3 rbd.c -- Export ceph rados objects as a Linux block device
6 based on drivers/block/osdblk.c:
8 Copyright 2009 Red Hat, Inc.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 For usage instructions, please refer to:
27 Documentation/ABI/testing/sysfs-bus-rbd
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44 #include <linux/idr.h>
46 #include "rbd_types.h"
48 #define RBD_DEBUG /* Activate rbd_assert() calls */
51 * The basic unit of block I/O is a sector. It is interpreted in a
52 * number of contexts in Linux (blk, bio, genhd), but the default is
53 * universally 512 bytes. These symbols are just slightly more
54 * meaningful than the bare numbers they represent.
56 #define SECTOR_SHIFT 9
57 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
60 * Increment the given counter and return its updated value.
61 * If the counter is already 0 it will not be incremented.
62 * If the counter is already at its maximum value returns
63 * -EINVAL without updating it.
65 static int atomic_inc_return_safe(atomic_t *v)
69 counter = (unsigned int)__atomic_add_unless(v, 1, 0);
70 if (counter <= (unsigned int)INT_MAX)
78 /* Decrement the counter. Return the resulting value, or -EINVAL */
79 static int atomic_dec_return_safe(atomic_t *v)
83 counter = atomic_dec_return(v);
92 #define RBD_DRV_NAME "rbd"
94 #define RBD_MINORS_PER_MAJOR 256
95 #define RBD_SINGLE_MAJOR_PART_SHIFT 4
97 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
98 #define RBD_MAX_SNAP_NAME_LEN \
99 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
101 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
103 #define RBD_SNAP_HEAD_NAME "-"
105 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
107 /* This allows a single page to hold an image name sent by OSD */
108 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
109 #define RBD_IMAGE_ID_LEN_MAX 64
111 #define RBD_OBJ_PREFIX_LEN_MAX 64
115 #define RBD_FEATURE_LAYERING (1<<0)
116 #define RBD_FEATURE_STRIPINGV2 (1<<1)
117 #define RBD_FEATURES_ALL \
118 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
120 /* Features supported by this (client software) implementation. */
122 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
125 * An RBD device name will be "rbd#", where the "rbd" comes from
126 * RBD_DRV_NAME above, and # is a unique integer identifier.
127 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
128 * enough to hold all possible device names.
130 #define DEV_NAME_LEN 32
131 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
134 * block device image metadata (in-memory version)
136 struct rbd_image_header {
137 /* These six fields never change for a given rbd image */
144 u64 features; /* Might be changeable someday? */
146 /* The remaining fields need to be updated occasionally */
148 struct ceph_snap_context *snapc;
149 char *snap_names; /* format 1 only */
150 u64 *snap_sizes; /* format 1 only */
154 * An rbd image specification.
156 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
157 * identify an image. Each rbd_dev structure includes a pointer to
158 * an rbd_spec structure that encapsulates this identity.
160 * Each of the id's in an rbd_spec has an associated name. For a
161 * user-mapped image, the names are supplied and the id's associated
162 * with them are looked up. For a layered image, a parent image is
163 * defined by the tuple, and the names are looked up.
165 * An rbd_dev structure contains a parent_spec pointer which is
166 * non-null if the image it represents is a child in a layered
167 * image. This pointer will refer to the rbd_spec structure used
168 * by the parent rbd_dev for its own identity (i.e., the structure
169 * is shared between the parent and child).
171 * Since these structures are populated once, during the discovery
172 * phase of image construction, they are effectively immutable so
173 * we make no effort to synchronize access to them.
175 * Note that code herein does not assume the image name is known (it
176 * could be a null pointer).
180 const char *pool_name;
182 const char *image_id;
183 const char *image_name;
186 const char *snap_name;
192 * an instance of the client. multiple devices may share an rbd client.
195 struct ceph_client *client;
197 struct list_head node;
200 struct rbd_img_request;
201 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
203 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
205 struct rbd_obj_request;
206 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
208 enum obj_request_type {
209 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
213 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */
214 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */
215 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */
216 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */
219 struct rbd_obj_request {
220 const char *object_name;
221 u64 offset; /* object start byte */
222 u64 length; /* bytes from offset */
226 * An object request associated with an image will have its
227 * img_data flag set; a standalone object request will not.
229 * A standalone object request will have which == BAD_WHICH
230 * and a null obj_request pointer.
232 * An object request initiated in support of a layered image
233 * object (to check for its existence before a write) will
234 * have which == BAD_WHICH and a non-null obj_request pointer.
236 * Finally, an object request for rbd image data will have
237 * which != BAD_WHICH, and will have a non-null img_request
238 * pointer. The value of which will be in the range
239 * 0..(img_request->obj_request_count-1).
242 struct rbd_obj_request *obj_request; /* STAT op */
244 struct rbd_img_request *img_request;
246 /* links for img_request->obj_requests list */
247 struct list_head links;
250 u32 which; /* posn image request list */
252 enum obj_request_type type;
254 struct bio *bio_list;
260 struct page **copyup_pages;
261 u32 copyup_page_count;
263 struct ceph_osd_request *osd_req;
265 u64 xferred; /* bytes transferred */
268 rbd_obj_callback_t callback;
269 struct completion completion;
275 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */
276 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
277 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
280 struct rbd_img_request {
281 struct rbd_device *rbd_dev;
282 u64 offset; /* starting image byte offset */
283 u64 length; /* byte count from offset */
286 u64 snap_id; /* for reads */
287 struct ceph_snap_context *snapc; /* for writes */
290 struct request *rq; /* block request */
291 struct rbd_obj_request *obj_request; /* obj req initiator */
293 struct page **copyup_pages;
294 u32 copyup_page_count;
295 spinlock_t completion_lock;/* protects next_completion */
297 rbd_img_callback_t callback;
298 u64 xferred;/* aggregate bytes transferred */
299 int result; /* first nonzero obj_request result */
301 u32 obj_request_count;
302 struct list_head obj_requests; /* rbd_obj_request structs */
307 #define for_each_obj_request(ireq, oreq) \
308 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
309 #define for_each_obj_request_from(ireq, oreq) \
310 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
311 #define for_each_obj_request_safe(ireq, oreq, n) \
312 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
324 int dev_id; /* blkdev unique id */
326 int major; /* blkdev assigned major */
328 struct gendisk *disk; /* blkdev's gendisk and rq */
330 u32 image_format; /* Either 1 or 2 */
331 struct rbd_client *rbd_client;
333 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
335 spinlock_t lock; /* queue, flags, open_count */
337 struct rbd_image_header header;
338 unsigned long flags; /* possibly lock protected */
339 struct rbd_spec *spec;
343 struct ceph_file_layout layout;
345 struct ceph_osd_event *watch_event;
346 struct rbd_obj_request *watch_request;
348 struct rbd_spec *parent_spec;
351 struct rbd_device *parent;
353 /* protects updating the header */
354 struct rw_semaphore header_rwsem;
356 struct rbd_mapping mapping;
358 struct list_head node;
362 unsigned long open_count; /* protected by lock */
366 * Flag bits for rbd_dev->flags. If atomicity is required,
367 * rbd_dev->lock is used to protect access.
369 * Currently, only the "removing" flag (which is coupled with the
370 * "open_count" field) requires atomic access.
373 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
374 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
377 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */
379 static LIST_HEAD(rbd_dev_list); /* devices */
380 static DEFINE_SPINLOCK(rbd_dev_list_lock);
382 static LIST_HEAD(rbd_client_list); /* clients */
383 static DEFINE_SPINLOCK(rbd_client_list_lock);
385 /* Slab caches for frequently-allocated structures */
387 static struct kmem_cache *rbd_img_request_cache;
388 static struct kmem_cache *rbd_obj_request_cache;
389 static struct kmem_cache *rbd_segment_name_cache;
391 static int rbd_major;
392 static DEFINE_IDA(rbd_dev_id_ida);
395 * Default to false for now, as single-major requires >= 0.75 version of
396 * userspace rbd utility.
398 static bool single_major = false;
399 module_param(single_major, bool, S_IRUGO);
400 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
402 static int rbd_img_request_submit(struct rbd_img_request *img_request);
404 static void rbd_dev_device_release(struct device *dev);
406 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
408 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
410 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
412 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
414 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
415 static void rbd_spec_put(struct rbd_spec *spec);
417 static int rbd_dev_id_to_minor(int dev_id)
419 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
422 static int minor_to_rbd_dev_id(int minor)
424 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
427 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
428 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
429 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
430 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
432 static struct attribute *rbd_bus_attrs[] = {
434 &bus_attr_remove.attr,
435 &bus_attr_add_single_major.attr,
436 &bus_attr_remove_single_major.attr,
440 static umode_t rbd_bus_is_visible(struct kobject *kobj,
441 struct attribute *attr, int index)
444 (attr == &bus_attr_add_single_major.attr ||
445 attr == &bus_attr_remove_single_major.attr))
451 static const struct attribute_group rbd_bus_group = {
452 .attrs = rbd_bus_attrs,
453 .is_visible = rbd_bus_is_visible,
455 __ATTRIBUTE_GROUPS(rbd_bus);
457 static struct bus_type rbd_bus_type = {
459 .bus_groups = rbd_bus_groups,
462 static void rbd_root_dev_release(struct device *dev)
466 static struct device rbd_root_dev = {
468 .release = rbd_root_dev_release,
471 static __printf(2, 3)
472 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
474 struct va_format vaf;
482 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
483 else if (rbd_dev->disk)
484 printk(KERN_WARNING "%s: %s: %pV\n",
485 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
486 else if (rbd_dev->spec && rbd_dev->spec->image_name)
487 printk(KERN_WARNING "%s: image %s: %pV\n",
488 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
489 else if (rbd_dev->spec && rbd_dev->spec->image_id)
490 printk(KERN_WARNING "%s: id %s: %pV\n",
491 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
493 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
494 RBD_DRV_NAME, rbd_dev, &vaf);
499 #define rbd_assert(expr) \
500 if (unlikely(!(expr))) { \
501 printk(KERN_ERR "\nAssertion failure in %s() " \
503 "\trbd_assert(%s);\n\n", \
504 __func__, __LINE__, #expr); \
507 #else /* !RBD_DEBUG */
508 # define rbd_assert(expr) ((void) 0)
509 #endif /* !RBD_DEBUG */
511 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
512 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
513 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
515 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
516 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
517 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
518 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
520 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
521 u8 *order, u64 *snap_size);
522 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
524 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
526 static int rbd_open(struct block_device *bdev, fmode_t mode)
528 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
529 bool removing = false;
531 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
534 spin_lock_irq(&rbd_dev->lock);
535 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
538 rbd_dev->open_count++;
539 spin_unlock_irq(&rbd_dev->lock);
543 (void) get_device(&rbd_dev->dev);
544 set_device_ro(bdev, rbd_dev->mapping.read_only);
549 static void rbd_release(struct gendisk *disk, fmode_t mode)
551 struct rbd_device *rbd_dev = disk->private_data;
552 unsigned long open_count_before;
554 spin_lock_irq(&rbd_dev->lock);
555 open_count_before = rbd_dev->open_count--;
556 spin_unlock_irq(&rbd_dev->lock);
557 rbd_assert(open_count_before > 0);
559 put_device(&rbd_dev->dev);
562 static const struct block_device_operations rbd_bd_ops = {
563 .owner = THIS_MODULE,
565 .release = rbd_release,
569 * Initialize an rbd client instance. Success or not, this function
570 * consumes ceph_opts. Caller holds client_mutex.
572 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
574 struct rbd_client *rbdc;
577 dout("%s:\n", __func__);
578 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
582 kref_init(&rbdc->kref);
583 INIT_LIST_HEAD(&rbdc->node);
585 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
586 if (IS_ERR(rbdc->client))
588 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
590 ret = ceph_open_session(rbdc->client);
594 spin_lock(&rbd_client_list_lock);
595 list_add_tail(&rbdc->node, &rbd_client_list);
596 spin_unlock(&rbd_client_list_lock);
598 dout("%s: rbdc %p\n", __func__, rbdc);
602 ceph_destroy_client(rbdc->client);
607 ceph_destroy_options(ceph_opts);
608 dout("%s: error %d\n", __func__, ret);
613 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
615 kref_get(&rbdc->kref);
621 * Find a ceph client with specific addr and configuration. If
622 * found, bump its reference count.
624 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
626 struct rbd_client *client_node;
629 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
632 spin_lock(&rbd_client_list_lock);
633 list_for_each_entry(client_node, &rbd_client_list, node) {
634 if (!ceph_compare_options(ceph_opts, client_node->client)) {
635 __rbd_get_client(client_node);
641 spin_unlock(&rbd_client_list_lock);
643 return found ? client_node : NULL;
653 /* string args above */
656 /* Boolean args above */
660 static match_table_t rbd_opts_tokens = {
662 /* string args above */
663 {Opt_read_only, "read_only"},
664 {Opt_read_only, "ro"}, /* Alternate spelling */
665 {Opt_read_write, "read_write"},
666 {Opt_read_write, "rw"}, /* Alternate spelling */
667 /* Boolean args above */
675 #define RBD_READ_ONLY_DEFAULT false
677 static int parse_rbd_opts_token(char *c, void *private)
679 struct rbd_options *rbd_opts = private;
680 substring_t argstr[MAX_OPT_ARGS];
681 int token, intval, ret;
683 token = match_token(c, rbd_opts_tokens, argstr);
687 if (token < Opt_last_int) {
688 ret = match_int(&argstr[0], &intval);
690 pr_err("bad mount option arg (not int) "
694 dout("got int token %d val %d\n", token, intval);
695 } else if (token > Opt_last_int && token < Opt_last_string) {
696 dout("got string token %d val %s\n", token,
698 } else if (token > Opt_last_string && token < Opt_last_bool) {
699 dout("got Boolean token %d\n", token);
701 dout("got token %d\n", token);
706 rbd_opts->read_only = true;
709 rbd_opts->read_only = false;
719 * Get a ceph client with specific addr and configuration, if one does
720 * not exist create it. Either way, ceph_opts is consumed by this
723 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
725 struct rbd_client *rbdc;
727 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
728 rbdc = rbd_client_find(ceph_opts);
729 if (rbdc) /* using an existing client */
730 ceph_destroy_options(ceph_opts);
732 rbdc = rbd_client_create(ceph_opts);
733 mutex_unlock(&client_mutex);
739 * Destroy ceph client
741 * Caller must hold rbd_client_list_lock.
743 static void rbd_client_release(struct kref *kref)
745 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
747 dout("%s: rbdc %p\n", __func__, rbdc);
748 spin_lock(&rbd_client_list_lock);
749 list_del(&rbdc->node);
750 spin_unlock(&rbd_client_list_lock);
752 ceph_destroy_client(rbdc->client);
757 * Drop reference to ceph client node. If it's not referenced anymore, release
760 static void rbd_put_client(struct rbd_client *rbdc)
763 kref_put(&rbdc->kref, rbd_client_release);
766 static bool rbd_image_format_valid(u32 image_format)
768 return image_format == 1 || image_format == 2;
771 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
776 /* The header has to start with the magic rbd header text */
777 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
780 /* The bio layer requires at least sector-sized I/O */
782 if (ondisk->options.order < SECTOR_SHIFT)
785 /* If we use u64 in a few spots we may be able to loosen this */
787 if (ondisk->options.order > 8 * sizeof (int) - 1)
791 * The size of a snapshot header has to fit in a size_t, and
792 * that limits the number of snapshots.
794 snap_count = le32_to_cpu(ondisk->snap_count);
795 size = SIZE_MAX - sizeof (struct ceph_snap_context);
796 if (snap_count > size / sizeof (__le64))
800 * Not only that, but the size of the entire the snapshot
801 * header must also be representable in a size_t.
803 size -= snap_count * sizeof (__le64);
804 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
811 * Fill an rbd image header with information from the given format 1
814 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
815 struct rbd_image_header_ondisk *ondisk)
817 struct rbd_image_header *header = &rbd_dev->header;
818 bool first_time = header->object_prefix == NULL;
819 struct ceph_snap_context *snapc;
820 char *object_prefix = NULL;
821 char *snap_names = NULL;
822 u64 *snap_sizes = NULL;
828 /* Allocate this now to avoid having to handle failure below */
833 len = strnlen(ondisk->object_prefix,
834 sizeof (ondisk->object_prefix));
835 object_prefix = kmalloc(len + 1, GFP_KERNEL);
838 memcpy(object_prefix, ondisk->object_prefix, len);
839 object_prefix[len] = '\0';
842 /* Allocate the snapshot context and fill it in */
844 snap_count = le32_to_cpu(ondisk->snap_count);
845 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
848 snapc->seq = le64_to_cpu(ondisk->snap_seq);
850 struct rbd_image_snap_ondisk *snaps;
851 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
853 /* We'll keep a copy of the snapshot names... */
855 if (snap_names_len > (u64)SIZE_MAX)
857 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
861 /* ...as well as the array of their sizes. */
863 size = snap_count * sizeof (*header->snap_sizes);
864 snap_sizes = kmalloc(size, GFP_KERNEL);
869 * Copy the names, and fill in each snapshot's id
872 * Note that rbd_dev_v1_header_info() guarantees the
873 * ondisk buffer we're working with has
874 * snap_names_len bytes beyond the end of the
875 * snapshot id array, this memcpy() is safe.
877 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
878 snaps = ondisk->snaps;
879 for (i = 0; i < snap_count; i++) {
880 snapc->snaps[i] = le64_to_cpu(snaps[i].id);
881 snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
885 /* We won't fail any more, fill in the header */
888 header->object_prefix = object_prefix;
889 header->obj_order = ondisk->options.order;
890 header->crypt_type = ondisk->options.crypt_type;
891 header->comp_type = ondisk->options.comp_type;
892 /* The rest aren't used for format 1 images */
893 header->stripe_unit = 0;
894 header->stripe_count = 0;
895 header->features = 0;
897 ceph_put_snap_context(header->snapc);
898 kfree(header->snap_names);
899 kfree(header->snap_sizes);
902 /* The remaining fields always get updated (when we refresh) */
904 header->image_size = le64_to_cpu(ondisk->image_size);
905 header->snapc = snapc;
906 header->snap_names = snap_names;
907 header->snap_sizes = snap_sizes;
909 /* Make sure mapping size is consistent with header info */
911 if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
912 if (rbd_dev->mapping.size != header->image_size)
913 rbd_dev->mapping.size = header->image_size;
921 ceph_put_snap_context(snapc);
922 kfree(object_prefix);
927 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
929 const char *snap_name;
931 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
933 /* Skip over names until we find the one we are looking for */
935 snap_name = rbd_dev->header.snap_names;
937 snap_name += strlen(snap_name) + 1;
939 return kstrdup(snap_name, GFP_KERNEL);
943 * Snapshot id comparison function for use with qsort()/bsearch().
944 * Note that result is for snapshots in *descending* order.
946 static int snapid_compare_reverse(const void *s1, const void *s2)
948 u64 snap_id1 = *(u64 *)s1;
949 u64 snap_id2 = *(u64 *)s2;
951 if (snap_id1 < snap_id2)
953 return snap_id1 == snap_id2 ? 0 : -1;
957 * Search a snapshot context to see if the given snapshot id is
960 * Returns the position of the snapshot id in the array if it's found,
961 * or BAD_SNAP_INDEX otherwise.
963 * Note: The snapshot array is in kept sorted (by the osd) in
964 * reverse order, highest snapshot id first.
966 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
968 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
971 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
972 sizeof (snap_id), snapid_compare_reverse);
974 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
977 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
981 const char *snap_name;
983 which = rbd_dev_snap_index(rbd_dev, snap_id);
984 if (which == BAD_SNAP_INDEX)
985 return ERR_PTR(-ENOENT);
987 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
988 return snap_name ? snap_name : ERR_PTR(-ENOMEM);
991 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
993 if (snap_id == CEPH_NOSNAP)
994 return RBD_SNAP_HEAD_NAME;
996 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
997 if (rbd_dev->image_format == 1)
998 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1000 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1003 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1006 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1007 if (snap_id == CEPH_NOSNAP) {
1008 *snap_size = rbd_dev->header.image_size;
1009 } else if (rbd_dev->image_format == 1) {
1012 which = rbd_dev_snap_index(rbd_dev, snap_id);
1013 if (which == BAD_SNAP_INDEX)
1016 *snap_size = rbd_dev->header.snap_sizes[which];
1021 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1030 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1033 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1034 if (snap_id == CEPH_NOSNAP) {
1035 *snap_features = rbd_dev->header.features;
1036 } else if (rbd_dev->image_format == 1) {
1037 *snap_features = 0; /* No features for format 1 */
1042 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1046 *snap_features = features;
1051 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1053 u64 snap_id = rbd_dev->spec->snap_id;
1058 ret = rbd_snap_size(rbd_dev, snap_id, &size);
1061 ret = rbd_snap_features(rbd_dev, snap_id, &features);
1065 rbd_dev->mapping.size = size;
1066 rbd_dev->mapping.features = features;
1071 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1073 rbd_dev->mapping.size = 0;
1074 rbd_dev->mapping.features = 0;
1077 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1084 name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1087 segment = offset >> rbd_dev->header.obj_order;
1088 name_format = "%s.%012llx";
1089 if (rbd_dev->image_format == 2)
1090 name_format = "%s.%016llx";
1091 ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1092 rbd_dev->header.object_prefix, segment);
1093 if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1094 pr_err("error formatting segment name for #%llu (%d)\n",
1103 static void rbd_segment_name_free(const char *name)
1105 /* The explicit cast here is needed to drop the const qualifier */
1107 kmem_cache_free(rbd_segment_name_cache, (void *)name);
1110 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1112 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1114 return offset & (segment_size - 1);
1117 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1118 u64 offset, u64 length)
1120 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1122 offset &= segment_size - 1;
1124 rbd_assert(length <= U64_MAX - offset);
1125 if (offset + length > segment_size)
1126 length = segment_size - offset;
1132 * returns the size of an object in the image
1134 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1136 return 1 << header->obj_order;
1143 static void bio_chain_put(struct bio *chain)
1149 chain = chain->bi_next;
1155 * zeros a bio chain, starting at specific offset
1157 static void zero_bio_chain(struct bio *chain, int start_ofs)
1160 struct bvec_iter iter;
1161 unsigned long flags;
1166 bio_for_each_segment(bv, chain, iter) {
1167 if (pos + bv.bv_len > start_ofs) {
1168 int remainder = max(start_ofs - pos, 0);
1169 buf = bvec_kmap_irq(&bv, &flags);
1170 memset(buf + remainder, 0,
1171 bv.bv_len - remainder);
1172 flush_dcache_page(bv.bv_page);
1173 bvec_kunmap_irq(buf, &flags);
1178 chain = chain->bi_next;
1183 * similar to zero_bio_chain(), zeros data defined by a page array,
1184 * starting at the given byte offset from the start of the array and
1185 * continuing up to the given end offset. The pages array is
1186 * assumed to be big enough to hold all bytes up to the end.
1188 static void zero_pages(struct page **pages, u64 offset, u64 end)
1190 struct page **page = &pages[offset >> PAGE_SHIFT];
1192 rbd_assert(end > offset);
1193 rbd_assert(end - offset <= (u64)SIZE_MAX);
1194 while (offset < end) {
1197 unsigned long flags;
1200 page_offset = offset & ~PAGE_MASK;
1201 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1202 local_irq_save(flags);
1203 kaddr = kmap_atomic(*page);
1204 memset(kaddr + page_offset, 0, length);
1205 flush_dcache_page(*page);
1206 kunmap_atomic(kaddr);
1207 local_irq_restore(flags);
1215 * Clone a portion of a bio, starting at the given byte offset
1216 * and continuing for the number of bytes indicated.
1218 static struct bio *bio_clone_range(struct bio *bio_src,
1219 unsigned int offset,
1225 bio = bio_clone(bio_src, gfpmask);
1227 return NULL; /* ENOMEM */
1229 bio_advance(bio, offset);
1230 bio->bi_iter.bi_size = len;
1236 * Clone a portion of a bio chain, starting at the given byte offset
1237 * into the first bio in the source chain and continuing for the
1238 * number of bytes indicated. The result is another bio chain of
1239 * exactly the given length, or a null pointer on error.
1241 * The bio_src and offset parameters are both in-out. On entry they
1242 * refer to the first source bio and the offset into that bio where
1243 * the start of data to be cloned is located.
1245 * On return, bio_src is updated to refer to the bio in the source
1246 * chain that contains first un-cloned byte, and *offset will
1247 * contain the offset of that byte within that bio.
1249 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1250 unsigned int *offset,
1254 struct bio *bi = *bio_src;
1255 unsigned int off = *offset;
1256 struct bio *chain = NULL;
1259 /* Build up a chain of clone bios up to the limit */
1261 if (!bi || off >= bi->bi_iter.bi_size || !len)
1262 return NULL; /* Nothing to clone */
1266 unsigned int bi_size;
1270 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1271 goto out_err; /* EINVAL; ran out of bio's */
1273 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1274 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1276 goto out_err; /* ENOMEM */
1279 end = &bio->bi_next;
1282 if (off == bi->bi_iter.bi_size) {
1293 bio_chain_put(chain);
1299 * The default/initial value for all object request flags is 0. For
1300 * each flag, once its value is set to 1 it is never reset to 0
1303 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1305 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1306 struct rbd_device *rbd_dev;
1308 rbd_dev = obj_request->img_request->rbd_dev;
1309 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1314 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1317 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1320 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1322 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1323 struct rbd_device *rbd_dev = NULL;
1325 if (obj_request_img_data_test(obj_request))
1326 rbd_dev = obj_request->img_request->rbd_dev;
1327 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1332 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1335 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1339 * This sets the KNOWN flag after (possibly) setting the EXISTS
1340 * flag. The latter is set based on the "exists" value provided.
1342 * Note that for our purposes once an object exists it never goes
1343 * away again. It's possible that the response from two existence
1344 * checks are separated by the creation of the target object, and
1345 * the first ("doesn't exist") response arrives *after* the second
1346 * ("does exist"). In that case we ignore the second one.
1348 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1352 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1353 set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1357 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1360 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1363 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1366 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1369 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1371 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1372 atomic_read(&obj_request->kref.refcount));
1373 kref_get(&obj_request->kref);
1376 static void rbd_obj_request_destroy(struct kref *kref);
1377 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1379 rbd_assert(obj_request != NULL);
1380 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1381 atomic_read(&obj_request->kref.refcount));
1382 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1385 static bool img_request_child_test(struct rbd_img_request *img_request);
1386 static void rbd_parent_request_destroy(struct kref *kref);
1387 static void rbd_img_request_destroy(struct kref *kref);
1388 static void rbd_img_request_put(struct rbd_img_request *img_request)
1390 rbd_assert(img_request != NULL);
1391 dout("%s: img %p (was %d)\n", __func__, img_request,
1392 atomic_read(&img_request->kref.refcount));
1393 if (img_request_child_test(img_request))
1394 kref_put(&img_request->kref, rbd_parent_request_destroy);
1396 kref_put(&img_request->kref, rbd_img_request_destroy);
1399 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1400 struct rbd_obj_request *obj_request)
1402 rbd_assert(obj_request->img_request == NULL);
1404 /* Image request now owns object's original reference */
1405 obj_request->img_request = img_request;
1406 obj_request->which = img_request->obj_request_count;
1407 rbd_assert(!obj_request_img_data_test(obj_request));
1408 obj_request_img_data_set(obj_request);
1409 rbd_assert(obj_request->which != BAD_WHICH);
1410 img_request->obj_request_count++;
1411 list_add_tail(&obj_request->links, &img_request->obj_requests);
1412 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1413 obj_request->which);
1416 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1417 struct rbd_obj_request *obj_request)
1419 rbd_assert(obj_request->which != BAD_WHICH);
1421 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1422 obj_request->which);
1423 list_del(&obj_request->links);
1424 rbd_assert(img_request->obj_request_count > 0);
1425 img_request->obj_request_count--;
1426 rbd_assert(obj_request->which == img_request->obj_request_count);
1427 obj_request->which = BAD_WHICH;
1428 rbd_assert(obj_request_img_data_test(obj_request));
1429 rbd_assert(obj_request->img_request == img_request);
1430 obj_request->img_request = NULL;
1431 obj_request->callback = NULL;
1432 rbd_obj_request_put(obj_request);
1435 static bool obj_request_type_valid(enum obj_request_type type)
1438 case OBJ_REQUEST_NODATA:
1439 case OBJ_REQUEST_BIO:
1440 case OBJ_REQUEST_PAGES:
1447 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1448 struct rbd_obj_request *obj_request)
1450 dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1452 return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1455 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1458 dout("%s: img %p\n", __func__, img_request);
1461 * If no error occurred, compute the aggregate transfer
1462 * count for the image request. We could instead use
1463 * atomic64_cmpxchg() to update it as each object request
1464 * completes; not clear which way is better off hand.
1466 if (!img_request->result) {
1467 struct rbd_obj_request *obj_request;
1470 for_each_obj_request(img_request, obj_request)
1471 xferred += obj_request->xferred;
1472 img_request->xferred = xferred;
1475 if (img_request->callback)
1476 img_request->callback(img_request);
1478 rbd_img_request_put(img_request);
1481 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1483 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1485 dout("%s: obj %p\n", __func__, obj_request);
1487 return wait_for_completion_interruptible(&obj_request->completion);
1491 * The default/initial value for all image request flags is 0. Each
1492 * is conditionally set to 1 at image request initialization time
1493 * and currently never change thereafter.
1495 static void img_request_write_set(struct rbd_img_request *img_request)
1497 set_bit(IMG_REQ_WRITE, &img_request->flags);
1501 static bool img_request_write_test(struct rbd_img_request *img_request)
1504 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1507 static void img_request_child_set(struct rbd_img_request *img_request)
1509 set_bit(IMG_REQ_CHILD, &img_request->flags);
1513 static void img_request_child_clear(struct rbd_img_request *img_request)
1515 clear_bit(IMG_REQ_CHILD, &img_request->flags);
1519 static bool img_request_child_test(struct rbd_img_request *img_request)
1522 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1525 static void img_request_layered_set(struct rbd_img_request *img_request)
1527 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1531 static void img_request_layered_clear(struct rbd_img_request *img_request)
1533 clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1537 static bool img_request_layered_test(struct rbd_img_request *img_request)
1540 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1544 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1546 u64 xferred = obj_request->xferred;
1547 u64 length = obj_request->length;
1549 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1550 obj_request, obj_request->img_request, obj_request->result,
1553 * ENOENT means a hole in the image. We zero-fill the entire
1554 * length of the request. A short read also implies zero-fill
1555 * to the end of the request. An error requires the whole
1556 * length of the request to be reported finished with an error
1557 * to the block layer. In each case we update the xferred
1558 * count to indicate the whole request was satisfied.
1560 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1561 if (obj_request->result == -ENOENT) {
1562 if (obj_request->type == OBJ_REQUEST_BIO)
1563 zero_bio_chain(obj_request->bio_list, 0);
1565 zero_pages(obj_request->pages, 0, length);
1566 obj_request->result = 0;
1567 } else if (xferred < length && !obj_request->result) {
1568 if (obj_request->type == OBJ_REQUEST_BIO)
1569 zero_bio_chain(obj_request->bio_list, xferred);
1571 zero_pages(obj_request->pages, xferred, length);
1573 obj_request->xferred = length;
1574 obj_request_done_set(obj_request);
1577 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1579 dout("%s: obj %p cb %p\n", __func__, obj_request,
1580 obj_request->callback);
1581 if (obj_request->callback)
1582 obj_request->callback(obj_request);
1584 complete_all(&obj_request->completion);
1587 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1589 dout("%s: obj %p\n", __func__, obj_request);
1590 obj_request_done_set(obj_request);
1593 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1595 struct rbd_img_request *img_request = NULL;
1596 struct rbd_device *rbd_dev = NULL;
1597 bool layered = false;
1599 if (obj_request_img_data_test(obj_request)) {
1600 img_request = obj_request->img_request;
1601 layered = img_request && img_request_layered_test(img_request);
1602 rbd_dev = img_request->rbd_dev;
1605 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1606 obj_request, img_request, obj_request->result,
1607 obj_request->xferred, obj_request->length);
1608 if (layered && obj_request->result == -ENOENT &&
1609 obj_request->img_offset < rbd_dev->parent_overlap)
1610 rbd_img_parent_read(obj_request);
1611 else if (img_request)
1612 rbd_img_obj_request_read_callback(obj_request);
1614 obj_request_done_set(obj_request);
1617 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1619 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1620 obj_request->result, obj_request->length);
1622 * There is no such thing as a successful short write. Set
1623 * it to our originally-requested length.
1625 obj_request->xferred = obj_request->length;
1626 obj_request_done_set(obj_request);
1630 * For a simple stat call there's nothing to do. We'll do more if
1631 * this is part of a write sequence for a layered image.
1633 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1635 dout("%s: obj %p\n", __func__, obj_request);
1636 obj_request_done_set(obj_request);
1639 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1640 struct ceph_msg *msg)
1642 struct rbd_obj_request *obj_request = osd_req->r_priv;
1645 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1646 rbd_assert(osd_req == obj_request->osd_req);
1647 if (obj_request_img_data_test(obj_request)) {
1648 rbd_assert(obj_request->img_request);
1649 rbd_assert(obj_request->which != BAD_WHICH);
1651 rbd_assert(obj_request->which == BAD_WHICH);
1654 if (osd_req->r_result < 0)
1655 obj_request->result = osd_req->r_result;
1657 BUG_ON(osd_req->r_num_ops > 2);
1660 * We support a 64-bit length, but ultimately it has to be
1661 * passed to blk_end_request(), which takes an unsigned int.
1663 obj_request->xferred = osd_req->r_reply_op_len[0];
1664 rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1665 opcode = osd_req->r_ops[0].op;
1667 case CEPH_OSD_OP_READ:
1668 rbd_osd_read_callback(obj_request);
1670 case CEPH_OSD_OP_WRITE:
1671 rbd_osd_write_callback(obj_request);
1673 case CEPH_OSD_OP_STAT:
1674 rbd_osd_stat_callback(obj_request);
1676 case CEPH_OSD_OP_CALL:
1677 case CEPH_OSD_OP_NOTIFY_ACK:
1678 case CEPH_OSD_OP_WATCH:
1679 rbd_osd_trivial_callback(obj_request);
1682 rbd_warn(NULL, "%s: unsupported op %hu\n",
1683 obj_request->object_name, (unsigned short) opcode);
1687 if (obj_request_done_test(obj_request))
1688 rbd_obj_request_complete(obj_request);
1691 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1693 struct rbd_img_request *img_request = obj_request->img_request;
1694 struct ceph_osd_request *osd_req = obj_request->osd_req;
1697 rbd_assert(osd_req != NULL);
1699 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1700 ceph_osdc_build_request(osd_req, obj_request->offset,
1701 NULL, snap_id, NULL);
1704 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1706 struct rbd_img_request *img_request = obj_request->img_request;
1707 struct ceph_osd_request *osd_req = obj_request->osd_req;
1708 struct ceph_snap_context *snapc;
1709 struct timespec mtime = CURRENT_TIME;
1711 rbd_assert(osd_req != NULL);
1713 snapc = img_request ? img_request->snapc : NULL;
1714 ceph_osdc_build_request(osd_req, obj_request->offset,
1715 snapc, CEPH_NOSNAP, &mtime);
1718 static struct ceph_osd_request *rbd_osd_req_create(
1719 struct rbd_device *rbd_dev,
1721 struct rbd_obj_request *obj_request)
1723 struct ceph_snap_context *snapc = NULL;
1724 struct ceph_osd_client *osdc;
1725 struct ceph_osd_request *osd_req;
1727 if (obj_request_img_data_test(obj_request)) {
1728 struct rbd_img_request *img_request = obj_request->img_request;
1730 rbd_assert(write_request ==
1731 img_request_write_test(img_request));
1733 snapc = img_request->snapc;
1736 /* Allocate and initialize the request, for the single op */
1738 osdc = &rbd_dev->rbd_client->client->osdc;
1739 osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1741 return NULL; /* ENOMEM */
1744 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1746 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1748 osd_req->r_callback = rbd_osd_req_callback;
1749 osd_req->r_priv = obj_request;
1751 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1752 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1758 * Create a copyup osd request based on the information in the
1759 * object request supplied. A copyup request has two osd ops,
1760 * a copyup method call, and a "normal" write request.
1762 static struct ceph_osd_request *
1763 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1765 struct rbd_img_request *img_request;
1766 struct ceph_snap_context *snapc;
1767 struct rbd_device *rbd_dev;
1768 struct ceph_osd_client *osdc;
1769 struct ceph_osd_request *osd_req;
1771 rbd_assert(obj_request_img_data_test(obj_request));
1772 img_request = obj_request->img_request;
1773 rbd_assert(img_request);
1774 rbd_assert(img_request_write_test(img_request));
1776 /* Allocate and initialize the request, for the two ops */
1778 snapc = img_request->snapc;
1779 rbd_dev = img_request->rbd_dev;
1780 osdc = &rbd_dev->rbd_client->client->osdc;
1781 osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1783 return NULL; /* ENOMEM */
1785 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1786 osd_req->r_callback = rbd_osd_req_callback;
1787 osd_req->r_priv = obj_request;
1789 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1790 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1796 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1798 ceph_osdc_put_request(osd_req);
1801 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1803 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1804 u64 offset, u64 length,
1805 enum obj_request_type type)
1807 struct rbd_obj_request *obj_request;
1811 rbd_assert(obj_request_type_valid(type));
1813 size = strlen(object_name) + 1;
1814 name = kmalloc(size, GFP_KERNEL);
1818 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1824 obj_request->object_name = memcpy(name, object_name, size);
1825 obj_request->offset = offset;
1826 obj_request->length = length;
1827 obj_request->flags = 0;
1828 obj_request->which = BAD_WHICH;
1829 obj_request->type = type;
1830 INIT_LIST_HEAD(&obj_request->links);
1831 init_completion(&obj_request->completion);
1832 kref_init(&obj_request->kref);
1834 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1835 offset, length, (int)type, obj_request);
1840 static void rbd_obj_request_destroy(struct kref *kref)
1842 struct rbd_obj_request *obj_request;
1844 obj_request = container_of(kref, struct rbd_obj_request, kref);
1846 dout("%s: obj %p\n", __func__, obj_request);
1848 rbd_assert(obj_request->img_request == NULL);
1849 rbd_assert(obj_request->which == BAD_WHICH);
1851 if (obj_request->osd_req)
1852 rbd_osd_req_destroy(obj_request->osd_req);
1854 rbd_assert(obj_request_type_valid(obj_request->type));
1855 switch (obj_request->type) {
1856 case OBJ_REQUEST_NODATA:
1857 break; /* Nothing to do */
1858 case OBJ_REQUEST_BIO:
1859 if (obj_request->bio_list)
1860 bio_chain_put(obj_request->bio_list);
1862 case OBJ_REQUEST_PAGES:
1863 if (obj_request->pages)
1864 ceph_release_page_vector(obj_request->pages,
1865 obj_request->page_count);
1869 kfree(obj_request->object_name);
1870 obj_request->object_name = NULL;
1871 kmem_cache_free(rbd_obj_request_cache, obj_request);
1874 /* It's OK to call this for a device with no parent */
1876 static void rbd_spec_put(struct rbd_spec *spec);
1877 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1879 rbd_dev_remove_parent(rbd_dev);
1880 rbd_spec_put(rbd_dev->parent_spec);
1881 rbd_dev->parent_spec = NULL;
1882 rbd_dev->parent_overlap = 0;
1886 * Parent image reference counting is used to determine when an
1887 * image's parent fields can be safely torn down--after there are no
1888 * more in-flight requests to the parent image. When the last
1889 * reference is dropped, cleaning them up is safe.
1891 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1895 if (!rbd_dev->parent_spec)
1898 counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1902 /* Last reference; clean up parent data structures */
1905 rbd_dev_unparent(rbd_dev);
1907 rbd_warn(rbd_dev, "parent reference underflow\n");
1911 * If an image has a non-zero parent overlap, get a reference to its
1914 * We must get the reference before checking for the overlap to
1915 * coordinate properly with zeroing the parent overlap in
1916 * rbd_dev_v2_parent_info() when an image gets flattened. We
1917 * drop it again if there is no overlap.
1919 * Returns true if the rbd device has a parent with a non-zero
1920 * overlap and a reference for it was successfully taken, or
1923 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1927 if (!rbd_dev->parent_spec)
1930 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1931 if (counter > 0 && rbd_dev->parent_overlap)
1934 /* Image was flattened, but parent is not yet torn down */
1937 rbd_warn(rbd_dev, "parent reference overflow\n");
1943 * Caller is responsible for filling in the list of object requests
1944 * that comprises the image request, and the Linux request pointer
1945 * (if there is one).
1947 static struct rbd_img_request *rbd_img_request_create(
1948 struct rbd_device *rbd_dev,
1949 u64 offset, u64 length,
1952 struct rbd_img_request *img_request;
1954 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1958 if (write_request) {
1959 down_read(&rbd_dev->header_rwsem);
1960 ceph_get_snap_context(rbd_dev->header.snapc);
1961 up_read(&rbd_dev->header_rwsem);
1964 img_request->rq = NULL;
1965 img_request->rbd_dev = rbd_dev;
1966 img_request->offset = offset;
1967 img_request->length = length;
1968 img_request->flags = 0;
1969 if (write_request) {
1970 img_request_write_set(img_request);
1971 img_request->snapc = rbd_dev->header.snapc;
1973 img_request->snap_id = rbd_dev->spec->snap_id;
1975 if (rbd_dev_parent_get(rbd_dev))
1976 img_request_layered_set(img_request);
1977 spin_lock_init(&img_request->completion_lock);
1978 img_request->next_completion = 0;
1979 img_request->callback = NULL;
1980 img_request->result = 0;
1981 img_request->obj_request_count = 0;
1982 INIT_LIST_HEAD(&img_request->obj_requests);
1983 kref_init(&img_request->kref);
1985 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
1986 write_request ? "write" : "read", offset, length,
1992 static void rbd_img_request_destroy(struct kref *kref)
1994 struct rbd_img_request *img_request;
1995 struct rbd_obj_request *obj_request;
1996 struct rbd_obj_request *next_obj_request;
1998 img_request = container_of(kref, struct rbd_img_request, kref);
2000 dout("%s: img %p\n", __func__, img_request);
2002 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2003 rbd_img_obj_request_del(img_request, obj_request);
2004 rbd_assert(img_request->obj_request_count == 0);
2006 if (img_request_layered_test(img_request)) {
2007 img_request_layered_clear(img_request);
2008 rbd_dev_parent_put(img_request->rbd_dev);
2011 if (img_request_write_test(img_request))
2012 ceph_put_snap_context(img_request->snapc);
2014 kmem_cache_free(rbd_img_request_cache, img_request);
2017 static struct rbd_img_request *rbd_parent_request_create(
2018 struct rbd_obj_request *obj_request,
2019 u64 img_offset, u64 length)
2021 struct rbd_img_request *parent_request;
2022 struct rbd_device *rbd_dev;
2024 rbd_assert(obj_request->img_request);
2025 rbd_dev = obj_request->img_request->rbd_dev;
2027 parent_request = rbd_img_request_create(rbd_dev->parent,
2028 img_offset, length, false);
2029 if (!parent_request)
2032 img_request_child_set(parent_request);
2033 rbd_obj_request_get(obj_request);
2034 parent_request->obj_request = obj_request;
2036 return parent_request;
2039 static void rbd_parent_request_destroy(struct kref *kref)
2041 struct rbd_img_request *parent_request;
2042 struct rbd_obj_request *orig_request;
2044 parent_request = container_of(kref, struct rbd_img_request, kref);
2045 orig_request = parent_request->obj_request;
2047 parent_request->obj_request = NULL;
2048 rbd_obj_request_put(orig_request);
2049 img_request_child_clear(parent_request);
2051 rbd_img_request_destroy(kref);
2054 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2056 struct rbd_img_request *img_request;
2057 unsigned int xferred;
2061 rbd_assert(obj_request_img_data_test(obj_request));
2062 img_request = obj_request->img_request;
2064 rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2065 xferred = (unsigned int)obj_request->xferred;
2066 result = obj_request->result;
2068 struct rbd_device *rbd_dev = img_request->rbd_dev;
2070 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2071 img_request_write_test(img_request) ? "write" : "read",
2072 obj_request->length, obj_request->img_offset,
2073 obj_request->offset);
2074 rbd_warn(rbd_dev, " result %d xferred %x\n",
2076 if (!img_request->result)
2077 img_request->result = result;
2080 /* Image object requests don't own their page array */
2082 if (obj_request->type == OBJ_REQUEST_PAGES) {
2083 obj_request->pages = NULL;
2084 obj_request->page_count = 0;
2087 if (img_request_child_test(img_request)) {
2088 rbd_assert(img_request->obj_request != NULL);
2089 more = obj_request->which < img_request->obj_request_count - 1;
2091 rbd_assert(img_request->rq != NULL);
2092 more = blk_end_request(img_request->rq, result, xferred);
2098 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2100 struct rbd_img_request *img_request;
2101 u32 which = obj_request->which;
2104 rbd_assert(obj_request_img_data_test(obj_request));
2105 img_request = obj_request->img_request;
2107 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2108 rbd_assert(img_request != NULL);
2109 rbd_assert(img_request->obj_request_count > 0);
2110 rbd_assert(which != BAD_WHICH);
2111 rbd_assert(which < img_request->obj_request_count);
2113 spin_lock_irq(&img_request->completion_lock);
2114 if (which != img_request->next_completion)
2117 for_each_obj_request_from(img_request, obj_request) {
2119 rbd_assert(which < img_request->obj_request_count);
2121 if (!obj_request_done_test(obj_request))
2123 more = rbd_img_obj_end_request(obj_request);
2127 rbd_assert(more ^ (which == img_request->obj_request_count));
2128 img_request->next_completion = which;
2130 spin_unlock_irq(&img_request->completion_lock);
2133 rbd_img_request_complete(img_request);
2137 * Split up an image request into one or more object requests, each
2138 * to a different object. The "type" parameter indicates whether
2139 * "data_desc" is the pointer to the head of a list of bio
2140 * structures, or the base of a page array. In either case this
2141 * function assumes data_desc describes memory sufficient to hold
2142 * all data described by the image request.
2144 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2145 enum obj_request_type type,
2148 struct rbd_device *rbd_dev = img_request->rbd_dev;
2149 struct rbd_obj_request *obj_request = NULL;
2150 struct rbd_obj_request *next_obj_request;
2151 bool write_request = img_request_write_test(img_request);
2152 struct bio *bio_list = NULL;
2153 unsigned int bio_offset = 0;
2154 struct page **pages = NULL;
2159 dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2160 (int)type, data_desc);
2162 opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2163 img_offset = img_request->offset;
2164 resid = img_request->length;
2165 rbd_assert(resid > 0);
2167 if (type == OBJ_REQUEST_BIO) {
2168 bio_list = data_desc;
2169 rbd_assert(img_offset ==
2170 bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2172 rbd_assert(type == OBJ_REQUEST_PAGES);
2177 struct ceph_osd_request *osd_req;
2178 const char *object_name;
2182 object_name = rbd_segment_name(rbd_dev, img_offset);
2185 offset = rbd_segment_offset(rbd_dev, img_offset);
2186 length = rbd_segment_length(rbd_dev, img_offset, resid);
2187 obj_request = rbd_obj_request_create(object_name,
2188 offset, length, type);
2189 /* object request has its own copy of the object name */
2190 rbd_segment_name_free(object_name);
2194 * set obj_request->img_request before creating the
2195 * osd_request so that it gets the right snapc
2197 rbd_img_obj_request_add(img_request, obj_request);
2199 if (type == OBJ_REQUEST_BIO) {
2200 unsigned int clone_size;
2202 rbd_assert(length <= (u64)UINT_MAX);
2203 clone_size = (unsigned int)length;
2204 obj_request->bio_list =
2205 bio_chain_clone_range(&bio_list,
2209 if (!obj_request->bio_list)
2212 unsigned int page_count;
2214 obj_request->pages = pages;
2215 page_count = (u32)calc_pages_for(offset, length);
2216 obj_request->page_count = page_count;
2217 if ((offset + length) & ~PAGE_MASK)
2218 page_count--; /* more on last page */
2219 pages += page_count;
2222 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2226 obj_request->osd_req = osd_req;
2227 obj_request->callback = rbd_img_obj_callback;
2229 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2231 if (type == OBJ_REQUEST_BIO)
2232 osd_req_op_extent_osd_data_bio(osd_req, 0,
2233 obj_request->bio_list, length);
2235 osd_req_op_extent_osd_data_pages(osd_req, 0,
2236 obj_request->pages, length,
2237 offset & ~PAGE_MASK, false, false);
2240 rbd_osd_req_format_write(obj_request);
2242 rbd_osd_req_format_read(obj_request);
2244 obj_request->img_offset = img_offset;
2246 img_offset += length;
2253 rbd_obj_request_put(obj_request);
2255 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2256 rbd_obj_request_put(obj_request);
2262 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2264 struct rbd_img_request *img_request;
2265 struct rbd_device *rbd_dev;
2266 struct page **pages;
2269 rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2270 rbd_assert(obj_request_img_data_test(obj_request));
2271 img_request = obj_request->img_request;
2272 rbd_assert(img_request);
2274 rbd_dev = img_request->rbd_dev;
2275 rbd_assert(rbd_dev);
2277 pages = obj_request->copyup_pages;
2278 rbd_assert(pages != NULL);
2279 obj_request->copyup_pages = NULL;
2280 page_count = obj_request->copyup_page_count;
2281 rbd_assert(page_count);
2282 obj_request->copyup_page_count = 0;
2283 ceph_release_page_vector(pages, page_count);
2286 * We want the transfer count to reflect the size of the
2287 * original write request. There is no such thing as a
2288 * successful short write, so if the request was successful
2289 * we can just set it to the originally-requested length.
2291 if (!obj_request->result)
2292 obj_request->xferred = obj_request->length;
2294 /* Finish up with the normal image object callback */
2296 rbd_img_obj_callback(obj_request);
2300 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2302 struct rbd_obj_request *orig_request;
2303 struct ceph_osd_request *osd_req;
2304 struct ceph_osd_client *osdc;
2305 struct rbd_device *rbd_dev;
2306 struct page **pages;
2313 rbd_assert(img_request_child_test(img_request));
2315 /* First get what we need from the image request */
2317 pages = img_request->copyup_pages;
2318 rbd_assert(pages != NULL);
2319 img_request->copyup_pages = NULL;
2320 page_count = img_request->copyup_page_count;
2321 rbd_assert(page_count);
2322 img_request->copyup_page_count = 0;
2324 orig_request = img_request->obj_request;
2325 rbd_assert(orig_request != NULL);
2326 rbd_assert(obj_request_type_valid(orig_request->type));
2327 img_result = img_request->result;
2328 parent_length = img_request->length;
2329 rbd_assert(parent_length == img_request->xferred);
2330 rbd_img_request_put(img_request);
2332 rbd_assert(orig_request->img_request);
2333 rbd_dev = orig_request->img_request->rbd_dev;
2334 rbd_assert(rbd_dev);
2337 * If the overlap has become 0 (most likely because the
2338 * image has been flattened) we need to free the pages
2339 * and re-submit the original write request.
2341 if (!rbd_dev->parent_overlap) {
2342 struct ceph_osd_client *osdc;
2344 ceph_release_page_vector(pages, page_count);
2345 osdc = &rbd_dev->rbd_client->client->osdc;
2346 img_result = rbd_obj_request_submit(osdc, orig_request);
2355 * The original osd request is of no use to use any more.
2356 * We need a new one that can hold the two ops in a copyup
2357 * request. Allocate the new copyup osd request for the
2358 * original request, and release the old one.
2360 img_result = -ENOMEM;
2361 osd_req = rbd_osd_req_create_copyup(orig_request);
2364 rbd_osd_req_destroy(orig_request->osd_req);
2365 orig_request->osd_req = osd_req;
2366 orig_request->copyup_pages = pages;
2367 orig_request->copyup_page_count = page_count;
2369 /* Initialize the copyup op */
2371 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2372 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2375 /* Then the original write request op */
2377 offset = orig_request->offset;
2378 length = orig_request->length;
2379 osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2380 offset, length, 0, 0);
2381 if (orig_request->type == OBJ_REQUEST_BIO)
2382 osd_req_op_extent_osd_data_bio(osd_req, 1,
2383 orig_request->bio_list, length);
2385 osd_req_op_extent_osd_data_pages(osd_req, 1,
2386 orig_request->pages, length,
2387 offset & ~PAGE_MASK, false, false);
2389 rbd_osd_req_format_write(orig_request);
2391 /* All set, send it off. */
2393 orig_request->callback = rbd_img_obj_copyup_callback;
2394 osdc = &rbd_dev->rbd_client->client->osdc;
2395 img_result = rbd_obj_request_submit(osdc, orig_request);
2399 /* Record the error code and complete the request */
2401 orig_request->result = img_result;
2402 orig_request->xferred = 0;
2403 obj_request_done_set(orig_request);
2404 rbd_obj_request_complete(orig_request);
2408 * Read from the parent image the range of data that covers the
2409 * entire target of the given object request. This is used for
2410 * satisfying a layered image write request when the target of an
2411 * object request from the image request does not exist.
2413 * A page array big enough to hold the returned data is allocated
2414 * and supplied to rbd_img_request_fill() as the "data descriptor."
2415 * When the read completes, this page array will be transferred to
2416 * the original object request for the copyup operation.
2418 * If an error occurs, record it as the result of the original
2419 * object request and mark it done so it gets completed.
2421 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2423 struct rbd_img_request *img_request = NULL;
2424 struct rbd_img_request *parent_request = NULL;
2425 struct rbd_device *rbd_dev;
2428 struct page **pages = NULL;
2432 rbd_assert(obj_request_img_data_test(obj_request));
2433 rbd_assert(obj_request_type_valid(obj_request->type));
2435 img_request = obj_request->img_request;
2436 rbd_assert(img_request != NULL);
2437 rbd_dev = img_request->rbd_dev;
2438 rbd_assert(rbd_dev->parent != NULL);
2441 * Determine the byte range covered by the object in the
2442 * child image to which the original request was to be sent.
2444 img_offset = obj_request->img_offset - obj_request->offset;
2445 length = (u64)1 << rbd_dev->header.obj_order;
2448 * There is no defined parent data beyond the parent
2449 * overlap, so limit what we read at that boundary if
2452 if (img_offset + length > rbd_dev->parent_overlap) {
2453 rbd_assert(img_offset < rbd_dev->parent_overlap);
2454 length = rbd_dev->parent_overlap - img_offset;
2458 * Allocate a page array big enough to receive the data read
2461 page_count = (u32)calc_pages_for(0, length);
2462 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2463 if (IS_ERR(pages)) {
2464 result = PTR_ERR(pages);
2470 parent_request = rbd_parent_request_create(obj_request,
2471 img_offset, length);
2472 if (!parent_request)
2475 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2478 parent_request->copyup_pages = pages;
2479 parent_request->copyup_page_count = page_count;
2481 parent_request->callback = rbd_img_obj_parent_read_full_callback;
2482 result = rbd_img_request_submit(parent_request);
2486 parent_request->copyup_pages = NULL;
2487 parent_request->copyup_page_count = 0;
2488 parent_request->obj_request = NULL;
2489 rbd_obj_request_put(obj_request);
2492 ceph_release_page_vector(pages, page_count);
2494 rbd_img_request_put(parent_request);
2495 obj_request->result = result;
2496 obj_request->xferred = 0;
2497 obj_request_done_set(obj_request);
2502 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2504 struct rbd_obj_request *orig_request;
2505 struct rbd_device *rbd_dev;
2508 rbd_assert(!obj_request_img_data_test(obj_request));
2511 * All we need from the object request is the original
2512 * request and the result of the STAT op. Grab those, then
2513 * we're done with the request.
2515 orig_request = obj_request->obj_request;
2516 obj_request->obj_request = NULL;
2517 rbd_obj_request_put(orig_request);
2518 rbd_assert(orig_request);
2519 rbd_assert(orig_request->img_request);
2521 result = obj_request->result;
2522 obj_request->result = 0;
2524 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2525 obj_request, orig_request, result,
2526 obj_request->xferred, obj_request->length);
2527 rbd_obj_request_put(obj_request);
2530 * If the overlap has become 0 (most likely because the
2531 * image has been flattened) we need to free the pages
2532 * and re-submit the original write request.
2534 rbd_dev = orig_request->img_request->rbd_dev;
2535 if (!rbd_dev->parent_overlap) {
2536 struct ceph_osd_client *osdc;
2538 osdc = &rbd_dev->rbd_client->client->osdc;
2539 result = rbd_obj_request_submit(osdc, orig_request);
2545 * Our only purpose here is to determine whether the object
2546 * exists, and we don't want to treat the non-existence as
2547 * an error. If something else comes back, transfer the
2548 * error to the original request and complete it now.
2551 obj_request_existence_set(orig_request, true);
2552 } else if (result == -ENOENT) {
2553 obj_request_existence_set(orig_request, false);
2554 } else if (result) {
2555 orig_request->result = result;
2560 * Resubmit the original request now that we have recorded
2561 * whether the target object exists.
2563 orig_request->result = rbd_img_obj_request_submit(orig_request);
2565 if (orig_request->result)
2566 rbd_obj_request_complete(orig_request);
2569 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2571 struct rbd_obj_request *stat_request;
2572 struct rbd_device *rbd_dev;
2573 struct ceph_osd_client *osdc;
2574 struct page **pages = NULL;
2580 * The response data for a STAT call consists of:
2587 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2588 page_count = (u32)calc_pages_for(0, size);
2589 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2591 return PTR_ERR(pages);
2594 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2599 rbd_obj_request_get(obj_request);
2600 stat_request->obj_request = obj_request;
2601 stat_request->pages = pages;
2602 stat_request->page_count = page_count;
2604 rbd_assert(obj_request->img_request);
2605 rbd_dev = obj_request->img_request->rbd_dev;
2606 stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2608 if (!stat_request->osd_req)
2610 stat_request->callback = rbd_img_obj_exists_callback;
2612 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2613 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2615 rbd_osd_req_format_read(stat_request);
2617 osdc = &rbd_dev->rbd_client->client->osdc;
2618 ret = rbd_obj_request_submit(osdc, stat_request);
2621 rbd_obj_request_put(obj_request);
2626 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2628 struct rbd_img_request *img_request;
2629 struct rbd_device *rbd_dev;
2632 rbd_assert(obj_request_img_data_test(obj_request));
2634 img_request = obj_request->img_request;
2635 rbd_assert(img_request);
2636 rbd_dev = img_request->rbd_dev;
2639 * Only writes to layered images need special handling.
2640 * Reads and non-layered writes are simple object requests.
2641 * Layered writes that start beyond the end of the overlap
2642 * with the parent have no parent data, so they too are
2643 * simple object requests. Finally, if the target object is
2644 * known to already exist, its parent data has already been
2645 * copied, so a write to the object can also be handled as a
2646 * simple object request.
2648 if (!img_request_write_test(img_request) ||
2649 !img_request_layered_test(img_request) ||
2650 rbd_dev->parent_overlap <= obj_request->img_offset ||
2651 ((known = obj_request_known_test(obj_request)) &&
2652 obj_request_exists_test(obj_request))) {
2654 struct rbd_device *rbd_dev;
2655 struct ceph_osd_client *osdc;
2657 rbd_dev = obj_request->img_request->rbd_dev;
2658 osdc = &rbd_dev->rbd_client->client->osdc;
2660 return rbd_obj_request_submit(osdc, obj_request);
2664 * It's a layered write. The target object might exist but
2665 * we may not know that yet. If we know it doesn't exist,
2666 * start by reading the data for the full target object from
2667 * the parent so we can use it for a copyup to the target.
2670 return rbd_img_obj_parent_read_full(obj_request);
2672 /* We don't know whether the target exists. Go find out. */
2674 return rbd_img_obj_exists_submit(obj_request);
2677 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2679 struct rbd_obj_request *obj_request;
2680 struct rbd_obj_request *next_obj_request;
2682 dout("%s: img %p\n", __func__, img_request);
2683 for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2686 ret = rbd_img_obj_request_submit(obj_request);
2694 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2696 struct rbd_obj_request *obj_request;
2697 struct rbd_device *rbd_dev;
2702 rbd_assert(img_request_child_test(img_request));
2704 /* First get what we need from the image request and release it */
2706 obj_request = img_request->obj_request;
2707 img_xferred = img_request->xferred;
2708 img_result = img_request->result;
2709 rbd_img_request_put(img_request);
2712 * If the overlap has become 0 (most likely because the
2713 * image has been flattened) we need to re-submit the
2716 rbd_assert(obj_request);
2717 rbd_assert(obj_request->img_request);
2718 rbd_dev = obj_request->img_request->rbd_dev;
2719 if (!rbd_dev->parent_overlap) {
2720 struct ceph_osd_client *osdc;
2722 osdc = &rbd_dev->rbd_client->client->osdc;
2723 img_result = rbd_obj_request_submit(osdc, obj_request);
2728 obj_request->result = img_result;
2729 if (obj_request->result)
2733 * We need to zero anything beyond the parent overlap
2734 * boundary. Since rbd_img_obj_request_read_callback()
2735 * will zero anything beyond the end of a short read, an
2736 * easy way to do this is to pretend the data from the
2737 * parent came up short--ending at the overlap boundary.
2739 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2740 obj_end = obj_request->img_offset + obj_request->length;
2741 if (obj_end > rbd_dev->parent_overlap) {
2744 if (obj_request->img_offset < rbd_dev->parent_overlap)
2745 xferred = rbd_dev->parent_overlap -
2746 obj_request->img_offset;
2748 obj_request->xferred = min(img_xferred, xferred);
2750 obj_request->xferred = img_xferred;
2753 rbd_img_obj_request_read_callback(obj_request);
2754 rbd_obj_request_complete(obj_request);
2757 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2759 struct rbd_img_request *img_request;
2762 rbd_assert(obj_request_img_data_test(obj_request));
2763 rbd_assert(obj_request->img_request != NULL);
2764 rbd_assert(obj_request->result == (s32) -ENOENT);
2765 rbd_assert(obj_request_type_valid(obj_request->type));
2767 /* rbd_read_finish(obj_request, obj_request->length); */
2768 img_request = rbd_parent_request_create(obj_request,
2769 obj_request->img_offset,
2770 obj_request->length);
2775 if (obj_request->type == OBJ_REQUEST_BIO)
2776 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2777 obj_request->bio_list);
2779 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2780 obj_request->pages);
2784 img_request->callback = rbd_img_parent_read_callback;
2785 result = rbd_img_request_submit(img_request);
2792 rbd_img_request_put(img_request);
2793 obj_request->result = result;
2794 obj_request->xferred = 0;
2795 obj_request_done_set(obj_request);
2798 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
2800 struct rbd_obj_request *obj_request;
2801 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2804 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2805 OBJ_REQUEST_NODATA);
2810 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2811 if (!obj_request->osd_req)
2814 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2816 rbd_osd_req_format_read(obj_request);
2818 ret = rbd_obj_request_submit(osdc, obj_request);
2821 ret = rbd_obj_request_wait(obj_request);
2823 rbd_obj_request_put(obj_request);
2828 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2830 struct rbd_device *rbd_dev = (struct rbd_device *)data;
2836 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2837 rbd_dev->header_name, (unsigned long long)notify_id,
2838 (unsigned int)opcode);
2839 ret = rbd_dev_refresh(rbd_dev);
2841 rbd_warn(rbd_dev, "header refresh error (%d)\n", ret);
2843 rbd_obj_notify_ack_sync(rbd_dev, notify_id);
2847 * Request sync osd watch/unwatch. The value of "start" determines
2848 * whether a watch request is being initiated or torn down.
2850 static int __rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start)
2852 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2853 struct rbd_obj_request *obj_request;
2856 rbd_assert(start ^ !!rbd_dev->watch_event);
2857 rbd_assert(start ^ !!rbd_dev->watch_request);
2860 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2861 &rbd_dev->watch_event);
2864 rbd_assert(rbd_dev->watch_event != NULL);
2868 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2869 OBJ_REQUEST_NODATA);
2873 obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2874 if (!obj_request->osd_req)
2878 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2880 ceph_osdc_unregister_linger_request(osdc,
2881 rbd_dev->watch_request->osd_req);
2883 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2884 rbd_dev->watch_event->cookie, 0, start ? 1 : 0);
2885 rbd_osd_req_format_write(obj_request);
2887 ret = rbd_obj_request_submit(osdc, obj_request);
2890 ret = rbd_obj_request_wait(obj_request);
2893 ret = obj_request->result;
2898 * A watch request is set to linger, so the underlying osd
2899 * request won't go away until we unregister it. We retain
2900 * a pointer to the object request during that time (in
2901 * rbd_dev->watch_request), so we'll keep a reference to
2902 * it. We'll drop that reference (below) after we've
2906 rbd_dev->watch_request = obj_request;
2911 /* We have successfully torn down the watch request */
2913 rbd_obj_request_put(rbd_dev->watch_request);
2914 rbd_dev->watch_request = NULL;
2916 /* Cancel the event if we're tearing down, or on error */
2917 ceph_osdc_cancel_event(rbd_dev->watch_event);
2918 rbd_dev->watch_event = NULL;
2920 rbd_obj_request_put(obj_request);
2925 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
2927 return __rbd_dev_header_watch_sync(rbd_dev, true);
2930 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
2934 ret = __rbd_dev_header_watch_sync(rbd_dev, false);
2936 rbd_warn(rbd_dev, "unable to tear down watch request: %d\n",
2942 * Synchronous osd object method call. Returns the number of bytes
2943 * returned in the outbound buffer, or a negative error code.
2945 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2946 const char *object_name,
2947 const char *class_name,
2948 const char *method_name,
2949 const void *outbound,
2950 size_t outbound_size,
2952 size_t inbound_size)
2954 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2955 struct rbd_obj_request *obj_request;
2956 struct page **pages;
2961 * Method calls are ultimately read operations. The result
2962 * should placed into the inbound buffer provided. They
2963 * also supply outbound data--parameters for the object
2964 * method. Currently if this is present it will be a
2967 page_count = (u32)calc_pages_for(0, inbound_size);
2968 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2970 return PTR_ERR(pages);
2973 obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2978 obj_request->pages = pages;
2979 obj_request->page_count = page_count;
2981 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2982 if (!obj_request->osd_req)
2985 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
2986 class_name, method_name);
2987 if (outbound_size) {
2988 struct ceph_pagelist *pagelist;
2990 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
2994 ceph_pagelist_init(pagelist);
2995 ceph_pagelist_append(pagelist, outbound, outbound_size);
2996 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
2999 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3000 obj_request->pages, inbound_size,
3002 rbd_osd_req_format_read(obj_request);
3004 ret = rbd_obj_request_submit(osdc, obj_request);
3007 ret = rbd_obj_request_wait(obj_request);
3011 ret = obj_request->result;
3015 rbd_assert(obj_request->xferred < (u64)INT_MAX);
3016 ret = (int)obj_request->xferred;
3017 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3020 rbd_obj_request_put(obj_request);
3022 ceph_release_page_vector(pages, page_count);
3027 static void rbd_request_fn(struct request_queue *q)
3028 __releases(q->queue_lock) __acquires(q->queue_lock)
3030 struct rbd_device *rbd_dev = q->queuedata;
3031 bool read_only = rbd_dev->mapping.read_only;
3035 while ((rq = blk_fetch_request(q))) {
3036 bool write_request = rq_data_dir(rq) == WRITE;
3037 struct rbd_img_request *img_request;
3041 /* Ignore any non-FS requests that filter through. */
3043 if (rq->cmd_type != REQ_TYPE_FS) {
3044 dout("%s: non-fs request type %d\n", __func__,
3045 (int) rq->cmd_type);
3046 __blk_end_request_all(rq, 0);
3050 /* Ignore/skip any zero-length requests */
3052 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3053 length = (u64) blk_rq_bytes(rq);
3056 dout("%s: zero-length request\n", __func__);
3057 __blk_end_request_all(rq, 0);
3061 spin_unlock_irq(q->queue_lock);
3063 /* Disallow writes to a read-only device */
3065 if (write_request) {
3069 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3073 * Quit early if the mapped snapshot no longer
3074 * exists. It's still possible the snapshot will
3075 * have disappeared by the time our request arrives
3076 * at the osd, but there's no sense in sending it if
3079 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3080 dout("request for non-existent snapshot");
3081 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3087 if (offset && length > U64_MAX - offset + 1) {
3088 rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3090 goto end_request; /* Shouldn't happen */
3094 if (offset + length > rbd_dev->mapping.size) {
3095 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3096 offset, length, rbd_dev->mapping.size);
3101 img_request = rbd_img_request_create(rbd_dev, offset, length,
3106 img_request->rq = rq;
3108 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3111 result = rbd_img_request_submit(img_request);
3113 rbd_img_request_put(img_request);
3115 spin_lock_irq(q->queue_lock);
3117 rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3118 write_request ? "write" : "read",
3119 length, offset, result);
3121 __blk_end_request_all(rq, result);
3127 * a queue callback. Makes sure that we don't create a bio that spans across
3128 * multiple osd objects. One exception would be with a single page bios,
3129 * which we handle later at bio_chain_clone_range()
3131 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3132 struct bio_vec *bvec)
3134 struct rbd_device *rbd_dev = q->queuedata;
3135 sector_t sector_offset;
3136 sector_t sectors_per_obj;
3137 sector_t obj_sector_offset;
3141 * Find how far into its rbd object the partition-relative
3142 * bio start sector is to offset relative to the enclosing
3145 sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3146 sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3147 obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3150 * Compute the number of bytes from that offset to the end
3151 * of the object. Account for what's already used by the bio.
3153 ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3154 if (ret > bmd->bi_size)
3155 ret -= bmd->bi_size;
3160 * Don't send back more than was asked for. And if the bio
3161 * was empty, let the whole thing through because: "Note
3162 * that a block device *must* allow a single page to be
3163 * added to an empty bio."
3165 rbd_assert(bvec->bv_len <= PAGE_SIZE);
3166 if (ret > (int) bvec->bv_len || !bmd->bi_size)
3167 ret = (int) bvec->bv_len;
3172 static void rbd_free_disk(struct rbd_device *rbd_dev)
3174 struct gendisk *disk = rbd_dev->disk;
3179 rbd_dev->disk = NULL;
3180 if (disk->flags & GENHD_FL_UP) {
3183 blk_cleanup_queue(disk->queue);
3188 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3189 const char *object_name,
3190 u64 offset, u64 length, void *buf)
3193 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3194 struct rbd_obj_request *obj_request;
3195 struct page **pages = NULL;
3200 page_count = (u32) calc_pages_for(offset, length);
3201 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3203 ret = PTR_ERR(pages);
3206 obj_request = rbd_obj_request_create(object_name, offset, length,
3211 obj_request->pages = pages;
3212 obj_request->page_count = page_count;
3214 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3215 if (!obj_request->osd_req)
3218 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3219 offset, length, 0, 0);
3220 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3222 obj_request->length,
3223 obj_request->offset & ~PAGE_MASK,
3225 rbd_osd_req_format_read(obj_request);
3227 ret = rbd_obj_request_submit(osdc, obj_request);
3230 ret = rbd_obj_request_wait(obj_request);
3234 ret = obj_request->result;
3238 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3239 size = (size_t) obj_request->xferred;
3240 ceph_copy_from_page_vector(pages, buf, 0, size);
3241 rbd_assert(size <= (size_t)INT_MAX);
3245 rbd_obj_request_put(obj_request);
3247 ceph_release_page_vector(pages, page_count);
3253 * Read the complete header for the given rbd device. On successful
3254 * return, the rbd_dev->header field will contain up-to-date
3255 * information about the image.
3257 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3259 struct rbd_image_header_ondisk *ondisk = NULL;
3266 * The complete header will include an array of its 64-bit
3267 * snapshot ids, followed by the names of those snapshots as
3268 * a contiguous block of NUL-terminated strings. Note that
3269 * the number of snapshots could change by the time we read
3270 * it in, in which case we re-read it.
3277 size = sizeof (*ondisk);
3278 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3280 ondisk = kmalloc(size, GFP_KERNEL);
3284 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3288 if ((size_t)ret < size) {
3290 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3294 if (!rbd_dev_ondisk_valid(ondisk)) {
3296 rbd_warn(rbd_dev, "invalid header");
3300 names_size = le64_to_cpu(ondisk->snap_names_len);
3301 want_count = snap_count;
3302 snap_count = le32_to_cpu(ondisk->snap_count);
3303 } while (snap_count != want_count);
3305 ret = rbd_header_from_disk(rbd_dev, ondisk);
3313 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3314 * has disappeared from the (just updated) snapshot context.
3316 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3320 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3323 snap_id = rbd_dev->spec->snap_id;
3324 if (snap_id == CEPH_NOSNAP)
3327 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3328 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3331 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3337 * Don't hold the lock while doing disk operations,
3338 * or lock ordering will conflict with the bdev mutex via:
3339 * rbd_add() -> blkdev_get() -> rbd_open()
3341 spin_lock_irq(&rbd_dev->lock);
3342 removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3343 spin_unlock_irq(&rbd_dev->lock);
3345 * If the device is being removed, rbd_dev->disk has
3346 * been destroyed, so don't try to update its size
3349 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3350 dout("setting size to %llu sectors", (unsigned long long)size);
3351 set_capacity(rbd_dev->disk, size);
3352 revalidate_disk(rbd_dev->disk);
3356 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3361 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3362 down_write(&rbd_dev->header_rwsem);
3363 mapping_size = rbd_dev->mapping.size;
3364 if (rbd_dev->image_format == 1)
3365 ret = rbd_dev_v1_header_info(rbd_dev);
3367 ret = rbd_dev_v2_header_info(rbd_dev);
3369 /* If it's a mapped snapshot, validate its EXISTS flag */
3371 rbd_exists_validate(rbd_dev);
3372 up_write(&rbd_dev->header_rwsem);
3374 if (mapping_size != rbd_dev->mapping.size) {
3375 rbd_dev_update_size(rbd_dev);
3381 static int rbd_init_disk(struct rbd_device *rbd_dev)
3383 struct gendisk *disk;
3384 struct request_queue *q;
3387 /* create gendisk info */
3388 disk = alloc_disk(single_major ?
3389 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3390 RBD_MINORS_PER_MAJOR);
3394 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3396 disk->major = rbd_dev->major;
3397 disk->first_minor = rbd_dev->minor;
3399 disk->flags |= GENHD_FL_EXT_DEVT;
3400 disk->fops = &rbd_bd_ops;
3401 disk->private_data = rbd_dev;
3403 q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3407 /* We use the default size, but let's be explicit about it. */
3408 blk_queue_physical_block_size(q, SECTOR_SIZE);
3410 /* set io sizes to object size */
3411 segment_size = rbd_obj_bytes(&rbd_dev->header);
3412 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3413 blk_queue_max_segment_size(q, segment_size);
3414 blk_queue_io_min(q, segment_size);
3415 blk_queue_io_opt(q, segment_size);
3417 blk_queue_merge_bvec(q, rbd_merge_bvec);
3420 q->queuedata = rbd_dev;
3422 rbd_dev->disk = disk;
3435 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3437 return container_of(dev, struct rbd_device, dev);
3440 static ssize_t rbd_size_show(struct device *dev,
3441 struct device_attribute *attr, char *buf)
3443 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3445 return sprintf(buf, "%llu\n",
3446 (unsigned long long)rbd_dev->mapping.size);
3450 * Note this shows the features for whatever's mapped, which is not
3451 * necessarily the base image.
3453 static ssize_t rbd_features_show(struct device *dev,
3454 struct device_attribute *attr, char *buf)
3456 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3458 return sprintf(buf, "0x%016llx\n",
3459 (unsigned long long)rbd_dev->mapping.features);
3462 static ssize_t rbd_major_show(struct device *dev,
3463 struct device_attribute *attr, char *buf)
3465 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3468 return sprintf(buf, "%d\n", rbd_dev->major);
3470 return sprintf(buf, "(none)\n");
3473 static ssize_t rbd_minor_show(struct device *dev,
3474 struct device_attribute *attr, char *buf)
3476 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3478 return sprintf(buf, "%d\n", rbd_dev->minor);
3481 static ssize_t rbd_client_id_show(struct device *dev,
3482 struct device_attribute *attr, char *buf)
3484 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3486 return sprintf(buf, "client%lld\n",
3487 ceph_client_id(rbd_dev->rbd_client->client));
3490 static ssize_t rbd_pool_show(struct device *dev,
3491 struct device_attribute *attr, char *buf)
3493 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3495 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3498 static ssize_t rbd_pool_id_show(struct device *dev,
3499 struct device_attribute *attr, char *buf)
3501 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3503 return sprintf(buf, "%llu\n",
3504 (unsigned long long) rbd_dev->spec->pool_id);
3507 static ssize_t rbd_name_show(struct device *dev,
3508 struct device_attribute *attr, char *buf)
3510 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3512 if (rbd_dev->spec->image_name)
3513 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3515 return sprintf(buf, "(unknown)\n");
3518 static ssize_t rbd_image_id_show(struct device *dev,
3519 struct device_attribute *attr, char *buf)
3521 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3523 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3527 * Shows the name of the currently-mapped snapshot (or
3528 * RBD_SNAP_HEAD_NAME for the base image).
3530 static ssize_t rbd_snap_show(struct device *dev,
3531 struct device_attribute *attr,
3534 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3536 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3540 * For an rbd v2 image, shows the pool id, image id, and snapshot id
3541 * for the parent image. If there is no parent, simply shows
3542 * "(no parent image)".
3544 static ssize_t rbd_parent_show(struct device *dev,
3545 struct device_attribute *attr,
3548 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3549 struct rbd_spec *spec = rbd_dev->parent_spec;
3554 return sprintf(buf, "(no parent image)\n");
3556 count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3557 (unsigned long long) spec->pool_id, spec->pool_name);
3562 count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3563 spec->image_name ? spec->image_name : "(unknown)");
3568 count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3569 (unsigned long long) spec->snap_id, spec->snap_name);
3574 count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3579 return (ssize_t) (bufp - buf);
3582 static ssize_t rbd_image_refresh(struct device *dev,
3583 struct device_attribute *attr,
3587 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3590 ret = rbd_dev_refresh(rbd_dev);
3592 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3594 return ret < 0 ? ret : size;
3597 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3598 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3599 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3600 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3601 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3602 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3603 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3604 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3605 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3606 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3607 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3608 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3610 static struct attribute *rbd_attrs[] = {
3611 &dev_attr_size.attr,
3612 &dev_attr_features.attr,
3613 &dev_attr_major.attr,
3614 &dev_attr_minor.attr,
3615 &dev_attr_client_id.attr,
3616 &dev_attr_pool.attr,
3617 &dev_attr_pool_id.attr,
3618 &dev_attr_name.attr,
3619 &dev_attr_image_id.attr,
3620 &dev_attr_current_snap.attr,
3621 &dev_attr_parent.attr,
3622 &dev_attr_refresh.attr,
3626 static struct attribute_group rbd_attr_group = {
3630 static const struct attribute_group *rbd_attr_groups[] = {
3635 static void rbd_sysfs_dev_release(struct device *dev)
3639 static struct device_type rbd_device_type = {
3641 .groups = rbd_attr_groups,
3642 .release = rbd_sysfs_dev_release,
3645 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3647 kref_get(&spec->kref);
3652 static void rbd_spec_free(struct kref *kref);
3653 static void rbd_spec_put(struct rbd_spec *spec)
3656 kref_put(&spec->kref, rbd_spec_free);
3659 static struct rbd_spec *rbd_spec_alloc(void)
3661 struct rbd_spec *spec;
3663 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3666 kref_init(&spec->kref);
3671 static void rbd_spec_free(struct kref *kref)
3673 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3675 kfree(spec->pool_name);
3676 kfree(spec->image_id);
3677 kfree(spec->image_name);
3678 kfree(spec->snap_name);
3682 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3683 struct rbd_spec *spec)
3685 struct rbd_device *rbd_dev;
3687 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3691 spin_lock_init(&rbd_dev->lock);
3693 atomic_set(&rbd_dev->parent_ref, 0);
3694 INIT_LIST_HEAD(&rbd_dev->node);
3695 init_rwsem(&rbd_dev->header_rwsem);
3697 rbd_dev->spec = spec;
3698 rbd_dev->rbd_client = rbdc;
3700 /* Initialize the layout used for all rbd requests */
3702 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3703 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3704 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3705 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3710 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3712 rbd_put_client(rbd_dev->rbd_client);
3713 rbd_spec_put(rbd_dev->spec);
3718 * Get the size and object order for an image snapshot, or if
3719 * snap_id is CEPH_NOSNAP, gets this information for the base
3722 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3723 u8 *order, u64 *snap_size)
3725 __le64 snapid = cpu_to_le64(snap_id);
3730 } __attribute__ ((packed)) size_buf = { 0 };
3732 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3734 &snapid, sizeof (snapid),
3735 &size_buf, sizeof (size_buf));
3736 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3739 if (ret < sizeof (size_buf))
3743 *order = size_buf.order;
3744 dout(" order %u", (unsigned int)*order);
3746 *snap_size = le64_to_cpu(size_buf.size);
3748 dout(" snap_id 0x%016llx snap_size = %llu\n",
3749 (unsigned long long)snap_id,
3750 (unsigned long long)*snap_size);
3755 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3757 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3758 &rbd_dev->header.obj_order,
3759 &rbd_dev->header.image_size);
3762 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3768 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3772 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3773 "rbd", "get_object_prefix", NULL, 0,
3774 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3775 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3780 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3781 p + ret, NULL, GFP_NOIO);
3784 if (IS_ERR(rbd_dev->header.object_prefix)) {
3785 ret = PTR_ERR(rbd_dev->header.object_prefix);
3786 rbd_dev->header.object_prefix = NULL;
3788 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
3796 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3799 __le64 snapid = cpu_to_le64(snap_id);
3803 } __attribute__ ((packed)) features_buf = { 0 };
3807 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3808 "rbd", "get_features",
3809 &snapid, sizeof (snapid),
3810 &features_buf, sizeof (features_buf));
3811 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3814 if (ret < sizeof (features_buf))
3817 incompat = le64_to_cpu(features_buf.incompat);
3818 if (incompat & ~RBD_FEATURES_SUPPORTED)
3821 *snap_features = le64_to_cpu(features_buf.features);
3823 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3824 (unsigned long long)snap_id,
3825 (unsigned long long)*snap_features,
3826 (unsigned long long)le64_to_cpu(features_buf.incompat));
3831 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3833 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3834 &rbd_dev->header.features);
3837 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3839 struct rbd_spec *parent_spec;
3841 void *reply_buf = NULL;
3851 parent_spec = rbd_spec_alloc();
3855 size = sizeof (__le64) + /* pool_id */
3856 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
3857 sizeof (__le64) + /* snap_id */
3858 sizeof (__le64); /* overlap */
3859 reply_buf = kmalloc(size, GFP_KERNEL);
3865 snapid = cpu_to_le64(CEPH_NOSNAP);
3866 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3867 "rbd", "get_parent",
3868 &snapid, sizeof (snapid),
3870 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3875 end = reply_buf + ret;
3877 ceph_decode_64_safe(&p, end, pool_id, out_err);
3878 if (pool_id == CEPH_NOPOOL) {
3880 * Either the parent never existed, or we have
3881 * record of it but the image got flattened so it no
3882 * longer has a parent. When the parent of a
3883 * layered image disappears we immediately set the
3884 * overlap to 0. The effect of this is that all new
3885 * requests will be treated as if the image had no
3888 if (rbd_dev->parent_overlap) {
3889 rbd_dev->parent_overlap = 0;
3891 rbd_dev_parent_put(rbd_dev);
3892 pr_info("%s: clone image has been flattened\n",
3893 rbd_dev->disk->disk_name);
3896 goto out; /* No parent? No problem. */
3899 /* The ceph file layout needs to fit pool id in 32 bits */
3902 if (pool_id > (u64)U32_MAX) {
3903 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3904 (unsigned long long)pool_id, U32_MAX);
3908 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3909 if (IS_ERR(image_id)) {
3910 ret = PTR_ERR(image_id);
3913 ceph_decode_64_safe(&p, end, snap_id, out_err);
3914 ceph_decode_64_safe(&p, end, overlap, out_err);
3917 * The parent won't change (except when the clone is
3918 * flattened, already handled that). So we only need to
3919 * record the parent spec we have not already done so.
3921 if (!rbd_dev->parent_spec) {
3922 parent_spec->pool_id = pool_id;
3923 parent_spec->image_id = image_id;
3924 parent_spec->snap_id = snap_id;
3925 rbd_dev->parent_spec = parent_spec;
3926 parent_spec = NULL; /* rbd_dev now owns this */
3930 * We always update the parent overlap. If it's zero we
3931 * treat it specially.
3933 rbd_dev->parent_overlap = overlap;
3937 /* A null parent_spec indicates it's the initial probe */
3941 * The overlap has become zero, so the clone
3942 * must have been resized down to 0 at some
3943 * point. Treat this the same as a flatten.
3945 rbd_dev_parent_put(rbd_dev);
3946 pr_info("%s: clone image now standalone\n",
3947 rbd_dev->disk->disk_name);
3950 * For the initial probe, if we find the
3951 * overlap is zero we just pretend there was
3954 rbd_warn(rbd_dev, "ignoring parent of "
3955 "clone with overlap 0\n");
3962 rbd_spec_put(parent_spec);
3967 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3971 __le64 stripe_count;
3972 } __attribute__ ((packed)) striping_info_buf = { 0 };
3973 size_t size = sizeof (striping_info_buf);
3980 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3981 "rbd", "get_stripe_unit_count", NULL, 0,
3982 (char *)&striping_info_buf, size);
3983 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3990 * We don't actually support the "fancy striping" feature
3991 * (STRIPINGV2) yet, but if the striping sizes are the
3992 * defaults the behavior is the same as before. So find
3993 * out, and only fail if the image has non-default values.
3996 obj_size = (u64)1 << rbd_dev->header.obj_order;
3997 p = &striping_info_buf;
3998 stripe_unit = ceph_decode_64(&p);
3999 if (stripe_unit != obj_size) {
4000 rbd_warn(rbd_dev, "unsupported stripe unit "
4001 "(got %llu want %llu)",
4002 stripe_unit, obj_size);
4005 stripe_count = ceph_decode_64(&p);
4006 if (stripe_count != 1) {
4007 rbd_warn(rbd_dev, "unsupported stripe count "
4008 "(got %llu want 1)", stripe_count);
4011 rbd_dev->header.stripe_unit = stripe_unit;
4012 rbd_dev->header.stripe_count = stripe_count;
4017 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4019 size_t image_id_size;
4024 void *reply_buf = NULL;
4026 char *image_name = NULL;
4029 rbd_assert(!rbd_dev->spec->image_name);
4031 len = strlen(rbd_dev->spec->image_id);
4032 image_id_size = sizeof (__le32) + len;
4033 image_id = kmalloc(image_id_size, GFP_KERNEL);
4038 end = image_id + image_id_size;
4039 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4041 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4042 reply_buf = kmalloc(size, GFP_KERNEL);
4046 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4047 "rbd", "dir_get_name",
4048 image_id, image_id_size,
4053 end = reply_buf + ret;
4055 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4056 if (IS_ERR(image_name))
4059 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4067 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4069 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4070 const char *snap_name;
4073 /* Skip over names until we find the one we are looking for */
4075 snap_name = rbd_dev->header.snap_names;
4076 while (which < snapc->num_snaps) {
4077 if (!strcmp(name, snap_name))
4078 return snapc->snaps[which];
4079 snap_name += strlen(snap_name) + 1;
4085 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4087 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4092 for (which = 0; !found && which < snapc->num_snaps; which++) {
4093 const char *snap_name;
4095 snap_id = snapc->snaps[which];
4096 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4097 if (IS_ERR(snap_name)) {
4098 /* ignore no-longer existing snapshots */
4099 if (PTR_ERR(snap_name) == -ENOENT)
4104 found = !strcmp(name, snap_name);
4107 return found ? snap_id : CEPH_NOSNAP;
4111 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4112 * no snapshot by that name is found, or if an error occurs.
4114 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4116 if (rbd_dev->image_format == 1)
4117 return rbd_v1_snap_id_by_name(rbd_dev, name);
4119 return rbd_v2_snap_id_by_name(rbd_dev, name);
4123 * When an rbd image has a parent image, it is identified by the
4124 * pool, image, and snapshot ids (not names). This function fills
4125 * in the names for those ids. (It's OK if we can't figure out the
4126 * name for an image id, but the pool and snapshot ids should always
4127 * exist and have names.) All names in an rbd spec are dynamically
4130 * When an image being mapped (not a parent) is probed, we have the
4131 * pool name and pool id, image name and image id, and the snapshot
4132 * name. The only thing we're missing is the snapshot id.
4134 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4136 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4137 struct rbd_spec *spec = rbd_dev->spec;
4138 const char *pool_name;
4139 const char *image_name;
4140 const char *snap_name;
4144 * An image being mapped will have the pool name (etc.), but
4145 * we need to look up the snapshot id.
4147 if (spec->pool_name) {
4148 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4151 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4152 if (snap_id == CEPH_NOSNAP)
4154 spec->snap_id = snap_id;
4156 spec->snap_id = CEPH_NOSNAP;
4162 /* Get the pool name; we have to make our own copy of this */
4164 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4166 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4169 pool_name = kstrdup(pool_name, GFP_KERNEL);
4173 /* Fetch the image name; tolerate failure here */
4175 image_name = rbd_dev_image_name(rbd_dev);
4177 rbd_warn(rbd_dev, "unable to get image name");
4179 /* Look up the snapshot name, and make a copy */
4181 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4182 if (IS_ERR(snap_name)) {
4183 ret = PTR_ERR(snap_name);
4187 spec->pool_name = pool_name;
4188 spec->image_name = image_name;
4189 spec->snap_name = snap_name;
4199 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4208 struct ceph_snap_context *snapc;
4212 * We'll need room for the seq value (maximum snapshot id),
4213 * snapshot count, and array of that many snapshot ids.
4214 * For now we have a fixed upper limit on the number we're
4215 * prepared to receive.
4217 size = sizeof (__le64) + sizeof (__le32) +
4218 RBD_MAX_SNAP_COUNT * sizeof (__le64);
4219 reply_buf = kzalloc(size, GFP_KERNEL);
4223 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4224 "rbd", "get_snapcontext", NULL, 0,
4226 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4231 end = reply_buf + ret;
4233 ceph_decode_64_safe(&p, end, seq, out);
4234 ceph_decode_32_safe(&p, end, snap_count, out);
4237 * Make sure the reported number of snapshot ids wouldn't go
4238 * beyond the end of our buffer. But before checking that,
4239 * make sure the computed size of the snapshot context we
4240 * allocate is representable in a size_t.
4242 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4247 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4251 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4257 for (i = 0; i < snap_count; i++)
4258 snapc->snaps[i] = ceph_decode_64(&p);
4260 ceph_put_snap_context(rbd_dev->header.snapc);
4261 rbd_dev->header.snapc = snapc;
4263 dout(" snap context seq = %llu, snap_count = %u\n",
4264 (unsigned long long)seq, (unsigned int)snap_count);
4271 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4282 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4283 reply_buf = kmalloc(size, GFP_KERNEL);
4285 return ERR_PTR(-ENOMEM);
4287 snapid = cpu_to_le64(snap_id);
4288 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4289 "rbd", "get_snapshot_name",
4290 &snapid, sizeof (snapid),
4292 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4294 snap_name = ERR_PTR(ret);
4299 end = reply_buf + ret;
4300 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4301 if (IS_ERR(snap_name))
4304 dout(" snap_id 0x%016llx snap_name = %s\n",
4305 (unsigned long long)snap_id, snap_name);
4312 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4314 bool first_time = rbd_dev->header.object_prefix == NULL;
4317 ret = rbd_dev_v2_image_size(rbd_dev);
4322 ret = rbd_dev_v2_header_onetime(rbd_dev);
4328 * If the image supports layering, get the parent info. We
4329 * need to probe the first time regardless. Thereafter we
4330 * only need to if there's a parent, to see if it has
4331 * disappeared due to the mapped image getting flattened.
4333 if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4334 (first_time || rbd_dev->parent_spec)) {
4337 ret = rbd_dev_v2_parent_info(rbd_dev);
4342 * Print a warning if this is the initial probe and
4343 * the image has a parent. Don't print it if the
4344 * image now being probed is itself a parent. We
4345 * can tell at this point because we won't know its
4346 * pool name yet (just its pool id).
4348 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4349 if (first_time && warn)
4350 rbd_warn(rbd_dev, "WARNING: kernel layering "
4351 "is EXPERIMENTAL!");
4354 if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4355 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4356 rbd_dev->mapping.size = rbd_dev->header.image_size;
4358 ret = rbd_dev_v2_snap_context(rbd_dev);
4359 dout("rbd_dev_v2_snap_context returned %d\n", ret);
4364 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4369 dev = &rbd_dev->dev;
4370 dev->bus = &rbd_bus_type;
4371 dev->type = &rbd_device_type;
4372 dev->parent = &rbd_root_dev;
4373 dev->release = rbd_dev_device_release;
4374 dev_set_name(dev, "%d", rbd_dev->dev_id);
4375 ret = device_register(dev);
4380 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4382 device_unregister(&rbd_dev->dev);
4386 * Get a unique rbd identifier for the given new rbd_dev, and add
4387 * the rbd_dev to the global list.
4389 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4393 new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4394 0, minor_to_rbd_dev_id(1 << MINORBITS),
4399 rbd_dev->dev_id = new_dev_id;
4401 spin_lock(&rbd_dev_list_lock);
4402 list_add_tail(&rbd_dev->node, &rbd_dev_list);
4403 spin_unlock(&rbd_dev_list_lock);
4405 dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4411 * Remove an rbd_dev from the global list, and record that its
4412 * identifier is no longer in use.
4414 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4416 spin_lock(&rbd_dev_list_lock);
4417 list_del_init(&rbd_dev->node);
4418 spin_unlock(&rbd_dev_list_lock);
4420 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4422 dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4426 * Skips over white space at *buf, and updates *buf to point to the
4427 * first found non-space character (if any). Returns the length of
4428 * the token (string of non-white space characters) found. Note
4429 * that *buf must be terminated with '\0'.
4431 static inline size_t next_token(const char **buf)
4434 * These are the characters that produce nonzero for
4435 * isspace() in the "C" and "POSIX" locales.
4437 const char *spaces = " \f\n\r\t\v";
4439 *buf += strspn(*buf, spaces); /* Find start of token */
4441 return strcspn(*buf, spaces); /* Return token length */
4445 * Finds the next token in *buf, and if the provided token buffer is
4446 * big enough, copies the found token into it. The result, if
4447 * copied, is guaranteed to be terminated with '\0'. Note that *buf
4448 * must be terminated with '\0' on entry.
4450 * Returns the length of the token found (not including the '\0').
4451 * Return value will be 0 if no token is found, and it will be >=
4452 * token_size if the token would not fit.
4454 * The *buf pointer will be updated to point beyond the end of the
4455 * found token. Note that this occurs even if the token buffer is
4456 * too small to hold it.
4458 static inline size_t copy_token(const char **buf,
4464 len = next_token(buf);
4465 if (len < token_size) {
4466 memcpy(token, *buf, len);
4467 *(token + len) = '\0';
4475 * Finds the next token in *buf, dynamically allocates a buffer big
4476 * enough to hold a copy of it, and copies the token into the new
4477 * buffer. The copy is guaranteed to be terminated with '\0'. Note
4478 * that a duplicate buffer is created even for a zero-length token.
4480 * Returns a pointer to the newly-allocated duplicate, or a null
4481 * pointer if memory for the duplicate was not available. If
4482 * the lenp argument is a non-null pointer, the length of the token
4483 * (not including the '\0') is returned in *lenp.
4485 * If successful, the *buf pointer will be updated to point beyond
4486 * the end of the found token.
4488 * Note: uses GFP_KERNEL for allocation.
4490 static inline char *dup_token(const char **buf, size_t *lenp)
4495 len = next_token(buf);
4496 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4499 *(dup + len) = '\0';
4509 * Parse the options provided for an "rbd add" (i.e., rbd image
4510 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
4511 * and the data written is passed here via a NUL-terminated buffer.
4512 * Returns 0 if successful or an error code otherwise.
4514 * The information extracted from these options is recorded in
4515 * the other parameters which return dynamically-allocated
4518 * The address of a pointer that will refer to a ceph options
4519 * structure. Caller must release the returned pointer using
4520 * ceph_destroy_options() when it is no longer needed.
4522 * Address of an rbd options pointer. Fully initialized by
4523 * this function; caller must release with kfree().
4525 * Address of an rbd image specification pointer. Fully
4526 * initialized by this function based on parsed options.
4527 * Caller must release with rbd_spec_put().
4529 * The options passed take this form:
4530 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4533 * A comma-separated list of one or more monitor addresses.
4534 * A monitor address is an ip address, optionally followed
4535 * by a port number (separated by a colon).
4536 * I.e.: ip1[:port1][,ip2[:port2]...]
4538 * A comma-separated list of ceph and/or rbd options.
4540 * The name of the rados pool containing the rbd image.
4542 * The name of the image in that pool to map.
4544 * An optional snapshot id. If provided, the mapping will
4545 * present data from the image at the time that snapshot was
4546 * created. The image head is used if no snapshot id is
4547 * provided. Snapshot mappings are always read-only.
4549 static int rbd_add_parse_args(const char *buf,
4550 struct ceph_options **ceph_opts,
4551 struct rbd_options **opts,
4552 struct rbd_spec **rbd_spec)
4556 const char *mon_addrs;
4558 size_t mon_addrs_size;
4559 struct rbd_spec *spec = NULL;
4560 struct rbd_options *rbd_opts = NULL;
4561 struct ceph_options *copts;
4564 /* The first four tokens are required */
4566 len = next_token(&buf);
4568 rbd_warn(NULL, "no monitor address(es) provided");
4572 mon_addrs_size = len + 1;
4576 options = dup_token(&buf, NULL);
4580 rbd_warn(NULL, "no options provided");
4584 spec = rbd_spec_alloc();
4588 spec->pool_name = dup_token(&buf, NULL);
4589 if (!spec->pool_name)
4591 if (!*spec->pool_name) {
4592 rbd_warn(NULL, "no pool name provided");
4596 spec->image_name = dup_token(&buf, NULL);
4597 if (!spec->image_name)
4599 if (!*spec->image_name) {
4600 rbd_warn(NULL, "no image name provided");
4605 * Snapshot name is optional; default is to use "-"
4606 * (indicating the head/no snapshot).
4608 len = next_token(&buf);
4610 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4611 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4612 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4613 ret = -ENAMETOOLONG;
4616 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4619 *(snap_name + len) = '\0';
4620 spec->snap_name = snap_name;
4622 /* Initialize all rbd options to the defaults */
4624 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4628 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4630 copts = ceph_parse_options(options, mon_addrs,
4631 mon_addrs + mon_addrs_size - 1,
4632 parse_rbd_opts_token, rbd_opts);
4633 if (IS_ERR(copts)) {
4634 ret = PTR_ERR(copts);
4655 * An rbd format 2 image has a unique identifier, distinct from the
4656 * name given to it by the user. Internally, that identifier is
4657 * what's used to specify the names of objects related to the image.
4659 * A special "rbd id" object is used to map an rbd image name to its
4660 * id. If that object doesn't exist, then there is no v2 rbd image
4661 * with the supplied name.
4663 * This function will record the given rbd_dev's image_id field if
4664 * it can be determined, and in that case will return 0. If any
4665 * errors occur a negative errno will be returned and the rbd_dev's
4666 * image_id field will be unchanged (and should be NULL).
4668 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4677 * When probing a parent image, the image id is already
4678 * known (and the image name likely is not). There's no
4679 * need to fetch the image id again in this case. We
4680 * do still need to set the image format though.
4682 if (rbd_dev->spec->image_id) {
4683 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4689 * First, see if the format 2 image id file exists, and if
4690 * so, get the image's persistent id from it.
4692 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4693 object_name = kmalloc(size, GFP_NOIO);
4696 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4697 dout("rbd id object name is %s\n", object_name);
4699 /* Response will be an encoded string, which includes a length */
4701 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4702 response = kzalloc(size, GFP_NOIO);
4708 /* If it doesn't exist we'll assume it's a format 1 image */
4710 ret = rbd_obj_method_sync(rbd_dev, object_name,
4711 "rbd", "get_id", NULL, 0,
4712 response, RBD_IMAGE_ID_LEN_MAX);
4713 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4714 if (ret == -ENOENT) {
4715 image_id = kstrdup("", GFP_KERNEL);
4716 ret = image_id ? 0 : -ENOMEM;
4718 rbd_dev->image_format = 1;
4719 } else if (ret > sizeof (__le32)) {
4722 image_id = ceph_extract_encoded_string(&p, p + ret,
4724 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4726 rbd_dev->image_format = 2;
4732 rbd_dev->spec->image_id = image_id;
4733 dout("image_id is %s\n", image_id);
4743 * Undo whatever state changes are made by v1 or v2 header info
4746 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4748 struct rbd_image_header *header;
4750 /* Drop parent reference unless it's already been done (or none) */
4752 if (rbd_dev->parent_overlap)
4753 rbd_dev_parent_put(rbd_dev);
4755 /* Free dynamic fields from the header, then zero it out */
4757 header = &rbd_dev->header;
4758 ceph_put_snap_context(header->snapc);
4759 kfree(header->snap_sizes);
4760 kfree(header->snap_names);
4761 kfree(header->object_prefix);
4762 memset(header, 0, sizeof (*header));
4765 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4769 ret = rbd_dev_v2_object_prefix(rbd_dev);
4774 * Get the and check features for the image. Currently the
4775 * features are assumed to never change.
4777 ret = rbd_dev_v2_features(rbd_dev);
4781 /* If the image supports fancy striping, get its parameters */
4783 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4784 ret = rbd_dev_v2_striping_info(rbd_dev);
4788 /* No support for crypto and compression type format 2 images */
4792 rbd_dev->header.features = 0;
4793 kfree(rbd_dev->header.object_prefix);
4794 rbd_dev->header.object_prefix = NULL;
4799 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4801 struct rbd_device *parent = NULL;
4802 struct rbd_spec *parent_spec;
4803 struct rbd_client *rbdc;
4806 if (!rbd_dev->parent_spec)
4809 * We need to pass a reference to the client and the parent
4810 * spec when creating the parent rbd_dev. Images related by
4811 * parent/child relationships always share both.
4813 parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4814 rbdc = __rbd_get_client(rbd_dev->rbd_client);
4817 parent = rbd_dev_create(rbdc, parent_spec);
4821 ret = rbd_dev_image_probe(parent, false);
4824 rbd_dev->parent = parent;
4825 atomic_set(&rbd_dev->parent_ref, 1);
4830 rbd_dev_unparent(rbd_dev);
4831 kfree(rbd_dev->header_name);
4832 rbd_dev_destroy(parent);
4834 rbd_put_client(rbdc);
4835 rbd_spec_put(parent_spec);
4841 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4845 /* Get an id and fill in device name. */
4847 ret = rbd_dev_id_get(rbd_dev);
4851 BUILD_BUG_ON(DEV_NAME_LEN
4852 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4853 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4855 /* Record our major and minor device numbers. */
4857 if (!single_major) {
4858 ret = register_blkdev(0, rbd_dev->name);
4862 rbd_dev->major = ret;
4865 rbd_dev->major = rbd_major;
4866 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
4869 /* Set up the blkdev mapping. */
4871 ret = rbd_init_disk(rbd_dev);
4873 goto err_out_blkdev;
4875 ret = rbd_dev_mapping_set(rbd_dev);
4878 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4880 ret = rbd_bus_add_dev(rbd_dev);
4882 goto err_out_mapping;
4884 /* Everything's ready. Announce the disk to the world. */
4886 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4887 add_disk(rbd_dev->disk);
4889 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4890 (unsigned long long) rbd_dev->mapping.size);
4895 rbd_dev_mapping_clear(rbd_dev);
4897 rbd_free_disk(rbd_dev);
4900 unregister_blkdev(rbd_dev->major, rbd_dev->name);
4902 rbd_dev_id_put(rbd_dev);
4903 rbd_dev_mapping_clear(rbd_dev);
4908 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4910 struct rbd_spec *spec = rbd_dev->spec;
4913 /* Record the header object name for this rbd image. */
4915 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4917 if (rbd_dev->image_format == 1)
4918 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4920 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4922 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4923 if (!rbd_dev->header_name)
4926 if (rbd_dev->image_format == 1)
4927 sprintf(rbd_dev->header_name, "%s%s",
4928 spec->image_name, RBD_SUFFIX);
4930 sprintf(rbd_dev->header_name, "%s%s",
4931 RBD_HEADER_PREFIX, spec->image_id);
4935 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4937 rbd_dev_unprobe(rbd_dev);
4938 kfree(rbd_dev->header_name);
4939 rbd_dev->header_name = NULL;
4940 rbd_dev->image_format = 0;
4941 kfree(rbd_dev->spec->image_id);
4942 rbd_dev->spec->image_id = NULL;
4944 rbd_dev_destroy(rbd_dev);
4948 * Probe for the existence of the header object for the given rbd
4949 * device. If this image is the one being mapped (i.e., not a
4950 * parent), initiate a watch on its header object before using that
4951 * object to get detailed information about the rbd image.
4953 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
4958 * Get the id from the image id object. Unless there's an
4959 * error, rbd_dev->spec->image_id will be filled in with
4960 * a dynamically-allocated string, and rbd_dev->image_format
4961 * will be set to either 1 or 2.
4963 ret = rbd_dev_image_id(rbd_dev);
4966 rbd_assert(rbd_dev->spec->image_id);
4967 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4969 ret = rbd_dev_header_name(rbd_dev);
4971 goto err_out_format;
4974 ret = rbd_dev_header_watch_sync(rbd_dev);
4976 goto out_header_name;
4979 if (rbd_dev->image_format == 1)
4980 ret = rbd_dev_v1_header_info(rbd_dev);
4982 ret = rbd_dev_v2_header_info(rbd_dev);
4986 ret = rbd_dev_spec_update(rbd_dev);
4990 ret = rbd_dev_probe_parent(rbd_dev);
4994 dout("discovered format %u image, header name is %s\n",
4995 rbd_dev->image_format, rbd_dev->header_name);
4999 rbd_dev_unprobe(rbd_dev);
5002 rbd_dev_header_unwatch_sync(rbd_dev);
5004 kfree(rbd_dev->header_name);
5005 rbd_dev->header_name = NULL;
5007 rbd_dev->image_format = 0;
5008 kfree(rbd_dev->spec->image_id);
5009 rbd_dev->spec->image_id = NULL;
5011 dout("probe failed, returning %d\n", ret);
5016 static ssize_t do_rbd_add(struct bus_type *bus,
5020 struct rbd_device *rbd_dev = NULL;
5021 struct ceph_options *ceph_opts = NULL;
5022 struct rbd_options *rbd_opts = NULL;
5023 struct rbd_spec *spec = NULL;
5024 struct rbd_client *rbdc;
5025 struct ceph_osd_client *osdc;
5029 if (!try_module_get(THIS_MODULE))
5032 /* parse add command */
5033 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5035 goto err_out_module;
5036 read_only = rbd_opts->read_only;
5038 rbd_opts = NULL; /* done with this */
5040 rbdc = rbd_get_client(ceph_opts);
5047 osdc = &rbdc->client->osdc;
5048 rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
5050 goto err_out_client;
5051 spec->pool_id = (u64)rc;
5053 /* The ceph file layout needs to fit pool id in 32 bits */
5055 if (spec->pool_id > (u64)U32_MAX) {
5056 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5057 (unsigned long long)spec->pool_id, U32_MAX);
5059 goto err_out_client;
5062 rbd_dev = rbd_dev_create(rbdc, spec);
5064 goto err_out_client;
5065 rbdc = NULL; /* rbd_dev now owns this */
5066 spec = NULL; /* rbd_dev now owns this */
5068 rc = rbd_dev_image_probe(rbd_dev, true);
5070 goto err_out_rbd_dev;
5072 /* If we are mapping a snapshot it must be marked read-only */
5074 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5076 rbd_dev->mapping.read_only = read_only;
5078 rc = rbd_dev_device_setup(rbd_dev);
5081 * rbd_dev_header_unwatch_sync() can't be moved into
5082 * rbd_dev_image_release() without refactoring, see
5083 * commit 1f3ef78861ac.
5085 rbd_dev_header_unwatch_sync(rbd_dev);
5086 rbd_dev_image_release(rbd_dev);
5087 goto err_out_module;
5093 rbd_dev_destroy(rbd_dev);
5095 rbd_put_client(rbdc);
5099 module_put(THIS_MODULE);
5101 dout("Error adding device %s\n", buf);
5106 static ssize_t rbd_add(struct bus_type *bus,
5113 return do_rbd_add(bus, buf, count);
5116 static ssize_t rbd_add_single_major(struct bus_type *bus,
5120 return do_rbd_add(bus, buf, count);
5123 static void rbd_dev_device_release(struct device *dev)
5125 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5127 rbd_free_disk(rbd_dev);
5128 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5129 rbd_dev_mapping_clear(rbd_dev);
5131 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5132 rbd_dev_id_put(rbd_dev);
5133 rbd_dev_mapping_clear(rbd_dev);
5136 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5138 while (rbd_dev->parent) {
5139 struct rbd_device *first = rbd_dev;
5140 struct rbd_device *second = first->parent;
5141 struct rbd_device *third;
5144 * Follow to the parent with no grandparent and
5147 while (second && (third = second->parent)) {
5152 rbd_dev_image_release(second);
5153 first->parent = NULL;
5154 first->parent_overlap = 0;
5156 rbd_assert(first->parent_spec);
5157 rbd_spec_put(first->parent_spec);
5158 first->parent_spec = NULL;
5162 static ssize_t do_rbd_remove(struct bus_type *bus,
5166 struct rbd_device *rbd_dev = NULL;
5167 struct list_head *tmp;
5170 bool already = false;
5173 ret = kstrtoul(buf, 10, &ul);
5177 /* convert to int; abort if we lost anything in the conversion */
5183 spin_lock(&rbd_dev_list_lock);
5184 list_for_each(tmp, &rbd_dev_list) {
5185 rbd_dev = list_entry(tmp, struct rbd_device, node);
5186 if (rbd_dev->dev_id == dev_id) {
5192 spin_lock_irq(&rbd_dev->lock);
5193 if (rbd_dev->open_count)
5196 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5198 spin_unlock_irq(&rbd_dev->lock);
5200 spin_unlock(&rbd_dev_list_lock);
5201 if (ret < 0 || already)
5204 rbd_dev_header_unwatch_sync(rbd_dev);
5206 * flush remaining watch callbacks - these must be complete
5207 * before the osd_client is shutdown
5209 dout("%s: flushing notifies", __func__);
5210 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5213 * Don't free anything from rbd_dev->disk until after all
5214 * notifies are completely processed. Otherwise
5215 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5216 * in a potential use after free of rbd_dev->disk or rbd_dev.
5218 rbd_bus_del_dev(rbd_dev);
5219 rbd_dev_image_release(rbd_dev);
5220 module_put(THIS_MODULE);
5225 static ssize_t rbd_remove(struct bus_type *bus,
5232 return do_rbd_remove(bus, buf, count);
5235 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5239 return do_rbd_remove(bus, buf, count);
5243 * create control files in sysfs
5246 static int rbd_sysfs_init(void)
5250 ret = device_register(&rbd_root_dev);
5254 ret = bus_register(&rbd_bus_type);
5256 device_unregister(&rbd_root_dev);
5261 static void rbd_sysfs_cleanup(void)
5263 bus_unregister(&rbd_bus_type);
5264 device_unregister(&rbd_root_dev);
5267 static int rbd_slab_init(void)
5269 rbd_assert(!rbd_img_request_cache);
5270 rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5271 sizeof (struct rbd_img_request),
5272 __alignof__(struct rbd_img_request),
5274 if (!rbd_img_request_cache)
5277 rbd_assert(!rbd_obj_request_cache);
5278 rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5279 sizeof (struct rbd_obj_request),
5280 __alignof__(struct rbd_obj_request),
5282 if (!rbd_obj_request_cache)
5285 rbd_assert(!rbd_segment_name_cache);
5286 rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5287 CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5288 if (rbd_segment_name_cache)
5291 if (rbd_obj_request_cache) {
5292 kmem_cache_destroy(rbd_obj_request_cache);
5293 rbd_obj_request_cache = NULL;
5296 kmem_cache_destroy(rbd_img_request_cache);
5297 rbd_img_request_cache = NULL;
5302 static void rbd_slab_exit(void)
5304 rbd_assert(rbd_segment_name_cache);
5305 kmem_cache_destroy(rbd_segment_name_cache);
5306 rbd_segment_name_cache = NULL;
5308 rbd_assert(rbd_obj_request_cache);
5309 kmem_cache_destroy(rbd_obj_request_cache);
5310 rbd_obj_request_cache = NULL;
5312 rbd_assert(rbd_img_request_cache);
5313 kmem_cache_destroy(rbd_img_request_cache);
5314 rbd_img_request_cache = NULL;
5317 static int __init rbd_init(void)
5321 if (!libceph_compatible(NULL)) {
5322 rbd_warn(NULL, "libceph incompatibility (quitting)");
5326 rc = rbd_slab_init();
5331 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5332 if (rbd_major < 0) {
5338 rc = rbd_sysfs_init();
5340 goto err_out_blkdev;
5343 pr_info("loaded (major %d)\n", rbd_major);
5345 pr_info("loaded\n");
5351 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5357 static void __exit rbd_exit(void)
5359 rbd_sysfs_cleanup();
5361 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5365 module_init(rbd_init);
5366 module_exit(rbd_exit);
5368 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5369 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5370 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5371 /* following authorship retained from original osdblk.c */
5372 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5374 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5375 MODULE_LICENSE("GPL");