3 rbd.c -- Export ceph rados objects as a Linux block device
6 based on drivers/block/osdblk.c:
8 Copyright 2009 Red Hat, Inc.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 For usage instructions, please refer to:
27 Documentation/ABI/testing/sysfs-bus-rbd
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44 #include <linux/idr.h>
45 #include <linux/workqueue.h>
47 #include "rbd_types.h"
49 #define RBD_DEBUG /* Activate rbd_assert() calls */
52 * The basic unit of block I/O is a sector. It is interpreted in a
53 * number of contexts in Linux (blk, bio, genhd), but the default is
54 * universally 512 bytes. These symbols are just slightly more
55 * meaningful than the bare numbers they represent.
57 #define SECTOR_SHIFT 9
58 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
61 * Increment the given counter and return its updated value.
62 * If the counter is already 0 it will not be incremented.
63 * If the counter is already at its maximum value returns
64 * -EINVAL without updating it.
66 static int atomic_inc_return_safe(atomic_t *v)
70 counter = (unsigned int)__atomic_add_unless(v, 1, 0);
71 if (counter <= (unsigned int)INT_MAX)
79 /* Decrement the counter. Return the resulting value, or -EINVAL */
80 static int atomic_dec_return_safe(atomic_t *v)
84 counter = atomic_dec_return(v);
93 #define RBD_DRV_NAME "rbd"
95 #define RBD_MINORS_PER_MAJOR 256
96 #define RBD_SINGLE_MAJOR_PART_SHIFT 4
98 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
99 #define RBD_MAX_SNAP_NAME_LEN \
100 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
102 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
104 #define RBD_SNAP_HEAD_NAME "-"
106 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
108 /* This allows a single page to hold an image name sent by OSD */
109 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
110 #define RBD_IMAGE_ID_LEN_MAX 64
112 #define RBD_OBJ_PREFIX_LEN_MAX 64
116 #define RBD_FEATURE_LAYERING (1<<0)
117 #define RBD_FEATURE_STRIPINGV2 (1<<1)
118 #define RBD_FEATURES_ALL \
119 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
121 /* Features supported by this (client software) implementation. */
123 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
126 * An RBD device name will be "rbd#", where the "rbd" comes from
127 * RBD_DRV_NAME above, and # is a unique integer identifier.
128 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
129 * enough to hold all possible device names.
131 #define DEV_NAME_LEN 32
132 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
135 * block device image metadata (in-memory version)
137 struct rbd_image_header {
138 /* These six fields never change for a given rbd image */
145 u64 features; /* Might be changeable someday? */
147 /* The remaining fields need to be updated occasionally */
149 struct ceph_snap_context *snapc;
150 char *snap_names; /* format 1 only */
151 u64 *snap_sizes; /* format 1 only */
155 * An rbd image specification.
157 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
158 * identify an image. Each rbd_dev structure includes a pointer to
159 * an rbd_spec structure that encapsulates this identity.
161 * Each of the id's in an rbd_spec has an associated name. For a
162 * user-mapped image, the names are supplied and the id's associated
163 * with them are looked up. For a layered image, a parent image is
164 * defined by the tuple, and the names are looked up.
166 * An rbd_dev structure contains a parent_spec pointer which is
167 * non-null if the image it represents is a child in a layered
168 * image. This pointer will refer to the rbd_spec structure used
169 * by the parent rbd_dev for its own identity (i.e., the structure
170 * is shared between the parent and child).
172 * Since these structures are populated once, during the discovery
173 * phase of image construction, they are effectively immutable so
174 * we make no effort to synchronize access to them.
176 * Note that code herein does not assume the image name is known (it
177 * could be a null pointer).
181 const char *pool_name;
183 const char *image_id;
184 const char *image_name;
187 const char *snap_name;
193 * an instance of the client. multiple devices may share an rbd client.
196 struct ceph_client *client;
198 struct list_head node;
201 struct rbd_img_request;
202 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
204 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
206 struct rbd_obj_request;
207 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
209 enum obj_request_type {
210 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
214 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */
215 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */
216 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */
217 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */
220 struct rbd_obj_request {
221 const char *object_name;
222 u64 offset; /* object start byte */
223 u64 length; /* bytes from offset */
227 * An object request associated with an image will have its
228 * img_data flag set; a standalone object request will not.
230 * A standalone object request will have which == BAD_WHICH
231 * and a null obj_request pointer.
233 * An object request initiated in support of a layered image
234 * object (to check for its existence before a write) will
235 * have which == BAD_WHICH and a non-null obj_request pointer.
237 * Finally, an object request for rbd image data will have
238 * which != BAD_WHICH, and will have a non-null img_request
239 * pointer. The value of which will be in the range
240 * 0..(img_request->obj_request_count-1).
243 struct rbd_obj_request *obj_request; /* STAT op */
245 struct rbd_img_request *img_request;
247 /* links for img_request->obj_requests list */
248 struct list_head links;
251 u32 which; /* posn image request list */
253 enum obj_request_type type;
255 struct bio *bio_list;
261 struct page **copyup_pages;
262 u32 copyup_page_count;
264 struct ceph_osd_request *osd_req;
266 u64 xferred; /* bytes transferred */
269 rbd_obj_callback_t callback;
270 struct completion completion;
276 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */
277 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
278 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
281 struct rbd_img_request {
282 struct rbd_device *rbd_dev;
283 u64 offset; /* starting image byte offset */
284 u64 length; /* byte count from offset */
287 u64 snap_id; /* for reads */
288 struct ceph_snap_context *snapc; /* for writes */
291 struct request *rq; /* block request */
292 struct rbd_obj_request *obj_request; /* obj req initiator */
294 struct page **copyup_pages;
295 u32 copyup_page_count;
296 spinlock_t completion_lock;/* protects next_completion */
298 rbd_img_callback_t callback;
299 u64 xferred;/* aggregate bytes transferred */
300 int result; /* first nonzero obj_request result */
302 u32 obj_request_count;
303 struct list_head obj_requests; /* rbd_obj_request structs */
308 #define for_each_obj_request(ireq, oreq) \
309 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
310 #define for_each_obj_request_from(ireq, oreq) \
311 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
312 #define for_each_obj_request_safe(ireq, oreq, n) \
313 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
325 int dev_id; /* blkdev unique id */
327 int major; /* blkdev assigned major */
329 struct gendisk *disk; /* blkdev's gendisk and rq */
331 u32 image_format; /* Either 1 or 2 */
332 struct rbd_client *rbd_client;
334 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
336 struct list_head rq_queue; /* incoming rq queue */
337 spinlock_t lock; /* queue, flags, open_count */
338 struct workqueue_struct *rq_wq;
339 struct work_struct rq_work;
341 struct rbd_image_header header;
342 unsigned long flags; /* possibly lock protected */
343 struct rbd_spec *spec;
347 struct ceph_file_layout layout;
349 struct ceph_osd_event *watch_event;
350 struct rbd_obj_request *watch_request;
352 struct rbd_spec *parent_spec;
355 struct rbd_device *parent;
357 /* protects updating the header */
358 struct rw_semaphore header_rwsem;
360 struct rbd_mapping mapping;
362 struct list_head node;
366 unsigned long open_count; /* protected by lock */
370 * Flag bits for rbd_dev->flags. If atomicity is required,
371 * rbd_dev->lock is used to protect access.
373 * Currently, only the "removing" flag (which is coupled with the
374 * "open_count" field) requires atomic access.
377 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
378 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
381 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */
383 static LIST_HEAD(rbd_dev_list); /* devices */
384 static DEFINE_SPINLOCK(rbd_dev_list_lock);
386 static LIST_HEAD(rbd_client_list); /* clients */
387 static DEFINE_SPINLOCK(rbd_client_list_lock);
389 /* Slab caches for frequently-allocated structures */
391 static struct kmem_cache *rbd_img_request_cache;
392 static struct kmem_cache *rbd_obj_request_cache;
393 static struct kmem_cache *rbd_segment_name_cache;
395 static int rbd_major;
396 static DEFINE_IDA(rbd_dev_id_ida);
399 * Default to false for now, as single-major requires >= 0.75 version of
400 * userspace rbd utility.
402 static bool single_major = false;
403 module_param(single_major, bool, S_IRUGO);
404 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
406 static int rbd_img_request_submit(struct rbd_img_request *img_request);
408 static void rbd_dev_device_release(struct device *dev);
410 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
412 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
414 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
416 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
418 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
419 static void rbd_spec_put(struct rbd_spec *spec);
421 static int rbd_dev_id_to_minor(int dev_id)
423 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
426 static int minor_to_rbd_dev_id(int minor)
428 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
431 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
432 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
433 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
434 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
436 static struct attribute *rbd_bus_attrs[] = {
438 &bus_attr_remove.attr,
439 &bus_attr_add_single_major.attr,
440 &bus_attr_remove_single_major.attr,
444 static umode_t rbd_bus_is_visible(struct kobject *kobj,
445 struct attribute *attr, int index)
448 (attr == &bus_attr_add_single_major.attr ||
449 attr == &bus_attr_remove_single_major.attr))
455 static const struct attribute_group rbd_bus_group = {
456 .attrs = rbd_bus_attrs,
457 .is_visible = rbd_bus_is_visible,
459 __ATTRIBUTE_GROUPS(rbd_bus);
461 static struct bus_type rbd_bus_type = {
463 .bus_groups = rbd_bus_groups,
466 static void rbd_root_dev_release(struct device *dev)
470 static struct device rbd_root_dev = {
472 .release = rbd_root_dev_release,
475 static __printf(2, 3)
476 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
478 struct va_format vaf;
486 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
487 else if (rbd_dev->disk)
488 printk(KERN_WARNING "%s: %s: %pV\n",
489 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
490 else if (rbd_dev->spec && rbd_dev->spec->image_name)
491 printk(KERN_WARNING "%s: image %s: %pV\n",
492 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
493 else if (rbd_dev->spec && rbd_dev->spec->image_id)
494 printk(KERN_WARNING "%s: id %s: %pV\n",
495 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
497 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
498 RBD_DRV_NAME, rbd_dev, &vaf);
503 #define rbd_assert(expr) \
504 if (unlikely(!(expr))) { \
505 printk(KERN_ERR "\nAssertion failure in %s() " \
507 "\trbd_assert(%s);\n\n", \
508 __func__, __LINE__, #expr); \
511 #else /* !RBD_DEBUG */
512 # define rbd_assert(expr) ((void) 0)
513 #endif /* !RBD_DEBUG */
515 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
516 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
517 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
519 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
520 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
521 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
522 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
523 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
525 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
526 u8 *order, u64 *snap_size);
527 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
529 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
531 static int rbd_open(struct block_device *bdev, fmode_t mode)
533 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
534 bool removing = false;
536 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
539 spin_lock_irq(&rbd_dev->lock);
540 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
543 rbd_dev->open_count++;
544 spin_unlock_irq(&rbd_dev->lock);
548 (void) get_device(&rbd_dev->dev);
553 static void rbd_release(struct gendisk *disk, fmode_t mode)
555 struct rbd_device *rbd_dev = disk->private_data;
556 unsigned long open_count_before;
558 spin_lock_irq(&rbd_dev->lock);
559 open_count_before = rbd_dev->open_count--;
560 spin_unlock_irq(&rbd_dev->lock);
561 rbd_assert(open_count_before > 0);
563 put_device(&rbd_dev->dev);
566 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
571 bool ro_changed = false;
573 /* get_user() may sleep, so call it before taking rbd_dev->lock */
574 if (get_user(val, (int __user *)(arg)))
577 ro = val ? true : false;
578 /* Snapshot doesn't allow to write*/
579 if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
582 spin_lock_irq(&rbd_dev->lock);
583 /* prevent others open this device */
584 if (rbd_dev->open_count > 1) {
589 if (rbd_dev->mapping.read_only != ro) {
590 rbd_dev->mapping.read_only = ro;
595 spin_unlock_irq(&rbd_dev->lock);
596 /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
597 if (ret == 0 && ro_changed)
598 set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
603 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
604 unsigned int cmd, unsigned long arg)
606 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
611 ret = rbd_ioctl_set_ro(rbd_dev, arg);
621 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
622 unsigned int cmd, unsigned long arg)
624 return rbd_ioctl(bdev, mode, cmd, arg);
626 #endif /* CONFIG_COMPAT */
628 static const struct block_device_operations rbd_bd_ops = {
629 .owner = THIS_MODULE,
631 .release = rbd_release,
634 .compat_ioctl = rbd_compat_ioctl,
639 * Initialize an rbd client instance. Success or not, this function
640 * consumes ceph_opts. Caller holds client_mutex.
642 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
644 struct rbd_client *rbdc;
647 dout("%s:\n", __func__);
648 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
652 kref_init(&rbdc->kref);
653 INIT_LIST_HEAD(&rbdc->node);
655 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
656 if (IS_ERR(rbdc->client))
658 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
660 ret = ceph_open_session(rbdc->client);
664 spin_lock(&rbd_client_list_lock);
665 list_add_tail(&rbdc->node, &rbd_client_list);
666 spin_unlock(&rbd_client_list_lock);
668 dout("%s: rbdc %p\n", __func__, rbdc);
672 ceph_destroy_client(rbdc->client);
677 ceph_destroy_options(ceph_opts);
678 dout("%s: error %d\n", __func__, ret);
683 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
685 kref_get(&rbdc->kref);
691 * Find a ceph client with specific addr and configuration. If
692 * found, bump its reference count.
694 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
696 struct rbd_client *client_node;
699 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
702 spin_lock(&rbd_client_list_lock);
703 list_for_each_entry(client_node, &rbd_client_list, node) {
704 if (!ceph_compare_options(ceph_opts, client_node->client)) {
705 __rbd_get_client(client_node);
711 spin_unlock(&rbd_client_list_lock);
713 return found ? client_node : NULL;
723 /* string args above */
726 /* Boolean args above */
730 static match_table_t rbd_opts_tokens = {
732 /* string args above */
733 {Opt_read_only, "read_only"},
734 {Opt_read_only, "ro"}, /* Alternate spelling */
735 {Opt_read_write, "read_write"},
736 {Opt_read_write, "rw"}, /* Alternate spelling */
737 /* Boolean args above */
745 #define RBD_READ_ONLY_DEFAULT false
747 static int parse_rbd_opts_token(char *c, void *private)
749 struct rbd_options *rbd_opts = private;
750 substring_t argstr[MAX_OPT_ARGS];
751 int token, intval, ret;
753 token = match_token(c, rbd_opts_tokens, argstr);
757 if (token < Opt_last_int) {
758 ret = match_int(&argstr[0], &intval);
760 pr_err("bad mount option arg (not int) "
764 dout("got int token %d val %d\n", token, intval);
765 } else if (token > Opt_last_int && token < Opt_last_string) {
766 dout("got string token %d val %s\n", token,
768 } else if (token > Opt_last_string && token < Opt_last_bool) {
769 dout("got Boolean token %d\n", token);
771 dout("got token %d\n", token);
776 rbd_opts->read_only = true;
779 rbd_opts->read_only = false;
789 * Get a ceph client with specific addr and configuration, if one does
790 * not exist create it. Either way, ceph_opts is consumed by this
793 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
795 struct rbd_client *rbdc;
797 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
798 rbdc = rbd_client_find(ceph_opts);
799 if (rbdc) /* using an existing client */
800 ceph_destroy_options(ceph_opts);
802 rbdc = rbd_client_create(ceph_opts);
803 mutex_unlock(&client_mutex);
809 * Destroy ceph client
811 * Caller must hold rbd_client_list_lock.
813 static void rbd_client_release(struct kref *kref)
815 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
817 dout("%s: rbdc %p\n", __func__, rbdc);
818 spin_lock(&rbd_client_list_lock);
819 list_del(&rbdc->node);
820 spin_unlock(&rbd_client_list_lock);
822 ceph_destroy_client(rbdc->client);
827 * Drop reference to ceph client node. If it's not referenced anymore, release
830 static void rbd_put_client(struct rbd_client *rbdc)
833 kref_put(&rbdc->kref, rbd_client_release);
836 static bool rbd_image_format_valid(u32 image_format)
838 return image_format == 1 || image_format == 2;
841 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
846 /* The header has to start with the magic rbd header text */
847 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
850 /* The bio layer requires at least sector-sized I/O */
852 if (ondisk->options.order < SECTOR_SHIFT)
855 /* If we use u64 in a few spots we may be able to loosen this */
857 if (ondisk->options.order > 8 * sizeof (int) - 1)
861 * The size of a snapshot header has to fit in a size_t, and
862 * that limits the number of snapshots.
864 snap_count = le32_to_cpu(ondisk->snap_count);
865 size = SIZE_MAX - sizeof (struct ceph_snap_context);
866 if (snap_count > size / sizeof (__le64))
870 * Not only that, but the size of the entire the snapshot
871 * header must also be representable in a size_t.
873 size -= snap_count * sizeof (__le64);
874 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
881 * Fill an rbd image header with information from the given format 1
884 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
885 struct rbd_image_header_ondisk *ondisk)
887 struct rbd_image_header *header = &rbd_dev->header;
888 bool first_time = header->object_prefix == NULL;
889 struct ceph_snap_context *snapc;
890 char *object_prefix = NULL;
891 char *snap_names = NULL;
892 u64 *snap_sizes = NULL;
898 /* Allocate this now to avoid having to handle failure below */
903 len = strnlen(ondisk->object_prefix,
904 sizeof (ondisk->object_prefix));
905 object_prefix = kmalloc(len + 1, GFP_KERNEL);
908 memcpy(object_prefix, ondisk->object_prefix, len);
909 object_prefix[len] = '\0';
912 /* Allocate the snapshot context and fill it in */
914 snap_count = le32_to_cpu(ondisk->snap_count);
915 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
918 snapc->seq = le64_to_cpu(ondisk->snap_seq);
920 struct rbd_image_snap_ondisk *snaps;
921 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
923 /* We'll keep a copy of the snapshot names... */
925 if (snap_names_len > (u64)SIZE_MAX)
927 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
931 /* ...as well as the array of their sizes. */
933 size = snap_count * sizeof (*header->snap_sizes);
934 snap_sizes = kmalloc(size, GFP_KERNEL);
939 * Copy the names, and fill in each snapshot's id
942 * Note that rbd_dev_v1_header_info() guarantees the
943 * ondisk buffer we're working with has
944 * snap_names_len bytes beyond the end of the
945 * snapshot id array, this memcpy() is safe.
947 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
948 snaps = ondisk->snaps;
949 for (i = 0; i < snap_count; i++) {
950 snapc->snaps[i] = le64_to_cpu(snaps[i].id);
951 snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
955 /* We won't fail any more, fill in the header */
958 header->object_prefix = object_prefix;
959 header->obj_order = ondisk->options.order;
960 header->crypt_type = ondisk->options.crypt_type;
961 header->comp_type = ondisk->options.comp_type;
962 /* The rest aren't used for format 1 images */
963 header->stripe_unit = 0;
964 header->stripe_count = 0;
965 header->features = 0;
967 ceph_put_snap_context(header->snapc);
968 kfree(header->snap_names);
969 kfree(header->snap_sizes);
972 /* The remaining fields always get updated (when we refresh) */
974 header->image_size = le64_to_cpu(ondisk->image_size);
975 header->snapc = snapc;
976 header->snap_names = snap_names;
977 header->snap_sizes = snap_sizes;
985 ceph_put_snap_context(snapc);
986 kfree(object_prefix);
991 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
993 const char *snap_name;
995 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
997 /* Skip over names until we find the one we are looking for */
999 snap_name = rbd_dev->header.snap_names;
1001 snap_name += strlen(snap_name) + 1;
1003 return kstrdup(snap_name, GFP_KERNEL);
1007 * Snapshot id comparison function for use with qsort()/bsearch().
1008 * Note that result is for snapshots in *descending* order.
1010 static int snapid_compare_reverse(const void *s1, const void *s2)
1012 u64 snap_id1 = *(u64 *)s1;
1013 u64 snap_id2 = *(u64 *)s2;
1015 if (snap_id1 < snap_id2)
1017 return snap_id1 == snap_id2 ? 0 : -1;
1021 * Search a snapshot context to see if the given snapshot id is
1024 * Returns the position of the snapshot id in the array if it's found,
1025 * or BAD_SNAP_INDEX otherwise.
1027 * Note: The snapshot array is in kept sorted (by the osd) in
1028 * reverse order, highest snapshot id first.
1030 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1032 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1035 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1036 sizeof (snap_id), snapid_compare_reverse);
1038 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1041 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1045 const char *snap_name;
1047 which = rbd_dev_snap_index(rbd_dev, snap_id);
1048 if (which == BAD_SNAP_INDEX)
1049 return ERR_PTR(-ENOENT);
1051 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1052 return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1055 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1057 if (snap_id == CEPH_NOSNAP)
1058 return RBD_SNAP_HEAD_NAME;
1060 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1061 if (rbd_dev->image_format == 1)
1062 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1064 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1067 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1070 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1071 if (snap_id == CEPH_NOSNAP) {
1072 *snap_size = rbd_dev->header.image_size;
1073 } else if (rbd_dev->image_format == 1) {
1076 which = rbd_dev_snap_index(rbd_dev, snap_id);
1077 if (which == BAD_SNAP_INDEX)
1080 *snap_size = rbd_dev->header.snap_sizes[which];
1085 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1094 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1097 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1098 if (snap_id == CEPH_NOSNAP) {
1099 *snap_features = rbd_dev->header.features;
1100 } else if (rbd_dev->image_format == 1) {
1101 *snap_features = 0; /* No features for format 1 */
1106 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1110 *snap_features = features;
1115 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1117 u64 snap_id = rbd_dev->spec->snap_id;
1122 ret = rbd_snap_size(rbd_dev, snap_id, &size);
1125 ret = rbd_snap_features(rbd_dev, snap_id, &features);
1129 rbd_dev->mapping.size = size;
1130 rbd_dev->mapping.features = features;
1135 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1137 rbd_dev->mapping.size = 0;
1138 rbd_dev->mapping.features = 0;
1141 static void rbd_segment_name_free(const char *name)
1143 /* The explicit cast here is needed to drop the const qualifier */
1145 kmem_cache_free(rbd_segment_name_cache, (void *)name);
1148 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1155 name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1158 segment = offset >> rbd_dev->header.obj_order;
1159 name_format = "%s.%012llx";
1160 if (rbd_dev->image_format == 2)
1161 name_format = "%s.%016llx";
1162 ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1163 rbd_dev->header.object_prefix, segment);
1164 if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1165 pr_err("error formatting segment name for #%llu (%d)\n",
1167 rbd_segment_name_free(name);
1174 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1176 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1178 return offset & (segment_size - 1);
1181 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1182 u64 offset, u64 length)
1184 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1186 offset &= segment_size - 1;
1188 rbd_assert(length <= U64_MAX - offset);
1189 if (offset + length > segment_size)
1190 length = segment_size - offset;
1196 * returns the size of an object in the image
1198 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1200 return 1 << header->obj_order;
1207 static void bio_chain_put(struct bio *chain)
1213 chain = chain->bi_next;
1219 * zeros a bio chain, starting at specific offset
1221 static void zero_bio_chain(struct bio *chain, int start_ofs)
1224 struct bvec_iter iter;
1225 unsigned long flags;
1230 bio_for_each_segment(bv, chain, iter) {
1231 if (pos + bv.bv_len > start_ofs) {
1232 int remainder = max(start_ofs - pos, 0);
1233 buf = bvec_kmap_irq(&bv, &flags);
1234 memset(buf + remainder, 0,
1235 bv.bv_len - remainder);
1236 flush_dcache_page(bv.bv_page);
1237 bvec_kunmap_irq(buf, &flags);
1242 chain = chain->bi_next;
1247 * similar to zero_bio_chain(), zeros data defined by a page array,
1248 * starting at the given byte offset from the start of the array and
1249 * continuing up to the given end offset. The pages array is
1250 * assumed to be big enough to hold all bytes up to the end.
1252 static void zero_pages(struct page **pages, u64 offset, u64 end)
1254 struct page **page = &pages[offset >> PAGE_SHIFT];
1256 rbd_assert(end > offset);
1257 rbd_assert(end - offset <= (u64)SIZE_MAX);
1258 while (offset < end) {
1261 unsigned long flags;
1264 page_offset = offset & ~PAGE_MASK;
1265 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1266 local_irq_save(flags);
1267 kaddr = kmap_atomic(*page);
1268 memset(kaddr + page_offset, 0, length);
1269 flush_dcache_page(*page);
1270 kunmap_atomic(kaddr);
1271 local_irq_restore(flags);
1279 * Clone a portion of a bio, starting at the given byte offset
1280 * and continuing for the number of bytes indicated.
1282 static struct bio *bio_clone_range(struct bio *bio_src,
1283 unsigned int offset,
1289 bio = bio_clone(bio_src, gfpmask);
1291 return NULL; /* ENOMEM */
1293 bio_advance(bio, offset);
1294 bio->bi_iter.bi_size = len;
1300 * Clone a portion of a bio chain, starting at the given byte offset
1301 * into the first bio in the source chain and continuing for the
1302 * number of bytes indicated. The result is another bio chain of
1303 * exactly the given length, or a null pointer on error.
1305 * The bio_src and offset parameters are both in-out. On entry they
1306 * refer to the first source bio and the offset into that bio where
1307 * the start of data to be cloned is located.
1309 * On return, bio_src is updated to refer to the bio in the source
1310 * chain that contains first un-cloned byte, and *offset will
1311 * contain the offset of that byte within that bio.
1313 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1314 unsigned int *offset,
1318 struct bio *bi = *bio_src;
1319 unsigned int off = *offset;
1320 struct bio *chain = NULL;
1323 /* Build up a chain of clone bios up to the limit */
1325 if (!bi || off >= bi->bi_iter.bi_size || !len)
1326 return NULL; /* Nothing to clone */
1330 unsigned int bi_size;
1334 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1335 goto out_err; /* EINVAL; ran out of bio's */
1337 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1338 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1340 goto out_err; /* ENOMEM */
1343 end = &bio->bi_next;
1346 if (off == bi->bi_iter.bi_size) {
1357 bio_chain_put(chain);
1363 * The default/initial value for all object request flags is 0. For
1364 * each flag, once its value is set to 1 it is never reset to 0
1367 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1369 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1370 struct rbd_device *rbd_dev;
1372 rbd_dev = obj_request->img_request->rbd_dev;
1373 rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1378 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1381 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1384 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1386 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1387 struct rbd_device *rbd_dev = NULL;
1389 if (obj_request_img_data_test(obj_request))
1390 rbd_dev = obj_request->img_request->rbd_dev;
1391 rbd_warn(rbd_dev, "obj_request %p already marked done",
1396 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1399 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1403 * This sets the KNOWN flag after (possibly) setting the EXISTS
1404 * flag. The latter is set based on the "exists" value provided.
1406 * Note that for our purposes once an object exists it never goes
1407 * away again. It's possible that the response from two existence
1408 * checks are separated by the creation of the target object, and
1409 * the first ("doesn't exist") response arrives *after* the second
1410 * ("does exist"). In that case we ignore the second one.
1412 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1416 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1417 set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1421 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1424 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1427 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1430 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1433 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1435 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1437 return obj_request->img_offset <
1438 round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1441 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1443 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1444 atomic_read(&obj_request->kref.refcount));
1445 kref_get(&obj_request->kref);
1448 static void rbd_obj_request_destroy(struct kref *kref);
1449 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1451 rbd_assert(obj_request != NULL);
1452 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1453 atomic_read(&obj_request->kref.refcount));
1454 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1457 static void rbd_img_request_get(struct rbd_img_request *img_request)
1459 dout("%s: img %p (was %d)\n", __func__, img_request,
1460 atomic_read(&img_request->kref.refcount));
1461 kref_get(&img_request->kref);
1464 static bool img_request_child_test(struct rbd_img_request *img_request);
1465 static void rbd_parent_request_destroy(struct kref *kref);
1466 static void rbd_img_request_destroy(struct kref *kref);
1467 static void rbd_img_request_put(struct rbd_img_request *img_request)
1469 rbd_assert(img_request != NULL);
1470 dout("%s: img %p (was %d)\n", __func__, img_request,
1471 atomic_read(&img_request->kref.refcount));
1472 if (img_request_child_test(img_request))
1473 kref_put(&img_request->kref, rbd_parent_request_destroy);
1475 kref_put(&img_request->kref, rbd_img_request_destroy);
1478 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1479 struct rbd_obj_request *obj_request)
1481 rbd_assert(obj_request->img_request == NULL);
1483 /* Image request now owns object's original reference */
1484 obj_request->img_request = img_request;
1485 obj_request->which = img_request->obj_request_count;
1486 rbd_assert(!obj_request_img_data_test(obj_request));
1487 obj_request_img_data_set(obj_request);
1488 rbd_assert(obj_request->which != BAD_WHICH);
1489 img_request->obj_request_count++;
1490 list_add_tail(&obj_request->links, &img_request->obj_requests);
1491 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1492 obj_request->which);
1495 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1496 struct rbd_obj_request *obj_request)
1498 rbd_assert(obj_request->which != BAD_WHICH);
1500 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1501 obj_request->which);
1502 list_del(&obj_request->links);
1503 rbd_assert(img_request->obj_request_count > 0);
1504 img_request->obj_request_count--;
1505 rbd_assert(obj_request->which == img_request->obj_request_count);
1506 obj_request->which = BAD_WHICH;
1507 rbd_assert(obj_request_img_data_test(obj_request));
1508 rbd_assert(obj_request->img_request == img_request);
1509 obj_request->img_request = NULL;
1510 obj_request->callback = NULL;
1511 rbd_obj_request_put(obj_request);
1514 static bool obj_request_type_valid(enum obj_request_type type)
1517 case OBJ_REQUEST_NODATA:
1518 case OBJ_REQUEST_BIO:
1519 case OBJ_REQUEST_PAGES:
1526 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1527 struct rbd_obj_request *obj_request)
1529 dout("%s %p\n", __func__, obj_request);
1530 return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1533 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1535 dout("%s %p\n", __func__, obj_request);
1536 ceph_osdc_cancel_request(obj_request->osd_req);
1540 * Wait for an object request to complete. If interrupted, cancel the
1541 * underlying osd request.
1543 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1547 dout("%s %p\n", __func__, obj_request);
1549 ret = wait_for_completion_interruptible(&obj_request->completion);
1551 dout("%s %p interrupted\n", __func__, obj_request);
1552 rbd_obj_request_end(obj_request);
1556 dout("%s %p done\n", __func__, obj_request);
1560 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1563 dout("%s: img %p\n", __func__, img_request);
1566 * If no error occurred, compute the aggregate transfer
1567 * count for the image request. We could instead use
1568 * atomic64_cmpxchg() to update it as each object request
1569 * completes; not clear which way is better off hand.
1571 if (!img_request->result) {
1572 struct rbd_obj_request *obj_request;
1575 for_each_obj_request(img_request, obj_request)
1576 xferred += obj_request->xferred;
1577 img_request->xferred = xferred;
1580 if (img_request->callback)
1581 img_request->callback(img_request);
1583 rbd_img_request_put(img_request);
1587 * The default/initial value for all image request flags is 0. Each
1588 * is conditionally set to 1 at image request initialization time
1589 * and currently never change thereafter.
1591 static void img_request_write_set(struct rbd_img_request *img_request)
1593 set_bit(IMG_REQ_WRITE, &img_request->flags);
1597 static bool img_request_write_test(struct rbd_img_request *img_request)
1600 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1603 static void img_request_child_set(struct rbd_img_request *img_request)
1605 set_bit(IMG_REQ_CHILD, &img_request->flags);
1609 static void img_request_child_clear(struct rbd_img_request *img_request)
1611 clear_bit(IMG_REQ_CHILD, &img_request->flags);
1615 static bool img_request_child_test(struct rbd_img_request *img_request)
1618 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1621 static void img_request_layered_set(struct rbd_img_request *img_request)
1623 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1627 static void img_request_layered_clear(struct rbd_img_request *img_request)
1629 clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1633 static bool img_request_layered_test(struct rbd_img_request *img_request)
1636 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1640 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1642 u64 xferred = obj_request->xferred;
1643 u64 length = obj_request->length;
1645 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1646 obj_request, obj_request->img_request, obj_request->result,
1649 * ENOENT means a hole in the image. We zero-fill the entire
1650 * length of the request. A short read also implies zero-fill
1651 * to the end of the request. An error requires the whole
1652 * length of the request to be reported finished with an error
1653 * to the block layer. In each case we update the xferred
1654 * count to indicate the whole request was satisfied.
1656 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1657 if (obj_request->result == -ENOENT) {
1658 if (obj_request->type == OBJ_REQUEST_BIO)
1659 zero_bio_chain(obj_request->bio_list, 0);
1661 zero_pages(obj_request->pages, 0, length);
1662 obj_request->result = 0;
1663 } else if (xferred < length && !obj_request->result) {
1664 if (obj_request->type == OBJ_REQUEST_BIO)
1665 zero_bio_chain(obj_request->bio_list, xferred);
1667 zero_pages(obj_request->pages, xferred, length);
1669 obj_request->xferred = length;
1670 obj_request_done_set(obj_request);
1673 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1675 dout("%s: obj %p cb %p\n", __func__, obj_request,
1676 obj_request->callback);
1677 if (obj_request->callback)
1678 obj_request->callback(obj_request);
1680 complete_all(&obj_request->completion);
1683 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1685 dout("%s: obj %p\n", __func__, obj_request);
1686 obj_request_done_set(obj_request);
1689 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1691 struct rbd_img_request *img_request = NULL;
1692 struct rbd_device *rbd_dev = NULL;
1693 bool layered = false;
1695 if (obj_request_img_data_test(obj_request)) {
1696 img_request = obj_request->img_request;
1697 layered = img_request && img_request_layered_test(img_request);
1698 rbd_dev = img_request->rbd_dev;
1701 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1702 obj_request, img_request, obj_request->result,
1703 obj_request->xferred, obj_request->length);
1704 if (layered && obj_request->result == -ENOENT &&
1705 obj_request->img_offset < rbd_dev->parent_overlap)
1706 rbd_img_parent_read(obj_request);
1707 else if (img_request)
1708 rbd_img_obj_request_read_callback(obj_request);
1710 obj_request_done_set(obj_request);
1713 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1715 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1716 obj_request->result, obj_request->length);
1718 * There is no such thing as a successful short write. Set
1719 * it to our originally-requested length.
1721 obj_request->xferred = obj_request->length;
1722 obj_request_done_set(obj_request);
1726 * For a simple stat call there's nothing to do. We'll do more if
1727 * this is part of a write sequence for a layered image.
1729 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1731 dout("%s: obj %p\n", __func__, obj_request);
1732 obj_request_done_set(obj_request);
1735 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1736 struct ceph_msg *msg)
1738 struct rbd_obj_request *obj_request = osd_req->r_priv;
1741 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1742 rbd_assert(osd_req == obj_request->osd_req);
1743 if (obj_request_img_data_test(obj_request)) {
1744 rbd_assert(obj_request->img_request);
1745 rbd_assert(obj_request->which != BAD_WHICH);
1747 rbd_assert(obj_request->which == BAD_WHICH);
1750 if (osd_req->r_result < 0)
1751 obj_request->result = osd_req->r_result;
1753 rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1756 * We support a 64-bit length, but ultimately it has to be
1757 * passed to blk_end_request(), which takes an unsigned int.
1759 obj_request->xferred = osd_req->r_reply_op_len[0];
1760 rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1762 opcode = osd_req->r_ops[0].op;
1764 case CEPH_OSD_OP_READ:
1765 rbd_osd_read_callback(obj_request);
1767 case CEPH_OSD_OP_SETALLOCHINT:
1768 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1770 case CEPH_OSD_OP_WRITE:
1771 rbd_osd_write_callback(obj_request);
1773 case CEPH_OSD_OP_STAT:
1774 rbd_osd_stat_callback(obj_request);
1776 case CEPH_OSD_OP_CALL:
1777 case CEPH_OSD_OP_NOTIFY_ACK:
1778 case CEPH_OSD_OP_WATCH:
1779 rbd_osd_trivial_callback(obj_request);
1782 rbd_warn(NULL, "%s: unsupported op %hu",
1783 obj_request->object_name, (unsigned short) opcode);
1787 if (obj_request_done_test(obj_request))
1788 rbd_obj_request_complete(obj_request);
1791 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1793 struct rbd_img_request *img_request = obj_request->img_request;
1794 struct ceph_osd_request *osd_req = obj_request->osd_req;
1797 rbd_assert(osd_req != NULL);
1799 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1800 ceph_osdc_build_request(osd_req, obj_request->offset,
1801 NULL, snap_id, NULL);
1804 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1806 struct rbd_img_request *img_request = obj_request->img_request;
1807 struct ceph_osd_request *osd_req = obj_request->osd_req;
1808 struct ceph_snap_context *snapc;
1809 struct timespec mtime = CURRENT_TIME;
1811 rbd_assert(osd_req != NULL);
1813 snapc = img_request ? img_request->snapc : NULL;
1814 ceph_osdc_build_request(osd_req, obj_request->offset,
1815 snapc, CEPH_NOSNAP, &mtime);
1819 * Create an osd request. A read request has one osd op (read).
1820 * A write request has either one (watch) or two (hint+write) osd ops.
1821 * (All rbd data writes are prefixed with an allocation hint op, but
1822 * technically osd watch is a write request, hence this distinction.)
1824 static struct ceph_osd_request *rbd_osd_req_create(
1825 struct rbd_device *rbd_dev,
1827 unsigned int num_ops,
1828 struct rbd_obj_request *obj_request)
1830 struct ceph_snap_context *snapc = NULL;
1831 struct ceph_osd_client *osdc;
1832 struct ceph_osd_request *osd_req;
1834 if (obj_request_img_data_test(obj_request)) {
1835 struct rbd_img_request *img_request = obj_request->img_request;
1837 rbd_assert(write_request ==
1838 img_request_write_test(img_request));
1840 snapc = img_request->snapc;
1843 rbd_assert(num_ops == 1 || (write_request && num_ops == 2));
1845 /* Allocate and initialize the request, for the num_ops ops */
1847 osdc = &rbd_dev->rbd_client->client->osdc;
1848 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1851 return NULL; /* ENOMEM */
1854 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1856 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1858 osd_req->r_callback = rbd_osd_req_callback;
1859 osd_req->r_priv = obj_request;
1861 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1862 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1868 * Create a copyup osd request based on the information in the
1869 * object request supplied. A copyup request has three osd ops,
1870 * a copyup method call, a hint op, and a write op.
1872 static struct ceph_osd_request *
1873 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1875 struct rbd_img_request *img_request;
1876 struct ceph_snap_context *snapc;
1877 struct rbd_device *rbd_dev;
1878 struct ceph_osd_client *osdc;
1879 struct ceph_osd_request *osd_req;
1881 rbd_assert(obj_request_img_data_test(obj_request));
1882 img_request = obj_request->img_request;
1883 rbd_assert(img_request);
1884 rbd_assert(img_request_write_test(img_request));
1886 /* Allocate and initialize the request, for the three ops */
1888 snapc = img_request->snapc;
1889 rbd_dev = img_request->rbd_dev;
1890 osdc = &rbd_dev->rbd_client->client->osdc;
1891 osd_req = ceph_osdc_alloc_request(osdc, snapc, 3, false, GFP_ATOMIC);
1893 return NULL; /* ENOMEM */
1895 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1896 osd_req->r_callback = rbd_osd_req_callback;
1897 osd_req->r_priv = obj_request;
1899 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1900 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1906 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1908 ceph_osdc_put_request(osd_req);
1911 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1913 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1914 u64 offset, u64 length,
1915 enum obj_request_type type)
1917 struct rbd_obj_request *obj_request;
1921 rbd_assert(obj_request_type_valid(type));
1923 size = strlen(object_name) + 1;
1924 name = kmalloc(size, GFP_KERNEL);
1928 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1934 obj_request->object_name = memcpy(name, object_name, size);
1935 obj_request->offset = offset;
1936 obj_request->length = length;
1937 obj_request->flags = 0;
1938 obj_request->which = BAD_WHICH;
1939 obj_request->type = type;
1940 INIT_LIST_HEAD(&obj_request->links);
1941 init_completion(&obj_request->completion);
1942 kref_init(&obj_request->kref);
1944 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1945 offset, length, (int)type, obj_request);
1950 static void rbd_obj_request_destroy(struct kref *kref)
1952 struct rbd_obj_request *obj_request;
1954 obj_request = container_of(kref, struct rbd_obj_request, kref);
1956 dout("%s: obj %p\n", __func__, obj_request);
1958 rbd_assert(obj_request->img_request == NULL);
1959 rbd_assert(obj_request->which == BAD_WHICH);
1961 if (obj_request->osd_req)
1962 rbd_osd_req_destroy(obj_request->osd_req);
1964 rbd_assert(obj_request_type_valid(obj_request->type));
1965 switch (obj_request->type) {
1966 case OBJ_REQUEST_NODATA:
1967 break; /* Nothing to do */
1968 case OBJ_REQUEST_BIO:
1969 if (obj_request->bio_list)
1970 bio_chain_put(obj_request->bio_list);
1972 case OBJ_REQUEST_PAGES:
1973 if (obj_request->pages)
1974 ceph_release_page_vector(obj_request->pages,
1975 obj_request->page_count);
1979 kfree(obj_request->object_name);
1980 obj_request->object_name = NULL;
1981 kmem_cache_free(rbd_obj_request_cache, obj_request);
1984 /* It's OK to call this for a device with no parent */
1986 static void rbd_spec_put(struct rbd_spec *spec);
1987 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1989 rbd_dev_remove_parent(rbd_dev);
1990 rbd_spec_put(rbd_dev->parent_spec);
1991 rbd_dev->parent_spec = NULL;
1992 rbd_dev->parent_overlap = 0;
1996 * Parent image reference counting is used to determine when an
1997 * image's parent fields can be safely torn down--after there are no
1998 * more in-flight requests to the parent image. When the last
1999 * reference is dropped, cleaning them up is safe.
2001 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2005 if (!rbd_dev->parent_spec)
2008 counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2012 /* Last reference; clean up parent data structures */
2015 rbd_dev_unparent(rbd_dev);
2017 rbd_warn(rbd_dev, "parent reference underflow");
2021 * If an image has a non-zero parent overlap, get a reference to its
2024 * We must get the reference before checking for the overlap to
2025 * coordinate properly with zeroing the parent overlap in
2026 * rbd_dev_v2_parent_info() when an image gets flattened. We
2027 * drop it again if there is no overlap.
2029 * Returns true if the rbd device has a parent with a non-zero
2030 * overlap and a reference for it was successfully taken, or
2033 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2037 if (!rbd_dev->parent_spec)
2040 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2041 if (counter > 0 && rbd_dev->parent_overlap)
2044 /* Image was flattened, but parent is not yet torn down */
2047 rbd_warn(rbd_dev, "parent reference overflow");
2053 * Caller is responsible for filling in the list of object requests
2054 * that comprises the image request, and the Linux request pointer
2055 * (if there is one).
2057 static struct rbd_img_request *rbd_img_request_create(
2058 struct rbd_device *rbd_dev,
2059 u64 offset, u64 length,
2062 struct rbd_img_request *img_request;
2064 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2068 if (write_request) {
2069 down_read(&rbd_dev->header_rwsem);
2070 ceph_get_snap_context(rbd_dev->header.snapc);
2071 up_read(&rbd_dev->header_rwsem);
2074 img_request->rq = NULL;
2075 img_request->rbd_dev = rbd_dev;
2076 img_request->offset = offset;
2077 img_request->length = length;
2078 img_request->flags = 0;
2079 if (write_request) {
2080 img_request_write_set(img_request);
2081 img_request->snapc = rbd_dev->header.snapc;
2083 img_request->snap_id = rbd_dev->spec->snap_id;
2085 if (rbd_dev_parent_get(rbd_dev))
2086 img_request_layered_set(img_request);
2087 spin_lock_init(&img_request->completion_lock);
2088 img_request->next_completion = 0;
2089 img_request->callback = NULL;
2090 img_request->result = 0;
2091 img_request->obj_request_count = 0;
2092 INIT_LIST_HEAD(&img_request->obj_requests);
2093 kref_init(&img_request->kref);
2095 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2096 write_request ? "write" : "read", offset, length,
2102 static void rbd_img_request_destroy(struct kref *kref)
2104 struct rbd_img_request *img_request;
2105 struct rbd_obj_request *obj_request;
2106 struct rbd_obj_request *next_obj_request;
2108 img_request = container_of(kref, struct rbd_img_request, kref);
2110 dout("%s: img %p\n", __func__, img_request);
2112 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2113 rbd_img_obj_request_del(img_request, obj_request);
2114 rbd_assert(img_request->obj_request_count == 0);
2116 if (img_request_layered_test(img_request)) {
2117 img_request_layered_clear(img_request);
2118 rbd_dev_parent_put(img_request->rbd_dev);
2121 if (img_request_write_test(img_request))
2122 ceph_put_snap_context(img_request->snapc);
2124 kmem_cache_free(rbd_img_request_cache, img_request);
2127 static struct rbd_img_request *rbd_parent_request_create(
2128 struct rbd_obj_request *obj_request,
2129 u64 img_offset, u64 length)
2131 struct rbd_img_request *parent_request;
2132 struct rbd_device *rbd_dev;
2134 rbd_assert(obj_request->img_request);
2135 rbd_dev = obj_request->img_request->rbd_dev;
2137 parent_request = rbd_img_request_create(rbd_dev->parent,
2138 img_offset, length, false);
2139 if (!parent_request)
2142 img_request_child_set(parent_request);
2143 rbd_obj_request_get(obj_request);
2144 parent_request->obj_request = obj_request;
2146 return parent_request;
2149 static void rbd_parent_request_destroy(struct kref *kref)
2151 struct rbd_img_request *parent_request;
2152 struct rbd_obj_request *orig_request;
2154 parent_request = container_of(kref, struct rbd_img_request, kref);
2155 orig_request = parent_request->obj_request;
2157 parent_request->obj_request = NULL;
2158 rbd_obj_request_put(orig_request);
2159 img_request_child_clear(parent_request);
2161 rbd_img_request_destroy(kref);
2164 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2166 struct rbd_img_request *img_request;
2167 unsigned int xferred;
2171 rbd_assert(obj_request_img_data_test(obj_request));
2172 img_request = obj_request->img_request;
2174 rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2175 xferred = (unsigned int)obj_request->xferred;
2176 result = obj_request->result;
2178 struct rbd_device *rbd_dev = img_request->rbd_dev;
2180 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2181 img_request_write_test(img_request) ? "write" : "read",
2182 obj_request->length, obj_request->img_offset,
2183 obj_request->offset);
2184 rbd_warn(rbd_dev, " result %d xferred %x",
2186 if (!img_request->result)
2187 img_request->result = result;
2190 /* Image object requests don't own their page array */
2192 if (obj_request->type == OBJ_REQUEST_PAGES) {
2193 obj_request->pages = NULL;
2194 obj_request->page_count = 0;
2197 if (img_request_child_test(img_request)) {
2198 rbd_assert(img_request->obj_request != NULL);
2199 more = obj_request->which < img_request->obj_request_count - 1;
2201 rbd_assert(img_request->rq != NULL);
2202 more = blk_end_request(img_request->rq, result, xferred);
2208 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2210 struct rbd_img_request *img_request;
2211 u32 which = obj_request->which;
2214 rbd_assert(obj_request_img_data_test(obj_request));
2215 img_request = obj_request->img_request;
2217 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2218 rbd_assert(img_request != NULL);
2219 rbd_assert(img_request->obj_request_count > 0);
2220 rbd_assert(which != BAD_WHICH);
2221 rbd_assert(which < img_request->obj_request_count);
2223 spin_lock_irq(&img_request->completion_lock);
2224 if (which != img_request->next_completion)
2227 for_each_obj_request_from(img_request, obj_request) {
2229 rbd_assert(which < img_request->obj_request_count);
2231 if (!obj_request_done_test(obj_request))
2233 more = rbd_img_obj_end_request(obj_request);
2237 rbd_assert(more ^ (which == img_request->obj_request_count));
2238 img_request->next_completion = which;
2240 spin_unlock_irq(&img_request->completion_lock);
2241 rbd_img_request_put(img_request);
2244 rbd_img_request_complete(img_request);
2248 * Split up an image request into one or more object requests, each
2249 * to a different object. The "type" parameter indicates whether
2250 * "data_desc" is the pointer to the head of a list of bio
2251 * structures, or the base of a page array. In either case this
2252 * function assumes data_desc describes memory sufficient to hold
2253 * all data described by the image request.
2255 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2256 enum obj_request_type type,
2259 struct rbd_device *rbd_dev = img_request->rbd_dev;
2260 struct rbd_obj_request *obj_request = NULL;
2261 struct rbd_obj_request *next_obj_request;
2262 bool write_request = img_request_write_test(img_request);
2263 struct bio *bio_list = NULL;
2264 unsigned int bio_offset = 0;
2265 struct page **pages = NULL;
2270 dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2271 (int)type, data_desc);
2273 opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2274 img_offset = img_request->offset;
2275 resid = img_request->length;
2276 rbd_assert(resid > 0);
2278 if (type == OBJ_REQUEST_BIO) {
2279 bio_list = data_desc;
2280 rbd_assert(img_offset ==
2281 bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2283 rbd_assert(type == OBJ_REQUEST_PAGES);
2288 struct ceph_osd_request *osd_req;
2289 const char *object_name;
2292 unsigned int which = 0;
2294 object_name = rbd_segment_name(rbd_dev, img_offset);
2297 offset = rbd_segment_offset(rbd_dev, img_offset);
2298 length = rbd_segment_length(rbd_dev, img_offset, resid);
2299 obj_request = rbd_obj_request_create(object_name,
2300 offset, length, type);
2301 /* object request has its own copy of the object name */
2302 rbd_segment_name_free(object_name);
2307 * set obj_request->img_request before creating the
2308 * osd_request so that it gets the right snapc
2310 rbd_img_obj_request_add(img_request, obj_request);
2312 if (type == OBJ_REQUEST_BIO) {
2313 unsigned int clone_size;
2315 rbd_assert(length <= (u64)UINT_MAX);
2316 clone_size = (unsigned int)length;
2317 obj_request->bio_list =
2318 bio_chain_clone_range(&bio_list,
2322 if (!obj_request->bio_list)
2325 unsigned int page_count;
2327 obj_request->pages = pages;
2328 page_count = (u32)calc_pages_for(offset, length);
2329 obj_request->page_count = page_count;
2330 if ((offset + length) & ~PAGE_MASK)
2331 page_count--; /* more on last page */
2332 pages += page_count;
2335 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2336 (write_request ? 2 : 1),
2340 obj_request->osd_req = osd_req;
2341 obj_request->callback = rbd_img_obj_callback;
2342 rbd_img_request_get(img_request);
2344 if (write_request) {
2345 osd_req_op_alloc_hint_init(osd_req, which,
2346 rbd_obj_bytes(&rbd_dev->header),
2347 rbd_obj_bytes(&rbd_dev->header));
2351 osd_req_op_extent_init(osd_req, which, opcode, offset, length,
2353 if (type == OBJ_REQUEST_BIO)
2354 osd_req_op_extent_osd_data_bio(osd_req, which,
2355 obj_request->bio_list, length);
2357 osd_req_op_extent_osd_data_pages(osd_req, which,
2358 obj_request->pages, length,
2359 offset & ~PAGE_MASK, false, false);
2362 rbd_osd_req_format_write(obj_request);
2364 rbd_osd_req_format_read(obj_request);
2366 obj_request->img_offset = img_offset;
2368 img_offset += length;
2375 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2376 rbd_img_obj_request_del(img_request, obj_request);
2382 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2384 struct rbd_img_request *img_request;
2385 struct rbd_device *rbd_dev;
2386 struct page **pages;
2389 rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2390 rbd_assert(obj_request_img_data_test(obj_request));
2391 img_request = obj_request->img_request;
2392 rbd_assert(img_request);
2394 rbd_dev = img_request->rbd_dev;
2395 rbd_assert(rbd_dev);
2397 pages = obj_request->copyup_pages;
2398 rbd_assert(pages != NULL);
2399 obj_request->copyup_pages = NULL;
2400 page_count = obj_request->copyup_page_count;
2401 rbd_assert(page_count);
2402 obj_request->copyup_page_count = 0;
2403 ceph_release_page_vector(pages, page_count);
2406 * We want the transfer count to reflect the size of the
2407 * original write request. There is no such thing as a
2408 * successful short write, so if the request was successful
2409 * we can just set it to the originally-requested length.
2411 if (!obj_request->result)
2412 obj_request->xferred = obj_request->length;
2414 /* Finish up with the normal image object callback */
2416 rbd_img_obj_callback(obj_request);
2420 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2422 struct rbd_obj_request *orig_request;
2423 struct ceph_osd_request *osd_req;
2424 struct ceph_osd_client *osdc;
2425 struct rbd_device *rbd_dev;
2426 struct page **pages;
2433 rbd_assert(img_request_child_test(img_request));
2435 /* First get what we need from the image request */
2437 pages = img_request->copyup_pages;
2438 rbd_assert(pages != NULL);
2439 img_request->copyup_pages = NULL;
2440 page_count = img_request->copyup_page_count;
2441 rbd_assert(page_count);
2442 img_request->copyup_page_count = 0;
2444 orig_request = img_request->obj_request;
2445 rbd_assert(orig_request != NULL);
2446 rbd_assert(obj_request_type_valid(orig_request->type));
2447 img_result = img_request->result;
2448 parent_length = img_request->length;
2449 rbd_assert(parent_length == img_request->xferred);
2450 rbd_img_request_put(img_request);
2452 rbd_assert(orig_request->img_request);
2453 rbd_dev = orig_request->img_request->rbd_dev;
2454 rbd_assert(rbd_dev);
2457 * If the overlap has become 0 (most likely because the
2458 * image has been flattened) we need to free the pages
2459 * and re-submit the original write request.
2461 if (!rbd_dev->parent_overlap) {
2462 struct ceph_osd_client *osdc;
2464 ceph_release_page_vector(pages, page_count);
2465 osdc = &rbd_dev->rbd_client->client->osdc;
2466 img_result = rbd_obj_request_submit(osdc, orig_request);
2475 * The original osd request is of no use to use any more.
2476 * We need a new one that can hold the three ops in a copyup
2477 * request. Allocate the new copyup osd request for the
2478 * original request, and release the old one.
2480 img_result = -ENOMEM;
2481 osd_req = rbd_osd_req_create_copyup(orig_request);
2484 rbd_osd_req_destroy(orig_request->osd_req);
2485 orig_request->osd_req = osd_req;
2486 orig_request->copyup_pages = pages;
2487 orig_request->copyup_page_count = page_count;
2489 /* Initialize the copyup op */
2491 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2492 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2495 /* Then the hint op */
2497 osd_req_op_alloc_hint_init(osd_req, 1, rbd_obj_bytes(&rbd_dev->header),
2498 rbd_obj_bytes(&rbd_dev->header));
2500 /* And the original write request op */
2502 offset = orig_request->offset;
2503 length = orig_request->length;
2504 osd_req_op_extent_init(osd_req, 2, CEPH_OSD_OP_WRITE,
2505 offset, length, 0, 0);
2506 if (orig_request->type == OBJ_REQUEST_BIO)
2507 osd_req_op_extent_osd_data_bio(osd_req, 2,
2508 orig_request->bio_list, length);
2510 osd_req_op_extent_osd_data_pages(osd_req, 2,
2511 orig_request->pages, length,
2512 offset & ~PAGE_MASK, false, false);
2514 rbd_osd_req_format_write(orig_request);
2516 /* All set, send it off. */
2518 orig_request->callback = rbd_img_obj_copyup_callback;
2519 osdc = &rbd_dev->rbd_client->client->osdc;
2520 img_result = rbd_obj_request_submit(osdc, orig_request);
2524 /* Record the error code and complete the request */
2526 orig_request->result = img_result;
2527 orig_request->xferred = 0;
2528 obj_request_done_set(orig_request);
2529 rbd_obj_request_complete(orig_request);
2533 * Read from the parent image the range of data that covers the
2534 * entire target of the given object request. This is used for
2535 * satisfying a layered image write request when the target of an
2536 * object request from the image request does not exist.
2538 * A page array big enough to hold the returned data is allocated
2539 * and supplied to rbd_img_request_fill() as the "data descriptor."
2540 * When the read completes, this page array will be transferred to
2541 * the original object request for the copyup operation.
2543 * If an error occurs, record it as the result of the original
2544 * object request and mark it done so it gets completed.
2546 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2548 struct rbd_img_request *img_request = NULL;
2549 struct rbd_img_request *parent_request = NULL;
2550 struct rbd_device *rbd_dev;
2553 struct page **pages = NULL;
2557 rbd_assert(obj_request_img_data_test(obj_request));
2558 rbd_assert(obj_request_type_valid(obj_request->type));
2560 img_request = obj_request->img_request;
2561 rbd_assert(img_request != NULL);
2562 rbd_dev = img_request->rbd_dev;
2563 rbd_assert(rbd_dev->parent != NULL);
2566 * Determine the byte range covered by the object in the
2567 * child image to which the original request was to be sent.
2569 img_offset = obj_request->img_offset - obj_request->offset;
2570 length = (u64)1 << rbd_dev->header.obj_order;
2573 * There is no defined parent data beyond the parent
2574 * overlap, so limit what we read at that boundary if
2577 if (img_offset + length > rbd_dev->parent_overlap) {
2578 rbd_assert(img_offset < rbd_dev->parent_overlap);
2579 length = rbd_dev->parent_overlap - img_offset;
2583 * Allocate a page array big enough to receive the data read
2586 page_count = (u32)calc_pages_for(0, length);
2587 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2588 if (IS_ERR(pages)) {
2589 result = PTR_ERR(pages);
2595 parent_request = rbd_parent_request_create(obj_request,
2596 img_offset, length);
2597 if (!parent_request)
2600 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2603 parent_request->copyup_pages = pages;
2604 parent_request->copyup_page_count = page_count;
2606 parent_request->callback = rbd_img_obj_parent_read_full_callback;
2607 result = rbd_img_request_submit(parent_request);
2611 parent_request->copyup_pages = NULL;
2612 parent_request->copyup_page_count = 0;
2613 parent_request->obj_request = NULL;
2614 rbd_obj_request_put(obj_request);
2617 ceph_release_page_vector(pages, page_count);
2619 rbd_img_request_put(parent_request);
2620 obj_request->result = result;
2621 obj_request->xferred = 0;
2622 obj_request_done_set(obj_request);
2627 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2629 struct rbd_obj_request *orig_request;
2630 struct rbd_device *rbd_dev;
2633 rbd_assert(!obj_request_img_data_test(obj_request));
2636 * All we need from the object request is the original
2637 * request and the result of the STAT op. Grab those, then
2638 * we're done with the request.
2640 orig_request = obj_request->obj_request;
2641 obj_request->obj_request = NULL;
2642 rbd_obj_request_put(orig_request);
2643 rbd_assert(orig_request);
2644 rbd_assert(orig_request->img_request);
2646 result = obj_request->result;
2647 obj_request->result = 0;
2649 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2650 obj_request, orig_request, result,
2651 obj_request->xferred, obj_request->length);
2652 rbd_obj_request_put(obj_request);
2655 * If the overlap has become 0 (most likely because the
2656 * image has been flattened) we need to free the pages
2657 * and re-submit the original write request.
2659 rbd_dev = orig_request->img_request->rbd_dev;
2660 if (!rbd_dev->parent_overlap) {
2661 struct ceph_osd_client *osdc;
2663 osdc = &rbd_dev->rbd_client->client->osdc;
2664 result = rbd_obj_request_submit(osdc, orig_request);
2670 * Our only purpose here is to determine whether the object
2671 * exists, and we don't want to treat the non-existence as
2672 * an error. If something else comes back, transfer the
2673 * error to the original request and complete it now.
2676 obj_request_existence_set(orig_request, true);
2677 } else if (result == -ENOENT) {
2678 obj_request_existence_set(orig_request, false);
2679 } else if (result) {
2680 orig_request->result = result;
2685 * Resubmit the original request now that we have recorded
2686 * whether the target object exists.
2688 orig_request->result = rbd_img_obj_request_submit(orig_request);
2690 if (orig_request->result)
2691 rbd_obj_request_complete(orig_request);
2694 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2696 struct rbd_obj_request *stat_request;
2697 struct rbd_device *rbd_dev;
2698 struct ceph_osd_client *osdc;
2699 struct page **pages = NULL;
2705 * The response data for a STAT call consists of:
2712 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2713 page_count = (u32)calc_pages_for(0, size);
2714 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2716 return PTR_ERR(pages);
2719 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2724 rbd_obj_request_get(obj_request);
2725 stat_request->obj_request = obj_request;
2726 stat_request->pages = pages;
2727 stat_request->page_count = page_count;
2729 rbd_assert(obj_request->img_request);
2730 rbd_dev = obj_request->img_request->rbd_dev;
2731 stat_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
2733 if (!stat_request->osd_req)
2735 stat_request->callback = rbd_img_obj_exists_callback;
2737 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2738 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2740 rbd_osd_req_format_read(stat_request);
2742 osdc = &rbd_dev->rbd_client->client->osdc;
2743 ret = rbd_obj_request_submit(osdc, stat_request);
2746 rbd_obj_request_put(obj_request);
2751 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2753 struct rbd_img_request *img_request;
2754 struct rbd_device *rbd_dev;
2757 rbd_assert(obj_request_img_data_test(obj_request));
2759 img_request = obj_request->img_request;
2760 rbd_assert(img_request);
2761 rbd_dev = img_request->rbd_dev;
2764 * Only writes to layered images need special handling.
2765 * Reads and non-layered writes are simple object requests.
2766 * Layered writes that start beyond the end of the overlap
2767 * with the parent have no parent data, so they too are
2768 * simple object requests. Finally, if the target object is
2769 * known to already exist, its parent data has already been
2770 * copied, so a write to the object can also be handled as a
2771 * simple object request.
2773 if (!img_request_write_test(img_request) ||
2774 !img_request_layered_test(img_request) ||
2775 !obj_request_overlaps_parent(obj_request) ||
2776 ((known = obj_request_known_test(obj_request)) &&
2777 obj_request_exists_test(obj_request))) {
2779 struct rbd_device *rbd_dev;
2780 struct ceph_osd_client *osdc;
2782 rbd_dev = obj_request->img_request->rbd_dev;
2783 osdc = &rbd_dev->rbd_client->client->osdc;
2785 return rbd_obj_request_submit(osdc, obj_request);
2789 * It's a layered write. The target object might exist but
2790 * we may not know that yet. If we know it doesn't exist,
2791 * start by reading the data for the full target object from
2792 * the parent so we can use it for a copyup to the target.
2795 return rbd_img_obj_parent_read_full(obj_request);
2797 /* We don't know whether the target exists. Go find out. */
2799 return rbd_img_obj_exists_submit(obj_request);
2802 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2804 struct rbd_obj_request *obj_request;
2805 struct rbd_obj_request *next_obj_request;
2807 dout("%s: img %p\n", __func__, img_request);
2808 for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2811 ret = rbd_img_obj_request_submit(obj_request);
2819 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2821 struct rbd_obj_request *obj_request;
2822 struct rbd_device *rbd_dev;
2827 rbd_assert(img_request_child_test(img_request));
2829 /* First get what we need from the image request and release it */
2831 obj_request = img_request->obj_request;
2832 img_xferred = img_request->xferred;
2833 img_result = img_request->result;
2834 rbd_img_request_put(img_request);
2837 * If the overlap has become 0 (most likely because the
2838 * image has been flattened) we need to re-submit the
2841 rbd_assert(obj_request);
2842 rbd_assert(obj_request->img_request);
2843 rbd_dev = obj_request->img_request->rbd_dev;
2844 if (!rbd_dev->parent_overlap) {
2845 struct ceph_osd_client *osdc;
2847 osdc = &rbd_dev->rbd_client->client->osdc;
2848 img_result = rbd_obj_request_submit(osdc, obj_request);
2853 obj_request->result = img_result;
2854 if (obj_request->result)
2858 * We need to zero anything beyond the parent overlap
2859 * boundary. Since rbd_img_obj_request_read_callback()
2860 * will zero anything beyond the end of a short read, an
2861 * easy way to do this is to pretend the data from the
2862 * parent came up short--ending at the overlap boundary.
2864 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2865 obj_end = obj_request->img_offset + obj_request->length;
2866 if (obj_end > rbd_dev->parent_overlap) {
2869 if (obj_request->img_offset < rbd_dev->parent_overlap)
2870 xferred = rbd_dev->parent_overlap -
2871 obj_request->img_offset;
2873 obj_request->xferred = min(img_xferred, xferred);
2875 obj_request->xferred = img_xferred;
2878 rbd_img_obj_request_read_callback(obj_request);
2879 rbd_obj_request_complete(obj_request);
2882 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2884 struct rbd_img_request *img_request;
2887 rbd_assert(obj_request_img_data_test(obj_request));
2888 rbd_assert(obj_request->img_request != NULL);
2889 rbd_assert(obj_request->result == (s32) -ENOENT);
2890 rbd_assert(obj_request_type_valid(obj_request->type));
2892 /* rbd_read_finish(obj_request, obj_request->length); */
2893 img_request = rbd_parent_request_create(obj_request,
2894 obj_request->img_offset,
2895 obj_request->length);
2900 if (obj_request->type == OBJ_REQUEST_BIO)
2901 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2902 obj_request->bio_list);
2904 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2905 obj_request->pages);
2909 img_request->callback = rbd_img_parent_read_callback;
2910 result = rbd_img_request_submit(img_request);
2917 rbd_img_request_put(img_request);
2918 obj_request->result = result;
2919 obj_request->xferred = 0;
2920 obj_request_done_set(obj_request);
2923 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
2925 struct rbd_obj_request *obj_request;
2926 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2929 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2930 OBJ_REQUEST_NODATA);
2935 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
2937 if (!obj_request->osd_req)
2940 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2942 rbd_osd_req_format_read(obj_request);
2944 ret = rbd_obj_request_submit(osdc, obj_request);
2947 ret = rbd_obj_request_wait(obj_request);
2949 rbd_obj_request_put(obj_request);
2954 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2956 struct rbd_device *rbd_dev = (struct rbd_device *)data;
2962 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2963 rbd_dev->header_name, (unsigned long long)notify_id,
2964 (unsigned int)opcode);
2967 * Until adequate refresh error handling is in place, there is
2968 * not much we can do here, except warn.
2970 * See http://tracker.ceph.com/issues/5040
2972 ret = rbd_dev_refresh(rbd_dev);
2974 rbd_warn(rbd_dev, "refresh failed: %d", ret);
2976 ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id);
2978 rbd_warn(rbd_dev, "notify_ack ret %d", ret);
2982 * Send a (un)watch request and wait for the ack. Return a request
2983 * with a ref held on success or error.
2985 static struct rbd_obj_request *rbd_obj_watch_request_helper(
2986 struct rbd_device *rbd_dev,
2989 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2990 struct rbd_obj_request *obj_request;
2993 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2994 OBJ_REQUEST_NODATA);
2996 return ERR_PTR(-ENOMEM);
2998 obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, 1,
3000 if (!obj_request->osd_req) {
3005 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3006 rbd_dev->watch_event->cookie, 0, watch);
3007 rbd_osd_req_format_write(obj_request);
3010 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3012 ret = rbd_obj_request_submit(osdc, obj_request);
3016 ret = rbd_obj_request_wait(obj_request);
3020 ret = obj_request->result;
3023 rbd_obj_request_end(obj_request);
3030 rbd_obj_request_put(obj_request);
3031 return ERR_PTR(ret);
3035 * Initiate a watch request, synchronously.
3037 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3039 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3040 struct rbd_obj_request *obj_request;
3043 rbd_assert(!rbd_dev->watch_event);
3044 rbd_assert(!rbd_dev->watch_request);
3046 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3047 &rbd_dev->watch_event);
3051 obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3052 if (IS_ERR(obj_request)) {
3053 ceph_osdc_cancel_event(rbd_dev->watch_event);
3054 rbd_dev->watch_event = NULL;
3055 return PTR_ERR(obj_request);
3059 * A watch request is set to linger, so the underlying osd
3060 * request won't go away until we unregister it. We retain
3061 * a pointer to the object request during that time (in
3062 * rbd_dev->watch_request), so we'll keep a reference to it.
3063 * We'll drop that reference after we've unregistered it in
3064 * rbd_dev_header_unwatch_sync().
3066 rbd_dev->watch_request = obj_request;
3072 * Tear down a watch request, synchronously.
3074 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3076 struct rbd_obj_request *obj_request;
3078 rbd_assert(rbd_dev->watch_event);
3079 rbd_assert(rbd_dev->watch_request);
3081 rbd_obj_request_end(rbd_dev->watch_request);
3082 rbd_obj_request_put(rbd_dev->watch_request);
3083 rbd_dev->watch_request = NULL;
3085 obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3086 if (!IS_ERR(obj_request))
3087 rbd_obj_request_put(obj_request);
3089 rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3090 PTR_ERR(obj_request));
3092 ceph_osdc_cancel_event(rbd_dev->watch_event);
3093 rbd_dev->watch_event = NULL;
3097 * Synchronous osd object method call. Returns the number of bytes
3098 * returned in the outbound buffer, or a negative error code.
3100 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3101 const char *object_name,
3102 const char *class_name,
3103 const char *method_name,
3104 const void *outbound,
3105 size_t outbound_size,
3107 size_t inbound_size)
3109 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3110 struct rbd_obj_request *obj_request;
3111 struct page **pages;
3116 * Method calls are ultimately read operations. The result
3117 * should placed into the inbound buffer provided. They
3118 * also supply outbound data--parameters for the object
3119 * method. Currently if this is present it will be a
3122 page_count = (u32)calc_pages_for(0, inbound_size);
3123 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3125 return PTR_ERR(pages);
3128 obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3133 obj_request->pages = pages;
3134 obj_request->page_count = page_count;
3136 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
3138 if (!obj_request->osd_req)
3141 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3142 class_name, method_name);
3143 if (outbound_size) {
3144 struct ceph_pagelist *pagelist;
3146 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3150 ceph_pagelist_init(pagelist);
3151 ceph_pagelist_append(pagelist, outbound, outbound_size);
3152 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3155 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3156 obj_request->pages, inbound_size,
3158 rbd_osd_req_format_read(obj_request);
3160 ret = rbd_obj_request_submit(osdc, obj_request);
3163 ret = rbd_obj_request_wait(obj_request);
3167 ret = obj_request->result;
3171 rbd_assert(obj_request->xferred < (u64)INT_MAX);
3172 ret = (int)obj_request->xferred;
3173 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3176 rbd_obj_request_put(obj_request);
3178 ceph_release_page_vector(pages, page_count);
3183 static void rbd_handle_request(struct rbd_device *rbd_dev, struct request *rq)
3185 struct rbd_img_request *img_request;
3186 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3187 u64 length = blk_rq_bytes(rq);
3188 bool wr = rq_data_dir(rq) == WRITE;
3191 /* Ignore/skip any zero-length requests */
3194 dout("%s: zero-length request\n", __func__);
3199 /* Disallow writes to a read-only device */
3202 if (rbd_dev->mapping.read_only) {
3206 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3210 * Quit early if the mapped snapshot no longer exists. It's
3211 * still possible the snapshot will have disappeared by the
3212 * time our request arrives at the osd, but there's no sense in
3213 * sending it if we already know.
3215 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3216 dout("request for non-existent snapshot");
3217 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3222 if (offset && length > U64_MAX - offset + 1) {
3223 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3226 goto err_rq; /* Shouldn't happen */
3229 if (offset + length > rbd_dev->mapping.size) {
3230 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3231 length, rbd_dev->mapping.size);
3236 img_request = rbd_img_request_create(rbd_dev, offset, length, wr);
3241 img_request->rq = rq;
3243 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO, rq->bio);
3245 goto err_img_request;
3247 result = rbd_img_request_submit(img_request);
3249 goto err_img_request;
3254 rbd_img_request_put(img_request);
3257 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3258 wr ? "write" : "read", length, offset, result);
3259 blk_end_request_all(rq, result);
3262 static void rbd_request_workfn(struct work_struct *work)
3264 struct rbd_device *rbd_dev =
3265 container_of(work, struct rbd_device, rq_work);
3266 struct request *rq, *next;
3267 LIST_HEAD(requests);
3269 spin_lock_irq(&rbd_dev->lock); /* rq->q->queue_lock */
3270 list_splice_init(&rbd_dev->rq_queue, &requests);
3271 spin_unlock_irq(&rbd_dev->lock);
3273 list_for_each_entry_safe(rq, next, &requests, queuelist) {
3274 list_del_init(&rq->queuelist);
3275 rbd_handle_request(rbd_dev, rq);
3280 * Called with q->queue_lock held and interrupts disabled, possibly on
3281 * the way to schedule(). Do not sleep here!
3283 static void rbd_request_fn(struct request_queue *q)
3285 struct rbd_device *rbd_dev = q->queuedata;
3289 rbd_assert(rbd_dev);
3291 while ((rq = blk_fetch_request(q))) {
3292 /* Ignore any non-FS requests that filter through. */
3293 if (rq->cmd_type != REQ_TYPE_FS) {
3294 dout("%s: non-fs request type %d\n", __func__,
3295 (int) rq->cmd_type);
3296 __blk_end_request_all(rq, 0);
3300 list_add_tail(&rq->queuelist, &rbd_dev->rq_queue);
3305 queue_work(rbd_dev->rq_wq, &rbd_dev->rq_work);
3309 * a queue callback. Makes sure that we don't create a bio that spans across
3310 * multiple osd objects. One exception would be with a single page bios,
3311 * which we handle later at bio_chain_clone_range()
3313 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3314 struct bio_vec *bvec)
3316 struct rbd_device *rbd_dev = q->queuedata;
3317 sector_t sector_offset;
3318 sector_t sectors_per_obj;
3319 sector_t obj_sector_offset;
3323 * Find how far into its rbd object the partition-relative
3324 * bio start sector is to offset relative to the enclosing
3327 sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3328 sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3329 obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3332 * Compute the number of bytes from that offset to the end
3333 * of the object. Account for what's already used by the bio.
3335 ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3336 if (ret > bmd->bi_size)
3337 ret -= bmd->bi_size;
3342 * Don't send back more than was asked for. And if the bio
3343 * was empty, let the whole thing through because: "Note
3344 * that a block device *must* allow a single page to be
3345 * added to an empty bio."
3347 rbd_assert(bvec->bv_len <= PAGE_SIZE);
3348 if (ret > (int) bvec->bv_len || !bmd->bi_size)
3349 ret = (int) bvec->bv_len;
3354 static void rbd_free_disk(struct rbd_device *rbd_dev)
3356 struct gendisk *disk = rbd_dev->disk;
3361 rbd_dev->disk = NULL;
3362 if (disk->flags & GENHD_FL_UP) {
3365 blk_cleanup_queue(disk->queue);
3370 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3371 const char *object_name,
3372 u64 offset, u64 length, void *buf)
3375 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3376 struct rbd_obj_request *obj_request;
3377 struct page **pages = NULL;
3382 page_count = (u32) calc_pages_for(offset, length);
3383 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3385 ret = PTR_ERR(pages);
3388 obj_request = rbd_obj_request_create(object_name, offset, length,
3393 obj_request->pages = pages;
3394 obj_request->page_count = page_count;
3396 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
3398 if (!obj_request->osd_req)
3401 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3402 offset, length, 0, 0);
3403 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3405 obj_request->length,
3406 obj_request->offset & ~PAGE_MASK,
3408 rbd_osd_req_format_read(obj_request);
3410 ret = rbd_obj_request_submit(osdc, obj_request);
3413 ret = rbd_obj_request_wait(obj_request);
3417 ret = obj_request->result;
3421 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3422 size = (size_t) obj_request->xferred;
3423 ceph_copy_from_page_vector(pages, buf, 0, size);
3424 rbd_assert(size <= (size_t)INT_MAX);
3428 rbd_obj_request_put(obj_request);
3430 ceph_release_page_vector(pages, page_count);
3436 * Read the complete header for the given rbd device. On successful
3437 * return, the rbd_dev->header field will contain up-to-date
3438 * information about the image.
3440 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3442 struct rbd_image_header_ondisk *ondisk = NULL;
3449 * The complete header will include an array of its 64-bit
3450 * snapshot ids, followed by the names of those snapshots as
3451 * a contiguous block of NUL-terminated strings. Note that
3452 * the number of snapshots could change by the time we read
3453 * it in, in which case we re-read it.
3460 size = sizeof (*ondisk);
3461 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3463 ondisk = kmalloc(size, GFP_KERNEL);
3467 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3471 if ((size_t)ret < size) {
3473 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3477 if (!rbd_dev_ondisk_valid(ondisk)) {
3479 rbd_warn(rbd_dev, "invalid header");
3483 names_size = le64_to_cpu(ondisk->snap_names_len);
3484 want_count = snap_count;
3485 snap_count = le32_to_cpu(ondisk->snap_count);
3486 } while (snap_count != want_count);
3488 ret = rbd_header_from_disk(rbd_dev, ondisk);
3496 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3497 * has disappeared from the (just updated) snapshot context.
3499 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3503 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3506 snap_id = rbd_dev->spec->snap_id;
3507 if (snap_id == CEPH_NOSNAP)
3510 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3511 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3514 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3520 * Don't hold the lock while doing disk operations,
3521 * or lock ordering will conflict with the bdev mutex via:
3522 * rbd_add() -> blkdev_get() -> rbd_open()
3524 spin_lock_irq(&rbd_dev->lock);
3525 removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3526 spin_unlock_irq(&rbd_dev->lock);
3528 * If the device is being removed, rbd_dev->disk has
3529 * been destroyed, so don't try to update its size
3532 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3533 dout("setting size to %llu sectors", (unsigned long long)size);
3534 set_capacity(rbd_dev->disk, size);
3535 revalidate_disk(rbd_dev->disk);
3539 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3544 down_write(&rbd_dev->header_rwsem);
3545 mapping_size = rbd_dev->mapping.size;
3547 ret = rbd_dev_header_info(rbd_dev);
3552 * If there is a parent, see if it has disappeared due to the
3553 * mapped image getting flattened.
3555 if (rbd_dev->parent) {
3556 ret = rbd_dev_v2_parent_info(rbd_dev);
3561 if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3562 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
3563 rbd_dev->mapping.size = rbd_dev->header.image_size;
3565 /* validate mapped snapshot's EXISTS flag */
3566 rbd_exists_validate(rbd_dev);
3569 up_write(&rbd_dev->header_rwsem);
3571 if (mapping_size != rbd_dev->mapping.size)
3572 rbd_dev_update_size(rbd_dev);
3577 static int rbd_init_disk(struct rbd_device *rbd_dev)
3579 struct gendisk *disk;
3580 struct request_queue *q;
3583 /* create gendisk info */
3584 disk = alloc_disk(single_major ?
3585 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3586 RBD_MINORS_PER_MAJOR);
3590 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3592 disk->major = rbd_dev->major;
3593 disk->first_minor = rbd_dev->minor;
3595 disk->flags |= GENHD_FL_EXT_DEVT;
3596 disk->fops = &rbd_bd_ops;
3597 disk->private_data = rbd_dev;
3599 q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3603 /* We use the default size, but let's be explicit about it. */
3604 blk_queue_physical_block_size(q, SECTOR_SIZE);
3606 /* set io sizes to object size */
3607 segment_size = rbd_obj_bytes(&rbd_dev->header);
3608 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3609 blk_queue_max_segment_size(q, segment_size);
3610 blk_queue_io_min(q, segment_size);
3611 blk_queue_io_opt(q, segment_size);
3613 blk_queue_merge_bvec(q, rbd_merge_bvec);
3616 q->queuedata = rbd_dev;
3618 rbd_dev->disk = disk;
3631 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3633 return container_of(dev, struct rbd_device, dev);
3636 static ssize_t rbd_size_show(struct device *dev,
3637 struct device_attribute *attr, char *buf)
3639 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3641 return sprintf(buf, "%llu\n",
3642 (unsigned long long)rbd_dev->mapping.size);
3646 * Note this shows the features for whatever's mapped, which is not
3647 * necessarily the base image.
3649 static ssize_t rbd_features_show(struct device *dev,
3650 struct device_attribute *attr, char *buf)
3652 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3654 return sprintf(buf, "0x%016llx\n",
3655 (unsigned long long)rbd_dev->mapping.features);
3658 static ssize_t rbd_major_show(struct device *dev,
3659 struct device_attribute *attr, char *buf)
3661 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3664 return sprintf(buf, "%d\n", rbd_dev->major);
3666 return sprintf(buf, "(none)\n");
3669 static ssize_t rbd_minor_show(struct device *dev,
3670 struct device_attribute *attr, char *buf)
3672 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3674 return sprintf(buf, "%d\n", rbd_dev->minor);
3677 static ssize_t rbd_client_id_show(struct device *dev,
3678 struct device_attribute *attr, char *buf)
3680 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3682 return sprintf(buf, "client%lld\n",
3683 ceph_client_id(rbd_dev->rbd_client->client));
3686 static ssize_t rbd_pool_show(struct device *dev,
3687 struct device_attribute *attr, char *buf)
3689 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3691 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3694 static ssize_t rbd_pool_id_show(struct device *dev,
3695 struct device_attribute *attr, char *buf)
3697 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3699 return sprintf(buf, "%llu\n",
3700 (unsigned long long) rbd_dev->spec->pool_id);
3703 static ssize_t rbd_name_show(struct device *dev,
3704 struct device_attribute *attr, char *buf)
3706 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3708 if (rbd_dev->spec->image_name)
3709 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3711 return sprintf(buf, "(unknown)\n");
3714 static ssize_t rbd_image_id_show(struct device *dev,
3715 struct device_attribute *attr, char *buf)
3717 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3719 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3723 * Shows the name of the currently-mapped snapshot (or
3724 * RBD_SNAP_HEAD_NAME for the base image).
3726 static ssize_t rbd_snap_show(struct device *dev,
3727 struct device_attribute *attr,
3730 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3732 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3736 * For a v2 image, shows the chain of parent images, separated by empty
3737 * lines. For v1 images or if there is no parent, shows "(no parent
3740 static ssize_t rbd_parent_show(struct device *dev,
3741 struct device_attribute *attr,
3744 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3747 if (!rbd_dev->parent)
3748 return sprintf(buf, "(no parent image)\n");
3750 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3751 struct rbd_spec *spec = rbd_dev->parent_spec;
3753 count += sprintf(&buf[count], "%s"
3754 "pool_id %llu\npool_name %s\n"
3755 "image_id %s\nimage_name %s\n"
3756 "snap_id %llu\nsnap_name %s\n"
3758 !count ? "" : "\n", /* first? */
3759 spec->pool_id, spec->pool_name,
3760 spec->image_id, spec->image_name ?: "(unknown)",
3761 spec->snap_id, spec->snap_name,
3762 rbd_dev->parent_overlap);
3768 static ssize_t rbd_image_refresh(struct device *dev,
3769 struct device_attribute *attr,
3773 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3776 ret = rbd_dev_refresh(rbd_dev);
3783 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3784 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3785 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3786 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3787 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3788 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3789 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3790 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3791 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3792 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3793 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3794 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3796 static struct attribute *rbd_attrs[] = {
3797 &dev_attr_size.attr,
3798 &dev_attr_features.attr,
3799 &dev_attr_major.attr,
3800 &dev_attr_minor.attr,
3801 &dev_attr_client_id.attr,
3802 &dev_attr_pool.attr,
3803 &dev_attr_pool_id.attr,
3804 &dev_attr_name.attr,
3805 &dev_attr_image_id.attr,
3806 &dev_attr_current_snap.attr,
3807 &dev_attr_parent.attr,
3808 &dev_attr_refresh.attr,
3812 static struct attribute_group rbd_attr_group = {
3816 static const struct attribute_group *rbd_attr_groups[] = {
3821 static void rbd_sysfs_dev_release(struct device *dev)
3825 static struct device_type rbd_device_type = {
3827 .groups = rbd_attr_groups,
3828 .release = rbd_sysfs_dev_release,
3831 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3833 kref_get(&spec->kref);
3838 static void rbd_spec_free(struct kref *kref);
3839 static void rbd_spec_put(struct rbd_spec *spec)
3842 kref_put(&spec->kref, rbd_spec_free);
3845 static struct rbd_spec *rbd_spec_alloc(void)
3847 struct rbd_spec *spec;
3849 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3853 spec->pool_id = CEPH_NOPOOL;
3854 spec->snap_id = CEPH_NOSNAP;
3855 kref_init(&spec->kref);
3860 static void rbd_spec_free(struct kref *kref)
3862 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3864 kfree(spec->pool_name);
3865 kfree(spec->image_id);
3866 kfree(spec->image_name);
3867 kfree(spec->snap_name);
3871 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3872 struct rbd_spec *spec)
3874 struct rbd_device *rbd_dev;
3876 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3880 spin_lock_init(&rbd_dev->lock);
3881 INIT_LIST_HEAD(&rbd_dev->rq_queue);
3882 INIT_WORK(&rbd_dev->rq_work, rbd_request_workfn);
3884 atomic_set(&rbd_dev->parent_ref, 0);
3885 INIT_LIST_HEAD(&rbd_dev->node);
3886 init_rwsem(&rbd_dev->header_rwsem);
3888 rbd_dev->spec = spec;
3889 rbd_dev->rbd_client = rbdc;
3891 /* Initialize the layout used for all rbd requests */
3893 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3894 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3895 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3896 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3901 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3903 rbd_put_client(rbd_dev->rbd_client);
3904 rbd_spec_put(rbd_dev->spec);
3909 * Get the size and object order for an image snapshot, or if
3910 * snap_id is CEPH_NOSNAP, gets this information for the base
3913 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3914 u8 *order, u64 *snap_size)
3916 __le64 snapid = cpu_to_le64(snap_id);
3921 } __attribute__ ((packed)) size_buf = { 0 };
3923 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3925 &snapid, sizeof (snapid),
3926 &size_buf, sizeof (size_buf));
3927 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3930 if (ret < sizeof (size_buf))
3934 *order = size_buf.order;
3935 dout(" order %u", (unsigned int)*order);
3937 *snap_size = le64_to_cpu(size_buf.size);
3939 dout(" snap_id 0x%016llx snap_size = %llu\n",
3940 (unsigned long long)snap_id,
3941 (unsigned long long)*snap_size);
3946 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3948 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3949 &rbd_dev->header.obj_order,
3950 &rbd_dev->header.image_size);
3953 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3959 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3963 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3964 "rbd", "get_object_prefix", NULL, 0,
3965 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3966 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3971 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3972 p + ret, NULL, GFP_NOIO);
3975 if (IS_ERR(rbd_dev->header.object_prefix)) {
3976 ret = PTR_ERR(rbd_dev->header.object_prefix);
3977 rbd_dev->header.object_prefix = NULL;
3979 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
3987 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3990 __le64 snapid = cpu_to_le64(snap_id);
3994 } __attribute__ ((packed)) features_buf = { 0 };
3998 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3999 "rbd", "get_features",
4000 &snapid, sizeof (snapid),
4001 &features_buf, sizeof (features_buf));
4002 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4005 if (ret < sizeof (features_buf))
4008 incompat = le64_to_cpu(features_buf.incompat);
4009 if (incompat & ~RBD_FEATURES_SUPPORTED)
4012 *snap_features = le64_to_cpu(features_buf.features);
4014 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4015 (unsigned long long)snap_id,
4016 (unsigned long long)*snap_features,
4017 (unsigned long long)le64_to_cpu(features_buf.incompat));
4022 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4024 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4025 &rbd_dev->header.features);
4028 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4030 struct rbd_spec *parent_spec;
4032 void *reply_buf = NULL;
4042 parent_spec = rbd_spec_alloc();
4046 size = sizeof (__le64) + /* pool_id */
4047 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
4048 sizeof (__le64) + /* snap_id */
4049 sizeof (__le64); /* overlap */
4050 reply_buf = kmalloc(size, GFP_KERNEL);
4056 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4057 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4058 "rbd", "get_parent",
4059 &snapid, sizeof (snapid),
4061 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4066 end = reply_buf + ret;
4068 ceph_decode_64_safe(&p, end, pool_id, out_err);
4069 if (pool_id == CEPH_NOPOOL) {
4071 * Either the parent never existed, or we have
4072 * record of it but the image got flattened so it no
4073 * longer has a parent. When the parent of a
4074 * layered image disappears we immediately set the
4075 * overlap to 0. The effect of this is that all new
4076 * requests will be treated as if the image had no
4079 if (rbd_dev->parent_overlap) {
4080 rbd_dev->parent_overlap = 0;
4082 rbd_dev_parent_put(rbd_dev);
4083 pr_info("%s: clone image has been flattened\n",
4084 rbd_dev->disk->disk_name);
4087 goto out; /* No parent? No problem. */
4090 /* The ceph file layout needs to fit pool id in 32 bits */
4093 if (pool_id > (u64)U32_MAX) {
4094 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4095 (unsigned long long)pool_id, U32_MAX);
4099 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4100 if (IS_ERR(image_id)) {
4101 ret = PTR_ERR(image_id);
4104 ceph_decode_64_safe(&p, end, snap_id, out_err);
4105 ceph_decode_64_safe(&p, end, overlap, out_err);
4108 * The parent won't change (except when the clone is
4109 * flattened, already handled that). So we only need to
4110 * record the parent spec we have not already done so.
4112 if (!rbd_dev->parent_spec) {
4113 parent_spec->pool_id = pool_id;
4114 parent_spec->image_id = image_id;
4115 parent_spec->snap_id = snap_id;
4116 rbd_dev->parent_spec = parent_spec;
4117 parent_spec = NULL; /* rbd_dev now owns this */
4123 * We always update the parent overlap. If it's zero we
4124 * treat it specially.
4126 rbd_dev->parent_overlap = overlap;
4130 /* A null parent_spec indicates it's the initial probe */
4134 * The overlap has become zero, so the clone
4135 * must have been resized down to 0 at some
4136 * point. Treat this the same as a flatten.
4138 rbd_dev_parent_put(rbd_dev);
4139 pr_info("%s: clone image now standalone\n",
4140 rbd_dev->disk->disk_name);
4143 * For the initial probe, if we find the
4144 * overlap is zero we just pretend there was
4147 rbd_warn(rbd_dev, "ignoring parent with overlap 0");
4154 rbd_spec_put(parent_spec);
4159 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4163 __le64 stripe_count;
4164 } __attribute__ ((packed)) striping_info_buf = { 0 };
4165 size_t size = sizeof (striping_info_buf);
4172 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4173 "rbd", "get_stripe_unit_count", NULL, 0,
4174 (char *)&striping_info_buf, size);
4175 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4182 * We don't actually support the "fancy striping" feature
4183 * (STRIPINGV2) yet, but if the striping sizes are the
4184 * defaults the behavior is the same as before. So find
4185 * out, and only fail if the image has non-default values.
4188 obj_size = (u64)1 << rbd_dev->header.obj_order;
4189 p = &striping_info_buf;
4190 stripe_unit = ceph_decode_64(&p);
4191 if (stripe_unit != obj_size) {
4192 rbd_warn(rbd_dev, "unsupported stripe unit "
4193 "(got %llu want %llu)",
4194 stripe_unit, obj_size);
4197 stripe_count = ceph_decode_64(&p);
4198 if (stripe_count != 1) {
4199 rbd_warn(rbd_dev, "unsupported stripe count "
4200 "(got %llu want 1)", stripe_count);
4203 rbd_dev->header.stripe_unit = stripe_unit;
4204 rbd_dev->header.stripe_count = stripe_count;
4209 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4211 size_t image_id_size;
4216 void *reply_buf = NULL;
4218 char *image_name = NULL;
4221 rbd_assert(!rbd_dev->spec->image_name);
4223 len = strlen(rbd_dev->spec->image_id);
4224 image_id_size = sizeof (__le32) + len;
4225 image_id = kmalloc(image_id_size, GFP_KERNEL);
4230 end = image_id + image_id_size;
4231 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4233 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4234 reply_buf = kmalloc(size, GFP_KERNEL);
4238 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4239 "rbd", "dir_get_name",
4240 image_id, image_id_size,
4245 end = reply_buf + ret;
4247 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4248 if (IS_ERR(image_name))
4251 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4259 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4261 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4262 const char *snap_name;
4265 /* Skip over names until we find the one we are looking for */
4267 snap_name = rbd_dev->header.snap_names;
4268 while (which < snapc->num_snaps) {
4269 if (!strcmp(name, snap_name))
4270 return snapc->snaps[which];
4271 snap_name += strlen(snap_name) + 1;
4277 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4279 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4284 for (which = 0; !found && which < snapc->num_snaps; which++) {
4285 const char *snap_name;
4287 snap_id = snapc->snaps[which];
4288 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4289 if (IS_ERR(snap_name)) {
4290 /* ignore no-longer existing snapshots */
4291 if (PTR_ERR(snap_name) == -ENOENT)
4296 found = !strcmp(name, snap_name);
4299 return found ? snap_id : CEPH_NOSNAP;
4303 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4304 * no snapshot by that name is found, or if an error occurs.
4306 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4308 if (rbd_dev->image_format == 1)
4309 return rbd_v1_snap_id_by_name(rbd_dev, name);
4311 return rbd_v2_snap_id_by_name(rbd_dev, name);
4315 * An image being mapped will have everything but the snap id.
4317 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4319 struct rbd_spec *spec = rbd_dev->spec;
4321 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4322 rbd_assert(spec->image_id && spec->image_name);
4323 rbd_assert(spec->snap_name);
4325 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4328 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4329 if (snap_id == CEPH_NOSNAP)
4332 spec->snap_id = snap_id;
4334 spec->snap_id = CEPH_NOSNAP;
4341 * A parent image will have all ids but none of the names.
4343 * All names in an rbd spec are dynamically allocated. It's OK if we
4344 * can't figure out the name for an image id.
4346 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4348 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4349 struct rbd_spec *spec = rbd_dev->spec;
4350 const char *pool_name;
4351 const char *image_name;
4352 const char *snap_name;
4355 rbd_assert(spec->pool_id != CEPH_NOPOOL);
4356 rbd_assert(spec->image_id);
4357 rbd_assert(spec->snap_id != CEPH_NOSNAP);
4359 /* Get the pool name; we have to make our own copy of this */
4361 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4363 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4366 pool_name = kstrdup(pool_name, GFP_KERNEL);
4370 /* Fetch the image name; tolerate failure here */
4372 image_name = rbd_dev_image_name(rbd_dev);
4374 rbd_warn(rbd_dev, "unable to get image name");
4376 /* Fetch the snapshot name */
4378 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4379 if (IS_ERR(snap_name)) {
4380 ret = PTR_ERR(snap_name);
4384 spec->pool_name = pool_name;
4385 spec->image_name = image_name;
4386 spec->snap_name = snap_name;
4396 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4405 struct ceph_snap_context *snapc;
4409 * We'll need room for the seq value (maximum snapshot id),
4410 * snapshot count, and array of that many snapshot ids.
4411 * For now we have a fixed upper limit on the number we're
4412 * prepared to receive.
4414 size = sizeof (__le64) + sizeof (__le32) +
4415 RBD_MAX_SNAP_COUNT * sizeof (__le64);
4416 reply_buf = kzalloc(size, GFP_KERNEL);
4420 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4421 "rbd", "get_snapcontext", NULL, 0,
4423 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4428 end = reply_buf + ret;
4430 ceph_decode_64_safe(&p, end, seq, out);
4431 ceph_decode_32_safe(&p, end, snap_count, out);
4434 * Make sure the reported number of snapshot ids wouldn't go
4435 * beyond the end of our buffer. But before checking that,
4436 * make sure the computed size of the snapshot context we
4437 * allocate is representable in a size_t.
4439 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4444 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4448 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4454 for (i = 0; i < snap_count; i++)
4455 snapc->snaps[i] = ceph_decode_64(&p);
4457 ceph_put_snap_context(rbd_dev->header.snapc);
4458 rbd_dev->header.snapc = snapc;
4460 dout(" snap context seq = %llu, snap_count = %u\n",
4461 (unsigned long long)seq, (unsigned int)snap_count);
4468 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4479 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4480 reply_buf = kmalloc(size, GFP_KERNEL);
4482 return ERR_PTR(-ENOMEM);
4484 snapid = cpu_to_le64(snap_id);
4485 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4486 "rbd", "get_snapshot_name",
4487 &snapid, sizeof (snapid),
4489 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4491 snap_name = ERR_PTR(ret);
4496 end = reply_buf + ret;
4497 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4498 if (IS_ERR(snap_name))
4501 dout(" snap_id 0x%016llx snap_name = %s\n",
4502 (unsigned long long)snap_id, snap_name);
4509 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4511 bool first_time = rbd_dev->header.object_prefix == NULL;
4514 ret = rbd_dev_v2_image_size(rbd_dev);
4519 ret = rbd_dev_v2_header_onetime(rbd_dev);
4524 ret = rbd_dev_v2_snap_context(rbd_dev);
4525 dout("rbd_dev_v2_snap_context returned %d\n", ret);
4530 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4532 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4534 if (rbd_dev->image_format == 1)
4535 return rbd_dev_v1_header_info(rbd_dev);
4537 return rbd_dev_v2_header_info(rbd_dev);
4540 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4545 dev = &rbd_dev->dev;
4546 dev->bus = &rbd_bus_type;
4547 dev->type = &rbd_device_type;
4548 dev->parent = &rbd_root_dev;
4549 dev->release = rbd_dev_device_release;
4550 dev_set_name(dev, "%d", rbd_dev->dev_id);
4551 ret = device_register(dev);
4556 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4558 device_unregister(&rbd_dev->dev);
4562 * Get a unique rbd identifier for the given new rbd_dev, and add
4563 * the rbd_dev to the global list.
4565 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4569 new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4570 0, minor_to_rbd_dev_id(1 << MINORBITS),
4575 rbd_dev->dev_id = new_dev_id;
4577 spin_lock(&rbd_dev_list_lock);
4578 list_add_tail(&rbd_dev->node, &rbd_dev_list);
4579 spin_unlock(&rbd_dev_list_lock);
4581 dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4587 * Remove an rbd_dev from the global list, and record that its
4588 * identifier is no longer in use.
4590 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4592 spin_lock(&rbd_dev_list_lock);
4593 list_del_init(&rbd_dev->node);
4594 spin_unlock(&rbd_dev_list_lock);
4596 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4598 dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4602 * Skips over white space at *buf, and updates *buf to point to the
4603 * first found non-space character (if any). Returns the length of
4604 * the token (string of non-white space characters) found. Note
4605 * that *buf must be terminated with '\0'.
4607 static inline size_t next_token(const char **buf)
4610 * These are the characters that produce nonzero for
4611 * isspace() in the "C" and "POSIX" locales.
4613 const char *spaces = " \f\n\r\t\v";
4615 *buf += strspn(*buf, spaces); /* Find start of token */
4617 return strcspn(*buf, spaces); /* Return token length */
4621 * Finds the next token in *buf, and if the provided token buffer is
4622 * big enough, copies the found token into it. The result, if
4623 * copied, is guaranteed to be terminated with '\0'. Note that *buf
4624 * must be terminated with '\0' on entry.
4626 * Returns the length of the token found (not including the '\0').
4627 * Return value will be 0 if no token is found, and it will be >=
4628 * token_size if the token would not fit.
4630 * The *buf pointer will be updated to point beyond the end of the
4631 * found token. Note that this occurs even if the token buffer is
4632 * too small to hold it.
4634 static inline size_t copy_token(const char **buf,
4640 len = next_token(buf);
4641 if (len < token_size) {
4642 memcpy(token, *buf, len);
4643 *(token + len) = '\0';
4651 * Finds the next token in *buf, dynamically allocates a buffer big
4652 * enough to hold a copy of it, and copies the token into the new
4653 * buffer. The copy is guaranteed to be terminated with '\0'. Note
4654 * that a duplicate buffer is created even for a zero-length token.
4656 * Returns a pointer to the newly-allocated duplicate, or a null
4657 * pointer if memory for the duplicate was not available. If
4658 * the lenp argument is a non-null pointer, the length of the token
4659 * (not including the '\0') is returned in *lenp.
4661 * If successful, the *buf pointer will be updated to point beyond
4662 * the end of the found token.
4664 * Note: uses GFP_KERNEL for allocation.
4666 static inline char *dup_token(const char **buf, size_t *lenp)
4671 len = next_token(buf);
4672 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4675 *(dup + len) = '\0';
4685 * Parse the options provided for an "rbd add" (i.e., rbd image
4686 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
4687 * and the data written is passed here via a NUL-terminated buffer.
4688 * Returns 0 if successful or an error code otherwise.
4690 * The information extracted from these options is recorded in
4691 * the other parameters which return dynamically-allocated
4694 * The address of a pointer that will refer to a ceph options
4695 * structure. Caller must release the returned pointer using
4696 * ceph_destroy_options() when it is no longer needed.
4698 * Address of an rbd options pointer. Fully initialized by
4699 * this function; caller must release with kfree().
4701 * Address of an rbd image specification pointer. Fully
4702 * initialized by this function based on parsed options.
4703 * Caller must release with rbd_spec_put().
4705 * The options passed take this form:
4706 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4709 * A comma-separated list of one or more monitor addresses.
4710 * A monitor address is an ip address, optionally followed
4711 * by a port number (separated by a colon).
4712 * I.e.: ip1[:port1][,ip2[:port2]...]
4714 * A comma-separated list of ceph and/or rbd options.
4716 * The name of the rados pool containing the rbd image.
4718 * The name of the image in that pool to map.
4720 * An optional snapshot id. If provided, the mapping will
4721 * present data from the image at the time that snapshot was
4722 * created. The image head is used if no snapshot id is
4723 * provided. Snapshot mappings are always read-only.
4725 static int rbd_add_parse_args(const char *buf,
4726 struct ceph_options **ceph_opts,
4727 struct rbd_options **opts,
4728 struct rbd_spec **rbd_spec)
4732 const char *mon_addrs;
4734 size_t mon_addrs_size;
4735 struct rbd_spec *spec = NULL;
4736 struct rbd_options *rbd_opts = NULL;
4737 struct ceph_options *copts;
4740 /* The first four tokens are required */
4742 len = next_token(&buf);
4744 rbd_warn(NULL, "no monitor address(es) provided");
4748 mon_addrs_size = len + 1;
4752 options = dup_token(&buf, NULL);
4756 rbd_warn(NULL, "no options provided");
4760 spec = rbd_spec_alloc();
4764 spec->pool_name = dup_token(&buf, NULL);
4765 if (!spec->pool_name)
4767 if (!*spec->pool_name) {
4768 rbd_warn(NULL, "no pool name provided");
4772 spec->image_name = dup_token(&buf, NULL);
4773 if (!spec->image_name)
4775 if (!*spec->image_name) {
4776 rbd_warn(NULL, "no image name provided");
4781 * Snapshot name is optional; default is to use "-"
4782 * (indicating the head/no snapshot).
4784 len = next_token(&buf);
4786 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4787 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4788 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4789 ret = -ENAMETOOLONG;
4792 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4795 *(snap_name + len) = '\0';
4796 spec->snap_name = snap_name;
4798 /* Initialize all rbd options to the defaults */
4800 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4804 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4806 copts = ceph_parse_options(options, mon_addrs,
4807 mon_addrs + mon_addrs_size - 1,
4808 parse_rbd_opts_token, rbd_opts);
4809 if (IS_ERR(copts)) {
4810 ret = PTR_ERR(copts);
4831 * Return pool id (>= 0) or a negative error code.
4833 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4836 unsigned long timeout = rbdc->client->options->mount_timeout * HZ;
4841 ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4842 if (ret == -ENOENT && tries++ < 1) {
4843 ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
4848 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
4849 ceph_monc_request_next_osdmap(&rbdc->client->monc);
4850 (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
4851 newest_epoch, timeout);
4854 /* the osdmap we have is new enough */
4863 * An rbd format 2 image has a unique identifier, distinct from the
4864 * name given to it by the user. Internally, that identifier is
4865 * what's used to specify the names of objects related to the image.
4867 * A special "rbd id" object is used to map an rbd image name to its
4868 * id. If that object doesn't exist, then there is no v2 rbd image
4869 * with the supplied name.
4871 * This function will record the given rbd_dev's image_id field if
4872 * it can be determined, and in that case will return 0. If any
4873 * errors occur a negative errno will be returned and the rbd_dev's
4874 * image_id field will be unchanged (and should be NULL).
4876 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4885 * When probing a parent image, the image id is already
4886 * known (and the image name likely is not). There's no
4887 * need to fetch the image id again in this case. We
4888 * do still need to set the image format though.
4890 if (rbd_dev->spec->image_id) {
4891 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4897 * First, see if the format 2 image id file exists, and if
4898 * so, get the image's persistent id from it.
4900 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4901 object_name = kmalloc(size, GFP_NOIO);
4904 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4905 dout("rbd id object name is %s\n", object_name);
4907 /* Response will be an encoded string, which includes a length */
4909 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4910 response = kzalloc(size, GFP_NOIO);
4916 /* If it doesn't exist we'll assume it's a format 1 image */
4918 ret = rbd_obj_method_sync(rbd_dev, object_name,
4919 "rbd", "get_id", NULL, 0,
4920 response, RBD_IMAGE_ID_LEN_MAX);
4921 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4922 if (ret == -ENOENT) {
4923 image_id = kstrdup("", GFP_KERNEL);
4924 ret = image_id ? 0 : -ENOMEM;
4926 rbd_dev->image_format = 1;
4927 } else if (ret > sizeof (__le32)) {
4930 image_id = ceph_extract_encoded_string(&p, p + ret,
4932 ret = PTR_ERR_OR_ZERO(image_id);
4934 rbd_dev->image_format = 2;
4940 rbd_dev->spec->image_id = image_id;
4941 dout("image_id is %s\n", image_id);
4951 * Undo whatever state changes are made by v1 or v2 header info
4954 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4956 struct rbd_image_header *header;
4958 /* Drop parent reference unless it's already been done (or none) */
4960 if (rbd_dev->parent_overlap)
4961 rbd_dev_parent_put(rbd_dev);
4963 /* Free dynamic fields from the header, then zero it out */
4965 header = &rbd_dev->header;
4966 ceph_put_snap_context(header->snapc);
4967 kfree(header->snap_sizes);
4968 kfree(header->snap_names);
4969 kfree(header->object_prefix);
4970 memset(header, 0, sizeof (*header));
4973 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4977 ret = rbd_dev_v2_object_prefix(rbd_dev);
4982 * Get the and check features for the image. Currently the
4983 * features are assumed to never change.
4985 ret = rbd_dev_v2_features(rbd_dev);
4989 /* If the image supports fancy striping, get its parameters */
4991 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4992 ret = rbd_dev_v2_striping_info(rbd_dev);
4996 /* No support for crypto and compression type format 2 images */
5000 rbd_dev->header.features = 0;
5001 kfree(rbd_dev->header.object_prefix);
5002 rbd_dev->header.object_prefix = NULL;
5007 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
5009 struct rbd_device *parent = NULL;
5010 struct rbd_spec *parent_spec;
5011 struct rbd_client *rbdc;
5014 if (!rbd_dev->parent_spec)
5017 * We need to pass a reference to the client and the parent
5018 * spec when creating the parent rbd_dev. Images related by
5019 * parent/child relationships always share both.
5021 parent_spec = rbd_spec_get(rbd_dev->parent_spec);
5022 rbdc = __rbd_get_client(rbd_dev->rbd_client);
5025 parent = rbd_dev_create(rbdc, parent_spec);
5029 ret = rbd_dev_image_probe(parent, false);
5032 rbd_dev->parent = parent;
5033 atomic_set(&rbd_dev->parent_ref, 1);
5038 rbd_dev_unparent(rbd_dev);
5039 kfree(rbd_dev->header_name);
5040 rbd_dev_destroy(parent);
5042 rbd_put_client(rbdc);
5043 rbd_spec_put(parent_spec);
5049 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5053 /* Get an id and fill in device name. */
5055 ret = rbd_dev_id_get(rbd_dev);
5059 BUILD_BUG_ON(DEV_NAME_LEN
5060 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5061 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5063 /* Record our major and minor device numbers. */
5065 if (!single_major) {
5066 ret = register_blkdev(0, rbd_dev->name);
5070 rbd_dev->major = ret;
5073 rbd_dev->major = rbd_major;
5074 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5077 /* Set up the blkdev mapping. */
5079 ret = rbd_init_disk(rbd_dev);
5081 goto err_out_blkdev;
5083 ret = rbd_dev_mapping_set(rbd_dev);
5087 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5088 set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5090 rbd_dev->rq_wq = alloc_workqueue(rbd_dev->disk->disk_name, 0, 0);
5091 if (!rbd_dev->rq_wq)
5092 goto err_out_mapping;
5094 ret = rbd_bus_add_dev(rbd_dev);
5096 goto err_out_workqueue;
5098 /* Everything's ready. Announce the disk to the world. */
5100 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5101 add_disk(rbd_dev->disk);
5103 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5104 (unsigned long long) rbd_dev->mapping.size);
5109 destroy_workqueue(rbd_dev->rq_wq);
5110 rbd_dev->rq_wq = NULL;
5112 rbd_dev_mapping_clear(rbd_dev);
5114 rbd_free_disk(rbd_dev);
5117 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5119 rbd_dev_id_put(rbd_dev);
5120 rbd_dev_mapping_clear(rbd_dev);
5125 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5127 struct rbd_spec *spec = rbd_dev->spec;
5130 /* Record the header object name for this rbd image. */
5132 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5134 if (rbd_dev->image_format == 1)
5135 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5137 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5139 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5140 if (!rbd_dev->header_name)
5143 if (rbd_dev->image_format == 1)
5144 sprintf(rbd_dev->header_name, "%s%s",
5145 spec->image_name, RBD_SUFFIX);
5147 sprintf(rbd_dev->header_name, "%s%s",
5148 RBD_HEADER_PREFIX, spec->image_id);
5152 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5154 rbd_dev_unprobe(rbd_dev);
5155 kfree(rbd_dev->header_name);
5156 rbd_dev->header_name = NULL;
5157 rbd_dev->image_format = 0;
5158 kfree(rbd_dev->spec->image_id);
5159 rbd_dev->spec->image_id = NULL;
5161 rbd_dev_destroy(rbd_dev);
5165 * Probe for the existence of the header object for the given rbd
5166 * device. If this image is the one being mapped (i.e., not a
5167 * parent), initiate a watch on its header object before using that
5168 * object to get detailed information about the rbd image.
5170 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
5175 * Get the id from the image id object. Unless there's an
5176 * error, rbd_dev->spec->image_id will be filled in with
5177 * a dynamically-allocated string, and rbd_dev->image_format
5178 * will be set to either 1 or 2.
5180 ret = rbd_dev_image_id(rbd_dev);
5184 ret = rbd_dev_header_name(rbd_dev);
5186 goto err_out_format;
5189 ret = rbd_dev_header_watch_sync(rbd_dev);
5191 goto out_header_name;
5194 ret = rbd_dev_header_info(rbd_dev);
5199 * If this image is the one being mapped, we have pool name and
5200 * id, image name and id, and snap name - need to fill snap id.
5201 * Otherwise this is a parent image, identified by pool, image
5202 * and snap ids - need to fill in names for those ids.
5205 ret = rbd_spec_fill_snap_id(rbd_dev);
5207 ret = rbd_spec_fill_names(rbd_dev);
5211 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5212 ret = rbd_dev_v2_parent_info(rbd_dev);
5217 * Need to warn users if this image is the one being
5218 * mapped and has a parent.
5220 if (mapping && rbd_dev->parent_spec)
5222 "WARNING: kernel layering is EXPERIMENTAL!");
5225 ret = rbd_dev_probe_parent(rbd_dev);
5229 dout("discovered format %u image, header name is %s\n",
5230 rbd_dev->image_format, rbd_dev->header_name);
5234 rbd_dev_unprobe(rbd_dev);
5237 rbd_dev_header_unwatch_sync(rbd_dev);
5239 kfree(rbd_dev->header_name);
5240 rbd_dev->header_name = NULL;
5242 rbd_dev->image_format = 0;
5243 kfree(rbd_dev->spec->image_id);
5244 rbd_dev->spec->image_id = NULL;
5248 static ssize_t do_rbd_add(struct bus_type *bus,
5252 struct rbd_device *rbd_dev = NULL;
5253 struct ceph_options *ceph_opts = NULL;
5254 struct rbd_options *rbd_opts = NULL;
5255 struct rbd_spec *spec = NULL;
5256 struct rbd_client *rbdc;
5260 if (!try_module_get(THIS_MODULE))
5263 /* parse add command */
5264 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5266 goto err_out_module;
5267 read_only = rbd_opts->read_only;
5269 rbd_opts = NULL; /* done with this */
5271 rbdc = rbd_get_client(ceph_opts);
5278 rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5280 goto err_out_client;
5281 spec->pool_id = (u64)rc;
5283 /* The ceph file layout needs to fit pool id in 32 bits */
5285 if (spec->pool_id > (u64)U32_MAX) {
5286 rbd_warn(NULL, "pool id too large (%llu > %u)",
5287 (unsigned long long)spec->pool_id, U32_MAX);
5289 goto err_out_client;
5292 rbd_dev = rbd_dev_create(rbdc, spec);
5294 goto err_out_client;
5295 rbdc = NULL; /* rbd_dev now owns this */
5296 spec = NULL; /* rbd_dev now owns this */
5298 rc = rbd_dev_image_probe(rbd_dev, true);
5300 goto err_out_rbd_dev;
5302 /* If we are mapping a snapshot it must be marked read-only */
5304 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5306 rbd_dev->mapping.read_only = read_only;
5308 rc = rbd_dev_device_setup(rbd_dev);
5311 * rbd_dev_header_unwatch_sync() can't be moved into
5312 * rbd_dev_image_release() without refactoring, see
5313 * commit 1f3ef78861ac.
5315 rbd_dev_header_unwatch_sync(rbd_dev);
5316 rbd_dev_image_release(rbd_dev);
5317 goto err_out_module;
5323 rbd_dev_destroy(rbd_dev);
5325 rbd_put_client(rbdc);
5329 module_put(THIS_MODULE);
5331 dout("Error adding device %s\n", buf);
5336 static ssize_t rbd_add(struct bus_type *bus,
5343 return do_rbd_add(bus, buf, count);
5346 static ssize_t rbd_add_single_major(struct bus_type *bus,
5350 return do_rbd_add(bus, buf, count);
5353 static void rbd_dev_device_release(struct device *dev)
5355 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5357 destroy_workqueue(rbd_dev->rq_wq);
5358 rbd_free_disk(rbd_dev);
5359 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5360 rbd_dev_mapping_clear(rbd_dev);
5362 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5363 rbd_dev_id_put(rbd_dev);
5364 rbd_dev_mapping_clear(rbd_dev);
5367 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5369 while (rbd_dev->parent) {
5370 struct rbd_device *first = rbd_dev;
5371 struct rbd_device *second = first->parent;
5372 struct rbd_device *third;
5375 * Follow to the parent with no grandparent and
5378 while (second && (third = second->parent)) {
5383 rbd_dev_image_release(second);
5384 first->parent = NULL;
5385 first->parent_overlap = 0;
5387 rbd_assert(first->parent_spec);
5388 rbd_spec_put(first->parent_spec);
5389 first->parent_spec = NULL;
5393 static ssize_t do_rbd_remove(struct bus_type *bus,
5397 struct rbd_device *rbd_dev = NULL;
5398 struct list_head *tmp;
5401 bool already = false;
5404 ret = kstrtoul(buf, 10, &ul);
5408 /* convert to int; abort if we lost anything in the conversion */
5414 spin_lock(&rbd_dev_list_lock);
5415 list_for_each(tmp, &rbd_dev_list) {
5416 rbd_dev = list_entry(tmp, struct rbd_device, node);
5417 if (rbd_dev->dev_id == dev_id) {
5423 spin_lock_irq(&rbd_dev->lock);
5424 if (rbd_dev->open_count)
5427 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5429 spin_unlock_irq(&rbd_dev->lock);
5431 spin_unlock(&rbd_dev_list_lock);
5432 if (ret < 0 || already)
5435 rbd_dev_header_unwatch_sync(rbd_dev);
5437 * flush remaining watch callbacks - these must be complete
5438 * before the osd_client is shutdown
5440 dout("%s: flushing notifies", __func__);
5441 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5444 * Don't free anything from rbd_dev->disk until after all
5445 * notifies are completely processed. Otherwise
5446 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5447 * in a potential use after free of rbd_dev->disk or rbd_dev.
5449 rbd_bus_del_dev(rbd_dev);
5450 rbd_dev_image_release(rbd_dev);
5451 module_put(THIS_MODULE);
5456 static ssize_t rbd_remove(struct bus_type *bus,
5463 return do_rbd_remove(bus, buf, count);
5466 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5470 return do_rbd_remove(bus, buf, count);
5474 * create control files in sysfs
5477 static int rbd_sysfs_init(void)
5481 ret = device_register(&rbd_root_dev);
5485 ret = bus_register(&rbd_bus_type);
5487 device_unregister(&rbd_root_dev);
5492 static void rbd_sysfs_cleanup(void)
5494 bus_unregister(&rbd_bus_type);
5495 device_unregister(&rbd_root_dev);
5498 static int rbd_slab_init(void)
5500 rbd_assert(!rbd_img_request_cache);
5501 rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5502 sizeof (struct rbd_img_request),
5503 __alignof__(struct rbd_img_request),
5505 if (!rbd_img_request_cache)
5508 rbd_assert(!rbd_obj_request_cache);
5509 rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5510 sizeof (struct rbd_obj_request),
5511 __alignof__(struct rbd_obj_request),
5513 if (!rbd_obj_request_cache)
5516 rbd_assert(!rbd_segment_name_cache);
5517 rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5518 CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5519 if (rbd_segment_name_cache)
5522 if (rbd_obj_request_cache) {
5523 kmem_cache_destroy(rbd_obj_request_cache);
5524 rbd_obj_request_cache = NULL;
5527 kmem_cache_destroy(rbd_img_request_cache);
5528 rbd_img_request_cache = NULL;
5533 static void rbd_slab_exit(void)
5535 rbd_assert(rbd_segment_name_cache);
5536 kmem_cache_destroy(rbd_segment_name_cache);
5537 rbd_segment_name_cache = NULL;
5539 rbd_assert(rbd_obj_request_cache);
5540 kmem_cache_destroy(rbd_obj_request_cache);
5541 rbd_obj_request_cache = NULL;
5543 rbd_assert(rbd_img_request_cache);
5544 kmem_cache_destroy(rbd_img_request_cache);
5545 rbd_img_request_cache = NULL;
5548 static int __init rbd_init(void)
5552 if (!libceph_compatible(NULL)) {
5553 rbd_warn(NULL, "libceph incompatibility (quitting)");
5557 rc = rbd_slab_init();
5562 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5563 if (rbd_major < 0) {
5569 rc = rbd_sysfs_init();
5571 goto err_out_blkdev;
5574 pr_info("loaded (major %d)\n", rbd_major);
5576 pr_info("loaded\n");
5582 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5588 static void __exit rbd_exit(void)
5590 ida_destroy(&rbd_dev_id_ida);
5591 rbd_sysfs_cleanup();
5593 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5597 module_init(rbd_init);
5598 module_exit(rbd_exit);
5600 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5601 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5602 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5603 /* following authorship retained from original osdblk.c */
5604 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5606 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5607 MODULE_LICENSE("GPL");