zram: add set_max_streams knob
[firefly-linux-kernel-4.4.55.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44
45 #include "rbd_types.h"
46
47 #define RBD_DEBUG       /* Activate rbd_assert() calls */
48
49 /*
50  * The basic unit of block I/O is a sector.  It is interpreted in a
51  * number of contexts in Linux (blk, bio, genhd), but the default is
52  * universally 512 bytes.  These symbols are just slightly more
53  * meaningful than the bare numbers they represent.
54  */
55 #define SECTOR_SHIFT    9
56 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
57
58 /*
59  * Increment the given counter and return its updated value.
60  * If the counter is already 0 it will not be incremented.
61  * If the counter is already at its maximum value returns
62  * -EINVAL without updating it.
63  */
64 static int atomic_inc_return_safe(atomic_t *v)
65 {
66         unsigned int counter;
67
68         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
69         if (counter <= (unsigned int)INT_MAX)
70                 return (int)counter;
71
72         atomic_dec(v);
73
74         return -EINVAL;
75 }
76
77 /* Decrement the counter.  Return the resulting value, or -EINVAL */
78 static int atomic_dec_return_safe(atomic_t *v)
79 {
80         int counter;
81
82         counter = atomic_dec_return(v);
83         if (counter >= 0)
84                 return counter;
85
86         atomic_inc(v);
87
88         return -EINVAL;
89 }
90
91 #define RBD_DRV_NAME "rbd"
92 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
93
94 #define RBD_MINORS_PER_MAJOR    256             /* max minors per blkdev */
95
96 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
97 #define RBD_MAX_SNAP_NAME_LEN   \
98                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
99
100 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
101
102 #define RBD_SNAP_HEAD_NAME      "-"
103
104 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
105
106 /* This allows a single page to hold an image name sent by OSD */
107 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
108 #define RBD_IMAGE_ID_LEN_MAX    64
109
110 #define RBD_OBJ_PREFIX_LEN_MAX  64
111
112 /* Feature bits */
113
114 #define RBD_FEATURE_LAYERING    (1<<0)
115 #define RBD_FEATURE_STRIPINGV2  (1<<1)
116 #define RBD_FEATURES_ALL \
117             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
118
119 /* Features supported by this (client software) implementation. */
120
121 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
122
123 /*
124  * An RBD device name will be "rbd#", where the "rbd" comes from
125  * RBD_DRV_NAME above, and # is a unique integer identifier.
126  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
127  * enough to hold all possible device names.
128  */
129 #define DEV_NAME_LEN            32
130 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
131
132 /*
133  * block device image metadata (in-memory version)
134  */
135 struct rbd_image_header {
136         /* These six fields never change for a given rbd image */
137         char *object_prefix;
138         __u8 obj_order;
139         __u8 crypt_type;
140         __u8 comp_type;
141         u64 stripe_unit;
142         u64 stripe_count;
143         u64 features;           /* Might be changeable someday? */
144
145         /* The remaining fields need to be updated occasionally */
146         u64 image_size;
147         struct ceph_snap_context *snapc;
148         char *snap_names;       /* format 1 only */
149         u64 *snap_sizes;        /* format 1 only */
150 };
151
152 /*
153  * An rbd image specification.
154  *
155  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
156  * identify an image.  Each rbd_dev structure includes a pointer to
157  * an rbd_spec structure that encapsulates this identity.
158  *
159  * Each of the id's in an rbd_spec has an associated name.  For a
160  * user-mapped image, the names are supplied and the id's associated
161  * with them are looked up.  For a layered image, a parent image is
162  * defined by the tuple, and the names are looked up.
163  *
164  * An rbd_dev structure contains a parent_spec pointer which is
165  * non-null if the image it represents is a child in a layered
166  * image.  This pointer will refer to the rbd_spec structure used
167  * by the parent rbd_dev for its own identity (i.e., the structure
168  * is shared between the parent and child).
169  *
170  * Since these structures are populated once, during the discovery
171  * phase of image construction, they are effectively immutable so
172  * we make no effort to synchronize access to them.
173  *
174  * Note that code herein does not assume the image name is known (it
175  * could be a null pointer).
176  */
177 struct rbd_spec {
178         u64             pool_id;
179         const char      *pool_name;
180
181         const char      *image_id;
182         const char      *image_name;
183
184         u64             snap_id;
185         const char      *snap_name;
186
187         struct kref     kref;
188 };
189
190 /*
191  * an instance of the client.  multiple devices may share an rbd client.
192  */
193 struct rbd_client {
194         struct ceph_client      *client;
195         struct kref             kref;
196         struct list_head        node;
197 };
198
199 struct rbd_img_request;
200 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
201
202 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
203
204 struct rbd_obj_request;
205 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
206
207 enum obj_request_type {
208         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
209 };
210
211 enum obj_req_flags {
212         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
213         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
214         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
215         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
216 };
217
218 struct rbd_obj_request {
219         const char              *object_name;
220         u64                     offset;         /* object start byte */
221         u64                     length;         /* bytes from offset */
222         unsigned long           flags;
223
224         /*
225          * An object request associated with an image will have its
226          * img_data flag set; a standalone object request will not.
227          *
228          * A standalone object request will have which == BAD_WHICH
229          * and a null obj_request pointer.
230          *
231          * An object request initiated in support of a layered image
232          * object (to check for its existence before a write) will
233          * have which == BAD_WHICH and a non-null obj_request pointer.
234          *
235          * Finally, an object request for rbd image data will have
236          * which != BAD_WHICH, and will have a non-null img_request
237          * pointer.  The value of which will be in the range
238          * 0..(img_request->obj_request_count-1).
239          */
240         union {
241                 struct rbd_obj_request  *obj_request;   /* STAT op */
242                 struct {
243                         struct rbd_img_request  *img_request;
244                         u64                     img_offset;
245                         /* links for img_request->obj_requests list */
246                         struct list_head        links;
247                 };
248         };
249         u32                     which;          /* posn image request list */
250
251         enum obj_request_type   type;
252         union {
253                 struct bio      *bio_list;
254                 struct {
255                         struct page     **pages;
256                         u32             page_count;
257                 };
258         };
259         struct page             **copyup_pages;
260         u32                     copyup_page_count;
261
262         struct ceph_osd_request *osd_req;
263
264         u64                     xferred;        /* bytes transferred */
265         int                     result;
266
267         rbd_obj_callback_t      callback;
268         struct completion       completion;
269
270         struct kref             kref;
271 };
272
273 enum img_req_flags {
274         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
275         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
276         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
277 };
278
279 struct rbd_img_request {
280         struct rbd_device       *rbd_dev;
281         u64                     offset; /* starting image byte offset */
282         u64                     length; /* byte count from offset */
283         unsigned long           flags;
284         union {
285                 u64                     snap_id;        /* for reads */
286                 struct ceph_snap_context *snapc;        /* for writes */
287         };
288         union {
289                 struct request          *rq;            /* block request */
290                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
291         };
292         struct page             **copyup_pages;
293         u32                     copyup_page_count;
294         spinlock_t              completion_lock;/* protects next_completion */
295         u32                     next_completion;
296         rbd_img_callback_t      callback;
297         u64                     xferred;/* aggregate bytes transferred */
298         int                     result; /* first nonzero obj_request result */
299
300         u32                     obj_request_count;
301         struct list_head        obj_requests;   /* rbd_obj_request structs */
302
303         struct kref             kref;
304 };
305
306 #define for_each_obj_request(ireq, oreq) \
307         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
308 #define for_each_obj_request_from(ireq, oreq) \
309         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
310 #define for_each_obj_request_safe(ireq, oreq, n) \
311         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
312
313 struct rbd_mapping {
314         u64                     size;
315         u64                     features;
316         bool                    read_only;
317 };
318
319 /*
320  * a single device
321  */
322 struct rbd_device {
323         int                     dev_id;         /* blkdev unique id */
324
325         int                     major;          /* blkdev assigned major */
326         struct gendisk          *disk;          /* blkdev's gendisk and rq */
327
328         u32                     image_format;   /* Either 1 or 2 */
329         struct rbd_client       *rbd_client;
330
331         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
332
333         spinlock_t              lock;           /* queue, flags, open_count */
334
335         struct rbd_image_header header;
336         unsigned long           flags;          /* possibly lock protected */
337         struct rbd_spec         *spec;
338
339         char                    *header_name;
340
341         struct ceph_file_layout layout;
342
343         struct ceph_osd_event   *watch_event;
344         struct rbd_obj_request  *watch_request;
345
346         struct rbd_spec         *parent_spec;
347         u64                     parent_overlap;
348         atomic_t                parent_ref;
349         struct rbd_device       *parent;
350
351         /* protects updating the header */
352         struct rw_semaphore     header_rwsem;
353
354         struct rbd_mapping      mapping;
355
356         struct list_head        node;
357
358         /* sysfs related */
359         struct device           dev;
360         unsigned long           open_count;     /* protected by lock */
361 };
362
363 /*
364  * Flag bits for rbd_dev->flags.  If atomicity is required,
365  * rbd_dev->lock is used to protect access.
366  *
367  * Currently, only the "removing" flag (which is coupled with the
368  * "open_count" field) requires atomic access.
369  */
370 enum rbd_dev_flags {
371         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
372         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
373 };
374
375 static DEFINE_MUTEX(ctl_mutex);   /* Serialize open/close/setup/teardown */
376
377 static LIST_HEAD(rbd_dev_list);    /* devices */
378 static DEFINE_SPINLOCK(rbd_dev_list_lock);
379
380 static LIST_HEAD(rbd_client_list);              /* clients */
381 static DEFINE_SPINLOCK(rbd_client_list_lock);
382
383 /* Slab caches for frequently-allocated structures */
384
385 static struct kmem_cache        *rbd_img_request_cache;
386 static struct kmem_cache        *rbd_obj_request_cache;
387 static struct kmem_cache        *rbd_segment_name_cache;
388
389 static int rbd_img_request_submit(struct rbd_img_request *img_request);
390
391 static void rbd_dev_device_release(struct device *dev);
392
393 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
394                        size_t count);
395 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
396                           size_t count);
397 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
398 static void rbd_spec_put(struct rbd_spec *spec);
399
400 static struct bus_attribute rbd_bus_attrs[] = {
401         __ATTR(add, S_IWUSR, NULL, rbd_add),
402         __ATTR(remove, S_IWUSR, NULL, rbd_remove),
403         __ATTR_NULL
404 };
405
406 static struct bus_type rbd_bus_type = {
407         .name           = "rbd",
408         .bus_attrs      = rbd_bus_attrs,
409 };
410
411 static void rbd_root_dev_release(struct device *dev)
412 {
413 }
414
415 static struct device rbd_root_dev = {
416         .init_name =    "rbd",
417         .release =      rbd_root_dev_release,
418 };
419
420 static __printf(2, 3)
421 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
422 {
423         struct va_format vaf;
424         va_list args;
425
426         va_start(args, fmt);
427         vaf.fmt = fmt;
428         vaf.va = &args;
429
430         if (!rbd_dev)
431                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
432         else if (rbd_dev->disk)
433                 printk(KERN_WARNING "%s: %s: %pV\n",
434                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
435         else if (rbd_dev->spec && rbd_dev->spec->image_name)
436                 printk(KERN_WARNING "%s: image %s: %pV\n",
437                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
438         else if (rbd_dev->spec && rbd_dev->spec->image_id)
439                 printk(KERN_WARNING "%s: id %s: %pV\n",
440                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
441         else    /* punt */
442                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
443                         RBD_DRV_NAME, rbd_dev, &vaf);
444         va_end(args);
445 }
446
447 #ifdef RBD_DEBUG
448 #define rbd_assert(expr)                                                \
449                 if (unlikely(!(expr))) {                                \
450                         printk(KERN_ERR "\nAssertion failure in %s() "  \
451                                                 "at line %d:\n\n"       \
452                                         "\trbd_assert(%s);\n\n",        \
453                                         __func__, __LINE__, #expr);     \
454                         BUG();                                          \
455                 }
456 #else /* !RBD_DEBUG */
457 #  define rbd_assert(expr)      ((void) 0)
458 #endif /* !RBD_DEBUG */
459
460 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
461 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
462 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
463
464 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
465 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
466 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
467 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
468                                         u64 snap_id);
469 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
470                                 u8 *order, u64 *snap_size);
471 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
472                 u64 *snap_features);
473 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
474
475 static int rbd_open(struct block_device *bdev, fmode_t mode)
476 {
477         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
478         bool removing = false;
479
480         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
481                 return -EROFS;
482
483         spin_lock_irq(&rbd_dev->lock);
484         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
485                 removing = true;
486         else
487                 rbd_dev->open_count++;
488         spin_unlock_irq(&rbd_dev->lock);
489         if (removing)
490                 return -ENOENT;
491
492         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
493         (void) get_device(&rbd_dev->dev);
494         set_device_ro(bdev, rbd_dev->mapping.read_only);
495         mutex_unlock(&ctl_mutex);
496
497         return 0;
498 }
499
500 static void rbd_release(struct gendisk *disk, fmode_t mode)
501 {
502         struct rbd_device *rbd_dev = disk->private_data;
503         unsigned long open_count_before;
504
505         spin_lock_irq(&rbd_dev->lock);
506         open_count_before = rbd_dev->open_count--;
507         spin_unlock_irq(&rbd_dev->lock);
508         rbd_assert(open_count_before > 0);
509
510         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
511         put_device(&rbd_dev->dev);
512         mutex_unlock(&ctl_mutex);
513 }
514
515 static const struct block_device_operations rbd_bd_ops = {
516         .owner                  = THIS_MODULE,
517         .open                   = rbd_open,
518         .release                = rbd_release,
519 };
520
521 /*
522  * Initialize an rbd client instance.  Success or not, this function
523  * consumes ceph_opts.
524  */
525 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
526 {
527         struct rbd_client *rbdc;
528         int ret = -ENOMEM;
529
530         dout("%s:\n", __func__);
531         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
532         if (!rbdc)
533                 goto out_opt;
534
535         kref_init(&rbdc->kref);
536         INIT_LIST_HEAD(&rbdc->node);
537
538         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
539
540         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
541         if (IS_ERR(rbdc->client))
542                 goto out_mutex;
543         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
544
545         ret = ceph_open_session(rbdc->client);
546         if (ret < 0)
547                 goto out_err;
548
549         spin_lock(&rbd_client_list_lock);
550         list_add_tail(&rbdc->node, &rbd_client_list);
551         spin_unlock(&rbd_client_list_lock);
552
553         mutex_unlock(&ctl_mutex);
554         dout("%s: rbdc %p\n", __func__, rbdc);
555
556         return rbdc;
557
558 out_err:
559         ceph_destroy_client(rbdc->client);
560 out_mutex:
561         mutex_unlock(&ctl_mutex);
562         kfree(rbdc);
563 out_opt:
564         if (ceph_opts)
565                 ceph_destroy_options(ceph_opts);
566         dout("%s: error %d\n", __func__, ret);
567
568         return ERR_PTR(ret);
569 }
570
571 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
572 {
573         kref_get(&rbdc->kref);
574
575         return rbdc;
576 }
577
578 /*
579  * Find a ceph client with specific addr and configuration.  If
580  * found, bump its reference count.
581  */
582 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
583 {
584         struct rbd_client *client_node;
585         bool found = false;
586
587         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
588                 return NULL;
589
590         spin_lock(&rbd_client_list_lock);
591         list_for_each_entry(client_node, &rbd_client_list, node) {
592                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
593                         __rbd_get_client(client_node);
594
595                         found = true;
596                         break;
597                 }
598         }
599         spin_unlock(&rbd_client_list_lock);
600
601         return found ? client_node : NULL;
602 }
603
604 /*
605  * mount options
606  */
607 enum {
608         Opt_last_int,
609         /* int args above */
610         Opt_last_string,
611         /* string args above */
612         Opt_read_only,
613         Opt_read_write,
614         /* Boolean args above */
615         Opt_last_bool,
616 };
617
618 static match_table_t rbd_opts_tokens = {
619         /* int args above */
620         /* string args above */
621         {Opt_read_only, "read_only"},
622         {Opt_read_only, "ro"},          /* Alternate spelling */
623         {Opt_read_write, "read_write"},
624         {Opt_read_write, "rw"},         /* Alternate spelling */
625         /* Boolean args above */
626         {-1, NULL}
627 };
628
629 struct rbd_options {
630         bool    read_only;
631 };
632
633 #define RBD_READ_ONLY_DEFAULT   false
634
635 static int parse_rbd_opts_token(char *c, void *private)
636 {
637         struct rbd_options *rbd_opts = private;
638         substring_t argstr[MAX_OPT_ARGS];
639         int token, intval, ret;
640
641         token = match_token(c, rbd_opts_tokens, argstr);
642         if (token < 0)
643                 return -EINVAL;
644
645         if (token < Opt_last_int) {
646                 ret = match_int(&argstr[0], &intval);
647                 if (ret < 0) {
648                         pr_err("bad mount option arg (not int) "
649                                "at '%s'\n", c);
650                         return ret;
651                 }
652                 dout("got int token %d val %d\n", token, intval);
653         } else if (token > Opt_last_int && token < Opt_last_string) {
654                 dout("got string token %d val %s\n", token,
655                      argstr[0].from);
656         } else if (token > Opt_last_string && token < Opt_last_bool) {
657                 dout("got Boolean token %d\n", token);
658         } else {
659                 dout("got token %d\n", token);
660         }
661
662         switch (token) {
663         case Opt_read_only:
664                 rbd_opts->read_only = true;
665                 break;
666         case Opt_read_write:
667                 rbd_opts->read_only = false;
668                 break;
669         default:
670                 rbd_assert(false);
671                 break;
672         }
673         return 0;
674 }
675
676 /*
677  * Get a ceph client with specific addr and configuration, if one does
678  * not exist create it.  Either way, ceph_opts is consumed by this
679  * function.
680  */
681 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
682 {
683         struct rbd_client *rbdc;
684
685         rbdc = rbd_client_find(ceph_opts);
686         if (rbdc)       /* using an existing client */
687                 ceph_destroy_options(ceph_opts);
688         else
689                 rbdc = rbd_client_create(ceph_opts);
690
691         return rbdc;
692 }
693
694 /*
695  * Destroy ceph client
696  *
697  * Caller must hold rbd_client_list_lock.
698  */
699 static void rbd_client_release(struct kref *kref)
700 {
701         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
702
703         dout("%s: rbdc %p\n", __func__, rbdc);
704         spin_lock(&rbd_client_list_lock);
705         list_del(&rbdc->node);
706         spin_unlock(&rbd_client_list_lock);
707
708         ceph_destroy_client(rbdc->client);
709         kfree(rbdc);
710 }
711
712 /*
713  * Drop reference to ceph client node. If it's not referenced anymore, release
714  * it.
715  */
716 static void rbd_put_client(struct rbd_client *rbdc)
717 {
718         if (rbdc)
719                 kref_put(&rbdc->kref, rbd_client_release);
720 }
721
722 static bool rbd_image_format_valid(u32 image_format)
723 {
724         return image_format == 1 || image_format == 2;
725 }
726
727 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
728 {
729         size_t size;
730         u32 snap_count;
731
732         /* The header has to start with the magic rbd header text */
733         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
734                 return false;
735
736         /* The bio layer requires at least sector-sized I/O */
737
738         if (ondisk->options.order < SECTOR_SHIFT)
739                 return false;
740
741         /* If we use u64 in a few spots we may be able to loosen this */
742
743         if (ondisk->options.order > 8 * sizeof (int) - 1)
744                 return false;
745
746         /*
747          * The size of a snapshot header has to fit in a size_t, and
748          * that limits the number of snapshots.
749          */
750         snap_count = le32_to_cpu(ondisk->snap_count);
751         size = SIZE_MAX - sizeof (struct ceph_snap_context);
752         if (snap_count > size / sizeof (__le64))
753                 return false;
754
755         /*
756          * Not only that, but the size of the entire the snapshot
757          * header must also be representable in a size_t.
758          */
759         size -= snap_count * sizeof (__le64);
760         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
761                 return false;
762
763         return true;
764 }
765
766 /*
767  * Fill an rbd image header with information from the given format 1
768  * on-disk header.
769  */
770 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
771                                  struct rbd_image_header_ondisk *ondisk)
772 {
773         struct rbd_image_header *header = &rbd_dev->header;
774         bool first_time = header->object_prefix == NULL;
775         struct ceph_snap_context *snapc;
776         char *object_prefix = NULL;
777         char *snap_names = NULL;
778         u64 *snap_sizes = NULL;
779         u32 snap_count;
780         size_t size;
781         int ret = -ENOMEM;
782         u32 i;
783
784         /* Allocate this now to avoid having to handle failure below */
785
786         if (first_time) {
787                 size_t len;
788
789                 len = strnlen(ondisk->object_prefix,
790                                 sizeof (ondisk->object_prefix));
791                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
792                 if (!object_prefix)
793                         return -ENOMEM;
794                 memcpy(object_prefix, ondisk->object_prefix, len);
795                 object_prefix[len] = '\0';
796         }
797
798         /* Allocate the snapshot context and fill it in */
799
800         snap_count = le32_to_cpu(ondisk->snap_count);
801         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
802         if (!snapc)
803                 goto out_err;
804         snapc->seq = le64_to_cpu(ondisk->snap_seq);
805         if (snap_count) {
806                 struct rbd_image_snap_ondisk *snaps;
807                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
808
809                 /* We'll keep a copy of the snapshot names... */
810
811                 if (snap_names_len > (u64)SIZE_MAX)
812                         goto out_2big;
813                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
814                 if (!snap_names)
815                         goto out_err;
816
817                 /* ...as well as the array of their sizes. */
818
819                 size = snap_count * sizeof (*header->snap_sizes);
820                 snap_sizes = kmalloc(size, GFP_KERNEL);
821                 if (!snap_sizes)
822                         goto out_err;
823
824                 /*
825                  * Copy the names, and fill in each snapshot's id
826                  * and size.
827                  *
828                  * Note that rbd_dev_v1_header_info() guarantees the
829                  * ondisk buffer we're working with has
830                  * snap_names_len bytes beyond the end of the
831                  * snapshot id array, this memcpy() is safe.
832                  */
833                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
834                 snaps = ondisk->snaps;
835                 for (i = 0; i < snap_count; i++) {
836                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
837                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
838                 }
839         }
840
841         /* We won't fail any more, fill in the header */
842
843         down_write(&rbd_dev->header_rwsem);
844         if (first_time) {
845                 header->object_prefix = object_prefix;
846                 header->obj_order = ondisk->options.order;
847                 header->crypt_type = ondisk->options.crypt_type;
848                 header->comp_type = ondisk->options.comp_type;
849                 /* The rest aren't used for format 1 images */
850                 header->stripe_unit = 0;
851                 header->stripe_count = 0;
852                 header->features = 0;
853         } else {
854                 ceph_put_snap_context(header->snapc);
855                 kfree(header->snap_names);
856                 kfree(header->snap_sizes);
857         }
858
859         /* The remaining fields always get updated (when we refresh) */
860
861         header->image_size = le64_to_cpu(ondisk->image_size);
862         header->snapc = snapc;
863         header->snap_names = snap_names;
864         header->snap_sizes = snap_sizes;
865
866         /* Make sure mapping size is consistent with header info */
867
868         if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
869                 if (rbd_dev->mapping.size != header->image_size)
870                         rbd_dev->mapping.size = header->image_size;
871
872         up_write(&rbd_dev->header_rwsem);
873
874         return 0;
875 out_2big:
876         ret = -EIO;
877 out_err:
878         kfree(snap_sizes);
879         kfree(snap_names);
880         ceph_put_snap_context(snapc);
881         kfree(object_prefix);
882
883         return ret;
884 }
885
886 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
887 {
888         const char *snap_name;
889
890         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
891
892         /* Skip over names until we find the one we are looking for */
893
894         snap_name = rbd_dev->header.snap_names;
895         while (which--)
896                 snap_name += strlen(snap_name) + 1;
897
898         return kstrdup(snap_name, GFP_KERNEL);
899 }
900
901 /*
902  * Snapshot id comparison function for use with qsort()/bsearch().
903  * Note that result is for snapshots in *descending* order.
904  */
905 static int snapid_compare_reverse(const void *s1, const void *s2)
906 {
907         u64 snap_id1 = *(u64 *)s1;
908         u64 snap_id2 = *(u64 *)s2;
909
910         if (snap_id1 < snap_id2)
911                 return 1;
912         return snap_id1 == snap_id2 ? 0 : -1;
913 }
914
915 /*
916  * Search a snapshot context to see if the given snapshot id is
917  * present.
918  *
919  * Returns the position of the snapshot id in the array if it's found,
920  * or BAD_SNAP_INDEX otherwise.
921  *
922  * Note: The snapshot array is in kept sorted (by the osd) in
923  * reverse order, highest snapshot id first.
924  */
925 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
926 {
927         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
928         u64 *found;
929
930         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
931                                 sizeof (snap_id), snapid_compare_reverse);
932
933         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
934 }
935
936 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
937                                         u64 snap_id)
938 {
939         u32 which;
940         const char *snap_name;
941
942         which = rbd_dev_snap_index(rbd_dev, snap_id);
943         if (which == BAD_SNAP_INDEX)
944                 return ERR_PTR(-ENOENT);
945
946         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
947         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
948 }
949
950 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
951 {
952         if (snap_id == CEPH_NOSNAP)
953                 return RBD_SNAP_HEAD_NAME;
954
955         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
956         if (rbd_dev->image_format == 1)
957                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
958
959         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
960 }
961
962 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
963                                 u64 *snap_size)
964 {
965         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
966         if (snap_id == CEPH_NOSNAP) {
967                 *snap_size = rbd_dev->header.image_size;
968         } else if (rbd_dev->image_format == 1) {
969                 u32 which;
970
971                 which = rbd_dev_snap_index(rbd_dev, snap_id);
972                 if (which == BAD_SNAP_INDEX)
973                         return -ENOENT;
974
975                 *snap_size = rbd_dev->header.snap_sizes[which];
976         } else {
977                 u64 size = 0;
978                 int ret;
979
980                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
981                 if (ret)
982                         return ret;
983
984                 *snap_size = size;
985         }
986         return 0;
987 }
988
989 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
990                         u64 *snap_features)
991 {
992         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
993         if (snap_id == CEPH_NOSNAP) {
994                 *snap_features = rbd_dev->header.features;
995         } else if (rbd_dev->image_format == 1) {
996                 *snap_features = 0;     /* No features for format 1 */
997         } else {
998                 u64 features = 0;
999                 int ret;
1000
1001                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1002                 if (ret)
1003                         return ret;
1004
1005                 *snap_features = features;
1006         }
1007         return 0;
1008 }
1009
1010 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1011 {
1012         u64 snap_id = rbd_dev->spec->snap_id;
1013         u64 size = 0;
1014         u64 features = 0;
1015         int ret;
1016
1017         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1018         if (ret)
1019                 return ret;
1020         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1021         if (ret)
1022                 return ret;
1023
1024         rbd_dev->mapping.size = size;
1025         rbd_dev->mapping.features = features;
1026
1027         return 0;
1028 }
1029
1030 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1031 {
1032         rbd_dev->mapping.size = 0;
1033         rbd_dev->mapping.features = 0;
1034 }
1035
1036 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1037 {
1038         char *name;
1039         u64 segment;
1040         int ret;
1041         char *name_format;
1042
1043         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1044         if (!name)
1045                 return NULL;
1046         segment = offset >> rbd_dev->header.obj_order;
1047         name_format = "%s.%012llx";
1048         if (rbd_dev->image_format == 2)
1049                 name_format = "%s.%016llx";
1050         ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, name_format,
1051                         rbd_dev->header.object_prefix, segment);
1052         if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
1053                 pr_err("error formatting segment name for #%llu (%d)\n",
1054                         segment, ret);
1055                 kfree(name);
1056                 name = NULL;
1057         }
1058
1059         return name;
1060 }
1061
1062 static void rbd_segment_name_free(const char *name)
1063 {
1064         /* The explicit cast here is needed to drop the const qualifier */
1065
1066         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1067 }
1068
1069 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1070 {
1071         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1072
1073         return offset & (segment_size - 1);
1074 }
1075
1076 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1077                                 u64 offset, u64 length)
1078 {
1079         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1080
1081         offset &= segment_size - 1;
1082
1083         rbd_assert(length <= U64_MAX - offset);
1084         if (offset + length > segment_size)
1085                 length = segment_size - offset;
1086
1087         return length;
1088 }
1089
1090 /*
1091  * returns the size of an object in the image
1092  */
1093 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1094 {
1095         return 1 << header->obj_order;
1096 }
1097
1098 /*
1099  * bio helpers
1100  */
1101
1102 static void bio_chain_put(struct bio *chain)
1103 {
1104         struct bio *tmp;
1105
1106         while (chain) {
1107                 tmp = chain;
1108                 chain = chain->bi_next;
1109                 bio_put(tmp);
1110         }
1111 }
1112
1113 /*
1114  * zeros a bio chain, starting at specific offset
1115  */
1116 static void zero_bio_chain(struct bio *chain, int start_ofs)
1117 {
1118         struct bio_vec *bv;
1119         unsigned long flags;
1120         void *buf;
1121         int i;
1122         int pos = 0;
1123
1124         while (chain) {
1125                 bio_for_each_segment(bv, chain, i) {
1126                         if (pos + bv->bv_len > start_ofs) {
1127                                 int remainder = max(start_ofs - pos, 0);
1128                                 buf = bvec_kmap_irq(bv, &flags);
1129                                 memset(buf + remainder, 0,
1130                                        bv->bv_len - remainder);
1131                                 flush_dcache_page(bv->bv_page);
1132                                 bvec_kunmap_irq(buf, &flags);
1133                         }
1134                         pos += bv->bv_len;
1135                 }
1136
1137                 chain = chain->bi_next;
1138         }
1139 }
1140
1141 /*
1142  * similar to zero_bio_chain(), zeros data defined by a page array,
1143  * starting at the given byte offset from the start of the array and
1144  * continuing up to the given end offset.  The pages array is
1145  * assumed to be big enough to hold all bytes up to the end.
1146  */
1147 static void zero_pages(struct page **pages, u64 offset, u64 end)
1148 {
1149         struct page **page = &pages[offset >> PAGE_SHIFT];
1150
1151         rbd_assert(end > offset);
1152         rbd_assert(end - offset <= (u64)SIZE_MAX);
1153         while (offset < end) {
1154                 size_t page_offset;
1155                 size_t length;
1156                 unsigned long flags;
1157                 void *kaddr;
1158
1159                 page_offset = (size_t)(offset & ~PAGE_MASK);
1160                 length = min(PAGE_SIZE - page_offset, (size_t)(end - offset));
1161                 local_irq_save(flags);
1162                 kaddr = kmap_atomic(*page);
1163                 memset(kaddr + page_offset, 0, length);
1164                 flush_dcache_page(*page);
1165                 kunmap_atomic(kaddr);
1166                 local_irq_restore(flags);
1167
1168                 offset += length;
1169                 page++;
1170         }
1171 }
1172
1173 /*
1174  * Clone a portion of a bio, starting at the given byte offset
1175  * and continuing for the number of bytes indicated.
1176  */
1177 static struct bio *bio_clone_range(struct bio *bio_src,
1178                                         unsigned int offset,
1179                                         unsigned int len,
1180                                         gfp_t gfpmask)
1181 {
1182         struct bio_vec *bv;
1183         unsigned int resid;
1184         unsigned short idx;
1185         unsigned int voff;
1186         unsigned short end_idx;
1187         unsigned short vcnt;
1188         struct bio *bio;
1189
1190         /* Handle the easy case for the caller */
1191
1192         if (!offset && len == bio_src->bi_size)
1193                 return bio_clone(bio_src, gfpmask);
1194
1195         if (WARN_ON_ONCE(!len))
1196                 return NULL;
1197         if (WARN_ON_ONCE(len > bio_src->bi_size))
1198                 return NULL;
1199         if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
1200                 return NULL;
1201
1202         /* Find first affected segment... */
1203
1204         resid = offset;
1205         bio_for_each_segment(bv, bio_src, idx) {
1206                 if (resid < bv->bv_len)
1207                         break;
1208                 resid -= bv->bv_len;
1209         }
1210         voff = resid;
1211
1212         /* ...and the last affected segment */
1213
1214         resid += len;
1215         __bio_for_each_segment(bv, bio_src, end_idx, idx) {
1216                 if (resid <= bv->bv_len)
1217                         break;
1218                 resid -= bv->bv_len;
1219         }
1220         vcnt = end_idx - idx + 1;
1221
1222         /* Build the clone */
1223
1224         bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1225         if (!bio)
1226                 return NULL;    /* ENOMEM */
1227
1228         bio->bi_bdev = bio_src->bi_bdev;
1229         bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1230         bio->bi_rw = bio_src->bi_rw;
1231         bio->bi_flags |= 1 << BIO_CLONED;
1232
1233         /*
1234          * Copy over our part of the bio_vec, then update the first
1235          * and last (or only) entries.
1236          */
1237         memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1238                         vcnt * sizeof (struct bio_vec));
1239         bio->bi_io_vec[0].bv_offset += voff;
1240         if (vcnt > 1) {
1241                 bio->bi_io_vec[0].bv_len -= voff;
1242                 bio->bi_io_vec[vcnt - 1].bv_len = resid;
1243         } else {
1244                 bio->bi_io_vec[0].bv_len = len;
1245         }
1246
1247         bio->bi_vcnt = vcnt;
1248         bio->bi_size = len;
1249         bio->bi_idx = 0;
1250
1251         return bio;
1252 }
1253
1254 /*
1255  * Clone a portion of a bio chain, starting at the given byte offset
1256  * into the first bio in the source chain and continuing for the
1257  * number of bytes indicated.  The result is another bio chain of
1258  * exactly the given length, or a null pointer on error.
1259  *
1260  * The bio_src and offset parameters are both in-out.  On entry they
1261  * refer to the first source bio and the offset into that bio where
1262  * the start of data to be cloned is located.
1263  *
1264  * On return, bio_src is updated to refer to the bio in the source
1265  * chain that contains first un-cloned byte, and *offset will
1266  * contain the offset of that byte within that bio.
1267  */
1268 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1269                                         unsigned int *offset,
1270                                         unsigned int len,
1271                                         gfp_t gfpmask)
1272 {
1273         struct bio *bi = *bio_src;
1274         unsigned int off = *offset;
1275         struct bio *chain = NULL;
1276         struct bio **end;
1277
1278         /* Build up a chain of clone bios up to the limit */
1279
1280         if (!bi || off >= bi->bi_size || !len)
1281                 return NULL;            /* Nothing to clone */
1282
1283         end = &chain;
1284         while (len) {
1285                 unsigned int bi_size;
1286                 struct bio *bio;
1287
1288                 if (!bi) {
1289                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1290                         goto out_err;   /* EINVAL; ran out of bio's */
1291                 }
1292                 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1293                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1294                 if (!bio)
1295                         goto out_err;   /* ENOMEM */
1296
1297                 *end = bio;
1298                 end = &bio->bi_next;
1299
1300                 off += bi_size;
1301                 if (off == bi->bi_size) {
1302                         bi = bi->bi_next;
1303                         off = 0;
1304                 }
1305                 len -= bi_size;
1306         }
1307         *bio_src = bi;
1308         *offset = off;
1309
1310         return chain;
1311 out_err:
1312         bio_chain_put(chain);
1313
1314         return NULL;
1315 }
1316
1317 /*
1318  * The default/initial value for all object request flags is 0.  For
1319  * each flag, once its value is set to 1 it is never reset to 0
1320  * again.
1321  */
1322 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1323 {
1324         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1325                 struct rbd_device *rbd_dev;
1326
1327                 rbd_dev = obj_request->img_request->rbd_dev;
1328                 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1329                         obj_request);
1330         }
1331 }
1332
1333 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1334 {
1335         smp_mb();
1336         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1337 }
1338
1339 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1340 {
1341         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1342                 struct rbd_device *rbd_dev = NULL;
1343
1344                 if (obj_request_img_data_test(obj_request))
1345                         rbd_dev = obj_request->img_request->rbd_dev;
1346                 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1347                         obj_request);
1348         }
1349 }
1350
1351 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1352 {
1353         smp_mb();
1354         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1355 }
1356
1357 /*
1358  * This sets the KNOWN flag after (possibly) setting the EXISTS
1359  * flag.  The latter is set based on the "exists" value provided.
1360  *
1361  * Note that for our purposes once an object exists it never goes
1362  * away again.  It's possible that the response from two existence
1363  * checks are separated by the creation of the target object, and
1364  * the first ("doesn't exist") response arrives *after* the second
1365  * ("does exist").  In that case we ignore the second one.
1366  */
1367 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1368                                 bool exists)
1369 {
1370         if (exists)
1371                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1372         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1373         smp_mb();
1374 }
1375
1376 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1377 {
1378         smp_mb();
1379         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1380 }
1381
1382 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1383 {
1384         smp_mb();
1385         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1386 }
1387
1388 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1389 {
1390         struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1391
1392         return obj_request->img_offset <
1393             round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1394 }
1395
1396 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1397 {
1398         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1399                 atomic_read(&obj_request->kref.refcount));
1400         kref_get(&obj_request->kref);
1401 }
1402
1403 static void rbd_obj_request_destroy(struct kref *kref);
1404 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1405 {
1406         rbd_assert(obj_request != NULL);
1407         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1408                 atomic_read(&obj_request->kref.refcount));
1409         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1410 }
1411
1412 static void rbd_img_request_get(struct rbd_img_request *img_request)
1413 {
1414         dout("%s: img %p (was %d)\n", __func__, img_request,
1415              atomic_read(&img_request->kref.refcount));
1416         kref_get(&img_request->kref);
1417 }
1418
1419 static bool img_request_child_test(struct rbd_img_request *img_request);
1420 static void rbd_parent_request_destroy(struct kref *kref);
1421 static void rbd_img_request_destroy(struct kref *kref);
1422 static void rbd_img_request_put(struct rbd_img_request *img_request)
1423 {
1424         rbd_assert(img_request != NULL);
1425         dout("%s: img %p (was %d)\n", __func__, img_request,
1426                 atomic_read(&img_request->kref.refcount));
1427         if (img_request_child_test(img_request))
1428                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1429         else
1430                 kref_put(&img_request->kref, rbd_img_request_destroy);
1431 }
1432
1433 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1434                                         struct rbd_obj_request *obj_request)
1435 {
1436         rbd_assert(obj_request->img_request == NULL);
1437
1438         /* Image request now owns object's original reference */
1439         obj_request->img_request = img_request;
1440         obj_request->which = img_request->obj_request_count;
1441         rbd_assert(!obj_request_img_data_test(obj_request));
1442         obj_request_img_data_set(obj_request);
1443         rbd_assert(obj_request->which != BAD_WHICH);
1444         img_request->obj_request_count++;
1445         list_add_tail(&obj_request->links, &img_request->obj_requests);
1446         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1447                 obj_request->which);
1448 }
1449
1450 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1451                                         struct rbd_obj_request *obj_request)
1452 {
1453         rbd_assert(obj_request->which != BAD_WHICH);
1454
1455         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1456                 obj_request->which);
1457         list_del(&obj_request->links);
1458         rbd_assert(img_request->obj_request_count > 0);
1459         img_request->obj_request_count--;
1460         rbd_assert(obj_request->which == img_request->obj_request_count);
1461         obj_request->which = BAD_WHICH;
1462         rbd_assert(obj_request_img_data_test(obj_request));
1463         rbd_assert(obj_request->img_request == img_request);
1464         obj_request->img_request = NULL;
1465         obj_request->callback = NULL;
1466         rbd_obj_request_put(obj_request);
1467 }
1468
1469 static bool obj_request_type_valid(enum obj_request_type type)
1470 {
1471         switch (type) {
1472         case OBJ_REQUEST_NODATA:
1473         case OBJ_REQUEST_BIO:
1474         case OBJ_REQUEST_PAGES:
1475                 return true;
1476         default:
1477                 return false;
1478         }
1479 }
1480
1481 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1482                                 struct rbd_obj_request *obj_request)
1483 {
1484         dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1485
1486         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1487 }
1488
1489 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1490 {
1491
1492         dout("%s: img %p\n", __func__, img_request);
1493
1494         /*
1495          * If no error occurred, compute the aggregate transfer
1496          * count for the image request.  We could instead use
1497          * atomic64_cmpxchg() to update it as each object request
1498          * completes; not clear which way is better off hand.
1499          */
1500         if (!img_request->result) {
1501                 struct rbd_obj_request *obj_request;
1502                 u64 xferred = 0;
1503
1504                 for_each_obj_request(img_request, obj_request)
1505                         xferred += obj_request->xferred;
1506                 img_request->xferred = xferred;
1507         }
1508
1509         if (img_request->callback)
1510                 img_request->callback(img_request);
1511         else
1512                 rbd_img_request_put(img_request);
1513 }
1514
1515 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1516
1517 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1518 {
1519         dout("%s: obj %p\n", __func__, obj_request);
1520
1521         return wait_for_completion_interruptible(&obj_request->completion);
1522 }
1523
1524 /*
1525  * The default/initial value for all image request flags is 0.  Each
1526  * is conditionally set to 1 at image request initialization time
1527  * and currently never change thereafter.
1528  */
1529 static void img_request_write_set(struct rbd_img_request *img_request)
1530 {
1531         set_bit(IMG_REQ_WRITE, &img_request->flags);
1532         smp_mb();
1533 }
1534
1535 static bool img_request_write_test(struct rbd_img_request *img_request)
1536 {
1537         smp_mb();
1538         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1539 }
1540
1541 static void img_request_child_set(struct rbd_img_request *img_request)
1542 {
1543         set_bit(IMG_REQ_CHILD, &img_request->flags);
1544         smp_mb();
1545 }
1546
1547 static void img_request_child_clear(struct rbd_img_request *img_request)
1548 {
1549         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1550         smp_mb();
1551 }
1552
1553 static bool img_request_child_test(struct rbd_img_request *img_request)
1554 {
1555         smp_mb();
1556         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1557 }
1558
1559 static void img_request_layered_set(struct rbd_img_request *img_request)
1560 {
1561         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1562         smp_mb();
1563 }
1564
1565 static void img_request_layered_clear(struct rbd_img_request *img_request)
1566 {
1567         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1568         smp_mb();
1569 }
1570
1571 static bool img_request_layered_test(struct rbd_img_request *img_request)
1572 {
1573         smp_mb();
1574         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1575 }
1576
1577 static void
1578 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1579 {
1580         u64 xferred = obj_request->xferred;
1581         u64 length = obj_request->length;
1582
1583         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1584                 obj_request, obj_request->img_request, obj_request->result,
1585                 xferred, length);
1586         /*
1587          * ENOENT means a hole in the image.  We zero-fill the entire
1588          * length of the request.  A short read also implies zero-fill
1589          * to the end of the request.  An error requires the whole
1590          * length of the request to be reported finished with an error
1591          * to the block layer.  In each case we update the xferred
1592          * count to indicate the whole request was satisfied.
1593          */
1594         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1595         if (obj_request->result == -ENOENT) {
1596                 if (obj_request->type == OBJ_REQUEST_BIO)
1597                         zero_bio_chain(obj_request->bio_list, 0);
1598                 else
1599                         zero_pages(obj_request->pages, 0, length);
1600                 obj_request->result = 0;
1601         } else if (xferred < length && !obj_request->result) {
1602                 if (obj_request->type == OBJ_REQUEST_BIO)
1603                         zero_bio_chain(obj_request->bio_list, xferred);
1604                 else
1605                         zero_pages(obj_request->pages, xferred, length);
1606         }
1607         obj_request->xferred = length;
1608         obj_request_done_set(obj_request);
1609 }
1610
1611 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1612 {
1613         dout("%s: obj %p cb %p\n", __func__, obj_request,
1614                 obj_request->callback);
1615         if (obj_request->callback)
1616                 obj_request->callback(obj_request);
1617         else
1618                 complete_all(&obj_request->completion);
1619 }
1620
1621 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1622 {
1623         dout("%s: obj %p\n", __func__, obj_request);
1624         obj_request_done_set(obj_request);
1625 }
1626
1627 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1628 {
1629         struct rbd_img_request *img_request = NULL;
1630         struct rbd_device *rbd_dev = NULL;
1631         bool layered = false;
1632
1633         if (obj_request_img_data_test(obj_request)) {
1634                 img_request = obj_request->img_request;
1635                 layered = img_request && img_request_layered_test(img_request);
1636                 rbd_dev = img_request->rbd_dev;
1637         }
1638
1639         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1640                 obj_request, img_request, obj_request->result,
1641                 obj_request->xferred, obj_request->length);
1642         if (layered && obj_request->result == -ENOENT &&
1643                         obj_request->img_offset < rbd_dev->parent_overlap)
1644                 rbd_img_parent_read(obj_request);
1645         else if (img_request)
1646                 rbd_img_obj_request_read_callback(obj_request);
1647         else
1648                 obj_request_done_set(obj_request);
1649 }
1650
1651 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1652 {
1653         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1654                 obj_request->result, obj_request->length);
1655         /*
1656          * There is no such thing as a successful short write.  Set
1657          * it to our originally-requested length.
1658          */
1659         obj_request->xferred = obj_request->length;
1660         obj_request_done_set(obj_request);
1661 }
1662
1663 /*
1664  * For a simple stat call there's nothing to do.  We'll do more if
1665  * this is part of a write sequence for a layered image.
1666  */
1667 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1668 {
1669         dout("%s: obj %p\n", __func__, obj_request);
1670         obj_request_done_set(obj_request);
1671 }
1672
1673 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1674                                 struct ceph_msg *msg)
1675 {
1676         struct rbd_obj_request *obj_request = osd_req->r_priv;
1677         u16 opcode;
1678
1679         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1680         rbd_assert(osd_req == obj_request->osd_req);
1681         if (obj_request_img_data_test(obj_request)) {
1682                 rbd_assert(obj_request->img_request);
1683                 rbd_assert(obj_request->which != BAD_WHICH);
1684         } else {
1685                 rbd_assert(obj_request->which == BAD_WHICH);
1686         }
1687
1688         if (osd_req->r_result < 0)
1689                 obj_request->result = osd_req->r_result;
1690
1691         BUG_ON(osd_req->r_num_ops > 2);
1692
1693         /*
1694          * We support a 64-bit length, but ultimately it has to be
1695          * passed to blk_end_request(), which takes an unsigned int.
1696          */
1697         obj_request->xferred = osd_req->r_reply_op_len[0];
1698         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1699         opcode = osd_req->r_ops[0].op;
1700         switch (opcode) {
1701         case CEPH_OSD_OP_READ:
1702                 rbd_osd_read_callback(obj_request);
1703                 break;
1704         case CEPH_OSD_OP_WRITE:
1705                 rbd_osd_write_callback(obj_request);
1706                 break;
1707         case CEPH_OSD_OP_STAT:
1708                 rbd_osd_stat_callback(obj_request);
1709                 break;
1710         case CEPH_OSD_OP_CALL:
1711         case CEPH_OSD_OP_NOTIFY_ACK:
1712         case CEPH_OSD_OP_WATCH:
1713                 rbd_osd_trivial_callback(obj_request);
1714                 break;
1715         default:
1716                 rbd_warn(NULL, "%s: unsupported op %hu\n",
1717                         obj_request->object_name, (unsigned short) opcode);
1718                 break;
1719         }
1720
1721         if (obj_request_done_test(obj_request))
1722                 rbd_obj_request_complete(obj_request);
1723 }
1724
1725 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1726 {
1727         struct rbd_img_request *img_request = obj_request->img_request;
1728         struct ceph_osd_request *osd_req = obj_request->osd_req;
1729         u64 snap_id;
1730
1731         rbd_assert(osd_req != NULL);
1732
1733         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1734         ceph_osdc_build_request(osd_req, obj_request->offset,
1735                         NULL, snap_id, NULL);
1736 }
1737
1738 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1739 {
1740         struct rbd_img_request *img_request = obj_request->img_request;
1741         struct ceph_osd_request *osd_req = obj_request->osd_req;
1742         struct ceph_snap_context *snapc;
1743         struct timespec mtime = CURRENT_TIME;
1744
1745         rbd_assert(osd_req != NULL);
1746
1747         snapc = img_request ? img_request->snapc : NULL;
1748         ceph_osdc_build_request(osd_req, obj_request->offset,
1749                         snapc, CEPH_NOSNAP, &mtime);
1750 }
1751
1752 static struct ceph_osd_request *rbd_osd_req_create(
1753                                         struct rbd_device *rbd_dev,
1754                                         bool write_request,
1755                                         struct rbd_obj_request *obj_request)
1756 {
1757         struct ceph_snap_context *snapc = NULL;
1758         struct ceph_osd_client *osdc;
1759         struct ceph_osd_request *osd_req;
1760
1761         if (obj_request_img_data_test(obj_request)) {
1762                 struct rbd_img_request *img_request = obj_request->img_request;
1763
1764                 rbd_assert(write_request ==
1765                                 img_request_write_test(img_request));
1766                 if (write_request)
1767                         snapc = img_request->snapc;
1768         }
1769
1770         /* Allocate and initialize the request, for the single op */
1771
1772         osdc = &rbd_dev->rbd_client->client->osdc;
1773         osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1774         if (!osd_req)
1775                 return NULL;    /* ENOMEM */
1776
1777         if (write_request)
1778                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1779         else
1780                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1781
1782         osd_req->r_callback = rbd_osd_req_callback;
1783         osd_req->r_priv = obj_request;
1784
1785         osd_req->r_oid_len = strlen(obj_request->object_name);
1786         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1787         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1788
1789         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1790
1791         return osd_req;
1792 }
1793
1794 /*
1795  * Create a copyup osd request based on the information in the
1796  * object request supplied.  A copyup request has two osd ops,
1797  * a copyup method call, and a "normal" write request.
1798  */
1799 static struct ceph_osd_request *
1800 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1801 {
1802         struct rbd_img_request *img_request;
1803         struct ceph_snap_context *snapc;
1804         struct rbd_device *rbd_dev;
1805         struct ceph_osd_client *osdc;
1806         struct ceph_osd_request *osd_req;
1807
1808         rbd_assert(obj_request_img_data_test(obj_request));
1809         img_request = obj_request->img_request;
1810         rbd_assert(img_request);
1811         rbd_assert(img_request_write_test(img_request));
1812
1813         /* Allocate and initialize the request, for the two ops */
1814
1815         snapc = img_request->snapc;
1816         rbd_dev = img_request->rbd_dev;
1817         osdc = &rbd_dev->rbd_client->client->osdc;
1818         osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1819         if (!osd_req)
1820                 return NULL;    /* ENOMEM */
1821
1822         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1823         osd_req->r_callback = rbd_osd_req_callback;
1824         osd_req->r_priv = obj_request;
1825
1826         osd_req->r_oid_len = strlen(obj_request->object_name);
1827         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1828         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1829
1830         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1831
1832         return osd_req;
1833 }
1834
1835
1836 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1837 {
1838         ceph_osdc_put_request(osd_req);
1839 }
1840
1841 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1842
1843 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1844                                                 u64 offset, u64 length,
1845                                                 enum obj_request_type type)
1846 {
1847         struct rbd_obj_request *obj_request;
1848         size_t size;
1849         char *name;
1850
1851         rbd_assert(obj_request_type_valid(type));
1852
1853         size = strlen(object_name) + 1;
1854         name = kmalloc(size, GFP_KERNEL);
1855         if (!name)
1856                 return NULL;
1857
1858         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1859         if (!obj_request) {
1860                 kfree(name);
1861                 return NULL;
1862         }
1863
1864         obj_request->object_name = memcpy(name, object_name, size);
1865         obj_request->offset = offset;
1866         obj_request->length = length;
1867         obj_request->flags = 0;
1868         obj_request->which = BAD_WHICH;
1869         obj_request->type = type;
1870         INIT_LIST_HEAD(&obj_request->links);
1871         init_completion(&obj_request->completion);
1872         kref_init(&obj_request->kref);
1873
1874         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1875                 offset, length, (int)type, obj_request);
1876
1877         return obj_request;
1878 }
1879
1880 static void rbd_obj_request_destroy(struct kref *kref)
1881 {
1882         struct rbd_obj_request *obj_request;
1883
1884         obj_request = container_of(kref, struct rbd_obj_request, kref);
1885
1886         dout("%s: obj %p\n", __func__, obj_request);
1887
1888         rbd_assert(obj_request->img_request == NULL);
1889         rbd_assert(obj_request->which == BAD_WHICH);
1890
1891         if (obj_request->osd_req)
1892                 rbd_osd_req_destroy(obj_request->osd_req);
1893
1894         rbd_assert(obj_request_type_valid(obj_request->type));
1895         switch (obj_request->type) {
1896         case OBJ_REQUEST_NODATA:
1897                 break;          /* Nothing to do */
1898         case OBJ_REQUEST_BIO:
1899                 if (obj_request->bio_list)
1900                         bio_chain_put(obj_request->bio_list);
1901                 break;
1902         case OBJ_REQUEST_PAGES:
1903                 if (obj_request->pages)
1904                         ceph_release_page_vector(obj_request->pages,
1905                                                 obj_request->page_count);
1906                 break;
1907         }
1908
1909         kfree(obj_request->object_name);
1910         obj_request->object_name = NULL;
1911         kmem_cache_free(rbd_obj_request_cache, obj_request);
1912 }
1913
1914 /* It's OK to call this for a device with no parent */
1915
1916 static void rbd_spec_put(struct rbd_spec *spec);
1917 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1918 {
1919         rbd_dev_remove_parent(rbd_dev);
1920         rbd_spec_put(rbd_dev->parent_spec);
1921         rbd_dev->parent_spec = NULL;
1922         rbd_dev->parent_overlap = 0;
1923 }
1924
1925 /*
1926  * Parent image reference counting is used to determine when an
1927  * image's parent fields can be safely torn down--after there are no
1928  * more in-flight requests to the parent image.  When the last
1929  * reference is dropped, cleaning them up is safe.
1930  */
1931 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1932 {
1933         int counter;
1934
1935         if (!rbd_dev->parent_spec)
1936                 return;
1937
1938         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1939         if (counter > 0)
1940                 return;
1941
1942         /* Last reference; clean up parent data structures */
1943
1944         if (!counter)
1945                 rbd_dev_unparent(rbd_dev);
1946         else
1947                 rbd_warn(rbd_dev, "parent reference underflow\n");
1948 }
1949
1950 /*
1951  * If an image has a non-zero parent overlap, get a reference to its
1952  * parent.
1953  *
1954  * We must get the reference before checking for the overlap to
1955  * coordinate properly with zeroing the parent overlap in
1956  * rbd_dev_v2_parent_info() when an image gets flattened.  We
1957  * drop it again if there is no overlap.
1958  *
1959  * Returns true if the rbd device has a parent with a non-zero
1960  * overlap and a reference for it was successfully taken, or
1961  * false otherwise.
1962  */
1963 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1964 {
1965         int counter;
1966
1967         if (!rbd_dev->parent_spec)
1968                 return false;
1969
1970         counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1971         if (counter > 0 && rbd_dev->parent_overlap)
1972                 return true;
1973
1974         /* Image was flattened, but parent is not yet torn down */
1975
1976         if (counter < 0)
1977                 rbd_warn(rbd_dev, "parent reference overflow\n");
1978
1979         return false;
1980 }
1981
1982 /*
1983  * Caller is responsible for filling in the list of object requests
1984  * that comprises the image request, and the Linux request pointer
1985  * (if there is one).
1986  */
1987 static struct rbd_img_request *rbd_img_request_create(
1988                                         struct rbd_device *rbd_dev,
1989                                         u64 offset, u64 length,
1990                                         bool write_request)
1991 {
1992         struct rbd_img_request *img_request;
1993
1994         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1995         if (!img_request)
1996                 return NULL;
1997
1998         if (write_request) {
1999                 down_read(&rbd_dev->header_rwsem);
2000                 ceph_get_snap_context(rbd_dev->header.snapc);
2001                 up_read(&rbd_dev->header_rwsem);
2002         }
2003
2004         img_request->rq = NULL;
2005         img_request->rbd_dev = rbd_dev;
2006         img_request->offset = offset;
2007         img_request->length = length;
2008         img_request->flags = 0;
2009         if (write_request) {
2010                 img_request_write_set(img_request);
2011                 img_request->snapc = rbd_dev->header.snapc;
2012         } else {
2013                 img_request->snap_id = rbd_dev->spec->snap_id;
2014         }
2015         if (rbd_dev_parent_get(rbd_dev))
2016                 img_request_layered_set(img_request);
2017         spin_lock_init(&img_request->completion_lock);
2018         img_request->next_completion = 0;
2019         img_request->callback = NULL;
2020         img_request->result = 0;
2021         img_request->obj_request_count = 0;
2022         INIT_LIST_HEAD(&img_request->obj_requests);
2023         kref_init(&img_request->kref);
2024
2025         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2026                 write_request ? "write" : "read", offset, length,
2027                 img_request);
2028
2029         return img_request;
2030 }
2031
2032 static void rbd_img_request_destroy(struct kref *kref)
2033 {
2034         struct rbd_img_request *img_request;
2035         struct rbd_obj_request *obj_request;
2036         struct rbd_obj_request *next_obj_request;
2037
2038         img_request = container_of(kref, struct rbd_img_request, kref);
2039
2040         dout("%s: img %p\n", __func__, img_request);
2041
2042         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2043                 rbd_img_obj_request_del(img_request, obj_request);
2044         rbd_assert(img_request->obj_request_count == 0);
2045
2046         if (img_request_layered_test(img_request)) {
2047                 img_request_layered_clear(img_request);
2048                 rbd_dev_parent_put(img_request->rbd_dev);
2049         }
2050
2051         if (img_request_write_test(img_request))
2052                 ceph_put_snap_context(img_request->snapc);
2053
2054         kmem_cache_free(rbd_img_request_cache, img_request);
2055 }
2056
2057 static struct rbd_img_request *rbd_parent_request_create(
2058                                         struct rbd_obj_request *obj_request,
2059                                         u64 img_offset, u64 length)
2060 {
2061         struct rbd_img_request *parent_request;
2062         struct rbd_device *rbd_dev;
2063
2064         rbd_assert(obj_request->img_request);
2065         rbd_dev = obj_request->img_request->rbd_dev;
2066
2067         parent_request = rbd_img_request_create(rbd_dev->parent,
2068                                                 img_offset, length, false);
2069         if (!parent_request)
2070                 return NULL;
2071
2072         img_request_child_set(parent_request);
2073         rbd_obj_request_get(obj_request);
2074         parent_request->obj_request = obj_request;
2075
2076         return parent_request;
2077 }
2078
2079 static void rbd_parent_request_destroy(struct kref *kref)
2080 {
2081         struct rbd_img_request *parent_request;
2082         struct rbd_obj_request *orig_request;
2083
2084         parent_request = container_of(kref, struct rbd_img_request, kref);
2085         orig_request = parent_request->obj_request;
2086
2087         parent_request->obj_request = NULL;
2088         rbd_obj_request_put(orig_request);
2089         img_request_child_clear(parent_request);
2090
2091         rbd_img_request_destroy(kref);
2092 }
2093
2094 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2095 {
2096         struct rbd_img_request *img_request;
2097         unsigned int xferred;
2098         int result;
2099         bool more;
2100
2101         rbd_assert(obj_request_img_data_test(obj_request));
2102         img_request = obj_request->img_request;
2103
2104         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2105         xferred = (unsigned int)obj_request->xferred;
2106         result = obj_request->result;
2107         if (result) {
2108                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2109
2110                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2111                         img_request_write_test(img_request) ? "write" : "read",
2112                         obj_request->length, obj_request->img_offset,
2113                         obj_request->offset);
2114                 rbd_warn(rbd_dev, "  result %d xferred %x\n",
2115                         result, xferred);
2116                 if (!img_request->result)
2117                         img_request->result = result;
2118         }
2119
2120         /* Image object requests don't own their page array */
2121
2122         if (obj_request->type == OBJ_REQUEST_PAGES) {
2123                 obj_request->pages = NULL;
2124                 obj_request->page_count = 0;
2125         }
2126
2127         if (img_request_child_test(img_request)) {
2128                 rbd_assert(img_request->obj_request != NULL);
2129                 more = obj_request->which < img_request->obj_request_count - 1;
2130         } else {
2131                 rbd_assert(img_request->rq != NULL);
2132                 more = blk_end_request(img_request->rq, result, xferred);
2133         }
2134
2135         return more;
2136 }
2137
2138 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2139 {
2140         struct rbd_img_request *img_request;
2141         u32 which = obj_request->which;
2142         bool more = true;
2143
2144         rbd_assert(obj_request_img_data_test(obj_request));
2145         img_request = obj_request->img_request;
2146
2147         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2148         rbd_assert(img_request != NULL);
2149         rbd_assert(img_request->obj_request_count > 0);
2150         rbd_assert(which != BAD_WHICH);
2151         rbd_assert(which < img_request->obj_request_count);
2152
2153         spin_lock_irq(&img_request->completion_lock);
2154         if (which != img_request->next_completion)
2155                 goto out;
2156
2157         for_each_obj_request_from(img_request, obj_request) {
2158                 rbd_assert(more);
2159                 rbd_assert(which < img_request->obj_request_count);
2160
2161                 if (!obj_request_done_test(obj_request))
2162                         break;
2163                 more = rbd_img_obj_end_request(obj_request);
2164                 which++;
2165         }
2166
2167         rbd_assert(more ^ (which == img_request->obj_request_count));
2168         img_request->next_completion = which;
2169 out:
2170         spin_unlock_irq(&img_request->completion_lock);
2171         rbd_img_request_put(img_request);
2172
2173         if (!more)
2174                 rbd_img_request_complete(img_request);
2175 }
2176
2177 /*
2178  * Split up an image request into one or more object requests, each
2179  * to a different object.  The "type" parameter indicates whether
2180  * "data_desc" is the pointer to the head of a list of bio
2181  * structures, or the base of a page array.  In either case this
2182  * function assumes data_desc describes memory sufficient to hold
2183  * all data described by the image request.
2184  */
2185 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2186                                         enum obj_request_type type,
2187                                         void *data_desc)
2188 {
2189         struct rbd_device *rbd_dev = img_request->rbd_dev;
2190         struct rbd_obj_request *obj_request = NULL;
2191         struct rbd_obj_request *next_obj_request;
2192         bool write_request = img_request_write_test(img_request);
2193         struct bio *bio_list = 0;
2194         unsigned int bio_offset = 0;
2195         struct page **pages = 0;
2196         u64 img_offset;
2197         u64 resid;
2198         u16 opcode;
2199
2200         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2201                 (int)type, data_desc);
2202
2203         opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2204         img_offset = img_request->offset;
2205         resid = img_request->length;
2206         rbd_assert(resid > 0);
2207
2208         if (type == OBJ_REQUEST_BIO) {
2209                 bio_list = data_desc;
2210                 rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
2211         } else {
2212                 rbd_assert(type == OBJ_REQUEST_PAGES);
2213                 pages = data_desc;
2214         }
2215
2216         while (resid) {
2217                 struct ceph_osd_request *osd_req;
2218                 const char *object_name;
2219                 u64 offset;
2220                 u64 length;
2221
2222                 object_name = rbd_segment_name(rbd_dev, img_offset);
2223                 if (!object_name)
2224                         goto out_unwind;
2225                 offset = rbd_segment_offset(rbd_dev, img_offset);
2226                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2227                 obj_request = rbd_obj_request_create(object_name,
2228                                                 offset, length, type);
2229                 /* object request has its own copy of the object name */
2230                 rbd_segment_name_free(object_name);
2231                 if (!obj_request)
2232                         goto out_unwind;
2233                 /*
2234                  * set obj_request->img_request before creating the
2235                  * osd_request so that it gets the right snapc
2236                  */
2237                 rbd_img_obj_request_add(img_request, obj_request);
2238
2239                 if (type == OBJ_REQUEST_BIO) {
2240                         unsigned int clone_size;
2241
2242                         rbd_assert(length <= (u64)UINT_MAX);
2243                         clone_size = (unsigned int)length;
2244                         obj_request->bio_list =
2245                                         bio_chain_clone_range(&bio_list,
2246                                                                 &bio_offset,
2247                                                                 clone_size,
2248                                                                 GFP_ATOMIC);
2249                         if (!obj_request->bio_list)
2250                                 goto out_partial;
2251                 } else {
2252                         unsigned int page_count;
2253
2254                         obj_request->pages = pages;
2255                         page_count = (u32)calc_pages_for(offset, length);
2256                         obj_request->page_count = page_count;
2257                         if ((offset + length) & ~PAGE_MASK)
2258                                 page_count--;   /* more on last page */
2259                         pages += page_count;
2260                 }
2261
2262                 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2263                                                 obj_request);
2264                 if (!osd_req)
2265                         goto out_partial;
2266                 obj_request->osd_req = osd_req;
2267                 obj_request->callback = rbd_img_obj_callback;
2268                 rbd_img_request_get(img_request);
2269
2270                 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2271                                                 0, 0);
2272                 if (type == OBJ_REQUEST_BIO)
2273                         osd_req_op_extent_osd_data_bio(osd_req, 0,
2274                                         obj_request->bio_list, length);
2275                 else
2276                         osd_req_op_extent_osd_data_pages(osd_req, 0,
2277                                         obj_request->pages, length,
2278                                         offset & ~PAGE_MASK, false, false);
2279
2280                 if (write_request)
2281                         rbd_osd_req_format_write(obj_request);
2282                 else
2283                         rbd_osd_req_format_read(obj_request);
2284
2285                 obj_request->img_offset = img_offset;
2286
2287                 img_offset += length;
2288                 resid -= length;
2289         }
2290
2291         return 0;
2292
2293 out_partial:
2294         rbd_obj_request_put(obj_request);
2295 out_unwind:
2296         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2297                 rbd_img_obj_request_del(img_request, obj_request);
2298
2299         return -ENOMEM;
2300 }
2301
2302 static void
2303 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2304 {
2305         struct rbd_img_request *img_request;
2306         struct rbd_device *rbd_dev;
2307         struct page **pages;
2308         u32 page_count;
2309
2310         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2311         rbd_assert(obj_request_img_data_test(obj_request));
2312         img_request = obj_request->img_request;
2313         rbd_assert(img_request);
2314
2315         rbd_dev = img_request->rbd_dev;
2316         rbd_assert(rbd_dev);
2317
2318         pages = obj_request->copyup_pages;
2319         rbd_assert(pages != NULL);
2320         obj_request->copyup_pages = NULL;
2321         page_count = obj_request->copyup_page_count;
2322         rbd_assert(page_count);
2323         obj_request->copyup_page_count = 0;
2324         ceph_release_page_vector(pages, page_count);
2325
2326         /*
2327          * We want the transfer count to reflect the size of the
2328          * original write request.  There is no such thing as a
2329          * successful short write, so if the request was successful
2330          * we can just set it to the originally-requested length.
2331          */
2332         if (!obj_request->result)
2333                 obj_request->xferred = obj_request->length;
2334
2335         /* Finish up with the normal image object callback */
2336
2337         rbd_img_obj_callback(obj_request);
2338 }
2339
2340 static void
2341 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2342 {
2343         struct rbd_obj_request *orig_request;
2344         struct ceph_osd_request *osd_req;
2345         struct ceph_osd_client *osdc;
2346         struct rbd_device *rbd_dev;
2347         struct page **pages;
2348         u32 page_count;
2349         int img_result;
2350         u64 parent_length;
2351         u64 offset;
2352         u64 length;
2353
2354         rbd_assert(img_request_child_test(img_request));
2355
2356         /* First get what we need from the image request */
2357
2358         pages = img_request->copyup_pages;
2359         rbd_assert(pages != NULL);
2360         img_request->copyup_pages = NULL;
2361         page_count = img_request->copyup_page_count;
2362         rbd_assert(page_count);
2363         img_request->copyup_page_count = 0;
2364
2365         orig_request = img_request->obj_request;
2366         rbd_assert(orig_request != NULL);
2367         rbd_assert(obj_request_type_valid(orig_request->type));
2368         img_result = img_request->result;
2369         parent_length = img_request->length;
2370         rbd_assert(parent_length == img_request->xferred);
2371         rbd_img_request_put(img_request);
2372
2373         rbd_assert(orig_request->img_request);
2374         rbd_dev = orig_request->img_request->rbd_dev;
2375         rbd_assert(rbd_dev);
2376
2377         /*
2378          * If the overlap has become 0 (most likely because the
2379          * image has been flattened) we need to free the pages
2380          * and re-submit the original write request.
2381          */
2382         if (!rbd_dev->parent_overlap) {
2383                 struct ceph_osd_client *osdc;
2384
2385                 ceph_release_page_vector(pages, page_count);
2386                 osdc = &rbd_dev->rbd_client->client->osdc;
2387                 img_result = rbd_obj_request_submit(osdc, orig_request);
2388                 if (!img_result)
2389                         return;
2390         }
2391
2392         if (img_result)
2393                 goto out_err;
2394
2395         /*
2396          * The original osd request is of no use to use any more.
2397          * We need a new one that can hold the two ops in a copyup
2398          * request.  Allocate the new copyup osd request for the
2399          * original request, and release the old one.
2400          */
2401         img_result = -ENOMEM;
2402         osd_req = rbd_osd_req_create_copyup(orig_request);
2403         if (!osd_req)
2404                 goto out_err;
2405         rbd_osd_req_destroy(orig_request->osd_req);
2406         orig_request->osd_req = osd_req;
2407         orig_request->copyup_pages = pages;
2408         orig_request->copyup_page_count = page_count;
2409
2410         /* Initialize the copyup op */
2411
2412         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2413         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2414                                                 false, false);
2415
2416         /* Then the original write request op */
2417
2418         offset = orig_request->offset;
2419         length = orig_request->length;
2420         osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2421                                         offset, length, 0, 0);
2422         if (orig_request->type == OBJ_REQUEST_BIO)
2423                 osd_req_op_extent_osd_data_bio(osd_req, 1,
2424                                         orig_request->bio_list, length);
2425         else
2426                 osd_req_op_extent_osd_data_pages(osd_req, 1,
2427                                         orig_request->pages, length,
2428                                         offset & ~PAGE_MASK, false, false);
2429
2430         rbd_osd_req_format_write(orig_request);
2431
2432         /* All set, send it off. */
2433
2434         orig_request->callback = rbd_img_obj_copyup_callback;
2435         osdc = &rbd_dev->rbd_client->client->osdc;
2436         img_result = rbd_obj_request_submit(osdc, orig_request);
2437         if (!img_result)
2438                 return;
2439 out_err:
2440         /* Record the error code and complete the request */
2441
2442         orig_request->result = img_result;
2443         orig_request->xferred = 0;
2444         obj_request_done_set(orig_request);
2445         rbd_obj_request_complete(orig_request);
2446 }
2447
2448 /*
2449  * Read from the parent image the range of data that covers the
2450  * entire target of the given object request.  This is used for
2451  * satisfying a layered image write request when the target of an
2452  * object request from the image request does not exist.
2453  *
2454  * A page array big enough to hold the returned data is allocated
2455  * and supplied to rbd_img_request_fill() as the "data descriptor."
2456  * When the read completes, this page array will be transferred to
2457  * the original object request for the copyup operation.
2458  *
2459  * If an error occurs, record it as the result of the original
2460  * object request and mark it done so it gets completed.
2461  */
2462 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2463 {
2464         struct rbd_img_request *img_request = NULL;
2465         struct rbd_img_request *parent_request = NULL;
2466         struct rbd_device *rbd_dev;
2467         u64 img_offset;
2468         u64 length;
2469         struct page **pages = NULL;
2470         u32 page_count;
2471         int result;
2472
2473         rbd_assert(obj_request_img_data_test(obj_request));
2474         rbd_assert(obj_request_type_valid(obj_request->type));
2475
2476         img_request = obj_request->img_request;
2477         rbd_assert(img_request != NULL);
2478         rbd_dev = img_request->rbd_dev;
2479         rbd_assert(rbd_dev->parent != NULL);
2480
2481         /*
2482          * Determine the byte range covered by the object in the
2483          * child image to which the original request was to be sent.
2484          */
2485         img_offset = obj_request->img_offset - obj_request->offset;
2486         length = (u64)1 << rbd_dev->header.obj_order;
2487
2488         /*
2489          * There is no defined parent data beyond the parent
2490          * overlap, so limit what we read at that boundary if
2491          * necessary.
2492          */
2493         if (img_offset + length > rbd_dev->parent_overlap) {
2494                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2495                 length = rbd_dev->parent_overlap - img_offset;
2496         }
2497
2498         /*
2499          * Allocate a page array big enough to receive the data read
2500          * from the parent.
2501          */
2502         page_count = (u32)calc_pages_for(0, length);
2503         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2504         if (IS_ERR(pages)) {
2505                 result = PTR_ERR(pages);
2506                 pages = NULL;
2507                 goto out_err;
2508         }
2509
2510         result = -ENOMEM;
2511         parent_request = rbd_parent_request_create(obj_request,
2512                                                 img_offset, length);
2513         if (!parent_request)
2514                 goto out_err;
2515
2516         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2517         if (result)
2518                 goto out_err;
2519         parent_request->copyup_pages = pages;
2520         parent_request->copyup_page_count = page_count;
2521
2522         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2523         result = rbd_img_request_submit(parent_request);
2524         if (!result)
2525                 return 0;
2526
2527         parent_request->copyup_pages = NULL;
2528         parent_request->copyup_page_count = 0;
2529         parent_request->obj_request = NULL;
2530         rbd_obj_request_put(obj_request);
2531 out_err:
2532         if (pages)
2533                 ceph_release_page_vector(pages, page_count);
2534         if (parent_request)
2535                 rbd_img_request_put(parent_request);
2536         obj_request->result = result;
2537         obj_request->xferred = 0;
2538         obj_request_done_set(obj_request);
2539
2540         return result;
2541 }
2542
2543 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2544 {
2545         struct rbd_obj_request *orig_request;
2546         struct rbd_device *rbd_dev;
2547         int result;
2548
2549         rbd_assert(!obj_request_img_data_test(obj_request));
2550
2551         /*
2552          * All we need from the object request is the original
2553          * request and the result of the STAT op.  Grab those, then
2554          * we're done with the request.
2555          */
2556         orig_request = obj_request->obj_request;
2557         obj_request->obj_request = NULL;
2558         rbd_assert(orig_request);
2559         rbd_assert(orig_request->img_request);
2560
2561         result = obj_request->result;
2562         obj_request->result = 0;
2563
2564         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2565                 obj_request, orig_request, result,
2566                 obj_request->xferred, obj_request->length);
2567         rbd_obj_request_put(obj_request);
2568
2569         /*
2570          * If the overlap has become 0 (most likely because the
2571          * image has been flattened) we need to free the pages
2572          * and re-submit the original write request.
2573          */
2574         rbd_dev = orig_request->img_request->rbd_dev;
2575         if (!rbd_dev->parent_overlap) {
2576                 struct ceph_osd_client *osdc;
2577
2578                 rbd_obj_request_put(orig_request);
2579                 osdc = &rbd_dev->rbd_client->client->osdc;
2580                 result = rbd_obj_request_submit(osdc, orig_request);
2581                 if (!result)
2582                         return;
2583         }
2584
2585         /*
2586          * Our only purpose here is to determine whether the object
2587          * exists, and we don't want to treat the non-existence as
2588          * an error.  If something else comes back, transfer the
2589          * error to the original request and complete it now.
2590          */
2591         if (!result) {
2592                 obj_request_existence_set(orig_request, true);
2593         } else if (result == -ENOENT) {
2594                 obj_request_existence_set(orig_request, false);
2595         } else if (result) {
2596                 orig_request->result = result;
2597                 goto out;
2598         }
2599
2600         /*
2601          * Resubmit the original request now that we have recorded
2602          * whether the target object exists.
2603          */
2604         orig_request->result = rbd_img_obj_request_submit(orig_request);
2605 out:
2606         if (orig_request->result)
2607                 rbd_obj_request_complete(orig_request);
2608         rbd_obj_request_put(orig_request);
2609 }
2610
2611 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2612 {
2613         struct rbd_obj_request *stat_request;
2614         struct rbd_device *rbd_dev;
2615         struct ceph_osd_client *osdc;
2616         struct page **pages = NULL;
2617         u32 page_count;
2618         size_t size;
2619         int ret;
2620
2621         /*
2622          * The response data for a STAT call consists of:
2623          *     le64 length;
2624          *     struct {
2625          *         le32 tv_sec;
2626          *         le32 tv_nsec;
2627          *     } mtime;
2628          */
2629         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2630         page_count = (u32)calc_pages_for(0, size);
2631         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2632         if (IS_ERR(pages))
2633                 return PTR_ERR(pages);
2634
2635         ret = -ENOMEM;
2636         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2637                                                         OBJ_REQUEST_PAGES);
2638         if (!stat_request)
2639                 goto out;
2640
2641         rbd_obj_request_get(obj_request);
2642         stat_request->obj_request = obj_request;
2643         stat_request->pages = pages;
2644         stat_request->page_count = page_count;
2645
2646         rbd_assert(obj_request->img_request);
2647         rbd_dev = obj_request->img_request->rbd_dev;
2648         stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2649                                                 stat_request);
2650         if (!stat_request->osd_req)
2651                 goto out;
2652         stat_request->callback = rbd_img_obj_exists_callback;
2653
2654         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2655         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2656                                         false, false);
2657         rbd_osd_req_format_read(stat_request);
2658
2659         osdc = &rbd_dev->rbd_client->client->osdc;
2660         ret = rbd_obj_request_submit(osdc, stat_request);
2661 out:
2662         if (ret)
2663                 rbd_obj_request_put(obj_request);
2664
2665         return ret;
2666 }
2667
2668 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2669 {
2670         struct rbd_img_request *img_request;
2671         struct rbd_device *rbd_dev;
2672         bool known;
2673
2674         rbd_assert(obj_request_img_data_test(obj_request));
2675
2676         img_request = obj_request->img_request;
2677         rbd_assert(img_request);
2678         rbd_dev = img_request->rbd_dev;
2679
2680         /*
2681          * Only writes to layered images need special handling.
2682          * Reads and non-layered writes are simple object requests.
2683          * Layered writes that start beyond the end of the overlap
2684          * with the parent have no parent data, so they too are
2685          * simple object requests.  Finally, if the target object is
2686          * known to already exist, its parent data has already been
2687          * copied, so a write to the object can also be handled as a
2688          * simple object request.
2689          */
2690         if (!img_request_write_test(img_request) ||
2691                 !img_request_layered_test(img_request) ||
2692                 !obj_request_overlaps_parent(obj_request) ||
2693                 ((known = obj_request_known_test(obj_request)) &&
2694                         obj_request_exists_test(obj_request))) {
2695
2696                 struct rbd_device *rbd_dev;
2697                 struct ceph_osd_client *osdc;
2698
2699                 rbd_dev = obj_request->img_request->rbd_dev;
2700                 osdc = &rbd_dev->rbd_client->client->osdc;
2701
2702                 return rbd_obj_request_submit(osdc, obj_request);
2703         }
2704
2705         /*
2706          * It's a layered write.  The target object might exist but
2707          * we may not know that yet.  If we know it doesn't exist,
2708          * start by reading the data for the full target object from
2709          * the parent so we can use it for a copyup to the target.
2710          */
2711         if (known)
2712                 return rbd_img_obj_parent_read_full(obj_request);
2713
2714         /* We don't know whether the target exists.  Go find out. */
2715
2716         return rbd_img_obj_exists_submit(obj_request);
2717 }
2718
2719 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2720 {
2721         struct rbd_obj_request *obj_request;
2722         struct rbd_obj_request *next_obj_request;
2723
2724         dout("%s: img %p\n", __func__, img_request);
2725         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2726                 int ret;
2727
2728                 ret = rbd_img_obj_request_submit(obj_request);
2729                 if (ret)
2730                         return ret;
2731         }
2732
2733         return 0;
2734 }
2735
2736 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2737 {
2738         struct rbd_obj_request *obj_request;
2739         struct rbd_device *rbd_dev;
2740         u64 obj_end;
2741         u64 img_xferred;
2742         int img_result;
2743
2744         rbd_assert(img_request_child_test(img_request));
2745
2746         /* First get what we need from the image request and release it */
2747
2748         obj_request = img_request->obj_request;
2749         img_xferred = img_request->xferred;
2750         img_result = img_request->result;
2751         rbd_img_request_put(img_request);
2752
2753         /*
2754          * If the overlap has become 0 (most likely because the
2755          * image has been flattened) we need to re-submit the
2756          * original request.
2757          */
2758         rbd_assert(obj_request);
2759         rbd_assert(obj_request->img_request);
2760         rbd_dev = obj_request->img_request->rbd_dev;
2761         if (!rbd_dev->parent_overlap) {
2762                 struct ceph_osd_client *osdc;
2763
2764                 osdc = &rbd_dev->rbd_client->client->osdc;
2765                 img_result = rbd_obj_request_submit(osdc, obj_request);
2766                 if (!img_result)
2767                         return;
2768         }
2769
2770         obj_request->result = img_result;
2771         if (obj_request->result)
2772                 goto out;
2773
2774         /*
2775          * We need to zero anything beyond the parent overlap
2776          * boundary.  Since rbd_img_obj_request_read_callback()
2777          * will zero anything beyond the end of a short read, an
2778          * easy way to do this is to pretend the data from the
2779          * parent came up short--ending at the overlap boundary.
2780          */
2781         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2782         obj_end = obj_request->img_offset + obj_request->length;
2783         if (obj_end > rbd_dev->parent_overlap) {
2784                 u64 xferred = 0;
2785
2786                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2787                         xferred = rbd_dev->parent_overlap -
2788                                         obj_request->img_offset;
2789
2790                 obj_request->xferred = min(img_xferred, xferred);
2791         } else {
2792                 obj_request->xferred = img_xferred;
2793         }
2794 out:
2795         rbd_img_obj_request_read_callback(obj_request);
2796         rbd_obj_request_complete(obj_request);
2797 }
2798
2799 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2800 {
2801         struct rbd_img_request *img_request;
2802         int result;
2803
2804         rbd_assert(obj_request_img_data_test(obj_request));
2805         rbd_assert(obj_request->img_request != NULL);
2806         rbd_assert(obj_request->result == (s32) -ENOENT);
2807         rbd_assert(obj_request_type_valid(obj_request->type));
2808
2809         /* rbd_read_finish(obj_request, obj_request->length); */
2810         img_request = rbd_parent_request_create(obj_request,
2811                                                 obj_request->img_offset,
2812                                                 obj_request->length);
2813         result = -ENOMEM;
2814         if (!img_request)
2815                 goto out_err;
2816
2817         if (obj_request->type == OBJ_REQUEST_BIO)
2818                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2819                                                 obj_request->bio_list);
2820         else
2821                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2822                                                 obj_request->pages);
2823         if (result)
2824                 goto out_err;
2825
2826         img_request->callback = rbd_img_parent_read_callback;
2827         result = rbd_img_request_submit(img_request);
2828         if (result)
2829                 goto out_err;
2830
2831         return;
2832 out_err:
2833         if (img_request)
2834                 rbd_img_request_put(img_request);
2835         obj_request->result = result;
2836         obj_request->xferred = 0;
2837         obj_request_done_set(obj_request);
2838 }
2839
2840 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
2841 {
2842         struct rbd_obj_request *obj_request;
2843         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2844         int ret;
2845
2846         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2847                                                         OBJ_REQUEST_NODATA);
2848         if (!obj_request)
2849                 return -ENOMEM;
2850
2851         ret = -ENOMEM;
2852         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2853         if (!obj_request->osd_req)
2854                 goto out;
2855
2856         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2857                                         notify_id, 0, 0);
2858         rbd_osd_req_format_read(obj_request);
2859
2860         ret = rbd_obj_request_submit(osdc, obj_request);
2861         if (ret)
2862                 goto out;
2863         ret = rbd_obj_request_wait(obj_request);
2864 out:
2865         rbd_obj_request_put(obj_request);
2866
2867         return ret;
2868 }
2869
2870 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2871 {
2872         struct rbd_device *rbd_dev = (struct rbd_device *)data;
2873         int ret;
2874
2875         if (!rbd_dev)
2876                 return;
2877
2878         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2879                 rbd_dev->header_name, (unsigned long long)notify_id,
2880                 (unsigned int)opcode);
2881         ret = rbd_dev_refresh(rbd_dev);
2882         if (ret)
2883                 rbd_warn(rbd_dev, ": header refresh error (%d)\n", ret);
2884
2885         rbd_obj_notify_ack_sync(rbd_dev, notify_id);
2886 }
2887
2888 /*
2889  * Request sync osd watch/unwatch.  The value of "start" determines
2890  * whether a watch request is being initiated or torn down.
2891  */
2892 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start)
2893 {
2894         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2895         struct rbd_obj_request *obj_request;
2896         int ret;
2897
2898         rbd_assert(start ^ !!rbd_dev->watch_event);
2899         rbd_assert(start ^ !!rbd_dev->watch_request);
2900
2901         if (start) {
2902                 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2903                                                 &rbd_dev->watch_event);
2904                 if (ret < 0)
2905                         return ret;
2906                 rbd_assert(rbd_dev->watch_event != NULL);
2907         }
2908
2909         ret = -ENOMEM;
2910         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2911                                                         OBJ_REQUEST_NODATA);
2912         if (!obj_request)
2913                 goto out_cancel;
2914
2915         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2916         if (!obj_request->osd_req)
2917                 goto out_cancel;
2918
2919         if (start)
2920                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2921         else
2922                 ceph_osdc_unregister_linger_request(osdc,
2923                                         rbd_dev->watch_request->osd_req);
2924
2925         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2926                                 rbd_dev->watch_event->cookie, 0, start ? 1 : 0);
2927         rbd_osd_req_format_write(obj_request);
2928
2929         ret = rbd_obj_request_submit(osdc, obj_request);
2930         if (ret)
2931                 goto out_cancel;
2932         ret = rbd_obj_request_wait(obj_request);
2933         if (ret)
2934                 goto out_cancel;
2935         ret = obj_request->result;
2936         if (ret)
2937                 goto out_cancel;
2938
2939         /*
2940          * A watch request is set to linger, so the underlying osd
2941          * request won't go away until we unregister it.  We retain
2942          * a pointer to the object request during that time (in
2943          * rbd_dev->watch_request), so we'll keep a reference to
2944          * it.  We'll drop that reference (below) after we've
2945          * unregistered it.
2946          */
2947         if (start) {
2948                 rbd_dev->watch_request = obj_request;
2949
2950                 return 0;
2951         }
2952
2953         /* We have successfully torn down the watch request */
2954
2955         rbd_obj_request_put(rbd_dev->watch_request);
2956         rbd_dev->watch_request = NULL;
2957 out_cancel:
2958         /* Cancel the event if we're tearing down, or on error */
2959         ceph_osdc_cancel_event(rbd_dev->watch_event);
2960         rbd_dev->watch_event = NULL;
2961         if (obj_request)
2962                 rbd_obj_request_put(obj_request);
2963
2964         return ret;
2965 }
2966
2967 /*
2968  * Synchronous osd object method call.  Returns the number of bytes
2969  * returned in the outbound buffer, or a negative error code.
2970  */
2971 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2972                              const char *object_name,
2973                              const char *class_name,
2974                              const char *method_name,
2975                              const void *outbound,
2976                              size_t outbound_size,
2977                              void *inbound,
2978                              size_t inbound_size)
2979 {
2980         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2981         struct rbd_obj_request *obj_request;
2982         struct page **pages;
2983         u32 page_count;
2984         int ret;
2985
2986         /*
2987          * Method calls are ultimately read operations.  The result
2988          * should placed into the inbound buffer provided.  They
2989          * also supply outbound data--parameters for the object
2990          * method.  Currently if this is present it will be a
2991          * snapshot id.
2992          */
2993         page_count = (u32)calc_pages_for(0, inbound_size);
2994         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2995         if (IS_ERR(pages))
2996                 return PTR_ERR(pages);
2997
2998         ret = -ENOMEM;
2999         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3000                                                         OBJ_REQUEST_PAGES);
3001         if (!obj_request)
3002                 goto out;
3003
3004         obj_request->pages = pages;
3005         obj_request->page_count = page_count;
3006
3007         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3008         if (!obj_request->osd_req)
3009                 goto out;
3010
3011         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3012                                         class_name, method_name);
3013         if (outbound_size) {
3014                 struct ceph_pagelist *pagelist;
3015
3016                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3017                 if (!pagelist)
3018                         goto out;
3019
3020                 ceph_pagelist_init(pagelist);
3021                 ceph_pagelist_append(pagelist, outbound, outbound_size);
3022                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3023                                                 pagelist);
3024         }
3025         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3026                                         obj_request->pages, inbound_size,
3027                                         0, false, false);
3028         rbd_osd_req_format_read(obj_request);
3029
3030         ret = rbd_obj_request_submit(osdc, obj_request);
3031         if (ret)
3032                 goto out;
3033         ret = rbd_obj_request_wait(obj_request);
3034         if (ret)
3035                 goto out;
3036
3037         ret = obj_request->result;
3038         if (ret < 0)
3039                 goto out;
3040
3041         rbd_assert(obj_request->xferred < (u64)INT_MAX);
3042         ret = (int)obj_request->xferred;
3043         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3044 out:
3045         if (obj_request)
3046                 rbd_obj_request_put(obj_request);
3047         else
3048                 ceph_release_page_vector(pages, page_count);
3049
3050         return ret;
3051 }
3052
3053 static void rbd_request_fn(struct request_queue *q)
3054                 __releases(q->queue_lock) __acquires(q->queue_lock)
3055 {
3056         struct rbd_device *rbd_dev = q->queuedata;
3057         bool read_only = rbd_dev->mapping.read_only;
3058         struct request *rq;
3059         int result;
3060
3061         while ((rq = blk_fetch_request(q))) {
3062                 bool write_request = rq_data_dir(rq) == WRITE;
3063                 struct rbd_img_request *img_request;
3064                 u64 offset;
3065                 u64 length;
3066
3067                 /* Ignore any non-FS requests that filter through. */
3068
3069                 if (rq->cmd_type != REQ_TYPE_FS) {
3070                         dout("%s: non-fs request type %d\n", __func__,
3071                                 (int) rq->cmd_type);
3072                         __blk_end_request_all(rq, 0);
3073                         continue;
3074                 }
3075
3076                 /* Ignore/skip any zero-length requests */
3077
3078                 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3079                 length = (u64) blk_rq_bytes(rq);
3080
3081                 if (!length) {
3082                         dout("%s: zero-length request\n", __func__);
3083                         __blk_end_request_all(rq, 0);
3084                         continue;
3085                 }
3086
3087                 spin_unlock_irq(q->queue_lock);
3088
3089                 /* Disallow writes to a read-only device */
3090
3091                 if (write_request) {
3092                         result = -EROFS;
3093                         if (read_only)
3094                                 goto end_request;
3095                         rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3096                 }
3097
3098                 /*
3099                  * Quit early if the mapped snapshot no longer
3100                  * exists.  It's still possible the snapshot will
3101                  * have disappeared by the time our request arrives
3102                  * at the osd, but there's no sense in sending it if
3103                  * we already know.
3104                  */
3105                 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3106                         dout("request for non-existent snapshot");
3107                         rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3108                         result = -ENXIO;
3109                         goto end_request;
3110                 }
3111
3112                 result = -EINVAL;
3113                 if (offset && length > U64_MAX - offset + 1) {
3114                         rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3115                                 offset, length);
3116                         goto end_request;       /* Shouldn't happen */
3117                 }
3118
3119                 result = -EIO;
3120                 if (offset + length > rbd_dev->mapping.size) {
3121                         rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3122                                 offset, length, rbd_dev->mapping.size);
3123                         goto end_request;
3124                 }
3125
3126                 result = -ENOMEM;
3127                 img_request = rbd_img_request_create(rbd_dev, offset, length,
3128                                                         write_request);
3129                 if (!img_request)
3130                         goto end_request;
3131
3132                 img_request->rq = rq;
3133
3134                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3135                                                 rq->bio);
3136                 if (!result)
3137                         result = rbd_img_request_submit(img_request);
3138                 if (result)
3139                         rbd_img_request_put(img_request);
3140 end_request:
3141                 spin_lock_irq(q->queue_lock);
3142                 if (result < 0) {
3143                         rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3144                                 write_request ? "write" : "read",
3145                                 length, offset, result);
3146
3147                         __blk_end_request_all(rq, result);
3148                 }
3149         }
3150 }
3151
3152 /*
3153  * a queue callback. Makes sure that we don't create a bio that spans across
3154  * multiple osd objects. One exception would be with a single page bios,
3155  * which we handle later at bio_chain_clone_range()
3156  */
3157 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3158                           struct bio_vec *bvec)
3159 {
3160         struct rbd_device *rbd_dev = q->queuedata;
3161         sector_t sector_offset;
3162         sector_t sectors_per_obj;
3163         sector_t obj_sector_offset;
3164         int ret;
3165
3166         /*
3167          * Find how far into its rbd object the partition-relative
3168          * bio start sector is to offset relative to the enclosing
3169          * device.
3170          */
3171         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3172         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3173         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3174
3175         /*
3176          * Compute the number of bytes from that offset to the end
3177          * of the object.  Account for what's already used by the bio.
3178          */
3179         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3180         if (ret > bmd->bi_size)
3181                 ret -= bmd->bi_size;
3182         else
3183                 ret = 0;
3184
3185         /*
3186          * Don't send back more than was asked for.  And if the bio
3187          * was empty, let the whole thing through because:  "Note
3188          * that a block device *must* allow a single page to be
3189          * added to an empty bio."
3190          */
3191         rbd_assert(bvec->bv_len <= PAGE_SIZE);
3192         if (ret > (int) bvec->bv_len || !bmd->bi_size)
3193                 ret = (int) bvec->bv_len;
3194
3195         return ret;
3196 }
3197
3198 static void rbd_free_disk(struct rbd_device *rbd_dev)
3199 {
3200         struct gendisk *disk = rbd_dev->disk;
3201
3202         if (!disk)
3203                 return;
3204
3205         rbd_dev->disk = NULL;
3206         if (disk->flags & GENHD_FL_UP) {
3207                 del_gendisk(disk);
3208                 if (disk->queue)
3209                         blk_cleanup_queue(disk->queue);
3210         }
3211         put_disk(disk);
3212 }
3213
3214 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3215                                 const char *object_name,
3216                                 u64 offset, u64 length, void *buf)
3217
3218 {
3219         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3220         struct rbd_obj_request *obj_request;
3221         struct page **pages = NULL;
3222         u32 page_count;
3223         size_t size;
3224         int ret;
3225
3226         page_count = (u32) calc_pages_for(offset, length);
3227         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3228         if (IS_ERR(pages))
3229                 return PTR_ERR(pages);
3230
3231         ret = -ENOMEM;
3232         obj_request = rbd_obj_request_create(object_name, offset, length,
3233                                                         OBJ_REQUEST_PAGES);
3234         if (!obj_request)
3235                 goto out;
3236
3237         obj_request->pages = pages;
3238         obj_request->page_count = page_count;
3239
3240         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3241         if (!obj_request->osd_req)
3242                 goto out;
3243
3244         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3245                                         offset, length, 0, 0);
3246         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3247                                         obj_request->pages,
3248                                         obj_request->length,
3249                                         obj_request->offset & ~PAGE_MASK,
3250                                         false, false);
3251         rbd_osd_req_format_read(obj_request);
3252
3253         ret = rbd_obj_request_submit(osdc, obj_request);
3254         if (ret)
3255                 goto out;
3256         ret = rbd_obj_request_wait(obj_request);
3257         if (ret)
3258                 goto out;
3259
3260         ret = obj_request->result;
3261         if (ret < 0)
3262                 goto out;
3263
3264         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3265         size = (size_t) obj_request->xferred;
3266         ceph_copy_from_page_vector(pages, buf, 0, size);
3267         rbd_assert(size <= (size_t)INT_MAX);
3268         ret = (int)size;
3269 out:
3270         if (obj_request)
3271                 rbd_obj_request_put(obj_request);
3272         else
3273                 ceph_release_page_vector(pages, page_count);
3274
3275         return ret;
3276 }
3277
3278 /*
3279  * Read the complete header for the given rbd device.  On successful
3280  * return, the rbd_dev->header field will contain up-to-date
3281  * information about the image.
3282  */
3283 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3284 {
3285         struct rbd_image_header_ondisk *ondisk = NULL;
3286         u32 snap_count = 0;
3287         u64 names_size = 0;
3288         u32 want_count;
3289         int ret;
3290
3291         /*
3292          * The complete header will include an array of its 64-bit
3293          * snapshot ids, followed by the names of those snapshots as
3294          * a contiguous block of NUL-terminated strings.  Note that
3295          * the number of snapshots could change by the time we read
3296          * it in, in which case we re-read it.
3297          */
3298         do {
3299                 size_t size;
3300
3301                 kfree(ondisk);
3302
3303                 size = sizeof (*ondisk);
3304                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3305                 size += names_size;
3306                 ondisk = kmalloc(size, GFP_KERNEL);
3307                 if (!ondisk)
3308                         return -ENOMEM;
3309
3310                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3311                                        0, size, ondisk);
3312                 if (ret < 0)
3313                         goto out;
3314                 if ((size_t)ret < size) {
3315                         ret = -ENXIO;
3316                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3317                                 size, ret);
3318                         goto out;
3319                 }
3320                 if (!rbd_dev_ondisk_valid(ondisk)) {
3321                         ret = -ENXIO;
3322                         rbd_warn(rbd_dev, "invalid header");
3323                         goto out;
3324                 }
3325
3326                 names_size = le64_to_cpu(ondisk->snap_names_len);
3327                 want_count = snap_count;
3328                 snap_count = le32_to_cpu(ondisk->snap_count);
3329         } while (snap_count != want_count);
3330
3331         ret = rbd_header_from_disk(rbd_dev, ondisk);
3332 out:
3333         kfree(ondisk);
3334
3335         return ret;
3336 }
3337
3338 /*
3339  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3340  * has disappeared from the (just updated) snapshot context.
3341  */
3342 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3343 {
3344         u64 snap_id;
3345
3346         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3347                 return;
3348
3349         snap_id = rbd_dev->spec->snap_id;
3350         if (snap_id == CEPH_NOSNAP)
3351                 return;
3352
3353         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3354                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3355 }
3356
3357 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3358 {
3359         sector_t size;
3360         bool removing;
3361
3362         /*
3363          * Don't hold the lock while doing disk operations,
3364          * or lock ordering will conflict with the bdev mutex via:
3365          * rbd_add() -> blkdev_get() -> rbd_open()
3366          */
3367         spin_lock_irq(&rbd_dev->lock);
3368         removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3369         spin_unlock_irq(&rbd_dev->lock);
3370         /*
3371          * If the device is being removed, rbd_dev->disk has
3372          * been destroyed, so don't try to update its size
3373          */
3374         if (!removing) {
3375                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3376                 dout("setting size to %llu sectors", (unsigned long long)size);
3377                 set_capacity(rbd_dev->disk, size);
3378                 revalidate_disk(rbd_dev->disk);
3379         }
3380 }
3381
3382 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3383 {
3384         u64 mapping_size;
3385         int ret;
3386
3387         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3388         mapping_size = rbd_dev->mapping.size;
3389         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3390         if (rbd_dev->image_format == 1)
3391                 ret = rbd_dev_v1_header_info(rbd_dev);
3392         else
3393                 ret = rbd_dev_v2_header_info(rbd_dev);
3394
3395         /* If it's a mapped snapshot, validate its EXISTS flag */
3396
3397         rbd_exists_validate(rbd_dev);
3398         mutex_unlock(&ctl_mutex);
3399         if (mapping_size != rbd_dev->mapping.size) {
3400                 rbd_dev_update_size(rbd_dev);
3401         }
3402
3403         return ret;
3404 }
3405
3406 static int rbd_init_disk(struct rbd_device *rbd_dev)
3407 {
3408         struct gendisk *disk;
3409         struct request_queue *q;
3410         u64 segment_size;
3411
3412         /* create gendisk info */
3413         disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3414         if (!disk)
3415                 return -ENOMEM;
3416
3417         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3418                  rbd_dev->dev_id);
3419         disk->major = rbd_dev->major;
3420         disk->first_minor = 0;
3421         disk->fops = &rbd_bd_ops;
3422         disk->private_data = rbd_dev;
3423
3424         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3425         if (!q)
3426                 goto out_disk;
3427
3428         /* We use the default size, but let's be explicit about it. */
3429         blk_queue_physical_block_size(q, SECTOR_SIZE);
3430
3431         /* set io sizes to object size */
3432         segment_size = rbd_obj_bytes(&rbd_dev->header);
3433         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3434         blk_queue_max_segment_size(q, segment_size);
3435         blk_queue_io_min(q, segment_size);
3436         blk_queue_io_opt(q, segment_size);
3437
3438         blk_queue_merge_bvec(q, rbd_merge_bvec);
3439         disk->queue = q;
3440
3441         q->queuedata = rbd_dev;
3442
3443         rbd_dev->disk = disk;
3444
3445         return 0;
3446 out_disk:
3447         put_disk(disk);
3448
3449         return -ENOMEM;
3450 }
3451
3452 /*
3453   sysfs
3454 */
3455
3456 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3457 {
3458         return container_of(dev, struct rbd_device, dev);
3459 }
3460
3461 static ssize_t rbd_size_show(struct device *dev,
3462                              struct device_attribute *attr, char *buf)
3463 {
3464         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3465
3466         return sprintf(buf, "%llu\n",
3467                 (unsigned long long)rbd_dev->mapping.size);
3468 }
3469
3470 /*
3471  * Note this shows the features for whatever's mapped, which is not
3472  * necessarily the base image.
3473  */
3474 static ssize_t rbd_features_show(struct device *dev,
3475                              struct device_attribute *attr, char *buf)
3476 {
3477         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3478
3479         return sprintf(buf, "0x%016llx\n",
3480                         (unsigned long long)rbd_dev->mapping.features);
3481 }
3482
3483 static ssize_t rbd_major_show(struct device *dev,
3484                               struct device_attribute *attr, char *buf)
3485 {
3486         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3487
3488         if (rbd_dev->major)
3489                 return sprintf(buf, "%d\n", rbd_dev->major);
3490
3491         return sprintf(buf, "(none)\n");
3492
3493 }
3494
3495 static ssize_t rbd_client_id_show(struct device *dev,
3496                                   struct device_attribute *attr, char *buf)
3497 {
3498         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3499
3500         return sprintf(buf, "client%lld\n",
3501                         ceph_client_id(rbd_dev->rbd_client->client));
3502 }
3503
3504 static ssize_t rbd_pool_show(struct device *dev,
3505                              struct device_attribute *attr, char *buf)
3506 {
3507         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3508
3509         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3510 }
3511
3512 static ssize_t rbd_pool_id_show(struct device *dev,
3513                              struct device_attribute *attr, char *buf)
3514 {
3515         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3516
3517         return sprintf(buf, "%llu\n",
3518                         (unsigned long long) rbd_dev->spec->pool_id);
3519 }
3520
3521 static ssize_t rbd_name_show(struct device *dev,
3522                              struct device_attribute *attr, char *buf)
3523 {
3524         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3525
3526         if (rbd_dev->spec->image_name)
3527                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3528
3529         return sprintf(buf, "(unknown)\n");
3530 }
3531
3532 static ssize_t rbd_image_id_show(struct device *dev,
3533                              struct device_attribute *attr, char *buf)
3534 {
3535         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3536
3537         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3538 }
3539
3540 /*
3541  * Shows the name of the currently-mapped snapshot (or
3542  * RBD_SNAP_HEAD_NAME for the base image).
3543  */
3544 static ssize_t rbd_snap_show(struct device *dev,
3545                              struct device_attribute *attr,
3546                              char *buf)
3547 {
3548         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3549
3550         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3551 }
3552
3553 /*
3554  * For an rbd v2 image, shows the pool id, image id, and snapshot id
3555  * for the parent image.  If there is no parent, simply shows
3556  * "(no parent image)".
3557  */
3558 static ssize_t rbd_parent_show(struct device *dev,
3559                              struct device_attribute *attr,
3560                              char *buf)
3561 {
3562         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3563         struct rbd_spec *spec = rbd_dev->parent_spec;
3564         int count;
3565         char *bufp = buf;
3566
3567         if (!spec)
3568                 return sprintf(buf, "(no parent image)\n");
3569
3570         count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3571                         (unsigned long long) spec->pool_id, spec->pool_name);
3572         if (count < 0)
3573                 return count;
3574         bufp += count;
3575
3576         count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3577                         spec->image_name ? spec->image_name : "(unknown)");
3578         if (count < 0)
3579                 return count;
3580         bufp += count;
3581
3582         count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3583                         (unsigned long long) spec->snap_id, spec->snap_name);
3584         if (count < 0)
3585                 return count;
3586         bufp += count;
3587
3588         count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3589         if (count < 0)
3590                 return count;
3591         bufp += count;
3592
3593         return (ssize_t) (bufp - buf);
3594 }
3595
3596 static ssize_t rbd_image_refresh(struct device *dev,
3597                                  struct device_attribute *attr,
3598                                  const char *buf,
3599                                  size_t size)
3600 {
3601         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3602         int ret;
3603
3604         ret = rbd_dev_refresh(rbd_dev);
3605         if (ret)
3606                 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3607
3608         return ret < 0 ? ret : size;
3609 }
3610
3611 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3612 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3613 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3614 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3615 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3616 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3617 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3618 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3619 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3620 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3621 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3622
3623 static struct attribute *rbd_attrs[] = {
3624         &dev_attr_size.attr,
3625         &dev_attr_features.attr,
3626         &dev_attr_major.attr,
3627         &dev_attr_client_id.attr,
3628         &dev_attr_pool.attr,
3629         &dev_attr_pool_id.attr,
3630         &dev_attr_name.attr,
3631         &dev_attr_image_id.attr,
3632         &dev_attr_current_snap.attr,
3633         &dev_attr_parent.attr,
3634         &dev_attr_refresh.attr,
3635         NULL
3636 };
3637
3638 static struct attribute_group rbd_attr_group = {
3639         .attrs = rbd_attrs,
3640 };
3641
3642 static const struct attribute_group *rbd_attr_groups[] = {
3643         &rbd_attr_group,
3644         NULL
3645 };
3646
3647 static void rbd_sysfs_dev_release(struct device *dev)
3648 {
3649 }
3650
3651 static struct device_type rbd_device_type = {
3652         .name           = "rbd",
3653         .groups         = rbd_attr_groups,
3654         .release        = rbd_sysfs_dev_release,
3655 };
3656
3657 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3658 {
3659         kref_get(&spec->kref);
3660
3661         return spec;
3662 }
3663
3664 static void rbd_spec_free(struct kref *kref);
3665 static void rbd_spec_put(struct rbd_spec *spec)
3666 {
3667         if (spec)
3668                 kref_put(&spec->kref, rbd_spec_free);
3669 }
3670
3671 static struct rbd_spec *rbd_spec_alloc(void)
3672 {
3673         struct rbd_spec *spec;
3674
3675         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3676         if (!spec)
3677                 return NULL;
3678         kref_init(&spec->kref);
3679
3680         return spec;
3681 }
3682
3683 static void rbd_spec_free(struct kref *kref)
3684 {
3685         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3686
3687         kfree(spec->pool_name);
3688         kfree(spec->image_id);
3689         kfree(spec->image_name);
3690         kfree(spec->snap_name);
3691         kfree(spec);
3692 }
3693
3694 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3695                                 struct rbd_spec *spec)
3696 {
3697         struct rbd_device *rbd_dev;
3698
3699         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3700         if (!rbd_dev)
3701                 return NULL;
3702
3703         spin_lock_init(&rbd_dev->lock);
3704         rbd_dev->flags = 0;
3705         atomic_set(&rbd_dev->parent_ref, 0);
3706         INIT_LIST_HEAD(&rbd_dev->node);
3707         init_rwsem(&rbd_dev->header_rwsem);
3708
3709         rbd_dev->spec = spec;
3710         rbd_dev->rbd_client = rbdc;
3711
3712         /* Initialize the layout used for all rbd requests */
3713
3714         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3715         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3716         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3717         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3718
3719         return rbd_dev;
3720 }
3721
3722 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3723 {
3724         rbd_put_client(rbd_dev->rbd_client);
3725         rbd_spec_put(rbd_dev->spec);
3726         kfree(rbd_dev);
3727 }
3728
3729 /*
3730  * Get the size and object order for an image snapshot, or if
3731  * snap_id is CEPH_NOSNAP, gets this information for the base
3732  * image.
3733  */
3734 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3735                                 u8 *order, u64 *snap_size)
3736 {
3737         __le64 snapid = cpu_to_le64(snap_id);
3738         int ret;
3739         struct {
3740                 u8 order;
3741                 __le64 size;
3742         } __attribute__ ((packed)) size_buf = { 0 };
3743
3744         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3745                                 "rbd", "get_size",
3746                                 &snapid, sizeof (snapid),
3747                                 &size_buf, sizeof (size_buf));
3748         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3749         if (ret < 0)
3750                 return ret;
3751         if (ret < sizeof (size_buf))
3752                 return -ERANGE;
3753
3754         if (order) {
3755                 *order = size_buf.order;
3756                 dout("  order %u", (unsigned int)*order);
3757         }
3758         *snap_size = le64_to_cpu(size_buf.size);
3759
3760         dout("  snap_id 0x%016llx snap_size = %llu\n",
3761                 (unsigned long long)snap_id,
3762                 (unsigned long long)*snap_size);
3763
3764         return 0;
3765 }
3766
3767 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3768 {
3769         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3770                                         &rbd_dev->header.obj_order,
3771                                         &rbd_dev->header.image_size);
3772 }
3773
3774 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3775 {
3776         void *reply_buf;
3777         int ret;
3778         void *p;
3779
3780         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3781         if (!reply_buf)
3782                 return -ENOMEM;
3783
3784         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3785                                 "rbd", "get_object_prefix", NULL, 0,
3786                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3787         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3788         if (ret < 0)
3789                 goto out;
3790
3791         p = reply_buf;
3792         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3793                                                 p + ret, NULL, GFP_NOIO);
3794         ret = 0;
3795
3796         if (IS_ERR(rbd_dev->header.object_prefix)) {
3797                 ret = PTR_ERR(rbd_dev->header.object_prefix);
3798                 rbd_dev->header.object_prefix = NULL;
3799         } else {
3800                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3801         }
3802 out:
3803         kfree(reply_buf);
3804
3805         return ret;
3806 }
3807
3808 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3809                 u64 *snap_features)
3810 {
3811         __le64 snapid = cpu_to_le64(snap_id);
3812         struct {
3813                 __le64 features;
3814                 __le64 incompat;
3815         } __attribute__ ((packed)) features_buf = { 0 };
3816         u64 incompat;
3817         int ret;
3818
3819         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3820                                 "rbd", "get_features",
3821                                 &snapid, sizeof (snapid),
3822                                 &features_buf, sizeof (features_buf));
3823         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3824         if (ret < 0)
3825                 return ret;
3826         if (ret < sizeof (features_buf))
3827                 return -ERANGE;
3828
3829         incompat = le64_to_cpu(features_buf.incompat);
3830         if (incompat & ~RBD_FEATURES_SUPPORTED)
3831                 return -ENXIO;
3832
3833         *snap_features = le64_to_cpu(features_buf.features);
3834
3835         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3836                 (unsigned long long)snap_id,
3837                 (unsigned long long)*snap_features,
3838                 (unsigned long long)le64_to_cpu(features_buf.incompat));
3839
3840         return 0;
3841 }
3842
3843 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3844 {
3845         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3846                                                 &rbd_dev->header.features);
3847 }
3848
3849 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3850 {
3851         struct rbd_spec *parent_spec;
3852         size_t size;
3853         void *reply_buf = NULL;
3854         __le64 snapid;
3855         void *p;
3856         void *end;
3857         u64 pool_id;
3858         char *image_id;
3859         u64 overlap;
3860         int ret;
3861
3862         parent_spec = rbd_spec_alloc();
3863         if (!parent_spec)
3864                 return -ENOMEM;
3865
3866         size = sizeof (__le64) +                                /* pool_id */
3867                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
3868                 sizeof (__le64) +                               /* snap_id */
3869                 sizeof (__le64);                                /* overlap */
3870         reply_buf = kmalloc(size, GFP_KERNEL);
3871         if (!reply_buf) {
3872                 ret = -ENOMEM;
3873                 goto out_err;
3874         }
3875
3876         snapid = cpu_to_le64(CEPH_NOSNAP);
3877         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3878                                 "rbd", "get_parent",
3879                                 &snapid, sizeof (snapid),
3880                                 reply_buf, size);
3881         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3882         if (ret < 0)
3883                 goto out_err;
3884
3885         p = reply_buf;
3886         end = reply_buf + ret;
3887         ret = -ERANGE;
3888         ceph_decode_64_safe(&p, end, pool_id, out_err);
3889         if (pool_id == CEPH_NOPOOL) {
3890                 /*
3891                  * Either the parent never existed, or we have
3892                  * record of it but the image got flattened so it no
3893                  * longer has a parent.  When the parent of a
3894                  * layered image disappears we immediately set the
3895                  * overlap to 0.  The effect of this is that all new
3896                  * requests will be treated as if the image had no
3897                  * parent.
3898                  */
3899                 if (rbd_dev->parent_overlap) {
3900                         rbd_dev->parent_overlap = 0;
3901                         smp_mb();
3902                         rbd_dev_parent_put(rbd_dev);
3903                         pr_info("%s: clone image has been flattened\n",
3904                                 rbd_dev->disk->disk_name);
3905                 }
3906
3907                 goto out;       /* No parent?  No problem. */
3908         }
3909
3910         /* The ceph file layout needs to fit pool id in 32 bits */
3911
3912         ret = -EIO;
3913         if (pool_id > (u64)U32_MAX) {
3914                 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3915                         (unsigned long long)pool_id, U32_MAX);
3916                 goto out_err;
3917         }
3918         parent_spec->pool_id = pool_id;
3919
3920         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3921         if (IS_ERR(image_id)) {
3922                 ret = PTR_ERR(image_id);
3923                 goto out_err;
3924         }
3925         parent_spec->image_id = image_id;
3926         ceph_decode_64_safe(&p, end, parent_spec->snap_id, out_err);
3927         ceph_decode_64_safe(&p, end, overlap, out_err);
3928
3929         if (overlap) {
3930                 rbd_spec_put(rbd_dev->parent_spec);
3931                 rbd_dev->parent_spec = parent_spec;
3932                 parent_spec = NULL;     /* rbd_dev now owns this */
3933                 rbd_dev->parent_overlap = overlap;
3934         } else {
3935                 rbd_warn(rbd_dev, "ignoring parent of clone with overlap 0\n");
3936         }
3937 out:
3938         ret = 0;
3939 out_err:
3940         kfree(reply_buf);
3941         rbd_spec_put(parent_spec);
3942
3943         return ret;
3944 }
3945
3946 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3947 {
3948         struct {
3949                 __le64 stripe_unit;
3950                 __le64 stripe_count;
3951         } __attribute__ ((packed)) striping_info_buf = { 0 };
3952         size_t size = sizeof (striping_info_buf);
3953         void *p;
3954         u64 obj_size;
3955         u64 stripe_unit;
3956         u64 stripe_count;
3957         int ret;
3958
3959         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3960                                 "rbd", "get_stripe_unit_count", NULL, 0,
3961                                 (char *)&striping_info_buf, size);
3962         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3963         if (ret < 0)
3964                 return ret;
3965         if (ret < size)
3966                 return -ERANGE;
3967
3968         /*
3969          * We don't actually support the "fancy striping" feature
3970          * (STRIPINGV2) yet, but if the striping sizes are the
3971          * defaults the behavior is the same as before.  So find
3972          * out, and only fail if the image has non-default values.
3973          */
3974         ret = -EINVAL;
3975         obj_size = (u64)1 << rbd_dev->header.obj_order;
3976         p = &striping_info_buf;
3977         stripe_unit = ceph_decode_64(&p);
3978         if (stripe_unit != obj_size) {
3979                 rbd_warn(rbd_dev, "unsupported stripe unit "
3980                                 "(got %llu want %llu)",
3981                                 stripe_unit, obj_size);
3982                 return -EINVAL;
3983         }
3984         stripe_count = ceph_decode_64(&p);
3985         if (stripe_count != 1) {
3986                 rbd_warn(rbd_dev, "unsupported stripe count "
3987                                 "(got %llu want 1)", stripe_count);
3988                 return -EINVAL;
3989         }
3990         rbd_dev->header.stripe_unit = stripe_unit;
3991         rbd_dev->header.stripe_count = stripe_count;
3992
3993         return 0;
3994 }
3995
3996 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
3997 {
3998         size_t image_id_size;
3999         char *image_id;
4000         void *p;
4001         void *end;
4002         size_t size;
4003         void *reply_buf = NULL;
4004         size_t len = 0;
4005         char *image_name = NULL;
4006         int ret;
4007
4008         rbd_assert(!rbd_dev->spec->image_name);
4009
4010         len = strlen(rbd_dev->spec->image_id);
4011         image_id_size = sizeof (__le32) + len;
4012         image_id = kmalloc(image_id_size, GFP_KERNEL);
4013         if (!image_id)
4014                 return NULL;
4015
4016         p = image_id;
4017         end = image_id + image_id_size;
4018         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4019
4020         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4021         reply_buf = kmalloc(size, GFP_KERNEL);
4022         if (!reply_buf)
4023                 goto out;
4024
4025         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4026                                 "rbd", "dir_get_name",
4027                                 image_id, image_id_size,
4028                                 reply_buf, size);
4029         if (ret < 0)
4030                 goto out;
4031         p = reply_buf;
4032         end = reply_buf + ret;
4033
4034         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4035         if (IS_ERR(image_name))
4036                 image_name = NULL;
4037         else
4038                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4039 out:
4040         kfree(reply_buf);
4041         kfree(image_id);
4042
4043         return image_name;
4044 }
4045
4046 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4047 {
4048         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4049         const char *snap_name;
4050         u32 which = 0;
4051
4052         /* Skip over names until we find the one we are looking for */
4053
4054         snap_name = rbd_dev->header.snap_names;
4055         while (which < snapc->num_snaps) {
4056                 if (!strcmp(name, snap_name))
4057                         return snapc->snaps[which];
4058                 snap_name += strlen(snap_name) + 1;
4059                 which++;
4060         }
4061         return CEPH_NOSNAP;
4062 }
4063
4064 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4065 {
4066         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4067         u32 which;
4068         bool found = false;
4069         u64 snap_id;
4070
4071         for (which = 0; !found && which < snapc->num_snaps; which++) {
4072                 const char *snap_name;
4073
4074                 snap_id = snapc->snaps[which];
4075                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4076                 if (IS_ERR(snap_name)) {
4077                         /* ignore no-longer existing snapshots */
4078                         if (PTR_ERR(snap_name) == -ENOENT)
4079                                 continue;
4080                         else
4081                                 break;
4082                 }
4083                 found = !strcmp(name, snap_name);
4084                 kfree(snap_name);
4085         }
4086         return found ? snap_id : CEPH_NOSNAP;
4087 }
4088
4089 /*
4090  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4091  * no snapshot by that name is found, or if an error occurs.
4092  */
4093 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4094 {
4095         if (rbd_dev->image_format == 1)
4096                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4097
4098         return rbd_v2_snap_id_by_name(rbd_dev, name);
4099 }
4100
4101 /*
4102  * When an rbd image has a parent image, it is identified by the
4103  * pool, image, and snapshot ids (not names).  This function fills
4104  * in the names for those ids.  (It's OK if we can't figure out the
4105  * name for an image id, but the pool and snapshot ids should always
4106  * exist and have names.)  All names in an rbd spec are dynamically
4107  * allocated.
4108  *
4109  * When an image being mapped (not a parent) is probed, we have the
4110  * pool name and pool id, image name and image id, and the snapshot
4111  * name.  The only thing we're missing is the snapshot id.
4112  */
4113 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4114 {
4115         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4116         struct rbd_spec *spec = rbd_dev->spec;
4117         const char *pool_name;
4118         const char *image_name;
4119         const char *snap_name;
4120         int ret;
4121
4122         /*
4123          * An image being mapped will have the pool name (etc.), but
4124          * we need to look up the snapshot id.
4125          */
4126         if (spec->pool_name) {
4127                 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4128                         u64 snap_id;
4129
4130                         snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4131                         if (snap_id == CEPH_NOSNAP)
4132                                 return -ENOENT;
4133                         spec->snap_id = snap_id;
4134                 } else {
4135                         spec->snap_id = CEPH_NOSNAP;
4136                 }
4137
4138                 return 0;
4139         }
4140
4141         /* Get the pool name; we have to make our own copy of this */
4142
4143         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4144         if (!pool_name) {
4145                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4146                 return -EIO;
4147         }
4148         pool_name = kstrdup(pool_name, GFP_KERNEL);
4149         if (!pool_name)
4150                 return -ENOMEM;
4151
4152         /* Fetch the image name; tolerate failure here */
4153
4154         image_name = rbd_dev_image_name(rbd_dev);
4155         if (!image_name)
4156                 rbd_warn(rbd_dev, "unable to get image name");
4157
4158         /* Look up the snapshot name, and make a copy */
4159
4160         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4161         if (IS_ERR(snap_name)) {
4162                 ret = PTR_ERR(snap_name);
4163                 goto out_err;
4164         }
4165
4166         spec->pool_name = pool_name;
4167         spec->image_name = image_name;
4168         spec->snap_name = snap_name;
4169
4170         return 0;
4171 out_err:
4172         kfree(image_name);
4173         kfree(pool_name);
4174
4175         return ret;
4176 }
4177
4178 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4179 {
4180         size_t size;
4181         int ret;
4182         void *reply_buf;
4183         void *p;
4184         void *end;
4185         u64 seq;
4186         u32 snap_count;
4187         struct ceph_snap_context *snapc;
4188         u32 i;
4189
4190         /*
4191          * We'll need room for the seq value (maximum snapshot id),
4192          * snapshot count, and array of that many snapshot ids.
4193          * For now we have a fixed upper limit on the number we're
4194          * prepared to receive.
4195          */
4196         size = sizeof (__le64) + sizeof (__le32) +
4197                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4198         reply_buf = kzalloc(size, GFP_KERNEL);
4199         if (!reply_buf)
4200                 return -ENOMEM;
4201
4202         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4203                                 "rbd", "get_snapcontext", NULL, 0,
4204                                 reply_buf, size);
4205         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4206         if (ret < 0)
4207                 goto out;
4208
4209         p = reply_buf;
4210         end = reply_buf + ret;
4211         ret = -ERANGE;
4212         ceph_decode_64_safe(&p, end, seq, out);
4213         ceph_decode_32_safe(&p, end, snap_count, out);
4214
4215         /*
4216          * Make sure the reported number of snapshot ids wouldn't go
4217          * beyond the end of our buffer.  But before checking that,
4218          * make sure the computed size of the snapshot context we
4219          * allocate is representable in a size_t.
4220          */
4221         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4222                                  / sizeof (u64)) {
4223                 ret = -EINVAL;
4224                 goto out;
4225         }
4226         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4227                 goto out;
4228         ret = 0;
4229
4230         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4231         if (!snapc) {
4232                 ret = -ENOMEM;
4233                 goto out;
4234         }
4235         snapc->seq = seq;
4236         for (i = 0; i < snap_count; i++)
4237                 snapc->snaps[i] = ceph_decode_64(&p);
4238
4239         ceph_put_snap_context(rbd_dev->header.snapc);
4240         rbd_dev->header.snapc = snapc;
4241
4242         dout("  snap context seq = %llu, snap_count = %u\n",
4243                 (unsigned long long)seq, (unsigned int)snap_count);
4244 out:
4245         kfree(reply_buf);
4246
4247         return ret;
4248 }
4249
4250 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4251                                         u64 snap_id)
4252 {
4253         size_t size;
4254         void *reply_buf;
4255         __le64 snapid;
4256         int ret;
4257         void *p;
4258         void *end;
4259         char *snap_name;
4260
4261         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4262         reply_buf = kmalloc(size, GFP_KERNEL);
4263         if (!reply_buf)
4264                 return ERR_PTR(-ENOMEM);
4265
4266         snapid = cpu_to_le64(snap_id);
4267         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4268                                 "rbd", "get_snapshot_name",
4269                                 &snapid, sizeof (snapid),
4270                                 reply_buf, size);
4271         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4272         if (ret < 0) {
4273                 snap_name = ERR_PTR(ret);
4274                 goto out;
4275         }
4276
4277         p = reply_buf;
4278         end = reply_buf + ret;
4279         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4280         if (IS_ERR(snap_name))
4281                 goto out;
4282
4283         dout("  snap_id 0x%016llx snap_name = %s\n",
4284                 (unsigned long long)snap_id, snap_name);
4285 out:
4286         kfree(reply_buf);
4287
4288         return snap_name;
4289 }
4290
4291 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4292 {
4293         bool first_time = rbd_dev->header.object_prefix == NULL;
4294         int ret;
4295
4296         down_write(&rbd_dev->header_rwsem);
4297
4298         ret = rbd_dev_v2_image_size(rbd_dev);
4299         if (ret)
4300                 goto out;
4301
4302         if (first_time) {
4303                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4304                 if (ret)
4305                         goto out;
4306         }
4307
4308         /*
4309          * If the image supports layering, get the parent info.  We
4310          * need to probe the first time regardless.  Thereafter we
4311          * only need to if there's a parent, to see if it has
4312          * disappeared due to the mapped image getting flattened.
4313          */
4314         if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4315                         (first_time || rbd_dev->parent_spec)) {
4316                 bool warn;
4317
4318                 ret = rbd_dev_v2_parent_info(rbd_dev);
4319                 if (ret)
4320                         goto out;
4321
4322                 /*
4323                  * Print a warning if this is the initial probe and
4324                  * the image has a parent.  Don't print it if the
4325                  * image now being probed is itself a parent.  We
4326                  * can tell at this point because we won't know its
4327                  * pool name yet (just its pool id).
4328                  */
4329                 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4330                 if (first_time && warn)
4331                         rbd_warn(rbd_dev, "WARNING: kernel layering "
4332                                         "is EXPERIMENTAL!");
4333         }
4334
4335         if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4336                 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4337                         rbd_dev->mapping.size = rbd_dev->header.image_size;
4338
4339         ret = rbd_dev_v2_snap_context(rbd_dev);
4340         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4341 out:
4342         up_write(&rbd_dev->header_rwsem);
4343
4344         return ret;
4345 }
4346
4347 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4348 {
4349         struct device *dev;
4350         int ret;
4351
4352         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4353
4354         dev = &rbd_dev->dev;
4355         dev->bus = &rbd_bus_type;
4356         dev->type = &rbd_device_type;
4357         dev->parent = &rbd_root_dev;
4358         dev->release = rbd_dev_device_release;
4359         dev_set_name(dev, "%d", rbd_dev->dev_id);
4360         ret = device_register(dev);
4361
4362         mutex_unlock(&ctl_mutex);
4363
4364         return ret;
4365 }
4366
4367 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4368 {
4369         device_unregister(&rbd_dev->dev);
4370 }
4371
4372 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4373
4374 /*
4375  * Get a unique rbd identifier for the given new rbd_dev, and add
4376  * the rbd_dev to the global list.  The minimum rbd id is 1.
4377  */
4378 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4379 {
4380         rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4381
4382         spin_lock(&rbd_dev_list_lock);
4383         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4384         spin_unlock(&rbd_dev_list_lock);
4385         dout("rbd_dev %p given dev id %llu\n", rbd_dev,
4386                 (unsigned long long) rbd_dev->dev_id);
4387 }
4388
4389 /*
4390  * Remove an rbd_dev from the global list, and record that its
4391  * identifier is no longer in use.
4392  */
4393 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4394 {
4395         struct list_head *tmp;
4396         int rbd_id = rbd_dev->dev_id;
4397         int max_id;
4398
4399         rbd_assert(rbd_id > 0);
4400
4401         dout("rbd_dev %p released dev id %llu\n", rbd_dev,
4402                 (unsigned long long) rbd_dev->dev_id);
4403         spin_lock(&rbd_dev_list_lock);
4404         list_del_init(&rbd_dev->node);
4405
4406         /*
4407          * If the id being "put" is not the current maximum, there
4408          * is nothing special we need to do.
4409          */
4410         if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4411                 spin_unlock(&rbd_dev_list_lock);
4412                 return;
4413         }
4414
4415         /*
4416          * We need to update the current maximum id.  Search the
4417          * list to find out what it is.  We're more likely to find
4418          * the maximum at the end, so search the list backward.
4419          */
4420         max_id = 0;
4421         list_for_each_prev(tmp, &rbd_dev_list) {
4422                 struct rbd_device *rbd_dev;
4423
4424                 rbd_dev = list_entry(tmp, struct rbd_device, node);
4425                 if (rbd_dev->dev_id > max_id)
4426                         max_id = rbd_dev->dev_id;
4427         }
4428         spin_unlock(&rbd_dev_list_lock);
4429
4430         /*
4431          * The max id could have been updated by rbd_dev_id_get(), in
4432          * which case it now accurately reflects the new maximum.
4433          * Be careful not to overwrite the maximum value in that
4434          * case.
4435          */
4436         atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4437         dout("  max dev id has been reset\n");
4438 }
4439
4440 /*
4441  * Skips over white space at *buf, and updates *buf to point to the
4442  * first found non-space character (if any). Returns the length of
4443  * the token (string of non-white space characters) found.  Note
4444  * that *buf must be terminated with '\0'.
4445  */
4446 static inline size_t next_token(const char **buf)
4447 {
4448         /*
4449         * These are the characters that produce nonzero for
4450         * isspace() in the "C" and "POSIX" locales.
4451         */
4452         const char *spaces = " \f\n\r\t\v";
4453
4454         *buf += strspn(*buf, spaces);   /* Find start of token */
4455
4456         return strcspn(*buf, spaces);   /* Return token length */
4457 }
4458
4459 /*
4460  * Finds the next token in *buf, and if the provided token buffer is
4461  * big enough, copies the found token into it.  The result, if
4462  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4463  * must be terminated with '\0' on entry.
4464  *
4465  * Returns the length of the token found (not including the '\0').
4466  * Return value will be 0 if no token is found, and it will be >=
4467  * token_size if the token would not fit.
4468  *
4469  * The *buf pointer will be updated to point beyond the end of the
4470  * found token.  Note that this occurs even if the token buffer is
4471  * too small to hold it.
4472  */
4473 static inline size_t copy_token(const char **buf,
4474                                 char *token,
4475                                 size_t token_size)
4476 {
4477         size_t len;
4478
4479         len = next_token(buf);
4480         if (len < token_size) {
4481                 memcpy(token, *buf, len);
4482                 *(token + len) = '\0';
4483         }
4484         *buf += len;
4485
4486         return len;
4487 }
4488
4489 /*
4490  * Finds the next token in *buf, dynamically allocates a buffer big
4491  * enough to hold a copy of it, and copies the token into the new
4492  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4493  * that a duplicate buffer is created even for a zero-length token.
4494  *
4495  * Returns a pointer to the newly-allocated duplicate, or a null
4496  * pointer if memory for the duplicate was not available.  If
4497  * the lenp argument is a non-null pointer, the length of the token
4498  * (not including the '\0') is returned in *lenp.
4499  *
4500  * If successful, the *buf pointer will be updated to point beyond
4501  * the end of the found token.
4502  *
4503  * Note: uses GFP_KERNEL for allocation.
4504  */
4505 static inline char *dup_token(const char **buf, size_t *lenp)
4506 {
4507         char *dup;
4508         size_t len;
4509
4510         len = next_token(buf);
4511         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4512         if (!dup)
4513                 return NULL;
4514         *(dup + len) = '\0';
4515         *buf += len;
4516
4517         if (lenp)
4518                 *lenp = len;
4519
4520         return dup;
4521 }
4522
4523 /*
4524  * Parse the options provided for an "rbd add" (i.e., rbd image
4525  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4526  * and the data written is passed here via a NUL-terminated buffer.
4527  * Returns 0 if successful or an error code otherwise.
4528  *
4529  * The information extracted from these options is recorded in
4530  * the other parameters which return dynamically-allocated
4531  * structures:
4532  *  ceph_opts
4533  *      The address of a pointer that will refer to a ceph options
4534  *      structure.  Caller must release the returned pointer using
4535  *      ceph_destroy_options() when it is no longer needed.
4536  *  rbd_opts
4537  *      Address of an rbd options pointer.  Fully initialized by
4538  *      this function; caller must release with kfree().
4539  *  spec
4540  *      Address of an rbd image specification pointer.  Fully
4541  *      initialized by this function based on parsed options.
4542  *      Caller must release with rbd_spec_put().
4543  *
4544  * The options passed take this form:
4545  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4546  * where:
4547  *  <mon_addrs>
4548  *      A comma-separated list of one or more monitor addresses.
4549  *      A monitor address is an ip address, optionally followed
4550  *      by a port number (separated by a colon).
4551  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4552  *  <options>
4553  *      A comma-separated list of ceph and/or rbd options.
4554  *  <pool_name>
4555  *      The name of the rados pool containing the rbd image.
4556  *  <image_name>
4557  *      The name of the image in that pool to map.
4558  *  <snap_id>
4559  *      An optional snapshot id.  If provided, the mapping will
4560  *      present data from the image at the time that snapshot was
4561  *      created.  The image head is used if no snapshot id is
4562  *      provided.  Snapshot mappings are always read-only.
4563  */
4564 static int rbd_add_parse_args(const char *buf,
4565                                 struct ceph_options **ceph_opts,
4566                                 struct rbd_options **opts,
4567                                 struct rbd_spec **rbd_spec)
4568 {
4569         size_t len;
4570         char *options;
4571         const char *mon_addrs;
4572         char *snap_name;
4573         size_t mon_addrs_size;
4574         struct rbd_spec *spec = NULL;
4575         struct rbd_options *rbd_opts = NULL;
4576         struct ceph_options *copts;
4577         int ret;
4578
4579         /* The first four tokens are required */
4580
4581         len = next_token(&buf);
4582         if (!len) {
4583                 rbd_warn(NULL, "no monitor address(es) provided");
4584                 return -EINVAL;
4585         }
4586         mon_addrs = buf;
4587         mon_addrs_size = len + 1;
4588         buf += len;
4589
4590         ret = -EINVAL;
4591         options = dup_token(&buf, NULL);
4592         if (!options)
4593                 return -ENOMEM;
4594         if (!*options) {
4595                 rbd_warn(NULL, "no options provided");
4596                 goto out_err;
4597         }
4598
4599         spec = rbd_spec_alloc();
4600         if (!spec)
4601                 goto out_mem;
4602
4603         spec->pool_name = dup_token(&buf, NULL);
4604         if (!spec->pool_name)
4605                 goto out_mem;
4606         if (!*spec->pool_name) {
4607                 rbd_warn(NULL, "no pool name provided");
4608                 goto out_err;
4609         }
4610
4611         spec->image_name = dup_token(&buf, NULL);
4612         if (!spec->image_name)
4613                 goto out_mem;
4614         if (!*spec->image_name) {
4615                 rbd_warn(NULL, "no image name provided");
4616                 goto out_err;
4617         }
4618
4619         /*
4620          * Snapshot name is optional; default is to use "-"
4621          * (indicating the head/no snapshot).
4622          */
4623         len = next_token(&buf);
4624         if (!len) {
4625                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4626                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4627         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4628                 ret = -ENAMETOOLONG;
4629                 goto out_err;
4630         }
4631         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4632         if (!snap_name)
4633                 goto out_mem;
4634         *(snap_name + len) = '\0';
4635         spec->snap_name = snap_name;
4636
4637         /* Initialize all rbd options to the defaults */
4638
4639         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4640         if (!rbd_opts)
4641                 goto out_mem;
4642
4643         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4644
4645         copts = ceph_parse_options(options, mon_addrs,
4646                                         mon_addrs + mon_addrs_size - 1,
4647                                         parse_rbd_opts_token, rbd_opts);
4648         if (IS_ERR(copts)) {
4649                 ret = PTR_ERR(copts);
4650                 goto out_err;
4651         }
4652         kfree(options);
4653
4654         *ceph_opts = copts;
4655         *opts = rbd_opts;
4656         *rbd_spec = spec;
4657
4658         return 0;
4659 out_mem:
4660         ret = -ENOMEM;
4661 out_err:
4662         kfree(rbd_opts);
4663         rbd_spec_put(spec);
4664         kfree(options);
4665
4666         return ret;
4667 }
4668
4669 /*
4670  * An rbd format 2 image has a unique identifier, distinct from the
4671  * name given to it by the user.  Internally, that identifier is
4672  * what's used to specify the names of objects related to the image.
4673  *
4674  * A special "rbd id" object is used to map an rbd image name to its
4675  * id.  If that object doesn't exist, then there is no v2 rbd image
4676  * with the supplied name.
4677  *
4678  * This function will record the given rbd_dev's image_id field if
4679  * it can be determined, and in that case will return 0.  If any
4680  * errors occur a negative errno will be returned and the rbd_dev's
4681  * image_id field will be unchanged (and should be NULL).
4682  */
4683 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4684 {
4685         int ret;
4686         size_t size;
4687         char *object_name;
4688         void *response;
4689         char *image_id;
4690
4691         /*
4692          * When probing a parent image, the image id is already
4693          * known (and the image name likely is not).  There's no
4694          * need to fetch the image id again in this case.  We
4695          * do still need to set the image format though.
4696          */
4697         if (rbd_dev->spec->image_id) {
4698                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4699
4700                 return 0;
4701         }
4702
4703         /*
4704          * First, see if the format 2 image id file exists, and if
4705          * so, get the image's persistent id from it.
4706          */
4707         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4708         object_name = kmalloc(size, GFP_NOIO);
4709         if (!object_name)
4710                 return -ENOMEM;
4711         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4712         dout("rbd id object name is %s\n", object_name);
4713
4714         /* Response will be an encoded string, which includes a length */
4715
4716         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4717         response = kzalloc(size, GFP_NOIO);
4718         if (!response) {
4719                 ret = -ENOMEM;
4720                 goto out;
4721         }
4722
4723         /* If it doesn't exist we'll assume it's a format 1 image */
4724
4725         ret = rbd_obj_method_sync(rbd_dev, object_name,
4726                                 "rbd", "get_id", NULL, 0,
4727                                 response, RBD_IMAGE_ID_LEN_MAX);
4728         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4729         if (ret == -ENOENT) {
4730                 image_id = kstrdup("", GFP_KERNEL);
4731                 ret = image_id ? 0 : -ENOMEM;
4732                 if (!ret)
4733                         rbd_dev->image_format = 1;
4734         } else if (ret > sizeof (__le32)) {
4735                 void *p = response;
4736
4737                 image_id = ceph_extract_encoded_string(&p, p + ret,
4738                                                 NULL, GFP_NOIO);
4739                 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4740                 if (!ret)
4741                         rbd_dev->image_format = 2;
4742         } else {
4743                 ret = -EINVAL;
4744         }
4745
4746         if (!ret) {
4747                 rbd_dev->spec->image_id = image_id;
4748                 dout("image_id is %s\n", image_id);
4749         }
4750 out:
4751         kfree(response);
4752         kfree(object_name);
4753
4754         return ret;
4755 }
4756
4757 /*
4758  * Undo whatever state changes are made by v1 or v2 header info
4759  * call.
4760  */
4761 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4762 {
4763         struct rbd_image_header *header;
4764
4765         /* Drop parent reference unless it's already been done (or none) */
4766
4767         if (rbd_dev->parent_overlap)
4768                 rbd_dev_parent_put(rbd_dev);
4769
4770         /* Free dynamic fields from the header, then zero it out */
4771
4772         header = &rbd_dev->header;
4773         ceph_put_snap_context(header->snapc);
4774         kfree(header->snap_sizes);
4775         kfree(header->snap_names);
4776         kfree(header->object_prefix);
4777         memset(header, 0, sizeof (*header));
4778 }
4779
4780 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4781 {
4782         int ret;
4783
4784         ret = rbd_dev_v2_object_prefix(rbd_dev);
4785         if (ret)
4786                 goto out_err;
4787
4788         /*
4789          * Get the and check features for the image.  Currently the
4790          * features are assumed to never change.
4791          */
4792         ret = rbd_dev_v2_features(rbd_dev);
4793         if (ret)
4794                 goto out_err;
4795
4796         /* If the image supports fancy striping, get its parameters */
4797
4798         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4799                 ret = rbd_dev_v2_striping_info(rbd_dev);
4800                 if (ret < 0)
4801                         goto out_err;
4802         }
4803         /* No support for crypto and compression type format 2 images */
4804
4805         return 0;
4806 out_err:
4807         rbd_dev->header.features = 0;
4808         kfree(rbd_dev->header.object_prefix);
4809         rbd_dev->header.object_prefix = NULL;
4810
4811         return ret;
4812 }
4813
4814 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4815 {
4816         struct rbd_device *parent = NULL;
4817         struct rbd_spec *parent_spec;
4818         struct rbd_client *rbdc;
4819         int ret;
4820
4821         if (!rbd_dev->parent_spec)
4822                 return 0;
4823         /*
4824          * We need to pass a reference to the client and the parent
4825          * spec when creating the parent rbd_dev.  Images related by
4826          * parent/child relationships always share both.
4827          */
4828         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4829         rbdc = __rbd_get_client(rbd_dev->rbd_client);
4830
4831         ret = -ENOMEM;
4832         parent = rbd_dev_create(rbdc, parent_spec);
4833         if (!parent)
4834                 goto out_err;
4835
4836         ret = rbd_dev_image_probe(parent, false);
4837         if (ret < 0)
4838                 goto out_err;
4839         rbd_dev->parent = parent;
4840         atomic_set(&rbd_dev->parent_ref, 1);
4841
4842         return 0;
4843 out_err:
4844         if (parent) {
4845                 rbd_dev_unparent(rbd_dev);
4846                 kfree(rbd_dev->header_name);
4847                 rbd_dev_destroy(parent);
4848         } else {
4849                 rbd_put_client(rbdc);
4850                 rbd_spec_put(parent_spec);
4851         }
4852
4853         return ret;
4854 }
4855
4856 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4857 {
4858         int ret;
4859
4860         /* generate unique id: find highest unique id, add one */
4861         rbd_dev_id_get(rbd_dev);
4862
4863         /* Fill in the device name, now that we have its id. */
4864         BUILD_BUG_ON(DEV_NAME_LEN
4865                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4866         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4867
4868         /* Get our block major device number. */
4869
4870         ret = register_blkdev(0, rbd_dev->name);
4871         if (ret < 0)
4872                 goto err_out_id;
4873         rbd_dev->major = ret;
4874
4875         /* Set up the blkdev mapping. */
4876
4877         ret = rbd_init_disk(rbd_dev);
4878         if (ret)
4879                 goto err_out_blkdev;
4880
4881         ret = rbd_dev_mapping_set(rbd_dev);
4882         if (ret)
4883                 goto err_out_disk;
4884         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4885
4886         ret = rbd_bus_add_dev(rbd_dev);
4887         if (ret)
4888                 goto err_out_mapping;
4889
4890         /* Everything's ready.  Announce the disk to the world. */
4891
4892         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4893         add_disk(rbd_dev->disk);
4894
4895         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4896                 (unsigned long long) rbd_dev->mapping.size);
4897
4898         return ret;
4899
4900 err_out_mapping:
4901         rbd_dev_mapping_clear(rbd_dev);
4902 err_out_disk:
4903         rbd_free_disk(rbd_dev);
4904 err_out_blkdev:
4905         unregister_blkdev(rbd_dev->major, rbd_dev->name);
4906 err_out_id:
4907         rbd_dev_id_put(rbd_dev);
4908         rbd_dev_mapping_clear(rbd_dev);
4909
4910         return ret;
4911 }
4912
4913 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4914 {
4915         struct rbd_spec *spec = rbd_dev->spec;
4916         size_t size;
4917
4918         /* Record the header object name for this rbd image. */
4919
4920         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4921
4922         if (rbd_dev->image_format == 1)
4923                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4924         else
4925                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4926
4927         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4928         if (!rbd_dev->header_name)
4929                 return -ENOMEM;
4930
4931         if (rbd_dev->image_format == 1)
4932                 sprintf(rbd_dev->header_name, "%s%s",
4933                         spec->image_name, RBD_SUFFIX);
4934         else
4935                 sprintf(rbd_dev->header_name, "%s%s",
4936                         RBD_HEADER_PREFIX, spec->image_id);
4937         return 0;
4938 }
4939
4940 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4941 {
4942         rbd_dev_unprobe(rbd_dev);
4943         kfree(rbd_dev->header_name);
4944         rbd_dev->header_name = NULL;
4945         rbd_dev->image_format = 0;
4946         kfree(rbd_dev->spec->image_id);
4947         rbd_dev->spec->image_id = NULL;
4948
4949         rbd_dev_destroy(rbd_dev);
4950 }
4951
4952 /*
4953  * Probe for the existence of the header object for the given rbd
4954  * device.  If this image is the one being mapped (i.e., not a
4955  * parent), initiate a watch on its header object before using that
4956  * object to get detailed information about the rbd image.
4957  */
4958 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
4959 {
4960         int ret;
4961         int tmp;
4962
4963         /*
4964          * Get the id from the image id object.  Unless there's an
4965          * error, rbd_dev->spec->image_id will be filled in with
4966          * a dynamically-allocated string, and rbd_dev->image_format
4967          * will be set to either 1 or 2.
4968          */
4969         ret = rbd_dev_image_id(rbd_dev);
4970         if (ret)
4971                 return ret;
4972         rbd_assert(rbd_dev->spec->image_id);
4973         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4974
4975         ret = rbd_dev_header_name(rbd_dev);
4976         if (ret)
4977                 goto err_out_format;
4978
4979         if (mapping) {
4980                 ret = rbd_dev_header_watch_sync(rbd_dev, true);
4981                 if (ret)
4982                         goto out_header_name;
4983         }
4984
4985         if (rbd_dev->image_format == 1)
4986                 ret = rbd_dev_v1_header_info(rbd_dev);
4987         else
4988                 ret = rbd_dev_v2_header_info(rbd_dev);
4989         if (ret)
4990                 goto err_out_watch;
4991
4992         ret = rbd_dev_spec_update(rbd_dev);
4993         if (ret)
4994                 goto err_out_probe;
4995
4996         ret = rbd_dev_probe_parent(rbd_dev);
4997         if (ret)
4998                 goto err_out_probe;
4999
5000         dout("discovered format %u image, header name is %s\n",
5001                 rbd_dev->image_format, rbd_dev->header_name);
5002
5003         return 0;
5004 err_out_probe:
5005         rbd_dev_unprobe(rbd_dev);
5006 err_out_watch:
5007         if (mapping) {
5008                 tmp = rbd_dev_header_watch_sync(rbd_dev, false);
5009                 if (tmp)
5010                         rbd_warn(rbd_dev, "unable to tear down "
5011                                         "watch request (%d)\n", tmp);
5012         }
5013 out_header_name:
5014         kfree(rbd_dev->header_name);
5015         rbd_dev->header_name = NULL;
5016 err_out_format:
5017         rbd_dev->image_format = 0;
5018         kfree(rbd_dev->spec->image_id);
5019         rbd_dev->spec->image_id = NULL;
5020
5021         dout("probe failed, returning %d\n", ret);
5022
5023         return ret;
5024 }
5025
5026 static ssize_t rbd_add(struct bus_type *bus,
5027                        const char *buf,
5028                        size_t count)
5029 {
5030         struct rbd_device *rbd_dev = NULL;
5031         struct ceph_options *ceph_opts = NULL;
5032         struct rbd_options *rbd_opts = NULL;
5033         struct rbd_spec *spec = NULL;
5034         struct rbd_client *rbdc;
5035         struct ceph_osd_client *osdc;
5036         bool read_only;
5037         int rc = -ENOMEM;
5038
5039         if (!try_module_get(THIS_MODULE))
5040                 return -ENODEV;
5041
5042         /* parse add command */
5043         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5044         if (rc < 0)
5045                 goto err_out_module;
5046         read_only = rbd_opts->read_only;
5047         kfree(rbd_opts);
5048         rbd_opts = NULL;        /* done with this */
5049
5050         rbdc = rbd_get_client(ceph_opts);
5051         if (IS_ERR(rbdc)) {
5052                 rc = PTR_ERR(rbdc);
5053                 goto err_out_args;
5054         }
5055
5056         /* pick the pool */
5057         osdc = &rbdc->client->osdc;
5058         rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
5059         if (rc < 0)
5060                 goto err_out_client;
5061         spec->pool_id = (u64)rc;
5062
5063         /* The ceph file layout needs to fit pool id in 32 bits */
5064
5065         if (spec->pool_id > (u64)U32_MAX) {
5066                 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5067                                 (unsigned long long)spec->pool_id, U32_MAX);
5068                 rc = -EIO;
5069                 goto err_out_client;
5070         }
5071
5072         rbd_dev = rbd_dev_create(rbdc, spec);
5073         if (!rbd_dev)
5074                 goto err_out_client;
5075         rbdc = NULL;            /* rbd_dev now owns this */
5076         spec = NULL;            /* rbd_dev now owns this */
5077
5078         rc = rbd_dev_image_probe(rbd_dev, true);
5079         if (rc < 0)
5080                 goto err_out_rbd_dev;
5081
5082         /* If we are mapping a snapshot it must be marked read-only */
5083
5084         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5085                 read_only = true;
5086         rbd_dev->mapping.read_only = read_only;
5087
5088         rc = rbd_dev_device_setup(rbd_dev);
5089         if (rc) {
5090                 rbd_dev_image_release(rbd_dev);
5091                 goto err_out_module;
5092         }
5093
5094         return count;
5095
5096 err_out_rbd_dev:
5097         rbd_dev_destroy(rbd_dev);
5098 err_out_client:
5099         rbd_put_client(rbdc);
5100 err_out_args:
5101         rbd_spec_put(spec);
5102 err_out_module:
5103         module_put(THIS_MODULE);
5104
5105         dout("Error adding device %s\n", buf);
5106
5107         return (ssize_t)rc;
5108 }
5109
5110 static void rbd_dev_device_release(struct device *dev)
5111 {
5112         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5113
5114         rbd_free_disk(rbd_dev);
5115         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5116         rbd_dev_mapping_clear(rbd_dev);
5117         unregister_blkdev(rbd_dev->major, rbd_dev->name);
5118         rbd_dev->major = 0;
5119         rbd_dev_id_put(rbd_dev);
5120         rbd_dev_mapping_clear(rbd_dev);
5121 }
5122
5123 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5124 {
5125         while (rbd_dev->parent) {
5126                 struct rbd_device *first = rbd_dev;
5127                 struct rbd_device *second = first->parent;
5128                 struct rbd_device *third;
5129
5130                 /*
5131                  * Follow to the parent with no grandparent and
5132                  * remove it.
5133                  */
5134                 while (second && (third = second->parent)) {
5135                         first = second;
5136                         second = third;
5137                 }
5138                 rbd_assert(second);
5139                 rbd_dev_image_release(second);
5140                 first->parent = NULL;
5141                 first->parent_overlap = 0;
5142
5143                 rbd_assert(first->parent_spec);
5144                 rbd_spec_put(first->parent_spec);
5145                 first->parent_spec = NULL;
5146         }
5147 }
5148
5149 static ssize_t rbd_remove(struct bus_type *bus,
5150                           const char *buf,
5151                           size_t count)
5152 {
5153         struct rbd_device *rbd_dev = NULL;
5154         struct list_head *tmp;
5155         int dev_id;
5156         unsigned long ul;
5157         bool already = false;
5158         int ret;
5159
5160         ret = strict_strtoul(buf, 10, &ul);
5161         if (ret)
5162                 return ret;
5163
5164         /* convert to int; abort if we lost anything in the conversion */
5165         dev_id = (int)ul;
5166         if (dev_id != ul)
5167                 return -EINVAL;
5168
5169         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
5170
5171         ret = -ENOENT;
5172         spin_lock(&rbd_dev_list_lock);
5173         list_for_each(tmp, &rbd_dev_list) {
5174                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5175                 if (rbd_dev->dev_id == dev_id) {
5176                         ret = 0;
5177                         break;
5178                 }
5179         }
5180         if (!ret) {
5181                 spin_lock_irq(&rbd_dev->lock);
5182                 if (rbd_dev->open_count)
5183                         ret = -EBUSY;
5184                 else
5185                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5186                                                         &rbd_dev->flags);
5187                 spin_unlock_irq(&rbd_dev->lock);
5188         }
5189         spin_unlock(&rbd_dev_list_lock);
5190         if (ret < 0 || already)
5191                 goto done;
5192
5193         ret = rbd_dev_header_watch_sync(rbd_dev, false);
5194         if (ret)
5195                 rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret);
5196
5197         /*
5198          * flush remaining watch callbacks - these must be complete
5199          * before the osd_client is shutdown
5200          */
5201         dout("%s: flushing notifies", __func__);
5202         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5203         /*
5204          * Don't free anything from rbd_dev->disk until after all
5205          * notifies are completely processed. Otherwise
5206          * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5207          * in a potential use after free of rbd_dev->disk or rbd_dev.
5208          */
5209         rbd_bus_del_dev(rbd_dev);
5210         rbd_dev_image_release(rbd_dev);
5211         module_put(THIS_MODULE);
5212         ret = count;
5213 done:
5214         mutex_unlock(&ctl_mutex);
5215
5216         return ret;
5217 }
5218
5219 /*
5220  * create control files in sysfs
5221  * /sys/bus/rbd/...
5222  */
5223 static int rbd_sysfs_init(void)
5224 {
5225         int ret;
5226
5227         ret = device_register(&rbd_root_dev);
5228         if (ret < 0)
5229                 return ret;
5230
5231         ret = bus_register(&rbd_bus_type);
5232         if (ret < 0)
5233                 device_unregister(&rbd_root_dev);
5234
5235         return ret;
5236 }
5237
5238 static void rbd_sysfs_cleanup(void)
5239 {
5240         bus_unregister(&rbd_bus_type);
5241         device_unregister(&rbd_root_dev);
5242 }
5243
5244 static int rbd_slab_init(void)
5245 {
5246         rbd_assert(!rbd_img_request_cache);
5247         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5248                                         sizeof (struct rbd_img_request),
5249                                         __alignof__(struct rbd_img_request),
5250                                         0, NULL);
5251         if (!rbd_img_request_cache)
5252                 return -ENOMEM;
5253
5254         rbd_assert(!rbd_obj_request_cache);
5255         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5256                                         sizeof (struct rbd_obj_request),
5257                                         __alignof__(struct rbd_obj_request),
5258                                         0, NULL);
5259         if (!rbd_obj_request_cache)
5260                 goto out_err;
5261
5262         rbd_assert(!rbd_segment_name_cache);
5263         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5264                                         MAX_OBJ_NAME_SIZE + 1, 1, 0, NULL);
5265         if (rbd_segment_name_cache)
5266                 return 0;
5267 out_err:
5268         if (rbd_obj_request_cache) {
5269                 kmem_cache_destroy(rbd_obj_request_cache);
5270                 rbd_obj_request_cache = NULL;
5271         }
5272
5273         kmem_cache_destroy(rbd_img_request_cache);
5274         rbd_img_request_cache = NULL;
5275
5276         return -ENOMEM;
5277 }
5278
5279 static void rbd_slab_exit(void)
5280 {
5281         rbd_assert(rbd_segment_name_cache);
5282         kmem_cache_destroy(rbd_segment_name_cache);
5283         rbd_segment_name_cache = NULL;
5284
5285         rbd_assert(rbd_obj_request_cache);
5286         kmem_cache_destroy(rbd_obj_request_cache);
5287         rbd_obj_request_cache = NULL;
5288
5289         rbd_assert(rbd_img_request_cache);
5290         kmem_cache_destroy(rbd_img_request_cache);
5291         rbd_img_request_cache = NULL;
5292 }
5293
5294 static int __init rbd_init(void)
5295 {
5296         int rc;
5297
5298         if (!libceph_compatible(NULL)) {
5299                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5300
5301                 return -EINVAL;
5302         }
5303         rc = rbd_slab_init();
5304         if (rc)
5305                 return rc;
5306         rc = rbd_sysfs_init();
5307         if (rc)
5308                 rbd_slab_exit();
5309         else
5310                 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
5311
5312         return rc;
5313 }
5314
5315 static void __exit rbd_exit(void)
5316 {
5317         rbd_sysfs_cleanup();
5318         rbd_slab_exit();
5319 }
5320
5321 module_init(rbd_init);
5322 module_exit(rbd_exit);
5323
5324 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5325 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5326 MODULE_DESCRIPTION("rados block device");
5327
5328 /* following authorship retained from original osdblk.c */
5329 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5330
5331 MODULE_LICENSE("GPL");