regulator: rk808: Remove unused variables
[firefly-linux-kernel-4.4.55.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44 #include <linux/idr.h>
45 #include <linux/workqueue.h>
46
47 #include "rbd_types.h"
48
49 #define RBD_DEBUG       /* Activate rbd_assert() calls */
50
51 /*
52  * The basic unit of block I/O is a sector.  It is interpreted in a
53  * number of contexts in Linux (blk, bio, genhd), but the default is
54  * universally 512 bytes.  These symbols are just slightly more
55  * meaningful than the bare numbers they represent.
56  */
57 #define SECTOR_SHIFT    9
58 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
59
60 /*
61  * Increment the given counter and return its updated value.
62  * If the counter is already 0 it will not be incremented.
63  * If the counter is already at its maximum value returns
64  * -EINVAL without updating it.
65  */
66 static int atomic_inc_return_safe(atomic_t *v)
67 {
68         unsigned int counter;
69
70         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
71         if (counter <= (unsigned int)INT_MAX)
72                 return (int)counter;
73
74         atomic_dec(v);
75
76         return -EINVAL;
77 }
78
79 /* Decrement the counter.  Return the resulting value, or -EINVAL */
80 static int atomic_dec_return_safe(atomic_t *v)
81 {
82         int counter;
83
84         counter = atomic_dec_return(v);
85         if (counter >= 0)
86                 return counter;
87
88         atomic_inc(v);
89
90         return -EINVAL;
91 }
92
93 #define RBD_DRV_NAME "rbd"
94
95 #define RBD_MINORS_PER_MAJOR            256
96 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
97
98 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
99 #define RBD_MAX_SNAP_NAME_LEN   \
100                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
101
102 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
103
104 #define RBD_SNAP_HEAD_NAME      "-"
105
106 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
107
108 /* This allows a single page to hold an image name sent by OSD */
109 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
110 #define RBD_IMAGE_ID_LEN_MAX    64
111
112 #define RBD_OBJ_PREFIX_LEN_MAX  64
113
114 /* Feature bits */
115
116 #define RBD_FEATURE_LAYERING    (1<<0)
117 #define RBD_FEATURE_STRIPINGV2  (1<<1)
118 #define RBD_FEATURES_ALL \
119             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
120
121 /* Features supported by this (client software) implementation. */
122
123 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
124
125 /*
126  * An RBD device name will be "rbd#", where the "rbd" comes from
127  * RBD_DRV_NAME above, and # is a unique integer identifier.
128  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
129  * enough to hold all possible device names.
130  */
131 #define DEV_NAME_LEN            32
132 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
133
134 /*
135  * block device image metadata (in-memory version)
136  */
137 struct rbd_image_header {
138         /* These six fields never change for a given rbd image */
139         char *object_prefix;
140         __u8 obj_order;
141         __u8 crypt_type;
142         __u8 comp_type;
143         u64 stripe_unit;
144         u64 stripe_count;
145         u64 features;           /* Might be changeable someday? */
146
147         /* The remaining fields need to be updated occasionally */
148         u64 image_size;
149         struct ceph_snap_context *snapc;
150         char *snap_names;       /* format 1 only */
151         u64 *snap_sizes;        /* format 1 only */
152 };
153
154 /*
155  * An rbd image specification.
156  *
157  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
158  * identify an image.  Each rbd_dev structure includes a pointer to
159  * an rbd_spec structure that encapsulates this identity.
160  *
161  * Each of the id's in an rbd_spec has an associated name.  For a
162  * user-mapped image, the names are supplied and the id's associated
163  * with them are looked up.  For a layered image, a parent image is
164  * defined by the tuple, and the names are looked up.
165  *
166  * An rbd_dev structure contains a parent_spec pointer which is
167  * non-null if the image it represents is a child in a layered
168  * image.  This pointer will refer to the rbd_spec structure used
169  * by the parent rbd_dev for its own identity (i.e., the structure
170  * is shared between the parent and child).
171  *
172  * Since these structures are populated once, during the discovery
173  * phase of image construction, they are effectively immutable so
174  * we make no effort to synchronize access to them.
175  *
176  * Note that code herein does not assume the image name is known (it
177  * could be a null pointer).
178  */
179 struct rbd_spec {
180         u64             pool_id;
181         const char      *pool_name;
182
183         const char      *image_id;
184         const char      *image_name;
185
186         u64             snap_id;
187         const char      *snap_name;
188
189         struct kref     kref;
190 };
191
192 /*
193  * an instance of the client.  multiple devices may share an rbd client.
194  */
195 struct rbd_client {
196         struct ceph_client      *client;
197         struct kref             kref;
198         struct list_head        node;
199 };
200
201 struct rbd_img_request;
202 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
203
204 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
205
206 struct rbd_obj_request;
207 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
208
209 enum obj_request_type {
210         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
211 };
212
213 enum obj_req_flags {
214         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
215         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
216         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
217         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
218 };
219
220 struct rbd_obj_request {
221         const char              *object_name;
222         u64                     offset;         /* object start byte */
223         u64                     length;         /* bytes from offset */
224         unsigned long           flags;
225
226         /*
227          * An object request associated with an image will have its
228          * img_data flag set; a standalone object request will not.
229          *
230          * A standalone object request will have which == BAD_WHICH
231          * and a null obj_request pointer.
232          *
233          * An object request initiated in support of a layered image
234          * object (to check for its existence before a write) will
235          * have which == BAD_WHICH and a non-null obj_request pointer.
236          *
237          * Finally, an object request for rbd image data will have
238          * which != BAD_WHICH, and will have a non-null img_request
239          * pointer.  The value of which will be in the range
240          * 0..(img_request->obj_request_count-1).
241          */
242         union {
243                 struct rbd_obj_request  *obj_request;   /* STAT op */
244                 struct {
245                         struct rbd_img_request  *img_request;
246                         u64                     img_offset;
247                         /* links for img_request->obj_requests list */
248                         struct list_head        links;
249                 };
250         };
251         u32                     which;          /* posn image request list */
252
253         enum obj_request_type   type;
254         union {
255                 struct bio      *bio_list;
256                 struct {
257                         struct page     **pages;
258                         u32             page_count;
259                 };
260         };
261         struct page             **copyup_pages;
262         u32                     copyup_page_count;
263
264         struct ceph_osd_request *osd_req;
265
266         u64                     xferred;        /* bytes transferred */
267         int                     result;
268
269         rbd_obj_callback_t      callback;
270         struct completion       completion;
271
272         struct kref             kref;
273 };
274
275 enum img_req_flags {
276         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
277         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
278         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
279 };
280
281 struct rbd_img_request {
282         struct rbd_device       *rbd_dev;
283         u64                     offset; /* starting image byte offset */
284         u64                     length; /* byte count from offset */
285         unsigned long           flags;
286         union {
287                 u64                     snap_id;        /* for reads */
288                 struct ceph_snap_context *snapc;        /* for writes */
289         };
290         union {
291                 struct request          *rq;            /* block request */
292                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
293         };
294         struct page             **copyup_pages;
295         u32                     copyup_page_count;
296         spinlock_t              completion_lock;/* protects next_completion */
297         u32                     next_completion;
298         rbd_img_callback_t      callback;
299         u64                     xferred;/* aggregate bytes transferred */
300         int                     result; /* first nonzero obj_request result */
301
302         u32                     obj_request_count;
303         struct list_head        obj_requests;   /* rbd_obj_request structs */
304
305         struct kref             kref;
306 };
307
308 #define for_each_obj_request(ireq, oreq) \
309         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
310 #define for_each_obj_request_from(ireq, oreq) \
311         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
312 #define for_each_obj_request_safe(ireq, oreq, n) \
313         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
314
315 struct rbd_mapping {
316         u64                     size;
317         u64                     features;
318         bool                    read_only;
319 };
320
321 /*
322  * a single device
323  */
324 struct rbd_device {
325         int                     dev_id;         /* blkdev unique id */
326
327         int                     major;          /* blkdev assigned major */
328         int                     minor;
329         struct gendisk          *disk;          /* blkdev's gendisk and rq */
330
331         u32                     image_format;   /* Either 1 or 2 */
332         struct rbd_client       *rbd_client;
333
334         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
335
336         struct list_head        rq_queue;       /* incoming rq queue */
337         spinlock_t              lock;           /* queue, flags, open_count */
338         struct workqueue_struct *rq_wq;
339         struct work_struct      rq_work;
340
341         struct rbd_image_header header;
342         unsigned long           flags;          /* possibly lock protected */
343         struct rbd_spec         *spec;
344
345         char                    *header_name;
346
347         struct ceph_file_layout layout;
348
349         struct ceph_osd_event   *watch_event;
350         struct rbd_obj_request  *watch_request;
351
352         struct rbd_spec         *parent_spec;
353         u64                     parent_overlap;
354         atomic_t                parent_ref;
355         struct rbd_device       *parent;
356
357         /* protects updating the header */
358         struct rw_semaphore     header_rwsem;
359
360         struct rbd_mapping      mapping;
361
362         struct list_head        node;
363
364         /* sysfs related */
365         struct device           dev;
366         unsigned long           open_count;     /* protected by lock */
367 };
368
369 /*
370  * Flag bits for rbd_dev->flags.  If atomicity is required,
371  * rbd_dev->lock is used to protect access.
372  *
373  * Currently, only the "removing" flag (which is coupled with the
374  * "open_count" field) requires atomic access.
375  */
376 enum rbd_dev_flags {
377         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
378         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
379 };
380
381 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
382
383 static LIST_HEAD(rbd_dev_list);    /* devices */
384 static DEFINE_SPINLOCK(rbd_dev_list_lock);
385
386 static LIST_HEAD(rbd_client_list);              /* clients */
387 static DEFINE_SPINLOCK(rbd_client_list_lock);
388
389 /* Slab caches for frequently-allocated structures */
390
391 static struct kmem_cache        *rbd_img_request_cache;
392 static struct kmem_cache        *rbd_obj_request_cache;
393 static struct kmem_cache        *rbd_segment_name_cache;
394
395 static int rbd_major;
396 static DEFINE_IDA(rbd_dev_id_ida);
397
398 /*
399  * Default to false for now, as single-major requires >= 0.75 version of
400  * userspace rbd utility.
401  */
402 static bool single_major = false;
403 module_param(single_major, bool, S_IRUGO);
404 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
405
406 static int rbd_img_request_submit(struct rbd_img_request *img_request);
407
408 static void rbd_dev_device_release(struct device *dev);
409
410 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
411                        size_t count);
412 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
413                           size_t count);
414 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
415                                     size_t count);
416 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
417                                        size_t count);
418 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
419 static void rbd_spec_put(struct rbd_spec *spec);
420
421 static int rbd_dev_id_to_minor(int dev_id)
422 {
423         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
424 }
425
426 static int minor_to_rbd_dev_id(int minor)
427 {
428         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
429 }
430
431 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
432 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
433 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
434 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
435
436 static struct attribute *rbd_bus_attrs[] = {
437         &bus_attr_add.attr,
438         &bus_attr_remove.attr,
439         &bus_attr_add_single_major.attr,
440         &bus_attr_remove_single_major.attr,
441         NULL,
442 };
443
444 static umode_t rbd_bus_is_visible(struct kobject *kobj,
445                                   struct attribute *attr, int index)
446 {
447         if (!single_major &&
448             (attr == &bus_attr_add_single_major.attr ||
449              attr == &bus_attr_remove_single_major.attr))
450                 return 0;
451
452         return attr->mode;
453 }
454
455 static const struct attribute_group rbd_bus_group = {
456         .attrs = rbd_bus_attrs,
457         .is_visible = rbd_bus_is_visible,
458 };
459 __ATTRIBUTE_GROUPS(rbd_bus);
460
461 static struct bus_type rbd_bus_type = {
462         .name           = "rbd",
463         .bus_groups     = rbd_bus_groups,
464 };
465
466 static void rbd_root_dev_release(struct device *dev)
467 {
468 }
469
470 static struct device rbd_root_dev = {
471         .init_name =    "rbd",
472         .release =      rbd_root_dev_release,
473 };
474
475 static __printf(2, 3)
476 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
477 {
478         struct va_format vaf;
479         va_list args;
480
481         va_start(args, fmt);
482         vaf.fmt = fmt;
483         vaf.va = &args;
484
485         if (!rbd_dev)
486                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
487         else if (rbd_dev->disk)
488                 printk(KERN_WARNING "%s: %s: %pV\n",
489                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
490         else if (rbd_dev->spec && rbd_dev->spec->image_name)
491                 printk(KERN_WARNING "%s: image %s: %pV\n",
492                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
493         else if (rbd_dev->spec && rbd_dev->spec->image_id)
494                 printk(KERN_WARNING "%s: id %s: %pV\n",
495                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
496         else    /* punt */
497                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
498                         RBD_DRV_NAME, rbd_dev, &vaf);
499         va_end(args);
500 }
501
502 #ifdef RBD_DEBUG
503 #define rbd_assert(expr)                                                \
504                 if (unlikely(!(expr))) {                                \
505                         printk(KERN_ERR "\nAssertion failure in %s() "  \
506                                                 "at line %d:\n\n"       \
507                                         "\trbd_assert(%s);\n\n",        \
508                                         __func__, __LINE__, #expr);     \
509                         BUG();                                          \
510                 }
511 #else /* !RBD_DEBUG */
512 #  define rbd_assert(expr)      ((void) 0)
513 #endif /* !RBD_DEBUG */
514
515 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
516 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
517 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
518
519 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
520 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
521 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
522 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
523 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
524                                         u64 snap_id);
525 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
526                                 u8 *order, u64 *snap_size);
527 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
528                 u64 *snap_features);
529 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
530
531 static int rbd_open(struct block_device *bdev, fmode_t mode)
532 {
533         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
534         bool removing = false;
535
536         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
537                 return -EROFS;
538
539         spin_lock_irq(&rbd_dev->lock);
540         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
541                 removing = true;
542         else
543                 rbd_dev->open_count++;
544         spin_unlock_irq(&rbd_dev->lock);
545         if (removing)
546                 return -ENOENT;
547
548         (void) get_device(&rbd_dev->dev);
549
550         return 0;
551 }
552
553 static void rbd_release(struct gendisk *disk, fmode_t mode)
554 {
555         struct rbd_device *rbd_dev = disk->private_data;
556         unsigned long open_count_before;
557
558         spin_lock_irq(&rbd_dev->lock);
559         open_count_before = rbd_dev->open_count--;
560         spin_unlock_irq(&rbd_dev->lock);
561         rbd_assert(open_count_before > 0);
562
563         put_device(&rbd_dev->dev);
564 }
565
566 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
567 {
568         int ret = 0;
569         int val;
570         bool ro;
571         bool ro_changed = false;
572
573         /* get_user() may sleep, so call it before taking rbd_dev->lock */
574         if (get_user(val, (int __user *)(arg)))
575                 return -EFAULT;
576
577         ro = val ? true : false;
578         /* Snapshot doesn't allow to write*/
579         if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
580                 return -EROFS;
581
582         spin_lock_irq(&rbd_dev->lock);
583         /* prevent others open this device */
584         if (rbd_dev->open_count > 1) {
585                 ret = -EBUSY;
586                 goto out;
587         }
588
589         if (rbd_dev->mapping.read_only != ro) {
590                 rbd_dev->mapping.read_only = ro;
591                 ro_changed = true;
592         }
593
594 out:
595         spin_unlock_irq(&rbd_dev->lock);
596         /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
597         if (ret == 0 && ro_changed)
598                 set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
599
600         return ret;
601 }
602
603 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
604                         unsigned int cmd, unsigned long arg)
605 {
606         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
607         int ret = 0;
608
609         switch (cmd) {
610         case BLKROSET:
611                 ret = rbd_ioctl_set_ro(rbd_dev, arg);
612                 break;
613         default:
614                 ret = -ENOTTY;
615         }
616
617         return ret;
618 }
619
620 #ifdef CONFIG_COMPAT
621 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
622                                 unsigned int cmd, unsigned long arg)
623 {
624         return rbd_ioctl(bdev, mode, cmd, arg);
625 }
626 #endif /* CONFIG_COMPAT */
627
628 static const struct block_device_operations rbd_bd_ops = {
629         .owner                  = THIS_MODULE,
630         .open                   = rbd_open,
631         .release                = rbd_release,
632         .ioctl                  = rbd_ioctl,
633 #ifdef CONFIG_COMPAT
634         .compat_ioctl           = rbd_compat_ioctl,
635 #endif
636 };
637
638 /*
639  * Initialize an rbd client instance.  Success or not, this function
640  * consumes ceph_opts.  Caller holds client_mutex.
641  */
642 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
643 {
644         struct rbd_client *rbdc;
645         int ret = -ENOMEM;
646
647         dout("%s:\n", __func__);
648         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
649         if (!rbdc)
650                 goto out_opt;
651
652         kref_init(&rbdc->kref);
653         INIT_LIST_HEAD(&rbdc->node);
654
655         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
656         if (IS_ERR(rbdc->client))
657                 goto out_rbdc;
658         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
659
660         ret = ceph_open_session(rbdc->client);
661         if (ret < 0)
662                 goto out_client;
663
664         spin_lock(&rbd_client_list_lock);
665         list_add_tail(&rbdc->node, &rbd_client_list);
666         spin_unlock(&rbd_client_list_lock);
667
668         dout("%s: rbdc %p\n", __func__, rbdc);
669
670         return rbdc;
671 out_client:
672         ceph_destroy_client(rbdc->client);
673 out_rbdc:
674         kfree(rbdc);
675 out_opt:
676         if (ceph_opts)
677                 ceph_destroy_options(ceph_opts);
678         dout("%s: error %d\n", __func__, ret);
679
680         return ERR_PTR(ret);
681 }
682
683 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
684 {
685         kref_get(&rbdc->kref);
686
687         return rbdc;
688 }
689
690 /*
691  * Find a ceph client with specific addr and configuration.  If
692  * found, bump its reference count.
693  */
694 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
695 {
696         struct rbd_client *client_node;
697         bool found = false;
698
699         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
700                 return NULL;
701
702         spin_lock(&rbd_client_list_lock);
703         list_for_each_entry(client_node, &rbd_client_list, node) {
704                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
705                         __rbd_get_client(client_node);
706
707                         found = true;
708                         break;
709                 }
710         }
711         spin_unlock(&rbd_client_list_lock);
712
713         return found ? client_node : NULL;
714 }
715
716 /*
717  * mount options
718  */
719 enum {
720         Opt_last_int,
721         /* int args above */
722         Opt_last_string,
723         /* string args above */
724         Opt_read_only,
725         Opt_read_write,
726         /* Boolean args above */
727         Opt_last_bool,
728 };
729
730 static match_table_t rbd_opts_tokens = {
731         /* int args above */
732         /* string args above */
733         {Opt_read_only, "read_only"},
734         {Opt_read_only, "ro"},          /* Alternate spelling */
735         {Opt_read_write, "read_write"},
736         {Opt_read_write, "rw"},         /* Alternate spelling */
737         /* Boolean args above */
738         {-1, NULL}
739 };
740
741 struct rbd_options {
742         bool    read_only;
743 };
744
745 #define RBD_READ_ONLY_DEFAULT   false
746
747 static int parse_rbd_opts_token(char *c, void *private)
748 {
749         struct rbd_options *rbd_opts = private;
750         substring_t argstr[MAX_OPT_ARGS];
751         int token, intval, ret;
752
753         token = match_token(c, rbd_opts_tokens, argstr);
754         if (token < 0)
755                 return -EINVAL;
756
757         if (token < Opt_last_int) {
758                 ret = match_int(&argstr[0], &intval);
759                 if (ret < 0) {
760                         pr_err("bad mount option arg (not int) "
761                                "at '%s'\n", c);
762                         return ret;
763                 }
764                 dout("got int token %d val %d\n", token, intval);
765         } else if (token > Opt_last_int && token < Opt_last_string) {
766                 dout("got string token %d val %s\n", token,
767                      argstr[0].from);
768         } else if (token > Opt_last_string && token < Opt_last_bool) {
769                 dout("got Boolean token %d\n", token);
770         } else {
771                 dout("got token %d\n", token);
772         }
773
774         switch (token) {
775         case Opt_read_only:
776                 rbd_opts->read_only = true;
777                 break;
778         case Opt_read_write:
779                 rbd_opts->read_only = false;
780                 break;
781         default:
782                 rbd_assert(false);
783                 break;
784         }
785         return 0;
786 }
787
788 /*
789  * Get a ceph client with specific addr and configuration, if one does
790  * not exist create it.  Either way, ceph_opts is consumed by this
791  * function.
792  */
793 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
794 {
795         struct rbd_client *rbdc;
796
797         mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
798         rbdc = rbd_client_find(ceph_opts);
799         if (rbdc)       /* using an existing client */
800                 ceph_destroy_options(ceph_opts);
801         else
802                 rbdc = rbd_client_create(ceph_opts);
803         mutex_unlock(&client_mutex);
804
805         return rbdc;
806 }
807
808 /*
809  * Destroy ceph client
810  *
811  * Caller must hold rbd_client_list_lock.
812  */
813 static void rbd_client_release(struct kref *kref)
814 {
815         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
816
817         dout("%s: rbdc %p\n", __func__, rbdc);
818         spin_lock(&rbd_client_list_lock);
819         list_del(&rbdc->node);
820         spin_unlock(&rbd_client_list_lock);
821
822         ceph_destroy_client(rbdc->client);
823         kfree(rbdc);
824 }
825
826 /*
827  * Drop reference to ceph client node. If it's not referenced anymore, release
828  * it.
829  */
830 static void rbd_put_client(struct rbd_client *rbdc)
831 {
832         if (rbdc)
833                 kref_put(&rbdc->kref, rbd_client_release);
834 }
835
836 static bool rbd_image_format_valid(u32 image_format)
837 {
838         return image_format == 1 || image_format == 2;
839 }
840
841 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
842 {
843         size_t size;
844         u32 snap_count;
845
846         /* The header has to start with the magic rbd header text */
847         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
848                 return false;
849
850         /* The bio layer requires at least sector-sized I/O */
851
852         if (ondisk->options.order < SECTOR_SHIFT)
853                 return false;
854
855         /* If we use u64 in a few spots we may be able to loosen this */
856
857         if (ondisk->options.order > 8 * sizeof (int) - 1)
858                 return false;
859
860         /*
861          * The size of a snapshot header has to fit in a size_t, and
862          * that limits the number of snapshots.
863          */
864         snap_count = le32_to_cpu(ondisk->snap_count);
865         size = SIZE_MAX - sizeof (struct ceph_snap_context);
866         if (snap_count > size / sizeof (__le64))
867                 return false;
868
869         /*
870          * Not only that, but the size of the entire the snapshot
871          * header must also be representable in a size_t.
872          */
873         size -= snap_count * sizeof (__le64);
874         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
875                 return false;
876
877         return true;
878 }
879
880 /*
881  * Fill an rbd image header with information from the given format 1
882  * on-disk header.
883  */
884 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
885                                  struct rbd_image_header_ondisk *ondisk)
886 {
887         struct rbd_image_header *header = &rbd_dev->header;
888         bool first_time = header->object_prefix == NULL;
889         struct ceph_snap_context *snapc;
890         char *object_prefix = NULL;
891         char *snap_names = NULL;
892         u64 *snap_sizes = NULL;
893         u32 snap_count;
894         size_t size;
895         int ret = -ENOMEM;
896         u32 i;
897
898         /* Allocate this now to avoid having to handle failure below */
899
900         if (first_time) {
901                 size_t len;
902
903                 len = strnlen(ondisk->object_prefix,
904                                 sizeof (ondisk->object_prefix));
905                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
906                 if (!object_prefix)
907                         return -ENOMEM;
908                 memcpy(object_prefix, ondisk->object_prefix, len);
909                 object_prefix[len] = '\0';
910         }
911
912         /* Allocate the snapshot context and fill it in */
913
914         snap_count = le32_to_cpu(ondisk->snap_count);
915         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
916         if (!snapc)
917                 goto out_err;
918         snapc->seq = le64_to_cpu(ondisk->snap_seq);
919         if (snap_count) {
920                 struct rbd_image_snap_ondisk *snaps;
921                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
922
923                 /* We'll keep a copy of the snapshot names... */
924
925                 if (snap_names_len > (u64)SIZE_MAX)
926                         goto out_2big;
927                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
928                 if (!snap_names)
929                         goto out_err;
930
931                 /* ...as well as the array of their sizes. */
932
933                 size = snap_count * sizeof (*header->snap_sizes);
934                 snap_sizes = kmalloc(size, GFP_KERNEL);
935                 if (!snap_sizes)
936                         goto out_err;
937
938                 /*
939                  * Copy the names, and fill in each snapshot's id
940                  * and size.
941                  *
942                  * Note that rbd_dev_v1_header_info() guarantees the
943                  * ondisk buffer we're working with has
944                  * snap_names_len bytes beyond the end of the
945                  * snapshot id array, this memcpy() is safe.
946                  */
947                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
948                 snaps = ondisk->snaps;
949                 for (i = 0; i < snap_count; i++) {
950                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
951                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
952                 }
953         }
954
955         /* We won't fail any more, fill in the header */
956
957         if (first_time) {
958                 header->object_prefix = object_prefix;
959                 header->obj_order = ondisk->options.order;
960                 header->crypt_type = ondisk->options.crypt_type;
961                 header->comp_type = ondisk->options.comp_type;
962                 /* The rest aren't used for format 1 images */
963                 header->stripe_unit = 0;
964                 header->stripe_count = 0;
965                 header->features = 0;
966         } else {
967                 ceph_put_snap_context(header->snapc);
968                 kfree(header->snap_names);
969                 kfree(header->snap_sizes);
970         }
971
972         /* The remaining fields always get updated (when we refresh) */
973
974         header->image_size = le64_to_cpu(ondisk->image_size);
975         header->snapc = snapc;
976         header->snap_names = snap_names;
977         header->snap_sizes = snap_sizes;
978
979         return 0;
980 out_2big:
981         ret = -EIO;
982 out_err:
983         kfree(snap_sizes);
984         kfree(snap_names);
985         ceph_put_snap_context(snapc);
986         kfree(object_prefix);
987
988         return ret;
989 }
990
991 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
992 {
993         const char *snap_name;
994
995         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
996
997         /* Skip over names until we find the one we are looking for */
998
999         snap_name = rbd_dev->header.snap_names;
1000         while (which--)
1001                 snap_name += strlen(snap_name) + 1;
1002
1003         return kstrdup(snap_name, GFP_KERNEL);
1004 }
1005
1006 /*
1007  * Snapshot id comparison function for use with qsort()/bsearch().
1008  * Note that result is for snapshots in *descending* order.
1009  */
1010 static int snapid_compare_reverse(const void *s1, const void *s2)
1011 {
1012         u64 snap_id1 = *(u64 *)s1;
1013         u64 snap_id2 = *(u64 *)s2;
1014
1015         if (snap_id1 < snap_id2)
1016                 return 1;
1017         return snap_id1 == snap_id2 ? 0 : -1;
1018 }
1019
1020 /*
1021  * Search a snapshot context to see if the given snapshot id is
1022  * present.
1023  *
1024  * Returns the position of the snapshot id in the array if it's found,
1025  * or BAD_SNAP_INDEX otherwise.
1026  *
1027  * Note: The snapshot array is in kept sorted (by the osd) in
1028  * reverse order, highest snapshot id first.
1029  */
1030 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1031 {
1032         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1033         u64 *found;
1034
1035         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1036                                 sizeof (snap_id), snapid_compare_reverse);
1037
1038         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1039 }
1040
1041 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1042                                         u64 snap_id)
1043 {
1044         u32 which;
1045         const char *snap_name;
1046
1047         which = rbd_dev_snap_index(rbd_dev, snap_id);
1048         if (which == BAD_SNAP_INDEX)
1049                 return ERR_PTR(-ENOENT);
1050
1051         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1052         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1053 }
1054
1055 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1056 {
1057         if (snap_id == CEPH_NOSNAP)
1058                 return RBD_SNAP_HEAD_NAME;
1059
1060         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1061         if (rbd_dev->image_format == 1)
1062                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1063
1064         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1065 }
1066
1067 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1068                                 u64 *snap_size)
1069 {
1070         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1071         if (snap_id == CEPH_NOSNAP) {
1072                 *snap_size = rbd_dev->header.image_size;
1073         } else if (rbd_dev->image_format == 1) {
1074                 u32 which;
1075
1076                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1077                 if (which == BAD_SNAP_INDEX)
1078                         return -ENOENT;
1079
1080                 *snap_size = rbd_dev->header.snap_sizes[which];
1081         } else {
1082                 u64 size = 0;
1083                 int ret;
1084
1085                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1086                 if (ret)
1087                         return ret;
1088
1089                 *snap_size = size;
1090         }
1091         return 0;
1092 }
1093
1094 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1095                         u64 *snap_features)
1096 {
1097         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1098         if (snap_id == CEPH_NOSNAP) {
1099                 *snap_features = rbd_dev->header.features;
1100         } else if (rbd_dev->image_format == 1) {
1101                 *snap_features = 0;     /* No features for format 1 */
1102         } else {
1103                 u64 features = 0;
1104                 int ret;
1105
1106                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1107                 if (ret)
1108                         return ret;
1109
1110                 *snap_features = features;
1111         }
1112         return 0;
1113 }
1114
1115 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1116 {
1117         u64 snap_id = rbd_dev->spec->snap_id;
1118         u64 size = 0;
1119         u64 features = 0;
1120         int ret;
1121
1122         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1123         if (ret)
1124                 return ret;
1125         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1126         if (ret)
1127                 return ret;
1128
1129         rbd_dev->mapping.size = size;
1130         rbd_dev->mapping.features = features;
1131
1132         return 0;
1133 }
1134
1135 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1136 {
1137         rbd_dev->mapping.size = 0;
1138         rbd_dev->mapping.features = 0;
1139 }
1140
1141 static void rbd_segment_name_free(const char *name)
1142 {
1143         /* The explicit cast here is needed to drop the const qualifier */
1144
1145         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1146 }
1147
1148 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1149 {
1150         char *name;
1151         u64 segment;
1152         int ret;
1153         char *name_format;
1154
1155         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1156         if (!name)
1157                 return NULL;
1158         segment = offset >> rbd_dev->header.obj_order;
1159         name_format = "%s.%012llx";
1160         if (rbd_dev->image_format == 2)
1161                 name_format = "%s.%016llx";
1162         ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1163                         rbd_dev->header.object_prefix, segment);
1164         if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1165                 pr_err("error formatting segment name for #%llu (%d)\n",
1166                         segment, ret);
1167                 rbd_segment_name_free(name);
1168                 name = NULL;
1169         }
1170
1171         return name;
1172 }
1173
1174 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1175 {
1176         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1177
1178         return offset & (segment_size - 1);
1179 }
1180
1181 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1182                                 u64 offset, u64 length)
1183 {
1184         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1185
1186         offset &= segment_size - 1;
1187
1188         rbd_assert(length <= U64_MAX - offset);
1189         if (offset + length > segment_size)
1190                 length = segment_size - offset;
1191
1192         return length;
1193 }
1194
1195 /*
1196  * returns the size of an object in the image
1197  */
1198 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1199 {
1200         return 1 << header->obj_order;
1201 }
1202
1203 /*
1204  * bio helpers
1205  */
1206
1207 static void bio_chain_put(struct bio *chain)
1208 {
1209         struct bio *tmp;
1210
1211         while (chain) {
1212                 tmp = chain;
1213                 chain = chain->bi_next;
1214                 bio_put(tmp);
1215         }
1216 }
1217
1218 /*
1219  * zeros a bio chain, starting at specific offset
1220  */
1221 static void zero_bio_chain(struct bio *chain, int start_ofs)
1222 {
1223         struct bio_vec bv;
1224         struct bvec_iter iter;
1225         unsigned long flags;
1226         void *buf;
1227         int pos = 0;
1228
1229         while (chain) {
1230                 bio_for_each_segment(bv, chain, iter) {
1231                         if (pos + bv.bv_len > start_ofs) {
1232                                 int remainder = max(start_ofs - pos, 0);
1233                                 buf = bvec_kmap_irq(&bv, &flags);
1234                                 memset(buf + remainder, 0,
1235                                        bv.bv_len - remainder);
1236                                 flush_dcache_page(bv.bv_page);
1237                                 bvec_kunmap_irq(buf, &flags);
1238                         }
1239                         pos += bv.bv_len;
1240                 }
1241
1242                 chain = chain->bi_next;
1243         }
1244 }
1245
1246 /*
1247  * similar to zero_bio_chain(), zeros data defined by a page array,
1248  * starting at the given byte offset from the start of the array and
1249  * continuing up to the given end offset.  The pages array is
1250  * assumed to be big enough to hold all bytes up to the end.
1251  */
1252 static void zero_pages(struct page **pages, u64 offset, u64 end)
1253 {
1254         struct page **page = &pages[offset >> PAGE_SHIFT];
1255
1256         rbd_assert(end > offset);
1257         rbd_assert(end - offset <= (u64)SIZE_MAX);
1258         while (offset < end) {
1259                 size_t page_offset;
1260                 size_t length;
1261                 unsigned long flags;
1262                 void *kaddr;
1263
1264                 page_offset = offset & ~PAGE_MASK;
1265                 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1266                 local_irq_save(flags);
1267                 kaddr = kmap_atomic(*page);
1268                 memset(kaddr + page_offset, 0, length);
1269                 flush_dcache_page(*page);
1270                 kunmap_atomic(kaddr);
1271                 local_irq_restore(flags);
1272
1273                 offset += length;
1274                 page++;
1275         }
1276 }
1277
1278 /*
1279  * Clone a portion of a bio, starting at the given byte offset
1280  * and continuing for the number of bytes indicated.
1281  */
1282 static struct bio *bio_clone_range(struct bio *bio_src,
1283                                         unsigned int offset,
1284                                         unsigned int len,
1285                                         gfp_t gfpmask)
1286 {
1287         struct bio *bio;
1288
1289         bio = bio_clone(bio_src, gfpmask);
1290         if (!bio)
1291                 return NULL;    /* ENOMEM */
1292
1293         bio_advance(bio, offset);
1294         bio->bi_iter.bi_size = len;
1295
1296         return bio;
1297 }
1298
1299 /*
1300  * Clone a portion of a bio chain, starting at the given byte offset
1301  * into the first bio in the source chain and continuing for the
1302  * number of bytes indicated.  The result is another bio chain of
1303  * exactly the given length, or a null pointer on error.
1304  *
1305  * The bio_src and offset parameters are both in-out.  On entry they
1306  * refer to the first source bio and the offset into that bio where
1307  * the start of data to be cloned is located.
1308  *
1309  * On return, bio_src is updated to refer to the bio in the source
1310  * chain that contains first un-cloned byte, and *offset will
1311  * contain the offset of that byte within that bio.
1312  */
1313 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1314                                         unsigned int *offset,
1315                                         unsigned int len,
1316                                         gfp_t gfpmask)
1317 {
1318         struct bio *bi = *bio_src;
1319         unsigned int off = *offset;
1320         struct bio *chain = NULL;
1321         struct bio **end;
1322
1323         /* Build up a chain of clone bios up to the limit */
1324
1325         if (!bi || off >= bi->bi_iter.bi_size || !len)
1326                 return NULL;            /* Nothing to clone */
1327
1328         end = &chain;
1329         while (len) {
1330                 unsigned int bi_size;
1331                 struct bio *bio;
1332
1333                 if (!bi) {
1334                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1335                         goto out_err;   /* EINVAL; ran out of bio's */
1336                 }
1337                 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1338                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1339                 if (!bio)
1340                         goto out_err;   /* ENOMEM */
1341
1342                 *end = bio;
1343                 end = &bio->bi_next;
1344
1345                 off += bi_size;
1346                 if (off == bi->bi_iter.bi_size) {
1347                         bi = bi->bi_next;
1348                         off = 0;
1349                 }
1350                 len -= bi_size;
1351         }
1352         *bio_src = bi;
1353         *offset = off;
1354
1355         return chain;
1356 out_err:
1357         bio_chain_put(chain);
1358
1359         return NULL;
1360 }
1361
1362 /*
1363  * The default/initial value for all object request flags is 0.  For
1364  * each flag, once its value is set to 1 it is never reset to 0
1365  * again.
1366  */
1367 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1368 {
1369         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1370                 struct rbd_device *rbd_dev;
1371
1372                 rbd_dev = obj_request->img_request->rbd_dev;
1373                 rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1374                         obj_request);
1375         }
1376 }
1377
1378 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1379 {
1380         smp_mb();
1381         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1382 }
1383
1384 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1385 {
1386         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1387                 struct rbd_device *rbd_dev = NULL;
1388
1389                 if (obj_request_img_data_test(obj_request))
1390                         rbd_dev = obj_request->img_request->rbd_dev;
1391                 rbd_warn(rbd_dev, "obj_request %p already marked done",
1392                         obj_request);
1393         }
1394 }
1395
1396 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1397 {
1398         smp_mb();
1399         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1400 }
1401
1402 /*
1403  * This sets the KNOWN flag after (possibly) setting the EXISTS
1404  * flag.  The latter is set based on the "exists" value provided.
1405  *
1406  * Note that for our purposes once an object exists it never goes
1407  * away again.  It's possible that the response from two existence
1408  * checks are separated by the creation of the target object, and
1409  * the first ("doesn't exist") response arrives *after* the second
1410  * ("does exist").  In that case we ignore the second one.
1411  */
1412 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1413                                 bool exists)
1414 {
1415         if (exists)
1416                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1417         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1418         smp_mb();
1419 }
1420
1421 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1422 {
1423         smp_mb();
1424         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1425 }
1426
1427 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1428 {
1429         smp_mb();
1430         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1431 }
1432
1433 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1434 {
1435         struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1436
1437         return obj_request->img_offset <
1438             round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1439 }
1440
1441 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1442 {
1443         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1444                 atomic_read(&obj_request->kref.refcount));
1445         kref_get(&obj_request->kref);
1446 }
1447
1448 static void rbd_obj_request_destroy(struct kref *kref);
1449 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1450 {
1451         rbd_assert(obj_request != NULL);
1452         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1453                 atomic_read(&obj_request->kref.refcount));
1454         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1455 }
1456
1457 static void rbd_img_request_get(struct rbd_img_request *img_request)
1458 {
1459         dout("%s: img %p (was %d)\n", __func__, img_request,
1460              atomic_read(&img_request->kref.refcount));
1461         kref_get(&img_request->kref);
1462 }
1463
1464 static bool img_request_child_test(struct rbd_img_request *img_request);
1465 static void rbd_parent_request_destroy(struct kref *kref);
1466 static void rbd_img_request_destroy(struct kref *kref);
1467 static void rbd_img_request_put(struct rbd_img_request *img_request)
1468 {
1469         rbd_assert(img_request != NULL);
1470         dout("%s: img %p (was %d)\n", __func__, img_request,
1471                 atomic_read(&img_request->kref.refcount));
1472         if (img_request_child_test(img_request))
1473                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1474         else
1475                 kref_put(&img_request->kref, rbd_img_request_destroy);
1476 }
1477
1478 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1479                                         struct rbd_obj_request *obj_request)
1480 {
1481         rbd_assert(obj_request->img_request == NULL);
1482
1483         /* Image request now owns object's original reference */
1484         obj_request->img_request = img_request;
1485         obj_request->which = img_request->obj_request_count;
1486         rbd_assert(!obj_request_img_data_test(obj_request));
1487         obj_request_img_data_set(obj_request);
1488         rbd_assert(obj_request->which != BAD_WHICH);
1489         img_request->obj_request_count++;
1490         list_add_tail(&obj_request->links, &img_request->obj_requests);
1491         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1492                 obj_request->which);
1493 }
1494
1495 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1496                                         struct rbd_obj_request *obj_request)
1497 {
1498         rbd_assert(obj_request->which != BAD_WHICH);
1499
1500         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1501                 obj_request->which);
1502         list_del(&obj_request->links);
1503         rbd_assert(img_request->obj_request_count > 0);
1504         img_request->obj_request_count--;
1505         rbd_assert(obj_request->which == img_request->obj_request_count);
1506         obj_request->which = BAD_WHICH;
1507         rbd_assert(obj_request_img_data_test(obj_request));
1508         rbd_assert(obj_request->img_request == img_request);
1509         obj_request->img_request = NULL;
1510         obj_request->callback = NULL;
1511         rbd_obj_request_put(obj_request);
1512 }
1513
1514 static bool obj_request_type_valid(enum obj_request_type type)
1515 {
1516         switch (type) {
1517         case OBJ_REQUEST_NODATA:
1518         case OBJ_REQUEST_BIO:
1519         case OBJ_REQUEST_PAGES:
1520                 return true;
1521         default:
1522                 return false;
1523         }
1524 }
1525
1526 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1527                                 struct rbd_obj_request *obj_request)
1528 {
1529         dout("%s %p\n", __func__, obj_request);
1530         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1531 }
1532
1533 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1534 {
1535         dout("%s %p\n", __func__, obj_request);
1536         ceph_osdc_cancel_request(obj_request->osd_req);
1537 }
1538
1539 /*
1540  * Wait for an object request to complete.  If interrupted, cancel the
1541  * underlying osd request.
1542  */
1543 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1544 {
1545         int ret;
1546
1547         dout("%s %p\n", __func__, obj_request);
1548
1549         ret = wait_for_completion_interruptible(&obj_request->completion);
1550         if (ret < 0) {
1551                 dout("%s %p interrupted\n", __func__, obj_request);
1552                 rbd_obj_request_end(obj_request);
1553                 return ret;
1554         }
1555
1556         dout("%s %p done\n", __func__, obj_request);
1557         return 0;
1558 }
1559
1560 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1561 {
1562
1563         dout("%s: img %p\n", __func__, img_request);
1564
1565         /*
1566          * If no error occurred, compute the aggregate transfer
1567          * count for the image request.  We could instead use
1568          * atomic64_cmpxchg() to update it as each object request
1569          * completes; not clear which way is better off hand.
1570          */
1571         if (!img_request->result) {
1572                 struct rbd_obj_request *obj_request;
1573                 u64 xferred = 0;
1574
1575                 for_each_obj_request(img_request, obj_request)
1576                         xferred += obj_request->xferred;
1577                 img_request->xferred = xferred;
1578         }
1579
1580         if (img_request->callback)
1581                 img_request->callback(img_request);
1582         else
1583                 rbd_img_request_put(img_request);
1584 }
1585
1586 /*
1587  * The default/initial value for all image request flags is 0.  Each
1588  * is conditionally set to 1 at image request initialization time
1589  * and currently never change thereafter.
1590  */
1591 static void img_request_write_set(struct rbd_img_request *img_request)
1592 {
1593         set_bit(IMG_REQ_WRITE, &img_request->flags);
1594         smp_mb();
1595 }
1596
1597 static bool img_request_write_test(struct rbd_img_request *img_request)
1598 {
1599         smp_mb();
1600         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1601 }
1602
1603 static void img_request_child_set(struct rbd_img_request *img_request)
1604 {
1605         set_bit(IMG_REQ_CHILD, &img_request->flags);
1606         smp_mb();
1607 }
1608
1609 static void img_request_child_clear(struct rbd_img_request *img_request)
1610 {
1611         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1612         smp_mb();
1613 }
1614
1615 static bool img_request_child_test(struct rbd_img_request *img_request)
1616 {
1617         smp_mb();
1618         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1619 }
1620
1621 static void img_request_layered_set(struct rbd_img_request *img_request)
1622 {
1623         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1624         smp_mb();
1625 }
1626
1627 static void img_request_layered_clear(struct rbd_img_request *img_request)
1628 {
1629         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1630         smp_mb();
1631 }
1632
1633 static bool img_request_layered_test(struct rbd_img_request *img_request)
1634 {
1635         smp_mb();
1636         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1637 }
1638
1639 static void
1640 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1641 {
1642         u64 xferred = obj_request->xferred;
1643         u64 length = obj_request->length;
1644
1645         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1646                 obj_request, obj_request->img_request, obj_request->result,
1647                 xferred, length);
1648         /*
1649          * ENOENT means a hole in the image.  We zero-fill the entire
1650          * length of the request.  A short read also implies zero-fill
1651          * to the end of the request.  An error requires the whole
1652          * length of the request to be reported finished with an error
1653          * to the block layer.  In each case we update the xferred
1654          * count to indicate the whole request was satisfied.
1655          */
1656         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1657         if (obj_request->result == -ENOENT) {
1658                 if (obj_request->type == OBJ_REQUEST_BIO)
1659                         zero_bio_chain(obj_request->bio_list, 0);
1660                 else
1661                         zero_pages(obj_request->pages, 0, length);
1662                 obj_request->result = 0;
1663         } else if (xferred < length && !obj_request->result) {
1664                 if (obj_request->type == OBJ_REQUEST_BIO)
1665                         zero_bio_chain(obj_request->bio_list, xferred);
1666                 else
1667                         zero_pages(obj_request->pages, xferred, length);
1668         }
1669         obj_request->xferred = length;
1670         obj_request_done_set(obj_request);
1671 }
1672
1673 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1674 {
1675         dout("%s: obj %p cb %p\n", __func__, obj_request,
1676                 obj_request->callback);
1677         if (obj_request->callback)
1678                 obj_request->callback(obj_request);
1679         else
1680                 complete_all(&obj_request->completion);
1681 }
1682
1683 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1684 {
1685         dout("%s: obj %p\n", __func__, obj_request);
1686         obj_request_done_set(obj_request);
1687 }
1688
1689 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1690 {
1691         struct rbd_img_request *img_request = NULL;
1692         struct rbd_device *rbd_dev = NULL;
1693         bool layered = false;
1694
1695         if (obj_request_img_data_test(obj_request)) {
1696                 img_request = obj_request->img_request;
1697                 layered = img_request && img_request_layered_test(img_request);
1698                 rbd_dev = img_request->rbd_dev;
1699         }
1700
1701         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1702                 obj_request, img_request, obj_request->result,
1703                 obj_request->xferred, obj_request->length);
1704         if (layered && obj_request->result == -ENOENT &&
1705                         obj_request->img_offset < rbd_dev->parent_overlap)
1706                 rbd_img_parent_read(obj_request);
1707         else if (img_request)
1708                 rbd_img_obj_request_read_callback(obj_request);
1709         else
1710                 obj_request_done_set(obj_request);
1711 }
1712
1713 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1714 {
1715         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1716                 obj_request->result, obj_request->length);
1717         /*
1718          * There is no such thing as a successful short write.  Set
1719          * it to our originally-requested length.
1720          */
1721         obj_request->xferred = obj_request->length;
1722         obj_request_done_set(obj_request);
1723 }
1724
1725 /*
1726  * For a simple stat call there's nothing to do.  We'll do more if
1727  * this is part of a write sequence for a layered image.
1728  */
1729 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1730 {
1731         dout("%s: obj %p\n", __func__, obj_request);
1732         obj_request_done_set(obj_request);
1733 }
1734
1735 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1736                                 struct ceph_msg *msg)
1737 {
1738         struct rbd_obj_request *obj_request = osd_req->r_priv;
1739         u16 opcode;
1740
1741         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1742         rbd_assert(osd_req == obj_request->osd_req);
1743         if (obj_request_img_data_test(obj_request)) {
1744                 rbd_assert(obj_request->img_request);
1745                 rbd_assert(obj_request->which != BAD_WHICH);
1746         } else {
1747                 rbd_assert(obj_request->which == BAD_WHICH);
1748         }
1749
1750         if (osd_req->r_result < 0)
1751                 obj_request->result = osd_req->r_result;
1752
1753         rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1754
1755         /*
1756          * We support a 64-bit length, but ultimately it has to be
1757          * passed to blk_end_request(), which takes an unsigned int.
1758          */
1759         obj_request->xferred = osd_req->r_reply_op_len[0];
1760         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1761
1762         opcode = osd_req->r_ops[0].op;
1763         switch (opcode) {
1764         case CEPH_OSD_OP_READ:
1765                 rbd_osd_read_callback(obj_request);
1766                 break;
1767         case CEPH_OSD_OP_SETALLOCHINT:
1768                 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1769                 /* fall through */
1770         case CEPH_OSD_OP_WRITE:
1771                 rbd_osd_write_callback(obj_request);
1772                 break;
1773         case CEPH_OSD_OP_STAT:
1774                 rbd_osd_stat_callback(obj_request);
1775                 break;
1776         case CEPH_OSD_OP_CALL:
1777         case CEPH_OSD_OP_NOTIFY_ACK:
1778         case CEPH_OSD_OP_WATCH:
1779                 rbd_osd_trivial_callback(obj_request);
1780                 break;
1781         default:
1782                 rbd_warn(NULL, "%s: unsupported op %hu",
1783                         obj_request->object_name, (unsigned short) opcode);
1784                 break;
1785         }
1786
1787         if (obj_request_done_test(obj_request))
1788                 rbd_obj_request_complete(obj_request);
1789 }
1790
1791 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1792 {
1793         struct rbd_img_request *img_request = obj_request->img_request;
1794         struct ceph_osd_request *osd_req = obj_request->osd_req;
1795         u64 snap_id;
1796
1797         rbd_assert(osd_req != NULL);
1798
1799         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1800         ceph_osdc_build_request(osd_req, obj_request->offset,
1801                         NULL, snap_id, NULL);
1802 }
1803
1804 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1805 {
1806         struct rbd_img_request *img_request = obj_request->img_request;
1807         struct ceph_osd_request *osd_req = obj_request->osd_req;
1808         struct ceph_snap_context *snapc;
1809         struct timespec mtime = CURRENT_TIME;
1810
1811         rbd_assert(osd_req != NULL);
1812
1813         snapc = img_request ? img_request->snapc : NULL;
1814         ceph_osdc_build_request(osd_req, obj_request->offset,
1815                         snapc, CEPH_NOSNAP, &mtime);
1816 }
1817
1818 /*
1819  * Create an osd request.  A read request has one osd op (read).
1820  * A write request has either one (watch) or two (hint+write) osd ops.
1821  * (All rbd data writes are prefixed with an allocation hint op, but
1822  * technically osd watch is a write request, hence this distinction.)
1823  */
1824 static struct ceph_osd_request *rbd_osd_req_create(
1825                                         struct rbd_device *rbd_dev,
1826                                         bool write_request,
1827                                         unsigned int num_ops,
1828                                         struct rbd_obj_request *obj_request)
1829 {
1830         struct ceph_snap_context *snapc = NULL;
1831         struct ceph_osd_client *osdc;
1832         struct ceph_osd_request *osd_req;
1833
1834         if (obj_request_img_data_test(obj_request)) {
1835                 struct rbd_img_request *img_request = obj_request->img_request;
1836
1837                 rbd_assert(write_request ==
1838                                 img_request_write_test(img_request));
1839                 if (write_request)
1840                         snapc = img_request->snapc;
1841         }
1842
1843         rbd_assert(num_ops == 1 || (write_request && num_ops == 2));
1844
1845         /* Allocate and initialize the request, for the num_ops ops */
1846
1847         osdc = &rbd_dev->rbd_client->client->osdc;
1848         osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1849                                           GFP_ATOMIC);
1850         if (!osd_req)
1851                 return NULL;    /* ENOMEM */
1852
1853         if (write_request)
1854                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1855         else
1856                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1857
1858         osd_req->r_callback = rbd_osd_req_callback;
1859         osd_req->r_priv = obj_request;
1860
1861         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1862         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1863
1864         return osd_req;
1865 }
1866
1867 /*
1868  * Create a copyup osd request based on the information in the
1869  * object request supplied.  A copyup request has three osd ops,
1870  * a copyup method call, a hint op, and a write op.
1871  */
1872 static struct ceph_osd_request *
1873 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1874 {
1875         struct rbd_img_request *img_request;
1876         struct ceph_snap_context *snapc;
1877         struct rbd_device *rbd_dev;
1878         struct ceph_osd_client *osdc;
1879         struct ceph_osd_request *osd_req;
1880
1881         rbd_assert(obj_request_img_data_test(obj_request));
1882         img_request = obj_request->img_request;
1883         rbd_assert(img_request);
1884         rbd_assert(img_request_write_test(img_request));
1885
1886         /* Allocate and initialize the request, for the three ops */
1887
1888         snapc = img_request->snapc;
1889         rbd_dev = img_request->rbd_dev;
1890         osdc = &rbd_dev->rbd_client->client->osdc;
1891         osd_req = ceph_osdc_alloc_request(osdc, snapc, 3, false, GFP_ATOMIC);
1892         if (!osd_req)
1893                 return NULL;    /* ENOMEM */
1894
1895         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1896         osd_req->r_callback = rbd_osd_req_callback;
1897         osd_req->r_priv = obj_request;
1898
1899         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1900         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1901
1902         return osd_req;
1903 }
1904
1905
1906 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1907 {
1908         ceph_osdc_put_request(osd_req);
1909 }
1910
1911 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1912
1913 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1914                                                 u64 offset, u64 length,
1915                                                 enum obj_request_type type)
1916 {
1917         struct rbd_obj_request *obj_request;
1918         size_t size;
1919         char *name;
1920
1921         rbd_assert(obj_request_type_valid(type));
1922
1923         size = strlen(object_name) + 1;
1924         name = kmalloc(size, GFP_KERNEL);
1925         if (!name)
1926                 return NULL;
1927
1928         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1929         if (!obj_request) {
1930                 kfree(name);
1931                 return NULL;
1932         }
1933
1934         obj_request->object_name = memcpy(name, object_name, size);
1935         obj_request->offset = offset;
1936         obj_request->length = length;
1937         obj_request->flags = 0;
1938         obj_request->which = BAD_WHICH;
1939         obj_request->type = type;
1940         INIT_LIST_HEAD(&obj_request->links);
1941         init_completion(&obj_request->completion);
1942         kref_init(&obj_request->kref);
1943
1944         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1945                 offset, length, (int)type, obj_request);
1946
1947         return obj_request;
1948 }
1949
1950 static void rbd_obj_request_destroy(struct kref *kref)
1951 {
1952         struct rbd_obj_request *obj_request;
1953
1954         obj_request = container_of(kref, struct rbd_obj_request, kref);
1955
1956         dout("%s: obj %p\n", __func__, obj_request);
1957
1958         rbd_assert(obj_request->img_request == NULL);
1959         rbd_assert(obj_request->which == BAD_WHICH);
1960
1961         if (obj_request->osd_req)
1962                 rbd_osd_req_destroy(obj_request->osd_req);
1963
1964         rbd_assert(obj_request_type_valid(obj_request->type));
1965         switch (obj_request->type) {
1966         case OBJ_REQUEST_NODATA:
1967                 break;          /* Nothing to do */
1968         case OBJ_REQUEST_BIO:
1969                 if (obj_request->bio_list)
1970                         bio_chain_put(obj_request->bio_list);
1971                 break;
1972         case OBJ_REQUEST_PAGES:
1973                 if (obj_request->pages)
1974                         ceph_release_page_vector(obj_request->pages,
1975                                                 obj_request->page_count);
1976                 break;
1977         }
1978
1979         kfree(obj_request->object_name);
1980         obj_request->object_name = NULL;
1981         kmem_cache_free(rbd_obj_request_cache, obj_request);
1982 }
1983
1984 /* It's OK to call this for a device with no parent */
1985
1986 static void rbd_spec_put(struct rbd_spec *spec);
1987 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1988 {
1989         rbd_dev_remove_parent(rbd_dev);
1990         rbd_spec_put(rbd_dev->parent_spec);
1991         rbd_dev->parent_spec = NULL;
1992         rbd_dev->parent_overlap = 0;
1993 }
1994
1995 /*
1996  * Parent image reference counting is used to determine when an
1997  * image's parent fields can be safely torn down--after there are no
1998  * more in-flight requests to the parent image.  When the last
1999  * reference is dropped, cleaning them up is safe.
2000  */
2001 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2002 {
2003         int counter;
2004
2005         if (!rbd_dev->parent_spec)
2006                 return;
2007
2008         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2009         if (counter > 0)
2010                 return;
2011
2012         /* Last reference; clean up parent data structures */
2013
2014         if (!counter)
2015                 rbd_dev_unparent(rbd_dev);
2016         else
2017                 rbd_warn(rbd_dev, "parent reference underflow");
2018 }
2019
2020 /*
2021  * If an image has a non-zero parent overlap, get a reference to its
2022  * parent.
2023  *
2024  * We must get the reference before checking for the overlap to
2025  * coordinate properly with zeroing the parent overlap in
2026  * rbd_dev_v2_parent_info() when an image gets flattened.  We
2027  * drop it again if there is no overlap.
2028  *
2029  * Returns true if the rbd device has a parent with a non-zero
2030  * overlap and a reference for it was successfully taken, or
2031  * false otherwise.
2032  */
2033 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2034 {
2035         int counter;
2036
2037         if (!rbd_dev->parent_spec)
2038                 return false;
2039
2040         counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2041         if (counter > 0 && rbd_dev->parent_overlap)
2042                 return true;
2043
2044         /* Image was flattened, but parent is not yet torn down */
2045
2046         if (counter < 0)
2047                 rbd_warn(rbd_dev, "parent reference overflow");
2048
2049         return false;
2050 }
2051
2052 /*
2053  * Caller is responsible for filling in the list of object requests
2054  * that comprises the image request, and the Linux request pointer
2055  * (if there is one).
2056  */
2057 static struct rbd_img_request *rbd_img_request_create(
2058                                         struct rbd_device *rbd_dev,
2059                                         u64 offset, u64 length,
2060                                         bool write_request)
2061 {
2062         struct rbd_img_request *img_request;
2063
2064         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2065         if (!img_request)
2066                 return NULL;
2067
2068         if (write_request) {
2069                 down_read(&rbd_dev->header_rwsem);
2070                 ceph_get_snap_context(rbd_dev->header.snapc);
2071                 up_read(&rbd_dev->header_rwsem);
2072         }
2073
2074         img_request->rq = NULL;
2075         img_request->rbd_dev = rbd_dev;
2076         img_request->offset = offset;
2077         img_request->length = length;
2078         img_request->flags = 0;
2079         if (write_request) {
2080                 img_request_write_set(img_request);
2081                 img_request->snapc = rbd_dev->header.snapc;
2082         } else {
2083                 img_request->snap_id = rbd_dev->spec->snap_id;
2084         }
2085         if (rbd_dev_parent_get(rbd_dev))
2086                 img_request_layered_set(img_request);
2087         spin_lock_init(&img_request->completion_lock);
2088         img_request->next_completion = 0;
2089         img_request->callback = NULL;
2090         img_request->result = 0;
2091         img_request->obj_request_count = 0;
2092         INIT_LIST_HEAD(&img_request->obj_requests);
2093         kref_init(&img_request->kref);
2094
2095         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2096                 write_request ? "write" : "read", offset, length,
2097                 img_request);
2098
2099         return img_request;
2100 }
2101
2102 static void rbd_img_request_destroy(struct kref *kref)
2103 {
2104         struct rbd_img_request *img_request;
2105         struct rbd_obj_request *obj_request;
2106         struct rbd_obj_request *next_obj_request;
2107
2108         img_request = container_of(kref, struct rbd_img_request, kref);
2109
2110         dout("%s: img %p\n", __func__, img_request);
2111
2112         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2113                 rbd_img_obj_request_del(img_request, obj_request);
2114         rbd_assert(img_request->obj_request_count == 0);
2115
2116         if (img_request_layered_test(img_request)) {
2117                 img_request_layered_clear(img_request);
2118                 rbd_dev_parent_put(img_request->rbd_dev);
2119         }
2120
2121         if (img_request_write_test(img_request))
2122                 ceph_put_snap_context(img_request->snapc);
2123
2124         kmem_cache_free(rbd_img_request_cache, img_request);
2125 }
2126
2127 static struct rbd_img_request *rbd_parent_request_create(
2128                                         struct rbd_obj_request *obj_request,
2129                                         u64 img_offset, u64 length)
2130 {
2131         struct rbd_img_request *parent_request;
2132         struct rbd_device *rbd_dev;
2133
2134         rbd_assert(obj_request->img_request);
2135         rbd_dev = obj_request->img_request->rbd_dev;
2136
2137         parent_request = rbd_img_request_create(rbd_dev->parent,
2138                                                 img_offset, length, false);
2139         if (!parent_request)
2140                 return NULL;
2141
2142         img_request_child_set(parent_request);
2143         rbd_obj_request_get(obj_request);
2144         parent_request->obj_request = obj_request;
2145
2146         return parent_request;
2147 }
2148
2149 static void rbd_parent_request_destroy(struct kref *kref)
2150 {
2151         struct rbd_img_request *parent_request;
2152         struct rbd_obj_request *orig_request;
2153
2154         parent_request = container_of(kref, struct rbd_img_request, kref);
2155         orig_request = parent_request->obj_request;
2156
2157         parent_request->obj_request = NULL;
2158         rbd_obj_request_put(orig_request);
2159         img_request_child_clear(parent_request);
2160
2161         rbd_img_request_destroy(kref);
2162 }
2163
2164 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2165 {
2166         struct rbd_img_request *img_request;
2167         unsigned int xferred;
2168         int result;
2169         bool more;
2170
2171         rbd_assert(obj_request_img_data_test(obj_request));
2172         img_request = obj_request->img_request;
2173
2174         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2175         xferred = (unsigned int)obj_request->xferred;
2176         result = obj_request->result;
2177         if (result) {
2178                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2179
2180                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2181                         img_request_write_test(img_request) ? "write" : "read",
2182                         obj_request->length, obj_request->img_offset,
2183                         obj_request->offset);
2184                 rbd_warn(rbd_dev, "  result %d xferred %x",
2185                         result, xferred);
2186                 if (!img_request->result)
2187                         img_request->result = result;
2188         }
2189
2190         /* Image object requests don't own their page array */
2191
2192         if (obj_request->type == OBJ_REQUEST_PAGES) {
2193                 obj_request->pages = NULL;
2194                 obj_request->page_count = 0;
2195         }
2196
2197         if (img_request_child_test(img_request)) {
2198                 rbd_assert(img_request->obj_request != NULL);
2199                 more = obj_request->which < img_request->obj_request_count - 1;
2200         } else {
2201                 rbd_assert(img_request->rq != NULL);
2202                 more = blk_end_request(img_request->rq, result, xferred);
2203         }
2204
2205         return more;
2206 }
2207
2208 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2209 {
2210         struct rbd_img_request *img_request;
2211         u32 which = obj_request->which;
2212         bool more = true;
2213
2214         rbd_assert(obj_request_img_data_test(obj_request));
2215         img_request = obj_request->img_request;
2216
2217         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2218         rbd_assert(img_request != NULL);
2219         rbd_assert(img_request->obj_request_count > 0);
2220         rbd_assert(which != BAD_WHICH);
2221         rbd_assert(which < img_request->obj_request_count);
2222
2223         spin_lock_irq(&img_request->completion_lock);
2224         if (which != img_request->next_completion)
2225                 goto out;
2226
2227         for_each_obj_request_from(img_request, obj_request) {
2228                 rbd_assert(more);
2229                 rbd_assert(which < img_request->obj_request_count);
2230
2231                 if (!obj_request_done_test(obj_request))
2232                         break;
2233                 more = rbd_img_obj_end_request(obj_request);
2234                 which++;
2235         }
2236
2237         rbd_assert(more ^ (which == img_request->obj_request_count));
2238         img_request->next_completion = which;
2239 out:
2240         spin_unlock_irq(&img_request->completion_lock);
2241         rbd_img_request_put(img_request);
2242
2243         if (!more)
2244                 rbd_img_request_complete(img_request);
2245 }
2246
2247 /*
2248  * Split up an image request into one or more object requests, each
2249  * to a different object.  The "type" parameter indicates whether
2250  * "data_desc" is the pointer to the head of a list of bio
2251  * structures, or the base of a page array.  In either case this
2252  * function assumes data_desc describes memory sufficient to hold
2253  * all data described by the image request.
2254  */
2255 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2256                                         enum obj_request_type type,
2257                                         void *data_desc)
2258 {
2259         struct rbd_device *rbd_dev = img_request->rbd_dev;
2260         struct rbd_obj_request *obj_request = NULL;
2261         struct rbd_obj_request *next_obj_request;
2262         bool write_request = img_request_write_test(img_request);
2263         struct bio *bio_list = NULL;
2264         unsigned int bio_offset = 0;
2265         struct page **pages = NULL;
2266         u64 img_offset;
2267         u64 resid;
2268         u16 opcode;
2269
2270         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2271                 (int)type, data_desc);
2272
2273         opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2274         img_offset = img_request->offset;
2275         resid = img_request->length;
2276         rbd_assert(resid > 0);
2277
2278         if (type == OBJ_REQUEST_BIO) {
2279                 bio_list = data_desc;
2280                 rbd_assert(img_offset ==
2281                            bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2282         } else {
2283                 rbd_assert(type == OBJ_REQUEST_PAGES);
2284                 pages = data_desc;
2285         }
2286
2287         while (resid) {
2288                 struct ceph_osd_request *osd_req;
2289                 const char *object_name;
2290                 u64 offset;
2291                 u64 length;
2292                 unsigned int which = 0;
2293
2294                 object_name = rbd_segment_name(rbd_dev, img_offset);
2295                 if (!object_name)
2296                         goto out_unwind;
2297                 offset = rbd_segment_offset(rbd_dev, img_offset);
2298                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2299                 obj_request = rbd_obj_request_create(object_name,
2300                                                 offset, length, type);
2301                 /* object request has its own copy of the object name */
2302                 rbd_segment_name_free(object_name);
2303                 if (!obj_request)
2304                         goto out_unwind;
2305
2306                 /*
2307                  * set obj_request->img_request before creating the
2308                  * osd_request so that it gets the right snapc
2309                  */
2310                 rbd_img_obj_request_add(img_request, obj_request);
2311
2312                 if (type == OBJ_REQUEST_BIO) {
2313                         unsigned int clone_size;
2314
2315                         rbd_assert(length <= (u64)UINT_MAX);
2316                         clone_size = (unsigned int)length;
2317                         obj_request->bio_list =
2318                                         bio_chain_clone_range(&bio_list,
2319                                                                 &bio_offset,
2320                                                                 clone_size,
2321                                                                 GFP_ATOMIC);
2322                         if (!obj_request->bio_list)
2323                                 goto out_unwind;
2324                 } else {
2325                         unsigned int page_count;
2326
2327                         obj_request->pages = pages;
2328                         page_count = (u32)calc_pages_for(offset, length);
2329                         obj_request->page_count = page_count;
2330                         if ((offset + length) & ~PAGE_MASK)
2331                                 page_count--;   /* more on last page */
2332                         pages += page_count;
2333                 }
2334
2335                 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2336                                              (write_request ? 2 : 1),
2337                                              obj_request);
2338                 if (!osd_req)
2339                         goto out_unwind;
2340                 obj_request->osd_req = osd_req;
2341                 obj_request->callback = rbd_img_obj_callback;
2342                 rbd_img_request_get(img_request);
2343
2344                 if (write_request) {
2345                         osd_req_op_alloc_hint_init(osd_req, which,
2346                                              rbd_obj_bytes(&rbd_dev->header),
2347                                              rbd_obj_bytes(&rbd_dev->header));
2348                         which++;
2349                 }
2350
2351                 osd_req_op_extent_init(osd_req, which, opcode, offset, length,
2352                                        0, 0);
2353                 if (type == OBJ_REQUEST_BIO)
2354                         osd_req_op_extent_osd_data_bio(osd_req, which,
2355                                         obj_request->bio_list, length);
2356                 else
2357                         osd_req_op_extent_osd_data_pages(osd_req, which,
2358                                         obj_request->pages, length,
2359                                         offset & ~PAGE_MASK, false, false);
2360
2361                 if (write_request)
2362                         rbd_osd_req_format_write(obj_request);
2363                 else
2364                         rbd_osd_req_format_read(obj_request);
2365
2366                 obj_request->img_offset = img_offset;
2367
2368                 img_offset += length;
2369                 resid -= length;
2370         }
2371
2372         return 0;
2373
2374 out_unwind:
2375         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2376                 rbd_img_obj_request_del(img_request, obj_request);
2377
2378         return -ENOMEM;
2379 }
2380
2381 static void
2382 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2383 {
2384         struct rbd_img_request *img_request;
2385         struct rbd_device *rbd_dev;
2386         struct page **pages;
2387         u32 page_count;
2388
2389         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2390         rbd_assert(obj_request_img_data_test(obj_request));
2391         img_request = obj_request->img_request;
2392         rbd_assert(img_request);
2393
2394         rbd_dev = img_request->rbd_dev;
2395         rbd_assert(rbd_dev);
2396
2397         pages = obj_request->copyup_pages;
2398         rbd_assert(pages != NULL);
2399         obj_request->copyup_pages = NULL;
2400         page_count = obj_request->copyup_page_count;
2401         rbd_assert(page_count);
2402         obj_request->copyup_page_count = 0;
2403         ceph_release_page_vector(pages, page_count);
2404
2405         /*
2406          * We want the transfer count to reflect the size of the
2407          * original write request.  There is no such thing as a
2408          * successful short write, so if the request was successful
2409          * we can just set it to the originally-requested length.
2410          */
2411         if (!obj_request->result)
2412                 obj_request->xferred = obj_request->length;
2413
2414         /* Finish up with the normal image object callback */
2415
2416         rbd_img_obj_callback(obj_request);
2417 }
2418
2419 static void
2420 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2421 {
2422         struct rbd_obj_request *orig_request;
2423         struct ceph_osd_request *osd_req;
2424         struct ceph_osd_client *osdc;
2425         struct rbd_device *rbd_dev;
2426         struct page **pages;
2427         u32 page_count;
2428         int img_result;
2429         u64 parent_length;
2430         u64 offset;
2431         u64 length;
2432
2433         rbd_assert(img_request_child_test(img_request));
2434
2435         /* First get what we need from the image request */
2436
2437         pages = img_request->copyup_pages;
2438         rbd_assert(pages != NULL);
2439         img_request->copyup_pages = NULL;
2440         page_count = img_request->copyup_page_count;
2441         rbd_assert(page_count);
2442         img_request->copyup_page_count = 0;
2443
2444         orig_request = img_request->obj_request;
2445         rbd_assert(orig_request != NULL);
2446         rbd_assert(obj_request_type_valid(orig_request->type));
2447         img_result = img_request->result;
2448         parent_length = img_request->length;
2449         rbd_assert(parent_length == img_request->xferred);
2450         rbd_img_request_put(img_request);
2451
2452         rbd_assert(orig_request->img_request);
2453         rbd_dev = orig_request->img_request->rbd_dev;
2454         rbd_assert(rbd_dev);
2455
2456         /*
2457          * If the overlap has become 0 (most likely because the
2458          * image has been flattened) we need to free the pages
2459          * and re-submit the original write request.
2460          */
2461         if (!rbd_dev->parent_overlap) {
2462                 struct ceph_osd_client *osdc;
2463
2464                 ceph_release_page_vector(pages, page_count);
2465                 osdc = &rbd_dev->rbd_client->client->osdc;
2466                 img_result = rbd_obj_request_submit(osdc, orig_request);
2467                 if (!img_result)
2468                         return;
2469         }
2470
2471         if (img_result)
2472                 goto out_err;
2473
2474         /*
2475          * The original osd request is of no use to use any more.
2476          * We need a new one that can hold the three ops in a copyup
2477          * request.  Allocate the new copyup osd request for the
2478          * original request, and release the old one.
2479          */
2480         img_result = -ENOMEM;
2481         osd_req = rbd_osd_req_create_copyup(orig_request);
2482         if (!osd_req)
2483                 goto out_err;
2484         rbd_osd_req_destroy(orig_request->osd_req);
2485         orig_request->osd_req = osd_req;
2486         orig_request->copyup_pages = pages;
2487         orig_request->copyup_page_count = page_count;
2488
2489         /* Initialize the copyup op */
2490
2491         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2492         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2493                                                 false, false);
2494
2495         /* Then the hint op */
2496
2497         osd_req_op_alloc_hint_init(osd_req, 1, rbd_obj_bytes(&rbd_dev->header),
2498                                    rbd_obj_bytes(&rbd_dev->header));
2499
2500         /* And the original write request op */
2501
2502         offset = orig_request->offset;
2503         length = orig_request->length;
2504         osd_req_op_extent_init(osd_req, 2, CEPH_OSD_OP_WRITE,
2505                                         offset, length, 0, 0);
2506         if (orig_request->type == OBJ_REQUEST_BIO)
2507                 osd_req_op_extent_osd_data_bio(osd_req, 2,
2508                                         orig_request->bio_list, length);
2509         else
2510                 osd_req_op_extent_osd_data_pages(osd_req, 2,
2511                                         orig_request->pages, length,
2512                                         offset & ~PAGE_MASK, false, false);
2513
2514         rbd_osd_req_format_write(orig_request);
2515
2516         /* All set, send it off. */
2517
2518         orig_request->callback = rbd_img_obj_copyup_callback;
2519         osdc = &rbd_dev->rbd_client->client->osdc;
2520         img_result = rbd_obj_request_submit(osdc, orig_request);
2521         if (!img_result)
2522                 return;
2523 out_err:
2524         /* Record the error code and complete the request */
2525
2526         orig_request->result = img_result;
2527         orig_request->xferred = 0;
2528         obj_request_done_set(orig_request);
2529         rbd_obj_request_complete(orig_request);
2530 }
2531
2532 /*
2533  * Read from the parent image the range of data that covers the
2534  * entire target of the given object request.  This is used for
2535  * satisfying a layered image write request when the target of an
2536  * object request from the image request does not exist.
2537  *
2538  * A page array big enough to hold the returned data is allocated
2539  * and supplied to rbd_img_request_fill() as the "data descriptor."
2540  * When the read completes, this page array will be transferred to
2541  * the original object request for the copyup operation.
2542  *
2543  * If an error occurs, record it as the result of the original
2544  * object request and mark it done so it gets completed.
2545  */
2546 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2547 {
2548         struct rbd_img_request *img_request = NULL;
2549         struct rbd_img_request *parent_request = NULL;
2550         struct rbd_device *rbd_dev;
2551         u64 img_offset;
2552         u64 length;
2553         struct page **pages = NULL;
2554         u32 page_count;
2555         int result;
2556
2557         rbd_assert(obj_request_img_data_test(obj_request));
2558         rbd_assert(obj_request_type_valid(obj_request->type));
2559
2560         img_request = obj_request->img_request;
2561         rbd_assert(img_request != NULL);
2562         rbd_dev = img_request->rbd_dev;
2563         rbd_assert(rbd_dev->parent != NULL);
2564
2565         /*
2566          * Determine the byte range covered by the object in the
2567          * child image to which the original request was to be sent.
2568          */
2569         img_offset = obj_request->img_offset - obj_request->offset;
2570         length = (u64)1 << rbd_dev->header.obj_order;
2571
2572         /*
2573          * There is no defined parent data beyond the parent
2574          * overlap, so limit what we read at that boundary if
2575          * necessary.
2576          */
2577         if (img_offset + length > rbd_dev->parent_overlap) {
2578                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2579                 length = rbd_dev->parent_overlap - img_offset;
2580         }
2581
2582         /*
2583          * Allocate a page array big enough to receive the data read
2584          * from the parent.
2585          */
2586         page_count = (u32)calc_pages_for(0, length);
2587         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2588         if (IS_ERR(pages)) {
2589                 result = PTR_ERR(pages);
2590                 pages = NULL;
2591                 goto out_err;
2592         }
2593
2594         result = -ENOMEM;
2595         parent_request = rbd_parent_request_create(obj_request,
2596                                                 img_offset, length);
2597         if (!parent_request)
2598                 goto out_err;
2599
2600         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2601         if (result)
2602                 goto out_err;
2603         parent_request->copyup_pages = pages;
2604         parent_request->copyup_page_count = page_count;
2605
2606         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2607         result = rbd_img_request_submit(parent_request);
2608         if (!result)
2609                 return 0;
2610
2611         parent_request->copyup_pages = NULL;
2612         parent_request->copyup_page_count = 0;
2613         parent_request->obj_request = NULL;
2614         rbd_obj_request_put(obj_request);
2615 out_err:
2616         if (pages)
2617                 ceph_release_page_vector(pages, page_count);
2618         if (parent_request)
2619                 rbd_img_request_put(parent_request);
2620         obj_request->result = result;
2621         obj_request->xferred = 0;
2622         obj_request_done_set(obj_request);
2623
2624         return result;
2625 }
2626
2627 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2628 {
2629         struct rbd_obj_request *orig_request;
2630         struct rbd_device *rbd_dev;
2631         int result;
2632
2633         rbd_assert(!obj_request_img_data_test(obj_request));
2634
2635         /*
2636          * All we need from the object request is the original
2637          * request and the result of the STAT op.  Grab those, then
2638          * we're done with the request.
2639          */
2640         orig_request = obj_request->obj_request;
2641         obj_request->obj_request = NULL;
2642         rbd_obj_request_put(orig_request);
2643         rbd_assert(orig_request);
2644         rbd_assert(orig_request->img_request);
2645
2646         result = obj_request->result;
2647         obj_request->result = 0;
2648
2649         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2650                 obj_request, orig_request, result,
2651                 obj_request->xferred, obj_request->length);
2652         rbd_obj_request_put(obj_request);
2653
2654         /*
2655          * If the overlap has become 0 (most likely because the
2656          * image has been flattened) we need to free the pages
2657          * and re-submit the original write request.
2658          */
2659         rbd_dev = orig_request->img_request->rbd_dev;
2660         if (!rbd_dev->parent_overlap) {
2661                 struct ceph_osd_client *osdc;
2662
2663                 osdc = &rbd_dev->rbd_client->client->osdc;
2664                 result = rbd_obj_request_submit(osdc, orig_request);
2665                 if (!result)
2666                         return;
2667         }
2668
2669         /*
2670          * Our only purpose here is to determine whether the object
2671          * exists, and we don't want to treat the non-existence as
2672          * an error.  If something else comes back, transfer the
2673          * error to the original request and complete it now.
2674          */
2675         if (!result) {
2676                 obj_request_existence_set(orig_request, true);
2677         } else if (result == -ENOENT) {
2678                 obj_request_existence_set(orig_request, false);
2679         } else if (result) {
2680                 orig_request->result = result;
2681                 goto out;
2682         }
2683
2684         /*
2685          * Resubmit the original request now that we have recorded
2686          * whether the target object exists.
2687          */
2688         orig_request->result = rbd_img_obj_request_submit(orig_request);
2689 out:
2690         if (orig_request->result)
2691                 rbd_obj_request_complete(orig_request);
2692 }
2693
2694 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2695 {
2696         struct rbd_obj_request *stat_request;
2697         struct rbd_device *rbd_dev;
2698         struct ceph_osd_client *osdc;
2699         struct page **pages = NULL;
2700         u32 page_count;
2701         size_t size;
2702         int ret;
2703
2704         /*
2705          * The response data for a STAT call consists of:
2706          *     le64 length;
2707          *     struct {
2708          *         le32 tv_sec;
2709          *         le32 tv_nsec;
2710          *     } mtime;
2711          */
2712         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2713         page_count = (u32)calc_pages_for(0, size);
2714         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2715         if (IS_ERR(pages))
2716                 return PTR_ERR(pages);
2717
2718         ret = -ENOMEM;
2719         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2720                                                         OBJ_REQUEST_PAGES);
2721         if (!stat_request)
2722                 goto out;
2723
2724         rbd_obj_request_get(obj_request);
2725         stat_request->obj_request = obj_request;
2726         stat_request->pages = pages;
2727         stat_request->page_count = page_count;
2728
2729         rbd_assert(obj_request->img_request);
2730         rbd_dev = obj_request->img_request->rbd_dev;
2731         stat_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
2732                                                    stat_request);
2733         if (!stat_request->osd_req)
2734                 goto out;
2735         stat_request->callback = rbd_img_obj_exists_callback;
2736
2737         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2738         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2739                                         false, false);
2740         rbd_osd_req_format_read(stat_request);
2741
2742         osdc = &rbd_dev->rbd_client->client->osdc;
2743         ret = rbd_obj_request_submit(osdc, stat_request);
2744 out:
2745         if (ret)
2746                 rbd_obj_request_put(obj_request);
2747
2748         return ret;
2749 }
2750
2751 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2752 {
2753         struct rbd_img_request *img_request;
2754         struct rbd_device *rbd_dev;
2755         bool known;
2756
2757         rbd_assert(obj_request_img_data_test(obj_request));
2758
2759         img_request = obj_request->img_request;
2760         rbd_assert(img_request);
2761         rbd_dev = img_request->rbd_dev;
2762
2763         /*
2764          * Only writes to layered images need special handling.
2765          * Reads and non-layered writes are simple object requests.
2766          * Layered writes that start beyond the end of the overlap
2767          * with the parent have no parent data, so they too are
2768          * simple object requests.  Finally, if the target object is
2769          * known to already exist, its parent data has already been
2770          * copied, so a write to the object can also be handled as a
2771          * simple object request.
2772          */
2773         if (!img_request_write_test(img_request) ||
2774                 !img_request_layered_test(img_request) ||
2775                 !obj_request_overlaps_parent(obj_request) ||
2776                 ((known = obj_request_known_test(obj_request)) &&
2777                         obj_request_exists_test(obj_request))) {
2778
2779                 struct rbd_device *rbd_dev;
2780                 struct ceph_osd_client *osdc;
2781
2782                 rbd_dev = obj_request->img_request->rbd_dev;
2783                 osdc = &rbd_dev->rbd_client->client->osdc;
2784
2785                 return rbd_obj_request_submit(osdc, obj_request);
2786         }
2787
2788         /*
2789          * It's a layered write.  The target object might exist but
2790          * we may not know that yet.  If we know it doesn't exist,
2791          * start by reading the data for the full target object from
2792          * the parent so we can use it for a copyup to the target.
2793          */
2794         if (known)
2795                 return rbd_img_obj_parent_read_full(obj_request);
2796
2797         /* We don't know whether the target exists.  Go find out. */
2798
2799         return rbd_img_obj_exists_submit(obj_request);
2800 }
2801
2802 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2803 {
2804         struct rbd_obj_request *obj_request;
2805         struct rbd_obj_request *next_obj_request;
2806
2807         dout("%s: img %p\n", __func__, img_request);
2808         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2809                 int ret;
2810
2811                 ret = rbd_img_obj_request_submit(obj_request);
2812                 if (ret)
2813                         return ret;
2814         }
2815
2816         return 0;
2817 }
2818
2819 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2820 {
2821         struct rbd_obj_request *obj_request;
2822         struct rbd_device *rbd_dev;
2823         u64 obj_end;
2824         u64 img_xferred;
2825         int img_result;
2826
2827         rbd_assert(img_request_child_test(img_request));
2828
2829         /* First get what we need from the image request and release it */
2830
2831         obj_request = img_request->obj_request;
2832         img_xferred = img_request->xferred;
2833         img_result = img_request->result;
2834         rbd_img_request_put(img_request);
2835
2836         /*
2837          * If the overlap has become 0 (most likely because the
2838          * image has been flattened) we need to re-submit the
2839          * original request.
2840          */
2841         rbd_assert(obj_request);
2842         rbd_assert(obj_request->img_request);
2843         rbd_dev = obj_request->img_request->rbd_dev;
2844         if (!rbd_dev->parent_overlap) {
2845                 struct ceph_osd_client *osdc;
2846
2847                 osdc = &rbd_dev->rbd_client->client->osdc;
2848                 img_result = rbd_obj_request_submit(osdc, obj_request);
2849                 if (!img_result)
2850                         return;
2851         }
2852
2853         obj_request->result = img_result;
2854         if (obj_request->result)
2855                 goto out;
2856
2857         /*
2858          * We need to zero anything beyond the parent overlap
2859          * boundary.  Since rbd_img_obj_request_read_callback()
2860          * will zero anything beyond the end of a short read, an
2861          * easy way to do this is to pretend the data from the
2862          * parent came up short--ending at the overlap boundary.
2863          */
2864         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2865         obj_end = obj_request->img_offset + obj_request->length;
2866         if (obj_end > rbd_dev->parent_overlap) {
2867                 u64 xferred = 0;
2868
2869                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2870                         xferred = rbd_dev->parent_overlap -
2871                                         obj_request->img_offset;
2872
2873                 obj_request->xferred = min(img_xferred, xferred);
2874         } else {
2875                 obj_request->xferred = img_xferred;
2876         }
2877 out:
2878         rbd_img_obj_request_read_callback(obj_request);
2879         rbd_obj_request_complete(obj_request);
2880 }
2881
2882 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2883 {
2884         struct rbd_img_request *img_request;
2885         int result;
2886
2887         rbd_assert(obj_request_img_data_test(obj_request));
2888         rbd_assert(obj_request->img_request != NULL);
2889         rbd_assert(obj_request->result == (s32) -ENOENT);
2890         rbd_assert(obj_request_type_valid(obj_request->type));
2891
2892         /* rbd_read_finish(obj_request, obj_request->length); */
2893         img_request = rbd_parent_request_create(obj_request,
2894                                                 obj_request->img_offset,
2895                                                 obj_request->length);
2896         result = -ENOMEM;
2897         if (!img_request)
2898                 goto out_err;
2899
2900         if (obj_request->type == OBJ_REQUEST_BIO)
2901                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2902                                                 obj_request->bio_list);
2903         else
2904                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2905                                                 obj_request->pages);
2906         if (result)
2907                 goto out_err;
2908
2909         img_request->callback = rbd_img_parent_read_callback;
2910         result = rbd_img_request_submit(img_request);
2911         if (result)
2912                 goto out_err;
2913
2914         return;
2915 out_err:
2916         if (img_request)
2917                 rbd_img_request_put(img_request);
2918         obj_request->result = result;
2919         obj_request->xferred = 0;
2920         obj_request_done_set(obj_request);
2921 }
2922
2923 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
2924 {
2925         struct rbd_obj_request *obj_request;
2926         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2927         int ret;
2928
2929         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2930                                                         OBJ_REQUEST_NODATA);
2931         if (!obj_request)
2932                 return -ENOMEM;
2933
2934         ret = -ENOMEM;
2935         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
2936                                                   obj_request);
2937         if (!obj_request->osd_req)
2938                 goto out;
2939
2940         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2941                                         notify_id, 0, 0);
2942         rbd_osd_req_format_read(obj_request);
2943
2944         ret = rbd_obj_request_submit(osdc, obj_request);
2945         if (ret)
2946                 goto out;
2947         ret = rbd_obj_request_wait(obj_request);
2948 out:
2949         rbd_obj_request_put(obj_request);
2950
2951         return ret;
2952 }
2953
2954 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2955 {
2956         struct rbd_device *rbd_dev = (struct rbd_device *)data;
2957         int ret;
2958
2959         if (!rbd_dev)
2960                 return;
2961
2962         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2963                 rbd_dev->header_name, (unsigned long long)notify_id,
2964                 (unsigned int)opcode);
2965
2966         /*
2967          * Until adequate refresh error handling is in place, there is
2968          * not much we can do here, except warn.
2969          *
2970          * See http://tracker.ceph.com/issues/5040
2971          */
2972         ret = rbd_dev_refresh(rbd_dev);
2973         if (ret)
2974                 rbd_warn(rbd_dev, "refresh failed: %d", ret);
2975
2976         ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id);
2977         if (ret)
2978                 rbd_warn(rbd_dev, "notify_ack ret %d", ret);
2979 }
2980
2981 /*
2982  * Send a (un)watch request and wait for the ack.  Return a request
2983  * with a ref held on success or error.
2984  */
2985 static struct rbd_obj_request *rbd_obj_watch_request_helper(
2986                                                 struct rbd_device *rbd_dev,
2987                                                 bool watch)
2988 {
2989         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2990         struct rbd_obj_request *obj_request;
2991         int ret;
2992
2993         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2994                                              OBJ_REQUEST_NODATA);
2995         if (!obj_request)
2996                 return ERR_PTR(-ENOMEM);
2997
2998         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, 1,
2999                                                   obj_request);
3000         if (!obj_request->osd_req) {
3001                 ret = -ENOMEM;
3002                 goto out;
3003         }
3004
3005         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3006                               rbd_dev->watch_event->cookie, 0, watch);
3007         rbd_osd_req_format_write(obj_request);
3008
3009         if (watch)
3010                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3011
3012         ret = rbd_obj_request_submit(osdc, obj_request);
3013         if (ret)
3014                 goto out;
3015
3016         ret = rbd_obj_request_wait(obj_request);
3017         if (ret)
3018                 goto out;
3019
3020         ret = obj_request->result;
3021         if (ret) {
3022                 if (watch)
3023                         rbd_obj_request_end(obj_request);
3024                 goto out;
3025         }
3026
3027         return obj_request;
3028
3029 out:
3030         rbd_obj_request_put(obj_request);
3031         return ERR_PTR(ret);
3032 }
3033
3034 /*
3035  * Initiate a watch request, synchronously.
3036  */
3037 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3038 {
3039         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3040         struct rbd_obj_request *obj_request;
3041         int ret;
3042
3043         rbd_assert(!rbd_dev->watch_event);
3044         rbd_assert(!rbd_dev->watch_request);
3045
3046         ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3047                                      &rbd_dev->watch_event);
3048         if (ret < 0)
3049                 return ret;
3050
3051         obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3052         if (IS_ERR(obj_request)) {
3053                 ceph_osdc_cancel_event(rbd_dev->watch_event);
3054                 rbd_dev->watch_event = NULL;
3055                 return PTR_ERR(obj_request);
3056         }
3057
3058         /*
3059          * A watch request is set to linger, so the underlying osd
3060          * request won't go away until we unregister it.  We retain
3061          * a pointer to the object request during that time (in
3062          * rbd_dev->watch_request), so we'll keep a reference to it.
3063          * We'll drop that reference after we've unregistered it in
3064          * rbd_dev_header_unwatch_sync().
3065          */
3066         rbd_dev->watch_request = obj_request;
3067
3068         return 0;
3069 }
3070
3071 /*
3072  * Tear down a watch request, synchronously.
3073  */
3074 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3075 {
3076         struct rbd_obj_request *obj_request;
3077
3078         rbd_assert(rbd_dev->watch_event);
3079         rbd_assert(rbd_dev->watch_request);
3080
3081         rbd_obj_request_end(rbd_dev->watch_request);
3082         rbd_obj_request_put(rbd_dev->watch_request);
3083         rbd_dev->watch_request = NULL;
3084
3085         obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3086         if (!IS_ERR(obj_request))
3087                 rbd_obj_request_put(obj_request);
3088         else
3089                 rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3090                          PTR_ERR(obj_request));
3091
3092         ceph_osdc_cancel_event(rbd_dev->watch_event);
3093         rbd_dev->watch_event = NULL;
3094 }
3095
3096 /*
3097  * Synchronous osd object method call.  Returns the number of bytes
3098  * returned in the outbound buffer, or a negative error code.
3099  */
3100 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3101                              const char *object_name,
3102                              const char *class_name,
3103                              const char *method_name,
3104                              const void *outbound,
3105                              size_t outbound_size,
3106                              void *inbound,
3107                              size_t inbound_size)
3108 {
3109         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3110         struct rbd_obj_request *obj_request;
3111         struct page **pages;
3112         u32 page_count;
3113         int ret;
3114
3115         /*
3116          * Method calls are ultimately read operations.  The result
3117          * should placed into the inbound buffer provided.  They
3118          * also supply outbound data--parameters for the object
3119          * method.  Currently if this is present it will be a
3120          * snapshot id.
3121          */
3122         page_count = (u32)calc_pages_for(0, inbound_size);
3123         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3124         if (IS_ERR(pages))
3125                 return PTR_ERR(pages);
3126
3127         ret = -ENOMEM;
3128         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3129                                                         OBJ_REQUEST_PAGES);
3130         if (!obj_request)
3131                 goto out;
3132
3133         obj_request->pages = pages;
3134         obj_request->page_count = page_count;
3135
3136         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
3137                                                   obj_request);
3138         if (!obj_request->osd_req)
3139                 goto out;
3140
3141         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3142                                         class_name, method_name);
3143         if (outbound_size) {
3144                 struct ceph_pagelist *pagelist;
3145
3146                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3147                 if (!pagelist)
3148                         goto out;
3149
3150                 ceph_pagelist_init(pagelist);
3151                 ceph_pagelist_append(pagelist, outbound, outbound_size);
3152                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3153                                                 pagelist);
3154         }
3155         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3156                                         obj_request->pages, inbound_size,
3157                                         0, false, false);
3158         rbd_osd_req_format_read(obj_request);
3159
3160         ret = rbd_obj_request_submit(osdc, obj_request);
3161         if (ret)
3162                 goto out;
3163         ret = rbd_obj_request_wait(obj_request);
3164         if (ret)
3165                 goto out;
3166
3167         ret = obj_request->result;
3168         if (ret < 0)
3169                 goto out;
3170
3171         rbd_assert(obj_request->xferred < (u64)INT_MAX);
3172         ret = (int)obj_request->xferred;
3173         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3174 out:
3175         if (obj_request)
3176                 rbd_obj_request_put(obj_request);
3177         else
3178                 ceph_release_page_vector(pages, page_count);
3179
3180         return ret;
3181 }
3182
3183 static void rbd_handle_request(struct rbd_device *rbd_dev, struct request *rq)
3184 {
3185         struct rbd_img_request *img_request;
3186         u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3187         u64 length = blk_rq_bytes(rq);
3188         bool wr = rq_data_dir(rq) == WRITE;
3189         int result;
3190
3191         /* Ignore/skip any zero-length requests */
3192
3193         if (!length) {
3194                 dout("%s: zero-length request\n", __func__);
3195                 result = 0;
3196                 goto err_rq;
3197         }
3198
3199         /* Disallow writes to a read-only device */
3200
3201         if (wr) {
3202                 if (rbd_dev->mapping.read_only) {
3203                         result = -EROFS;
3204                         goto err_rq;
3205                 }
3206                 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3207         }
3208
3209         /*
3210          * Quit early if the mapped snapshot no longer exists.  It's
3211          * still possible the snapshot will have disappeared by the
3212          * time our request arrives at the osd, but there's no sense in
3213          * sending it if we already know.
3214          */
3215         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3216                 dout("request for non-existent snapshot");
3217                 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3218                 result = -ENXIO;
3219                 goto err_rq;
3220         }
3221
3222         if (offset && length > U64_MAX - offset + 1) {
3223                 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3224                          length);
3225                 result = -EINVAL;
3226                 goto err_rq;    /* Shouldn't happen */
3227         }
3228
3229         if (offset + length > rbd_dev->mapping.size) {
3230                 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3231                          length, rbd_dev->mapping.size);
3232                 result = -EIO;
3233                 goto err_rq;
3234         }
3235
3236         img_request = rbd_img_request_create(rbd_dev, offset, length, wr);
3237         if (!img_request) {
3238                 result = -ENOMEM;
3239                 goto err_rq;
3240         }
3241         img_request->rq = rq;
3242
3243         result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO, rq->bio);
3244         if (result)
3245                 goto err_img_request;
3246
3247         result = rbd_img_request_submit(img_request);
3248         if (result)
3249                 goto err_img_request;
3250
3251         return;
3252
3253 err_img_request:
3254         rbd_img_request_put(img_request);
3255 err_rq:
3256         if (result)
3257                 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3258                          wr ? "write" : "read", length, offset, result);
3259         blk_end_request_all(rq, result);
3260 }
3261
3262 static void rbd_request_workfn(struct work_struct *work)
3263 {
3264         struct rbd_device *rbd_dev =
3265             container_of(work, struct rbd_device, rq_work);
3266         struct request *rq, *next;
3267         LIST_HEAD(requests);
3268
3269         spin_lock_irq(&rbd_dev->lock); /* rq->q->queue_lock */
3270         list_splice_init(&rbd_dev->rq_queue, &requests);
3271         spin_unlock_irq(&rbd_dev->lock);
3272
3273         list_for_each_entry_safe(rq, next, &requests, queuelist) {
3274                 list_del_init(&rq->queuelist);
3275                 rbd_handle_request(rbd_dev, rq);
3276         }
3277 }
3278
3279 /*
3280  * Called with q->queue_lock held and interrupts disabled, possibly on
3281  * the way to schedule().  Do not sleep here!
3282  */
3283 static void rbd_request_fn(struct request_queue *q)
3284 {
3285         struct rbd_device *rbd_dev = q->queuedata;
3286         struct request *rq;
3287         int queued = 0;
3288
3289         rbd_assert(rbd_dev);
3290
3291         while ((rq = blk_fetch_request(q))) {
3292                 /* Ignore any non-FS requests that filter through. */
3293                 if (rq->cmd_type != REQ_TYPE_FS) {
3294                         dout("%s: non-fs request type %d\n", __func__,
3295                                 (int) rq->cmd_type);
3296                         __blk_end_request_all(rq, 0);
3297                         continue;
3298                 }
3299
3300                 list_add_tail(&rq->queuelist, &rbd_dev->rq_queue);
3301                 queued++;
3302         }
3303
3304         if (queued)
3305                 queue_work(rbd_dev->rq_wq, &rbd_dev->rq_work);
3306 }
3307
3308 /*
3309  * a queue callback. Makes sure that we don't create a bio that spans across
3310  * multiple osd objects. One exception would be with a single page bios,
3311  * which we handle later at bio_chain_clone_range()
3312  */
3313 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3314                           struct bio_vec *bvec)
3315 {
3316         struct rbd_device *rbd_dev = q->queuedata;
3317         sector_t sector_offset;
3318         sector_t sectors_per_obj;
3319         sector_t obj_sector_offset;
3320         int ret;
3321
3322         /*
3323          * Find how far into its rbd object the partition-relative
3324          * bio start sector is to offset relative to the enclosing
3325          * device.
3326          */
3327         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3328         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3329         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3330
3331         /*
3332          * Compute the number of bytes from that offset to the end
3333          * of the object.  Account for what's already used by the bio.
3334          */
3335         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3336         if (ret > bmd->bi_size)
3337                 ret -= bmd->bi_size;
3338         else
3339                 ret = 0;
3340
3341         /*
3342          * Don't send back more than was asked for.  And if the bio
3343          * was empty, let the whole thing through because:  "Note
3344          * that a block device *must* allow a single page to be
3345          * added to an empty bio."
3346          */
3347         rbd_assert(bvec->bv_len <= PAGE_SIZE);
3348         if (ret > (int) bvec->bv_len || !bmd->bi_size)
3349                 ret = (int) bvec->bv_len;
3350
3351         return ret;
3352 }
3353
3354 static void rbd_free_disk(struct rbd_device *rbd_dev)
3355 {
3356         struct gendisk *disk = rbd_dev->disk;
3357
3358         if (!disk)
3359                 return;
3360
3361         rbd_dev->disk = NULL;
3362         if (disk->flags & GENHD_FL_UP) {
3363                 del_gendisk(disk);
3364                 if (disk->queue)
3365                         blk_cleanup_queue(disk->queue);
3366         }
3367         put_disk(disk);
3368 }
3369
3370 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3371                                 const char *object_name,
3372                                 u64 offset, u64 length, void *buf)
3373
3374 {
3375         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3376         struct rbd_obj_request *obj_request;
3377         struct page **pages = NULL;
3378         u32 page_count;
3379         size_t size;
3380         int ret;
3381
3382         page_count = (u32) calc_pages_for(offset, length);
3383         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3384         if (IS_ERR(pages))
3385                 ret = PTR_ERR(pages);
3386
3387         ret = -ENOMEM;
3388         obj_request = rbd_obj_request_create(object_name, offset, length,
3389                                                         OBJ_REQUEST_PAGES);
3390         if (!obj_request)
3391                 goto out;
3392
3393         obj_request->pages = pages;
3394         obj_request->page_count = page_count;
3395
3396         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
3397                                                   obj_request);
3398         if (!obj_request->osd_req)
3399                 goto out;
3400
3401         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3402                                         offset, length, 0, 0);
3403         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3404                                         obj_request->pages,
3405                                         obj_request->length,
3406                                         obj_request->offset & ~PAGE_MASK,
3407                                         false, false);
3408         rbd_osd_req_format_read(obj_request);
3409
3410         ret = rbd_obj_request_submit(osdc, obj_request);
3411         if (ret)
3412                 goto out;
3413         ret = rbd_obj_request_wait(obj_request);
3414         if (ret)
3415                 goto out;
3416
3417         ret = obj_request->result;
3418         if (ret < 0)
3419                 goto out;
3420
3421         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3422         size = (size_t) obj_request->xferred;
3423         ceph_copy_from_page_vector(pages, buf, 0, size);
3424         rbd_assert(size <= (size_t)INT_MAX);
3425         ret = (int)size;
3426 out:
3427         if (obj_request)
3428                 rbd_obj_request_put(obj_request);
3429         else
3430                 ceph_release_page_vector(pages, page_count);
3431
3432         return ret;
3433 }
3434
3435 /*
3436  * Read the complete header for the given rbd device.  On successful
3437  * return, the rbd_dev->header field will contain up-to-date
3438  * information about the image.
3439  */
3440 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3441 {
3442         struct rbd_image_header_ondisk *ondisk = NULL;
3443         u32 snap_count = 0;
3444         u64 names_size = 0;
3445         u32 want_count;
3446         int ret;
3447
3448         /*
3449          * The complete header will include an array of its 64-bit
3450          * snapshot ids, followed by the names of those snapshots as
3451          * a contiguous block of NUL-terminated strings.  Note that
3452          * the number of snapshots could change by the time we read
3453          * it in, in which case we re-read it.
3454          */
3455         do {
3456                 size_t size;
3457
3458                 kfree(ondisk);
3459
3460                 size = sizeof (*ondisk);
3461                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3462                 size += names_size;
3463                 ondisk = kmalloc(size, GFP_KERNEL);
3464                 if (!ondisk)
3465                         return -ENOMEM;
3466
3467                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3468                                        0, size, ondisk);
3469                 if (ret < 0)
3470                         goto out;
3471                 if ((size_t)ret < size) {
3472                         ret = -ENXIO;
3473                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3474                                 size, ret);
3475                         goto out;
3476                 }
3477                 if (!rbd_dev_ondisk_valid(ondisk)) {
3478                         ret = -ENXIO;
3479                         rbd_warn(rbd_dev, "invalid header");
3480                         goto out;
3481                 }
3482
3483                 names_size = le64_to_cpu(ondisk->snap_names_len);
3484                 want_count = snap_count;
3485                 snap_count = le32_to_cpu(ondisk->snap_count);
3486         } while (snap_count != want_count);
3487
3488         ret = rbd_header_from_disk(rbd_dev, ondisk);
3489 out:
3490         kfree(ondisk);
3491
3492         return ret;
3493 }
3494
3495 /*
3496  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3497  * has disappeared from the (just updated) snapshot context.
3498  */
3499 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3500 {
3501         u64 snap_id;
3502
3503         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3504                 return;
3505
3506         snap_id = rbd_dev->spec->snap_id;
3507         if (snap_id == CEPH_NOSNAP)
3508                 return;
3509
3510         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3511                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3512 }
3513
3514 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3515 {
3516         sector_t size;
3517         bool removing;
3518
3519         /*
3520          * Don't hold the lock while doing disk operations,
3521          * or lock ordering will conflict with the bdev mutex via:
3522          * rbd_add() -> blkdev_get() -> rbd_open()
3523          */
3524         spin_lock_irq(&rbd_dev->lock);
3525         removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3526         spin_unlock_irq(&rbd_dev->lock);
3527         /*
3528          * If the device is being removed, rbd_dev->disk has
3529          * been destroyed, so don't try to update its size
3530          */
3531         if (!removing) {
3532                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3533                 dout("setting size to %llu sectors", (unsigned long long)size);
3534                 set_capacity(rbd_dev->disk, size);
3535                 revalidate_disk(rbd_dev->disk);
3536         }
3537 }
3538
3539 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3540 {
3541         u64 mapping_size;
3542         int ret;
3543
3544         down_write(&rbd_dev->header_rwsem);
3545         mapping_size = rbd_dev->mapping.size;
3546
3547         ret = rbd_dev_header_info(rbd_dev);
3548         if (ret)
3549                 return ret;
3550
3551         /*
3552          * If there is a parent, see if it has disappeared due to the
3553          * mapped image getting flattened.
3554          */
3555         if (rbd_dev->parent) {
3556                 ret = rbd_dev_v2_parent_info(rbd_dev);
3557                 if (ret)
3558                         return ret;
3559         }
3560
3561         if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3562                 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
3563                         rbd_dev->mapping.size = rbd_dev->header.image_size;
3564         } else {
3565                 /* validate mapped snapshot's EXISTS flag */
3566                 rbd_exists_validate(rbd_dev);
3567         }
3568
3569         up_write(&rbd_dev->header_rwsem);
3570
3571         if (mapping_size != rbd_dev->mapping.size)
3572                 rbd_dev_update_size(rbd_dev);
3573
3574         return 0;
3575 }
3576
3577 static int rbd_init_disk(struct rbd_device *rbd_dev)
3578 {
3579         struct gendisk *disk;
3580         struct request_queue *q;
3581         u64 segment_size;
3582
3583         /* create gendisk info */
3584         disk = alloc_disk(single_major ?
3585                           (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3586                           RBD_MINORS_PER_MAJOR);
3587         if (!disk)
3588                 return -ENOMEM;
3589
3590         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3591                  rbd_dev->dev_id);
3592         disk->major = rbd_dev->major;
3593         disk->first_minor = rbd_dev->minor;
3594         if (single_major)
3595                 disk->flags |= GENHD_FL_EXT_DEVT;
3596         disk->fops = &rbd_bd_ops;
3597         disk->private_data = rbd_dev;
3598
3599         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3600         if (!q)
3601                 goto out_disk;
3602
3603         /* We use the default size, but let's be explicit about it. */
3604         blk_queue_physical_block_size(q, SECTOR_SIZE);
3605
3606         /* set io sizes to object size */
3607         segment_size = rbd_obj_bytes(&rbd_dev->header);
3608         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3609         blk_queue_max_segment_size(q, segment_size);
3610         blk_queue_io_min(q, segment_size);
3611         blk_queue_io_opt(q, segment_size);
3612
3613         blk_queue_merge_bvec(q, rbd_merge_bvec);
3614         disk->queue = q;
3615
3616         q->queuedata = rbd_dev;
3617
3618         rbd_dev->disk = disk;
3619
3620         return 0;
3621 out_disk:
3622         put_disk(disk);
3623
3624         return -ENOMEM;
3625 }
3626
3627 /*
3628   sysfs
3629 */
3630
3631 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3632 {
3633         return container_of(dev, struct rbd_device, dev);
3634 }
3635
3636 static ssize_t rbd_size_show(struct device *dev,
3637                              struct device_attribute *attr, char *buf)
3638 {
3639         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3640
3641         return sprintf(buf, "%llu\n",
3642                 (unsigned long long)rbd_dev->mapping.size);
3643 }
3644
3645 /*
3646  * Note this shows the features for whatever's mapped, which is not
3647  * necessarily the base image.
3648  */
3649 static ssize_t rbd_features_show(struct device *dev,
3650                              struct device_attribute *attr, char *buf)
3651 {
3652         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3653
3654         return sprintf(buf, "0x%016llx\n",
3655                         (unsigned long long)rbd_dev->mapping.features);
3656 }
3657
3658 static ssize_t rbd_major_show(struct device *dev,
3659                               struct device_attribute *attr, char *buf)
3660 {
3661         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3662
3663         if (rbd_dev->major)
3664                 return sprintf(buf, "%d\n", rbd_dev->major);
3665
3666         return sprintf(buf, "(none)\n");
3667 }
3668
3669 static ssize_t rbd_minor_show(struct device *dev,
3670                               struct device_attribute *attr, char *buf)
3671 {
3672         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3673
3674         return sprintf(buf, "%d\n", rbd_dev->minor);
3675 }
3676
3677 static ssize_t rbd_client_id_show(struct device *dev,
3678                                   struct device_attribute *attr, char *buf)
3679 {
3680         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3681
3682         return sprintf(buf, "client%lld\n",
3683                         ceph_client_id(rbd_dev->rbd_client->client));
3684 }
3685
3686 static ssize_t rbd_pool_show(struct device *dev,
3687                              struct device_attribute *attr, char *buf)
3688 {
3689         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3690
3691         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3692 }
3693
3694 static ssize_t rbd_pool_id_show(struct device *dev,
3695                              struct device_attribute *attr, char *buf)
3696 {
3697         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3698
3699         return sprintf(buf, "%llu\n",
3700                         (unsigned long long) rbd_dev->spec->pool_id);
3701 }
3702
3703 static ssize_t rbd_name_show(struct device *dev,
3704                              struct device_attribute *attr, char *buf)
3705 {
3706         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3707
3708         if (rbd_dev->spec->image_name)
3709                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3710
3711         return sprintf(buf, "(unknown)\n");
3712 }
3713
3714 static ssize_t rbd_image_id_show(struct device *dev,
3715                              struct device_attribute *attr, char *buf)
3716 {
3717         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3718
3719         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3720 }
3721
3722 /*
3723  * Shows the name of the currently-mapped snapshot (or
3724  * RBD_SNAP_HEAD_NAME for the base image).
3725  */
3726 static ssize_t rbd_snap_show(struct device *dev,
3727                              struct device_attribute *attr,
3728                              char *buf)
3729 {
3730         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3731
3732         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3733 }
3734
3735 /*
3736  * For a v2 image, shows the chain of parent images, separated by empty
3737  * lines.  For v1 images or if there is no parent, shows "(no parent
3738  * image)".
3739  */
3740 static ssize_t rbd_parent_show(struct device *dev,
3741                                struct device_attribute *attr,
3742                                char *buf)
3743 {
3744         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3745         ssize_t count = 0;
3746
3747         if (!rbd_dev->parent)
3748                 return sprintf(buf, "(no parent image)\n");
3749
3750         for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3751                 struct rbd_spec *spec = rbd_dev->parent_spec;
3752
3753                 count += sprintf(&buf[count], "%s"
3754                             "pool_id %llu\npool_name %s\n"
3755                             "image_id %s\nimage_name %s\n"
3756                             "snap_id %llu\nsnap_name %s\n"
3757                             "overlap %llu\n",
3758                             !count ? "" : "\n", /* first? */
3759                             spec->pool_id, spec->pool_name,
3760                             spec->image_id, spec->image_name ?: "(unknown)",
3761                             spec->snap_id, spec->snap_name,
3762                             rbd_dev->parent_overlap);
3763         }
3764
3765         return count;
3766 }
3767
3768 static ssize_t rbd_image_refresh(struct device *dev,
3769                                  struct device_attribute *attr,
3770                                  const char *buf,
3771                                  size_t size)
3772 {
3773         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3774         int ret;
3775
3776         ret = rbd_dev_refresh(rbd_dev);
3777         if (ret)
3778                 return ret;
3779
3780         return size;
3781 }
3782
3783 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3784 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3785 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3786 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3787 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3788 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3789 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3790 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3791 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3792 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3793 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3794 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3795
3796 static struct attribute *rbd_attrs[] = {
3797         &dev_attr_size.attr,
3798         &dev_attr_features.attr,
3799         &dev_attr_major.attr,
3800         &dev_attr_minor.attr,
3801         &dev_attr_client_id.attr,
3802         &dev_attr_pool.attr,
3803         &dev_attr_pool_id.attr,
3804         &dev_attr_name.attr,
3805         &dev_attr_image_id.attr,
3806         &dev_attr_current_snap.attr,
3807         &dev_attr_parent.attr,
3808         &dev_attr_refresh.attr,
3809         NULL
3810 };
3811
3812 static struct attribute_group rbd_attr_group = {
3813         .attrs = rbd_attrs,
3814 };
3815
3816 static const struct attribute_group *rbd_attr_groups[] = {
3817         &rbd_attr_group,
3818         NULL
3819 };
3820
3821 static void rbd_sysfs_dev_release(struct device *dev)
3822 {
3823 }
3824
3825 static struct device_type rbd_device_type = {
3826         .name           = "rbd",
3827         .groups         = rbd_attr_groups,
3828         .release        = rbd_sysfs_dev_release,
3829 };
3830
3831 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3832 {
3833         kref_get(&spec->kref);
3834
3835         return spec;
3836 }
3837
3838 static void rbd_spec_free(struct kref *kref);
3839 static void rbd_spec_put(struct rbd_spec *spec)
3840 {
3841         if (spec)
3842                 kref_put(&spec->kref, rbd_spec_free);
3843 }
3844
3845 static struct rbd_spec *rbd_spec_alloc(void)
3846 {
3847         struct rbd_spec *spec;
3848
3849         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3850         if (!spec)
3851                 return NULL;
3852
3853         spec->pool_id = CEPH_NOPOOL;
3854         spec->snap_id = CEPH_NOSNAP;
3855         kref_init(&spec->kref);
3856
3857         return spec;
3858 }
3859
3860 static void rbd_spec_free(struct kref *kref)
3861 {
3862         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3863
3864         kfree(spec->pool_name);
3865         kfree(spec->image_id);
3866         kfree(spec->image_name);
3867         kfree(spec->snap_name);
3868         kfree(spec);
3869 }
3870
3871 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3872                                 struct rbd_spec *spec)
3873 {
3874         struct rbd_device *rbd_dev;
3875
3876         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3877         if (!rbd_dev)
3878                 return NULL;
3879
3880         spin_lock_init(&rbd_dev->lock);
3881         INIT_LIST_HEAD(&rbd_dev->rq_queue);
3882         INIT_WORK(&rbd_dev->rq_work, rbd_request_workfn);
3883         rbd_dev->flags = 0;
3884         atomic_set(&rbd_dev->parent_ref, 0);
3885         INIT_LIST_HEAD(&rbd_dev->node);
3886         init_rwsem(&rbd_dev->header_rwsem);
3887
3888         rbd_dev->spec = spec;
3889         rbd_dev->rbd_client = rbdc;
3890
3891         /* Initialize the layout used for all rbd requests */
3892
3893         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3894         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3895         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3896         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3897
3898         return rbd_dev;
3899 }
3900
3901 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3902 {
3903         rbd_put_client(rbd_dev->rbd_client);
3904         rbd_spec_put(rbd_dev->spec);
3905         kfree(rbd_dev);
3906 }
3907
3908 /*
3909  * Get the size and object order for an image snapshot, or if
3910  * snap_id is CEPH_NOSNAP, gets this information for the base
3911  * image.
3912  */
3913 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3914                                 u8 *order, u64 *snap_size)
3915 {
3916         __le64 snapid = cpu_to_le64(snap_id);
3917         int ret;
3918         struct {
3919                 u8 order;
3920                 __le64 size;
3921         } __attribute__ ((packed)) size_buf = { 0 };
3922
3923         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3924                                 "rbd", "get_size",
3925                                 &snapid, sizeof (snapid),
3926                                 &size_buf, sizeof (size_buf));
3927         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3928         if (ret < 0)
3929                 return ret;
3930         if (ret < sizeof (size_buf))
3931                 return -ERANGE;
3932
3933         if (order) {
3934                 *order = size_buf.order;
3935                 dout("  order %u", (unsigned int)*order);
3936         }
3937         *snap_size = le64_to_cpu(size_buf.size);
3938
3939         dout("  snap_id 0x%016llx snap_size = %llu\n",
3940                 (unsigned long long)snap_id,
3941                 (unsigned long long)*snap_size);
3942
3943         return 0;
3944 }
3945
3946 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3947 {
3948         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3949                                         &rbd_dev->header.obj_order,
3950                                         &rbd_dev->header.image_size);
3951 }
3952
3953 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3954 {
3955         void *reply_buf;
3956         int ret;
3957         void *p;
3958
3959         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3960         if (!reply_buf)
3961                 return -ENOMEM;
3962
3963         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3964                                 "rbd", "get_object_prefix", NULL, 0,
3965                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3966         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3967         if (ret < 0)
3968                 goto out;
3969
3970         p = reply_buf;
3971         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3972                                                 p + ret, NULL, GFP_NOIO);
3973         ret = 0;
3974
3975         if (IS_ERR(rbd_dev->header.object_prefix)) {
3976                 ret = PTR_ERR(rbd_dev->header.object_prefix);
3977                 rbd_dev->header.object_prefix = NULL;
3978         } else {
3979                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3980         }
3981 out:
3982         kfree(reply_buf);
3983
3984         return ret;
3985 }
3986
3987 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3988                 u64 *snap_features)
3989 {
3990         __le64 snapid = cpu_to_le64(snap_id);
3991         struct {
3992                 __le64 features;
3993                 __le64 incompat;
3994         } __attribute__ ((packed)) features_buf = { 0 };
3995         u64 incompat;
3996         int ret;
3997
3998         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3999                                 "rbd", "get_features",
4000                                 &snapid, sizeof (snapid),
4001                                 &features_buf, sizeof (features_buf));
4002         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4003         if (ret < 0)
4004                 return ret;
4005         if (ret < sizeof (features_buf))
4006                 return -ERANGE;
4007
4008         incompat = le64_to_cpu(features_buf.incompat);
4009         if (incompat & ~RBD_FEATURES_SUPPORTED)
4010                 return -ENXIO;
4011
4012         *snap_features = le64_to_cpu(features_buf.features);
4013
4014         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4015                 (unsigned long long)snap_id,
4016                 (unsigned long long)*snap_features,
4017                 (unsigned long long)le64_to_cpu(features_buf.incompat));
4018
4019         return 0;
4020 }
4021
4022 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4023 {
4024         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4025                                                 &rbd_dev->header.features);
4026 }
4027
4028 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4029 {
4030         struct rbd_spec *parent_spec;
4031         size_t size;
4032         void *reply_buf = NULL;
4033         __le64 snapid;
4034         void *p;
4035         void *end;
4036         u64 pool_id;
4037         char *image_id;
4038         u64 snap_id;
4039         u64 overlap;
4040         int ret;
4041
4042         parent_spec = rbd_spec_alloc();
4043         if (!parent_spec)
4044                 return -ENOMEM;
4045
4046         size = sizeof (__le64) +                                /* pool_id */
4047                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
4048                 sizeof (__le64) +                               /* snap_id */
4049                 sizeof (__le64);                                /* overlap */
4050         reply_buf = kmalloc(size, GFP_KERNEL);
4051         if (!reply_buf) {
4052                 ret = -ENOMEM;
4053                 goto out_err;
4054         }
4055
4056         snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4057         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4058                                 "rbd", "get_parent",
4059                                 &snapid, sizeof (snapid),
4060                                 reply_buf, size);
4061         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4062         if (ret < 0)
4063                 goto out_err;
4064
4065         p = reply_buf;
4066         end = reply_buf + ret;
4067         ret = -ERANGE;
4068         ceph_decode_64_safe(&p, end, pool_id, out_err);
4069         if (pool_id == CEPH_NOPOOL) {
4070                 /*
4071                  * Either the parent never existed, or we have
4072                  * record of it but the image got flattened so it no
4073                  * longer has a parent.  When the parent of a
4074                  * layered image disappears we immediately set the
4075                  * overlap to 0.  The effect of this is that all new
4076                  * requests will be treated as if the image had no
4077                  * parent.
4078                  */
4079                 if (rbd_dev->parent_overlap) {
4080                         rbd_dev->parent_overlap = 0;
4081                         smp_mb();
4082                         rbd_dev_parent_put(rbd_dev);
4083                         pr_info("%s: clone image has been flattened\n",
4084                                 rbd_dev->disk->disk_name);
4085                 }
4086
4087                 goto out;       /* No parent?  No problem. */
4088         }
4089
4090         /* The ceph file layout needs to fit pool id in 32 bits */
4091
4092         ret = -EIO;
4093         if (pool_id > (u64)U32_MAX) {
4094                 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4095                         (unsigned long long)pool_id, U32_MAX);
4096                 goto out_err;
4097         }
4098
4099         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4100         if (IS_ERR(image_id)) {
4101                 ret = PTR_ERR(image_id);
4102                 goto out_err;
4103         }
4104         ceph_decode_64_safe(&p, end, snap_id, out_err);
4105         ceph_decode_64_safe(&p, end, overlap, out_err);
4106
4107         /*
4108          * The parent won't change (except when the clone is
4109          * flattened, already handled that).  So we only need to
4110          * record the parent spec we have not already done so.
4111          */
4112         if (!rbd_dev->parent_spec) {
4113                 parent_spec->pool_id = pool_id;
4114                 parent_spec->image_id = image_id;
4115                 parent_spec->snap_id = snap_id;
4116                 rbd_dev->parent_spec = parent_spec;
4117                 parent_spec = NULL;     /* rbd_dev now owns this */
4118         } else {
4119                 kfree(image_id);
4120         }
4121
4122         /*
4123          * We always update the parent overlap.  If it's zero we
4124          * treat it specially.
4125          */
4126         rbd_dev->parent_overlap = overlap;
4127         smp_mb();
4128         if (!overlap) {
4129
4130                 /* A null parent_spec indicates it's the initial probe */
4131
4132                 if (parent_spec) {
4133                         /*
4134                          * The overlap has become zero, so the clone
4135                          * must have been resized down to 0 at some
4136                          * point.  Treat this the same as a flatten.
4137                          */
4138                         rbd_dev_parent_put(rbd_dev);
4139                         pr_info("%s: clone image now standalone\n",
4140                                 rbd_dev->disk->disk_name);
4141                 } else {
4142                         /*
4143                          * For the initial probe, if we find the
4144                          * overlap is zero we just pretend there was
4145                          * no parent image.
4146                          */
4147                         rbd_warn(rbd_dev, "ignoring parent with overlap 0");
4148                 }
4149         }
4150 out:
4151         ret = 0;
4152 out_err:
4153         kfree(reply_buf);
4154         rbd_spec_put(parent_spec);
4155
4156         return ret;
4157 }
4158
4159 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4160 {
4161         struct {
4162                 __le64 stripe_unit;
4163                 __le64 stripe_count;
4164         } __attribute__ ((packed)) striping_info_buf = { 0 };
4165         size_t size = sizeof (striping_info_buf);
4166         void *p;
4167         u64 obj_size;
4168         u64 stripe_unit;
4169         u64 stripe_count;
4170         int ret;
4171
4172         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4173                                 "rbd", "get_stripe_unit_count", NULL, 0,
4174                                 (char *)&striping_info_buf, size);
4175         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4176         if (ret < 0)
4177                 return ret;
4178         if (ret < size)
4179                 return -ERANGE;
4180
4181         /*
4182          * We don't actually support the "fancy striping" feature
4183          * (STRIPINGV2) yet, but if the striping sizes are the
4184          * defaults the behavior is the same as before.  So find
4185          * out, and only fail if the image has non-default values.
4186          */
4187         ret = -EINVAL;
4188         obj_size = (u64)1 << rbd_dev->header.obj_order;
4189         p = &striping_info_buf;
4190         stripe_unit = ceph_decode_64(&p);
4191         if (stripe_unit != obj_size) {
4192                 rbd_warn(rbd_dev, "unsupported stripe unit "
4193                                 "(got %llu want %llu)",
4194                                 stripe_unit, obj_size);
4195                 return -EINVAL;
4196         }
4197         stripe_count = ceph_decode_64(&p);
4198         if (stripe_count != 1) {
4199                 rbd_warn(rbd_dev, "unsupported stripe count "
4200                                 "(got %llu want 1)", stripe_count);
4201                 return -EINVAL;
4202         }
4203         rbd_dev->header.stripe_unit = stripe_unit;
4204         rbd_dev->header.stripe_count = stripe_count;
4205
4206         return 0;
4207 }
4208
4209 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4210 {
4211         size_t image_id_size;
4212         char *image_id;
4213         void *p;
4214         void *end;
4215         size_t size;
4216         void *reply_buf = NULL;
4217         size_t len = 0;
4218         char *image_name = NULL;
4219         int ret;
4220
4221         rbd_assert(!rbd_dev->spec->image_name);
4222
4223         len = strlen(rbd_dev->spec->image_id);
4224         image_id_size = sizeof (__le32) + len;
4225         image_id = kmalloc(image_id_size, GFP_KERNEL);
4226         if (!image_id)
4227                 return NULL;
4228
4229         p = image_id;
4230         end = image_id + image_id_size;
4231         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4232
4233         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4234         reply_buf = kmalloc(size, GFP_KERNEL);
4235         if (!reply_buf)
4236                 goto out;
4237
4238         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4239                                 "rbd", "dir_get_name",
4240                                 image_id, image_id_size,
4241                                 reply_buf, size);
4242         if (ret < 0)
4243                 goto out;
4244         p = reply_buf;
4245         end = reply_buf + ret;
4246
4247         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4248         if (IS_ERR(image_name))
4249                 image_name = NULL;
4250         else
4251                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4252 out:
4253         kfree(reply_buf);
4254         kfree(image_id);
4255
4256         return image_name;
4257 }
4258
4259 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4260 {
4261         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4262         const char *snap_name;
4263         u32 which = 0;
4264
4265         /* Skip over names until we find the one we are looking for */
4266
4267         snap_name = rbd_dev->header.snap_names;
4268         while (which < snapc->num_snaps) {
4269                 if (!strcmp(name, snap_name))
4270                         return snapc->snaps[which];
4271                 snap_name += strlen(snap_name) + 1;
4272                 which++;
4273         }
4274         return CEPH_NOSNAP;
4275 }
4276
4277 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4278 {
4279         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4280         u32 which;
4281         bool found = false;
4282         u64 snap_id;
4283
4284         for (which = 0; !found && which < snapc->num_snaps; which++) {
4285                 const char *snap_name;
4286
4287                 snap_id = snapc->snaps[which];
4288                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4289                 if (IS_ERR(snap_name)) {
4290                         /* ignore no-longer existing snapshots */
4291                         if (PTR_ERR(snap_name) == -ENOENT)
4292                                 continue;
4293                         else
4294                                 break;
4295                 }
4296                 found = !strcmp(name, snap_name);
4297                 kfree(snap_name);
4298         }
4299         return found ? snap_id : CEPH_NOSNAP;
4300 }
4301
4302 /*
4303  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4304  * no snapshot by that name is found, or if an error occurs.
4305  */
4306 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4307 {
4308         if (rbd_dev->image_format == 1)
4309                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4310
4311         return rbd_v2_snap_id_by_name(rbd_dev, name);
4312 }
4313
4314 /*
4315  * An image being mapped will have everything but the snap id.
4316  */
4317 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4318 {
4319         struct rbd_spec *spec = rbd_dev->spec;
4320
4321         rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4322         rbd_assert(spec->image_id && spec->image_name);
4323         rbd_assert(spec->snap_name);
4324
4325         if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4326                 u64 snap_id;
4327
4328                 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4329                 if (snap_id == CEPH_NOSNAP)
4330                         return -ENOENT;
4331
4332                 spec->snap_id = snap_id;
4333         } else {
4334                 spec->snap_id = CEPH_NOSNAP;
4335         }
4336
4337         return 0;
4338 }
4339
4340 /*
4341  * A parent image will have all ids but none of the names.
4342  *
4343  * All names in an rbd spec are dynamically allocated.  It's OK if we
4344  * can't figure out the name for an image id.
4345  */
4346 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4347 {
4348         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4349         struct rbd_spec *spec = rbd_dev->spec;
4350         const char *pool_name;
4351         const char *image_name;
4352         const char *snap_name;
4353         int ret;
4354
4355         rbd_assert(spec->pool_id != CEPH_NOPOOL);
4356         rbd_assert(spec->image_id);
4357         rbd_assert(spec->snap_id != CEPH_NOSNAP);
4358
4359         /* Get the pool name; we have to make our own copy of this */
4360
4361         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4362         if (!pool_name) {
4363                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4364                 return -EIO;
4365         }
4366         pool_name = kstrdup(pool_name, GFP_KERNEL);
4367         if (!pool_name)
4368                 return -ENOMEM;
4369
4370         /* Fetch the image name; tolerate failure here */
4371
4372         image_name = rbd_dev_image_name(rbd_dev);
4373         if (!image_name)
4374                 rbd_warn(rbd_dev, "unable to get image name");
4375
4376         /* Fetch the snapshot name */
4377
4378         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4379         if (IS_ERR(snap_name)) {
4380                 ret = PTR_ERR(snap_name);
4381                 goto out_err;
4382         }
4383
4384         spec->pool_name = pool_name;
4385         spec->image_name = image_name;
4386         spec->snap_name = snap_name;
4387
4388         return 0;
4389
4390 out_err:
4391         kfree(image_name);
4392         kfree(pool_name);
4393         return ret;
4394 }
4395
4396 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4397 {
4398         size_t size;
4399         int ret;
4400         void *reply_buf;
4401         void *p;
4402         void *end;
4403         u64 seq;
4404         u32 snap_count;
4405         struct ceph_snap_context *snapc;
4406         u32 i;
4407
4408         /*
4409          * We'll need room for the seq value (maximum snapshot id),
4410          * snapshot count, and array of that many snapshot ids.
4411          * For now we have a fixed upper limit on the number we're
4412          * prepared to receive.
4413          */
4414         size = sizeof (__le64) + sizeof (__le32) +
4415                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4416         reply_buf = kzalloc(size, GFP_KERNEL);
4417         if (!reply_buf)
4418                 return -ENOMEM;
4419
4420         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4421                                 "rbd", "get_snapcontext", NULL, 0,
4422                                 reply_buf, size);
4423         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4424         if (ret < 0)
4425                 goto out;
4426
4427         p = reply_buf;
4428         end = reply_buf + ret;
4429         ret = -ERANGE;
4430         ceph_decode_64_safe(&p, end, seq, out);
4431         ceph_decode_32_safe(&p, end, snap_count, out);
4432
4433         /*
4434          * Make sure the reported number of snapshot ids wouldn't go
4435          * beyond the end of our buffer.  But before checking that,
4436          * make sure the computed size of the snapshot context we
4437          * allocate is representable in a size_t.
4438          */
4439         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4440                                  / sizeof (u64)) {
4441                 ret = -EINVAL;
4442                 goto out;
4443         }
4444         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4445                 goto out;
4446         ret = 0;
4447
4448         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4449         if (!snapc) {
4450                 ret = -ENOMEM;
4451                 goto out;
4452         }
4453         snapc->seq = seq;
4454         for (i = 0; i < snap_count; i++)
4455                 snapc->snaps[i] = ceph_decode_64(&p);
4456
4457         ceph_put_snap_context(rbd_dev->header.snapc);
4458         rbd_dev->header.snapc = snapc;
4459
4460         dout("  snap context seq = %llu, snap_count = %u\n",
4461                 (unsigned long long)seq, (unsigned int)snap_count);
4462 out:
4463         kfree(reply_buf);
4464
4465         return ret;
4466 }
4467
4468 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4469                                         u64 snap_id)
4470 {
4471         size_t size;
4472         void *reply_buf;
4473         __le64 snapid;
4474         int ret;
4475         void *p;
4476         void *end;
4477         char *snap_name;
4478
4479         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4480         reply_buf = kmalloc(size, GFP_KERNEL);
4481         if (!reply_buf)
4482                 return ERR_PTR(-ENOMEM);
4483
4484         snapid = cpu_to_le64(snap_id);
4485         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4486                                 "rbd", "get_snapshot_name",
4487                                 &snapid, sizeof (snapid),
4488                                 reply_buf, size);
4489         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4490         if (ret < 0) {
4491                 snap_name = ERR_PTR(ret);
4492                 goto out;
4493         }
4494
4495         p = reply_buf;
4496         end = reply_buf + ret;
4497         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4498         if (IS_ERR(snap_name))
4499                 goto out;
4500
4501         dout("  snap_id 0x%016llx snap_name = %s\n",
4502                 (unsigned long long)snap_id, snap_name);
4503 out:
4504         kfree(reply_buf);
4505
4506         return snap_name;
4507 }
4508
4509 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4510 {
4511         bool first_time = rbd_dev->header.object_prefix == NULL;
4512         int ret;
4513
4514         ret = rbd_dev_v2_image_size(rbd_dev);
4515         if (ret)
4516                 return ret;
4517
4518         if (first_time) {
4519                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4520                 if (ret)
4521                         return ret;
4522         }
4523
4524         ret = rbd_dev_v2_snap_context(rbd_dev);
4525         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4526
4527         return ret;
4528 }
4529
4530 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4531 {
4532         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4533
4534         if (rbd_dev->image_format == 1)
4535                 return rbd_dev_v1_header_info(rbd_dev);
4536
4537         return rbd_dev_v2_header_info(rbd_dev);
4538 }
4539
4540 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4541 {
4542         struct device *dev;
4543         int ret;
4544
4545         dev = &rbd_dev->dev;
4546         dev->bus = &rbd_bus_type;
4547         dev->type = &rbd_device_type;
4548         dev->parent = &rbd_root_dev;
4549         dev->release = rbd_dev_device_release;
4550         dev_set_name(dev, "%d", rbd_dev->dev_id);
4551         ret = device_register(dev);
4552
4553         return ret;
4554 }
4555
4556 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4557 {
4558         device_unregister(&rbd_dev->dev);
4559 }
4560
4561 /*
4562  * Get a unique rbd identifier for the given new rbd_dev, and add
4563  * the rbd_dev to the global list.
4564  */
4565 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4566 {
4567         int new_dev_id;
4568
4569         new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4570                                     0, minor_to_rbd_dev_id(1 << MINORBITS),
4571                                     GFP_KERNEL);
4572         if (new_dev_id < 0)
4573                 return new_dev_id;
4574
4575         rbd_dev->dev_id = new_dev_id;
4576
4577         spin_lock(&rbd_dev_list_lock);
4578         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4579         spin_unlock(&rbd_dev_list_lock);
4580
4581         dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4582
4583         return 0;
4584 }
4585
4586 /*
4587  * Remove an rbd_dev from the global list, and record that its
4588  * identifier is no longer in use.
4589  */
4590 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4591 {
4592         spin_lock(&rbd_dev_list_lock);
4593         list_del_init(&rbd_dev->node);
4594         spin_unlock(&rbd_dev_list_lock);
4595
4596         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4597
4598         dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4599 }
4600
4601 /*
4602  * Skips over white space at *buf, and updates *buf to point to the
4603  * first found non-space character (if any). Returns the length of
4604  * the token (string of non-white space characters) found.  Note
4605  * that *buf must be terminated with '\0'.
4606  */
4607 static inline size_t next_token(const char **buf)
4608 {
4609         /*
4610         * These are the characters that produce nonzero for
4611         * isspace() in the "C" and "POSIX" locales.
4612         */
4613         const char *spaces = " \f\n\r\t\v";
4614
4615         *buf += strspn(*buf, spaces);   /* Find start of token */
4616
4617         return strcspn(*buf, spaces);   /* Return token length */
4618 }
4619
4620 /*
4621  * Finds the next token in *buf, and if the provided token buffer is
4622  * big enough, copies the found token into it.  The result, if
4623  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4624  * must be terminated with '\0' on entry.
4625  *
4626  * Returns the length of the token found (not including the '\0').
4627  * Return value will be 0 if no token is found, and it will be >=
4628  * token_size if the token would not fit.
4629  *
4630  * The *buf pointer will be updated to point beyond the end of the
4631  * found token.  Note that this occurs even if the token buffer is
4632  * too small to hold it.
4633  */
4634 static inline size_t copy_token(const char **buf,
4635                                 char *token,
4636                                 size_t token_size)
4637 {
4638         size_t len;
4639
4640         len = next_token(buf);
4641         if (len < token_size) {
4642                 memcpy(token, *buf, len);
4643                 *(token + len) = '\0';
4644         }
4645         *buf += len;
4646
4647         return len;
4648 }
4649
4650 /*
4651  * Finds the next token in *buf, dynamically allocates a buffer big
4652  * enough to hold a copy of it, and copies the token into the new
4653  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4654  * that a duplicate buffer is created even for a zero-length token.
4655  *
4656  * Returns a pointer to the newly-allocated duplicate, or a null
4657  * pointer if memory for the duplicate was not available.  If
4658  * the lenp argument is a non-null pointer, the length of the token
4659  * (not including the '\0') is returned in *lenp.
4660  *
4661  * If successful, the *buf pointer will be updated to point beyond
4662  * the end of the found token.
4663  *
4664  * Note: uses GFP_KERNEL for allocation.
4665  */
4666 static inline char *dup_token(const char **buf, size_t *lenp)
4667 {
4668         char *dup;
4669         size_t len;
4670
4671         len = next_token(buf);
4672         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4673         if (!dup)
4674                 return NULL;
4675         *(dup + len) = '\0';
4676         *buf += len;
4677
4678         if (lenp)
4679                 *lenp = len;
4680
4681         return dup;
4682 }
4683
4684 /*
4685  * Parse the options provided for an "rbd add" (i.e., rbd image
4686  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4687  * and the data written is passed here via a NUL-terminated buffer.
4688  * Returns 0 if successful or an error code otherwise.
4689  *
4690  * The information extracted from these options is recorded in
4691  * the other parameters which return dynamically-allocated
4692  * structures:
4693  *  ceph_opts
4694  *      The address of a pointer that will refer to a ceph options
4695  *      structure.  Caller must release the returned pointer using
4696  *      ceph_destroy_options() when it is no longer needed.
4697  *  rbd_opts
4698  *      Address of an rbd options pointer.  Fully initialized by
4699  *      this function; caller must release with kfree().
4700  *  spec
4701  *      Address of an rbd image specification pointer.  Fully
4702  *      initialized by this function based on parsed options.
4703  *      Caller must release with rbd_spec_put().
4704  *
4705  * The options passed take this form:
4706  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4707  * where:
4708  *  <mon_addrs>
4709  *      A comma-separated list of one or more monitor addresses.
4710  *      A monitor address is an ip address, optionally followed
4711  *      by a port number (separated by a colon).
4712  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4713  *  <options>
4714  *      A comma-separated list of ceph and/or rbd options.
4715  *  <pool_name>
4716  *      The name of the rados pool containing the rbd image.
4717  *  <image_name>
4718  *      The name of the image in that pool to map.
4719  *  <snap_id>
4720  *      An optional snapshot id.  If provided, the mapping will
4721  *      present data from the image at the time that snapshot was
4722  *      created.  The image head is used if no snapshot id is
4723  *      provided.  Snapshot mappings are always read-only.
4724  */
4725 static int rbd_add_parse_args(const char *buf,
4726                                 struct ceph_options **ceph_opts,
4727                                 struct rbd_options **opts,
4728                                 struct rbd_spec **rbd_spec)
4729 {
4730         size_t len;
4731         char *options;
4732         const char *mon_addrs;
4733         char *snap_name;
4734         size_t mon_addrs_size;
4735         struct rbd_spec *spec = NULL;
4736         struct rbd_options *rbd_opts = NULL;
4737         struct ceph_options *copts;
4738         int ret;
4739
4740         /* The first four tokens are required */
4741
4742         len = next_token(&buf);
4743         if (!len) {
4744                 rbd_warn(NULL, "no monitor address(es) provided");
4745                 return -EINVAL;
4746         }
4747         mon_addrs = buf;
4748         mon_addrs_size = len + 1;
4749         buf += len;
4750
4751         ret = -EINVAL;
4752         options = dup_token(&buf, NULL);
4753         if (!options)
4754                 return -ENOMEM;
4755         if (!*options) {
4756                 rbd_warn(NULL, "no options provided");
4757                 goto out_err;
4758         }
4759
4760         spec = rbd_spec_alloc();
4761         if (!spec)
4762                 goto out_mem;
4763
4764         spec->pool_name = dup_token(&buf, NULL);
4765         if (!spec->pool_name)
4766                 goto out_mem;
4767         if (!*spec->pool_name) {
4768                 rbd_warn(NULL, "no pool name provided");
4769                 goto out_err;
4770         }
4771
4772         spec->image_name = dup_token(&buf, NULL);
4773         if (!spec->image_name)
4774                 goto out_mem;
4775         if (!*spec->image_name) {
4776                 rbd_warn(NULL, "no image name provided");
4777                 goto out_err;
4778         }
4779
4780         /*
4781          * Snapshot name is optional; default is to use "-"
4782          * (indicating the head/no snapshot).
4783          */
4784         len = next_token(&buf);
4785         if (!len) {
4786                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4787                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4788         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4789                 ret = -ENAMETOOLONG;
4790                 goto out_err;
4791         }
4792         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4793         if (!snap_name)
4794                 goto out_mem;
4795         *(snap_name + len) = '\0';
4796         spec->snap_name = snap_name;
4797
4798         /* Initialize all rbd options to the defaults */
4799
4800         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4801         if (!rbd_opts)
4802                 goto out_mem;
4803
4804         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4805
4806         copts = ceph_parse_options(options, mon_addrs,
4807                                         mon_addrs + mon_addrs_size - 1,
4808                                         parse_rbd_opts_token, rbd_opts);
4809         if (IS_ERR(copts)) {
4810                 ret = PTR_ERR(copts);
4811                 goto out_err;
4812         }
4813         kfree(options);
4814
4815         *ceph_opts = copts;
4816         *opts = rbd_opts;
4817         *rbd_spec = spec;
4818
4819         return 0;
4820 out_mem:
4821         ret = -ENOMEM;
4822 out_err:
4823         kfree(rbd_opts);
4824         rbd_spec_put(spec);
4825         kfree(options);
4826
4827         return ret;
4828 }
4829
4830 /*
4831  * Return pool id (>= 0) or a negative error code.
4832  */
4833 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4834 {
4835         u64 newest_epoch;
4836         unsigned long timeout = rbdc->client->options->mount_timeout * HZ;
4837         int tries = 0;
4838         int ret;
4839
4840 again:
4841         ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4842         if (ret == -ENOENT && tries++ < 1) {
4843                 ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
4844                                                &newest_epoch);
4845                 if (ret < 0)
4846                         return ret;
4847
4848                 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
4849                         ceph_monc_request_next_osdmap(&rbdc->client->monc);
4850                         (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
4851                                                      newest_epoch, timeout);
4852                         goto again;
4853                 } else {
4854                         /* the osdmap we have is new enough */
4855                         return -ENOENT;
4856                 }
4857         }
4858
4859         return ret;
4860 }
4861
4862 /*
4863  * An rbd format 2 image has a unique identifier, distinct from the
4864  * name given to it by the user.  Internally, that identifier is
4865  * what's used to specify the names of objects related to the image.
4866  *
4867  * A special "rbd id" object is used to map an rbd image name to its
4868  * id.  If that object doesn't exist, then there is no v2 rbd image
4869  * with the supplied name.
4870  *
4871  * This function will record the given rbd_dev's image_id field if
4872  * it can be determined, and in that case will return 0.  If any
4873  * errors occur a negative errno will be returned and the rbd_dev's
4874  * image_id field will be unchanged (and should be NULL).
4875  */
4876 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4877 {
4878         int ret;
4879         size_t size;
4880         char *object_name;
4881         void *response;
4882         char *image_id;
4883
4884         /*
4885          * When probing a parent image, the image id is already
4886          * known (and the image name likely is not).  There's no
4887          * need to fetch the image id again in this case.  We
4888          * do still need to set the image format though.
4889          */
4890         if (rbd_dev->spec->image_id) {
4891                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4892
4893                 return 0;
4894         }
4895
4896         /*
4897          * First, see if the format 2 image id file exists, and if
4898          * so, get the image's persistent id from it.
4899          */
4900         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4901         object_name = kmalloc(size, GFP_NOIO);
4902         if (!object_name)
4903                 return -ENOMEM;
4904         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4905         dout("rbd id object name is %s\n", object_name);
4906
4907         /* Response will be an encoded string, which includes a length */
4908
4909         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4910         response = kzalloc(size, GFP_NOIO);
4911         if (!response) {
4912                 ret = -ENOMEM;
4913                 goto out;
4914         }
4915
4916         /* If it doesn't exist we'll assume it's a format 1 image */
4917
4918         ret = rbd_obj_method_sync(rbd_dev, object_name,
4919                                 "rbd", "get_id", NULL, 0,
4920                                 response, RBD_IMAGE_ID_LEN_MAX);
4921         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4922         if (ret == -ENOENT) {
4923                 image_id = kstrdup("", GFP_KERNEL);
4924                 ret = image_id ? 0 : -ENOMEM;
4925                 if (!ret)
4926                         rbd_dev->image_format = 1;
4927         } else if (ret > sizeof (__le32)) {
4928                 void *p = response;
4929
4930                 image_id = ceph_extract_encoded_string(&p, p + ret,
4931                                                 NULL, GFP_NOIO);
4932                 ret = PTR_ERR_OR_ZERO(image_id);
4933                 if (!ret)
4934                         rbd_dev->image_format = 2;
4935         } else {
4936                 ret = -EINVAL;
4937         }
4938
4939         if (!ret) {
4940                 rbd_dev->spec->image_id = image_id;
4941                 dout("image_id is %s\n", image_id);
4942         }
4943 out:
4944         kfree(response);
4945         kfree(object_name);
4946
4947         return ret;
4948 }
4949
4950 /*
4951  * Undo whatever state changes are made by v1 or v2 header info
4952  * call.
4953  */
4954 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4955 {
4956         struct rbd_image_header *header;
4957
4958         /* Drop parent reference unless it's already been done (or none) */
4959
4960         if (rbd_dev->parent_overlap)
4961                 rbd_dev_parent_put(rbd_dev);
4962
4963         /* Free dynamic fields from the header, then zero it out */
4964
4965         header = &rbd_dev->header;
4966         ceph_put_snap_context(header->snapc);
4967         kfree(header->snap_sizes);
4968         kfree(header->snap_names);
4969         kfree(header->object_prefix);
4970         memset(header, 0, sizeof (*header));
4971 }
4972
4973 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4974 {
4975         int ret;
4976
4977         ret = rbd_dev_v2_object_prefix(rbd_dev);
4978         if (ret)
4979                 goto out_err;
4980
4981         /*
4982          * Get the and check features for the image.  Currently the
4983          * features are assumed to never change.
4984          */
4985         ret = rbd_dev_v2_features(rbd_dev);
4986         if (ret)
4987                 goto out_err;
4988
4989         /* If the image supports fancy striping, get its parameters */
4990
4991         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4992                 ret = rbd_dev_v2_striping_info(rbd_dev);
4993                 if (ret < 0)
4994                         goto out_err;
4995         }
4996         /* No support for crypto and compression type format 2 images */
4997
4998         return 0;
4999 out_err:
5000         rbd_dev->header.features = 0;
5001         kfree(rbd_dev->header.object_prefix);
5002         rbd_dev->header.object_prefix = NULL;
5003
5004         return ret;
5005 }
5006
5007 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
5008 {
5009         struct rbd_device *parent = NULL;
5010         struct rbd_spec *parent_spec;
5011         struct rbd_client *rbdc;
5012         int ret;
5013
5014         if (!rbd_dev->parent_spec)
5015                 return 0;
5016         /*
5017          * We need to pass a reference to the client and the parent
5018          * spec when creating the parent rbd_dev.  Images related by
5019          * parent/child relationships always share both.
5020          */
5021         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
5022         rbdc = __rbd_get_client(rbd_dev->rbd_client);
5023
5024         ret = -ENOMEM;
5025         parent = rbd_dev_create(rbdc, parent_spec);
5026         if (!parent)
5027                 goto out_err;
5028
5029         ret = rbd_dev_image_probe(parent, false);
5030         if (ret < 0)
5031                 goto out_err;
5032         rbd_dev->parent = parent;
5033         atomic_set(&rbd_dev->parent_ref, 1);
5034
5035         return 0;
5036 out_err:
5037         if (parent) {
5038                 rbd_dev_unparent(rbd_dev);
5039                 kfree(rbd_dev->header_name);
5040                 rbd_dev_destroy(parent);
5041         } else {
5042                 rbd_put_client(rbdc);
5043                 rbd_spec_put(parent_spec);
5044         }
5045
5046         return ret;
5047 }
5048
5049 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5050 {
5051         int ret;
5052
5053         /* Get an id and fill in device name. */
5054
5055         ret = rbd_dev_id_get(rbd_dev);
5056         if (ret)
5057                 return ret;
5058
5059         BUILD_BUG_ON(DEV_NAME_LEN
5060                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5061         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5062
5063         /* Record our major and minor device numbers. */
5064
5065         if (!single_major) {
5066                 ret = register_blkdev(0, rbd_dev->name);
5067                 if (ret < 0)
5068                         goto err_out_id;
5069
5070                 rbd_dev->major = ret;
5071                 rbd_dev->minor = 0;
5072         } else {
5073                 rbd_dev->major = rbd_major;
5074                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5075         }
5076
5077         /* Set up the blkdev mapping. */
5078
5079         ret = rbd_init_disk(rbd_dev);
5080         if (ret)
5081                 goto err_out_blkdev;
5082
5083         ret = rbd_dev_mapping_set(rbd_dev);
5084         if (ret)
5085                 goto err_out_disk;
5086
5087         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5088         set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5089
5090         rbd_dev->rq_wq = alloc_workqueue(rbd_dev->disk->disk_name, 0, 0);
5091         if (!rbd_dev->rq_wq)
5092                 goto err_out_mapping;
5093
5094         ret = rbd_bus_add_dev(rbd_dev);
5095         if (ret)
5096                 goto err_out_workqueue;
5097
5098         /* Everything's ready.  Announce the disk to the world. */
5099
5100         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5101         add_disk(rbd_dev->disk);
5102
5103         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5104                 (unsigned long long) rbd_dev->mapping.size);
5105
5106         return ret;
5107
5108 err_out_workqueue:
5109         destroy_workqueue(rbd_dev->rq_wq);
5110         rbd_dev->rq_wq = NULL;
5111 err_out_mapping:
5112         rbd_dev_mapping_clear(rbd_dev);
5113 err_out_disk:
5114         rbd_free_disk(rbd_dev);
5115 err_out_blkdev:
5116         if (!single_major)
5117                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5118 err_out_id:
5119         rbd_dev_id_put(rbd_dev);
5120         rbd_dev_mapping_clear(rbd_dev);
5121
5122         return ret;
5123 }
5124
5125 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5126 {
5127         struct rbd_spec *spec = rbd_dev->spec;
5128         size_t size;
5129
5130         /* Record the header object name for this rbd image. */
5131
5132         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5133
5134         if (rbd_dev->image_format == 1)
5135                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5136         else
5137                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5138
5139         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5140         if (!rbd_dev->header_name)
5141                 return -ENOMEM;
5142
5143         if (rbd_dev->image_format == 1)
5144                 sprintf(rbd_dev->header_name, "%s%s",
5145                         spec->image_name, RBD_SUFFIX);
5146         else
5147                 sprintf(rbd_dev->header_name, "%s%s",
5148                         RBD_HEADER_PREFIX, spec->image_id);
5149         return 0;
5150 }
5151
5152 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5153 {
5154         rbd_dev_unprobe(rbd_dev);
5155         kfree(rbd_dev->header_name);
5156         rbd_dev->header_name = NULL;
5157         rbd_dev->image_format = 0;
5158         kfree(rbd_dev->spec->image_id);
5159         rbd_dev->spec->image_id = NULL;
5160
5161         rbd_dev_destroy(rbd_dev);
5162 }
5163
5164 /*
5165  * Probe for the existence of the header object for the given rbd
5166  * device.  If this image is the one being mapped (i.e., not a
5167  * parent), initiate a watch on its header object before using that
5168  * object to get detailed information about the rbd image.
5169  */
5170 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
5171 {
5172         int ret;
5173
5174         /*
5175          * Get the id from the image id object.  Unless there's an
5176          * error, rbd_dev->spec->image_id will be filled in with
5177          * a dynamically-allocated string, and rbd_dev->image_format
5178          * will be set to either 1 or 2.
5179          */
5180         ret = rbd_dev_image_id(rbd_dev);
5181         if (ret)
5182                 return ret;
5183
5184         ret = rbd_dev_header_name(rbd_dev);
5185         if (ret)
5186                 goto err_out_format;
5187
5188         if (mapping) {
5189                 ret = rbd_dev_header_watch_sync(rbd_dev);
5190                 if (ret)
5191                         goto out_header_name;
5192         }
5193
5194         ret = rbd_dev_header_info(rbd_dev);
5195         if (ret)
5196                 goto err_out_watch;
5197
5198         /*
5199          * If this image is the one being mapped, we have pool name and
5200          * id, image name and id, and snap name - need to fill snap id.
5201          * Otherwise this is a parent image, identified by pool, image
5202          * and snap ids - need to fill in names for those ids.
5203          */
5204         if (mapping)
5205                 ret = rbd_spec_fill_snap_id(rbd_dev);
5206         else
5207                 ret = rbd_spec_fill_names(rbd_dev);
5208         if (ret)
5209                 goto err_out_probe;
5210
5211         if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5212                 ret = rbd_dev_v2_parent_info(rbd_dev);
5213                 if (ret)
5214                         goto err_out_probe;
5215
5216                 /*
5217                  * Need to warn users if this image is the one being
5218                  * mapped and has a parent.
5219                  */
5220                 if (mapping && rbd_dev->parent_spec)
5221                         rbd_warn(rbd_dev,
5222                                  "WARNING: kernel layering is EXPERIMENTAL!");
5223         }
5224
5225         ret = rbd_dev_probe_parent(rbd_dev);
5226         if (ret)
5227                 goto err_out_probe;
5228
5229         dout("discovered format %u image, header name is %s\n",
5230                 rbd_dev->image_format, rbd_dev->header_name);
5231         return 0;
5232
5233 err_out_probe:
5234         rbd_dev_unprobe(rbd_dev);
5235 err_out_watch:
5236         if (mapping)
5237                 rbd_dev_header_unwatch_sync(rbd_dev);
5238 out_header_name:
5239         kfree(rbd_dev->header_name);
5240         rbd_dev->header_name = NULL;
5241 err_out_format:
5242         rbd_dev->image_format = 0;
5243         kfree(rbd_dev->spec->image_id);
5244         rbd_dev->spec->image_id = NULL;
5245         return ret;
5246 }
5247
5248 static ssize_t do_rbd_add(struct bus_type *bus,
5249                           const char *buf,
5250                           size_t count)
5251 {
5252         struct rbd_device *rbd_dev = NULL;
5253         struct ceph_options *ceph_opts = NULL;
5254         struct rbd_options *rbd_opts = NULL;
5255         struct rbd_spec *spec = NULL;
5256         struct rbd_client *rbdc;
5257         bool read_only;
5258         int rc = -ENOMEM;
5259
5260         if (!try_module_get(THIS_MODULE))
5261                 return -ENODEV;
5262
5263         /* parse add command */
5264         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5265         if (rc < 0)
5266                 goto err_out_module;
5267         read_only = rbd_opts->read_only;
5268         kfree(rbd_opts);
5269         rbd_opts = NULL;        /* done with this */
5270
5271         rbdc = rbd_get_client(ceph_opts);
5272         if (IS_ERR(rbdc)) {
5273                 rc = PTR_ERR(rbdc);
5274                 goto err_out_args;
5275         }
5276
5277         /* pick the pool */
5278         rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5279         if (rc < 0)
5280                 goto err_out_client;
5281         spec->pool_id = (u64)rc;
5282
5283         /* The ceph file layout needs to fit pool id in 32 bits */
5284
5285         if (spec->pool_id > (u64)U32_MAX) {
5286                 rbd_warn(NULL, "pool id too large (%llu > %u)",
5287                                 (unsigned long long)spec->pool_id, U32_MAX);
5288                 rc = -EIO;
5289                 goto err_out_client;
5290         }
5291
5292         rbd_dev = rbd_dev_create(rbdc, spec);
5293         if (!rbd_dev)
5294                 goto err_out_client;
5295         rbdc = NULL;            /* rbd_dev now owns this */
5296         spec = NULL;            /* rbd_dev now owns this */
5297
5298         rc = rbd_dev_image_probe(rbd_dev, true);
5299         if (rc < 0)
5300                 goto err_out_rbd_dev;
5301
5302         /* If we are mapping a snapshot it must be marked read-only */
5303
5304         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5305                 read_only = true;
5306         rbd_dev->mapping.read_only = read_only;
5307
5308         rc = rbd_dev_device_setup(rbd_dev);
5309         if (rc) {
5310                 /*
5311                  * rbd_dev_header_unwatch_sync() can't be moved into
5312                  * rbd_dev_image_release() without refactoring, see
5313                  * commit 1f3ef78861ac.
5314                  */
5315                 rbd_dev_header_unwatch_sync(rbd_dev);
5316                 rbd_dev_image_release(rbd_dev);
5317                 goto err_out_module;
5318         }
5319
5320         return count;
5321
5322 err_out_rbd_dev:
5323         rbd_dev_destroy(rbd_dev);
5324 err_out_client:
5325         rbd_put_client(rbdc);
5326 err_out_args:
5327         rbd_spec_put(spec);
5328 err_out_module:
5329         module_put(THIS_MODULE);
5330
5331         dout("Error adding device %s\n", buf);
5332
5333         return (ssize_t)rc;
5334 }
5335
5336 static ssize_t rbd_add(struct bus_type *bus,
5337                        const char *buf,
5338                        size_t count)
5339 {
5340         if (single_major)
5341                 return -EINVAL;
5342
5343         return do_rbd_add(bus, buf, count);
5344 }
5345
5346 static ssize_t rbd_add_single_major(struct bus_type *bus,
5347                                     const char *buf,
5348                                     size_t count)
5349 {
5350         return do_rbd_add(bus, buf, count);
5351 }
5352
5353 static void rbd_dev_device_release(struct device *dev)
5354 {
5355         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5356
5357         destroy_workqueue(rbd_dev->rq_wq);
5358         rbd_free_disk(rbd_dev);
5359         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5360         rbd_dev_mapping_clear(rbd_dev);
5361         if (!single_major)
5362                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5363         rbd_dev_id_put(rbd_dev);
5364         rbd_dev_mapping_clear(rbd_dev);
5365 }
5366
5367 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5368 {
5369         while (rbd_dev->parent) {
5370                 struct rbd_device *first = rbd_dev;
5371                 struct rbd_device *second = first->parent;
5372                 struct rbd_device *third;
5373
5374                 /*
5375                  * Follow to the parent with no grandparent and
5376                  * remove it.
5377                  */
5378                 while (second && (third = second->parent)) {
5379                         first = second;
5380                         second = third;
5381                 }
5382                 rbd_assert(second);
5383                 rbd_dev_image_release(second);
5384                 first->parent = NULL;
5385                 first->parent_overlap = 0;
5386
5387                 rbd_assert(first->parent_spec);
5388                 rbd_spec_put(first->parent_spec);
5389                 first->parent_spec = NULL;
5390         }
5391 }
5392
5393 static ssize_t do_rbd_remove(struct bus_type *bus,
5394                              const char *buf,
5395                              size_t count)
5396 {
5397         struct rbd_device *rbd_dev = NULL;
5398         struct list_head *tmp;
5399         int dev_id;
5400         unsigned long ul;
5401         bool already = false;
5402         int ret;
5403
5404         ret = kstrtoul(buf, 10, &ul);
5405         if (ret)
5406                 return ret;
5407
5408         /* convert to int; abort if we lost anything in the conversion */
5409         dev_id = (int)ul;
5410         if (dev_id != ul)
5411                 return -EINVAL;
5412
5413         ret = -ENOENT;
5414         spin_lock(&rbd_dev_list_lock);
5415         list_for_each(tmp, &rbd_dev_list) {
5416                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5417                 if (rbd_dev->dev_id == dev_id) {
5418                         ret = 0;
5419                         break;
5420                 }
5421         }
5422         if (!ret) {
5423                 spin_lock_irq(&rbd_dev->lock);
5424                 if (rbd_dev->open_count)
5425                         ret = -EBUSY;
5426                 else
5427                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5428                                                         &rbd_dev->flags);
5429                 spin_unlock_irq(&rbd_dev->lock);
5430         }
5431         spin_unlock(&rbd_dev_list_lock);
5432         if (ret < 0 || already)
5433                 return ret;
5434
5435         rbd_dev_header_unwatch_sync(rbd_dev);
5436         /*
5437          * flush remaining watch callbacks - these must be complete
5438          * before the osd_client is shutdown
5439          */
5440         dout("%s: flushing notifies", __func__);
5441         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5442
5443         /*
5444          * Don't free anything from rbd_dev->disk until after all
5445          * notifies are completely processed. Otherwise
5446          * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5447          * in a potential use after free of rbd_dev->disk or rbd_dev.
5448          */
5449         rbd_bus_del_dev(rbd_dev);
5450         rbd_dev_image_release(rbd_dev);
5451         module_put(THIS_MODULE);
5452
5453         return count;
5454 }
5455
5456 static ssize_t rbd_remove(struct bus_type *bus,
5457                           const char *buf,
5458                           size_t count)
5459 {
5460         if (single_major)
5461                 return -EINVAL;
5462
5463         return do_rbd_remove(bus, buf, count);
5464 }
5465
5466 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5467                                        const char *buf,
5468                                        size_t count)
5469 {
5470         return do_rbd_remove(bus, buf, count);
5471 }
5472
5473 /*
5474  * create control files in sysfs
5475  * /sys/bus/rbd/...
5476  */
5477 static int rbd_sysfs_init(void)
5478 {
5479         int ret;
5480
5481         ret = device_register(&rbd_root_dev);
5482         if (ret < 0)
5483                 return ret;
5484
5485         ret = bus_register(&rbd_bus_type);
5486         if (ret < 0)
5487                 device_unregister(&rbd_root_dev);
5488
5489         return ret;
5490 }
5491
5492 static void rbd_sysfs_cleanup(void)
5493 {
5494         bus_unregister(&rbd_bus_type);
5495         device_unregister(&rbd_root_dev);
5496 }
5497
5498 static int rbd_slab_init(void)
5499 {
5500         rbd_assert(!rbd_img_request_cache);
5501         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5502                                         sizeof (struct rbd_img_request),
5503                                         __alignof__(struct rbd_img_request),
5504                                         0, NULL);
5505         if (!rbd_img_request_cache)
5506                 return -ENOMEM;
5507
5508         rbd_assert(!rbd_obj_request_cache);
5509         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5510                                         sizeof (struct rbd_obj_request),
5511                                         __alignof__(struct rbd_obj_request),
5512                                         0, NULL);
5513         if (!rbd_obj_request_cache)
5514                 goto out_err;
5515
5516         rbd_assert(!rbd_segment_name_cache);
5517         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5518                                         CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5519         if (rbd_segment_name_cache)
5520                 return 0;
5521 out_err:
5522         if (rbd_obj_request_cache) {
5523                 kmem_cache_destroy(rbd_obj_request_cache);
5524                 rbd_obj_request_cache = NULL;
5525         }
5526
5527         kmem_cache_destroy(rbd_img_request_cache);
5528         rbd_img_request_cache = NULL;
5529
5530         return -ENOMEM;
5531 }
5532
5533 static void rbd_slab_exit(void)
5534 {
5535         rbd_assert(rbd_segment_name_cache);
5536         kmem_cache_destroy(rbd_segment_name_cache);
5537         rbd_segment_name_cache = NULL;
5538
5539         rbd_assert(rbd_obj_request_cache);
5540         kmem_cache_destroy(rbd_obj_request_cache);
5541         rbd_obj_request_cache = NULL;
5542
5543         rbd_assert(rbd_img_request_cache);
5544         kmem_cache_destroy(rbd_img_request_cache);
5545         rbd_img_request_cache = NULL;
5546 }
5547
5548 static int __init rbd_init(void)
5549 {
5550         int rc;
5551
5552         if (!libceph_compatible(NULL)) {
5553                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5554                 return -EINVAL;
5555         }
5556
5557         rc = rbd_slab_init();
5558         if (rc)
5559                 return rc;
5560
5561         if (single_major) {
5562                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5563                 if (rbd_major < 0) {
5564                         rc = rbd_major;
5565                         goto err_out_slab;
5566                 }
5567         }
5568
5569         rc = rbd_sysfs_init();
5570         if (rc)
5571                 goto err_out_blkdev;
5572
5573         if (single_major)
5574                 pr_info("loaded (major %d)\n", rbd_major);
5575         else
5576                 pr_info("loaded\n");
5577
5578         return 0;
5579
5580 err_out_blkdev:
5581         if (single_major)
5582                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5583 err_out_slab:
5584         rbd_slab_exit();
5585         return rc;
5586 }
5587
5588 static void __exit rbd_exit(void)
5589 {
5590         ida_destroy(&rbd_dev_id_ida);
5591         rbd_sysfs_cleanup();
5592         if (single_major)
5593                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5594         rbd_slab_exit();
5595 }
5596
5597 module_init(rbd_init);
5598 module_exit(rbd_exit);
5599
5600 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5601 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5602 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5603 /* following authorship retained from original osdblk.c */
5604 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5605
5606 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5607 MODULE_LICENSE("GPL");