8b78a08483a6862d9be5decb508224365caa6c32
[firefly-linux-kernel-4.4.55.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44
45 #include "rbd_types.h"
46
47 #define RBD_DEBUG       /* Activate rbd_assert() calls */
48
49 /*
50  * The basic unit of block I/O is a sector.  It is interpreted in a
51  * number of contexts in Linux (blk, bio, genhd), but the default is
52  * universally 512 bytes.  These symbols are just slightly more
53  * meaningful than the bare numbers they represent.
54  */
55 #define SECTOR_SHIFT    9
56 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
57
58 /*
59  * Increment the given counter and return its updated value.
60  * If the counter is already 0 it will not be incremented.
61  * If the counter is already at its maximum value returns
62  * -EINVAL without updating it.
63  */
64 static int atomic_inc_return_safe(atomic_t *v)
65 {
66         unsigned int counter;
67
68         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
69         if (counter <= (unsigned int)INT_MAX)
70                 return (int)counter;
71
72         atomic_dec(v);
73
74         return -EINVAL;
75 }
76
77 /* Decrement the counter.  Return the resulting value, or -EINVAL */
78 static int atomic_dec_return_safe(atomic_t *v)
79 {
80         int counter;
81
82         counter = atomic_dec_return(v);
83         if (counter >= 0)
84                 return counter;
85
86         atomic_inc(v);
87
88         return -EINVAL;
89 }
90
91 #define RBD_DRV_NAME "rbd"
92
93 #define RBD_MINORS_PER_MAJOR    256             /* max minors per blkdev */
94
95 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
96 #define RBD_MAX_SNAP_NAME_LEN   \
97                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
98
99 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
100
101 #define RBD_SNAP_HEAD_NAME      "-"
102
103 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
104
105 /* This allows a single page to hold an image name sent by OSD */
106 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
107 #define RBD_IMAGE_ID_LEN_MAX    64
108
109 #define RBD_OBJ_PREFIX_LEN_MAX  64
110
111 /* Feature bits */
112
113 #define RBD_FEATURE_LAYERING    (1<<0)
114 #define RBD_FEATURE_STRIPINGV2  (1<<1)
115 #define RBD_FEATURES_ALL \
116             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
117
118 /* Features supported by this (client software) implementation. */
119
120 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
121
122 /*
123  * An RBD device name will be "rbd#", where the "rbd" comes from
124  * RBD_DRV_NAME above, and # is a unique integer identifier.
125  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
126  * enough to hold all possible device names.
127  */
128 #define DEV_NAME_LEN            32
129 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
130
131 /*
132  * block device image metadata (in-memory version)
133  */
134 struct rbd_image_header {
135         /* These six fields never change for a given rbd image */
136         char *object_prefix;
137         __u8 obj_order;
138         __u8 crypt_type;
139         __u8 comp_type;
140         u64 stripe_unit;
141         u64 stripe_count;
142         u64 features;           /* Might be changeable someday? */
143
144         /* The remaining fields need to be updated occasionally */
145         u64 image_size;
146         struct ceph_snap_context *snapc;
147         char *snap_names;       /* format 1 only */
148         u64 *snap_sizes;        /* format 1 only */
149 };
150
151 /*
152  * An rbd image specification.
153  *
154  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
155  * identify an image.  Each rbd_dev structure includes a pointer to
156  * an rbd_spec structure that encapsulates this identity.
157  *
158  * Each of the id's in an rbd_spec has an associated name.  For a
159  * user-mapped image, the names are supplied and the id's associated
160  * with them are looked up.  For a layered image, a parent image is
161  * defined by the tuple, and the names are looked up.
162  *
163  * An rbd_dev structure contains a parent_spec pointer which is
164  * non-null if the image it represents is a child in a layered
165  * image.  This pointer will refer to the rbd_spec structure used
166  * by the parent rbd_dev for its own identity (i.e., the structure
167  * is shared between the parent and child).
168  *
169  * Since these structures are populated once, during the discovery
170  * phase of image construction, they are effectively immutable so
171  * we make no effort to synchronize access to them.
172  *
173  * Note that code herein does not assume the image name is known (it
174  * could be a null pointer).
175  */
176 struct rbd_spec {
177         u64             pool_id;
178         const char      *pool_name;
179
180         const char      *image_id;
181         const char      *image_name;
182
183         u64             snap_id;
184         const char      *snap_name;
185
186         struct kref     kref;
187 };
188
189 /*
190  * an instance of the client.  multiple devices may share an rbd client.
191  */
192 struct rbd_client {
193         struct ceph_client      *client;
194         struct kref             kref;
195         struct list_head        node;
196 };
197
198 struct rbd_img_request;
199 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
200
201 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
202
203 struct rbd_obj_request;
204 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
205
206 enum obj_request_type {
207         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
208 };
209
210 enum obj_req_flags {
211         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
212         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
213         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
214         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
215 };
216
217 struct rbd_obj_request {
218         const char              *object_name;
219         u64                     offset;         /* object start byte */
220         u64                     length;         /* bytes from offset */
221         unsigned long           flags;
222
223         /*
224          * An object request associated with an image will have its
225          * img_data flag set; a standalone object request will not.
226          *
227          * A standalone object request will have which == BAD_WHICH
228          * and a null obj_request pointer.
229          *
230          * An object request initiated in support of a layered image
231          * object (to check for its existence before a write) will
232          * have which == BAD_WHICH and a non-null obj_request pointer.
233          *
234          * Finally, an object request for rbd image data will have
235          * which != BAD_WHICH, and will have a non-null img_request
236          * pointer.  The value of which will be in the range
237          * 0..(img_request->obj_request_count-1).
238          */
239         union {
240                 struct rbd_obj_request  *obj_request;   /* STAT op */
241                 struct {
242                         struct rbd_img_request  *img_request;
243                         u64                     img_offset;
244                         /* links for img_request->obj_requests list */
245                         struct list_head        links;
246                 };
247         };
248         u32                     which;          /* posn image request list */
249
250         enum obj_request_type   type;
251         union {
252                 struct bio      *bio_list;
253                 struct {
254                         struct page     **pages;
255                         u32             page_count;
256                 };
257         };
258         struct page             **copyup_pages;
259         u32                     copyup_page_count;
260
261         struct ceph_osd_request *osd_req;
262
263         u64                     xferred;        /* bytes transferred */
264         int                     result;
265
266         rbd_obj_callback_t      callback;
267         struct completion       completion;
268
269         struct kref             kref;
270 };
271
272 enum img_req_flags {
273         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
274         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
275         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
276 };
277
278 struct rbd_img_request {
279         struct rbd_device       *rbd_dev;
280         u64                     offset; /* starting image byte offset */
281         u64                     length; /* byte count from offset */
282         unsigned long           flags;
283         union {
284                 u64                     snap_id;        /* for reads */
285                 struct ceph_snap_context *snapc;        /* for writes */
286         };
287         union {
288                 struct request          *rq;            /* block request */
289                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
290         };
291         struct page             **copyup_pages;
292         u32                     copyup_page_count;
293         spinlock_t              completion_lock;/* protects next_completion */
294         u32                     next_completion;
295         rbd_img_callback_t      callback;
296         u64                     xferred;/* aggregate bytes transferred */
297         int                     result; /* first nonzero obj_request result */
298
299         u32                     obj_request_count;
300         struct list_head        obj_requests;   /* rbd_obj_request structs */
301
302         struct kref             kref;
303 };
304
305 #define for_each_obj_request(ireq, oreq) \
306         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
307 #define for_each_obj_request_from(ireq, oreq) \
308         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
309 #define for_each_obj_request_safe(ireq, oreq, n) \
310         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
311
312 struct rbd_mapping {
313         u64                     size;
314         u64                     features;
315         bool                    read_only;
316 };
317
318 /*
319  * a single device
320  */
321 struct rbd_device {
322         int                     dev_id;         /* blkdev unique id */
323
324         int                     major;          /* blkdev assigned major */
325         struct gendisk          *disk;          /* blkdev's gendisk and rq */
326
327         u32                     image_format;   /* Either 1 or 2 */
328         struct rbd_client       *rbd_client;
329
330         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
331
332         spinlock_t              lock;           /* queue, flags, open_count */
333
334         struct rbd_image_header header;
335         unsigned long           flags;          /* possibly lock protected */
336         struct rbd_spec         *spec;
337
338         char                    *header_name;
339
340         struct ceph_file_layout layout;
341
342         struct ceph_osd_event   *watch_event;
343         struct rbd_obj_request  *watch_request;
344
345         struct rbd_spec         *parent_spec;
346         u64                     parent_overlap;
347         atomic_t                parent_ref;
348         struct rbd_device       *parent;
349
350         /* protects updating the header */
351         struct rw_semaphore     header_rwsem;
352
353         struct rbd_mapping      mapping;
354
355         struct list_head        node;
356
357         /* sysfs related */
358         struct device           dev;
359         unsigned long           open_count;     /* protected by lock */
360 };
361
362 /*
363  * Flag bits for rbd_dev->flags.  If atomicity is required,
364  * rbd_dev->lock is used to protect access.
365  *
366  * Currently, only the "removing" flag (which is coupled with the
367  * "open_count" field) requires atomic access.
368  */
369 enum rbd_dev_flags {
370         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
371         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
372 };
373
374 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
375
376 static LIST_HEAD(rbd_dev_list);    /* devices */
377 static DEFINE_SPINLOCK(rbd_dev_list_lock);
378
379 static LIST_HEAD(rbd_client_list);              /* clients */
380 static DEFINE_SPINLOCK(rbd_client_list_lock);
381
382 /* Slab caches for frequently-allocated structures */
383
384 static struct kmem_cache        *rbd_img_request_cache;
385 static struct kmem_cache        *rbd_obj_request_cache;
386 static struct kmem_cache        *rbd_segment_name_cache;
387
388 static int rbd_img_request_submit(struct rbd_img_request *img_request);
389
390 static void rbd_dev_device_release(struct device *dev);
391
392 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
393                        size_t count);
394 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
395                           size_t count);
396 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
397 static void rbd_spec_put(struct rbd_spec *spec);
398
399 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
400 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
401
402 static struct attribute *rbd_bus_attrs[] = {
403         &bus_attr_add.attr,
404         &bus_attr_remove.attr,
405         NULL,
406 };
407 ATTRIBUTE_GROUPS(rbd_bus);
408
409 static struct bus_type rbd_bus_type = {
410         .name           = "rbd",
411         .bus_groups     = rbd_bus_groups,
412 };
413
414 static void rbd_root_dev_release(struct device *dev)
415 {
416 }
417
418 static struct device rbd_root_dev = {
419         .init_name =    "rbd",
420         .release =      rbd_root_dev_release,
421 };
422
423 static __printf(2, 3)
424 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
425 {
426         struct va_format vaf;
427         va_list args;
428
429         va_start(args, fmt);
430         vaf.fmt = fmt;
431         vaf.va = &args;
432
433         if (!rbd_dev)
434                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
435         else if (rbd_dev->disk)
436                 printk(KERN_WARNING "%s: %s: %pV\n",
437                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
438         else if (rbd_dev->spec && rbd_dev->spec->image_name)
439                 printk(KERN_WARNING "%s: image %s: %pV\n",
440                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
441         else if (rbd_dev->spec && rbd_dev->spec->image_id)
442                 printk(KERN_WARNING "%s: id %s: %pV\n",
443                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
444         else    /* punt */
445                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
446                         RBD_DRV_NAME, rbd_dev, &vaf);
447         va_end(args);
448 }
449
450 #ifdef RBD_DEBUG
451 #define rbd_assert(expr)                                                \
452                 if (unlikely(!(expr))) {                                \
453                         printk(KERN_ERR "\nAssertion failure in %s() "  \
454                                                 "at line %d:\n\n"       \
455                                         "\trbd_assert(%s);\n\n",        \
456                                         __func__, __LINE__, #expr);     \
457                         BUG();                                          \
458                 }
459 #else /* !RBD_DEBUG */
460 #  define rbd_assert(expr)      ((void) 0)
461 #endif /* !RBD_DEBUG */
462
463 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
464 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
465 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
466
467 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
468 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
469 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
470 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
471                                         u64 snap_id);
472 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
473                                 u8 *order, u64 *snap_size);
474 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
475                 u64 *snap_features);
476 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
477
478 static int rbd_open(struct block_device *bdev, fmode_t mode)
479 {
480         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
481         bool removing = false;
482
483         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
484                 return -EROFS;
485
486         spin_lock_irq(&rbd_dev->lock);
487         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
488                 removing = true;
489         else
490                 rbd_dev->open_count++;
491         spin_unlock_irq(&rbd_dev->lock);
492         if (removing)
493                 return -ENOENT;
494
495         (void) get_device(&rbd_dev->dev);
496         set_device_ro(bdev, rbd_dev->mapping.read_only);
497
498         return 0;
499 }
500
501 static void rbd_release(struct gendisk *disk, fmode_t mode)
502 {
503         struct rbd_device *rbd_dev = disk->private_data;
504         unsigned long open_count_before;
505
506         spin_lock_irq(&rbd_dev->lock);
507         open_count_before = rbd_dev->open_count--;
508         spin_unlock_irq(&rbd_dev->lock);
509         rbd_assert(open_count_before > 0);
510
511         put_device(&rbd_dev->dev);
512 }
513
514 static const struct block_device_operations rbd_bd_ops = {
515         .owner                  = THIS_MODULE,
516         .open                   = rbd_open,
517         .release                = rbd_release,
518 };
519
520 /*
521  * Initialize an rbd client instance.  Success or not, this function
522  * consumes ceph_opts.  Caller holds client_mutex.
523  */
524 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
525 {
526         struct rbd_client *rbdc;
527         int ret = -ENOMEM;
528
529         dout("%s:\n", __func__);
530         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
531         if (!rbdc)
532                 goto out_opt;
533
534         kref_init(&rbdc->kref);
535         INIT_LIST_HEAD(&rbdc->node);
536
537         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
538         if (IS_ERR(rbdc->client))
539                 goto out_rbdc;
540         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
541
542         ret = ceph_open_session(rbdc->client);
543         if (ret < 0)
544                 goto out_client;
545
546         spin_lock(&rbd_client_list_lock);
547         list_add_tail(&rbdc->node, &rbd_client_list);
548         spin_unlock(&rbd_client_list_lock);
549
550         dout("%s: rbdc %p\n", __func__, rbdc);
551
552         return rbdc;
553 out_client:
554         ceph_destroy_client(rbdc->client);
555 out_rbdc:
556         kfree(rbdc);
557 out_opt:
558         if (ceph_opts)
559                 ceph_destroy_options(ceph_opts);
560         dout("%s: error %d\n", __func__, ret);
561
562         return ERR_PTR(ret);
563 }
564
565 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
566 {
567         kref_get(&rbdc->kref);
568
569         return rbdc;
570 }
571
572 /*
573  * Find a ceph client with specific addr and configuration.  If
574  * found, bump its reference count.
575  */
576 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
577 {
578         struct rbd_client *client_node;
579         bool found = false;
580
581         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
582                 return NULL;
583
584         spin_lock(&rbd_client_list_lock);
585         list_for_each_entry(client_node, &rbd_client_list, node) {
586                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
587                         __rbd_get_client(client_node);
588
589                         found = true;
590                         break;
591                 }
592         }
593         spin_unlock(&rbd_client_list_lock);
594
595         return found ? client_node : NULL;
596 }
597
598 /*
599  * mount options
600  */
601 enum {
602         Opt_last_int,
603         /* int args above */
604         Opt_last_string,
605         /* string args above */
606         Opt_read_only,
607         Opt_read_write,
608         /* Boolean args above */
609         Opt_last_bool,
610 };
611
612 static match_table_t rbd_opts_tokens = {
613         /* int args above */
614         /* string args above */
615         {Opt_read_only, "read_only"},
616         {Opt_read_only, "ro"},          /* Alternate spelling */
617         {Opt_read_write, "read_write"},
618         {Opt_read_write, "rw"},         /* Alternate spelling */
619         /* Boolean args above */
620         {-1, NULL}
621 };
622
623 struct rbd_options {
624         bool    read_only;
625 };
626
627 #define RBD_READ_ONLY_DEFAULT   false
628
629 static int parse_rbd_opts_token(char *c, void *private)
630 {
631         struct rbd_options *rbd_opts = private;
632         substring_t argstr[MAX_OPT_ARGS];
633         int token, intval, ret;
634
635         token = match_token(c, rbd_opts_tokens, argstr);
636         if (token < 0)
637                 return -EINVAL;
638
639         if (token < Opt_last_int) {
640                 ret = match_int(&argstr[0], &intval);
641                 if (ret < 0) {
642                         pr_err("bad mount option arg (not int) "
643                                "at '%s'\n", c);
644                         return ret;
645                 }
646                 dout("got int token %d val %d\n", token, intval);
647         } else if (token > Opt_last_int && token < Opt_last_string) {
648                 dout("got string token %d val %s\n", token,
649                      argstr[0].from);
650         } else if (token > Opt_last_string && token < Opt_last_bool) {
651                 dout("got Boolean token %d\n", token);
652         } else {
653                 dout("got token %d\n", token);
654         }
655
656         switch (token) {
657         case Opt_read_only:
658                 rbd_opts->read_only = true;
659                 break;
660         case Opt_read_write:
661                 rbd_opts->read_only = false;
662                 break;
663         default:
664                 rbd_assert(false);
665                 break;
666         }
667         return 0;
668 }
669
670 /*
671  * Get a ceph client with specific addr and configuration, if one does
672  * not exist create it.  Either way, ceph_opts is consumed by this
673  * function.
674  */
675 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
676 {
677         struct rbd_client *rbdc;
678
679         mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
680         rbdc = rbd_client_find(ceph_opts);
681         if (rbdc)       /* using an existing client */
682                 ceph_destroy_options(ceph_opts);
683         else
684                 rbdc = rbd_client_create(ceph_opts);
685         mutex_unlock(&client_mutex);
686
687         return rbdc;
688 }
689
690 /*
691  * Destroy ceph client
692  *
693  * Caller must hold rbd_client_list_lock.
694  */
695 static void rbd_client_release(struct kref *kref)
696 {
697         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
698
699         dout("%s: rbdc %p\n", __func__, rbdc);
700         spin_lock(&rbd_client_list_lock);
701         list_del(&rbdc->node);
702         spin_unlock(&rbd_client_list_lock);
703
704         ceph_destroy_client(rbdc->client);
705         kfree(rbdc);
706 }
707
708 /*
709  * Drop reference to ceph client node. If it's not referenced anymore, release
710  * it.
711  */
712 static void rbd_put_client(struct rbd_client *rbdc)
713 {
714         if (rbdc)
715                 kref_put(&rbdc->kref, rbd_client_release);
716 }
717
718 static bool rbd_image_format_valid(u32 image_format)
719 {
720         return image_format == 1 || image_format == 2;
721 }
722
723 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
724 {
725         size_t size;
726         u32 snap_count;
727
728         /* The header has to start with the magic rbd header text */
729         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
730                 return false;
731
732         /* The bio layer requires at least sector-sized I/O */
733
734         if (ondisk->options.order < SECTOR_SHIFT)
735                 return false;
736
737         /* If we use u64 in a few spots we may be able to loosen this */
738
739         if (ondisk->options.order > 8 * sizeof (int) - 1)
740                 return false;
741
742         /*
743          * The size of a snapshot header has to fit in a size_t, and
744          * that limits the number of snapshots.
745          */
746         snap_count = le32_to_cpu(ondisk->snap_count);
747         size = SIZE_MAX - sizeof (struct ceph_snap_context);
748         if (snap_count > size / sizeof (__le64))
749                 return false;
750
751         /*
752          * Not only that, but the size of the entire the snapshot
753          * header must also be representable in a size_t.
754          */
755         size -= snap_count * sizeof (__le64);
756         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
757                 return false;
758
759         return true;
760 }
761
762 /*
763  * Fill an rbd image header with information from the given format 1
764  * on-disk header.
765  */
766 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
767                                  struct rbd_image_header_ondisk *ondisk)
768 {
769         struct rbd_image_header *header = &rbd_dev->header;
770         bool first_time = header->object_prefix == NULL;
771         struct ceph_snap_context *snapc;
772         char *object_prefix = NULL;
773         char *snap_names = NULL;
774         u64 *snap_sizes = NULL;
775         u32 snap_count;
776         size_t size;
777         int ret = -ENOMEM;
778         u32 i;
779
780         /* Allocate this now to avoid having to handle failure below */
781
782         if (first_time) {
783                 size_t len;
784
785                 len = strnlen(ondisk->object_prefix,
786                                 sizeof (ondisk->object_prefix));
787                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
788                 if (!object_prefix)
789                         return -ENOMEM;
790                 memcpy(object_prefix, ondisk->object_prefix, len);
791                 object_prefix[len] = '\0';
792         }
793
794         /* Allocate the snapshot context and fill it in */
795
796         snap_count = le32_to_cpu(ondisk->snap_count);
797         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
798         if (!snapc)
799                 goto out_err;
800         snapc->seq = le64_to_cpu(ondisk->snap_seq);
801         if (snap_count) {
802                 struct rbd_image_snap_ondisk *snaps;
803                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
804
805                 /* We'll keep a copy of the snapshot names... */
806
807                 if (snap_names_len > (u64)SIZE_MAX)
808                         goto out_2big;
809                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
810                 if (!snap_names)
811                         goto out_err;
812
813                 /* ...as well as the array of their sizes. */
814
815                 size = snap_count * sizeof (*header->snap_sizes);
816                 snap_sizes = kmalloc(size, GFP_KERNEL);
817                 if (!snap_sizes)
818                         goto out_err;
819
820                 /*
821                  * Copy the names, and fill in each snapshot's id
822                  * and size.
823                  *
824                  * Note that rbd_dev_v1_header_info() guarantees the
825                  * ondisk buffer we're working with has
826                  * snap_names_len bytes beyond the end of the
827                  * snapshot id array, this memcpy() is safe.
828                  */
829                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
830                 snaps = ondisk->snaps;
831                 for (i = 0; i < snap_count; i++) {
832                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
833                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
834                 }
835         }
836
837         /* We won't fail any more, fill in the header */
838
839         if (first_time) {
840                 header->object_prefix = object_prefix;
841                 header->obj_order = ondisk->options.order;
842                 header->crypt_type = ondisk->options.crypt_type;
843                 header->comp_type = ondisk->options.comp_type;
844                 /* The rest aren't used for format 1 images */
845                 header->stripe_unit = 0;
846                 header->stripe_count = 0;
847                 header->features = 0;
848         } else {
849                 ceph_put_snap_context(header->snapc);
850                 kfree(header->snap_names);
851                 kfree(header->snap_sizes);
852         }
853
854         /* The remaining fields always get updated (when we refresh) */
855
856         header->image_size = le64_to_cpu(ondisk->image_size);
857         header->snapc = snapc;
858         header->snap_names = snap_names;
859         header->snap_sizes = snap_sizes;
860
861         /* Make sure mapping size is consistent with header info */
862
863         if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
864                 if (rbd_dev->mapping.size != header->image_size)
865                         rbd_dev->mapping.size = header->image_size;
866
867         return 0;
868 out_2big:
869         ret = -EIO;
870 out_err:
871         kfree(snap_sizes);
872         kfree(snap_names);
873         ceph_put_snap_context(snapc);
874         kfree(object_prefix);
875
876         return ret;
877 }
878
879 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
880 {
881         const char *snap_name;
882
883         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
884
885         /* Skip over names until we find the one we are looking for */
886
887         snap_name = rbd_dev->header.snap_names;
888         while (which--)
889                 snap_name += strlen(snap_name) + 1;
890
891         return kstrdup(snap_name, GFP_KERNEL);
892 }
893
894 /*
895  * Snapshot id comparison function for use with qsort()/bsearch().
896  * Note that result is for snapshots in *descending* order.
897  */
898 static int snapid_compare_reverse(const void *s1, const void *s2)
899 {
900         u64 snap_id1 = *(u64 *)s1;
901         u64 snap_id2 = *(u64 *)s2;
902
903         if (snap_id1 < snap_id2)
904                 return 1;
905         return snap_id1 == snap_id2 ? 0 : -1;
906 }
907
908 /*
909  * Search a snapshot context to see if the given snapshot id is
910  * present.
911  *
912  * Returns the position of the snapshot id in the array if it's found,
913  * or BAD_SNAP_INDEX otherwise.
914  *
915  * Note: The snapshot array is in kept sorted (by the osd) in
916  * reverse order, highest snapshot id first.
917  */
918 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
919 {
920         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
921         u64 *found;
922
923         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
924                                 sizeof (snap_id), snapid_compare_reverse);
925
926         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
927 }
928
929 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
930                                         u64 snap_id)
931 {
932         u32 which;
933         const char *snap_name;
934
935         which = rbd_dev_snap_index(rbd_dev, snap_id);
936         if (which == BAD_SNAP_INDEX)
937                 return ERR_PTR(-ENOENT);
938
939         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
940         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
941 }
942
943 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
944 {
945         if (snap_id == CEPH_NOSNAP)
946                 return RBD_SNAP_HEAD_NAME;
947
948         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
949         if (rbd_dev->image_format == 1)
950                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
951
952         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
953 }
954
955 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
956                                 u64 *snap_size)
957 {
958         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
959         if (snap_id == CEPH_NOSNAP) {
960                 *snap_size = rbd_dev->header.image_size;
961         } else if (rbd_dev->image_format == 1) {
962                 u32 which;
963
964                 which = rbd_dev_snap_index(rbd_dev, snap_id);
965                 if (which == BAD_SNAP_INDEX)
966                         return -ENOENT;
967
968                 *snap_size = rbd_dev->header.snap_sizes[which];
969         } else {
970                 u64 size = 0;
971                 int ret;
972
973                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
974                 if (ret)
975                         return ret;
976
977                 *snap_size = size;
978         }
979         return 0;
980 }
981
982 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
983                         u64 *snap_features)
984 {
985         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
986         if (snap_id == CEPH_NOSNAP) {
987                 *snap_features = rbd_dev->header.features;
988         } else if (rbd_dev->image_format == 1) {
989                 *snap_features = 0;     /* No features for format 1 */
990         } else {
991                 u64 features = 0;
992                 int ret;
993
994                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
995                 if (ret)
996                         return ret;
997
998                 *snap_features = features;
999         }
1000         return 0;
1001 }
1002
1003 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1004 {
1005         u64 snap_id = rbd_dev->spec->snap_id;
1006         u64 size = 0;
1007         u64 features = 0;
1008         int ret;
1009
1010         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1011         if (ret)
1012                 return ret;
1013         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1014         if (ret)
1015                 return ret;
1016
1017         rbd_dev->mapping.size = size;
1018         rbd_dev->mapping.features = features;
1019
1020         return 0;
1021 }
1022
1023 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1024 {
1025         rbd_dev->mapping.size = 0;
1026         rbd_dev->mapping.features = 0;
1027 }
1028
1029 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1030 {
1031         char *name;
1032         u64 segment;
1033         int ret;
1034         char *name_format;
1035
1036         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1037         if (!name)
1038                 return NULL;
1039         segment = offset >> rbd_dev->header.obj_order;
1040         name_format = "%s.%012llx";
1041         if (rbd_dev->image_format == 2)
1042                 name_format = "%s.%016llx";
1043         ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, name_format,
1044                         rbd_dev->header.object_prefix, segment);
1045         if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
1046                 pr_err("error formatting segment name for #%llu (%d)\n",
1047                         segment, ret);
1048                 kfree(name);
1049                 name = NULL;
1050         }
1051
1052         return name;
1053 }
1054
1055 static void rbd_segment_name_free(const char *name)
1056 {
1057         /* The explicit cast here is needed to drop the const qualifier */
1058
1059         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1060 }
1061
1062 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1063 {
1064         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1065
1066         return offset & (segment_size - 1);
1067 }
1068
1069 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1070                                 u64 offset, u64 length)
1071 {
1072         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1073
1074         offset &= segment_size - 1;
1075
1076         rbd_assert(length <= U64_MAX - offset);
1077         if (offset + length > segment_size)
1078                 length = segment_size - offset;
1079
1080         return length;
1081 }
1082
1083 /*
1084  * returns the size of an object in the image
1085  */
1086 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1087 {
1088         return 1 << header->obj_order;
1089 }
1090
1091 /*
1092  * bio helpers
1093  */
1094
1095 static void bio_chain_put(struct bio *chain)
1096 {
1097         struct bio *tmp;
1098
1099         while (chain) {
1100                 tmp = chain;
1101                 chain = chain->bi_next;
1102                 bio_put(tmp);
1103         }
1104 }
1105
1106 /*
1107  * zeros a bio chain, starting at specific offset
1108  */
1109 static void zero_bio_chain(struct bio *chain, int start_ofs)
1110 {
1111         struct bio_vec *bv;
1112         unsigned long flags;
1113         void *buf;
1114         int i;
1115         int pos = 0;
1116
1117         while (chain) {
1118                 bio_for_each_segment(bv, chain, i) {
1119                         if (pos + bv->bv_len > start_ofs) {
1120                                 int remainder = max(start_ofs - pos, 0);
1121                                 buf = bvec_kmap_irq(bv, &flags);
1122                                 memset(buf + remainder, 0,
1123                                        bv->bv_len - remainder);
1124                                 flush_dcache_page(bv->bv_page);
1125                                 bvec_kunmap_irq(buf, &flags);
1126                         }
1127                         pos += bv->bv_len;
1128                 }
1129
1130                 chain = chain->bi_next;
1131         }
1132 }
1133
1134 /*
1135  * similar to zero_bio_chain(), zeros data defined by a page array,
1136  * starting at the given byte offset from the start of the array and
1137  * continuing up to the given end offset.  The pages array is
1138  * assumed to be big enough to hold all bytes up to the end.
1139  */
1140 static void zero_pages(struct page **pages, u64 offset, u64 end)
1141 {
1142         struct page **page = &pages[offset >> PAGE_SHIFT];
1143
1144         rbd_assert(end > offset);
1145         rbd_assert(end - offset <= (u64)SIZE_MAX);
1146         while (offset < end) {
1147                 size_t page_offset;
1148                 size_t length;
1149                 unsigned long flags;
1150                 void *kaddr;
1151
1152                 page_offset = offset & ~PAGE_MASK;
1153                 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1154                 local_irq_save(flags);
1155                 kaddr = kmap_atomic(*page);
1156                 memset(kaddr + page_offset, 0, length);
1157                 flush_dcache_page(*page);
1158                 kunmap_atomic(kaddr);
1159                 local_irq_restore(flags);
1160
1161                 offset += length;
1162                 page++;
1163         }
1164 }
1165
1166 /*
1167  * Clone a portion of a bio, starting at the given byte offset
1168  * and continuing for the number of bytes indicated.
1169  */
1170 static struct bio *bio_clone_range(struct bio *bio_src,
1171                                         unsigned int offset,
1172                                         unsigned int len,
1173                                         gfp_t gfpmask)
1174 {
1175         struct bio_vec *bv;
1176         unsigned int resid;
1177         unsigned short idx;
1178         unsigned int voff;
1179         unsigned short end_idx;
1180         unsigned short vcnt;
1181         struct bio *bio;
1182
1183         /* Handle the easy case for the caller */
1184
1185         if (!offset && len == bio_src->bi_size)
1186                 return bio_clone(bio_src, gfpmask);
1187
1188         if (WARN_ON_ONCE(!len))
1189                 return NULL;
1190         if (WARN_ON_ONCE(len > bio_src->bi_size))
1191                 return NULL;
1192         if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
1193                 return NULL;
1194
1195         /* Find first affected segment... */
1196
1197         resid = offset;
1198         bio_for_each_segment(bv, bio_src, idx) {
1199                 if (resid < bv->bv_len)
1200                         break;
1201                 resid -= bv->bv_len;
1202         }
1203         voff = resid;
1204
1205         /* ...and the last affected segment */
1206
1207         resid += len;
1208         __bio_for_each_segment(bv, bio_src, end_idx, idx) {
1209                 if (resid <= bv->bv_len)
1210                         break;
1211                 resid -= bv->bv_len;
1212         }
1213         vcnt = end_idx - idx + 1;
1214
1215         /* Build the clone */
1216
1217         bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1218         if (!bio)
1219                 return NULL;    /* ENOMEM */
1220
1221         bio->bi_bdev = bio_src->bi_bdev;
1222         bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1223         bio->bi_rw = bio_src->bi_rw;
1224         bio->bi_flags |= 1 << BIO_CLONED;
1225
1226         /*
1227          * Copy over our part of the bio_vec, then update the first
1228          * and last (or only) entries.
1229          */
1230         memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1231                         vcnt * sizeof (struct bio_vec));
1232         bio->bi_io_vec[0].bv_offset += voff;
1233         if (vcnt > 1) {
1234                 bio->bi_io_vec[0].bv_len -= voff;
1235                 bio->bi_io_vec[vcnt - 1].bv_len = resid;
1236         } else {
1237                 bio->bi_io_vec[0].bv_len = len;
1238         }
1239
1240         bio->bi_vcnt = vcnt;
1241         bio->bi_size = len;
1242         bio->bi_idx = 0;
1243
1244         return bio;
1245 }
1246
1247 /*
1248  * Clone a portion of a bio chain, starting at the given byte offset
1249  * into the first bio in the source chain and continuing for the
1250  * number of bytes indicated.  The result is another bio chain of
1251  * exactly the given length, or a null pointer on error.
1252  *
1253  * The bio_src and offset parameters are both in-out.  On entry they
1254  * refer to the first source bio and the offset into that bio where
1255  * the start of data to be cloned is located.
1256  *
1257  * On return, bio_src is updated to refer to the bio in the source
1258  * chain that contains first un-cloned byte, and *offset will
1259  * contain the offset of that byte within that bio.
1260  */
1261 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1262                                         unsigned int *offset,
1263                                         unsigned int len,
1264                                         gfp_t gfpmask)
1265 {
1266         struct bio *bi = *bio_src;
1267         unsigned int off = *offset;
1268         struct bio *chain = NULL;
1269         struct bio **end;
1270
1271         /* Build up a chain of clone bios up to the limit */
1272
1273         if (!bi || off >= bi->bi_size || !len)
1274                 return NULL;            /* Nothing to clone */
1275
1276         end = &chain;
1277         while (len) {
1278                 unsigned int bi_size;
1279                 struct bio *bio;
1280
1281                 if (!bi) {
1282                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1283                         goto out_err;   /* EINVAL; ran out of bio's */
1284                 }
1285                 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1286                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1287                 if (!bio)
1288                         goto out_err;   /* ENOMEM */
1289
1290                 *end = bio;
1291                 end = &bio->bi_next;
1292
1293                 off += bi_size;
1294                 if (off == bi->bi_size) {
1295                         bi = bi->bi_next;
1296                         off = 0;
1297                 }
1298                 len -= bi_size;
1299         }
1300         *bio_src = bi;
1301         *offset = off;
1302
1303         return chain;
1304 out_err:
1305         bio_chain_put(chain);
1306
1307         return NULL;
1308 }
1309
1310 /*
1311  * The default/initial value for all object request flags is 0.  For
1312  * each flag, once its value is set to 1 it is never reset to 0
1313  * again.
1314  */
1315 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1316 {
1317         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1318                 struct rbd_device *rbd_dev;
1319
1320                 rbd_dev = obj_request->img_request->rbd_dev;
1321                 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1322                         obj_request);
1323         }
1324 }
1325
1326 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1327 {
1328         smp_mb();
1329         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1330 }
1331
1332 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1333 {
1334         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1335                 struct rbd_device *rbd_dev = NULL;
1336
1337                 if (obj_request_img_data_test(obj_request))
1338                         rbd_dev = obj_request->img_request->rbd_dev;
1339                 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1340                         obj_request);
1341         }
1342 }
1343
1344 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1345 {
1346         smp_mb();
1347         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1348 }
1349
1350 /*
1351  * This sets the KNOWN flag after (possibly) setting the EXISTS
1352  * flag.  The latter is set based on the "exists" value provided.
1353  *
1354  * Note that for our purposes once an object exists it never goes
1355  * away again.  It's possible that the response from two existence
1356  * checks are separated by the creation of the target object, and
1357  * the first ("doesn't exist") response arrives *after* the second
1358  * ("does exist").  In that case we ignore the second one.
1359  */
1360 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1361                                 bool exists)
1362 {
1363         if (exists)
1364                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1365         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1366         smp_mb();
1367 }
1368
1369 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1370 {
1371         smp_mb();
1372         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1373 }
1374
1375 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1376 {
1377         smp_mb();
1378         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1379 }
1380
1381 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1382 {
1383         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1384                 atomic_read(&obj_request->kref.refcount));
1385         kref_get(&obj_request->kref);
1386 }
1387
1388 static void rbd_obj_request_destroy(struct kref *kref);
1389 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1390 {
1391         rbd_assert(obj_request != NULL);
1392         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1393                 atomic_read(&obj_request->kref.refcount));
1394         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1395 }
1396
1397 static bool img_request_child_test(struct rbd_img_request *img_request);
1398 static void rbd_parent_request_destroy(struct kref *kref);
1399 static void rbd_img_request_destroy(struct kref *kref);
1400 static void rbd_img_request_put(struct rbd_img_request *img_request)
1401 {
1402         rbd_assert(img_request != NULL);
1403         dout("%s: img %p (was %d)\n", __func__, img_request,
1404                 atomic_read(&img_request->kref.refcount));
1405         if (img_request_child_test(img_request))
1406                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1407         else
1408                 kref_put(&img_request->kref, rbd_img_request_destroy);
1409 }
1410
1411 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1412                                         struct rbd_obj_request *obj_request)
1413 {
1414         rbd_assert(obj_request->img_request == NULL);
1415
1416         /* Image request now owns object's original reference */
1417         obj_request->img_request = img_request;
1418         obj_request->which = img_request->obj_request_count;
1419         rbd_assert(!obj_request_img_data_test(obj_request));
1420         obj_request_img_data_set(obj_request);
1421         rbd_assert(obj_request->which != BAD_WHICH);
1422         img_request->obj_request_count++;
1423         list_add_tail(&obj_request->links, &img_request->obj_requests);
1424         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1425                 obj_request->which);
1426 }
1427
1428 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1429                                         struct rbd_obj_request *obj_request)
1430 {
1431         rbd_assert(obj_request->which != BAD_WHICH);
1432
1433         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1434                 obj_request->which);
1435         list_del(&obj_request->links);
1436         rbd_assert(img_request->obj_request_count > 0);
1437         img_request->obj_request_count--;
1438         rbd_assert(obj_request->which == img_request->obj_request_count);
1439         obj_request->which = BAD_WHICH;
1440         rbd_assert(obj_request_img_data_test(obj_request));
1441         rbd_assert(obj_request->img_request == img_request);
1442         obj_request->img_request = NULL;
1443         obj_request->callback = NULL;
1444         rbd_obj_request_put(obj_request);
1445 }
1446
1447 static bool obj_request_type_valid(enum obj_request_type type)
1448 {
1449         switch (type) {
1450         case OBJ_REQUEST_NODATA:
1451         case OBJ_REQUEST_BIO:
1452         case OBJ_REQUEST_PAGES:
1453                 return true;
1454         default:
1455                 return false;
1456         }
1457 }
1458
1459 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1460                                 struct rbd_obj_request *obj_request)
1461 {
1462         dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1463
1464         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1465 }
1466
1467 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1468 {
1469
1470         dout("%s: img %p\n", __func__, img_request);
1471
1472         /*
1473          * If no error occurred, compute the aggregate transfer
1474          * count for the image request.  We could instead use
1475          * atomic64_cmpxchg() to update it as each object request
1476          * completes; not clear which way is better off hand.
1477          */
1478         if (!img_request->result) {
1479                 struct rbd_obj_request *obj_request;
1480                 u64 xferred = 0;
1481
1482                 for_each_obj_request(img_request, obj_request)
1483                         xferred += obj_request->xferred;
1484                 img_request->xferred = xferred;
1485         }
1486
1487         if (img_request->callback)
1488                 img_request->callback(img_request);
1489         else
1490                 rbd_img_request_put(img_request);
1491 }
1492
1493 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1494
1495 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1496 {
1497         dout("%s: obj %p\n", __func__, obj_request);
1498
1499         return wait_for_completion_interruptible(&obj_request->completion);
1500 }
1501
1502 /*
1503  * The default/initial value for all image request flags is 0.  Each
1504  * is conditionally set to 1 at image request initialization time
1505  * and currently never change thereafter.
1506  */
1507 static void img_request_write_set(struct rbd_img_request *img_request)
1508 {
1509         set_bit(IMG_REQ_WRITE, &img_request->flags);
1510         smp_mb();
1511 }
1512
1513 static bool img_request_write_test(struct rbd_img_request *img_request)
1514 {
1515         smp_mb();
1516         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1517 }
1518
1519 static void img_request_child_set(struct rbd_img_request *img_request)
1520 {
1521         set_bit(IMG_REQ_CHILD, &img_request->flags);
1522         smp_mb();
1523 }
1524
1525 static void img_request_child_clear(struct rbd_img_request *img_request)
1526 {
1527         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1528         smp_mb();
1529 }
1530
1531 static bool img_request_child_test(struct rbd_img_request *img_request)
1532 {
1533         smp_mb();
1534         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1535 }
1536
1537 static void img_request_layered_set(struct rbd_img_request *img_request)
1538 {
1539         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1540         smp_mb();
1541 }
1542
1543 static void img_request_layered_clear(struct rbd_img_request *img_request)
1544 {
1545         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1546         smp_mb();
1547 }
1548
1549 static bool img_request_layered_test(struct rbd_img_request *img_request)
1550 {
1551         smp_mb();
1552         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1553 }
1554
1555 static void
1556 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1557 {
1558         u64 xferred = obj_request->xferred;
1559         u64 length = obj_request->length;
1560
1561         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1562                 obj_request, obj_request->img_request, obj_request->result,
1563                 xferred, length);
1564         /*
1565          * ENOENT means a hole in the image.  We zero-fill the entire
1566          * length of the request.  A short read also implies zero-fill
1567          * to the end of the request.  An error requires the whole
1568          * length of the request to be reported finished with an error
1569          * to the block layer.  In each case we update the xferred
1570          * count to indicate the whole request was satisfied.
1571          */
1572         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1573         if (obj_request->result == -ENOENT) {
1574                 if (obj_request->type == OBJ_REQUEST_BIO)
1575                         zero_bio_chain(obj_request->bio_list, 0);
1576                 else
1577                         zero_pages(obj_request->pages, 0, length);
1578                 obj_request->result = 0;
1579         } else if (xferred < length && !obj_request->result) {
1580                 if (obj_request->type == OBJ_REQUEST_BIO)
1581                         zero_bio_chain(obj_request->bio_list, xferred);
1582                 else
1583                         zero_pages(obj_request->pages, xferred, length);
1584         }
1585         obj_request->xferred = length;
1586         obj_request_done_set(obj_request);
1587 }
1588
1589 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1590 {
1591         dout("%s: obj %p cb %p\n", __func__, obj_request,
1592                 obj_request->callback);
1593         if (obj_request->callback)
1594                 obj_request->callback(obj_request);
1595         else
1596                 complete_all(&obj_request->completion);
1597 }
1598
1599 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1600 {
1601         dout("%s: obj %p\n", __func__, obj_request);
1602         obj_request_done_set(obj_request);
1603 }
1604
1605 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1606 {
1607         struct rbd_img_request *img_request = NULL;
1608         struct rbd_device *rbd_dev = NULL;
1609         bool layered = false;
1610
1611         if (obj_request_img_data_test(obj_request)) {
1612                 img_request = obj_request->img_request;
1613                 layered = img_request && img_request_layered_test(img_request);
1614                 rbd_dev = img_request->rbd_dev;
1615         }
1616
1617         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1618                 obj_request, img_request, obj_request->result,
1619                 obj_request->xferred, obj_request->length);
1620         if (layered && obj_request->result == -ENOENT &&
1621                         obj_request->img_offset < rbd_dev->parent_overlap)
1622                 rbd_img_parent_read(obj_request);
1623         else if (img_request)
1624                 rbd_img_obj_request_read_callback(obj_request);
1625         else
1626                 obj_request_done_set(obj_request);
1627 }
1628
1629 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1630 {
1631         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1632                 obj_request->result, obj_request->length);
1633         /*
1634          * There is no such thing as a successful short write.  Set
1635          * it to our originally-requested length.
1636          */
1637         obj_request->xferred = obj_request->length;
1638         obj_request_done_set(obj_request);
1639 }
1640
1641 /*
1642  * For a simple stat call there's nothing to do.  We'll do more if
1643  * this is part of a write sequence for a layered image.
1644  */
1645 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1646 {
1647         dout("%s: obj %p\n", __func__, obj_request);
1648         obj_request_done_set(obj_request);
1649 }
1650
1651 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1652                                 struct ceph_msg *msg)
1653 {
1654         struct rbd_obj_request *obj_request = osd_req->r_priv;
1655         u16 opcode;
1656
1657         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1658         rbd_assert(osd_req == obj_request->osd_req);
1659         if (obj_request_img_data_test(obj_request)) {
1660                 rbd_assert(obj_request->img_request);
1661                 rbd_assert(obj_request->which != BAD_WHICH);
1662         } else {
1663                 rbd_assert(obj_request->which == BAD_WHICH);
1664         }
1665
1666         if (osd_req->r_result < 0)
1667                 obj_request->result = osd_req->r_result;
1668
1669         BUG_ON(osd_req->r_num_ops > 2);
1670
1671         /*
1672          * We support a 64-bit length, but ultimately it has to be
1673          * passed to blk_end_request(), which takes an unsigned int.
1674          */
1675         obj_request->xferred = osd_req->r_reply_op_len[0];
1676         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1677         opcode = osd_req->r_ops[0].op;
1678         switch (opcode) {
1679         case CEPH_OSD_OP_READ:
1680                 rbd_osd_read_callback(obj_request);
1681                 break;
1682         case CEPH_OSD_OP_WRITE:
1683                 rbd_osd_write_callback(obj_request);
1684                 break;
1685         case CEPH_OSD_OP_STAT:
1686                 rbd_osd_stat_callback(obj_request);
1687                 break;
1688         case CEPH_OSD_OP_CALL:
1689         case CEPH_OSD_OP_NOTIFY_ACK:
1690         case CEPH_OSD_OP_WATCH:
1691                 rbd_osd_trivial_callback(obj_request);
1692                 break;
1693         default:
1694                 rbd_warn(NULL, "%s: unsupported op %hu\n",
1695                         obj_request->object_name, (unsigned short) opcode);
1696                 break;
1697         }
1698
1699         if (obj_request_done_test(obj_request))
1700                 rbd_obj_request_complete(obj_request);
1701 }
1702
1703 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1704 {
1705         struct rbd_img_request *img_request = obj_request->img_request;
1706         struct ceph_osd_request *osd_req = obj_request->osd_req;
1707         u64 snap_id;
1708
1709         rbd_assert(osd_req != NULL);
1710
1711         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1712         ceph_osdc_build_request(osd_req, obj_request->offset,
1713                         NULL, snap_id, NULL);
1714 }
1715
1716 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1717 {
1718         struct rbd_img_request *img_request = obj_request->img_request;
1719         struct ceph_osd_request *osd_req = obj_request->osd_req;
1720         struct ceph_snap_context *snapc;
1721         struct timespec mtime = CURRENT_TIME;
1722
1723         rbd_assert(osd_req != NULL);
1724
1725         snapc = img_request ? img_request->snapc : NULL;
1726         ceph_osdc_build_request(osd_req, obj_request->offset,
1727                         snapc, CEPH_NOSNAP, &mtime);
1728 }
1729
1730 static struct ceph_osd_request *rbd_osd_req_create(
1731                                         struct rbd_device *rbd_dev,
1732                                         bool write_request,
1733                                         struct rbd_obj_request *obj_request)
1734 {
1735         struct ceph_snap_context *snapc = NULL;
1736         struct ceph_osd_client *osdc;
1737         struct ceph_osd_request *osd_req;
1738
1739         if (obj_request_img_data_test(obj_request)) {
1740                 struct rbd_img_request *img_request = obj_request->img_request;
1741
1742                 rbd_assert(write_request ==
1743                                 img_request_write_test(img_request));
1744                 if (write_request)
1745                         snapc = img_request->snapc;
1746         }
1747
1748         /* Allocate and initialize the request, for the single op */
1749
1750         osdc = &rbd_dev->rbd_client->client->osdc;
1751         osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1752         if (!osd_req)
1753                 return NULL;    /* ENOMEM */
1754
1755         if (write_request)
1756                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1757         else
1758                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1759
1760         osd_req->r_callback = rbd_osd_req_callback;
1761         osd_req->r_priv = obj_request;
1762
1763         osd_req->r_oid_len = strlen(obj_request->object_name);
1764         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1765         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1766
1767         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1768
1769         return osd_req;
1770 }
1771
1772 /*
1773  * Create a copyup osd request based on the information in the
1774  * object request supplied.  A copyup request has two osd ops,
1775  * a copyup method call, and a "normal" write request.
1776  */
1777 static struct ceph_osd_request *
1778 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1779 {
1780         struct rbd_img_request *img_request;
1781         struct ceph_snap_context *snapc;
1782         struct rbd_device *rbd_dev;
1783         struct ceph_osd_client *osdc;
1784         struct ceph_osd_request *osd_req;
1785
1786         rbd_assert(obj_request_img_data_test(obj_request));
1787         img_request = obj_request->img_request;
1788         rbd_assert(img_request);
1789         rbd_assert(img_request_write_test(img_request));
1790
1791         /* Allocate and initialize the request, for the two ops */
1792
1793         snapc = img_request->snapc;
1794         rbd_dev = img_request->rbd_dev;
1795         osdc = &rbd_dev->rbd_client->client->osdc;
1796         osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1797         if (!osd_req)
1798                 return NULL;    /* ENOMEM */
1799
1800         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1801         osd_req->r_callback = rbd_osd_req_callback;
1802         osd_req->r_priv = obj_request;
1803
1804         osd_req->r_oid_len = strlen(obj_request->object_name);
1805         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1806         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1807
1808         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1809
1810         return osd_req;
1811 }
1812
1813
1814 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1815 {
1816         ceph_osdc_put_request(osd_req);
1817 }
1818
1819 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1820
1821 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1822                                                 u64 offset, u64 length,
1823                                                 enum obj_request_type type)
1824 {
1825         struct rbd_obj_request *obj_request;
1826         size_t size;
1827         char *name;
1828
1829         rbd_assert(obj_request_type_valid(type));
1830
1831         size = strlen(object_name) + 1;
1832         name = kmalloc(size, GFP_KERNEL);
1833         if (!name)
1834                 return NULL;
1835
1836         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1837         if (!obj_request) {
1838                 kfree(name);
1839                 return NULL;
1840         }
1841
1842         obj_request->object_name = memcpy(name, object_name, size);
1843         obj_request->offset = offset;
1844         obj_request->length = length;
1845         obj_request->flags = 0;
1846         obj_request->which = BAD_WHICH;
1847         obj_request->type = type;
1848         INIT_LIST_HEAD(&obj_request->links);
1849         init_completion(&obj_request->completion);
1850         kref_init(&obj_request->kref);
1851
1852         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1853                 offset, length, (int)type, obj_request);
1854
1855         return obj_request;
1856 }
1857
1858 static void rbd_obj_request_destroy(struct kref *kref)
1859 {
1860         struct rbd_obj_request *obj_request;
1861
1862         obj_request = container_of(kref, struct rbd_obj_request, kref);
1863
1864         dout("%s: obj %p\n", __func__, obj_request);
1865
1866         rbd_assert(obj_request->img_request == NULL);
1867         rbd_assert(obj_request->which == BAD_WHICH);
1868
1869         if (obj_request->osd_req)
1870                 rbd_osd_req_destroy(obj_request->osd_req);
1871
1872         rbd_assert(obj_request_type_valid(obj_request->type));
1873         switch (obj_request->type) {
1874         case OBJ_REQUEST_NODATA:
1875                 break;          /* Nothing to do */
1876         case OBJ_REQUEST_BIO:
1877                 if (obj_request->bio_list)
1878                         bio_chain_put(obj_request->bio_list);
1879                 break;
1880         case OBJ_REQUEST_PAGES:
1881                 if (obj_request->pages)
1882                         ceph_release_page_vector(obj_request->pages,
1883                                                 obj_request->page_count);
1884                 break;
1885         }
1886
1887         kfree(obj_request->object_name);
1888         obj_request->object_name = NULL;
1889         kmem_cache_free(rbd_obj_request_cache, obj_request);
1890 }
1891
1892 /* It's OK to call this for a device with no parent */
1893
1894 static void rbd_spec_put(struct rbd_spec *spec);
1895 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1896 {
1897         rbd_dev_remove_parent(rbd_dev);
1898         rbd_spec_put(rbd_dev->parent_spec);
1899         rbd_dev->parent_spec = NULL;
1900         rbd_dev->parent_overlap = 0;
1901 }
1902
1903 /*
1904  * Parent image reference counting is used to determine when an
1905  * image's parent fields can be safely torn down--after there are no
1906  * more in-flight requests to the parent image.  When the last
1907  * reference is dropped, cleaning them up is safe.
1908  */
1909 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1910 {
1911         int counter;
1912
1913         if (!rbd_dev->parent_spec)
1914                 return;
1915
1916         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1917         if (counter > 0)
1918                 return;
1919
1920         /* Last reference; clean up parent data structures */
1921
1922         if (!counter)
1923                 rbd_dev_unparent(rbd_dev);
1924         else
1925                 rbd_warn(rbd_dev, "parent reference underflow\n");
1926 }
1927
1928 /*
1929  * If an image has a non-zero parent overlap, get a reference to its
1930  * parent.
1931  *
1932  * We must get the reference before checking for the overlap to
1933  * coordinate properly with zeroing the parent overlap in
1934  * rbd_dev_v2_parent_info() when an image gets flattened.  We
1935  * drop it again if there is no overlap.
1936  *
1937  * Returns true if the rbd device has a parent with a non-zero
1938  * overlap and a reference for it was successfully taken, or
1939  * false otherwise.
1940  */
1941 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1942 {
1943         int counter;
1944
1945         if (!rbd_dev->parent_spec)
1946                 return false;
1947
1948         counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1949         if (counter > 0 && rbd_dev->parent_overlap)
1950                 return true;
1951
1952         /* Image was flattened, but parent is not yet torn down */
1953
1954         if (counter < 0)
1955                 rbd_warn(rbd_dev, "parent reference overflow\n");
1956
1957         return false;
1958 }
1959
1960 /*
1961  * Caller is responsible for filling in the list of object requests
1962  * that comprises the image request, and the Linux request pointer
1963  * (if there is one).
1964  */
1965 static struct rbd_img_request *rbd_img_request_create(
1966                                         struct rbd_device *rbd_dev,
1967                                         u64 offset, u64 length,
1968                                         bool write_request)
1969 {
1970         struct rbd_img_request *img_request;
1971
1972         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1973         if (!img_request)
1974                 return NULL;
1975
1976         if (write_request) {
1977                 down_read(&rbd_dev->header_rwsem);
1978                 ceph_get_snap_context(rbd_dev->header.snapc);
1979                 up_read(&rbd_dev->header_rwsem);
1980         }
1981
1982         img_request->rq = NULL;
1983         img_request->rbd_dev = rbd_dev;
1984         img_request->offset = offset;
1985         img_request->length = length;
1986         img_request->flags = 0;
1987         if (write_request) {
1988                 img_request_write_set(img_request);
1989                 img_request->snapc = rbd_dev->header.snapc;
1990         } else {
1991                 img_request->snap_id = rbd_dev->spec->snap_id;
1992         }
1993         if (rbd_dev_parent_get(rbd_dev))
1994                 img_request_layered_set(img_request);
1995         spin_lock_init(&img_request->completion_lock);
1996         img_request->next_completion = 0;
1997         img_request->callback = NULL;
1998         img_request->result = 0;
1999         img_request->obj_request_count = 0;
2000         INIT_LIST_HEAD(&img_request->obj_requests);
2001         kref_init(&img_request->kref);
2002
2003         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2004                 write_request ? "write" : "read", offset, length,
2005                 img_request);
2006
2007         return img_request;
2008 }
2009
2010 static void rbd_img_request_destroy(struct kref *kref)
2011 {
2012         struct rbd_img_request *img_request;
2013         struct rbd_obj_request *obj_request;
2014         struct rbd_obj_request *next_obj_request;
2015
2016         img_request = container_of(kref, struct rbd_img_request, kref);
2017
2018         dout("%s: img %p\n", __func__, img_request);
2019
2020         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2021                 rbd_img_obj_request_del(img_request, obj_request);
2022         rbd_assert(img_request->obj_request_count == 0);
2023
2024         if (img_request_layered_test(img_request)) {
2025                 img_request_layered_clear(img_request);
2026                 rbd_dev_parent_put(img_request->rbd_dev);
2027         }
2028
2029         if (img_request_write_test(img_request))
2030                 ceph_put_snap_context(img_request->snapc);
2031
2032         kmem_cache_free(rbd_img_request_cache, img_request);
2033 }
2034
2035 static struct rbd_img_request *rbd_parent_request_create(
2036                                         struct rbd_obj_request *obj_request,
2037                                         u64 img_offset, u64 length)
2038 {
2039         struct rbd_img_request *parent_request;
2040         struct rbd_device *rbd_dev;
2041
2042         rbd_assert(obj_request->img_request);
2043         rbd_dev = obj_request->img_request->rbd_dev;
2044
2045         parent_request = rbd_img_request_create(rbd_dev->parent,
2046                                                 img_offset, length, false);
2047         if (!parent_request)
2048                 return NULL;
2049
2050         img_request_child_set(parent_request);
2051         rbd_obj_request_get(obj_request);
2052         parent_request->obj_request = obj_request;
2053
2054         return parent_request;
2055 }
2056
2057 static void rbd_parent_request_destroy(struct kref *kref)
2058 {
2059         struct rbd_img_request *parent_request;
2060         struct rbd_obj_request *orig_request;
2061
2062         parent_request = container_of(kref, struct rbd_img_request, kref);
2063         orig_request = parent_request->obj_request;
2064
2065         parent_request->obj_request = NULL;
2066         rbd_obj_request_put(orig_request);
2067         img_request_child_clear(parent_request);
2068
2069         rbd_img_request_destroy(kref);
2070 }
2071
2072 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2073 {
2074         struct rbd_img_request *img_request;
2075         unsigned int xferred;
2076         int result;
2077         bool more;
2078
2079         rbd_assert(obj_request_img_data_test(obj_request));
2080         img_request = obj_request->img_request;
2081
2082         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2083         xferred = (unsigned int)obj_request->xferred;
2084         result = obj_request->result;
2085         if (result) {
2086                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2087
2088                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2089                         img_request_write_test(img_request) ? "write" : "read",
2090                         obj_request->length, obj_request->img_offset,
2091                         obj_request->offset);
2092                 rbd_warn(rbd_dev, "  result %d xferred %x\n",
2093                         result, xferred);
2094                 if (!img_request->result)
2095                         img_request->result = result;
2096         }
2097
2098         /* Image object requests don't own their page array */
2099
2100         if (obj_request->type == OBJ_REQUEST_PAGES) {
2101                 obj_request->pages = NULL;
2102                 obj_request->page_count = 0;
2103         }
2104
2105         if (img_request_child_test(img_request)) {
2106                 rbd_assert(img_request->obj_request != NULL);
2107                 more = obj_request->which < img_request->obj_request_count - 1;
2108         } else {
2109                 rbd_assert(img_request->rq != NULL);
2110                 more = blk_end_request(img_request->rq, result, xferred);
2111         }
2112
2113         return more;
2114 }
2115
2116 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2117 {
2118         struct rbd_img_request *img_request;
2119         u32 which = obj_request->which;
2120         bool more = true;
2121
2122         rbd_assert(obj_request_img_data_test(obj_request));
2123         img_request = obj_request->img_request;
2124
2125         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2126         rbd_assert(img_request != NULL);
2127         rbd_assert(img_request->obj_request_count > 0);
2128         rbd_assert(which != BAD_WHICH);
2129         rbd_assert(which < img_request->obj_request_count);
2130         rbd_assert(which >= img_request->next_completion);
2131
2132         spin_lock_irq(&img_request->completion_lock);
2133         if (which != img_request->next_completion)
2134                 goto out;
2135
2136         for_each_obj_request_from(img_request, obj_request) {
2137                 rbd_assert(more);
2138                 rbd_assert(which < img_request->obj_request_count);
2139
2140                 if (!obj_request_done_test(obj_request))
2141                         break;
2142                 more = rbd_img_obj_end_request(obj_request);
2143                 which++;
2144         }
2145
2146         rbd_assert(more ^ (which == img_request->obj_request_count));
2147         img_request->next_completion = which;
2148 out:
2149         spin_unlock_irq(&img_request->completion_lock);
2150
2151         if (!more)
2152                 rbd_img_request_complete(img_request);
2153 }
2154
2155 /*
2156  * Split up an image request into one or more object requests, each
2157  * to a different object.  The "type" parameter indicates whether
2158  * "data_desc" is the pointer to the head of a list of bio
2159  * structures, or the base of a page array.  In either case this
2160  * function assumes data_desc describes memory sufficient to hold
2161  * all data described by the image request.
2162  */
2163 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2164                                         enum obj_request_type type,
2165                                         void *data_desc)
2166 {
2167         struct rbd_device *rbd_dev = img_request->rbd_dev;
2168         struct rbd_obj_request *obj_request = NULL;
2169         struct rbd_obj_request *next_obj_request;
2170         bool write_request = img_request_write_test(img_request);
2171         struct bio *bio_list = NULL;
2172         unsigned int bio_offset = 0;
2173         struct page **pages = NULL;
2174         u64 img_offset;
2175         u64 resid;
2176         u16 opcode;
2177
2178         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2179                 (int)type, data_desc);
2180
2181         opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2182         img_offset = img_request->offset;
2183         resid = img_request->length;
2184         rbd_assert(resid > 0);
2185
2186         if (type == OBJ_REQUEST_BIO) {
2187                 bio_list = data_desc;
2188                 rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
2189         } else {
2190                 rbd_assert(type == OBJ_REQUEST_PAGES);
2191                 pages = data_desc;
2192         }
2193
2194         while (resid) {
2195                 struct ceph_osd_request *osd_req;
2196                 const char *object_name;
2197                 u64 offset;
2198                 u64 length;
2199
2200                 object_name = rbd_segment_name(rbd_dev, img_offset);
2201                 if (!object_name)
2202                         goto out_unwind;
2203                 offset = rbd_segment_offset(rbd_dev, img_offset);
2204                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2205                 obj_request = rbd_obj_request_create(object_name,
2206                                                 offset, length, type);
2207                 /* object request has its own copy of the object name */
2208                 rbd_segment_name_free(object_name);
2209                 if (!obj_request)
2210                         goto out_unwind;
2211                 /*
2212                  * set obj_request->img_request before creating the
2213                  * osd_request so that it gets the right snapc
2214                  */
2215                 rbd_img_obj_request_add(img_request, obj_request);
2216
2217                 if (type == OBJ_REQUEST_BIO) {
2218                         unsigned int clone_size;
2219
2220                         rbd_assert(length <= (u64)UINT_MAX);
2221                         clone_size = (unsigned int)length;
2222                         obj_request->bio_list =
2223                                         bio_chain_clone_range(&bio_list,
2224                                                                 &bio_offset,
2225                                                                 clone_size,
2226                                                                 GFP_ATOMIC);
2227                         if (!obj_request->bio_list)
2228                                 goto out_partial;
2229                 } else {
2230                         unsigned int page_count;
2231
2232                         obj_request->pages = pages;
2233                         page_count = (u32)calc_pages_for(offset, length);
2234                         obj_request->page_count = page_count;
2235                         if ((offset + length) & ~PAGE_MASK)
2236                                 page_count--;   /* more on last page */
2237                         pages += page_count;
2238                 }
2239
2240                 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2241                                                 obj_request);
2242                 if (!osd_req)
2243                         goto out_partial;
2244                 obj_request->osd_req = osd_req;
2245                 obj_request->callback = rbd_img_obj_callback;
2246
2247                 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2248                                                 0, 0);
2249                 if (type == OBJ_REQUEST_BIO)
2250                         osd_req_op_extent_osd_data_bio(osd_req, 0,
2251                                         obj_request->bio_list, length);
2252                 else
2253                         osd_req_op_extent_osd_data_pages(osd_req, 0,
2254                                         obj_request->pages, length,
2255                                         offset & ~PAGE_MASK, false, false);
2256
2257                 if (write_request)
2258                         rbd_osd_req_format_write(obj_request);
2259                 else
2260                         rbd_osd_req_format_read(obj_request);
2261
2262                 obj_request->img_offset = img_offset;
2263
2264                 img_offset += length;
2265                 resid -= length;
2266         }
2267
2268         return 0;
2269
2270 out_partial:
2271         rbd_obj_request_put(obj_request);
2272 out_unwind:
2273         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2274                 rbd_obj_request_put(obj_request);
2275
2276         return -ENOMEM;
2277 }
2278
2279 static void
2280 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2281 {
2282         struct rbd_img_request *img_request;
2283         struct rbd_device *rbd_dev;
2284         struct page **pages;
2285         u32 page_count;
2286
2287         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2288         rbd_assert(obj_request_img_data_test(obj_request));
2289         img_request = obj_request->img_request;
2290         rbd_assert(img_request);
2291
2292         rbd_dev = img_request->rbd_dev;
2293         rbd_assert(rbd_dev);
2294
2295         pages = obj_request->copyup_pages;
2296         rbd_assert(pages != NULL);
2297         obj_request->copyup_pages = NULL;
2298         page_count = obj_request->copyup_page_count;
2299         rbd_assert(page_count);
2300         obj_request->copyup_page_count = 0;
2301         ceph_release_page_vector(pages, page_count);
2302
2303         /*
2304          * We want the transfer count to reflect the size of the
2305          * original write request.  There is no such thing as a
2306          * successful short write, so if the request was successful
2307          * we can just set it to the originally-requested length.
2308          */
2309         if (!obj_request->result)
2310                 obj_request->xferred = obj_request->length;
2311
2312         /* Finish up with the normal image object callback */
2313
2314         rbd_img_obj_callback(obj_request);
2315 }
2316
2317 static void
2318 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2319 {
2320         struct rbd_obj_request *orig_request;
2321         struct ceph_osd_request *osd_req;
2322         struct ceph_osd_client *osdc;
2323         struct rbd_device *rbd_dev;
2324         struct page **pages;
2325         u32 page_count;
2326         int img_result;
2327         u64 parent_length;
2328         u64 offset;
2329         u64 length;
2330
2331         rbd_assert(img_request_child_test(img_request));
2332
2333         /* First get what we need from the image request */
2334
2335         pages = img_request->copyup_pages;
2336         rbd_assert(pages != NULL);
2337         img_request->copyup_pages = NULL;
2338         page_count = img_request->copyup_page_count;
2339         rbd_assert(page_count);
2340         img_request->copyup_page_count = 0;
2341
2342         orig_request = img_request->obj_request;
2343         rbd_assert(orig_request != NULL);
2344         rbd_assert(obj_request_type_valid(orig_request->type));
2345         img_result = img_request->result;
2346         parent_length = img_request->length;
2347         rbd_assert(parent_length == img_request->xferred);
2348         rbd_img_request_put(img_request);
2349
2350         rbd_assert(orig_request->img_request);
2351         rbd_dev = orig_request->img_request->rbd_dev;
2352         rbd_assert(rbd_dev);
2353
2354         /*
2355          * If the overlap has become 0 (most likely because the
2356          * image has been flattened) we need to free the pages
2357          * and re-submit the original write request.
2358          */
2359         if (!rbd_dev->parent_overlap) {
2360                 struct ceph_osd_client *osdc;
2361
2362                 ceph_release_page_vector(pages, page_count);
2363                 osdc = &rbd_dev->rbd_client->client->osdc;
2364                 img_result = rbd_obj_request_submit(osdc, orig_request);
2365                 if (!img_result)
2366                         return;
2367         }
2368
2369         if (img_result)
2370                 goto out_err;
2371
2372         /*
2373          * The original osd request is of no use to use any more.
2374          * We need a new one that can hold the two ops in a copyup
2375          * request.  Allocate the new copyup osd request for the
2376          * original request, and release the old one.
2377          */
2378         img_result = -ENOMEM;
2379         osd_req = rbd_osd_req_create_copyup(orig_request);
2380         if (!osd_req)
2381                 goto out_err;
2382         rbd_osd_req_destroy(orig_request->osd_req);
2383         orig_request->osd_req = osd_req;
2384         orig_request->copyup_pages = pages;
2385         orig_request->copyup_page_count = page_count;
2386
2387         /* Initialize the copyup op */
2388
2389         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2390         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2391                                                 false, false);
2392
2393         /* Then the original write request op */
2394
2395         offset = orig_request->offset;
2396         length = orig_request->length;
2397         osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2398                                         offset, length, 0, 0);
2399         if (orig_request->type == OBJ_REQUEST_BIO)
2400                 osd_req_op_extent_osd_data_bio(osd_req, 1,
2401                                         orig_request->bio_list, length);
2402         else
2403                 osd_req_op_extent_osd_data_pages(osd_req, 1,
2404                                         orig_request->pages, length,
2405                                         offset & ~PAGE_MASK, false, false);
2406
2407         rbd_osd_req_format_write(orig_request);
2408
2409         /* All set, send it off. */
2410
2411         orig_request->callback = rbd_img_obj_copyup_callback;
2412         osdc = &rbd_dev->rbd_client->client->osdc;
2413         img_result = rbd_obj_request_submit(osdc, orig_request);
2414         if (!img_result)
2415                 return;
2416 out_err:
2417         /* Record the error code and complete the request */
2418
2419         orig_request->result = img_result;
2420         orig_request->xferred = 0;
2421         obj_request_done_set(orig_request);
2422         rbd_obj_request_complete(orig_request);
2423 }
2424
2425 /*
2426  * Read from the parent image the range of data that covers the
2427  * entire target of the given object request.  This is used for
2428  * satisfying a layered image write request when the target of an
2429  * object request from the image request does not exist.
2430  *
2431  * A page array big enough to hold the returned data is allocated
2432  * and supplied to rbd_img_request_fill() as the "data descriptor."
2433  * When the read completes, this page array will be transferred to
2434  * the original object request for the copyup operation.
2435  *
2436  * If an error occurs, record it as the result of the original
2437  * object request and mark it done so it gets completed.
2438  */
2439 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2440 {
2441         struct rbd_img_request *img_request = NULL;
2442         struct rbd_img_request *parent_request = NULL;
2443         struct rbd_device *rbd_dev;
2444         u64 img_offset;
2445         u64 length;
2446         struct page **pages = NULL;
2447         u32 page_count;
2448         int result;
2449
2450         rbd_assert(obj_request_img_data_test(obj_request));
2451         rbd_assert(obj_request_type_valid(obj_request->type));
2452
2453         img_request = obj_request->img_request;
2454         rbd_assert(img_request != NULL);
2455         rbd_dev = img_request->rbd_dev;
2456         rbd_assert(rbd_dev->parent != NULL);
2457
2458         /*
2459          * Determine the byte range covered by the object in the
2460          * child image to which the original request was to be sent.
2461          */
2462         img_offset = obj_request->img_offset - obj_request->offset;
2463         length = (u64)1 << rbd_dev->header.obj_order;
2464
2465         /*
2466          * There is no defined parent data beyond the parent
2467          * overlap, so limit what we read at that boundary if
2468          * necessary.
2469          */
2470         if (img_offset + length > rbd_dev->parent_overlap) {
2471                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2472                 length = rbd_dev->parent_overlap - img_offset;
2473         }
2474
2475         /*
2476          * Allocate a page array big enough to receive the data read
2477          * from the parent.
2478          */
2479         page_count = (u32)calc_pages_for(0, length);
2480         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2481         if (IS_ERR(pages)) {
2482                 result = PTR_ERR(pages);
2483                 pages = NULL;
2484                 goto out_err;
2485         }
2486
2487         result = -ENOMEM;
2488         parent_request = rbd_parent_request_create(obj_request,
2489                                                 img_offset, length);
2490         if (!parent_request)
2491                 goto out_err;
2492
2493         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2494         if (result)
2495                 goto out_err;
2496         parent_request->copyup_pages = pages;
2497         parent_request->copyup_page_count = page_count;
2498
2499         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2500         result = rbd_img_request_submit(parent_request);
2501         if (!result)
2502                 return 0;
2503
2504         parent_request->copyup_pages = NULL;
2505         parent_request->copyup_page_count = 0;
2506         parent_request->obj_request = NULL;
2507         rbd_obj_request_put(obj_request);
2508 out_err:
2509         if (pages)
2510                 ceph_release_page_vector(pages, page_count);
2511         if (parent_request)
2512                 rbd_img_request_put(parent_request);
2513         obj_request->result = result;
2514         obj_request->xferred = 0;
2515         obj_request_done_set(obj_request);
2516
2517         return result;
2518 }
2519
2520 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2521 {
2522         struct rbd_obj_request *orig_request;
2523         struct rbd_device *rbd_dev;
2524         int result;
2525
2526         rbd_assert(!obj_request_img_data_test(obj_request));
2527
2528         /*
2529          * All we need from the object request is the original
2530          * request and the result of the STAT op.  Grab those, then
2531          * we're done with the request.
2532          */
2533         orig_request = obj_request->obj_request;
2534         obj_request->obj_request = NULL;
2535         rbd_obj_request_put(orig_request);
2536         rbd_assert(orig_request);
2537         rbd_assert(orig_request->img_request);
2538
2539         result = obj_request->result;
2540         obj_request->result = 0;
2541
2542         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2543                 obj_request, orig_request, result,
2544                 obj_request->xferred, obj_request->length);
2545         rbd_obj_request_put(obj_request);
2546
2547         /*
2548          * If the overlap has become 0 (most likely because the
2549          * image has been flattened) we need to free the pages
2550          * and re-submit the original write request.
2551          */
2552         rbd_dev = orig_request->img_request->rbd_dev;
2553         if (!rbd_dev->parent_overlap) {
2554                 struct ceph_osd_client *osdc;
2555
2556                 osdc = &rbd_dev->rbd_client->client->osdc;
2557                 result = rbd_obj_request_submit(osdc, orig_request);
2558                 if (!result)
2559                         return;
2560         }
2561
2562         /*
2563          * Our only purpose here is to determine whether the object
2564          * exists, and we don't want to treat the non-existence as
2565          * an error.  If something else comes back, transfer the
2566          * error to the original request and complete it now.
2567          */
2568         if (!result) {
2569                 obj_request_existence_set(orig_request, true);
2570         } else if (result == -ENOENT) {
2571                 obj_request_existence_set(orig_request, false);
2572         } else if (result) {
2573                 orig_request->result = result;
2574                 goto out;
2575         }
2576
2577         /*
2578          * Resubmit the original request now that we have recorded
2579          * whether the target object exists.
2580          */
2581         orig_request->result = rbd_img_obj_request_submit(orig_request);
2582 out:
2583         if (orig_request->result)
2584                 rbd_obj_request_complete(orig_request);
2585 }
2586
2587 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2588 {
2589         struct rbd_obj_request *stat_request;
2590         struct rbd_device *rbd_dev;
2591         struct ceph_osd_client *osdc;
2592         struct page **pages = NULL;
2593         u32 page_count;
2594         size_t size;
2595         int ret;
2596
2597         /*
2598          * The response data for a STAT call consists of:
2599          *     le64 length;
2600          *     struct {
2601          *         le32 tv_sec;
2602          *         le32 tv_nsec;
2603          *     } mtime;
2604          */
2605         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2606         page_count = (u32)calc_pages_for(0, size);
2607         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2608         if (IS_ERR(pages))
2609                 return PTR_ERR(pages);
2610
2611         ret = -ENOMEM;
2612         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2613                                                         OBJ_REQUEST_PAGES);
2614         if (!stat_request)
2615                 goto out;
2616
2617         rbd_obj_request_get(obj_request);
2618         stat_request->obj_request = obj_request;
2619         stat_request->pages = pages;
2620         stat_request->page_count = page_count;
2621
2622         rbd_assert(obj_request->img_request);
2623         rbd_dev = obj_request->img_request->rbd_dev;
2624         stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2625                                                 stat_request);
2626         if (!stat_request->osd_req)
2627                 goto out;
2628         stat_request->callback = rbd_img_obj_exists_callback;
2629
2630         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2631         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2632                                         false, false);
2633         rbd_osd_req_format_read(stat_request);
2634
2635         osdc = &rbd_dev->rbd_client->client->osdc;
2636         ret = rbd_obj_request_submit(osdc, stat_request);
2637 out:
2638         if (ret)
2639                 rbd_obj_request_put(obj_request);
2640
2641         return ret;
2642 }
2643
2644 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2645 {
2646         struct rbd_img_request *img_request;
2647         struct rbd_device *rbd_dev;
2648         bool known;
2649
2650         rbd_assert(obj_request_img_data_test(obj_request));
2651
2652         img_request = obj_request->img_request;
2653         rbd_assert(img_request);
2654         rbd_dev = img_request->rbd_dev;
2655
2656         /*
2657          * Only writes to layered images need special handling.
2658          * Reads and non-layered writes are simple object requests.
2659          * Layered writes that start beyond the end of the overlap
2660          * with the parent have no parent data, so they too are
2661          * simple object requests.  Finally, if the target object is
2662          * known to already exist, its parent data has already been
2663          * copied, so a write to the object can also be handled as a
2664          * simple object request.
2665          */
2666         if (!img_request_write_test(img_request) ||
2667                 !img_request_layered_test(img_request) ||
2668                 rbd_dev->parent_overlap <= obj_request->img_offset ||
2669                 ((known = obj_request_known_test(obj_request)) &&
2670                         obj_request_exists_test(obj_request))) {
2671
2672                 struct rbd_device *rbd_dev;
2673                 struct ceph_osd_client *osdc;
2674
2675                 rbd_dev = obj_request->img_request->rbd_dev;
2676                 osdc = &rbd_dev->rbd_client->client->osdc;
2677
2678                 return rbd_obj_request_submit(osdc, obj_request);
2679         }
2680
2681         /*
2682          * It's a layered write.  The target object might exist but
2683          * we may not know that yet.  If we know it doesn't exist,
2684          * start by reading the data for the full target object from
2685          * the parent so we can use it for a copyup to the target.
2686          */
2687         if (known)
2688                 return rbd_img_obj_parent_read_full(obj_request);
2689
2690         /* We don't know whether the target exists.  Go find out. */
2691
2692         return rbd_img_obj_exists_submit(obj_request);
2693 }
2694
2695 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2696 {
2697         struct rbd_obj_request *obj_request;
2698         struct rbd_obj_request *next_obj_request;
2699
2700         dout("%s: img %p\n", __func__, img_request);
2701         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2702                 int ret;
2703
2704                 ret = rbd_img_obj_request_submit(obj_request);
2705                 if (ret)
2706                         return ret;
2707         }
2708
2709         return 0;
2710 }
2711
2712 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2713 {
2714         struct rbd_obj_request *obj_request;
2715         struct rbd_device *rbd_dev;
2716         u64 obj_end;
2717         u64 img_xferred;
2718         int img_result;
2719
2720         rbd_assert(img_request_child_test(img_request));
2721
2722         /* First get what we need from the image request and release it */
2723
2724         obj_request = img_request->obj_request;
2725         img_xferred = img_request->xferred;
2726         img_result = img_request->result;
2727         rbd_img_request_put(img_request);
2728
2729         /*
2730          * If the overlap has become 0 (most likely because the
2731          * image has been flattened) we need to re-submit the
2732          * original request.
2733          */
2734         rbd_assert(obj_request);
2735         rbd_assert(obj_request->img_request);
2736         rbd_dev = obj_request->img_request->rbd_dev;
2737         if (!rbd_dev->parent_overlap) {
2738                 struct ceph_osd_client *osdc;
2739
2740                 osdc = &rbd_dev->rbd_client->client->osdc;
2741                 img_result = rbd_obj_request_submit(osdc, obj_request);
2742                 if (!img_result)
2743                         return;
2744         }
2745
2746         obj_request->result = img_result;
2747         if (obj_request->result)
2748                 goto out;
2749
2750         /*
2751          * We need to zero anything beyond the parent overlap
2752          * boundary.  Since rbd_img_obj_request_read_callback()
2753          * will zero anything beyond the end of a short read, an
2754          * easy way to do this is to pretend the data from the
2755          * parent came up short--ending at the overlap boundary.
2756          */
2757         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2758         obj_end = obj_request->img_offset + obj_request->length;
2759         if (obj_end > rbd_dev->parent_overlap) {
2760                 u64 xferred = 0;
2761
2762                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2763                         xferred = rbd_dev->parent_overlap -
2764                                         obj_request->img_offset;
2765
2766                 obj_request->xferred = min(img_xferred, xferred);
2767         } else {
2768                 obj_request->xferred = img_xferred;
2769         }
2770 out:
2771         rbd_img_obj_request_read_callback(obj_request);
2772         rbd_obj_request_complete(obj_request);
2773 }
2774
2775 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2776 {
2777         struct rbd_img_request *img_request;
2778         int result;
2779
2780         rbd_assert(obj_request_img_data_test(obj_request));
2781         rbd_assert(obj_request->img_request != NULL);
2782         rbd_assert(obj_request->result == (s32) -ENOENT);
2783         rbd_assert(obj_request_type_valid(obj_request->type));
2784
2785         /* rbd_read_finish(obj_request, obj_request->length); */
2786         img_request = rbd_parent_request_create(obj_request,
2787                                                 obj_request->img_offset,
2788                                                 obj_request->length);
2789         result = -ENOMEM;
2790         if (!img_request)
2791                 goto out_err;
2792
2793         if (obj_request->type == OBJ_REQUEST_BIO)
2794                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2795                                                 obj_request->bio_list);
2796         else
2797                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2798                                                 obj_request->pages);
2799         if (result)
2800                 goto out_err;
2801
2802         img_request->callback = rbd_img_parent_read_callback;
2803         result = rbd_img_request_submit(img_request);
2804         if (result)
2805                 goto out_err;
2806
2807         return;
2808 out_err:
2809         if (img_request)
2810                 rbd_img_request_put(img_request);
2811         obj_request->result = result;
2812         obj_request->xferred = 0;
2813         obj_request_done_set(obj_request);
2814 }
2815
2816 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
2817 {
2818         struct rbd_obj_request *obj_request;
2819         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2820         int ret;
2821
2822         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2823                                                         OBJ_REQUEST_NODATA);
2824         if (!obj_request)
2825                 return -ENOMEM;
2826
2827         ret = -ENOMEM;
2828         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2829         if (!obj_request->osd_req)
2830                 goto out;
2831
2832         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2833                                         notify_id, 0, 0);
2834         rbd_osd_req_format_read(obj_request);
2835
2836         ret = rbd_obj_request_submit(osdc, obj_request);
2837         if (ret)
2838                 goto out;
2839         ret = rbd_obj_request_wait(obj_request);
2840 out:
2841         rbd_obj_request_put(obj_request);
2842
2843         return ret;
2844 }
2845
2846 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2847 {
2848         struct rbd_device *rbd_dev = (struct rbd_device *)data;
2849         int ret;
2850
2851         if (!rbd_dev)
2852                 return;
2853
2854         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2855                 rbd_dev->header_name, (unsigned long long)notify_id,
2856                 (unsigned int)opcode);
2857         ret = rbd_dev_refresh(rbd_dev);
2858         if (ret)
2859                 rbd_warn(rbd_dev, "header refresh error (%d)\n", ret);
2860
2861         rbd_obj_notify_ack_sync(rbd_dev, notify_id);
2862 }
2863
2864 /*
2865  * Request sync osd watch/unwatch.  The value of "start" determines
2866  * whether a watch request is being initiated or torn down.
2867  */
2868 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start)
2869 {
2870         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2871         struct rbd_obj_request *obj_request;
2872         int ret;
2873
2874         rbd_assert(start ^ !!rbd_dev->watch_event);
2875         rbd_assert(start ^ !!rbd_dev->watch_request);
2876
2877         if (start) {
2878                 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2879                                                 &rbd_dev->watch_event);
2880                 if (ret < 0)
2881                         return ret;
2882                 rbd_assert(rbd_dev->watch_event != NULL);
2883         }
2884
2885         ret = -ENOMEM;
2886         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2887                                                         OBJ_REQUEST_NODATA);
2888         if (!obj_request)
2889                 goto out_cancel;
2890
2891         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2892         if (!obj_request->osd_req)
2893                 goto out_cancel;
2894
2895         if (start)
2896                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2897         else
2898                 ceph_osdc_unregister_linger_request(osdc,
2899                                         rbd_dev->watch_request->osd_req);
2900
2901         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2902                                 rbd_dev->watch_event->cookie, 0, start ? 1 : 0);
2903         rbd_osd_req_format_write(obj_request);
2904
2905         ret = rbd_obj_request_submit(osdc, obj_request);
2906         if (ret)
2907                 goto out_cancel;
2908         ret = rbd_obj_request_wait(obj_request);
2909         if (ret)
2910                 goto out_cancel;
2911         ret = obj_request->result;
2912         if (ret)
2913                 goto out_cancel;
2914
2915         /*
2916          * A watch request is set to linger, so the underlying osd
2917          * request won't go away until we unregister it.  We retain
2918          * a pointer to the object request during that time (in
2919          * rbd_dev->watch_request), so we'll keep a reference to
2920          * it.  We'll drop that reference (below) after we've
2921          * unregistered it.
2922          */
2923         if (start) {
2924                 rbd_dev->watch_request = obj_request;
2925
2926                 return 0;
2927         }
2928
2929         /* We have successfully torn down the watch request */
2930
2931         rbd_obj_request_put(rbd_dev->watch_request);
2932         rbd_dev->watch_request = NULL;
2933 out_cancel:
2934         /* Cancel the event if we're tearing down, or on error */
2935         ceph_osdc_cancel_event(rbd_dev->watch_event);
2936         rbd_dev->watch_event = NULL;
2937         if (obj_request)
2938                 rbd_obj_request_put(obj_request);
2939
2940         return ret;
2941 }
2942
2943 /*
2944  * Synchronous osd object method call.  Returns the number of bytes
2945  * returned in the outbound buffer, or a negative error code.
2946  */
2947 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2948                              const char *object_name,
2949                              const char *class_name,
2950                              const char *method_name,
2951                              const void *outbound,
2952                              size_t outbound_size,
2953                              void *inbound,
2954                              size_t inbound_size)
2955 {
2956         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2957         struct rbd_obj_request *obj_request;
2958         struct page **pages;
2959         u32 page_count;
2960         int ret;
2961
2962         /*
2963          * Method calls are ultimately read operations.  The result
2964          * should placed into the inbound buffer provided.  They
2965          * also supply outbound data--parameters for the object
2966          * method.  Currently if this is present it will be a
2967          * snapshot id.
2968          */
2969         page_count = (u32)calc_pages_for(0, inbound_size);
2970         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2971         if (IS_ERR(pages))
2972                 return PTR_ERR(pages);
2973
2974         ret = -ENOMEM;
2975         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2976                                                         OBJ_REQUEST_PAGES);
2977         if (!obj_request)
2978                 goto out;
2979
2980         obj_request->pages = pages;
2981         obj_request->page_count = page_count;
2982
2983         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2984         if (!obj_request->osd_req)
2985                 goto out;
2986
2987         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
2988                                         class_name, method_name);
2989         if (outbound_size) {
2990                 struct ceph_pagelist *pagelist;
2991
2992                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
2993                 if (!pagelist)
2994                         goto out;
2995
2996                 ceph_pagelist_init(pagelist);
2997                 ceph_pagelist_append(pagelist, outbound, outbound_size);
2998                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
2999                                                 pagelist);
3000         }
3001         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3002                                         obj_request->pages, inbound_size,
3003                                         0, false, false);
3004         rbd_osd_req_format_read(obj_request);
3005
3006         ret = rbd_obj_request_submit(osdc, obj_request);
3007         if (ret)
3008                 goto out;
3009         ret = rbd_obj_request_wait(obj_request);
3010         if (ret)
3011                 goto out;
3012
3013         ret = obj_request->result;
3014         if (ret < 0)
3015                 goto out;
3016
3017         rbd_assert(obj_request->xferred < (u64)INT_MAX);
3018         ret = (int)obj_request->xferred;
3019         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3020 out:
3021         if (obj_request)
3022                 rbd_obj_request_put(obj_request);
3023         else
3024                 ceph_release_page_vector(pages, page_count);
3025
3026         return ret;
3027 }
3028
3029 static void rbd_request_fn(struct request_queue *q)
3030                 __releases(q->queue_lock) __acquires(q->queue_lock)
3031 {
3032         struct rbd_device *rbd_dev = q->queuedata;
3033         bool read_only = rbd_dev->mapping.read_only;
3034         struct request *rq;
3035         int result;
3036
3037         while ((rq = blk_fetch_request(q))) {
3038                 bool write_request = rq_data_dir(rq) == WRITE;
3039                 struct rbd_img_request *img_request;
3040                 u64 offset;
3041                 u64 length;
3042
3043                 /* Ignore any non-FS requests that filter through. */
3044
3045                 if (rq->cmd_type != REQ_TYPE_FS) {
3046                         dout("%s: non-fs request type %d\n", __func__,
3047                                 (int) rq->cmd_type);
3048                         __blk_end_request_all(rq, 0);
3049                         continue;
3050                 }
3051
3052                 /* Ignore/skip any zero-length requests */
3053
3054                 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3055                 length = (u64) blk_rq_bytes(rq);
3056
3057                 if (!length) {
3058                         dout("%s: zero-length request\n", __func__);
3059                         __blk_end_request_all(rq, 0);
3060                         continue;
3061                 }
3062
3063                 spin_unlock_irq(q->queue_lock);
3064
3065                 /* Disallow writes to a read-only device */
3066
3067                 if (write_request) {
3068                         result = -EROFS;
3069                         if (read_only)
3070                                 goto end_request;
3071                         rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3072                 }
3073
3074                 /*
3075                  * Quit early if the mapped snapshot no longer
3076                  * exists.  It's still possible the snapshot will
3077                  * have disappeared by the time our request arrives
3078                  * at the osd, but there's no sense in sending it if
3079                  * we already know.
3080                  */
3081                 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3082                         dout("request for non-existent snapshot");
3083                         rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3084                         result = -ENXIO;
3085                         goto end_request;
3086                 }
3087
3088                 result = -EINVAL;
3089                 if (offset && length > U64_MAX - offset + 1) {
3090                         rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3091                                 offset, length);
3092                         goto end_request;       /* Shouldn't happen */
3093                 }
3094
3095                 result = -EIO;
3096                 if (offset + length > rbd_dev->mapping.size) {
3097                         rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3098                                 offset, length, rbd_dev->mapping.size);
3099                         goto end_request;
3100                 }
3101
3102                 result = -ENOMEM;
3103                 img_request = rbd_img_request_create(rbd_dev, offset, length,
3104                                                         write_request);
3105                 if (!img_request)
3106                         goto end_request;
3107
3108                 img_request->rq = rq;
3109
3110                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3111                                                 rq->bio);
3112                 if (!result)
3113                         result = rbd_img_request_submit(img_request);
3114                 if (result)
3115                         rbd_img_request_put(img_request);
3116 end_request:
3117                 spin_lock_irq(q->queue_lock);
3118                 if (result < 0) {
3119                         rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3120                                 write_request ? "write" : "read",
3121                                 length, offset, result);
3122
3123                         __blk_end_request_all(rq, result);
3124                 }
3125         }
3126 }
3127
3128 /*
3129  * a queue callback. Makes sure that we don't create a bio that spans across
3130  * multiple osd objects. One exception would be with a single page bios,
3131  * which we handle later at bio_chain_clone_range()
3132  */
3133 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3134                           struct bio_vec *bvec)
3135 {
3136         struct rbd_device *rbd_dev = q->queuedata;
3137         sector_t sector_offset;
3138         sector_t sectors_per_obj;
3139         sector_t obj_sector_offset;
3140         int ret;
3141
3142         /*
3143          * Find how far into its rbd object the partition-relative
3144          * bio start sector is to offset relative to the enclosing
3145          * device.
3146          */
3147         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3148         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3149         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3150
3151         /*
3152          * Compute the number of bytes from that offset to the end
3153          * of the object.  Account for what's already used by the bio.
3154          */
3155         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3156         if (ret > bmd->bi_size)
3157                 ret -= bmd->bi_size;
3158         else
3159                 ret = 0;
3160
3161         /*
3162          * Don't send back more than was asked for.  And if the bio
3163          * was empty, let the whole thing through because:  "Note
3164          * that a block device *must* allow a single page to be
3165          * added to an empty bio."
3166          */
3167         rbd_assert(bvec->bv_len <= PAGE_SIZE);
3168         if (ret > (int) bvec->bv_len || !bmd->bi_size)
3169                 ret = (int) bvec->bv_len;
3170
3171         return ret;
3172 }
3173
3174 static void rbd_free_disk(struct rbd_device *rbd_dev)
3175 {
3176         struct gendisk *disk = rbd_dev->disk;
3177
3178         if (!disk)
3179                 return;
3180
3181         rbd_dev->disk = NULL;
3182         if (disk->flags & GENHD_FL_UP) {
3183                 del_gendisk(disk);
3184                 if (disk->queue)
3185                         blk_cleanup_queue(disk->queue);
3186         }
3187         put_disk(disk);
3188 }
3189
3190 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3191                                 const char *object_name,
3192                                 u64 offset, u64 length, void *buf)
3193
3194 {
3195         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3196         struct rbd_obj_request *obj_request;
3197         struct page **pages = NULL;
3198         u32 page_count;
3199         size_t size;
3200         int ret;
3201
3202         page_count = (u32) calc_pages_for(offset, length);
3203         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3204         if (IS_ERR(pages))
3205                 ret = PTR_ERR(pages);
3206
3207         ret = -ENOMEM;
3208         obj_request = rbd_obj_request_create(object_name, offset, length,
3209                                                         OBJ_REQUEST_PAGES);
3210         if (!obj_request)
3211                 goto out;
3212
3213         obj_request->pages = pages;
3214         obj_request->page_count = page_count;
3215
3216         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3217         if (!obj_request->osd_req)
3218                 goto out;
3219
3220         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3221                                         offset, length, 0, 0);
3222         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3223                                         obj_request->pages,
3224                                         obj_request->length,
3225                                         obj_request->offset & ~PAGE_MASK,
3226                                         false, false);
3227         rbd_osd_req_format_read(obj_request);
3228
3229         ret = rbd_obj_request_submit(osdc, obj_request);
3230         if (ret)
3231                 goto out;
3232         ret = rbd_obj_request_wait(obj_request);
3233         if (ret)
3234                 goto out;
3235
3236         ret = obj_request->result;
3237         if (ret < 0)
3238                 goto out;
3239
3240         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3241         size = (size_t) obj_request->xferred;
3242         ceph_copy_from_page_vector(pages, buf, 0, size);
3243         rbd_assert(size <= (size_t)INT_MAX);
3244         ret = (int)size;
3245 out:
3246         if (obj_request)
3247                 rbd_obj_request_put(obj_request);
3248         else
3249                 ceph_release_page_vector(pages, page_count);
3250
3251         return ret;
3252 }
3253
3254 /*
3255  * Read the complete header for the given rbd device.  On successful
3256  * return, the rbd_dev->header field will contain up-to-date
3257  * information about the image.
3258  */
3259 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3260 {
3261         struct rbd_image_header_ondisk *ondisk = NULL;
3262         u32 snap_count = 0;
3263         u64 names_size = 0;
3264         u32 want_count;
3265         int ret;
3266
3267         /*
3268          * The complete header will include an array of its 64-bit
3269          * snapshot ids, followed by the names of those snapshots as
3270          * a contiguous block of NUL-terminated strings.  Note that
3271          * the number of snapshots could change by the time we read
3272          * it in, in which case we re-read it.
3273          */
3274         do {
3275                 size_t size;
3276
3277                 kfree(ondisk);
3278
3279                 size = sizeof (*ondisk);
3280                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3281                 size += names_size;
3282                 ondisk = kmalloc(size, GFP_KERNEL);
3283                 if (!ondisk)
3284                         return -ENOMEM;
3285
3286                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3287                                        0, size, ondisk);
3288                 if (ret < 0)
3289                         goto out;
3290                 if ((size_t)ret < size) {
3291                         ret = -ENXIO;
3292                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3293                                 size, ret);
3294                         goto out;
3295                 }
3296                 if (!rbd_dev_ondisk_valid(ondisk)) {
3297                         ret = -ENXIO;
3298                         rbd_warn(rbd_dev, "invalid header");
3299                         goto out;
3300                 }
3301
3302                 names_size = le64_to_cpu(ondisk->snap_names_len);
3303                 want_count = snap_count;
3304                 snap_count = le32_to_cpu(ondisk->snap_count);
3305         } while (snap_count != want_count);
3306
3307         ret = rbd_header_from_disk(rbd_dev, ondisk);
3308 out:
3309         kfree(ondisk);
3310
3311         return ret;
3312 }
3313
3314 /*
3315  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3316  * has disappeared from the (just updated) snapshot context.
3317  */
3318 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3319 {
3320         u64 snap_id;
3321
3322         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3323                 return;
3324
3325         snap_id = rbd_dev->spec->snap_id;
3326         if (snap_id == CEPH_NOSNAP)
3327                 return;
3328
3329         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3330                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3331 }
3332
3333 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3334 {
3335         sector_t size;
3336         bool removing;
3337
3338         /*
3339          * Don't hold the lock while doing disk operations,
3340          * or lock ordering will conflict with the bdev mutex via:
3341          * rbd_add() -> blkdev_get() -> rbd_open()
3342          */
3343         spin_lock_irq(&rbd_dev->lock);
3344         removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3345         spin_unlock_irq(&rbd_dev->lock);
3346         /*
3347          * If the device is being removed, rbd_dev->disk has
3348          * been destroyed, so don't try to update its size
3349          */
3350         if (!removing) {
3351                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3352                 dout("setting size to %llu sectors", (unsigned long long)size);
3353                 set_capacity(rbd_dev->disk, size);
3354                 revalidate_disk(rbd_dev->disk);
3355         }
3356 }
3357
3358 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3359 {
3360         u64 mapping_size;
3361         int ret;
3362
3363         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3364         down_write(&rbd_dev->header_rwsem);
3365         mapping_size = rbd_dev->mapping.size;
3366         if (rbd_dev->image_format == 1)
3367                 ret = rbd_dev_v1_header_info(rbd_dev);
3368         else
3369                 ret = rbd_dev_v2_header_info(rbd_dev);
3370
3371         /* If it's a mapped snapshot, validate its EXISTS flag */
3372
3373         rbd_exists_validate(rbd_dev);
3374         up_write(&rbd_dev->header_rwsem);
3375
3376         if (mapping_size != rbd_dev->mapping.size) {
3377                 rbd_dev_update_size(rbd_dev);
3378         }
3379
3380         return ret;
3381 }
3382
3383 static int rbd_init_disk(struct rbd_device *rbd_dev)
3384 {
3385         struct gendisk *disk;
3386         struct request_queue *q;
3387         u64 segment_size;
3388
3389         /* create gendisk info */
3390         disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3391         if (!disk)
3392                 return -ENOMEM;
3393
3394         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3395                  rbd_dev->dev_id);
3396         disk->major = rbd_dev->major;
3397         disk->first_minor = 0;
3398         disk->fops = &rbd_bd_ops;
3399         disk->private_data = rbd_dev;
3400
3401         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3402         if (!q)
3403                 goto out_disk;
3404
3405         /* We use the default size, but let's be explicit about it. */
3406         blk_queue_physical_block_size(q, SECTOR_SIZE);
3407
3408         /* set io sizes to object size */
3409         segment_size = rbd_obj_bytes(&rbd_dev->header);
3410         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3411         blk_queue_max_segment_size(q, segment_size);
3412         blk_queue_io_min(q, segment_size);
3413         blk_queue_io_opt(q, segment_size);
3414
3415         blk_queue_merge_bvec(q, rbd_merge_bvec);
3416         disk->queue = q;
3417
3418         q->queuedata = rbd_dev;
3419
3420         rbd_dev->disk = disk;
3421
3422         return 0;
3423 out_disk:
3424         put_disk(disk);
3425
3426         return -ENOMEM;
3427 }
3428
3429 /*
3430   sysfs
3431 */
3432
3433 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3434 {
3435         return container_of(dev, struct rbd_device, dev);
3436 }
3437
3438 static ssize_t rbd_size_show(struct device *dev,
3439                              struct device_attribute *attr, char *buf)
3440 {
3441         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3442
3443         return sprintf(buf, "%llu\n",
3444                 (unsigned long long)rbd_dev->mapping.size);
3445 }
3446
3447 /*
3448  * Note this shows the features for whatever's mapped, which is not
3449  * necessarily the base image.
3450  */
3451 static ssize_t rbd_features_show(struct device *dev,
3452                              struct device_attribute *attr, char *buf)
3453 {
3454         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3455
3456         return sprintf(buf, "0x%016llx\n",
3457                         (unsigned long long)rbd_dev->mapping.features);
3458 }
3459
3460 static ssize_t rbd_major_show(struct device *dev,
3461                               struct device_attribute *attr, char *buf)
3462 {
3463         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3464
3465         if (rbd_dev->major)
3466                 return sprintf(buf, "%d\n", rbd_dev->major);
3467
3468         return sprintf(buf, "(none)\n");
3469
3470 }
3471
3472 static ssize_t rbd_client_id_show(struct device *dev,
3473                                   struct device_attribute *attr, char *buf)
3474 {
3475         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3476
3477         return sprintf(buf, "client%lld\n",
3478                         ceph_client_id(rbd_dev->rbd_client->client));
3479 }
3480
3481 static ssize_t rbd_pool_show(struct device *dev,
3482                              struct device_attribute *attr, char *buf)
3483 {
3484         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3485
3486         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3487 }
3488
3489 static ssize_t rbd_pool_id_show(struct device *dev,
3490                              struct device_attribute *attr, char *buf)
3491 {
3492         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3493
3494         return sprintf(buf, "%llu\n",
3495                         (unsigned long long) rbd_dev->spec->pool_id);
3496 }
3497
3498 static ssize_t rbd_name_show(struct device *dev,
3499                              struct device_attribute *attr, char *buf)
3500 {
3501         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3502
3503         if (rbd_dev->spec->image_name)
3504                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3505
3506         return sprintf(buf, "(unknown)\n");
3507 }
3508
3509 static ssize_t rbd_image_id_show(struct device *dev,
3510                              struct device_attribute *attr, char *buf)
3511 {
3512         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3513
3514         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3515 }
3516
3517 /*
3518  * Shows the name of the currently-mapped snapshot (or
3519  * RBD_SNAP_HEAD_NAME for the base image).
3520  */
3521 static ssize_t rbd_snap_show(struct device *dev,
3522                              struct device_attribute *attr,
3523                              char *buf)
3524 {
3525         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3526
3527         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3528 }
3529
3530 /*
3531  * For an rbd v2 image, shows the pool id, image id, and snapshot id
3532  * for the parent image.  If there is no parent, simply shows
3533  * "(no parent image)".
3534  */
3535 static ssize_t rbd_parent_show(struct device *dev,
3536                              struct device_attribute *attr,
3537                              char *buf)
3538 {
3539         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3540         struct rbd_spec *spec = rbd_dev->parent_spec;
3541         int count;
3542         char *bufp = buf;
3543
3544         if (!spec)
3545                 return sprintf(buf, "(no parent image)\n");
3546
3547         count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3548                         (unsigned long long) spec->pool_id, spec->pool_name);
3549         if (count < 0)
3550                 return count;
3551         bufp += count;
3552
3553         count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3554                         spec->image_name ? spec->image_name : "(unknown)");
3555         if (count < 0)
3556                 return count;
3557         bufp += count;
3558
3559         count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3560                         (unsigned long long) spec->snap_id, spec->snap_name);
3561         if (count < 0)
3562                 return count;
3563         bufp += count;
3564
3565         count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3566         if (count < 0)
3567                 return count;
3568         bufp += count;
3569
3570         return (ssize_t) (bufp - buf);
3571 }
3572
3573 static ssize_t rbd_image_refresh(struct device *dev,
3574                                  struct device_attribute *attr,
3575                                  const char *buf,
3576                                  size_t size)
3577 {
3578         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3579         int ret;
3580
3581         ret = rbd_dev_refresh(rbd_dev);
3582         if (ret)
3583                 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3584
3585         return ret < 0 ? ret : size;
3586 }
3587
3588 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3589 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3590 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3591 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3592 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3593 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3594 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3595 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3596 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3597 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3598 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3599
3600 static struct attribute *rbd_attrs[] = {
3601         &dev_attr_size.attr,
3602         &dev_attr_features.attr,
3603         &dev_attr_major.attr,
3604         &dev_attr_client_id.attr,
3605         &dev_attr_pool.attr,
3606         &dev_attr_pool_id.attr,
3607         &dev_attr_name.attr,
3608         &dev_attr_image_id.attr,
3609         &dev_attr_current_snap.attr,
3610         &dev_attr_parent.attr,
3611         &dev_attr_refresh.attr,
3612         NULL
3613 };
3614
3615 static struct attribute_group rbd_attr_group = {
3616         .attrs = rbd_attrs,
3617 };
3618
3619 static const struct attribute_group *rbd_attr_groups[] = {
3620         &rbd_attr_group,
3621         NULL
3622 };
3623
3624 static void rbd_sysfs_dev_release(struct device *dev)
3625 {
3626 }
3627
3628 static struct device_type rbd_device_type = {
3629         .name           = "rbd",
3630         .groups         = rbd_attr_groups,
3631         .release        = rbd_sysfs_dev_release,
3632 };
3633
3634 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3635 {
3636         kref_get(&spec->kref);
3637
3638         return spec;
3639 }
3640
3641 static void rbd_spec_free(struct kref *kref);
3642 static void rbd_spec_put(struct rbd_spec *spec)
3643 {
3644         if (spec)
3645                 kref_put(&spec->kref, rbd_spec_free);
3646 }
3647
3648 static struct rbd_spec *rbd_spec_alloc(void)
3649 {
3650         struct rbd_spec *spec;
3651
3652         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3653         if (!spec)
3654                 return NULL;
3655         kref_init(&spec->kref);
3656
3657         return spec;
3658 }
3659
3660 static void rbd_spec_free(struct kref *kref)
3661 {
3662         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3663
3664         kfree(spec->pool_name);
3665         kfree(spec->image_id);
3666         kfree(spec->image_name);
3667         kfree(spec->snap_name);
3668         kfree(spec);
3669 }
3670
3671 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3672                                 struct rbd_spec *spec)
3673 {
3674         struct rbd_device *rbd_dev;
3675
3676         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3677         if (!rbd_dev)
3678                 return NULL;
3679
3680         spin_lock_init(&rbd_dev->lock);
3681         rbd_dev->flags = 0;
3682         atomic_set(&rbd_dev->parent_ref, 0);
3683         INIT_LIST_HEAD(&rbd_dev->node);
3684         init_rwsem(&rbd_dev->header_rwsem);
3685
3686         rbd_dev->spec = spec;
3687         rbd_dev->rbd_client = rbdc;
3688
3689         /* Initialize the layout used for all rbd requests */
3690
3691         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3692         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3693         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3694         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3695
3696         return rbd_dev;
3697 }
3698
3699 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3700 {
3701         rbd_put_client(rbd_dev->rbd_client);
3702         rbd_spec_put(rbd_dev->spec);
3703         kfree(rbd_dev);
3704 }
3705
3706 /*
3707  * Get the size and object order for an image snapshot, or if
3708  * snap_id is CEPH_NOSNAP, gets this information for the base
3709  * image.
3710  */
3711 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3712                                 u8 *order, u64 *snap_size)
3713 {
3714         __le64 snapid = cpu_to_le64(snap_id);
3715         int ret;
3716         struct {
3717                 u8 order;
3718                 __le64 size;
3719         } __attribute__ ((packed)) size_buf = { 0 };
3720
3721         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3722                                 "rbd", "get_size",
3723                                 &snapid, sizeof (snapid),
3724                                 &size_buf, sizeof (size_buf));
3725         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3726         if (ret < 0)
3727                 return ret;
3728         if (ret < sizeof (size_buf))
3729                 return -ERANGE;
3730
3731         if (order) {
3732                 *order = size_buf.order;
3733                 dout("  order %u", (unsigned int)*order);
3734         }
3735         *snap_size = le64_to_cpu(size_buf.size);
3736
3737         dout("  snap_id 0x%016llx snap_size = %llu\n",
3738                 (unsigned long long)snap_id,
3739                 (unsigned long long)*snap_size);
3740
3741         return 0;
3742 }
3743
3744 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3745 {
3746         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3747                                         &rbd_dev->header.obj_order,
3748                                         &rbd_dev->header.image_size);
3749 }
3750
3751 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3752 {
3753         void *reply_buf;
3754         int ret;
3755         void *p;
3756
3757         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3758         if (!reply_buf)
3759                 return -ENOMEM;
3760
3761         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3762                                 "rbd", "get_object_prefix", NULL, 0,
3763                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3764         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3765         if (ret < 0)
3766                 goto out;
3767
3768         p = reply_buf;
3769         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3770                                                 p + ret, NULL, GFP_NOIO);
3771         ret = 0;
3772
3773         if (IS_ERR(rbd_dev->header.object_prefix)) {
3774                 ret = PTR_ERR(rbd_dev->header.object_prefix);
3775                 rbd_dev->header.object_prefix = NULL;
3776         } else {
3777                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3778         }
3779 out:
3780         kfree(reply_buf);
3781
3782         return ret;
3783 }
3784
3785 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3786                 u64 *snap_features)
3787 {
3788         __le64 snapid = cpu_to_le64(snap_id);
3789         struct {
3790                 __le64 features;
3791                 __le64 incompat;
3792         } __attribute__ ((packed)) features_buf = { 0 };
3793         u64 incompat;
3794         int ret;
3795
3796         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3797                                 "rbd", "get_features",
3798                                 &snapid, sizeof (snapid),
3799                                 &features_buf, sizeof (features_buf));
3800         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3801         if (ret < 0)
3802                 return ret;
3803         if (ret < sizeof (features_buf))
3804                 return -ERANGE;
3805
3806         incompat = le64_to_cpu(features_buf.incompat);
3807         if (incompat & ~RBD_FEATURES_SUPPORTED)
3808                 return -ENXIO;
3809
3810         *snap_features = le64_to_cpu(features_buf.features);
3811
3812         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3813                 (unsigned long long)snap_id,
3814                 (unsigned long long)*snap_features,
3815                 (unsigned long long)le64_to_cpu(features_buf.incompat));
3816
3817         return 0;
3818 }
3819
3820 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3821 {
3822         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3823                                                 &rbd_dev->header.features);
3824 }
3825
3826 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3827 {
3828         struct rbd_spec *parent_spec;
3829         size_t size;
3830         void *reply_buf = NULL;
3831         __le64 snapid;
3832         void *p;
3833         void *end;
3834         u64 pool_id;
3835         char *image_id;
3836         u64 snap_id;
3837         u64 overlap;
3838         int ret;
3839
3840         parent_spec = rbd_spec_alloc();
3841         if (!parent_spec)
3842                 return -ENOMEM;
3843
3844         size = sizeof (__le64) +                                /* pool_id */
3845                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
3846                 sizeof (__le64) +                               /* snap_id */
3847                 sizeof (__le64);                                /* overlap */
3848         reply_buf = kmalloc(size, GFP_KERNEL);
3849         if (!reply_buf) {
3850                 ret = -ENOMEM;
3851                 goto out_err;
3852         }
3853
3854         snapid = cpu_to_le64(CEPH_NOSNAP);
3855         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3856                                 "rbd", "get_parent",
3857                                 &snapid, sizeof (snapid),
3858                                 reply_buf, size);
3859         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3860         if (ret < 0)
3861                 goto out_err;
3862
3863         p = reply_buf;
3864         end = reply_buf + ret;
3865         ret = -ERANGE;
3866         ceph_decode_64_safe(&p, end, pool_id, out_err);
3867         if (pool_id == CEPH_NOPOOL) {
3868                 /*
3869                  * Either the parent never existed, or we have
3870                  * record of it but the image got flattened so it no
3871                  * longer has a parent.  When the parent of a
3872                  * layered image disappears we immediately set the
3873                  * overlap to 0.  The effect of this is that all new
3874                  * requests will be treated as if the image had no
3875                  * parent.
3876                  */
3877                 if (rbd_dev->parent_overlap) {
3878                         rbd_dev->parent_overlap = 0;
3879                         smp_mb();
3880                         rbd_dev_parent_put(rbd_dev);
3881                         pr_info("%s: clone image has been flattened\n",
3882                                 rbd_dev->disk->disk_name);
3883                 }
3884
3885                 goto out;       /* No parent?  No problem. */
3886         }
3887
3888         /* The ceph file layout needs to fit pool id in 32 bits */
3889
3890         ret = -EIO;
3891         if (pool_id > (u64)U32_MAX) {
3892                 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3893                         (unsigned long long)pool_id, U32_MAX);
3894                 goto out_err;
3895         }
3896
3897         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3898         if (IS_ERR(image_id)) {
3899                 ret = PTR_ERR(image_id);
3900                 goto out_err;
3901         }
3902         ceph_decode_64_safe(&p, end, snap_id, out_err);
3903         ceph_decode_64_safe(&p, end, overlap, out_err);
3904
3905         /*
3906          * The parent won't change (except when the clone is
3907          * flattened, already handled that).  So we only need to
3908          * record the parent spec we have not already done so.
3909          */
3910         if (!rbd_dev->parent_spec) {
3911                 parent_spec->pool_id = pool_id;
3912                 parent_spec->image_id = image_id;
3913                 parent_spec->snap_id = snap_id;
3914                 rbd_dev->parent_spec = parent_spec;
3915                 parent_spec = NULL;     /* rbd_dev now owns this */
3916         }
3917
3918         /*
3919          * We always update the parent overlap.  If it's zero we
3920          * treat it specially.
3921          */
3922         rbd_dev->parent_overlap = overlap;
3923         smp_mb();
3924         if (!overlap) {
3925
3926                 /* A null parent_spec indicates it's the initial probe */
3927
3928                 if (parent_spec) {
3929                         /*
3930                          * The overlap has become zero, so the clone
3931                          * must have been resized down to 0 at some
3932                          * point.  Treat this the same as a flatten.
3933                          */
3934                         rbd_dev_parent_put(rbd_dev);
3935                         pr_info("%s: clone image now standalone\n",
3936                                 rbd_dev->disk->disk_name);
3937                 } else {
3938                         /*
3939                          * For the initial probe, if we find the
3940                          * overlap is zero we just pretend there was
3941                          * no parent image.
3942                          */
3943                         rbd_warn(rbd_dev, "ignoring parent of "
3944                                                 "clone with overlap 0\n");
3945                 }
3946         }
3947 out:
3948         ret = 0;
3949 out_err:
3950         kfree(reply_buf);
3951         rbd_spec_put(parent_spec);
3952
3953         return ret;
3954 }
3955
3956 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3957 {
3958         struct {
3959                 __le64 stripe_unit;
3960                 __le64 stripe_count;
3961         } __attribute__ ((packed)) striping_info_buf = { 0 };
3962         size_t size = sizeof (striping_info_buf);
3963         void *p;
3964         u64 obj_size;
3965         u64 stripe_unit;
3966         u64 stripe_count;
3967         int ret;
3968
3969         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3970                                 "rbd", "get_stripe_unit_count", NULL, 0,
3971                                 (char *)&striping_info_buf, size);
3972         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3973         if (ret < 0)
3974                 return ret;
3975         if (ret < size)
3976                 return -ERANGE;
3977
3978         /*
3979          * We don't actually support the "fancy striping" feature
3980          * (STRIPINGV2) yet, but if the striping sizes are the
3981          * defaults the behavior is the same as before.  So find
3982          * out, and only fail if the image has non-default values.
3983          */
3984         ret = -EINVAL;
3985         obj_size = (u64)1 << rbd_dev->header.obj_order;
3986         p = &striping_info_buf;
3987         stripe_unit = ceph_decode_64(&p);
3988         if (stripe_unit != obj_size) {
3989                 rbd_warn(rbd_dev, "unsupported stripe unit "
3990                                 "(got %llu want %llu)",
3991                                 stripe_unit, obj_size);
3992                 return -EINVAL;
3993         }
3994         stripe_count = ceph_decode_64(&p);
3995         if (stripe_count != 1) {
3996                 rbd_warn(rbd_dev, "unsupported stripe count "
3997                                 "(got %llu want 1)", stripe_count);
3998                 return -EINVAL;
3999         }
4000         rbd_dev->header.stripe_unit = stripe_unit;
4001         rbd_dev->header.stripe_count = stripe_count;
4002
4003         return 0;
4004 }
4005
4006 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4007 {
4008         size_t image_id_size;
4009         char *image_id;
4010         void *p;
4011         void *end;
4012         size_t size;
4013         void *reply_buf = NULL;
4014         size_t len = 0;
4015         char *image_name = NULL;
4016         int ret;
4017
4018         rbd_assert(!rbd_dev->spec->image_name);
4019
4020         len = strlen(rbd_dev->spec->image_id);
4021         image_id_size = sizeof (__le32) + len;
4022         image_id = kmalloc(image_id_size, GFP_KERNEL);
4023         if (!image_id)
4024                 return NULL;
4025
4026         p = image_id;
4027         end = image_id + image_id_size;
4028         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4029
4030         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4031         reply_buf = kmalloc(size, GFP_KERNEL);
4032         if (!reply_buf)
4033                 goto out;
4034
4035         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4036                                 "rbd", "dir_get_name",
4037                                 image_id, image_id_size,
4038                                 reply_buf, size);
4039         if (ret < 0)
4040                 goto out;
4041         p = reply_buf;
4042         end = reply_buf + ret;
4043
4044         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4045         if (IS_ERR(image_name))
4046                 image_name = NULL;
4047         else
4048                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4049 out:
4050         kfree(reply_buf);
4051         kfree(image_id);
4052
4053         return image_name;
4054 }
4055
4056 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4057 {
4058         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4059         const char *snap_name;
4060         u32 which = 0;
4061
4062         /* Skip over names until we find the one we are looking for */
4063
4064         snap_name = rbd_dev->header.snap_names;
4065         while (which < snapc->num_snaps) {
4066                 if (!strcmp(name, snap_name))
4067                         return snapc->snaps[which];
4068                 snap_name += strlen(snap_name) + 1;
4069                 which++;
4070         }
4071         return CEPH_NOSNAP;
4072 }
4073
4074 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4075 {
4076         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4077         u32 which;
4078         bool found = false;
4079         u64 snap_id;
4080
4081         for (which = 0; !found && which < snapc->num_snaps; which++) {
4082                 const char *snap_name;
4083
4084                 snap_id = snapc->snaps[which];
4085                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4086                 if (IS_ERR(snap_name)) {
4087                         /* ignore no-longer existing snapshots */
4088                         if (PTR_ERR(snap_name) == -ENOENT)
4089                                 continue;
4090                         else
4091                                 break;
4092                 }
4093                 found = !strcmp(name, snap_name);
4094                 kfree(snap_name);
4095         }
4096         return found ? snap_id : CEPH_NOSNAP;
4097 }
4098
4099 /*
4100  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4101  * no snapshot by that name is found, or if an error occurs.
4102  */
4103 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4104 {
4105         if (rbd_dev->image_format == 1)
4106                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4107
4108         return rbd_v2_snap_id_by_name(rbd_dev, name);
4109 }
4110
4111 /*
4112  * When an rbd image has a parent image, it is identified by the
4113  * pool, image, and snapshot ids (not names).  This function fills
4114  * in the names for those ids.  (It's OK if we can't figure out the
4115  * name for an image id, but the pool and snapshot ids should always
4116  * exist and have names.)  All names in an rbd spec are dynamically
4117  * allocated.
4118  *
4119  * When an image being mapped (not a parent) is probed, we have the
4120  * pool name and pool id, image name and image id, and the snapshot
4121  * name.  The only thing we're missing is the snapshot id.
4122  */
4123 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4124 {
4125         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4126         struct rbd_spec *spec = rbd_dev->spec;
4127         const char *pool_name;
4128         const char *image_name;
4129         const char *snap_name;
4130         int ret;
4131
4132         /*
4133          * An image being mapped will have the pool name (etc.), but
4134          * we need to look up the snapshot id.
4135          */
4136         if (spec->pool_name) {
4137                 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4138                         u64 snap_id;
4139
4140                         snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4141                         if (snap_id == CEPH_NOSNAP)
4142                                 return -ENOENT;
4143                         spec->snap_id = snap_id;
4144                 } else {
4145                         spec->snap_id = CEPH_NOSNAP;
4146                 }
4147
4148                 return 0;
4149         }
4150
4151         /* Get the pool name; we have to make our own copy of this */
4152
4153         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4154         if (!pool_name) {
4155                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4156                 return -EIO;
4157         }
4158         pool_name = kstrdup(pool_name, GFP_KERNEL);
4159         if (!pool_name)
4160                 return -ENOMEM;
4161
4162         /* Fetch the image name; tolerate failure here */
4163
4164         image_name = rbd_dev_image_name(rbd_dev);
4165         if (!image_name)
4166                 rbd_warn(rbd_dev, "unable to get image name");
4167
4168         /* Look up the snapshot name, and make a copy */
4169
4170         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4171         if (IS_ERR(snap_name)) {
4172                 ret = PTR_ERR(snap_name);
4173                 goto out_err;
4174         }
4175
4176         spec->pool_name = pool_name;
4177         spec->image_name = image_name;
4178         spec->snap_name = snap_name;
4179
4180         return 0;
4181 out_err:
4182         kfree(image_name);
4183         kfree(pool_name);
4184
4185         return ret;
4186 }
4187
4188 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4189 {
4190         size_t size;
4191         int ret;
4192         void *reply_buf;
4193         void *p;
4194         void *end;
4195         u64 seq;
4196         u32 snap_count;
4197         struct ceph_snap_context *snapc;
4198         u32 i;
4199
4200         /*
4201          * We'll need room for the seq value (maximum snapshot id),
4202          * snapshot count, and array of that many snapshot ids.
4203          * For now we have a fixed upper limit on the number we're
4204          * prepared to receive.
4205          */
4206         size = sizeof (__le64) + sizeof (__le32) +
4207                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4208         reply_buf = kzalloc(size, GFP_KERNEL);
4209         if (!reply_buf)
4210                 return -ENOMEM;
4211
4212         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4213                                 "rbd", "get_snapcontext", NULL, 0,
4214                                 reply_buf, size);
4215         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4216         if (ret < 0)
4217                 goto out;
4218
4219         p = reply_buf;
4220         end = reply_buf + ret;
4221         ret = -ERANGE;
4222         ceph_decode_64_safe(&p, end, seq, out);
4223         ceph_decode_32_safe(&p, end, snap_count, out);
4224
4225         /*
4226          * Make sure the reported number of snapshot ids wouldn't go
4227          * beyond the end of our buffer.  But before checking that,
4228          * make sure the computed size of the snapshot context we
4229          * allocate is representable in a size_t.
4230          */
4231         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4232                                  / sizeof (u64)) {
4233                 ret = -EINVAL;
4234                 goto out;
4235         }
4236         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4237                 goto out;
4238         ret = 0;
4239
4240         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4241         if (!snapc) {
4242                 ret = -ENOMEM;
4243                 goto out;
4244         }
4245         snapc->seq = seq;
4246         for (i = 0; i < snap_count; i++)
4247                 snapc->snaps[i] = ceph_decode_64(&p);
4248
4249         ceph_put_snap_context(rbd_dev->header.snapc);
4250         rbd_dev->header.snapc = snapc;
4251
4252         dout("  snap context seq = %llu, snap_count = %u\n",
4253                 (unsigned long long)seq, (unsigned int)snap_count);
4254 out:
4255         kfree(reply_buf);
4256
4257         return ret;
4258 }
4259
4260 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4261                                         u64 snap_id)
4262 {
4263         size_t size;
4264         void *reply_buf;
4265         __le64 snapid;
4266         int ret;
4267         void *p;
4268         void *end;
4269         char *snap_name;
4270
4271         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4272         reply_buf = kmalloc(size, GFP_KERNEL);
4273         if (!reply_buf)
4274                 return ERR_PTR(-ENOMEM);
4275
4276         snapid = cpu_to_le64(snap_id);
4277         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4278                                 "rbd", "get_snapshot_name",
4279                                 &snapid, sizeof (snapid),
4280                                 reply_buf, size);
4281         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4282         if (ret < 0) {
4283                 snap_name = ERR_PTR(ret);
4284                 goto out;
4285         }
4286
4287         p = reply_buf;
4288         end = reply_buf + ret;
4289         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4290         if (IS_ERR(snap_name))
4291                 goto out;
4292
4293         dout("  snap_id 0x%016llx snap_name = %s\n",
4294                 (unsigned long long)snap_id, snap_name);
4295 out:
4296         kfree(reply_buf);
4297
4298         return snap_name;
4299 }
4300
4301 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4302 {
4303         bool first_time = rbd_dev->header.object_prefix == NULL;
4304         int ret;
4305
4306         ret = rbd_dev_v2_image_size(rbd_dev);
4307         if (ret)
4308                 return ret;
4309
4310         if (first_time) {
4311                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4312                 if (ret)
4313                         return ret;
4314         }
4315
4316         /*
4317          * If the image supports layering, get the parent info.  We
4318          * need to probe the first time regardless.  Thereafter we
4319          * only need to if there's a parent, to see if it has
4320          * disappeared due to the mapped image getting flattened.
4321          */
4322         if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4323                         (first_time || rbd_dev->parent_spec)) {
4324                 bool warn;
4325
4326                 ret = rbd_dev_v2_parent_info(rbd_dev);
4327                 if (ret)
4328                         return ret;
4329
4330                 /*
4331                  * Print a warning if this is the initial probe and
4332                  * the image has a parent.  Don't print it if the
4333                  * image now being probed is itself a parent.  We
4334                  * can tell at this point because we won't know its
4335                  * pool name yet (just its pool id).
4336                  */
4337                 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4338                 if (first_time && warn)
4339                         rbd_warn(rbd_dev, "WARNING: kernel layering "
4340                                         "is EXPERIMENTAL!");
4341         }
4342
4343         if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4344                 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4345                         rbd_dev->mapping.size = rbd_dev->header.image_size;
4346
4347         ret = rbd_dev_v2_snap_context(rbd_dev);
4348         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4349
4350         return ret;
4351 }
4352
4353 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4354 {
4355         struct device *dev;
4356         int ret;
4357
4358         dev = &rbd_dev->dev;
4359         dev->bus = &rbd_bus_type;
4360         dev->type = &rbd_device_type;
4361         dev->parent = &rbd_root_dev;
4362         dev->release = rbd_dev_device_release;
4363         dev_set_name(dev, "%d", rbd_dev->dev_id);
4364         ret = device_register(dev);
4365
4366         return ret;
4367 }
4368
4369 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4370 {
4371         device_unregister(&rbd_dev->dev);
4372 }
4373
4374 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4375
4376 /*
4377  * Get a unique rbd identifier for the given new rbd_dev, and add
4378  * the rbd_dev to the global list.  The minimum rbd id is 1.
4379  */
4380 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4381 {
4382         rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4383
4384         spin_lock(&rbd_dev_list_lock);
4385         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4386         spin_unlock(&rbd_dev_list_lock);
4387         dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4388 }
4389
4390 /*
4391  * Remove an rbd_dev from the global list, and record that its
4392  * identifier is no longer in use.
4393  */
4394 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4395 {
4396         struct list_head *tmp;
4397         int rbd_id = rbd_dev->dev_id;
4398         int max_id;
4399
4400         rbd_assert(rbd_id > 0);
4401
4402         dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4403         spin_lock(&rbd_dev_list_lock);
4404         list_del_init(&rbd_dev->node);
4405
4406         /*
4407          * If the id being "put" is not the current maximum, there
4408          * is nothing special we need to do.
4409          */
4410         if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4411                 spin_unlock(&rbd_dev_list_lock);
4412                 return;
4413         }
4414
4415         /*
4416          * We need to update the current maximum id.  Search the
4417          * list to find out what it is.  We're more likely to find
4418          * the maximum at the end, so search the list backward.
4419          */
4420         max_id = 0;
4421         list_for_each_prev(tmp, &rbd_dev_list) {
4422                 struct rbd_device *rbd_dev;
4423
4424                 rbd_dev = list_entry(tmp, struct rbd_device, node);
4425                 if (rbd_dev->dev_id > max_id)
4426                         max_id = rbd_dev->dev_id;
4427         }
4428         spin_unlock(&rbd_dev_list_lock);
4429
4430         /*
4431          * The max id could have been updated by rbd_dev_id_get(), in
4432          * which case it now accurately reflects the new maximum.
4433          * Be careful not to overwrite the maximum value in that
4434          * case.
4435          */
4436         atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4437         dout("  max dev id has been reset\n");
4438 }
4439
4440 /*
4441  * Skips over white space at *buf, and updates *buf to point to the
4442  * first found non-space character (if any). Returns the length of
4443  * the token (string of non-white space characters) found.  Note
4444  * that *buf must be terminated with '\0'.
4445  */
4446 static inline size_t next_token(const char **buf)
4447 {
4448         /*
4449         * These are the characters that produce nonzero for
4450         * isspace() in the "C" and "POSIX" locales.
4451         */
4452         const char *spaces = " \f\n\r\t\v";
4453
4454         *buf += strspn(*buf, spaces);   /* Find start of token */
4455
4456         return strcspn(*buf, spaces);   /* Return token length */
4457 }
4458
4459 /*
4460  * Finds the next token in *buf, and if the provided token buffer is
4461  * big enough, copies the found token into it.  The result, if
4462  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4463  * must be terminated with '\0' on entry.
4464  *
4465  * Returns the length of the token found (not including the '\0').
4466  * Return value will be 0 if no token is found, and it will be >=
4467  * token_size if the token would not fit.
4468  *
4469  * The *buf pointer will be updated to point beyond the end of the
4470  * found token.  Note that this occurs even if the token buffer is
4471  * too small to hold it.
4472  */
4473 static inline size_t copy_token(const char **buf,
4474                                 char *token,
4475                                 size_t token_size)
4476 {
4477         size_t len;
4478
4479         len = next_token(buf);
4480         if (len < token_size) {
4481                 memcpy(token, *buf, len);
4482                 *(token + len) = '\0';
4483         }
4484         *buf += len;
4485
4486         return len;
4487 }
4488
4489 /*
4490  * Finds the next token in *buf, dynamically allocates a buffer big
4491  * enough to hold a copy of it, and copies the token into the new
4492  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4493  * that a duplicate buffer is created even for a zero-length token.
4494  *
4495  * Returns a pointer to the newly-allocated duplicate, or a null
4496  * pointer if memory for the duplicate was not available.  If
4497  * the lenp argument is a non-null pointer, the length of the token
4498  * (not including the '\0') is returned in *lenp.
4499  *
4500  * If successful, the *buf pointer will be updated to point beyond
4501  * the end of the found token.
4502  *
4503  * Note: uses GFP_KERNEL for allocation.
4504  */
4505 static inline char *dup_token(const char **buf, size_t *lenp)
4506 {
4507         char *dup;
4508         size_t len;
4509
4510         len = next_token(buf);
4511         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4512         if (!dup)
4513                 return NULL;
4514         *(dup + len) = '\0';
4515         *buf += len;
4516
4517         if (lenp)
4518                 *lenp = len;
4519
4520         return dup;
4521 }
4522
4523 /*
4524  * Parse the options provided for an "rbd add" (i.e., rbd image
4525  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4526  * and the data written is passed here via a NUL-terminated buffer.
4527  * Returns 0 if successful or an error code otherwise.
4528  *
4529  * The information extracted from these options is recorded in
4530  * the other parameters which return dynamically-allocated
4531  * structures:
4532  *  ceph_opts
4533  *      The address of a pointer that will refer to a ceph options
4534  *      structure.  Caller must release the returned pointer using
4535  *      ceph_destroy_options() when it is no longer needed.
4536  *  rbd_opts
4537  *      Address of an rbd options pointer.  Fully initialized by
4538  *      this function; caller must release with kfree().
4539  *  spec
4540  *      Address of an rbd image specification pointer.  Fully
4541  *      initialized by this function based on parsed options.
4542  *      Caller must release with rbd_spec_put().
4543  *
4544  * The options passed take this form:
4545  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4546  * where:
4547  *  <mon_addrs>
4548  *      A comma-separated list of one or more monitor addresses.
4549  *      A monitor address is an ip address, optionally followed
4550  *      by a port number (separated by a colon).
4551  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4552  *  <options>
4553  *      A comma-separated list of ceph and/or rbd options.
4554  *  <pool_name>
4555  *      The name of the rados pool containing the rbd image.
4556  *  <image_name>
4557  *      The name of the image in that pool to map.
4558  *  <snap_id>
4559  *      An optional snapshot id.  If provided, the mapping will
4560  *      present data from the image at the time that snapshot was
4561  *      created.  The image head is used if no snapshot id is
4562  *      provided.  Snapshot mappings are always read-only.
4563  */
4564 static int rbd_add_parse_args(const char *buf,
4565                                 struct ceph_options **ceph_opts,
4566                                 struct rbd_options **opts,
4567                                 struct rbd_spec **rbd_spec)
4568 {
4569         size_t len;
4570         char *options;
4571         const char *mon_addrs;
4572         char *snap_name;
4573         size_t mon_addrs_size;
4574         struct rbd_spec *spec = NULL;
4575         struct rbd_options *rbd_opts = NULL;
4576         struct ceph_options *copts;
4577         int ret;
4578
4579         /* The first four tokens are required */
4580
4581         len = next_token(&buf);
4582         if (!len) {
4583                 rbd_warn(NULL, "no monitor address(es) provided");
4584                 return -EINVAL;
4585         }
4586         mon_addrs = buf;
4587         mon_addrs_size = len + 1;
4588         buf += len;
4589
4590         ret = -EINVAL;
4591         options = dup_token(&buf, NULL);
4592         if (!options)
4593                 return -ENOMEM;
4594         if (!*options) {
4595                 rbd_warn(NULL, "no options provided");
4596                 goto out_err;
4597         }
4598
4599         spec = rbd_spec_alloc();
4600         if (!spec)
4601                 goto out_mem;
4602
4603         spec->pool_name = dup_token(&buf, NULL);
4604         if (!spec->pool_name)
4605                 goto out_mem;
4606         if (!*spec->pool_name) {
4607                 rbd_warn(NULL, "no pool name provided");
4608                 goto out_err;
4609         }
4610
4611         spec->image_name = dup_token(&buf, NULL);
4612         if (!spec->image_name)
4613                 goto out_mem;
4614         if (!*spec->image_name) {
4615                 rbd_warn(NULL, "no image name provided");
4616                 goto out_err;
4617         }
4618
4619         /*
4620          * Snapshot name is optional; default is to use "-"
4621          * (indicating the head/no snapshot).
4622          */
4623         len = next_token(&buf);
4624         if (!len) {
4625                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4626                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4627         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4628                 ret = -ENAMETOOLONG;
4629                 goto out_err;
4630         }
4631         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4632         if (!snap_name)
4633                 goto out_mem;
4634         *(snap_name + len) = '\0';
4635         spec->snap_name = snap_name;
4636
4637         /* Initialize all rbd options to the defaults */
4638
4639         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4640         if (!rbd_opts)
4641                 goto out_mem;
4642
4643         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4644
4645         copts = ceph_parse_options(options, mon_addrs,
4646                                         mon_addrs + mon_addrs_size - 1,
4647                                         parse_rbd_opts_token, rbd_opts);
4648         if (IS_ERR(copts)) {
4649                 ret = PTR_ERR(copts);
4650                 goto out_err;
4651         }
4652         kfree(options);
4653
4654         *ceph_opts = copts;
4655         *opts = rbd_opts;
4656         *rbd_spec = spec;
4657
4658         return 0;
4659 out_mem:
4660         ret = -ENOMEM;
4661 out_err:
4662         kfree(rbd_opts);
4663         rbd_spec_put(spec);
4664         kfree(options);
4665
4666         return ret;
4667 }
4668
4669 /*
4670  * An rbd format 2 image has a unique identifier, distinct from the
4671  * name given to it by the user.  Internally, that identifier is
4672  * what's used to specify the names of objects related to the image.
4673  *
4674  * A special "rbd id" object is used to map an rbd image name to its
4675  * id.  If that object doesn't exist, then there is no v2 rbd image
4676  * with the supplied name.
4677  *
4678  * This function will record the given rbd_dev's image_id field if
4679  * it can be determined, and in that case will return 0.  If any
4680  * errors occur a negative errno will be returned and the rbd_dev's
4681  * image_id field will be unchanged (and should be NULL).
4682  */
4683 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4684 {
4685         int ret;
4686         size_t size;
4687         char *object_name;
4688         void *response;
4689         char *image_id;
4690
4691         /*
4692          * When probing a parent image, the image id is already
4693          * known (and the image name likely is not).  There's no
4694          * need to fetch the image id again in this case.  We
4695          * do still need to set the image format though.
4696          */
4697         if (rbd_dev->spec->image_id) {
4698                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4699
4700                 return 0;
4701         }
4702
4703         /*
4704          * First, see if the format 2 image id file exists, and if
4705          * so, get the image's persistent id from it.
4706          */
4707         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4708         object_name = kmalloc(size, GFP_NOIO);
4709         if (!object_name)
4710                 return -ENOMEM;
4711         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4712         dout("rbd id object name is %s\n", object_name);
4713
4714         /* Response will be an encoded string, which includes a length */
4715
4716         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4717         response = kzalloc(size, GFP_NOIO);
4718         if (!response) {
4719                 ret = -ENOMEM;
4720                 goto out;
4721         }
4722
4723         /* If it doesn't exist we'll assume it's a format 1 image */
4724
4725         ret = rbd_obj_method_sync(rbd_dev, object_name,
4726                                 "rbd", "get_id", NULL, 0,
4727                                 response, RBD_IMAGE_ID_LEN_MAX);
4728         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4729         if (ret == -ENOENT) {
4730                 image_id = kstrdup("", GFP_KERNEL);
4731                 ret = image_id ? 0 : -ENOMEM;
4732                 if (!ret)
4733                         rbd_dev->image_format = 1;
4734         } else if (ret > sizeof (__le32)) {
4735                 void *p = response;
4736
4737                 image_id = ceph_extract_encoded_string(&p, p + ret,
4738                                                 NULL, GFP_NOIO);
4739                 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4740                 if (!ret)
4741                         rbd_dev->image_format = 2;
4742         } else {
4743                 ret = -EINVAL;
4744         }
4745
4746         if (!ret) {
4747                 rbd_dev->spec->image_id = image_id;
4748                 dout("image_id is %s\n", image_id);
4749         }
4750 out:
4751         kfree(response);
4752         kfree(object_name);
4753
4754         return ret;
4755 }
4756
4757 /*
4758  * Undo whatever state changes are made by v1 or v2 header info
4759  * call.
4760  */
4761 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4762 {
4763         struct rbd_image_header *header;
4764
4765         /* Drop parent reference unless it's already been done (or none) */
4766
4767         if (rbd_dev->parent_overlap)
4768                 rbd_dev_parent_put(rbd_dev);
4769
4770         /* Free dynamic fields from the header, then zero it out */
4771
4772         header = &rbd_dev->header;
4773         ceph_put_snap_context(header->snapc);
4774         kfree(header->snap_sizes);
4775         kfree(header->snap_names);
4776         kfree(header->object_prefix);
4777         memset(header, 0, sizeof (*header));
4778 }
4779
4780 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4781 {
4782         int ret;
4783
4784         ret = rbd_dev_v2_object_prefix(rbd_dev);
4785         if (ret)
4786                 goto out_err;
4787
4788         /*
4789          * Get the and check features for the image.  Currently the
4790          * features are assumed to never change.
4791          */
4792         ret = rbd_dev_v2_features(rbd_dev);
4793         if (ret)
4794                 goto out_err;
4795
4796         /* If the image supports fancy striping, get its parameters */
4797
4798         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4799                 ret = rbd_dev_v2_striping_info(rbd_dev);
4800                 if (ret < 0)
4801                         goto out_err;
4802         }
4803         /* No support for crypto and compression type format 2 images */
4804
4805         return 0;
4806 out_err:
4807         rbd_dev->header.features = 0;
4808         kfree(rbd_dev->header.object_prefix);
4809         rbd_dev->header.object_prefix = NULL;
4810
4811         return ret;
4812 }
4813
4814 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4815 {
4816         struct rbd_device *parent = NULL;
4817         struct rbd_spec *parent_spec;
4818         struct rbd_client *rbdc;
4819         int ret;
4820
4821         if (!rbd_dev->parent_spec)
4822                 return 0;
4823         /*
4824          * We need to pass a reference to the client and the parent
4825          * spec when creating the parent rbd_dev.  Images related by
4826          * parent/child relationships always share both.
4827          */
4828         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4829         rbdc = __rbd_get_client(rbd_dev->rbd_client);
4830
4831         ret = -ENOMEM;
4832         parent = rbd_dev_create(rbdc, parent_spec);
4833         if (!parent)
4834                 goto out_err;
4835
4836         ret = rbd_dev_image_probe(parent, false);
4837         if (ret < 0)
4838                 goto out_err;
4839         rbd_dev->parent = parent;
4840         atomic_set(&rbd_dev->parent_ref, 1);
4841
4842         return 0;
4843 out_err:
4844         if (parent) {
4845                 rbd_dev_unparent(rbd_dev);
4846                 kfree(rbd_dev->header_name);
4847                 rbd_dev_destroy(parent);
4848         } else {
4849                 rbd_put_client(rbdc);
4850                 rbd_spec_put(parent_spec);
4851         }
4852
4853         return ret;
4854 }
4855
4856 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4857 {
4858         int ret;
4859
4860         /* generate unique id: find highest unique id, add one */
4861         rbd_dev_id_get(rbd_dev);
4862
4863         /* Fill in the device name, now that we have its id. */
4864         BUILD_BUG_ON(DEV_NAME_LEN
4865                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4866         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4867
4868         /* Get our block major device number. */
4869
4870         ret = register_blkdev(0, rbd_dev->name);
4871         if (ret < 0)
4872                 goto err_out_id;
4873         rbd_dev->major = ret;
4874
4875         /* Set up the blkdev mapping. */
4876
4877         ret = rbd_init_disk(rbd_dev);
4878         if (ret)
4879                 goto err_out_blkdev;
4880
4881         ret = rbd_dev_mapping_set(rbd_dev);
4882         if (ret)
4883                 goto err_out_disk;
4884         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4885
4886         ret = rbd_bus_add_dev(rbd_dev);
4887         if (ret)
4888                 goto err_out_mapping;
4889
4890         /* Everything's ready.  Announce the disk to the world. */
4891
4892         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4893         add_disk(rbd_dev->disk);
4894
4895         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4896                 (unsigned long long) rbd_dev->mapping.size);
4897
4898         return ret;
4899
4900 err_out_mapping:
4901         rbd_dev_mapping_clear(rbd_dev);
4902 err_out_disk:
4903         rbd_free_disk(rbd_dev);
4904 err_out_blkdev:
4905         unregister_blkdev(rbd_dev->major, rbd_dev->name);
4906 err_out_id:
4907         rbd_dev_id_put(rbd_dev);
4908         rbd_dev_mapping_clear(rbd_dev);
4909
4910         return ret;
4911 }
4912
4913 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4914 {
4915         struct rbd_spec *spec = rbd_dev->spec;
4916         size_t size;
4917
4918         /* Record the header object name for this rbd image. */
4919
4920         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4921
4922         if (rbd_dev->image_format == 1)
4923                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4924         else
4925                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4926
4927         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4928         if (!rbd_dev->header_name)
4929                 return -ENOMEM;
4930
4931         if (rbd_dev->image_format == 1)
4932                 sprintf(rbd_dev->header_name, "%s%s",
4933                         spec->image_name, RBD_SUFFIX);
4934         else
4935                 sprintf(rbd_dev->header_name, "%s%s",
4936                         RBD_HEADER_PREFIX, spec->image_id);
4937         return 0;
4938 }
4939
4940 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4941 {
4942         rbd_dev_unprobe(rbd_dev);
4943         kfree(rbd_dev->header_name);
4944         rbd_dev->header_name = NULL;
4945         rbd_dev->image_format = 0;
4946         kfree(rbd_dev->spec->image_id);
4947         rbd_dev->spec->image_id = NULL;
4948
4949         rbd_dev_destroy(rbd_dev);
4950 }
4951
4952 /*
4953  * Probe for the existence of the header object for the given rbd
4954  * device.  If this image is the one being mapped (i.e., not a
4955  * parent), initiate a watch on its header object before using that
4956  * object to get detailed information about the rbd image.
4957  */
4958 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
4959 {
4960         int ret;
4961         int tmp;
4962
4963         /*
4964          * Get the id from the image id object.  Unless there's an
4965          * error, rbd_dev->spec->image_id will be filled in with
4966          * a dynamically-allocated string, and rbd_dev->image_format
4967          * will be set to either 1 or 2.
4968          */
4969         ret = rbd_dev_image_id(rbd_dev);
4970         if (ret)
4971                 return ret;
4972         rbd_assert(rbd_dev->spec->image_id);
4973         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4974
4975         ret = rbd_dev_header_name(rbd_dev);
4976         if (ret)
4977                 goto err_out_format;
4978
4979         if (mapping) {
4980                 ret = rbd_dev_header_watch_sync(rbd_dev, true);
4981                 if (ret)
4982                         goto out_header_name;
4983         }
4984
4985         if (rbd_dev->image_format == 1)
4986                 ret = rbd_dev_v1_header_info(rbd_dev);
4987         else
4988                 ret = rbd_dev_v2_header_info(rbd_dev);
4989         if (ret)
4990                 goto err_out_watch;
4991
4992         ret = rbd_dev_spec_update(rbd_dev);
4993         if (ret)
4994                 goto err_out_probe;
4995
4996         ret = rbd_dev_probe_parent(rbd_dev);
4997         if (ret)
4998                 goto err_out_probe;
4999
5000         dout("discovered format %u image, header name is %s\n",
5001                 rbd_dev->image_format, rbd_dev->header_name);
5002
5003         return 0;
5004 err_out_probe:
5005         rbd_dev_unprobe(rbd_dev);
5006 err_out_watch:
5007         if (mapping) {
5008                 tmp = rbd_dev_header_watch_sync(rbd_dev, false);
5009                 if (tmp)
5010                         rbd_warn(rbd_dev, "unable to tear down "
5011                                         "watch request (%d)\n", tmp);
5012         }
5013 out_header_name:
5014         kfree(rbd_dev->header_name);
5015         rbd_dev->header_name = NULL;
5016 err_out_format:
5017         rbd_dev->image_format = 0;
5018         kfree(rbd_dev->spec->image_id);
5019         rbd_dev->spec->image_id = NULL;
5020
5021         dout("probe failed, returning %d\n", ret);
5022
5023         return ret;
5024 }
5025
5026 static ssize_t rbd_add(struct bus_type *bus,
5027                        const char *buf,
5028                        size_t count)
5029 {
5030         struct rbd_device *rbd_dev = NULL;
5031         struct ceph_options *ceph_opts = NULL;
5032         struct rbd_options *rbd_opts = NULL;
5033         struct rbd_spec *spec = NULL;
5034         struct rbd_client *rbdc;
5035         struct ceph_osd_client *osdc;
5036         bool read_only;
5037         int rc = -ENOMEM;
5038
5039         if (!try_module_get(THIS_MODULE))
5040                 return -ENODEV;
5041
5042         /* parse add command */
5043         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5044         if (rc < 0)
5045                 goto err_out_module;
5046         read_only = rbd_opts->read_only;
5047         kfree(rbd_opts);
5048         rbd_opts = NULL;        /* done with this */
5049
5050         rbdc = rbd_get_client(ceph_opts);
5051         if (IS_ERR(rbdc)) {
5052                 rc = PTR_ERR(rbdc);
5053                 goto err_out_args;
5054         }
5055
5056         /* pick the pool */
5057         osdc = &rbdc->client->osdc;
5058         rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
5059         if (rc < 0)
5060                 goto err_out_client;
5061         spec->pool_id = (u64)rc;
5062
5063         /* The ceph file layout needs to fit pool id in 32 bits */
5064
5065         if (spec->pool_id > (u64)U32_MAX) {
5066                 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5067                                 (unsigned long long)spec->pool_id, U32_MAX);
5068                 rc = -EIO;
5069                 goto err_out_client;
5070         }
5071
5072         rbd_dev = rbd_dev_create(rbdc, spec);
5073         if (!rbd_dev)
5074                 goto err_out_client;
5075         rbdc = NULL;            /* rbd_dev now owns this */
5076         spec = NULL;            /* rbd_dev now owns this */
5077
5078         rc = rbd_dev_image_probe(rbd_dev, true);
5079         if (rc < 0)
5080                 goto err_out_rbd_dev;
5081
5082         /* If we are mapping a snapshot it must be marked read-only */
5083
5084         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5085                 read_only = true;
5086         rbd_dev->mapping.read_only = read_only;
5087
5088         rc = rbd_dev_device_setup(rbd_dev);
5089         if (rc) {
5090                 rbd_dev_image_release(rbd_dev);
5091                 goto err_out_module;
5092         }
5093
5094         return count;
5095
5096 err_out_rbd_dev:
5097         rbd_dev_destroy(rbd_dev);
5098 err_out_client:
5099         rbd_put_client(rbdc);
5100 err_out_args:
5101         rbd_spec_put(spec);
5102 err_out_module:
5103         module_put(THIS_MODULE);
5104
5105         dout("Error adding device %s\n", buf);
5106
5107         return (ssize_t)rc;
5108 }
5109
5110 static void rbd_dev_device_release(struct device *dev)
5111 {
5112         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5113
5114         rbd_free_disk(rbd_dev);
5115         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5116         rbd_dev_mapping_clear(rbd_dev);
5117         unregister_blkdev(rbd_dev->major, rbd_dev->name);
5118         rbd_dev->major = 0;
5119         rbd_dev_id_put(rbd_dev);
5120         rbd_dev_mapping_clear(rbd_dev);
5121 }
5122
5123 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5124 {
5125         while (rbd_dev->parent) {
5126                 struct rbd_device *first = rbd_dev;
5127                 struct rbd_device *second = first->parent;
5128                 struct rbd_device *third;
5129
5130                 /*
5131                  * Follow to the parent with no grandparent and
5132                  * remove it.
5133                  */
5134                 while (second && (third = second->parent)) {
5135                         first = second;
5136                         second = third;
5137                 }
5138                 rbd_assert(second);
5139                 rbd_dev_image_release(second);
5140                 first->parent = NULL;
5141                 first->parent_overlap = 0;
5142
5143                 rbd_assert(first->parent_spec);
5144                 rbd_spec_put(first->parent_spec);
5145                 first->parent_spec = NULL;
5146         }
5147 }
5148
5149 static ssize_t rbd_remove(struct bus_type *bus,
5150                           const char *buf,
5151                           size_t count)
5152 {
5153         struct rbd_device *rbd_dev = NULL;
5154         struct list_head *tmp;
5155         int dev_id;
5156         unsigned long ul;
5157         bool already = false;
5158         int ret;
5159
5160         ret = kstrtoul(buf, 10, &ul);
5161         if (ret)
5162                 return ret;
5163
5164         /* convert to int; abort if we lost anything in the conversion */
5165         dev_id = (int)ul;
5166         if (dev_id != ul)
5167                 return -EINVAL;
5168
5169         ret = -ENOENT;
5170         spin_lock(&rbd_dev_list_lock);
5171         list_for_each(tmp, &rbd_dev_list) {
5172                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5173                 if (rbd_dev->dev_id == dev_id) {
5174                         ret = 0;
5175                         break;
5176                 }
5177         }
5178         if (!ret) {
5179                 spin_lock_irq(&rbd_dev->lock);
5180                 if (rbd_dev->open_count)
5181                         ret = -EBUSY;
5182                 else
5183                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5184                                                         &rbd_dev->flags);
5185                 spin_unlock_irq(&rbd_dev->lock);
5186         }
5187         spin_unlock(&rbd_dev_list_lock);
5188         if (ret < 0 || already)
5189                 return ret;
5190
5191         ret = rbd_dev_header_watch_sync(rbd_dev, false);
5192         if (ret)
5193                 rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret);
5194
5195         /*
5196          * flush remaining watch callbacks - these must be complete
5197          * before the osd_client is shutdown
5198          */
5199         dout("%s: flushing notifies", __func__);
5200         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5201         /*
5202          * Don't free anything from rbd_dev->disk until after all
5203          * notifies are completely processed. Otherwise
5204          * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5205          * in a potential use after free of rbd_dev->disk or rbd_dev.
5206          */
5207         rbd_bus_del_dev(rbd_dev);
5208         rbd_dev_image_release(rbd_dev);
5209         module_put(THIS_MODULE);
5210
5211         return count;
5212 }
5213
5214 /*
5215  * create control files in sysfs
5216  * /sys/bus/rbd/...
5217  */
5218 static int rbd_sysfs_init(void)
5219 {
5220         int ret;
5221
5222         ret = device_register(&rbd_root_dev);
5223         if (ret < 0)
5224                 return ret;
5225
5226         ret = bus_register(&rbd_bus_type);
5227         if (ret < 0)
5228                 device_unregister(&rbd_root_dev);
5229
5230         return ret;
5231 }
5232
5233 static void rbd_sysfs_cleanup(void)
5234 {
5235         bus_unregister(&rbd_bus_type);
5236         device_unregister(&rbd_root_dev);
5237 }
5238
5239 static int rbd_slab_init(void)
5240 {
5241         rbd_assert(!rbd_img_request_cache);
5242         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5243                                         sizeof (struct rbd_img_request),
5244                                         __alignof__(struct rbd_img_request),
5245                                         0, NULL);
5246         if (!rbd_img_request_cache)
5247                 return -ENOMEM;
5248
5249         rbd_assert(!rbd_obj_request_cache);
5250         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5251                                         sizeof (struct rbd_obj_request),
5252                                         __alignof__(struct rbd_obj_request),
5253                                         0, NULL);
5254         if (!rbd_obj_request_cache)
5255                 goto out_err;
5256
5257         rbd_assert(!rbd_segment_name_cache);
5258         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5259                                         MAX_OBJ_NAME_SIZE + 1, 1, 0, NULL);
5260         if (rbd_segment_name_cache)
5261                 return 0;
5262 out_err:
5263         if (rbd_obj_request_cache) {
5264                 kmem_cache_destroy(rbd_obj_request_cache);
5265                 rbd_obj_request_cache = NULL;
5266         }
5267
5268         kmem_cache_destroy(rbd_img_request_cache);
5269         rbd_img_request_cache = NULL;
5270
5271         return -ENOMEM;
5272 }
5273
5274 static void rbd_slab_exit(void)
5275 {
5276         rbd_assert(rbd_segment_name_cache);
5277         kmem_cache_destroy(rbd_segment_name_cache);
5278         rbd_segment_name_cache = NULL;
5279
5280         rbd_assert(rbd_obj_request_cache);
5281         kmem_cache_destroy(rbd_obj_request_cache);
5282         rbd_obj_request_cache = NULL;
5283
5284         rbd_assert(rbd_img_request_cache);
5285         kmem_cache_destroy(rbd_img_request_cache);
5286         rbd_img_request_cache = NULL;
5287 }
5288
5289 static int __init rbd_init(void)
5290 {
5291         int rc;
5292
5293         if (!libceph_compatible(NULL)) {
5294                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5295                 return -EINVAL;
5296         }
5297
5298         rc = rbd_slab_init();
5299         if (rc)
5300                 return rc;
5301
5302         rc = rbd_sysfs_init();
5303         if (rc)
5304                 goto err_out_slab;
5305
5306         pr_info("loaded\n");
5307         return 0;
5308
5309 err_out_slab:
5310         rbd_slab_exit();
5311         return rc;
5312 }
5313
5314 static void __exit rbd_exit(void)
5315 {
5316         rbd_sysfs_cleanup();
5317         rbd_slab_exit();
5318 }
5319
5320 module_init(rbd_init);
5321 module_exit(rbd_exit);
5322
5323 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5324 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5325 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5326 /* following authorship retained from original osdblk.c */
5327 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5328
5329 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5330 MODULE_LICENSE("GPL");