_request_cache;
389 static struct kmem_cache        *rbd_segment_name_cache;
390
391 static int rbd_major;
392 static DEFINE_IDA(rbd_dev_id_ida);
393
394 /*
395  * Default to false for now, as single-major requires >= 0.75 version of
396  * userspace rbd utility.
397  */
398 static bool single_major = false;
399 module_param(single_major, bool, S_IRUGO);
400 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
401
402 static int rbd_img_request_submit(struct rbd_img_request *img_request);
403
404 static void rbd_dev_device_release(struct device *dev);
405
406 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
407                        size_t count);
408 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
409                           size_t count);
410 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
411                                     size_t count);
412 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
413                                        size_t count);
414 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
415 static void rbd_spec_put(struct rbd_spec *spec);
416
417 static int rbd_dev_id_to_minor(int dev_id)
418 {
419         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
420 }
421
422 static int minor_to_rbd_dev_id(int minor)
423 {
424         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
425 }
426
427 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
428 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
429 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
430 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
431
432 static struct attribute *rbd_bus_attrs[] = {
433         &bus_attr_add.attr,
434         &bus_attr_remove.attr,
435         &bus_attr_add_single_major.attr,
436         &bus_attr_remove_single_major.attr,
437         NULL,
438 };
439
440 static umode_t rbd_bus_is_visible(struct kobject *kobj,
441                                   struct attribute *attr, int index)
442 {
443         if (!single_major &&
444             (attr == &bus_attr_add_single_major.attr ||
445              attr == &bus_attr_remove_single_major.attr))
446                 return 0;
447
448         return attr->mode;
449 }
450
451 static const struct attribute_group rbd_bus_group = {
452         .attrs = rbd_bus_attrs,
453         .is_visible = rbd_bus_is_visible,
454 };
455 __ATTRIBUTE_GROUPS(rbd_bus);
456
457 static struct bus_type rbd_bus_type = {
458         .name           = "rbd",
459         .bus_groups     = rbd_bus_groups,
460 };
461
462 static void rbd_root_dev_release(struct device *dev)
463 {
464 }
465
466 static struct device rbd_root_dev = {
467         .init_name =    "rbd",
468         .release =      rbd_root_dev_release,
469 };
470
471 static __printf(2, 3)
472 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
473 {
474         struct va_format vaf;
475         va_list args;
476
477         va_start(args, fmt);
478         vaf.fmt = fmt;
479         vaf.va = &args;
480
481         if (!rbd_dev)
482                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
483         else if (rbd_dev->disk)
484                 printk(KERN_WARNING "%s: %s: %pV\n",
485                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
486         else if (rbd_dev->spec && rbd_dev->spec->image_name)
487                 printk(KERN_WARNING "%s: image %s: %pV\n",
488                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
489         else if (rbd_dev->spec && rbd_dev->spec->image_id)
490                 printk(KERN_WARNING "%s: id %s: %pV\n",
491                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
492         else    /* punt */
493                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
494                         RBD_DRV_NAME, rbd_dev, &vaf);
495         va_end(args);
496 }
497
498 #ifdef RBD_DEBUG
499 #define rbd_assert(expr)                                                \
500                 if (unlikely(!(expr))) {                                \
501                         printk(KERN_ERR "\nAssertion failure in %s() "  \
502                                                 "at line %d:\n\n"       \
503                                         "\trbd_assert(%s);\n\n",        \
504                                         __func__, __LINE__, #expr);     \
505                         BUG();                                          \
506                 }
507 #else /* !RBD_DEBUG */
508 #  define rbd_assert(expr)      ((void) 0)
509 #endif /* !RBD_DEBUG */
510
511 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
512 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
513 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
514
515 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
516 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
517 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
518 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
519                                         u64 snap_id);
520 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
521                                 u8 *order, u64 *snap_size);
522 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
523                 u64 *snap_features);
524 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
525
526 static int rbd_open(struct block_device *bdev, fmode_t mode)
527 {
528         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
529         bool removing = false;
530
531         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
532                 return -EROFS;
533
534         spin_lock_irq(&rbd_dev->lock);
535         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
536                 removing = true;
537         else
538                 rbd_dev->open_count++;
539         spin_unlock_irq(&rbd_dev->lock);
540         if (removing)
541                 return -ENOENT;
542
543         (void) get_device(&rbd_dev->dev);
544
545         return 0;
546 }
547
548 static void rbd_release(struct gendisk *disk, fmode_t mode)
549 {
550         struct rbd_device *rbd_dev = disk->private_data;
551         unsigned long open_count_before;
552
553         spin_lock_irq(&rbd_dev->lock);
554         open_count_before = rbd_dev->open_count--;
555         spin_unlock_irq(&rbd_dev->lock);
556         rbd_assert(open_count_before > 0);
557
558         put_device(&rbd_dev->dev);
559 }
560
561 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
562 {
563         int ret = 0;
564         int val;
565         bool ro;
566         bool ro_changed = false;
567
568         /* get_user() may sleep, so call it before taking rbd_dev->lock */
569         if (get_user(val, (int __user *)(arg)))
570                 return -EFAULT;
571
572         ro = val ? true : false;
573         /* Snapshot doesn't allow to write*/
574         if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
575                 return -EROFS;
576
577         spin_lock_irq(&rbd_dev->lock);
578         /* prevent others open this device */
579         if (rbd_dev->open_count > 1) {
580                 ret = -EBUSY;
581                 goto out;
582         }
583
584         if (rbd_dev->mapping.read_only != ro) {
585                 rbd_dev->mapping.read_only = ro;
586                 ro_changed = true;
587         }
588
589 out:
590         spin_unlock_irq(&rbd_dev->lock);
591         /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
592         if (ret == 0 && ro_changed)
593                 set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
594
595         return ret;
596 }
597
598 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
599                         unsigned int cmd, unsigned long arg)
600 {
601         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
602         int ret = 0;
603
604         switch (cmd) {
605         case BLKROSET:
606                 ret = rbd_ioctl_set_ro(rbd_dev, arg);
607                 break;
608         default:
609                 ret = -ENOTTY;
610         }
611
612         return ret;
613 }
614
615 #ifdef CONFIG_COMPAT
616 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
617                                 unsigned int cmd, unsigned long arg)
618 {
619         return rbd_ioctl(bdev, mode, cmd, arg);
620 }
621 #endif /* CONFIG_COMPAT */
622
623 static const struct block_device_operations rbd_bd_ops = {
624         .owner                  = THIS_MODULE,
625         .open                   = rbd_open,
626         .release                = rbd_release,
627         .ioctl                  = rbd_ioctl,
628 #ifdef CONFIG_COMPAT
629         .compat_ioctl           = rbd_compat_ioctl,
630 #endif
631 };
632
633 /*
634  * Initialize an rbd client instance.  Success or not, this function
635  * consumes ceph_opts.  Caller holds client_mutex.
636  */
637 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
638 {
639         struct rbd_client *rbdc;
640         int ret = -ENOMEM;
641
642         dout("%s:\n", __func__);
643         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
644         if (!rbdc)
645                 goto out_opt;
646
647         kref_init(&rbdc->kref);
648         INIT_LIST_HEAD(&rbdc->node);
649
650         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
651         if (IS_ERR(rbdc->client))
652                 goto out_rbdc;
653         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
654
655         ret = ceph_open_session(rbdc->client);
656         if (ret < 0)
657                 goto out_client;
658
659         spin_lock(&rbd_client_list_lock);
660         list_add_tail(&rbdc->node, &rbd_client_list);
661         spin_unlock(&rbd_client_list_lock);
662
663         dout("%s: rbdc %p\n", __func__, rbdc);
664
665         return rbdc;
666 out_client:
667         ceph_destroy_client(rbdc->client);
668 out_rbdc:
669         kfree(rbdc);
670 out_opt:
671         if (ceph_opts)
672                 ceph_destroy_options(ceph_opts);
673         dout("%s: error %d\n", __func__, ret);
674
675         return ERR_PTR(ret);
676 }
677
678 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
679 {
680         kref_get(&rbdc->kref);
681
682         return rbdc;
683 }
684
685 /*
686  * Find a ceph client with specific addr and configuration.  If
687  * found, bump its reference count.
688  */
689 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
690 {
691         struct rbd_client *client_node;
692         bool found = false;
693
694         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
695                 return NULL;
696
697         spin_lock(&rbd_client_list_lock);
698         list_for_each_entry(client_node, &rbd_client_list, node) {
699                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
700                         __rbd_get_client(client_node);
701
702                         found = true;
703                         break;
704                 }
705         }
706         spin_unlock(&rbd_client_list_lock);
707
708         return found ? client_node : NULL;
709 }
710
711 /*
712  * mount options
713  */
714 enum {
715         Opt_last_int,
716         /* int args above */
717         Opt_last_string,
718         /* string args above */
719         Opt_read_only,
720         Opt_read_write,
721         /* Boolean args above */
722         Opt_last_bool,
723 };
724
725 static match_table_t rbd_opts_tokens = {
726         /* int args above */
727         /* string args above */
728         {Opt_read_only, "read_only"},
729         {Opt_read_only, "ro"},          /* Alternate spelling */
730         {Opt_read_write, "read_write"},
731         {Opt_read_write, "rw"},         /* Alternate spelling */
732         /* Boolean args above */
733         {-1, NULL}
734 };
735
736 struct rbd_options {
737         bool    read_only;
738 };
739
740 #define RBD_READ_ONLY_DEFAULT   false
741
742 static int parse_rbd_opts_token(char *c, void *private)
743 {
744         struct rbd_options *rbd_opts = private;
745         substring_t argstr[MAX_OPT_ARGS];
746         int token, intval, ret;
747
748         token = match_token(c, rbd_opts_tokens, argstr);
749         if (token < 0)
750                 return -EINVAL;
751
752         if (token < Opt_last_int) {
753                 ret = match_int(&argstr[0], &intval);
754                 if (ret < 0) {
755                         pr_err("bad mount option arg (not int) "
756                                "at '%s'\n", c);
757                         return ret;
758                 }
759                 dout("got int token %d val %d\n", token, intval);
760         } else if (token > Opt_last_int && token < Opt_last_string) {
761                 dout("got string token %d val %s\n", token,
762                      argstr[0].from);
763         } else if (token > Opt_last_string && token < Opt_last_bool) {
764                 dout("got Boolean token %d\n", token);
765         } else {
766                 dout("got token %d\n", token);
767         }
768
769         switch (token) {
770         case Opt_read_only:
771                 rbd_opts->read_only = true;
772                 break;
773         case Opt_read_write:
774                 rbd_opts->read_only = false;
775                 break;
776         default:
777                 rbd_assert(false);
778                 break;
779         }
780         return 0;
781 }
782
783 /*
784  * Get a ceph client with specific addr and configuration, if one does
785  * not exist create it.  Either way, ceph_opts is consumed by this
786  * function.
787  */
788 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
789 {
790         struct rbd_client *rbdc;
791
792         mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
793         rbdc = rbd_client_find(ceph_opts);
794         if (rbdc)       /* using an existing client */
795                 ceph_destroy_options(ceph_opts);
796         else
797                 rbdc = rbd_client_create(ceph_opts);
798         mutex_unlock(&client_mutex);
799
800         return rbdc;
801 }
802
803 /*
804  * Destroy ceph client
805  *
806  * Caller must hold rbd_client_list_lock.
807  */
808 static void rbd_client_release(struct kref *kref)
809 {
810         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
811
812         dout("%s: rbdc %p\n", __func__, rbdc);
813         spin_lock(&rbd_client_list_lock);
814         list_del(&rbdc->node);
815         spin_unlock(&rbd_client_list_lock);
816
817         ceph_destroy_client(rbdc->client);
818         kfree(rbdc);
819 }
820
821 /*
822  * Drop reference to ceph client node. If it's not referenced anymore, release
823  * it.
824  */
825 static void rbd_put_client(struct rbd_client *rbdc)
826 {
827         if (rbdc)
828                 kref_put(&rbdc->kref, rbd_client_release);
829 }
830
831 static bool rbd_image_format_valid(u32 image_format)
832 {
833         return image_format == 1 || image_format == 2;
834 }
835
836 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
837 {
838         size_t size;
839         u32 snap_count;
840
841         /* The header has to start with the magic rbd header text */
842         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
843                 return false;
844
845         /* The bio layer requires at least sector-sized I/O */
846
847         if (ondisk->options.order < SECTOR_SHIFT)
848                 return false;
849
850         /* If we use u64 in a few spots we may be able to loosen this */
851
852         if (ondisk->options.order > 8 * sizeof (int) - 1)
853                 return false;
854
855         /*
856          * The size of a snapshot header has to fit in a size_t, and
857          * that limits the number of snapshots.
858          */
859         snap_count = le32_to_cpu(ondisk->snap_count);
860         size = SIZE_MAX - sizeof (struct ceph_snap_context);
861         if (snap_count > size / sizeof (__le64))
862                 return false;
863
864         /*
865          * Not only that, but the size of the entire the snapshot
866          * header must also be representable in a size_t.
867          */
868         size -= snap_count * sizeof (__le64);
869         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
870                 return false;
871
872         return true;
873 }
874
875 /*
876  * Fill an rbd image header with information from the given format 1
877  * on-disk header.
878  */
879 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
880                                  struct rbd_image_header_ondisk *ondisk)
881 {
882         struct rbd_image_header *header = &rbd_dev->header;
883         bool first_time = header->object_prefix == NULL;
884         struct ceph_snap_context *snapc;
885         char *object_prefix = NULL;
886         char *snap_names = NULL;
887         u64 *snap_sizes = NULL;
888         u32 snap_count;
889         size_t size;
890         int ret = -ENOMEM;
891         u32 i;
892
893         /* Allocate this now to avoid having to handle failure below */
894
895         if (first_time) {
896                 size_t len;
897
898                 len = strnlen(ondisk->object_prefix,
899                                 sizeof (ondisk->object_prefix));
900                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
901                 if (!object_prefix)
902                         return -ENOMEM;
903                 memcpy(object_prefix, ondisk->object_prefix, len);
904                 object_prefix[len] = '\0';
905         }
906
907         /* Allocate the snapshot context and fill it in */
908
909         snap_count = le32_to_cpu(ondisk->snap_count);
910         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
911         if (!snapc)
912                 goto out_err;
913         snapc->seq = le64_to_cpu(ondisk->snap_seq);
914         if (snap_count) {
915                 struct rbd_image_snap_ondisk *snaps;
916                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
917
918                 /* We'll keep a copy of the snapshot names... */
919
920                 if (snap_names_len > (u64)SIZE_MAX)
921                         goto out_2big;
922                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
923                 if (!snap_names)
924                         goto out_err;
925
926                 /* ...as well as the array of their sizes. */
927
928                 size = snap_count * sizeof (*header->snap_sizes);
929                 snap_sizes = kmalloc(size, GFP_KERNEL);
930                 if (!snap_sizes)
931                         goto out_err;
932
933                 /*
934                  * Copy the names, and fill in each snapshot's id
935                  * and size.
936                  *
937                  * Note that rbd_dev_v1_header_info() guarantees the
938                  * ondisk buffer we're working with has
939                  * snap_names_len bytes beyond the end of the
940                  * snapshot id array, this memcpy() is safe.
941                  */
942                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
943                 snaps = ondisk->snaps;
944                 for (i = 0; i < snap_count; i++) {
945                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
946                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
947                 }
948         }
949
950         /* We won't fail any more, fill in the header */
951
952         if (first_time) {
953                 header->object_prefix = object_prefix;
954                 header->obj_order = ondisk->options.order;
955                 header->crypt_type = ondisk->options.crypt_type;
956                 header->comp_type = ondisk->options.comp_type;
957                 /* The rest aren't used for format 1 images */
958                 header->stripe_unit = 0;
959                 header->stripe_count = 0;
960                 header->features = 0;
961         } else {
962                 ceph_put_snap_context(header->snapc);
963                 kfree(header->snap_names);
964                 kfree(header->snap_sizes);
965         }
966
967         /* The remaining fields always get updated (when we refresh) */
968
969         header->image_size = le64_to_cpu(ondisk->image_size);
970         header->snapc = snapc;
971         header->snap_names = snap_names;
972         header->snap_sizes = snap_sizes;
973
974         /* Make sure mapping size is consistent with header info */
975
976         if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
977                 if (rbd_dev->mapping.size != header->image_size)
978                         rbd_dev->mapping.size = header->image_size;
979
980         return 0;
981 out_2big:
982         ret = -EIO;
983 out_err:
984         kfree(snap_sizes);
985         kfree(snap_names);
986         ceph_put_snap_context(snapc);
987         kfree(object_prefix);
988
989         return ret;
990 }
991
992 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
993 {
994         const char *snap_name;
995
996         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
997
998         /* Skip over names until we find the one we are looking for */
999
1000         snap_name = rbd_dev->header.snap_names;
1001         while (which--)
1002                 snap_name += strlen(snap_name) + 1;
1003
1004         return kstrdup(snap_name, GFP_KERNEL);
1005 }
1006
1007 /*
1008  * Snapshot id comparison function for use with qsort()/bsearch().
1009  * Note that result is for snapshots in *descending* order.
1010  */
1011 static int snapid_compare_reverse(const void *s1, const void *s2)
1012 {
1013         u64 snap_id1 = *(u64 *)s1;
1014         u64 snap_id2 = *(u64 *)s2;
1015
1016         if (snap_id1 < snap_id2)
1017                 return 1;
1018         return snap_id1 == snap_id2 ? 0 : -1;
1019 }
1020
1021 /*
1022  * Search a snapshot context to see if the given snapshot id is
1023  * present.
1024  *
1025  * Returns the position of the snapshot id in the array if it's found,
1026  * or BAD_SNAP_INDEX otherwise.
1027  *
1028  * Note: The snapshot array is in kept sorted (by the osd) in
1029  * reverse order, highest snapshot id first.
1030  */
1031 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1032 {
1033         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1034         u64 *found;
1035
1036         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1037                                 sizeof (snap_id), snapid_compare_reverse);
1038
1039         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1040 }
1041
1042 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1043                                         u64 snap_id)
1044 {
1045         u32 which;
1046         const char *snap_name;
1047
1048         which = rbd_dev_snap_index(rbd_dev, snap_id);
1049         if (which == BAD_SNAP_INDEX)
1050                 return ERR_PTR(-ENOENT);
1051
1052         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1053         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1054 }
1055
1056 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1057 {
1058         if (snap_id == CEPH_NOSNAP)
1059                 return RBD_SNAP_HEAD_NAME;
1060
1061         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1062         if (rbd_dev->image_format == 1)
1063                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1064
1065         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1066 }
1067
1068 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1069                                 u64 *snap_size)
1070 {
1071         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1072         if (snap_id == CEPH_NOSNAP) {
1073                 *snap_size = rbd_dev->header.image_size;
1074         } else if (rbd_dev->image_format == 1) {
1075                 u32 which;
1076
1077                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1078                 if (which == BAD_SNAP_INDEX)
1079                         return -ENOENT;
1080
1081                 *snap_size = rbd_dev->header.snap_sizes[which];
1082         } else {
1083                 u64 size = 0;
1084                 int ret;
1085
1086                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1087                 if (ret)
1088                         return ret;
1089
1090                 *snap_size = size;
1091         }
1092         return 0;
1093 }
1094
1095 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1096                         u64 *snap_features)
1097 {
1098         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1099         if (snap_id == CEPH_NOSNAP) {
1100                 *snap_features = rbd_dev->header.features;
1101         } else if (rbd_dev->image_format == 1) {
1102                 *snap_features = 0;     /* No features for format 1 */
1103         } else {
1104                 u64 features = 0;
1105                 int ret;
1106
1107                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1108                 if (ret)
1109                         return ret;
1110
1111                 *snap_features = features;
1112         }
1113         return 0;
1114 }
1115
1116 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1117 {
1118         u64 snap_id = rbd_dev->spec->snap_id;
1119         u64 size = 0;
1120         u64 features = 0;
1121         int ret;
1122
1123         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1124         if (ret)
1125                 return ret;
1126         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1127         if (ret)
1128                 return ret;
1129
1130         rbd_dev->mapping.size = size;
1131         rbd_dev->mapping.features = features;
1132
1133         return 0;
1134 }
1135
1136 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1137 {
1138         rbd_dev->mapping.size = 0;
1139         rbd_dev->mapping.features = 0;
1140 }
1141
1142 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1143 {
1144         char *name;
1145         u64 segment;
1146         int ret;
1147         char *name_format;
1148
1149         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1150         if (!name)
1151                 return NULL;
1152         segment = offset >> rbd_dev->header.obj_order;
1153         name_format = "%s.%012llx";
1154         if (rbd_dev->image_format == 2)
1155                 name_format = "%s.%016llx";
1156         ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1157                         rbd_dev->header.object_prefix, segment);
1158         if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1159                 pr_err("error formatting segment name for #%llu (%d)\n",
1160                         segment, ret);
1161                 kfree(name);
1162                 name = NULL;
1163         }
1164
1165         return name;
1166 }
1167
1168 static void rbd_segment_name_free(const char *name)
1169 {
1170         /* The explicit cast here is needed to drop the const qualifier */
1171
1172         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1173 }
1174
1175 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1176 {
1177         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1178
1179         return offset & (segment_size - 1);
1180 }
1181
1182 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1183                                 u64 offset, u64 length)
1184 {
1185         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1186
1187         offset &= segment_size - 1;
1188
1189         rbd_assert(length <= U64_MAX - offset);
1190         if (offset + length > segment_size)
1191                 length = segment_size - offset;
1192
1193         return length;
1194 }
1195
1196 /*
1197  * returns the size of an object in the image
1198  */
1199 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1200 {
1201         return 1 << header->obj_order;
1202 }
1203
1204 /*
1205  * bio helpers
1206  */
1207
1208 static void bio_chain_put(struct bio *chain)
1209 {
1210         struct bio *tmp;
1211
1212         while (chain) {
1213                 tmp = chain;
1214                 chain = chain->bi_next;
1215                 bio_put(tmp);
1216         }
1217 }
1218
1219 /*
1220  * zeros a bio chain, starting at specific offset
1221  */
1222 static void zero_bio_chain(struct bio *chain, int start_ofs)
1223 {
1224         struct bio_vec bv;
1225         struct bvec_iter iter;
1226         unsigned long flags;
1227         void *buf;
1228         int pos = 0;
1229
1230         while (chain) {
1231                 bio_for_each_segment(bv, chain, iter) {
1232                         if (pos + bv.bv_len > start_ofs) {
1233                                 int remainder = max(start_ofs - pos, 0);
1234                                 buf = bvec_kmap_irq(&bv, &flags);
1235                                 memset(buf + remainder, 0,
1236                                        bv.bv_len - remainder);
1237                                 flush_dcache_page(bv.bv_page);
1238                                 bvec_kunmap_irq(buf, &flags);
1239                         }
1240                         pos += bv.bv_len;
1241                 }
1242
1243                 chain = chain->bi_next;
1244         }
1245 }
1246
1247 /*
1248  * similar to zero_bio_chain(), zeros data defined by a page array,
1249  * starting at the given byte offset from the start of the array and
1250  * continuing up to the given end offset.  The pages array is
1251  * assumed to be big enough to hold all bytes up to the end.
1252  */
1253 static void zero_pages(struct page **pages, u64 offset, u64 end)
1254 {
1255         struct page **page = &pages[offset >> PAGE_SHIFT];
1256
1257         rbd_assert(end > offset);
1258         rbd_assert(end - offset <= (u64)SIZE_MAX);
1259         while (offset < end) {
1260                 size_t page_offset;
1261                 size_t length;
1262                 unsigned long flags;
1263                 void *kaddr;
1264
1265                 page_offset = offset & ~PAGE_MASK;
1266                 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1267                 local_irq_save(flags);
1268                 kaddr = kmap_atomic(*page);
1269                 memset(kaddr + page_offset, 0, length);
1270                 flush_dcache_page(*page);
1271                 kunmap_atomic(kaddr);
1272                 local_irq_restore(flags);
1273
1274                 offset += length;
1275                 page++;
1276         }
1277 }
1278
1279 /*
1280  * Clone a portion of a bio, starting at the given byte offset
1281  * and continuing for the number of bytes indicated.
1282  */
1283 static struct bio *bio_clone_range(struct bio *bio_src,
1284                                         unsigned int offset,
1285                                         unsigned int len,
1286                                         gfp_t gfpmask)
1287 {
1288         struct bio *bio;
1289
1290         bio = bio_clone(bio_src, gfpmask);
1291         if (!bio)
1292                 return NULL;    /* ENOMEM */
1293
1294         bio_advance(bio, offset);
1295         bio->bi_iter.bi_size = len;
1296
1297         return bio;
1298 }
1299
1300 /*
1301  * Clone a portion of a bio chain, starting at the given byte offset
1302  * into the first bio in the source chain and continuing for the
1303  * number of bytes indicated.  The result is another bio chain of
1304  * exactly the given length, or a null pointer on error.
1305  *
1306  * The bio_src and offset parameters are both in-out.  On entry they
1307  * refer to the first source bio and the offset into that bio where
1308  * the start of data to be cloned is located.
1309  *
1310  * On return, bio_src is updated to refer to the bio in the source
1311  * chain that contains first un-cloned byte, and *offset will
1312  * contain the offset of that byte within that bio.
1313  */
1314 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1315                                         unsigned int *offset,
1316                                         unsigned int len,
1317                                         gfp_t gfpmask)
1318 {
1319         struct bio *bi = *bio_src;
1320         unsigned int off = *offset;
1321         struct bio *chain = NULL;
1322         struct bio **end;
1323
1324         /* Build up a chain of clone bios up to the limit */
1325
1326         if (!bi || off >= bi->bi_iter.bi_size || !len)
1327                 return NULL;            /* Nothing to clone */
1328
1329         end = &chain;
1330         while (len) {
1331                 unsigned int bi_size;
1332                 struct bio *bio;
1333
1334                 if (!bi) {
1335                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1336                         goto out_err;   /* EINVAL; ran out of bio's */
1337                 }
1338                 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1339                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1340                 if (!bio)
1341                         goto out_err;   /* ENOMEM */
1342
1343                 *end = bio;
1344                 end = &bio->bi_next;
1345
1346                 off += bi_size;
1347                 if (off == bi->bi_iter.bi_size) {
1348                         bi = bi->bi_next;
1349                         off = 0;
1350                 }
1351                 len -= bi_size;
1352         }
1353         *bio_src = bi;
1354         *offset = off;
1355
1356         return chain;
1357 out_err:
1358         bio_chain_put(chain);
1359
1360         return NULL;
1361 }
1362
1363 /*
1364  * The default/initial value for all object request flags is 0.  For
1365  * each flag, once its value is set to 1 it is never reset to 0
1366  * again.
1367  */
1368 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1369 {
1370         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1371                 struct rbd_device *rbd_dev;
1372
1373                 rbd_dev = obj_request->img_request->rbd_dev;
1374                 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1375                         obj_request);
1376         }
1377 }
1378
1379 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1380 {
1381         smp_mb();
1382         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1383 }
1384
1385 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1386 {
1387         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1388                 struct rbd_device *rbd_dev = NULL;
1389
1390                 if (obj_request_img_data_test(obj_request))
1391                         rbd_dev = obj_request->img_request->rbd_dev;
1392                 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1393                         obj_request);
1394         }
1395 }
1396
1397 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1398 {
1399         smp_mb();
1400         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1401 }
1402
1403 /*
1404  * This sets the KNOWN flag after (possibly) setting the EXISTS
1405  * flag.  The latter is set based on the "exists" value provided.
1406  *
1407  * Note that for our purposes once an object exists it never goes
1408  * away again.  It's possible that the response from two existence
1409  * checks are separated by the creation of the target object, and
1410  * the first ("doesn't exist") response arrives *after* the second
1411  * ("does exist").  In that case we ignore the second one.
1412  */
1413 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1414                                 bool exists)
1415 {
1416         if (exists)
1417                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1418         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1419         smp_mb();
1420 }
1421
1422 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1423 {
1424         smp_mb();
1425         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1426 }
1427
1428 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1429 {
1430         smp_mb();
1431         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1432 }
1433
1434 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1435 {
1436         struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1437
1438         return obj_request->img_offset <
1439             round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1440 }
1441
1442 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1443 {
1444         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1445                 atomic_read(&obj_request->kref.refcount));
1446         kref_get(&obj_request->kref);
1447 }
1448
1449 static void rbd_obj_request_destroy(struct kref *kref);
1450 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1451 {
1452         rbd_assert(obj_request != NULL);
1453         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1454                 atomic_read(&obj_request->kref.refcount));
1455         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1456 }
1457
1458 static void rbd_img_request_get(struct rbd_img_request *img_request)
1459 {
1460         dout("%s: img %p (was %d)\n", __func__, img_request,
1461              atomic_read(&img_request->kref.refcount));
1462         kref_get(&img_request->kref);
1463 }
1464
1465 static bool img_request_child_test(struct rbd_img_request *img_request);
1466 static void rbd_parent_request_destroy(struct kref *kref);
1467 static void rbd_img_request_destroy(struct kref *kref);
1468 static void rbd_img_request_put(struct rbd_img_request *img_request)
1469 {
1470         rbd_assert(img_request != NULL);
1471         dout("%s: img %p (was %d)\n", __func__, img_request,
1472                 atomic_read(&img_request->kref.refcount));
1473         if (img_request_child_test(img_request))
1474                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1475         else
1476                 kref_put(&img_request->kref, rbd_img_request_destroy);
1477 }
1478
1479 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1480                                         struct rbd_obj_request *obj_request)
1481 {
1482         rbd_assert(obj_request->img_request == NULL);
1483
1484         /* Image request now owns object's original reference */
1485         obj_request->img_request = img_request;
1486         obj_request->which = img_request->obj_request_count;
1487         rbd_assert(!obj_request_img_data_test(obj_request));
1488         obj_request_img_data_set(obj_request);
1489         rbd_assert(obj_request->which != BAD_WHICH);
1490         img_request->obj_request_count++;
1491         list_add_tail(&obj_request->links, &img_request->obj_requests);
1492         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1493                 obj_request->which);
1494 }
1495
1496 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1497                                         struct rbd_obj_request *obj_request)
1498 {
1499         rbd_assert(obj_request->which != BAD_WHICH);
1500
1501         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1502                 obj_request->which);
1503         list_del(&obj_request->links);
1504         rbd_assert(img_request->obj_request_count > 0);
1505         img_request->obj_request_count--;
1506         rbd_assert(obj_request->which == img_request->obj_request_count);
1507         obj_request->which = BAD_WHICH;
1508         rbd_assert(obj_request_img_data_test(obj_request));
1509         rbd_assert(obj_request->img_request == img_request);
1510         obj_request->img_request = NULL;
1511         obj_request->callback = NULL;
1512         rbd_obj_request_put(obj_request);
1513 }
1514
1515 static bool obj_request_type_valid(enum obj_request_type type)
1516 {
1517         switch (type) {
1518         case OBJ_REQUEST_NODATA:
1519         case OBJ_REQUEST_BIO:
1520         case OBJ_REQUEST_PAGES:
1521                 return true;
1522         default:
1523                 return false;
1524         }
1525 }
1526
1527 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1528                                 struct rbd_obj_request *obj_request)
1529 {
1530         dout("%s %p\n", __func__, obj_request);
1531         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1532 }
1533
1534 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1535 {
1536         dout("%s %p\n", __func__, obj_request);
1537         ceph_osdc_cancel_request(obj_request->osd_req);
1538 }
1539
1540 /*
1541  * Wait for an object request to complete.  If interrupted, cancel the
1542  * underlying osd request.
1543  */
1544 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1545 {
1546         int ret;
1547
1548         dout("%s %p\n", __func__, obj_request);
1549
1550         ret = wait_for_completion_interruptible(&obj_request->completion);
1551         if (ret < 0) {
1552                 dout("%s %p interrupted\n", __func__, obj_request);
1553                 rbd_obj_request_end(obj_request);
1554                 return ret;
1555         }
1556
1557         dout("%s %p done\n", __func__, obj_request);
1558         return 0;
1559 }
1560
1561 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1562 {
1563
1564         dout("%s: img %p\n", __func__, img_request);
1565
1566         /*
1567          * If no error occurred, compute the aggregate transfer
1568          * count for the image request.  We could instead use
1569          * atomic64_cmpxchg() to update it as each object request
1570          * completes; not clear which way is better off hand.
1571          */
1572         if (!img_request->result) {
1573                 struct rbd_obj_request *obj_request;
1574                 u64 xferred = 0;
1575
1576                 for_each_obj_request(img_request, obj_request)
1577                         xferred += obj_request->xferred;
1578                 img_request->xferred = xferred;
1579         }
1580
1581         if (img_request->callback)
1582                 img_request->callback(img_request);
1583         else
1584                 rbd_img_request_put(img_request);
1585 }
1586
1587 /*
1588  * The default/initial value for all image request flags is 0.  Each
1589  * is conditionally set to 1 at image request initialization time
1590  * and currently never change thereafter.
1591  */
1592 static void img_request_write_set(struct rbd_img_request *img_request)
1593 {
1594         set_bit(IMG_REQ_WRITE, &img_request->flags);
1595         smp_mb();
1596 }
1597
1598 static bool img_request_write_test(struct rbd_img_request *img_request)
1599 {
1600         smp_mb();
1601         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1602 }
1603
1604 static void img_request_child_set(struct rbd_img_request *img_request)
1605 {
1606         set_bit(IMG_REQ_CHILD, &img_request->flags);
1607         smp_mb();
1608 }
1609
1610 static void img_request_child_clear(struct rbd_img_request *img_request)
1611 {
1612         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1613         smp_mb();
1614 }
1615
1616 static bool img_request_child_test(struct rbd_img_request *img_request)
1617 {
1618         smp_mb();
1619         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1620 }
1621
1622 static void img_request_layered_set(struct rbd_img_request *img_request)
1623 {
1624         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1625         smp_mb();
1626 }
1627
1628 static void img_request_layered_clear(struct rbd_img_request *img_request)
1629 {
1630         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1631         smp_mb();
1632 }
1633
1634 static bool img_request_layered_test(struct rbd_img_request *img_request)
1635 {
1636         smp_mb();
1637         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1638 }
1639
1640 static void
1641 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1642 {
1643         u64 xferred = obj_request->xferred;
1644         u64 length = obj_request->length;
1645
1646         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1647                 obj_request, obj_request->img_request, obj_request->result,
1648                 xferred, length);
1649         /*
1650          * ENOENT means a hole in the image.  We zero-fill the entire
1651          * length of the request.  A short read also implies zero-fill
1652          * to the end of the request.  An error requires the whole
1653          * length of the request to be reported finished with an error
1654          * to the block layer.  In each case we update the xferred
1655          * count to indicate the whole request was satisfied.
1656          */
1657         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1658         if (obj_request->result == -ENOENT) {
1659                 if (obj_request->type == OBJ_REQUEST_BIO)
1660                         zero_bio_chain(obj_request->bio_list, 0);
1661                 else
1662                         zero_pages(obj_request->pages, 0, length);
1663                 obj_request->result = 0;
1664         } else if (xferred < length && !obj_request->result) {
1665                 if (obj_request->type == OBJ_REQUEST_BIO)
1666                         zero_bio_chain(obj_request->bio_list, xferred);
1667                 else
1668                         zero_pages(obj_request->pages, xferred, length);
1669         }
1670         obj_request->xferred = length;
1671         obj_request_done_set(obj_request);
1672 }
1673
1674 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1675 {
1676         dout("%s: obj %p cb %p\n", __func__, obj_request,
1677                 obj_request->callback);
1678         if (obj_request->callback)
1679                 obj_request->callback(obj_request);
1680         else
1681                 complete_all(&obj_request->completion);
1682 }
1683
1684 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1685 {
1686         dout("%s: obj %p\n", __func__, obj_request);
1687         obj_request_done_set(obj_request);
1688 }
1689
1690 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1691 {
1692         struct rbd_img_request *img_request = NULL;
1693         struct rbd_device *rbd_dev = NULL;
1694         bool layered = false;
1695
1696         if (obj_request_img_data_test(obj_request)) {
1697                 img_request = obj_request->img_request;
1698                 layered = img_request && img_request_layered_test(img_request);
1699                 rbd_dev = img_request->rbd_dev;
1700         }
1701
1702         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1703                 obj_request, img_request, obj_request->result,
1704                 obj_request->xferred, obj_request->length);
1705         if (layered && obj_request->result == -ENOENT &&
1706                         obj_request->img_offset < rbd_dev->parent_overlap)
1707                 rbd_img_parent_read(obj_request);
1708         else if (img_request)
1709                 rbd_img_obj_request_read_callback(obj_request);
1710         else
1711                 obj_request_done_set(obj_request);
1712 }
1713
1714 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1715 {
1716         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1717                 obj_request->result, obj_request->length);
1718         /*
1719          * There is no such thing as a successful short write.  Set
1720          * it to our originally-requested length.
1721          */
1722         obj_request->xferred = obj_request->length;
1723         obj_request_done_set(obj_request);
1724 }
1725
1726 /*
1727  * For a simple stat call there's nothing to do.  We'll do more if
1728  * this is part of a write sequence for a layered image.
1729  */
1730 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1731 {
1732         dout("%s: obj %p\n", __func__, obj_request);
1733         obj_request_done_set(obj_request);
1734 }
1735
1736 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1737                                 struct ceph_msg *msg)
1738 {
1739         struct rbd_obj_request *obj_request = osd_req->r_priv;
1740         u16 opcode;
1741
1742         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1743         rbd_assert(osd_req == obj_request->osd_req);
1744         if (obj_request_img_data_test(obj_request)) {
1745                 rbd_assert(obj_request->img_request);
1746                 rbd_assert(obj_request->which != BAD_WHICH);
1747         } else {
1748                 rbd_assert(obj_request->which == BAD_WHICH);
1749         }
1750
1751         if (osd_req->r_result < 0)
1752                 obj_request->result = osd_req->r_result;
1753
1754         rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1755
1756         /*
1757          * We support a 64-bit length, but ultimately it has to be
1758          * passed to blk_end_request(), which takes an unsigned int.
1759          */
1760         obj_request->xferred = osd_req->r_reply_op_len[0];
1761         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1762
1763         opcode = osd_req->r_ops[0].op;
1764         switch (opcode) {
1765         case CEPH_OSD_OP_READ:
1766                 rbd_osd_read_callback(obj_request);
1767                 break;
1768         case CEPH_OSD_OP_SETALLOCHINT:
1769                 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1770                 /* fall through */
1771         case CEPH_OSD_OP_WRITE:
1772                 rbd_osd_write_callback(obj_request);
1773                 break;
1774         case CEPH_OSD_OP_STAT:
1775                 rbd_osd_stat_callback(obj_request);
1776                 break;
1777         case CEPH_OSD_OP_CALL:
1778         case CEPH_OSD_OP_NOTIFY_ACK:
1779         case CEPH_OSD_OP_WATCH:
1780                 rbd_osd_trivial_callback(obj_request);
1781                 break;
1782         default:
1783                 rbd_warn(NULL, "%s: unsupported op %hu\n",
1784                         obj_request->object_name, (unsigned short) opcode);
1785                 break;
1786         }
1787
1788         if (obj_request_done_test(obj_request))
1789                 rbd_obj_request_complete(obj_request);
1790 }
1791
1792 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1793 {
1794         struct rbd_img_request *img_request = obj_request->img_request;
1795         struct ceph_osd_request *osd_req = obj_request->osd_req;
1796         u64 snap_id;
1797
1798         rbd_assert(osd_req != NULL);
1799
1800         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1801         ceph_osdc_build_request(osd_req, obj_request->offset,
1802                         NULL, snap_id, NULL);
1803 }
1804
1805 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1806 {
1807         struct rbd_img_request *img_request = obj_request->img_request;
1808         struct ceph_osd_request *osd_req = obj_request->osd_req;
1809         struct ceph_snap_context *snapc;
1810         struct timespec mtime = CURRENT_TIME;
1811
1812         rbd_assert(osd_req != NULL);
1813
1814         snapc = img_request ? img_request->snapc : NULL;
1815         ceph_osdc_build_request(osd_req, obj_request->offset,
1816                         snapc, CEPH_NOSNAP, &mtime);
1817 }
1818
1819 /*
1820  * Create an osd request.  A read request has one osd op (read).
1821  * A write request has either one (watch) or two (hint+write) osd ops.
1822  * (All rbd data writes are prefixed with an allocation hint op, but
1823  * technically osd watch is a write request, hence this distinction.)
1824  */
1825 static struct ceph_osd_request *rbd_osd_req_create(
1826                                         struct rbd_device *rbd_dev,
1827                                         bool write_request,
1828                                         unsigned int num_ops,
1829                                         struct rbd_obj_request *obj_request)
1830 {
1831         struct ceph_snap_context *snapc = NULL;
1832         struct ceph_osd_client *osdc;
1833         struct ceph_osd_request *osd_req;
1834
1835         if (obj_request_img_data_test(obj_request)) {
1836                 struct rbd_img_request *img_request = obj_request->img_request;
1837
1838                 rbd_assert(write_request ==
1839                                 img_request_write_test(img_request));
1840                 if (write_request)
1841                         snapc = img_request->snapc;
1842         }
1843
1844         rbd_assert(num_ops == 1 || (write_request && num_ops == 2));
1845
1846         /* Allocate and initialize the request, for the num_ops ops */
1847
1848         osdc = &rbd_dev->rbd_client->client->osdc;
1849         osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1850                                           GFP_ATOMIC);
1851         if (!osd_req)
1852                 return NULL;    /* ENOMEM */
1853
1854         if (write_request)
1855                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1856         else
1857                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1858
1859         osd_req->r_callback = rbd_osd_req_callback;
1860         osd_req->r_priv = obj_request;
1861
1862         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1863         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1864
1865         return osd_req;
1866 }
1867
1868 /*
1869  * Create a copyup osd request based on the information in the
1870  * object request supplied.  A copyup request has three osd ops,
1871  * a copyup method call, a hint op, and a write op.
1872  */
1873 static struct ceph_osd_request *
1874 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1875 {
1876         struct rbd_img_request *img_request;
1877         struct ceph_snap_context *snapc;
1878         struct rbd_device *rbd_dev;
1879         struct ceph_osd_client *osdc;
1880         struct ceph_osd_request *osd_req;
1881
1882         rbd_assert(obj_request_img_data_test(obj_request));
1883         img_request = obj_request->img_request;
1884         rbd_assert(img_request);
1885         rbd_assert(img_request_write_test(img_request));
1886
1887         /* Allocate and initialize the request, for the three ops */
1888
1889         snapc = img_request->snapc;
1890         rbd_dev = img_request->rbd_dev;
1891         osdc = &rbd_dev->rbd_client->client->osdc;
1892         osd_req = ceph_osdc_alloc_request(osdc, snapc, 3, false, GFP_ATOMIC);
1893         if (!osd_req)
1894                 return NULL;    /* ENOMEM */
1895
1896         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1897         osd_req->r_callback = rbd_osd_req_callback;
1898         osd_req->r_priv = obj_request;
1899
1900         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1901         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1902
1903         return osd_req;
1904 }
1905
1906
1907 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1908 {
1909         ceph_osdc_put_request(osd_req);
1910 }
1911
1912 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1913
1914 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1915                                                 u64 offset, u64 length,
1916                                                 enum obj_request_type type)
1917 {
1918         struct rbd_obj_request *obj_request;
1919         size_t size;
1920         char *name;
1921
1922         rbd_assert(obj_request_type_valid(type));
1923
1924         size = strlen(object_name) + 1;
1925         name = kmalloc(size, GFP_KERNEL);
1926         if (!name)
1927                 return NULL;
1928
1929         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1930         if (!obj_request) {
1931                 kfree(name);
1932                 return NULL;
1933         }
1934
1935         obj_request->object_name = memcpy(name, object_name, size);
1936         obj_request->offset = offset;
1937         obj_request->length = length;
1938         obj_request->flags = 0;
1939         obj_request->which = BAD_WHICH;
1940         obj_request->type = type;
1941         INIT_LIST_HEAD(&obj_request->links);
1942         init_completion(&obj_request->completion);
1943         kref_init(&obj_request->kref);
1944
1945         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1946                 offset, length, (int)type, obj_request);
1947
1948         return obj_request;
1949 }
1950
1951 static void rbd_obj_request_destroy(struct kref *kref)
1952 {
1953         struct rbd_obj_request *obj_request;
1954
1955         obj_request = container_of(kref, struct rbd_obj_request, kref);
1956
1957         dout("%s: obj %p\n", __func__, obj_request);
1958
1959         rbd_assert(obj_request->img_request == NULL);
1960         rbd_assert(obj_request->which == BAD_WHICH);
1961
1962         if (obj_request->osd_req)
1963                 rbd_osd_req_destroy(obj_request->osd_req);
1964
1965         rbd_assert(obj_request_type_valid(obj_request->type));
1966         switch (obj_request->type) {
1967         case OBJ_REQUEST_NODATA:
1968                 break;          /* Nothing to do */
1969         case OBJ_REQUEST_BIO:
1970                 if (obj_request->bio_list)
1971                         bio_chain_put(obj_request->bio_list);
1972                 break;
1973         case OBJ_REQUEST_PAGES:
1974                 if (obj_request->pages)
1975                         ceph_release_page_vector(obj_request->pages,
1976                                                 obj_request->page_count);
1977                 break;
1978         }
1979
1980         kfree(obj_request->object_name);
1981         obj_request->object_name = NULL;
1982         kmem_cache_free(rbd_obj_request_cache, obj_request);
1983 }
1984
1985 /* It's OK to call this for a device with no parent */
1986
1987 static void rbd_spec_put(struct rbd_spec *spec);
1988 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1989 {
1990         rbd_dev_remove_parent(rbd_dev);
1991         rbd_spec_put(rbd_dev->parent_spec);
1992         rbd_dev->parent_spec = NULL;
1993         rbd_dev->parent_overlap = 0;
1994 }
1995
1996 /*
1997  * Parent image reference counting is used to determine when an
1998  * image's parent fields can be safely torn down--after there are no
1999  * more in-flight requests to the parent image.  When the last
2000  * reference is dropped, cleaning them up is safe.
2001  */
2002 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2003 {
2004         int counter;
2005
2006         if (!rbd_dev->parent_spec)
2007                 return;
2008
2009         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2010         if (counter > 0)
2011                 return;
2012
2013         /* Last reference; clean up parent data structures */
2014
2015         if (!counter)
2016                 rbd_dev_unparent(rbd_dev);
2017         else
2018                 rbd_warn(rbd_dev, "parent reference underflow\n");
2019 }
2020
2021 /*
2022  * If an image has a non-zero parent overlap, get a reference to its
2023  * parent.
2024  *
2025  * We must get the reference before checking for the overlap to
2026  * coordinate properly with zeroing the parent overlap in
2027  * rbd_dev_v2_parent_info() when an image gets flattened.  We
2028  * drop it again if there is no overlap.
2029  *
2030  * Returns true if the rbd device has a parent with a non-zero
2031  * overlap and a reference for it was successfully taken, or
2032  * false otherwise.
2033  */
2034 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2035 {
2036         int counter;
2037
2038         if (!rbd_dev->parent_spec)
2039                 return false;
2040
2041         counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2042         if (counter > 0 && rbd_dev->parent_overlap)
2043                 return true;
2044
2045         /* Image was flattened, but parent is not yet torn down */
2046
2047         if (counter < 0)
2048                 rbd_warn(rbd_dev, "parent reference overflow\n");
2049
2050         return false;
2051 }
2052
2053 /*
2054  * Caller is responsible for filling in the list of object requests
2055  * that comprises the image request, and the Linux request pointer
2056  * (if there is one).
2057  */
2058 static struct rbd_img_request *rbd_img_request_create(
2059                                         struct rbd_device *rbd_dev,
2060                                         u64 offset, u64 length,
2061                                         bool write_request)
2062 {
2063         struct rbd_img_request *img_request;
2064
2065         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
2066         if (!img_request)
2067                 return NULL;
2068
2069         if (write_request) {
2070                 down_read(&rbd_dev->header_rwsem);
2071                 ceph_get_snap_context(rbd_dev->header.snapc);
2072                 up_read(&rbd_dev->header_rwsem);
2073         }
2074
2075         img_request->rq = NULL;
2076         img_request->rbd_dev = rbd_dev;
2077         img_request->offset = offset;
2078         img_request->length = length;
2079         img_request->flags = 0;
2080         if (write_request) {
2081                 img_request_write_set(img_request);
2082                 img_request->snapc = rbd_dev->header.snapc;
2083         } else {
2084                 img_request->snap_id = rbd_dev->spec->snap_id;
2085         }
2086         if (rbd_dev_parent_get(rbd_dev))
2087                 img_request_layered_set(img_request);
2088         spin_lock_init(&img_request->completion_lock);
2089         img_request->next_completion = 0;
2090         img_request->callback = NULL;
2091         img_request->result = 0;
2092         img_request->obj_request_count = 0;
2093         INIT_LIST_HEAD(&img_request->obj_requests);
2094         kref_init(&img_request->kref);
2095
2096         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2097                 write_request ? "write" : "read", offset, length,
2098                 img_request);
2099
2100         return img_request;
2101 }
2102
2103 static void rbd_img_request_destroy(struct kref *kref)
2104 {
2105         struct rbd_img_request *img_request;
2106         struct rbd_obj_request *obj_request;
2107         struct rbd_obj_request *next_obj_request;
2108
2109         img_request = container_of(kref, struct rbd_img_request, kref);
2110
2111         dout("%s: img %p\n", __func__, img_request);
2112
2113         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2114                 rbd_img_obj_request_del(img_request, obj_request);
2115         rbd_assert(img_request->obj_request_count == 0);
2116
2117         if (img_request_layered_test(img_request)) {
2118                 img_request_layered_clear(img_request);
2119                 rbd_dev_parent_put(img_request->rbd_dev);
2120         }
2121
2122         if (img_request_write_test(img_request))
2123                 ceph_put_snap_context(img_request->snapc);
2124
2125         kmem_cache_free(rbd_img_request_cache, img_request);
2126 }
2127
2128 static struct rbd_img_request *rbd_parent_request_create(
2129                                         struct rbd_obj_request *obj_request,
2130                                         u64 img_offset, u64 length)
2131 {
2132         struct rbd_img_request *parent_request;
2133         struct rbd_device *rbd_dev;
2134
2135         rbd_assert(obj_request->img_request);
2136         rbd_dev = obj_request->img_request->rbd_dev;
2137
2138         parent_request = rbd_img_request_create(rbd_dev->parent,
2139                                                 img_offset, length, false);
2140         if (!parent_request)
2141                 return NULL;
2142
2143         img_request_child_set(parent_request);
2144         rbd_obj_request_get(obj_request);
2145         parent_request->obj_request = obj_request;
2146
2147         return parent_request;
2148 }
2149
2150 static void rbd_parent_request_destroy(struct kref *kref)
2151 {
2152         struct rbd_img_request *parent_request;
2153         struct rbd_obj_request *orig_request;
2154
2155         parent_request = container_of(kref, struct rbd_img_request, kref);
2156         orig_request = parent_request->obj_request;
2157
2158         parent_request->obj_request = NULL;
2159         rbd_obj_request_put(orig_request);
2160         img_request_child_clear(parent_request);
2161
2162         rbd_img_request_destroy(kref);
2163 }
2164
2165 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2166 {
2167         struct rbd_img_request *img_request;
2168         unsigned int xferred;
2169         int result;
2170         bool more;
2171
2172         rbd_assert(obj_request_img_data_test(obj_request));
2173         img_request = obj_request->img_request;
2174
2175         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2176         xferred = (unsigned int)obj_request->xferred;
2177         result = obj_request->result;
2178         if (result) {
2179                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2180
2181                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2182                         img_request_write_test(img_request) ? "write" : "read",
2183                         obj_request->length, obj_request->img_offset,
2184                         obj_request->offset);
2185                 rbd_warn(rbd_dev, "  result %d xferred %x\n",
2186                         result, xferred);
2187                 if (!img_request->result)
2188                         img_request->result = result;
2189         }
2190
2191         /* Image object requests don't own their page array */
2192
2193         if (obj_request->type == OBJ_REQUEST_PAGES) {
2194                 obj_request->pages = NULL;
2195                 obj_request->page_count = 0;
2196         }
2197
2198         if (img_request_child_test(img_request)) {
2199                 rbd_assert(img_request->obj_request != NULL);
2200                 more = obj_request->which < img_request->obj_request_count - 1;
2201         } else {
2202                 rbd_assert(img_request->rq != NULL);
2203                 more = blk_end_request(img_request->rq, result, xferred);
2204         }
2205
2206         return more;
2207 }
2208
2209 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2210 {
2211         struct rbd_img_request *img_request;
2212         u32 which = obj_request->which;
2213         bool more = true;
2214
2215         rbd_assert(obj_request_img_data_test(obj_request));
2216         img_request = obj_request->img_request;
2217
2218         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2219         rbd_assert(img_request != NULL);
2220         rbd_assert(img_request->obj_request_count > 0);
2221         rbd_assert(which != BAD_WHICH);
2222         rbd_assert(which < img_request->obj_request_count);
2223
2224         spin_lock_irq(&img_request->completion_lock);
2225         if (which != img_request->next_completion)
2226                 goto out;
2227
2228         for_each_obj_request_from(img_request, obj_request) {
2229                 rbd_assert(more);
2230                 rbd_assert(which < img_request->obj_request_count);
2231
2232                 if (!obj_request_done_test(obj_request))
2233                         break;
2234                 more = rbd_img_obj_end_request(obj_request);
2235                 which++;
2236         }
2237
2238         rbd_assert(more ^ (which == img_request->obj_request_count));
2239         img_request->next_completion = which;
2240 out:
2241         spin_unlock_irq(&img_request->completion_lock);
2242         rbd_img_request_put(img_request);
2243
2244         if (!more)
2245                 rbd_img_request_complete(img_request);
2246 }
2247
2248 /*
2249  * Split up an image request into one or more object requests, each
2250  * to a different object.  The "type" parameter indicates whether
2251  * "data_desc" is the pointer to the head of a list of bio
2252  * structures, or the base of a page array.  In either case this
2253  * function assumes data_desc describes memory sufficient to hold
2254  * all data described by the image request.
2255  */
2256 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2257                                         enum obj_request_type type,
2258                                         void *data_desc)
2259 {
2260         struct rbd_device *rbd_dev = img_request->rbd_dev;
2261         struct rbd_obj_request *obj_request = NULL;
2262         struct rbd_obj_request *next_obj_request;
2263         bool write_request = img_request_write_test(img_request);
2264         struct bio *bio_list = NULL;
2265         unsigned int bio_offset = 0;
2266         struct page **pages = NULL;
2267         u64 img_offset;
2268         u64 resid;
2269         u16 opcode;
2270
2271         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2272                 (int)type, data_desc);
2273
2274         opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2275         img_offset = img_request->offset;
2276         resid = img_request->length;
2277         rbd_assert(resid > 0);
2278
2279         if (type == OBJ_REQUEST_BIO) {
2280                 bio_list = data_desc;
2281                 rbd_assert(img_offset ==
2282                            bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2283         } else {
2284                 rbd_assert(type == OBJ_REQUEST_PAGES);
2285                 pages = data_desc;
2286         }
2287
2288         while (resid) {
2289                 struct ceph_osd_request *osd_req;
2290                 const char *object_name;
2291                 u64 offset;
2292                 u64 length;
2293                 unsigned int which = 0;
2294
2295                 object_name = rbd_segment_name(rbd_dev, img_offset);
2296                 if (!object_name)
2297                         goto out_unwind;
2298                 offset = rbd_segment_offset(rbd_dev, img_offset);
2299                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2300                 obj_request = rbd_obj_request_create(object_name,
2301                                                 offset, length, type);
2302                 /* object request has its own copy of the object name */
2303                 rbd_segment_name_free(object_name);
2304                 if (!obj_request)
2305                         goto out_unwind;
2306
2307                 /*
2308                  * set obj_request->img_request before creating the
2309                  * osd_request so that it gets the right snapc
2310                  */
2311                 rbd_img_obj_request_add(img_request, obj_request);
2312
2313                 if (type == OBJ_REQUEST_BIO) {
2314                         unsigned int clone_size;
2315
2316                         rbd_assert(length <= (u64)UINT_MAX);
2317                         clone_size = (unsigned int)length;
2318                         obj_request->bio_list =
2319                                         bio_chain_clone_range(&bio_list,
2320                                                                 &bio_offset,
2321                                                                 clone_size,
2322                                                                 GFP_ATOMIC);
2323                         if (!obj_request->bio_list)
2324                                 goto out_unwind;
2325                 } else {
2326                         unsigned int page_count;
2327
2328                         obj_request->pages = pages;
2329                         page_count = (u32)calc_pages_for(offset, length);
2330                         obj_request->page_count = page_count;
2331                         if ((offset + length) & ~PAGE_MASK)
2332                                 page_count--;   /* more on last page */
2333                         pages += page_count;
2334                 }
2335
2336                 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2337                                              (write_request ? 2 : 1),
2338                                              obj_request);
2339                 if (!osd_req)
2340                         goto out_unwind;
2341                 obj_request->osd_req = osd_req;
2342                 obj_request->callback = rbd_img_obj_callback;
2343                 rbd_img_request_get(img_request);
2344
2345                 if (write_request) {
2346                         osd_req_op_alloc_hint_init(osd_req, which,
2347                                              rbd_obj_bytes(&rbd_dev->header),
2348                                              rbd_obj_bytes(&rbd_dev->header));
2349                         which++;
2350                 }
2351
2352                 osd_req_op_extent_init(osd_req, which, opcode, offset, length,
2353                                        0, 0);
2354                 if (type == OBJ_REQUEST_BIO)
2355                         osd_req_op_extent_osd_data_bio(osd_req, which,
2356                                         obj_request->bio_list, length);
2357                 else
2358                         osd_req_op_extent_osd_data_pages(osd_req, which,
2359                                         obj_request->pages, length,
2360                                         offset & ~PAGE_MASK, false, false);
2361
2362                 if (write_request)
2363                         rbd_osd_req_format_write(obj_request);
2364                 else
2365                         rbd_osd_req_format_read(obj_request);
2366
2367                 obj_request->img_offset = img_offset;
2368
2369                 img_offset += length;
2370                 resid -= length;
2371         }
2372
2373         return 0;
2374
2375 out_unwind:
2376         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2377                 rbd_img_obj_request_del(img_request, obj_request);
2378
2379         return -ENOMEM;
2380 }
2381
2382 static void
2383 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2384 {
2385         struct rbd_img_request *img_request;
2386         struct rbd_device *rbd_dev;
2387         struct page **pages;
2388         u32 page_count;
2389
2390         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2391         rbd_assert(obj_request_img_data_test(obj_request));
2392         img_request = obj_request->img_request;
2393         rbd_assert(img_request);
2394
2395         rbd_dev = img_request->rbd_dev;
2396         rbd_assert(rbd_dev);
2397
2398         pages = obj_request->copyup_pages;
2399         rbd_assert(pages != NULL);
2400         obj_request->copyup_pages = NULL;
2401         page_count = obj_request->copyup_page_count;
2402         rbd_assert(page_count);
2403         obj_request->copyup_page_count = 0;
2404         ceph_release_page_vector(pages, page_count);
2405
2406         /*
2407          * We want the transfer count to reflect the size of the
2408          * original write request.  There is no such thing as a
2409          * successful short write, so if the request was successful
2410          * we can just set it to the originally-requested length.
2411          */
2412         if (!obj_request->result)
2413                 obj_request->xferred = obj_request->length;
2414
2415         /* Finish up with the normal image object callback */
2416
2417         rbd_img_obj_callback(obj_request);
2418 }
2419
2420 static void
2421 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2422 {
2423         struct rbd_obj_request *orig_request;
2424         struct ceph_osd_request *osd_req;
2425         struct ceph_osd_client *osdc;
2426         struct rbd_device *rbd_dev;
2427         struct page **pages;
2428         u32 page_count;
2429         int img_result;
2430         u64 parent_length;
2431         u64 offset;
2432         u64 length;
2433
2434         rbd_assert(img_request_child_test(img_request));
2435
2436         /* First get what we need from the image request */
2437
2438         pages = img_request->copyup_pages;
2439         rbd_assert(pages != NULL);
2440         img_request->copyup_pages = NULL;
2441         page_count = img_request->copyup_page_count;
2442         rbd_assert(page_count);
2443         img_request->copyup_page_count = 0;
2444
2445         orig_request = img_request->obj_request;
2446         rbd_assert(orig_request != NULL);
2447         rbd_assert(obj_request_type_valid(orig_request->type));
2448         img_result = img_request->result;
2449         parent_length = img_request->length;
2450         rbd_assert(parent_length == img_request->xferred);
2451         rbd_img_request_put(img_request);
2452
2453         rbd_assert(orig_request->img_request);
2454         rbd_dev = orig_request->img_request->rbd_dev;
2455         rbd_assert(rbd_dev);
2456
2457         /*
2458          * If the overlap has become 0 (most likely because the
2459          * image has been flattened) we need to free the pages
2460          * and re-submit the original write request.
2461          */
2462         if (!rbd_dev->parent_overlap) {
2463                 struct ceph_osd_client *osdc;
2464
2465                 ceph_release_page_vector(pages, page_count);
2466                 osdc = &rbd_dev->rbd_client->client->osdc;
2467                 img_result = rbd_obj_request_submit(osdc, orig_request);
2468                 if (!img_result)
2469                         return;
2470         }
2471
2472         if (img_result)
2473                 goto out_err;
2474
2475         /*
2476          * The original osd request is of no use to use any more.
2477          * We need a new one that can hold the three ops in a copyup
2478          * request.  Allocate the new copyup osd request for the
2479          * original request, and release the old one.
2480          */
2481         img_result = -ENOMEM;
2482         osd_req = rbd_osd_req_create_copyup(orig_request);
2483         if (!osd_req)
2484                 goto out_err;
2485         rbd_osd_req_destroy(orig_request->osd_req);
2486         orig_request->osd_req = osd_req;
2487         orig_request->copyup_pages = pages;
2488         orig_request->copyup_page_count = page_count;
2489
2490         /* Initialize the copyup op */
2491
2492         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2493         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2494                                                 false, false);
2495
2496         /* Then the hint op */
2497
2498         osd_req_op_alloc_hint_init(osd_req, 1, rbd_obj_bytes(&rbd_dev->header),
2499                                    rbd_obj_bytes(&rbd_dev->header));
2500
2501         /* And the original write request op */
2502
2503         offset = orig_request->offset;
2504         length = orig_request->length;
2505         osd_req_op_extent_init(osd_req, 2, CEPH_OSD_OP_WRITE,
2506                                         offset, length, 0, 0);
2507         if (orig_request->type == OBJ_REQUEST_BIO)
2508                 osd_req_op_extent_osd_data_bio(osd_req, 2,
2509                                         orig_request->bio_list, length);
2510         else
2511                 osd_req_op_extent_osd_data_pages(osd_req, 2,
2512                                         orig_request->pages, length,
2513                                         offset & ~PAGE_MASK, false, false);
2514
2515         rbd_osd_req_format_write(orig_request);
2516
2517         /* All set, send it off. */
2518
2519         orig_request->callback = rbd_img_obj_copyup_callback;
2520         osdc = &rbd_dev->rbd_client->client->osdc;
2521         img_result = rbd_obj_request_submit(osdc, orig_request);
2522         if (!img_result)
2523                 return;
2524 out_err:
2525         /* Record the error code and complete the request */
2526
2527         orig_request->result = img_result;
2528         orig_request->xferred = 0;
2529         obj_request_done_set(orig_request);
2530         rbd_obj_request_complete(orig_request);
2531 }
2532
2533 /*
2534  * Read from the parent image the range of data that covers the
2535  * entire target of the given object request.  This is used for
2536  * satisfying a layered image write request when the target of an
2537  * object request from the image request does not exist.
2538  *
2539  * A page array big enough to hold the returned data is allocated
2540  * and supplied to rbd_img_request_fill() as the "data descriptor."
2541  * When the read completes, this page array will be transferred to
2542  * the original object request for the copyup operation.
2543  *
2544  * If an error occurs, record it as the result of the original
2545  * object request and mark it done so it gets completed.
2546  */
2547 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2548 {
2549         struct rbd_img_request *img_request = NULL;
2550         struct rbd_img_request *parent_request = NULL;
2551         struct rbd_device *rbd_dev;
2552         u64 img_offset;
2553         u64 length;
2554         struct page **pages = NULL;
2555         u32 page_count;
2556         int result;
2557
2558         rbd_assert(obj_request_img_data_test(obj_request));
2559         rbd_assert(obj_request_type_valid(obj_request->type));
2560
2561         img_request = obj_request->img_request;
2562         rbd_assert(img_request != NULL);
2563         rbd_dev = img_request->rbd_dev;
2564         rbd_assert(rbd_dev->parent != NULL);
2565
2566         /*
2567          * Determine the byte range covered by the object in the
2568          * child image to which the original request was to be sent.
2569          */
2570         img_offset = obj_request->img_offset - obj_request->offset;
2571         length = (u64)1 << rbd_dev->header.obj_order;
2572
2573         /*
2574          * There is no defined parent data beyond the parent
2575          * overlap, so limit what we read at that boundary if
2576          * necessary.
2577          */
2578         if (img_offset + length > rbd_dev->parent_overlap) {
2579                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2580                 length = rbd_dev->parent_overlap - img_offset;
2581         }
2582
2583         /*
2584          * Allocate a page array big enough to receive the data read
2585          * from the parent.
2586          */
2587         page_count = (u32)calc_pages_for(0, length);
2588         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2589         if (IS_ERR(pages)) {
2590                 result = PTR_ERR(pages);
2591                 pages = NULL;
2592                 goto out_err;
2593         }
2594
2595         result = -ENOMEM;
2596         parent_request = rbd_parent_request_create(obj_request,
2597                                                 img_offset, length);
2598         if (!parent_request)
2599                 goto out_err;
2600
2601         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2602         if (result)
2603                 goto out_err;
2604         parent_request->copyup_pages = pages;
2605         parent_request->copyup_page_count = page_count;
2606
2607         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2608         result = rbd_img_request_submit(parent_request);
2609         if (!result)
2610                 return 0;
2611
2612         parent_request->copyup_pages = NULL;
2613         parent_request->copyup_page_count = 0;
2614         parent_request->obj_request = NULL;
2615         rbd_obj_request_put(obj_request);
2616 out_err:
2617         if (pages)
2618                 ceph_release_page_vector(pages, page_count);
2619         if (parent_request)
2620                 rbd_img_request_put(parent_request);
2621         obj_request->result = result;
2622         obj_request->xferred = 0;
2623         obj_request_done_set(obj_request);
2624
2625         return result;
2626 }
2627
2628 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2629 {
2630         struct rbd_obj_request *orig_request;
2631         struct rbd_device *rbd_dev;
2632         int result;
2633
2634         rbd_assert(!obj_request_img_data_test(obj_request));
2635
2636         /*
2637          * All we need from the object request is the original
2638          * request and the result of the STAT op.  Grab those, then
2639          * we're done with the request.
2640          */
2641         orig_request = obj_request->obj_request;
2642         obj_request->obj_request = NULL;
2643         rbd_obj_request_put(orig_request);
2644         rbd_assert(orig_request);
2645         rbd_assert(orig_request->img_request);
2646
2647         result = obj_request->result;
2648         obj_request->result = 0;
2649
2650         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2651                 obj_request, orig_request, result,
2652                 obj_request->xferred, obj_request->length);
2653         rbd_obj_request_put(obj_request);
2654
2655         /*
2656          * If the overlap has become 0 (most likely because the
2657          * image has been flattened) we need to free the pages
2658          * and re-submit the original write request.
2659          */
2660         rbd_dev = orig_request->img_request->rbd_dev;
2661         if (!rbd_dev->parent_overlap) {
2662                 struct ceph_osd_client *osdc;
2663
2664                 osdc = &rbd_dev->rbd_client->client->osdc;
2665                 result = rbd_obj_request_submit(osdc, orig_request);
2666                 if (!result)
2667                         return;
2668         }
2669
2670         /*
2671          * Our only purpose here is to determine whether the object
2672          * exists, and we don't want to treat the non-existence as
2673          * an error.  If something else comes back, transfer the
2674          * error to the original request and complete it now.
2675          */
2676         if (!result) {
2677                 obj_request_existence_set(orig_request, true);
2678         } else if (result == -ENOENT) {
2679                 obj_request_existence_set(orig_request, false);
2680         } else if (result) {
2681                 orig_request->result = result;
2682                 goto out;
2683         }
2684
2685         /*
2686          * Resubmit the original request now that we have recorded
2687          * whether the target object exists.
2688          */
2689         orig_request->result = rbd_img_obj_request_submit(orig_request);
2690 out:
2691         if (orig_request->result)
2692                 rbd_obj_request_complete(orig_request);
2693 }
2694
2695 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2696 {
2697         struct rbd_obj_request *stat_request;
2698         struct rbd_device *rbd_dev;
2699         struct ceph_osd_client *osdc;
2700         struct page **pages = NULL;
2701         u32 page_count;
2702         size_t size;
2703         int ret;
2704
2705         /*
2706          * The response data for a STAT call consists of:
2707          *     le64 length;
2708          *     struct {
2709          *         le32 tv_sec;
2710          *         le32 tv_nsec;
2711          *     } mtime;
2712          */
2713         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2714         page_count = (u32)calc_pages_for(0, size);
2715         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2716         if (IS_ERR(pages))
2717                 return PTR_ERR(pages);
2718
2719         ret = -ENOMEM;
2720         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2721                                                         OBJ_REQUEST_PAGES);
2722         if (!stat_request)
2723                 goto out;
2724
2725         rbd_obj_request_get(obj_request);
2726         stat_request->obj_request = obj_request;
2727         stat_request->pages = pages;
2728         stat_request->page_count = page_count;
2729
2730         rbd_assert(obj_request->img_request);
2731         rbd_dev = obj_request->img_request->rbd_dev;
2732         stat_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
2733                                                    stat_request);
2734         if (!stat_request->osd_req)
2735                 goto out;
2736         stat_request->callback = rbd_img_obj_exists_callback;
2737
2738         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2739         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2740                                         false, false);
2741         rbd_osd_req_format_read(stat_request);
2742
2743         osdc = &rbd_dev->rbd_client->client->osdc;
2744         ret = rbd_obj_request_submit(osdc, stat_request);
2745 out:
2746         if (ret)
2747                 rbd_obj_request_put(obj_request);
2748
2749         return ret;
2750 }
2751
2752 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2753 {
2754         struct rbd_img_request *img_request;
2755         struct rbd_device *rbd_dev;
2756         bool known;
2757
2758         rbd_assert(obj_request_img_data_test(obj_request));
2759
2760         img_request = obj_request->img_request;
2761         rbd_assert(img_request);
2762         rbd_dev = img_request->rbd_dev;
2763
2764         /*
2765          * Only writes to layered images need special handling.
2766          * Reads and non-layered writes are simple object requests.
2767          * Layered writes that start beyond the end of the overlap
2768          * with the parent have no parent data, so they too are
2769          * simple object requests.  Finally, if the target object is
2770          * known to already exist, its parent data has already been
2771          * copied, so a write to the object can also be handled as a
2772          * simple object request.
2773          */
2774         if (!img_request_write_test(img_request) ||
2775                 !img_request_layered_test(img_request) ||
2776                 !obj_request_overlaps_parent(obj_request) ||
2777                 ((known = obj_request_known_test(obj_request)) &&
2778                         obj_request_exists_test(obj_request))) {
2779
2780                 struct rbd_device *rbd_dev;
2781                 struct ceph_osd_client *osdc;
2782
2783                 rbd_dev = obj_request->img_request->rbd_dev;
2784                 osdc = &rbd_dev->rbd_client->client->osdc;
2785
2786                 return rbd_obj_request_submit(osdc, obj_request);
2787         }
2788
2789         /*
2790          * It's a layered write.  The target object might exist but
2791          * we may not know that yet.  If we know it doesn't exist,
2792          * start by reading the data for the full target object from
2793          * the parent so we can use it for a copyup to the target.
2794          */
2795         if (known)
2796                 return rbd_img_obj_parent_read_full(obj_request);
2797
2798         /* We don't know whether the target exists.  Go find out. */
2799
2800         return rbd_img_obj_exists_submit(obj_request);
2801 }
2802
2803 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2804 {
2805         struct rbd_obj_request *obj_request;
2806         struct rbd_obj_request *next_obj_request;
2807
2808         dout("%s: img %p\n", __func__, img_request);
2809         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2810                 int ret;
2811
2812                 ret = rbd_img_obj_request_submit(obj_request);
2813                 if (ret)
2814                         return ret;
2815         }
2816
2817         return 0;
2818 }
2819
2820 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2821 {
2822         struct rbd_obj_request *obj_request;
2823         struct rbd_device *rbd_dev;
2824         u64 obj_end;
2825         u64 img_xferred;
2826         int img_result;
2827
2828         rbd_assert(img_request_child_test(img_request));
2829
2830         /* First get what we need from the image request and release it */
2831
2832         obj_request = img_request->obj_request;
2833         img_xferred = img_request->xferred;
2834         img_result = img_request->result;
2835         rbd_img_request_put(img_request);
2836
2837         /*
2838          * If the overlap has become 0 (most likely because the
2839          * image has been flattened) we need to re-submit the
2840          * original request.
2841          */
2842         rbd_assert(obj_request);
2843         rbd_assert(obj_request->img_request);
2844         rbd_dev = obj_request->img_request->rbd_dev;
2845         if (!rbd_dev->parent_overlap) {
2846                 struct ceph_osd_client *osdc;
2847
2848                 osdc = &rbd_dev->rbd_client->client->osdc;
2849                 img_result = rbd_obj_request_submit(osdc, obj_request);
2850                 if (!img_result)
2851                         return;
2852         }
2853
2854         obj_request->result = img_result;
2855         if (obj_request->result)
2856                 goto out;
2857
2858         /*
2859          * We need to zero anything beyond the parent overlap
2860          * boundary.  Since rbd_img_obj_request_read_callback()
2861          * will zero anything beyond the end of a short read, an
2862          * easy way to do this is to pretend the data from the
2863          * parent came up short--ending at the overlap boundary.
2864          */
2865         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2866         obj_end = obj_request->img_offset + obj_request->length;
2867         if (obj_end > rbd_dev->parent_overlap) {
2868                 u64 xferred = 0;
2869
2870                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2871                         xferred = rbd_dev->parent_overlap -
2872                                         obj_request->img_offset;
2873
2874                 obj_request->xferred = min(img_xferred, xferred);
2875         } else {
2876                 obj_request->xferred = img_xferred;
2877         }
2878 out:
2879         rbd_img_obj_request_read_callback(obj_request);
2880         rbd_obj_request_complete(obj_request);
2881 }
2882
2883 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2884 {
2885         struct rbd_img_request *img_request;
2886         int result;
2887
2888         rbd_assert(obj_request_img_data_test(obj_request));
2889         rbd_assert(obj_request->img_request != NULL);
2890         rbd_assert(obj_request->result == (s32) -ENOENT);
2891         rbd_assert(obj_request_type_valid(obj_request->type));
2892
2893         /* rbd_read_finish(obj_request, obj_request->length); */
2894         img_request = rbd_parent_request_create(obj_request,
2895                                                 obj_request->img_offset,
2896                                                 obj_request->length);
2897         result = -ENOMEM;
2898         if (!img_request)
2899                 goto out_err;
2900
2901         if (obj_request->type == OBJ_REQUEST_BIO)
2902                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2903                                                 obj_request->bio_list);
2904         else
2905                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2906                                                 obj_request->pages);
2907         if (result)
2908                 goto out_err;
2909
2910         img_request->callback = rbd_img_parent_read_callback;
2911         result = rbd_img_request_submit(img_request);
2912         if (result)
2913                 goto out_err;
2914
2915         return;
2916 out_err:
2917         if (img_request)
2918                 rbd_img_request_put(img_request);
2919         obj_request->result = result;
2920         obj_request->xferred = 0;
2921         obj_request_done_set(obj_request);
2922 }
2923
2924 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
2925 {
2926         struct rbd_obj_request *obj_request;
2927         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2928         int ret;
2929
2930         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2931                                                         OBJ_REQUEST_NODATA);
2932         if (!obj_request)
2933                 return -ENOMEM;
2934
2935         ret = -ENOMEM;
2936         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
2937                                                   obj_request);
2938         if (!obj_request->osd_req)
2939                 goto out;
2940
2941         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2942                                         notify_id, 0, 0);
2943         rbd_osd_req_format_read(obj_request);
2944
2945         ret = rbd_obj_request_submit(osdc, obj_request);
2946         if (ret)
2947                 goto out;
2948         ret = rbd_obj_request_wait(obj_request);
2949 out:
2950         rbd_obj_request_put(obj_request);
2951
2952         return ret;
2953 }
2954
2955 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2956 {
2957         struct rbd_device *rbd_dev = (struct rbd_device *)data;
2958         int ret;
2959
2960         if (!rbd_dev)
2961                 return;
2962
2963         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2964                 rbd_dev->header_name, (unsigned long long)notify_id,
2965                 (unsigned int)opcode);
2966         ret = rbd_dev_refresh(rbd_dev);
2967         if (ret)
2968                 rbd_warn(rbd_dev, "header refresh error (%d)\n", ret);
2969
2970         rbd_obj_notify_ack_sync(rbd_dev, notify_id);
2971 }
2972
2973 /*
2974  * Initiate a watch request, synchronously.
2975  */
2976 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
2977 {
2978         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2979         struct rbd_obj_request *obj_request;
2980         int ret;
2981
2982         rbd_assert(!rbd_dev->watch_event);
2983         rbd_assert(!rbd_dev->watch_request);
2984
2985         ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2986                                      &rbd_dev->watch_event);
2987         if (ret < 0)
2988                 return ret;
2989
2990         rbd_assert(rbd_dev->watch_event);
2991
2992         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2993                                              OBJ_REQUEST_NODATA);
2994         if (!obj_request) {
2995                 ret = -ENOMEM;
2996                 goto out_cancel;
2997         }
2998
2999         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, 1,
3000                                                   obj_request);
3001         if (!obj_request->osd_req) {
3002                 ret = -ENOMEM;
3003                 goto out_put;
3004         }
3005
3006         ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3007
3008         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3009                               rbd_dev->watch_event->cookie, 0, 1);
3010         rbd_osd_req_format_write(obj_request);
3011
3012         ret = rbd_obj_request_submit(osdc, obj_request);
3013         if (ret)
3014                 goto out_linger;
3015
3016         ret = rbd_obj_request_wait(obj_request);
3017         if (ret)
3018                 goto out_linger;
3019
3020         ret = obj_request->result;
3021         if (ret)
3022                 goto out_linger;
3023
3024         /*
3025          * A watch request is set to linger, so the underlying osd
3026          * request won't go away until we unregister it.  We retain
3027          * a pointer to the object request during that time (in
3028          * rbd_dev->watch_request), so we'll keep a reference to
3029          * it.  We'll drop that reference (below) after we've
3030          * unregistered it.
3031          */
3032         rbd_dev->watch_request = obj_request;
3033
3034         return 0;
3035
3036 out_linger:
3037         ceph_osdc_unregister_linger_request(osdc, obj_request->osd_req);
3038 out_put:
3039         rbd_obj_request_put(obj_request);
3040 out_cancel:
3041         ceph_osdc_cancel_event(rbd_dev->watch_event);
3042         rbd_dev->watch_event = NULL;
3043
3044         return ret;
3045 }
3046
3047 /*
3048  * Tear down a watch request, synchronously.
3049  */
3050 static int __rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3051 {
3052         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3053         struct rbd_obj_request *obj_request;
3054         int ret;
3055
3056         rbd_assert(rbd_dev->watch_event);
3057         rbd_assert(rbd_dev->watch_request);
3058
3059         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3060                                              OBJ_REQUEST_NODATA);
3061         if (!obj_request) {
3062                 ret = -ENOMEM;
3063                 goto out_cancel;
3064         }
3065
3066         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, 1,
3067                                                   obj_request);
3068         if (!obj_request->osd_req) {
3069                 ret = -ENOMEM;
3070                 goto out_put;
3071         }
3072
3073         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3074                               rbd_dev->watch_event->cookie, 0, 0);
3075         rbd_osd_req_format_write(obj_request);
3076
3077         ret = rbd_obj_request_submit(osdc, obj_request);
3078         if (ret)
3079                 goto out_put;
3080
3081         ret = rbd_obj_request_wait(obj_request);
3082         if (ret)
3083                 goto out_put;
3084
3085         ret = obj_request->result;
3086         if (ret)
3087                 goto out_put;
3088
3089         /* We have successfully torn down the watch request */
3090
3091         ceph_osdc_unregister_linger_request(osdc,
3092                                             rbd_dev->watch_request->osd_req);
3093         rbd_obj_request_put(rbd_dev->watch_request);
3094         rbd_dev->watch_request = NULL;
3095
3096 out_put:
3097         rbd_obj_request_put(obj_request);
3098 out_cancel:
3099         ceph_osdc_cancel_event(rbd_dev->watch_event);
3100         rbd_dev->watch_event = NULL;
3101
3102         return ret;
3103 }
3104
3105 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3106 {
3107         int ret;
3108
3109         ret = __rbd_dev_header_unwatch_sync(rbd_dev);
3110         if (ret) {
3111                 rbd_warn(rbd_dev, "unable to tear down watch request: %d\n",
3112                          ret);
3113         }
3114 }
3115
3116 /*
3117  * Synchronous osd object method call.  Returns the number of bytes
3118  * returned in the outbound buffer, or a negative error code.
3119  */
3120 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3121                              const char *object_name,
3122                              const char *class_name,
3123                              const char *method_name,
3124                              const void *outbound,
3125                              size_t outbound_size,
3126                              void *inbound,
3127                              size_t inbound_size)
3128 {
3129         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3130         struct rbd_obj_request *obj_request;
3131         struct page **pages;
3132         u32 page_count;
3133         int ret;
3134
3135         /*
3136          * Method calls are ultimately read operations.  The result
3137          * should placed into the inbound buffer provided.  They
3138          * also supply outbound data--parameters for the object
3139          * method.  Currently if this is present it will be a
3140          * snapshot id.
3141          */
3142         page_count = (u32)calc_pages_for(0, inbound_size);
3143         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3144         if (IS_ERR(pages))
3145                 return PTR_ERR(pages);
3146
3147         ret = -ENOMEM;
3148         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3149                                                         OBJ_REQUEST_PAGES);
3150         if (!obj_request)
3151                 goto out;
3152
3153         obj_request->pages = pages;
3154         obj_request->page_count = page_count;
3155
3156         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
3157                                                   obj_request);
3158         if (!obj_request->osd_req)
3159                 goto out;
3160
3161         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3162                                         class_name, method_name);
3163         if (outbound_size) {
3164                 struct ceph_pagelist *pagelist;
3165
3166                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3167                 if (!pagelist)
3168                         goto out;
3169
3170                 ceph_pagelist_init(pagelist);
3171                 ceph_pagelist_append(pagelist, outbound, outbound_size);
3172                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3173                                                 pagelist);
3174         }
3175         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3176                                         obj_request->pages, inbound_size,
3177                                         0, false, false);
3178         rbd_osd_req_format_read(obj_request);
3179
3180         ret = rbd_obj_request_submit(osdc, obj_request);
3181         if (ret)
3182                 goto out;
3183         ret = rbd_obj_request_wait(obj_request);
3184         if (ret)
3185                 goto out;
3186
3187         ret = obj_request->result;
3188         if (ret < 0)
3189                 goto out;
3190
3191         rbd_assert(obj_request->xferred < (u64)INT_MAX);
3192         ret = (int)obj_request->xferred;
3193         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3194 out:
3195         if (obj_request)
3196                 rbd_obj_request_put(obj_request);
3197         else
3198                 ceph_release_page_vector(pages, page_count);
3199
3200         return ret;
3201 }
3202
3203 static void rbd_request_fn(struct request_queue *q)
3204                 __releases(q->queue_lock) __acquires(q->queue_lock)
3205 {
3206         struct rbd_device *rbd_dev = q->queuedata;
3207         struct request *rq;
3208         int result;
3209
3210         while ((rq = blk_fetch_request(q))) {
3211                 bool write_request = rq_data_dir(rq) == WRITE;
3212                 struct rbd_img_request *img_request;
3213                 u64 offset;
3214                 u64 length;
3215
3216                 /* Ignore any non-FS requests that filter through. */
3217
3218                 if (rq->cmd_type != REQ_TYPE_FS) {
3219                         dout("%s: non-fs request type %d\n", __func__,
3220                                 (int) rq->cmd_type);
3221                         __blk_end_request_all(rq, 0);
3222                         continue;
3223                 }
3224
3225                 /* Ignore/skip any zero-length requests */
3226
3227                 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3228                 length = (u64) blk_rq_bytes(rq);
3229
3230                 if (!length) {
3231                         dout("%s: zero-length request\n", __func__);
3232                         __blk_end_request_all(rq, 0);
3233                         continue;
3234                 }
3235
3236                 spin_unlock_irq(q->queue_lock);
3237
3238                 /* Disallow writes to a read-only device */
3239
3240                 if (write_request) {
3241                         result = -EROFS;
3242                         if (rbd_dev->mapping.read_only)
3243                                 goto end_request;
3244                         rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3245                 }
3246
3247                 /*
3248                  * Quit early if the mapped snapshot no longer
3249                  * exists.  It's still possible the snapshot will
3250                  * have disappeared by the time our request arrives
3251                  * at the osd, but there's no sense in sending it if
3252                  * we already know.
3253                  */
3254                 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3255                         dout("request for non-existent snapshot");
3256                         rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3257                         result = -ENXIO;
3258                         goto end_request;
3259                 }
3260
3261                 result = -EINVAL;
3262                 if (offset && length > U64_MAX - offset + 1) {
3263                         rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3264                                 offset, length);
3265                         goto end_request;       /* Shouldn't happen */
3266                 }
3267
3268                 result = -EIO;
3269                 if (offset + length > rbd_dev->mapping.size) {
3270                         rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3271                                 offset, length, rbd_dev->mapping.size);
3272                         goto end_request;
3273                 }
3274
3275                 result = -ENOMEM;
3276                 img_request = rbd_img_request_create(rbd_dev, offset, length,
3277                                                         write_request);
3278                 if (!img_request)
3279                         goto end_request;
3280
3281                 img_request->rq = rq;
3282
3283                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3284                                                 rq->bio);
3285                 if (!result)
3286                         result = rbd_img_request_submit(img_request);
3287                 if (result)
3288                         rbd_img_request_put(img_request);
3289 end_request:
3290                 spin_lock_irq(q->queue_lock);
3291                 if (result < 0) {
3292                         rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3293                                 write_request ? "write" : "read",
3294                                 length, offset, result);
3295
3296                         __blk_end_request_all(rq, result);
3297                 }
3298         }
3299 }
3300
3301 /*
3302  * a queue callback. Makes sure that we don't create a bio that spans across
3303  * multiple osd objects. One exception would be with a single page bios,
3304  * which we handle later at bio_chain_clone_range()
3305  */
3306 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3307                           struct bio_vec *bvec)
3308 {
3309         struct rbd_device *rbd_dev = q->queuedata;
3310         sector_t sector_offset;
3311         sector_t sectors_per_obj;
3312         sector_t obj_sector_offset;
3313         int ret;
3314
3315         /*
3316          * Find how far into its rbd object the partition-relative
3317          * bio start sector is to offset relative to the enclosing
3318          * device.
3319          */
3320         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3321         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3322         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3323
3324         /*
3325          * Compute the number of bytes from that offset to the end
3326          * of the object.  Account for what's already used by the bio.
3327          */
3328         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3329         if (ret > bmd->bi_size)
3330                 ret -= bmd->bi_size;
3331         else
3332                 ret = 0;
3333
3334         /*
3335          * Don't send back more than was asked for.  And if the bio
3336          * was empty, let the whole thing through because:  "Note
3337          * that a block device *must* allow a single page to be
3338          * added to an empty bio."
3339          */
3340         rbd_assert(bvec->bv_len <= PAGE_SIZE);
3341         if (ret > (int) bvec->bv_len || !bmd->bi_size)
3342                 ret = (int) bvec->bv_len;
3343
3344         return ret;
3345 }
3346
3347 static void rbd_free_disk(struct rbd_device *rbd_dev)
3348 {
3349         struct gendisk *disk = rbd_dev->disk;
3350
3351         if (!disk)
3352                 return;
3353
3354         rbd_dev->disk = NULL;
3355         if (disk->flags & GENHD_FL_UP) {
3356                 del_gendisk(disk);
3357                 if (disk->queue)
3358                         blk_cleanup_queue(disk->queue);
3359         }
3360         put_disk(disk);
3361 }
3362
3363 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3364                                 const char *object_name,
3365                                 u64 offset, u64 length, void *buf)
3366
3367 {
3368         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3369         struct rbd_obj_request *obj_request;
3370         struct page **pages = NULL;
3371         u32 page_count;
3372         size_t size;
3373         int ret;
3374
3375         page_count = (u32) calc_pages_for(offset, length);
3376         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3377         if (IS_ERR(pages))
3378                 ret = PTR_ERR(pages);
3379
3380         ret = -ENOMEM;
3381         obj_request = rbd_obj_request_create(object_name, offset, length,
3382                                                         OBJ_REQUEST_PAGES);
3383         if (!obj_request)
3384                 goto out;
3385
3386         obj_request->pages = pages;
3387         obj_request->page_count = page_count;
3388
3389         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
3390                                                   obj_request);
3391         if (!obj_request->osd_req)
3392                 goto out;
3393
3394         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3395                                         offset, length, 0, 0);
3396         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3397                                         obj_request->pages,
3398                                         obj_request->length,
3399                                         obj_request->offset & ~PAGE_MASK,
3400                                         false, false);
3401         rbd_osd_req_format_read(obj_request);
3402
3403         ret = rbd_obj_request_submit(osdc, obj_request);
3404         if (ret)
3405                 goto out;
3406         ret = rbd_obj_request_wait(obj_request);
3407         if (ret)
3408                 goto out;
3409
3410         ret = obj_request->result;
3411         if (ret < 0)
3412                 goto out;
3413
3414         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3415         size = (size_t) obj_request->xferred;
3416         ceph_copy_from_page_vector(pages, buf, 0, size);
3417         rbd_assert(size <= (size_t)INT_MAX);
3418         ret = (int)size;
3419 out:
3420         if (obj_request)
3421                 rbd_obj_request_put(obj_request);
3422         else
3423                 ceph_release_page_vector(pages, page_count);
3424
3425         return ret;
3426 }
3427
3428 /*
3429  * Read the complete header for the given rbd device.  On successful
3430  * return, the rbd_dev->header field will contain up-to-date
3431  * information about the image.
3432  */
3433 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3434 {
3435         struct rbd_image_header_ondisk *ondisk = NULL;
3436         u32 snap_count = 0;
3437         u64 names_size = 0;
3438         u32 want_count;
3439         int ret;
3440
3441         /*
3442          * The complete header will include an array of its 64-bit
3443          * snapshot ids, followed by the names of those snapshots as
3444          * a contiguous block of NUL-terminated strings.  Note that
3445          * the number of snapshots could change by the time we read
3446          * it in, in which case we re-read it.
3447          */
3448         do {
3449                 size_t size;
3450
3451                 kfree(ondisk);
3452
3453                 size = sizeof (*ondisk);
3454                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3455                 size += names_size;
3456                 ondisk = kmalloc(size, GFP_KERNEL);
3457                 if (!ondisk)
3458                         return -ENOMEM;
3459
3460                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3461                                        0, size, ondisk);
3462                 if (ret < 0)
3463                         goto out;
3464                 if ((size_t)ret < size) {
3465                         ret = -ENXIO;
3466                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3467                                 size, ret);
3468                         goto out;
3469                 }
3470                 if (!rbd_dev_ondisk_valid(ondisk)) {
3471                         ret = -ENXIO;
3472                         rbd_warn(rbd_dev, "invalid header");
3473                         goto out;
3474                 }
3475
3476                 names_size = le64_to_cpu(ondisk->snap_names_len);
3477                 want_count = snap_count;
3478                 snap_count = le32_to_cpu(ondisk->snap_count);
3479         } while (snap_count != want_count);
3480
3481         ret = rbd_header_from_disk(rbd_dev, ondisk);
3482 out:
3483         kfree(ondisk);
3484
3485         return ret;
3486 }
3487
3488 /*
3489  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3490  * has disappeared from the (just updated) snapshot context.
3491  */
3492 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3493 {
3494         u64 snap_id;
3495
3496         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3497                 return;
3498
3499         snap_id = rbd_dev->spec->snap_id;
3500         if (snap_id == CEPH_NOSNAP)
3501                 return;
3502
3503         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3504                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3505 }
3506
3507 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3508 {
3509         sector_t size;
3510         bool removing;
3511
3512         /*
3513          * Don't hold the lock while doing disk operations,
3514          * or lock ordering will conflict with the bdev mutex via:
3515          * rbd_add() -> blkdev_get() -> rbd_open()
3516          */
3517         spin_lock_irq(&rbd_dev->lock);
3518         removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3519         spin_unlock_irq(&rbd_dev->lock);
3520         /*
3521          * If the device is being removed, rbd_dev->disk has
3522          * been destroyed, so don't try to update its size
3523          */
3524         if (!removing) {
3525                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3526                 dout("setting size to %llu sectors", (unsigned long long)size);
3527                 set_capacity(rbd_dev->disk, size);
3528                 revalidate_disk(rbd_dev->disk);
3529         }
3530 }
3531
3532 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3533 {
3534         u64 mapping_size;
3535         int ret;
3536
3537         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3538         down_write(&rbd_dev->header_rwsem);
3539         mapping_size = rbd_dev->mapping.size;
3540         if (rbd_dev->image_format == 1)
3541                 ret = rbd_dev_v1_header_info(rbd_dev);
3542         else
3543                 ret = rbd_dev_v2_header_info(rbd_dev);
3544
3545         /* If it's a mapped snapshot, validate its EXISTS flag */
3546
3547         rbd_exists_validate(rbd_dev);
3548         up_write(&rbd_dev->header_rwsem);
3549
3550         if (mapping_size != rbd_dev->mapping.size) {
3551                 rbd_dev_update_size(rbd_dev);
3552         }
3553
3554         return ret;
3555 }
3556
3557 static int rbd_init_disk(struct rbd_device *rbd_dev)
3558 {
3559         struct gendisk *disk;
3560         struct request_queue *q;
3561         u64 segment_size;
3562
3563         /* create gendisk info */
3564         disk = alloc_disk(single_major ?
3565                           (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3566                           RBD_MINORS_PER_MAJOR);
3567         if (!disk)
3568                 return -ENOMEM;
3569
3570         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3571                  rbd_dev->dev_id);
3572         disk->major = rbd_dev->major;
3573         disk->first_minor = rbd_dev->minor;
3574         if (single_major)
3575                 disk->flags |= GENHD_FL_EXT_DEVT;
3576         disk->fops = &rbd_bd_ops;
3577         disk->private_data = rbd_dev;
3578
3579         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3580         if (!q)
3581                 goto out_disk;
3582
3583         /* We use the default size, but let's be explicit about it. */
3584         blk_queue_physical_block_size(q, SECTOR_SIZE);
3585
3586         /* set io sizes to object size */
3587         segment_size = rbd_obj_bytes(&rbd_dev->header);
3588         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3589         blk_queue_max_segment_size(q, segment_size);
3590         blk_queue_io_min(q, segment_size);
3591         blk_queue_io_opt(q, segment_size);
3592
3593         blk_queue_merge_bvec(q, rbd_merge_bvec);
3594         disk->queue = q;
3595
3596         q->queuedata = rbd_dev;
3597
3598         rbd_dev->disk = disk;
3599
3600         return 0;
3601 out_disk:
3602         put_disk(disk);
3603
3604         return -ENOMEM;
3605 }
3606
3607 /*
3608   sysfs
3609 */
3610
3611 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3612 {
3613         return container_of(dev, struct rbd_device, dev);
3614 }
3615
3616 static ssize_t rbd_size_show(struct device *dev,
3617                              struct device_attribute *attr, char *buf)
3618 {
3619         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3620
3621         return sprintf(buf, "%llu\n",
3622                 (unsigned long long)rbd_dev->mapping.size);
3623 }
3624
3625 /*
3626  * Note this shows the features for whatever's mapped, which is not
3627  * necessarily the base image.
3628  */
3629 static ssize_t rbd_features_show(struct device *dev,
3630                              struct device_attribute *attr, char *buf)
3631 {
3632         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3633
3634         return sprintf(buf, "0x%016llx\n",
3635                         (unsigned long long)rbd_dev->mapping.features);
3636 }
3637
3638 static ssize_t rbd_major_show(struct device *dev,
3639                               struct device_attribute *attr, char *buf)
3640 {
3641         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3642
3643         if (rbd_dev->major)
3644                 return sprintf(buf, "%d\n", rbd_dev->major);
3645
3646         return sprintf(buf, "(none)\n");
3647 }
3648
3649 static ssize_t rbd_minor_show(struct device *dev,
3650                               struct device_attribute *attr, char *buf)
3651 {
3652         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3653
3654         return sprintf(buf, "%d\n", rbd_dev->minor);
3655 }
3656
3657 static ssize_t rbd_client_id_show(struct device *dev,
3658                                   struct device_attribute *attr, char *buf)
3659 {
3660         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3661
3662         return sprintf(buf, "client%lld\n",
3663                         ceph_client_id(rbd_dev->rbd_client->client));
3664 }
3665
3666 static ssize_t rbd_pool_show(struct device *dev,
3667                              struct device_attribute *attr, char *buf)
3668 {
3669         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3670
3671         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3672 }
3673
3674 static ssize_t rbd_pool_id_show(struct device *dev,
3675                              struct device_attribute *attr, char *buf)
3676 {
3677         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3678
3679         return sprintf(buf, "%llu\n",
3680                         (unsigned long long) rbd_dev->spec->pool_id);
3681 }
3682
3683 static ssize_t rbd_name_show(struct device *dev,
3684                              struct device_attribute *attr, char *buf)
3685 {
3686         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3687
3688         if (rbd_dev->spec->image_name)
3689                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3690
3691         return sprintf(buf, "(unknown)\n");
3692 }
3693
3694 static ssize_t rbd_image_id_show(struct device *dev,
3695                              struct device_attribute *attr, char *buf)
3696 {
3697         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3698
3699         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3700 }
3701
3702 /*
3703  * Shows the name of the currently-mapped snapshot (or
3704  * RBD_SNAP_HEAD_NAME for the base image).
3705  */
3706 static ssize_t rbd_snap_show(struct device *dev,
3707                              struct device_attribute *attr,
3708                              char *buf)
3709 {
3710         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3711
3712         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3713 }
3714
3715 /*
3716  * For an rbd v2 image, shows the pool id, image id, and snapshot id
3717  * for the parent image.  If there is no parent, simply shows
3718  * "(no parent image)".
3719  */
3720 static ssize_t rbd_parent_show(struct device *dev,
3721                              struct device_attribute *attr,
3722                              char *buf)
3723 {
3724         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3725         struct rbd_spec *spec = rbd_dev->parent_spec;
3726         int count;
3727         char *bufp = buf;
3728
3729         if (!spec)
3730                 return sprintf(buf, "(no parent image)\n");
3731
3732         count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3733                         (unsigned long long) spec->pool_id, spec->pool_name);
3734         if (count < 0)
3735                 return count;
3736         bufp += count;
3737
3738         count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3739                         spec->image_name ? spec->image_name : "(unknown)");
3740         if (count < 0)
3741                 return count;
3742         bufp += count;
3743
3744         count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3745                         (unsigned long long) spec->snap_id, spec->snap_name);
3746         if (count < 0)
3747                 return count;
3748         bufp += count;
3749
3750         count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3751         if (count < 0)
3752                 return count;
3753         bufp += count;
3754
3755         return (ssize_t) (bufp - buf);
3756 }
3757
3758 static ssize_t rbd_image_refresh(struct device *dev,
3759                                  struct device_attribute *attr,
3760                                  const char *buf,
3761                                  size_t size)
3762 {
3763         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3764         int ret;
3765
3766         ret = rbd_dev_refresh(rbd_dev);
3767         if (ret)
3768                 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3769
3770         return ret < 0 ? ret : size;
3771 }
3772
3773 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3774 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3775 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3776 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3777 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3778 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3779 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3780 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3781 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3782 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3783 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3784 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3785
3786 static struct attribute *rbd_attrs[] = {
3787         &dev_attr_size.attr,
3788         &dev_attr_features.attr,
3789         &dev_attr_major.attr,
3790         &dev_attr_minor.attr,
3791         &dev_attr_client_id.attr,
3792         &dev_attr_pool.attr,
3793         &dev_attr_pool_id.attr,
3794         &dev_attr_name.attr,
3795         &dev_attr_image_id.attr,
3796         &dev_attr_current_snap.attr,
3797         &dev_attr_parent.attr,
3798         &dev_attr_refresh.attr,
3799         NULL
3800 };
3801
3802 static struct attribute_group rbd_attr_group = {
3803         .attrs = rbd_attrs,
3804 };
3805
3806 static const struct attribute_group *rbd_attr_groups[] = {
3807         &rbd_attr_group,
3808         NULL
3809 };
3810
3811 static void rbd_sysfs_dev_release(struct device *dev)
3812 {
3813 }
3814
3815 static struct device_type rbd_device_type = {
3816         .name           = "rbd",
3817         .groups         = rbd_attr_groups,
3818         .release        = rbd_sysfs_dev_release,
3819 };
3820
3821 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3822 {
3823         kref_get(&spec->kref);
3824
3825         return spec;
3826 }
3827
3828 static void rbd_spec_free(struct kref *kref);
3829 static void rbd_spec_put(struct rbd_spec *spec)
3830 {
3831         if (spec)
3832                 kref_put(&spec->kref, rbd_spec_free);
3833 }
3834
3835 static struct rbd_spec *rbd_spec_alloc(void)
3836 {
3837         struct rbd_spec *spec;
3838
3839         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3840         if (!spec)
3841                 return NULL;
3842         kref_init(&spec->kref);
3843
3844         return spec;
3845 }
3846
3847 static void rbd_spec_free(struct kref *kref)
3848 {
3849         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3850
3851         kfree(spec->pool_name);
3852         kfree(spec->image_id);
3853         kfree(spec->image_name);
3854         kfree(spec->snap_name);
3855         kfree(spec);
3856 }
3857
3858 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3859                                 struct rbd_spec *spec)
3860 {
3861         struct rbd_device *rbd_dev;
3862
3863         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3864         if (!rbd_dev)
3865                 return NULL;
3866
3867         spin_lock_init(&rbd_dev->lock);
3868         rbd_dev->flags = 0;
3869         atomic_set(&rbd_dev->parent_ref, 0);
3870         INIT_LIST_HEAD(&rbd_dev->node);
3871         init_rwsem(&rbd_dev->header_rwsem);
3872
3873         rbd_dev->spec = spec;
3874         rbd_dev->rbd_client = rbdc;
3875
3876         /* Initialize the layout used for all rbd requests */
3877
3878         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3879         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3880         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3881         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3882
3883         return rbd_dev;
3884 }
3885
3886 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3887 {
3888         rbd_put_client(rbd_dev->rbd_client);
3889         rbd_spec_put(rbd_dev->spec);
3890         kfree(rbd_dev);
3891 }
3892
3893 /*
3894  * Get the size and object order for an image snapshot, or if
3895  * snap_id is CEPH_NOSNAP, gets this information for the base
3896  * image.
3897  */
3898 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3899                                 u8 *order, u64 *snap_size)
3900 {
3901         __le64 snapid = cpu_to_le64(snap_id);
3902         int ret;
3903         struct {
3904                 u8 order;
3905                 __le64 size;
3906         } __attribute__ ((packed)) size_buf = { 0 };
3907
3908         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3909                                 "rbd", "get_size",
3910                                 &snapid, sizeof (snapid),
3911                                 &size_buf, sizeof (size_buf));
3912         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3913         if (ret < 0)
3914                 return ret;
3915         if (ret < sizeof (size_buf))
3916                 return -ERANGE;
3917
3918         if (order) {
3919                 *order = size_buf.order;
3920                 dout("  order %u", (unsigned int)*order);
3921         }
3922         *snap_size = le64_to_cpu(size_buf.size);
3923
3924         dout("  snap_id 0x%016llx snap_size = %llu\n",
3925                 (unsigned long long)snap_id,
3926                 (unsigned long long)*snap_size);
3927
3928         return 0;
3929 }
3930
3931 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3932 {
3933         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3934                                         &rbd_dev->header.obj_order,
3935                                         &rbd_dev->header.image_size);
3936 }
3937
3938 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3939 {
3940         void *reply_buf;
3941         int ret;
3942         void *p;
3943
3944         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3945         if (!reply_buf)
3946                 return -ENOMEM;
3947
3948         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3949                                 "rbd", "get_object_prefix", NULL, 0,
3950                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3951         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3952         if (ret < 0)
3953                 goto out;
3954
3955         p = reply_buf;
3956         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3957                                                 p + ret, NULL, GFP_NOIO);
3958         ret = 0;
3959
3960         if (IS_ERR(rbd_dev->header.object_prefix)) {
3961                 ret = PTR_ERR(rbd_dev->header.object_prefix);
3962                 rbd_dev->header.object_prefix = NULL;
3963         } else {
3964                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3965         }
3966 out:
3967         kfree(reply_buf);
3968
3969         return ret;
3970 }
3971
3972 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3973                 u64 *snap_features)
3974 {
3975         __le64 snapid = cpu_to_le64(snap_id);
3976         struct {
3977                 __le64 features;
3978                 __le64 incompat;
3979         } __attribute__ ((packed)) features_buf = { 0 };
3980         u64 incompat;
3981         int ret;
3982
3983         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3984                                 "rbd", "get_features",
3985                                 &snapid, sizeof (snapid),
3986                                 &features_buf, sizeof (features_buf));
3987         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3988         if (ret < 0)
3989                 return ret;
3990         if (ret < sizeof (features_buf))
3991                 return -ERANGE;
3992
3993         incompat = le64_to_cpu(features_buf.incompat);
3994         if (incompat & ~RBD_FEATURES_SUPPORTED)
3995                 return -ENXIO;
3996
3997         *snap_features = le64_to_cpu(features_buf.features);
3998
3999         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4000                 (unsigned long long)snap_id,
4001                 (unsigned long long)*snap_features,
4002                 (unsigned long long)le64_to_cpu(features_buf.incompat));
4003
4004         return 0;
4005 }
4006
4007 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4008 {
4009         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4010                                                 &rbd_dev->header.features);
4011 }
4012
4013 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4014 {
4015         struct rbd_spec *parent_spec;
4016         size_t size;
4017         void *reply_buf = NULL;
4018         __le64 snapid;
4019         void *p;
4020         void *end;
4021         u64 pool_id;
4022         char *image_id;
4023         u64 snap_id;
4024         u64 overlap;
4025         int ret;
4026
4027         parent_spec = rbd_spec_alloc();
4028         if (!parent_spec)
4029                 return -ENOMEM;
4030
4031         size = sizeof (__le64) +                                /* pool_id */
4032                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
4033                 sizeof (__le64) +                               /* snap_id */
4034                 sizeof (__le64);                                /* overlap */
4035         reply_buf = kmalloc(size, GFP_KERNEL);
4036         if (!reply_buf) {
4037                 ret = -ENOMEM;
4038                 goto out_err;
4039         }
4040
4041         snapid = cpu_to_le64(CEPH_NOSNAP);
4042         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4043                                 "rbd", "get_parent",
4044                                 &snapid, sizeof (snapid),
4045                                 reply_buf, size);
4046         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4047         if (ret < 0)
4048                 goto out_err;
4049
4050         p = reply_buf;
4051         end = reply_buf + ret;
4052         ret = -ERANGE;
4053         ceph_decode_64_safe(&p, end, pool_id, out_err);
4054         if (pool_id == CEPH_NOPOOL) {
4055                 /*
4056                  * Either the parent never existed, or we have
4057                  * record of it but the image got flattened so it no
4058                  * longer has a parent.  When the parent of a
4059                  * layered image disappears we immediately set the
4060                  * overlap to 0.  The effect of this is that all new
4061                  * requests will be treated as if the image had no
4062                  * parent.
4063                  */
4064                 if (rbd_dev->parent_overlap) {
4065                         rbd_dev->parent_overlap = 0;
4066                         smp_mb();
4067                         rbd_dev_parent_put(rbd_dev);
4068                         pr_info("%s: clone image has been flattened\n",
4069                                 rbd_dev->disk->disk_name);
4070                 }
4071
4072                 goto out;       /* No parent?  No problem. */
4073         }
4074
4075         /* The ceph file layout needs to fit pool id in 32 bits */
4076
4077         ret = -EIO;
4078         if (pool_id > (u64)U32_MAX) {
4079                 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
4080                         (unsigned long long)pool_id, U32_MAX);
4081                 goto out_err;
4082         }
4083
4084         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4085         if (IS_ERR(image_id)) {
4086                 ret = PTR_ERR(image_id);
4087                 goto out_err;
4088         }
4089         ceph_decode_64_safe(&p, end, snap_id, out_err);
4090         ceph_decode_64_safe(&p, end, overlap, out_err);
4091
4092         /*
4093          * The parent won't change (except when the clone is
4094          * flattened, already handled that).  So we only need to
4095          * record the parent spec we have not already done so.
4096          */
4097         if (!rbd_dev->parent_spec) {
4098                 parent_spec->pool_id = pool_id;
4099                 parent_spec->image_id = image_id;
4100                 parent_spec->snap_id = snap_id;
4101                 rbd_dev->parent_spec = parent_spec;
4102                 parent_spec = NULL;     /* rbd_dev now owns this */
4103         }
4104
4105         /*
4106          * We always update the parent overlap.  If it's zero we
4107          * treat it specially.
4108          */
4109         rbd_dev->parent_overlap = overlap;
4110         smp_mb();
4111         if (!overlap) {
4112
4113                 /* A null parent_spec indicates it's the initial probe */
4114
4115                 if (parent_spec) {
4116                         /*
4117                          * The overlap has become zero, so the clone
4118                          * must have been resized down to 0 at some
4119                          * point.  Treat this the same as a flatten.
4120                          */
4121                         rbd_dev_parent_put(rbd_dev);
4122                         pr_info("%s: clone image now standalone\n",
4123                                 rbd_dev->disk->disk_name);
4124                 } else {
4125                         /*
4126                          * For the initial probe, if we find the
4127                          * overlap is zero we just pretend there was
4128                          * no parent image.
4129                          */
4130                         rbd_warn(rbd_dev, "ignoring parent of "
4131                                                 "clone with overlap 0\n");
4132                 }
4133         }
4134 out:
4135         ret = 0;
4136 out_err:
4137         kfree(reply_buf);
4138         rbd_spec_put(parent_spec);
4139
4140         return ret;
4141 }
4142
4143 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4144 {
4145         struct {
4146                 __le64 stripe_unit;
4147                 __le64 stripe_count;
4148         } __attribute__ ((packed)) striping_info_buf = { 0 };
4149         size_t size = sizeof (striping_info_buf);
4150         void *p;
4151         u64 obj_size;
4152         u64 stripe_unit;
4153         u64 stripe_count;
4154         int ret;
4155
4156         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4157                                 "rbd", "get_stripe_unit_count", NULL, 0,
4158                                 (char *)&striping_info_buf, size);
4159         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4160         if (ret < 0)
4161                 return ret;
4162         if (ret < size)
4163                 return -ERANGE;
4164
4165         /*
4166          * We don't actually support the "fancy striping" feature
4167          * (STRIPINGV2) yet, but if the striping sizes are the
4168          * defaults the behavior is the same as before.  So find
4169          * out, and only fail if the image has non-default values.
4170          */
4171         ret = -EINVAL;
4172         obj_size = (u64)1 << rbd_dev->header.obj_order;
4173         p = &striping_info_buf;
4174         stripe_unit = ceph_decode_64(&p);
4175         if (stripe_unit != obj_size) {
4176                 rbd_warn(rbd_dev, "unsupported stripe unit "
4177                                 "(got %llu want %llu)",
4178                                 stripe_unit, obj_size);
4179                 return -EINVAL;
4180         }
4181         stripe_count = ceph_decode_64(&p);
4182         if (stripe_count != 1) {
4183                 rbd_warn(rbd_dev, "unsupported stripe count "
4184                                 "(got %llu want 1)", stripe_count);
4185                 return -EINVAL;
4186         }
4187         rbd_dev->header.stripe_unit = stripe_unit;
4188         rbd_dev->header.stripe_count = stripe_count;
4189
4190         return 0;
4191 }
4192
4193 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4194 {
4195         size_t image_id_size;
4196         char *image_id;
4197         void *p;
4198         void *end;
4199         size_t size;
4200         void *reply_buf = NULL;
4201         size_t len = 0;
4202         char *image_name = NULL;
4203         int ret;
4204
4205         rbd_assert(!rbd_dev->spec->image_name);
4206
4207         len = strlen(rbd_dev->spec->image_id);
4208         image_id_size = sizeof (__le32) + len;
4209         image_id = kmalloc(image_id_size, GFP_KERNEL);
4210         if (!image_id)
4211                 return NULL;
4212
4213         p = image_id;
4214         end = image_id + image_id_size;
4215         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4216
4217         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4218         reply_buf = kmalloc(size, GFP_KERNEL);
4219         if (!reply_buf)
4220                 goto out;
4221
4222         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4223                                 "rbd", "dir_get_name",
4224                                 image_id, image_id_size,
4225                                 reply_buf, size);
4226         if (ret < 0)
4227                 goto out;
4228         p = reply_buf;
4229         end = reply_buf + ret;
4230
4231         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4232         if (IS_ERR(image_name))
4233                 image_name = NULL;
4234         else
4235                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4236 out:
4237         kfree(reply_buf);
4238         kfree(image_id);
4239
4240         return image_name;
4241 }
4242
4243 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4244 {
4245         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4246         const char *snap_name;
4247         u32 which = 0;
4248
4249         /* Skip over names until we find the one we are looking for */
4250
4251         snap_name = rbd_dev->header.snap_names;
4252         while (which < snapc->num_snaps) {
4253                 if (!strcmp(name, snap_name))
4254                         return snapc->snaps[which];
4255                 snap_name += strlen(snap_name) + 1;
4256                 which++;
4257         }
4258         return CEPH_NOSNAP;
4259 }
4260
4261 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4262 {
4263         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4264         u32 which;
4265         bool found = false;
4266         u64 snap_id;
4267
4268         for (which = 0; !found && which < snapc->num_snaps; which++) {
4269                 const char *snap_name;
4270
4271                 snap_id = snapc->snaps[which];
4272                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4273                 if (IS_ERR(snap_name)) {
4274                         /* ignore no-longer existing snapshots */
4275                         if (PTR_ERR(snap_name) == -ENOENT)
4276                                 continue;
4277                         else
4278                                 break;
4279                 }
4280                 found = !strcmp(name, snap_name);
4281                 kfree(snap_name);
4282         }
4283         return found ? snap_id : CEPH_NOSNAP;
4284 }
4285
4286 /*
4287  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4288  * no snapshot by that name is found, or if an error occurs.
4289  */
4290 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4291 {
4292         if (rbd_dev->image_format == 1)
4293                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4294
4295         return rbd_v2_snap_id_by_name(rbd_dev, name);
4296 }
4297
4298 /*
4299  * When an rbd image has a parent image, it is identified by the
4300  * pool, image, and snapshot ids (not names).  This function fills
4301  * in the names for those ids.  (It's OK if we can't figure out the
4302  * name for an image id, but the pool and snapshot ids should always
4303  * exist and have names.)  All names in an rbd spec are dynamically
4304  * allocated.
4305  *
4306  * When an image being mapped (not a parent) is probed, we have the
4307  * pool name and pool id, image name and image id, and the snapshot
4308  * name.  The only thing we're missing is the snapshot id.
4309  */
4310 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4311 {
4312         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4313         struct rbd_spec *spec = rbd_dev->spec;
4314         const char *pool_name;
4315         const char *image_name;
4316         const char *snap_name;
4317         int ret;
4318
4319         /*
4320          * An image being mapped will have the pool name (etc.), but
4321          * we need to look up the snapshot id.
4322          */
4323         if (spec->pool_name) {
4324                 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4325                         u64 snap_id;
4326
4327                         snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4328                         if (snap_id == CEPH_NOSNAP)
4329                                 return -ENOENT;
4330                         spec->snap_id = snap_id;
4331                 } else {
4332                         spec->snap_id = CEPH_NOSNAP;
4333                 }
4334
4335                 return 0;
4336         }
4337
4338         /* Get the pool name; we have to make our own copy of this */
4339
4340         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4341         if (!pool_name) {
4342                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4343                 return -EIO;
4344         }
4345         pool_name = kstrdup(pool_name, GFP_KERNEL);
4346         if (!pool_name)
4347                 return -ENOMEM;
4348
4349         /* Fetch the image name; tolerate failure here */
4350
4351         image_name = rbd_dev_image_name(rbd_dev);
4352         if (!image_name)
4353                 rbd_warn(rbd_dev, "unable to get image name");
4354
4355         /* Look up the snapshot name, and make a copy */
4356
4357         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4358         if (IS_ERR(snap_name)) {
4359                 ret = PTR_ERR(snap_name);
4360                 goto out_err;
4361         }
4362
4363         spec->pool_name = pool_name;
4364         spec->image_name = image_name;
4365         spec->snap_name = snap_name;
4366
4367         return 0;
4368 out_err:
4369         kfree(image_name);
4370         kfree(pool_name);
4371
4372         return ret;
4373 }
4374
4375 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4376 {
4377         size_t size;
4378         int ret;
4379         void *reply_buf;
4380         void *p;
4381         void *end;
4382         u64 seq;
4383         u32 snap_count;
4384         struct ceph_snap_context *snapc;
4385         u32 i;
4386
4387         /*
4388          * We'll need room for the seq value (maximum snapshot id),
4389          * snapshot count, and array of that many snapshot ids.
4390          * For now we have a fixed upper limit on the number we're
4391          * prepared to receive.
4392          */
4393         size = sizeof (__le64) + sizeof (__le32) +
4394                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4395         reply_buf = kzalloc(size, GFP_KERNEL);
4396         if (!reply_buf)
4397                 return -ENOMEM;
4398
4399         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4400                                 "rbd", "get_snapcontext", NULL, 0,
4401                                 reply_buf, size);
4402         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4403         if (ret < 0)
4404                 goto out;
4405
4406         p = reply_buf;
4407         end = reply_buf + ret;
4408         ret = -ERANGE;
4409         ceph_decode_64_safe(&p, end, seq, out);
4410         ceph_decode_32_safe(&p, end, snap_count, out);
4411
4412         /*
4413          * Make sure the reported number of snapshot ids wouldn't go
4414          * beyond the end of our buffer.  But before checking that,
4415          * make sure the computed size of the snapshot context we
4416          * allocate is representable in a size_t.
4417          */
4418         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4419                                  / sizeof (u64)) {
4420                 ret = -EINVAL;
4421                 goto out;
4422         }
4423         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4424                 goto out;
4425         ret = 0;
4426
4427         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4428         if (!snapc) {
4429                 ret = -ENOMEM;
4430                 goto out;
4431         }
4432         snapc->seq = seq;
4433         for (i = 0; i < snap_count; i++)
4434                 snapc->snaps[i] = ceph_decode_64(&p);
4435
4436         ceph_put_snap_context(rbd_dev->header.snapc);
4437         rbd_dev->header.snapc = snapc;
4438
4439         dout("  snap context seq = %llu, snap_count = %u\n",
4440                 (unsigned long long)seq, (unsigned int)snap_count);
4441 out:
4442         kfree(reply_buf);
4443
4444         return ret;
4445 }
4446
4447 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4448                                         u64 snap_id)
4449 {
4450         size_t size;
4451         void *reply_buf;
4452         __le64 snapid;
4453         int ret;
4454         void *p;
4455         void *end;
4456         char *snap_name;
4457
4458         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4459         reply_buf = kmalloc(size, GFP_KERNEL);
4460         if (!reply_buf)
4461                 return ERR_PTR(-ENOMEM);
4462
4463         snapid = cpu_to_le64(snap_id);
4464         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4465                                 "rbd", "get_snapshot_name",
4466                                 &snapid, sizeof (snapid),
4467                                 reply_buf, size);
4468         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4469         if (ret < 0) {
4470                 snap_name = ERR_PTR(ret);
4471                 goto out;
4472         }
4473
4474         p = reply_buf;
4475         end = reply_buf + ret;
4476         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4477         if (IS_ERR(snap_name))
4478                 goto out;
4479
4480         dout("  snap_id 0x%016llx snap_name = %s\n",
4481                 (unsigned long long)snap_id, snap_name);
4482 out:
4483         kfree(reply_buf);
4484
4485         return snap_name;
4486 }
4487
4488 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4489 {
4490         bool first_time = rbd_dev->header.object_prefix == NULL;
4491         int ret;
4492
4493         ret = rbd_dev_v2_image_size(rbd_dev);
4494         if (ret)
4495                 return ret;
4496
4497         if (first_time) {
4498                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4499                 if (ret)
4500                         return ret;
4501         }
4502
4503         /*
4504          * If the image supports layering, get the parent info.  We
4505          * need to probe the first time regardless.  Thereafter we
4506          * only need to if there's a parent, to see if it has
4507          * disappeared due to the mapped image getting flattened.
4508          */
4509         if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4510                         (first_time || rbd_dev->parent_spec)) {
4511                 bool warn;
4512
4513                 ret = rbd_dev_v2_parent_info(rbd_dev);
4514                 if (ret)
4515                         return ret;
4516
4517                 /*
4518                  * Print a warning if this is the initial probe and
4519                  * the image has a parent.  Don't print it if the
4520                  * image now being probed is itself a parent.  We
4521                  * can tell at this point because we won't know its
4522                  * pool name yet (just its pool id).
4523                  */
4524                 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4525                 if (first_time && warn)
4526                         rbd_warn(rbd_dev, "WARNING: kernel layering "
4527                                         "is EXPERIMENTAL!");
4528         }
4529
4530         if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4531                 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4532                         rbd_dev->mapping.size = rbd_dev->header.image_size;
4533
4534         ret = rbd_dev_v2_snap_context(rbd_dev);
4535         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4536
4537         return ret;
4538 }
4539
4540 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4541 {
4542         struct device *dev;
4543         int ret;
4544
4545         dev = &rbd_dev->dev;
4546         dev->bus = &rbd_bus_type;
4547         dev->type = &rbd_device_type;
4548         dev->parent = &rbd_root_dev;
4549         dev->release = rbd_dev_device_release;
4550         dev_set_name(dev, "%d", rbd_dev->dev_id);
4551         ret = device_register(dev);
4552
4553         return ret;
4554 }
4555
4556 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4557 {
4558         device_unregister(&rbd_dev->dev);
4559 }
4560
4561 /*
4562  * Get a unique rbd identifier for the given new rbd_dev, and add
4563  * the rbd_dev to the global list.
4564  */
4565 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4566 {
4567         int new_dev_id;
4568
4569         new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4570                                     0, minor_to_rbd_dev_id(1 << MINORBITS),
4571                                     GFP_KERNEL);
4572         if (new_dev_id < 0)
4573                 return new_dev_id;
4574
4575         rbd_dev->dev_id = new_dev_id;
4576
4577         spin_lock(&rbd_dev_list_lock);
4578         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4579         spin_unlock(&rbd_dev_list_lock);
4580
4581         dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4582
4583         return 0;
4584 }
4585
4586 /*
4587  * Remove an rbd_dev from the global list, and record that its
4588  * identifier is no longer in use.
4589  */
4590 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4591 {
4592         spin_lock(&rbd_dev_list_lock);
4593         list_del_init(&rbd_dev->node);
4594         spin_unlock(&rbd_dev_list_lock);
4595
4596         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4597
4598         dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4599 }
4600
4601 /*
4602  * Skips over white space at *buf, and updates *buf to point to the
4603  * first found non-space character (if any). Returns the length of
4604  * the token (string of non-white space characters) found.  Note
4605  * that *buf must be terminated with '\0'.
4606  */
4607 static inline size_t next_token(const char **buf)
4608 {
4609         /*
4610         * These are the characters that produce nonzero for
4611         * isspace() in the "C" and "POSIX" locales.
4612         */
4613         const char *spaces = " \f\n\r\t\v";
4614
4615         *buf += strspn(*buf, spaces);   /* Find start of token */
4616
4617         return strcspn(*buf, spaces);   /* Return token length */
4618 }
4619
4620 /*
4621  * Finds the next token in *buf, and if the provided token buffer is
4622  * big enough, copies the found token into it.  The result, if
4623  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4624  * must be terminated with '\0' on entry.
4625  *
4626  * Returns the length of the token found (not including the '\0').
4627  * Return value will be 0 if no token is found, and it will be >=
4628  * token_size if the token would not fit.
4629  *
4630  * The *buf pointer will be updated to point beyond the end of the
4631  * found token.  Note that this occurs even if the token buffer is
4632  * too small to hold it.
4633  */
4634 static inline size_t copy_token(const char **buf,
4635                                 char *token,
4636                                 size_t token_size)
4637 {
4638         size_t len;
4639
4640         len = next_token(buf);
4641         if (len < token_size) {
4642                 memcpy(token, *buf, len);
4643                 *(token + len) = '\0';
4644         }
4645         *buf += len;
4646
4647         return len;
4648 }
4649
4650 /*
4651  * Finds the next token in *buf, dynamically allocates a buffer big
4652  * enough to hold a copy of it, and copies the token into the new
4653  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4654  * that a duplicate buffer is created even for a zero-length token.
4655  *
4656  * Returns a pointer to the newly-allocated duplicate, or a null
4657  * pointer if memory for the duplicate was not available.  If
4658  * the lenp argument is a non-null pointer, the length of the token
4659  * (not including the '\0') is returned in *lenp.
4660  *
4661  * If successful, the *buf pointer will be updated to point beyond
4662  * the end of the found token.
4663  *
4664  * Note: uses GFP_KERNEL for allocation.
4665  */
4666 static inline char *dup_token(const char **buf, size_t *lenp)
4667 {
4668         char *dup;
4669         size_t len;
4670
4671         len = next_token(buf);
4672         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4673         if (!dup)
4674                 return NULL;
4675         *(dup + len) = '\0';
4676         *buf += len;
4677
4678         if (lenp)
4679                 *lenp = len;
4680
4681         return dup;
4682 }
4683
4684 /*
4685  * Parse the options provided for an "rbd add" (i.e., rbd image
4686  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4687  * and the data written is passed here via a NUL-terminated buffer.
4688  * Returns 0 if successful or an error code otherwise.
4689  *
4690  * The information extracted from these options is recorded in
4691  * the other parameters which return dynamically-allocated
4692  * structures:
4693  *  ceph_opts
4694  *      The address of a pointer that will refer to a ceph options
4695  *      structure.  Caller must release the returned pointer using
4696  *      ceph_destroy_options() when it is no longer needed.
4697  *  rbd_opts
4698  *      Address of an rbd options pointer.  Fully initialized by
4699  *      this function; caller must release with kfree().
4700  *  spec
4701  *      Address of an rbd image specification pointer.  Fully
4702  *      initialized by this function based on parsed options.
4703  *      Caller must release with rbd_spec_put().
4704  *
4705  * The options passed take this form:
4706  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4707  * where:
4708  *  <mon_addrs>
4709  *      A comma-separated list of one or more monitor addresses.
4710  *      A monitor address is an ip address, optionally followed
4711  *      by a port number (separated by a colon).
4712  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4713  *  <options>
4714  *      A comma-separated list of ceph and/or rbd options.
4715  *  <pool_name>
4716  *      The name of the rados pool containing the rbd image.
4717  *  <image_name>
4718  *      The name of the image in that pool to map.
4719  *  <snap_id>
4720  *      An optional snapshot id.  If provided, the mapping will
4721  *      present data from the image at the time that snapshot was
4722  *      created.  The image head is used if no snapshot id is
4723  *      provided.  Snapshot mappings are always read-only.
4724  */
4725 static int rbd_add_parse_args(const char *buf,
4726                                 struct ceph_options **ceph_opts,
4727                                 struct rbd_options **opts,
4728                                 struct rbd_spec **rbd_spec)
4729 {
4730         size_t len;
4731         char *options;
4732         const char *mon_addrs;
4733         char *snap_name;
4734         size_t mon_addrs_size;
4735         struct rbd_spec *spec = NULL;
4736         struct rbd_options *rbd_opts = NULL;
4737         struct ceph_options *copts;
4738         int ret;
4739
4740         /* The first four tokens are required */
4741
4742         len = next_token(&buf);
4743         if (!len) {
4744                 rbd_warn(NULL, "no monitor address(es) provided");
4745                 return -EINVAL;
4746         }
4747         mon_addrs = buf;
4748         mon_addrs_size = len + 1;
4749         buf += len;
4750
4751         ret = -EINVAL;
4752         options = dup_token(&buf, NULL);
4753         if (!options)
4754                 return -ENOMEM;
4755         if (!*options) {
4756                 rbd_warn(NULL, "no options provided");
4757                 goto out_err;
4758         }
4759
4760         spec = rbd_spec_alloc();
4761         if (!spec)
4762                 goto out_mem;
4763
4764         spec->pool_name = dup_token(&buf, NULL);
4765         if (!spec->pool_name)
4766                 goto out_mem;
4767         if (!*spec->pool_name) {
4768                 rbd_warn(NULL, "no pool name provided");
4769                 goto out_err;
4770         }
4771
4772         spec->image_name = dup_token(&buf, NULL);
4773         if (!spec->image_name)
4774                 goto out_mem;
4775         if (!*spec->image_name) {
4776                 rbd_warn(NULL, "no image name provided");
4777                 goto out_err;
4778         }
4779
4780         /*
4781          * Snapshot name is optional; default is to use "-"
4782          * (indicating the head/no snapshot).
4783          */
4784         len = next_token(&buf);
4785         if (!len) {
4786                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4787                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4788         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4789                 ret = -ENAMETOOLONG;
4790                 goto out_err;
4791         }
4792         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4793         if (!snap_name)
4794                 goto out_mem;
4795         *(snap_name + len) = '\0';
4796         spec->snap_name = snap_name;
4797
4798         /* Initialize all rbd options to the defaults */
4799
4800         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4801         if (!rbd_opts)
4802                 goto out_mem;
4803
4804         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4805
4806         copts = ceph_parse_options(options, mon_addrs,
4807                                         mon_addrs + mon_addrs_size - 1,
4808                                         parse_rbd_opts_token, rbd_opts);
4809         if (IS_ERR(copts)) {
4810                 ret = PTR_ERR(copts);
4811                 goto out_err;
4812         }
4813         kfree(options);
4814
4815         *ceph_opts = copts;
4816         *opts = rbd_opts;
4817         *rbd_spec = spec;
4818
4819         return 0;
4820 out_mem:
4821         ret = -ENOMEM;
4822 out_err:
4823         kfree(rbd_opts);
4824         rbd_spec_put(spec);
4825         kfree(options);
4826
4827         return ret;
4828 }
4829
4830 /*
4831  * Return pool id (>= 0) or a negative error code.
4832  */
4833 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4834 {
4835         u64 newest_epoch;
4836         unsigned long timeout = rbdc->client->options->mount_timeout * HZ;
4837         int tries = 0;
4838         int ret;
4839
4840 again:
4841         ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4842         if (ret == -ENOENT && tries++ < 1) {
4843                 ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
4844                                                &newest_epoch);
4845                 if (ret < 0)
4846                         return ret;
4847
4848                 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
4849                         ceph_monc_request_next_osdmap(&rbdc->client->monc);
4850                         (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
4851                                                      newest_epoch, timeout);
4852                         goto again;
4853                 } else {
4854                         /* the osdmap we have is new enough */
4855                         return -ENOENT;
4856                 }
4857         }
4858
4859         return ret;
4860 }
4861
4862 /*
4863  * An rbd format 2 image has a unique identifier, distinct from the
4864  * name given to it by the user.  Internally, that identifier is
4865  * what's used to specify the names of objects related to the image.
4866  *
4867  * A special "rbd id" object is used to map an rbd image name to its
4868  * id.  If that object doesn't exist, then there is no v2 rbd image
4869  * with the supplied name.
4870  *
4871  * This function will record the given rbd_dev's image_id field if
4872  * it can be determined, and in that case will return 0.  If any
4873  * errors occur a negative errno will be returned and the rbd_dev's
4874  * image_id field will be unchanged (and should be NULL).
4875  */
4876 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4877 {
4878         int ret;
4879         size_t size;
4880         char *object_name;
4881         void *response;
4882         char *image_id;
4883
4884         /*
4885          * When probing a parent image, the image id is already
4886          * known (and the image name likely is not).  There's no
4887          * need to fetch the image id again in this case.  We
4888          * do still need to set the image format though.
4889          */
4890         if (rbd_dev->spec->image_id) {
4891                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4892
4893                 return 0;
4894         }
4895
4896         /*
4897          * First, see if the format 2 image id file exists, and if
4898          * so, get the image's persistent id from it.
4899          */
4900         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4901         object_name = kmalloc(size, GFP_NOIO);
4902         if (!object_name)
4903                 return -ENOMEM;
4904         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4905         dout("rbd id object name is %s\n", object_name);
4906
4907         /* Response will be an encoded string, which includes a length */
4908
4909         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4910         response = kzalloc(size, GFP_NOIO);
4911         if (!response) {
4912                 ret = -ENOMEM;
4913                 goto out;
4914         }
4915
4916         /* If it doesn't exist we'll assume it's a format 1 image */
4917
4918         ret = rbd_obj_method_sync(rbd_dev, object_name,
4919                                 "rbd", "get_id", NULL, 0,
4920                                 response, RBD_IMAGE_ID_LEN_MAX);
4921         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4922         if (ret == -ENOENT) {
4923                 image_id = kstrdup("", GFP_KERNEL);
4924                 ret = image_id ? 0 : -ENOMEM;
4925                 if (!ret)
4926                         rbd_dev->image_format = 1;
4927         } else if (ret > sizeof (__le32)) {
4928                 void *p = response;
4929
4930                 image_id = ceph_extract_encoded_string(&p, p + ret,
4931                                                 NULL, GFP_NOIO);
4932                 ret = PTR_ERR_OR_ZERO(image_id);
4933                 if (!ret)
4934                         rbd_dev->image_format = 2;
4935         } else {
4936                 ret = -EINVAL;
4937         }
4938
4939         if (!ret) {
4940                 rbd_dev->spec->image_id = image_id;
4941                 dout("image_id is %s\n", image_id);
4942         }
4943 out:
4944         kfree(response);
4945         kfree(object_name);
4946
4947         return ret;
4948 }
4949
4950 /*
4951  * Undo whatever state changes are made by v1 or v2 header info
4952  * call.
4953  */
4954 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4955 {
4956         struct rbd_image_header *header;
4957
4958         /* Drop parent reference unless it's already been done (or none) */
4959
4960         if (rbd_dev->parent_overlap)
4961                 rbd_dev_parent_put(rbd_dev);
4962
4963         /* Free dynamic fields from the header, then zero it out */
4964
4965         header = &rbd_dev->header;
4966         ceph_put_snap_context(header->snapc);
4967         kfree(header->snap_sizes);
4968         kfree(header->snap_names);
4969         kfree(header->object_prefix);
4970         memset(header, 0, sizeof (*header));
4971 }
4972
4973 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4974 {
4975         int ret;
4976
4977         ret = rbd_dev_v2_object_prefix(rbd_dev);
4978         if (ret)
4979                 goto out_err;
4980
4981         /*
4982          * Get the and check features for the image.  Currently the
4983          * features are assumed to never change.
4984          */
4985         ret = rbd_dev_v2_features(rbd_dev);
4986         if (ret)
4987                 goto out_err;
4988
4989         /* If the image supports fancy striping, get its parameters */
4990
4991         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4992                 ret = rbd_dev_v2_striping_info(rbd_dev);
4993                 if (ret < 0)
4994                         goto out_err;
4995         }
4996         /* No support for crypto and compression type format 2 images */
4997
4998         return 0;
4999 out_err:
5000         rbd_dev->header.features = 0;
5001         kfree(rbd_dev->header.object_prefix);
5002         rbd_dev->header.object_prefix = NULL;
5003
5004         return ret;
5005 }
5006
5007 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
5008 {
5009         struct rbd_device *parent = NULL;
5010         struct rbd_spec *parent_spec;
5011         struct rbd_client *rbdc;
5012         int ret;
5013
5014         if (!rbd_dev->parent_spec)
5015                 return 0;
5016         /*
5017          * We need to pass a reference to the client and the parent
5018          * spec when creating the parent rbd_dev.  Images related by
5019          * parent/child relationships always share both.
5020          */
5021         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
5022         rbdc = __rbd_get_client(rbd_dev->rbd_client);
5023
5024         ret = -ENOMEM;
5025         parent = rbd_dev_create(rbdc, parent_spec);
5026         if (!parent)
5027                 goto out_err;
5028
5029         ret = rbd_dev_image_probe(parent, false);
5030         if (ret < 0)
5031                 goto out_err;
5032         rbd_dev->parent = parent;
5033         atomic_set(&rbd_dev->parent_ref, 1);
5034
5035         return 0;
5036 out_err:
5037         if (parent) {
5038                 rbd_dev_unparent(rbd_dev);
5039                 kfree(rbd_dev->header_name);
5040                 rbd_dev_destroy(parent);
5041         } else {
5042                 rbd_put_client(rbdc);
5043                 rbd_spec_put(parent_spec);
5044         }
5045
5046         return ret;
5047 }
5048
5049 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5050 {
5051         int ret;
5052
5053         /* Get an id and fill in device name. */
5054
5055         ret = rbd_dev_id_get(rbd_dev);
5056         if (ret)
5057                 return ret;
5058
5059         BUILD_BUG_ON(DEV_NAME_LEN
5060                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5061         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5062
5063         /* Record our major and minor device numbers. */
5064
5065         if (!single_major) {
5066                 ret = register_blkdev(0, rbd_dev->name);
5067                 if (ret < 0)
5068                         goto err_out_id;
5069
5070                 rbd_dev->major = ret;
5071                 rbd_dev->minor = 0;
5072         } else {
5073                 rbd_dev->major = rbd_major;
5074                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5075         }
5076
5077         /* Set up the blkdev mapping. */
5078
5079         ret = rbd_init_disk(rbd_dev);
5080         if (ret)
5081                 goto err_out_blkdev;
5082
5083         ret = rbd_dev_mapping_set(rbd_dev);
5084         if (ret)
5085                 goto err_out_disk;
5086         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5087         set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5088
5089         ret = rbd_bus_add_dev(rbd_dev);
5090         if (ret)
5091                 goto err_out_mapping;
5092
5093         /* Everything's ready.  Announce the disk to the world. */
5094
5095         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5096         add_disk(rbd_dev->disk);
5097
5098         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5099                 (unsigned long long) rbd_dev->mapping.size);
5100
5101         return ret;
5102
5103 err_out_mapping:
5104         rbd_dev_mapping_clear(rbd_dev);
5105 err_out_disk:
5106         rbd_free_disk(rbd_dev);
5107 err_out_blkdev:
5108         if (!single_major)
5109                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5110 err_out_id:
5111         rbd_dev_id_put(rbd_dev);
5112         rbd_dev_mapping_clear(rbd_dev);
5113
5114         return ret;
5115 }
5116
5117 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5118 {
5119         struct rbd_spec *spec = rbd_dev->spec;
5120         size_t size;
5121
5122         /* Record the header object name for this rbd image. */
5123
5124         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5125
5126         if (rbd_dev->image_format == 1)
5127                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5128         else
5129                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5130
5131         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5132         if (!rbd_dev->header_name)
5133                 return -ENOMEM;
5134
5135         if (rbd_dev->image_format == 1)
5136                 sprintf(rbd_dev->header_name, "%s%s",
5137                         spec->image_name, RBD_SUFFIX);
5138         else
5139                 sprintf(rbd_dev->header_name, "%s%s",
5140                         RBD_HEADER_PREFIX, spec->image_id);
5141         return 0;
5142 }
5143
5144 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5145 {
5146         rbd_dev_unprobe(rbd_dev);
5147         kfree(rbd_dev->header_name);
5148         rbd_dev->header_name = NULL;
5149         rbd_dev->image_format = 0;
5150         kfree(rbd_dev->spec->image_id);
5151         rbd_dev->spec->image_id = NULL;
5152
5153         rbd_dev_destroy(rbd_dev);
5154 }
5155
5156 /*
5157  * Probe for the existence of the header object for the given rbd
5158  * device.  If this image is the one being mapped (i.e., not a
5159  * parent), initiate a watch on its header object before using that
5160  * object to get detailed information about the rbd image.
5161  */
5162 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
5163 {
5164         int ret;
5165
5166         /*
5167          * Get the id from the image id object.  Unless there's an
5168          * error, rbd_dev->spec->image_id will be filled in with
5169          * a dynamically-allocated string, and rbd_dev->image_format
5170          * will be set to either 1 or 2.
5171          */
5172         ret = rbd_dev_image_id(rbd_dev);
5173         if (ret)
5174                 return ret;
5175         rbd_assert(rbd_dev->spec->image_id);
5176         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5177
5178         ret = rbd_dev_header_name(rbd_dev);
5179         if (ret)
5180                 goto err_out_format;
5181
5182         if (mapping) {
5183                 ret = rbd_dev_header_watch_sync(rbd_dev);
5184                 if (ret)
5185                         goto out_header_name;
5186         }
5187
5188         if (rbd_dev->image_format == 1)
5189                 ret = rbd_dev_v1_header_info(rbd_dev);
5190         else
5191                 ret = rbd_dev_v2_header_info(rbd_dev);
5192         if (ret)
5193                 goto err_out_watch;
5194
5195         ret = rbd_dev_spec_update(rbd_dev);
5196         if (ret)
5197                 goto err_out_probe;
5198
5199         ret = rbd_dev_probe_parent(rbd_dev);
5200         if (ret)
5201                 goto err_out_probe;
5202
5203         dout("discovered format %u image, header name is %s\n",
5204                 rbd_dev->image_format, rbd_dev->header_name);
5205
5206         return 0;
5207 err_out_probe:
5208         rbd_dev_unprobe(rbd_dev);
5209 err_out_watch:
5210         if (mapping)
5211                 rbd_dev_header_unwatch_sync(rbd_dev);
5212 out_header_name:
5213         kfree(rbd_dev->header_name);
5214         rbd_dev->header_name = NULL;
5215 err_out_format:
5216         rbd_dev->image_format = 0;
5217         kfree(rbd_dev->spec->image_id);
5218         rbd_dev->spec->image_id = NULL;
5219
5220         dout("probe failed, returning %d\n", ret);
5221
5222         return ret;
5223 }
5224
5225 static ssize_t do_rbd_add(struct bus_type *bus,
5226                           const char *buf,
5227                           size_t count)
5228 {
5229         struct rbd_device *rbd_dev = NULL;
5230         struct ceph_options *ceph_opts = NULL;
5231         struct rbd_options *rbd_opts = NULL;
5232         struct rbd_spec *spec = NULL;
5233         struct rbd_client *rbdc;
5234         bool read_only;
5235         int rc = -ENOMEM;
5236
5237         if (!try_module_get(THIS_MODULE))
5238                 return -ENODEV;
5239
5240         /* parse add command */
5241         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5242         if (rc < 0)
5243                 goto err_out_module;
5244         read_only = rbd_opts->read_only;
5245         kfree(rbd_opts);
5246         rbd_opts = NULL;        /* done with this */
5247
5248         rbdc = rbd_get_client(ceph_opts);
5249         if (IS_ERR(rbdc)) {
5250                 rc = PTR_ERR(rbdc);
5251                 goto err_out_args;
5252         }
5253
5254         /* pick the pool */
5255         rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5256         if (rc < 0)
5257                 goto err_out_client;
5258         spec->pool_id = (u64)rc;
5259
5260         /* The ceph file layout needs to fit pool id in 32 bits */
5261
5262         if (spec->pool_id > (u64)U32_MAX) {
5263                 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5264                                 (unsigned long long)spec->pool_id, U32_MAX);
5265                 rc = -EIO;
5266                 goto err_out_client;
5267         }
5268
5269         rbd_dev = rbd_dev_create(rbdc, spec);
5270         if (!rbd_dev)
5271                 goto err_out_client;
5272         rbdc = NULL;            /* rbd_dev now owns this */
5273         spec = NULL;            /* rbd_dev now owns this */
5274
5275         rc = rbd_dev_image_probe(rbd_dev, true);
5276         if (rc < 0)
5277                 goto err_out_rbd_dev;
5278
5279         /* If we are mapping a snapshot it must be marked read-only */
5280
5281         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5282                 read_only = true;
5283         rbd_dev->mapping.read_only = read_only;
5284
5285         rc = rbd_dev_device_setup(rbd_dev);
5286         if (rc) {
5287                 /*
5288                  * rbd_dev_header_unwatch_sync() can't be moved into
5289                  * rbd_dev_image_release() without refactoring, see
5290                  * commit 1f3ef78861ac.
5291                  */
5292                 rbd_dev_header_unwatch_sync(rbd_dev);
5293                 rbd_dev_image_release(rbd_dev);
5294                 goto err_out_module;
5295         }
5296
5297         return count;
5298
5299 err_out_rbd_dev:
5300         rbd_dev_destroy(rbd_dev);
5301 err_out_client:
5302         rbd_put_client(rbdc);
5303 err_out_args:
5304         rbd_spec_put(spec);
5305 err_out_module:
5306         module_put(THIS_MODULE);
5307
5308         dout("Error adding device %s\n", buf);
5309
5310         return (ssize_t)rc;
5311 }
5312
5313 static ssize_t rbd_add(struct bus_type *bus,
5314                        const char *buf,
5315                        size_t count)
5316 {
5317         if (single_major)
5318                 return -EINVAL;
5319
5320         return do_rbd_add(bus, buf, count);
5321 }
5322
5323 static ssize_t rbd_add_single_major(struct bus_type *bus,
5324                                     const char *buf,
5325                                     size_t count)
5326 {
5327         return do_rbd_add(bus, buf, count);
5328 }
5329
5330 static void rbd_dev_device_release(struct device *dev)
5331 {
5332         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5333
5334         rbd_free_disk(rbd_dev);
5335         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5336         rbd_dev_mapping_clear(rbd_dev);
5337         if (!single_major)
5338                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5339         rbd_dev_id_put(rbd_dev);
5340         rbd_dev_mapping_clear(rbd_dev);
5341 }
5342
5343 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5344 {
5345         while (rbd_dev->parent) {
5346                 struct rbd_device *first = rbd_dev;
5347                 struct rbd_device *second = first->parent;
5348                 struct rbd_device *third;
5349
5350                 /*
5351                  * Follow to the parent with no grandparent and
5352                  * remove it.
5353                  */
5354                 while (second && (third = second->parent)) {
5355                         first = second;
5356                         second = third;
5357                 }
5358                 rbd_assert(second);
5359                 rbd_dev_image_release(second);
5360                 first->parent = NULL;
5361                 first->parent_overlap = 0;
5362
5363                 rbd_assert(first->parent_spec);
5364                 rbd_spec_put(first->parent_spec);
5365                 first->parent_spec = NULL;
5366         }
5367 }
5368
5369 static ssize_t do_rbd_remove(struct bus_type *bus,
5370                              const char *buf,
5371                              size_t count)
5372 {
5373         struct rbd_device *rbd_dev = NULL;
5374         struct list_head *tmp;
5375         int dev_id;
5376         unsigned long ul;
5377         bool already = false;
5378         int ret;
5379
5380         ret = kstrtoul(buf, 10, &ul);
5381         if (ret)
5382                 return ret;
5383
5384         /* convert to int; abort if we lost anything in the conversion */
5385         dev_id = (int)ul;
5386         if (dev_id != ul)
5387                 return -EINVAL;
5388
5389         ret = -ENOENT;
5390         spin_lock(&rbd_dev_list_lock);
5391         list_for_each(tmp, &rbd_dev_list) {
5392                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5393                 if (rbd_dev->dev_id == dev_id) {
5394                         ret = 0;
5395                         break;
5396                 }
5397         }
5398         if (!ret) {
5399                 spin_lock_irq(&rbd_dev->lock);
5400                 if (rbd_dev->open_count)
5401                         ret = -EBUSY;
5402                 else
5403                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5404                                                         &rbd_dev->flags);
5405                 spin_unlock_irq(&rbd_dev->lock);
5406         }
5407         spin_unlock(&rbd_dev_list_lock);
5408         if (ret < 0 || already)
5409                 return ret;
5410
5411         rbd_dev_header_unwatch_sync(rbd_dev);
5412         /*
5413          * flush remaining watch callbacks - these must be complete
5414          * before the osd_client is shutdown
5415          */
5416         dout("%s: flushing notifies", __func__);
5417         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5418
5419         /*
5420          * Don't free anything from rbd_dev->disk until after all
5421          * notifies are completely processed. Otherwise
5422          * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5423          * in a potential use after free of rbd_dev->disk or rbd_dev.
5424          */
5425         rbd_bus_del_dev(rbd_dev);
5426         rbd_dev_image_release(rbd_dev);
5427         module_put(THIS_MODULE);
5428
5429         return count;
5430 }
5431
5432 static ssize_t rbd_remove(struct bus_type *bus,
5433                           const char *buf,
5434                           size_t count)
5435 {
5436         if (single_major)
5437                 return -EINVAL;
5438
5439         return do_rbd_remove(bus, buf, count);
5440 }
5441
5442 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5443                                        const char *buf,
5444                                        size_t count)
5445 {
5446         return do_rbd_remove(bus, buf, count);
5447 }
5448
5449 /*
5450  * create control files in sysfs
5451  * /sys/bus/rbd/...
5452  */
5453 static int rbd_sysfs_init(void)
5454 {
5455         int ret;
5456
5457         ret = device_register(&rbd_root_dev);
5458         if (ret < 0)
5459                 return ret;
5460
5461         ret = bus_register(&rbd_bus_type);
5462         if (ret < 0)
5463                 device_unregister(&rbd_root_dev);
5464
5465         return ret;
5466 }
5467
5468 static void rbd_sysfs_cleanup(void)
5469 {
5470         bus_unregister(&rbd_bus_type);
5471         device_unregister(&rbd_root_dev);
5472 }
5473
5474 static int rbd_slab_init(void)
5475 {
5476         rbd_assert(!rbd_img_request_cache);
5477         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5478                                         sizeof (struct rbd_img_request),
5479                                         __alignof__(struct rbd_img_request),
5480                                         0, NULL);
5481         if (!rbd_img_request_cache)
5482                 return -ENOMEM;
5483
5484         rbd_assert(!rbd_obj_request_cache);
5485         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5486                                         sizeof (struct rbd_obj_request),
5487                                         __alignof__(struct rbd_obj_request),
5488                                         0, NULL);
5489         if (!rbd_obj_request_cache)
5490                 goto out_err;
5491
5492         rbd_assert(!rbd_segment_name_cache);
5493         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5494                                         CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5495         if (rbd_segment_name_cache)
5496                 return 0;
5497 out_err:
5498         if (rbd_obj_request_cache) {
5499                 kmem_cache_destroy(rbd_obj_request_cache);
5500                 rbd_obj_request_cache = NULL;
5501         }
5502
5503         kmem_cache_destroy(rbd_img_request_cache);
5504         rbd_img_request_cache = NULL;
5505
5506         return -ENOMEM;
5507 }
5508
5509 static void rbd_slab_exit(void)
5510 {
5511         rbd_assert(rbd_segment_name_cache);
5512         kmem_cache_destroy(rbd_segment_name_cache);
5513         rbd_segment_name_cache = NULL;
5514
5515         rbd_assert(rbd_obj_request_cache);
5516         kmem_cache_destroy(rbd_obj_request_cache);
5517         rbd_obj_request_cache = NULL;
5518
5519         rbd_assert(rbd_img_request_cache);
5520         kmem_cache_destroy(rbd_img_request_cache);
5521         rbd_img_request_cache = NULL;
5522 }
5523
5524 static int __init rbd_init(void)
5525 {
5526         int rc;
5527
5528         if (!libceph_compatible(NULL)) {
5529                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5530                 return -EINVAL;
5531         }
5532
5533         rc = rbd_slab_init();
5534         if (rc)
5535                 return rc;
5536
5537         if (single_major) {
5538                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5539                 if (rbd_major < 0) {
5540                         rc = rbd_major;
5541                         goto err_out_slab;
5542                 }
5543         }
5544
5545         rc = rbd_sysfs_init();
5546         if (rc)
5547                 goto err_out_blkdev;
5548
5549         if (single_major)
5550                 pr_info("loaded (major %d)\n", rbd_major);
5551         else
5552                 pr_info("loaded\n");
5553
5554         return 0;
5555
5556 err_out_blkdev:
5557         if (single_major)
5558                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5559 err_out_slab:
5560         rbd_slab_exit();
5561         return rc;
5562 }
5563
5564 static void __exit rbd_exit(void)
5565 {
5566         ida_destroy(&rbd_dev_id_ida);
5567         rbd_sysfs_cleanup();
5568         if (single_major)
5569                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5570         rbd_slab_exit();
5571 }
5572
5573 module_init(rbd_init);
5574 module_exit(rbd_exit);
5575
5576 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5577 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5578 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5579 /* following authorship retained from original osdblk.c */
5580 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5581
5582 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5583 MODULE_LICENSE("GPL");