rbd: detect when clone image is flattened
[firefly-linux-kernel-4.4.55.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44
45 #include "rbd_types.h"
46
47 #define RBD_DEBUG       /* Activate rbd_assert() calls */
48
49 /*
50  * The basic unit of block I/O is a sector.  It is interpreted in a
51  * number of contexts in Linux (blk, bio, genhd), but the default is
52  * universally 512 bytes.  These symbols are just slightly more
53  * meaningful than the bare numbers they represent.
54  */
55 #define SECTOR_SHIFT    9
56 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
57
58 /*
59  * Increment the given counter and return its updated value.
60  * If the counter is already 0 it will not be incremented.
61  * If the counter is already at its maximum value returns
62  * -EINVAL without updating it.
63  */
64 static int atomic_inc_return_safe(atomic_t *v)
65 {
66         unsigned int counter;
67
68         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
69         if (counter <= (unsigned int)INT_MAX)
70                 return (int)counter;
71
72         atomic_dec(v);
73
74         return -EINVAL;
75 }
76
77 /* Decrement the counter.  Return the resulting value, or -EINVAL */
78 static int atomic_dec_return_safe(atomic_t *v)
79 {
80         int counter;
81
82         counter = atomic_dec_return(v);
83         if (counter >= 0)
84                 return counter;
85
86         atomic_inc(v);
87
88         return -EINVAL;
89 }
90
91 #define RBD_DRV_NAME "rbd"
92 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
93
94 #define RBD_MINORS_PER_MAJOR    256             /* max minors per blkdev */
95
96 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
97 #define RBD_MAX_SNAP_NAME_LEN   \
98                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
99
100 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
101
102 #define RBD_SNAP_HEAD_NAME      "-"
103
104 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
105
106 /* This allows a single page to hold an image name sent by OSD */
107 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
108 #define RBD_IMAGE_ID_LEN_MAX    64
109
110 #define RBD_OBJ_PREFIX_LEN_MAX  64
111
112 /* Feature bits */
113
114 #define RBD_FEATURE_LAYERING    (1<<0)
115 #define RBD_FEATURE_STRIPINGV2  (1<<1)
116 #define RBD_FEATURES_ALL \
117             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
118
119 /* Features supported by this (client software) implementation. */
120
121 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
122
123 /*
124  * An RBD device name will be "rbd#", where the "rbd" comes from
125  * RBD_DRV_NAME above, and # is a unique integer identifier.
126  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
127  * enough to hold all possible device names.
128  */
129 #define DEV_NAME_LEN            32
130 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
131
132 /*
133  * block device image metadata (in-memory version)
134  */
135 struct rbd_image_header {
136         /* These six fields never change for a given rbd image */
137         char *object_prefix;
138         __u8 obj_order;
139         __u8 crypt_type;
140         __u8 comp_type;
141         u64 stripe_unit;
142         u64 stripe_count;
143         u64 features;           /* Might be changeable someday? */
144
145         /* The remaining fields need to be updated occasionally */
146         u64 image_size;
147         struct ceph_snap_context *snapc;
148         char *snap_names;       /* format 1 only */
149         u64 *snap_sizes;        /* format 1 only */
150 };
151
152 /*
153  * An rbd image specification.
154  *
155  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
156  * identify an image.  Each rbd_dev structure includes a pointer to
157  * an rbd_spec structure that encapsulates this identity.
158  *
159  * Each of the id's in an rbd_spec has an associated name.  For a
160  * user-mapped image, the names are supplied and the id's associated
161  * with them are looked up.  For a layered image, a parent image is
162  * defined by the tuple, and the names are looked up.
163  *
164  * An rbd_dev structure contains a parent_spec pointer which is
165  * non-null if the image it represents is a child in a layered
166  * image.  This pointer will refer to the rbd_spec structure used
167  * by the parent rbd_dev for its own identity (i.e., the structure
168  * is shared between the parent and child).
169  *
170  * Since these structures are populated once, during the discovery
171  * phase of image construction, they are effectively immutable so
172  * we make no effort to synchronize access to them.
173  *
174  * Note that code herein does not assume the image name is known (it
175  * could be a null pointer).
176  */
177 struct rbd_spec {
178         u64             pool_id;
179         const char      *pool_name;
180
181         const char      *image_id;
182         const char      *image_name;
183
184         u64             snap_id;
185         const char      *snap_name;
186
187         struct kref     kref;
188 };
189
190 /*
191  * an instance of the client.  multiple devices may share an rbd client.
192  */
193 struct rbd_client {
194         struct ceph_client      *client;
195         struct kref             kref;
196         struct list_head        node;
197 };
198
199 struct rbd_img_request;
200 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
201
202 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
203
204 struct rbd_obj_request;
205 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
206
207 enum obj_request_type {
208         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
209 };
210
211 enum obj_req_flags {
212         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
213         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
214         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
215         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
216 };
217
218 struct rbd_obj_request {
219         const char              *object_name;
220         u64                     offset;         /* object start byte */
221         u64                     length;         /* bytes from offset */
222         unsigned long           flags;
223
224         /*
225          * An object request associated with an image will have its
226          * img_data flag set; a standalone object request will not.
227          *
228          * A standalone object request will have which == BAD_WHICH
229          * and a null obj_request pointer.
230          *
231          * An object request initiated in support of a layered image
232          * object (to check for its existence before a write) will
233          * have which == BAD_WHICH and a non-null obj_request pointer.
234          *
235          * Finally, an object request for rbd image data will have
236          * which != BAD_WHICH, and will have a non-null img_request
237          * pointer.  The value of which will be in the range
238          * 0..(img_request->obj_request_count-1).
239          */
240         union {
241                 struct rbd_obj_request  *obj_request;   /* STAT op */
242                 struct {
243                         struct rbd_img_request  *img_request;
244                         u64                     img_offset;
245                         /* links for img_request->obj_requests list */
246                         struct list_head        links;
247                 };
248         };
249         u32                     which;          /* posn image request list */
250
251         enum obj_request_type   type;
252         union {
253                 struct bio      *bio_list;
254                 struct {
255                         struct page     **pages;
256                         u32             page_count;
257                 };
258         };
259         struct page             **copyup_pages;
260         u32                     copyup_page_count;
261
262         struct ceph_osd_request *osd_req;
263
264         u64                     xferred;        /* bytes transferred */
265         int                     result;
266
267         rbd_obj_callback_t      callback;
268         struct completion       completion;
269
270         struct kref             kref;
271 };
272
273 enum img_req_flags {
274         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
275         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
276         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
277 };
278
279 struct rbd_img_request {
280         struct rbd_device       *rbd_dev;
281         u64                     offset; /* starting image byte offset */
282         u64                     length; /* byte count from offset */
283         unsigned long           flags;
284         union {
285                 u64                     snap_id;        /* for reads */
286                 struct ceph_snap_context *snapc;        /* for writes */
287         };
288         union {
289                 struct request          *rq;            /* block request */
290                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
291         };
292         struct page             **copyup_pages;
293         u32                     copyup_page_count;
294         spinlock_t              completion_lock;/* protects next_completion */
295         u32                     next_completion;
296         rbd_img_callback_t      callback;
297         u64                     xferred;/* aggregate bytes transferred */
298         int                     result; /* first nonzero obj_request result */
299
300         u32                     obj_request_count;
301         struct list_head        obj_requests;   /* rbd_obj_request structs */
302
303         struct kref             kref;
304 };
305
306 #define for_each_obj_request(ireq, oreq) \
307         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
308 #define for_each_obj_request_from(ireq, oreq) \
309         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
310 #define for_each_obj_request_safe(ireq, oreq, n) \
311         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
312
313 struct rbd_mapping {
314         u64                     size;
315         u64                     features;
316         bool                    read_only;
317 };
318
319 /*
320  * a single device
321  */
322 struct rbd_device {
323         int                     dev_id;         /* blkdev unique id */
324
325         int                     major;          /* blkdev assigned major */
326         struct gendisk          *disk;          /* blkdev's gendisk and rq */
327
328         u32                     image_format;   /* Either 1 or 2 */
329         struct rbd_client       *rbd_client;
330
331         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
332
333         spinlock_t              lock;           /* queue, flags, open_count */
334
335         struct rbd_image_header header;
336         unsigned long           flags;          /* possibly lock protected */
337         struct rbd_spec         *spec;
338
339         char                    *header_name;
340
341         struct ceph_file_layout layout;
342
343         struct ceph_osd_event   *watch_event;
344         struct rbd_obj_request  *watch_request;
345
346         struct rbd_spec         *parent_spec;
347         u64                     parent_overlap;
348         atomic_t                parent_ref;
349         struct rbd_device       *parent;
350
351         /* protects updating the header */
352         struct rw_semaphore     header_rwsem;
353
354         struct rbd_mapping      mapping;
355
356         struct list_head        node;
357
358         /* sysfs related */
359         struct device           dev;
360         unsigned long           open_count;     /* protected by lock */
361 };
362
363 /*
364  * Flag bits for rbd_dev->flags.  If atomicity is required,
365  * rbd_dev->lock is used to protect access.
366  *
367  * Currently, only the "removing" flag (which is coupled with the
368  * "open_count" field) requires atomic access.
369  */
370 enum rbd_dev_flags {
371         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
372         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
373 };
374
375 static DEFINE_MUTEX(ctl_mutex);   /* Serialize open/close/setup/teardown */
376
377 static LIST_HEAD(rbd_dev_list);    /* devices */
378 static DEFINE_SPINLOCK(rbd_dev_list_lock);
379
380 static LIST_HEAD(rbd_client_list);              /* clients */
381 static DEFINE_SPINLOCK(rbd_client_list_lock);
382
383 /* Slab caches for frequently-allocated structures */
384
385 static struct kmem_cache        *rbd_img_request_cache;
386 static struct kmem_cache        *rbd_obj_request_cache;
387 static struct kmem_cache        *rbd_segment_name_cache;
388
389 static int rbd_img_request_submit(struct rbd_img_request *img_request);
390
391 static void rbd_dev_device_release(struct device *dev);
392
393 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
394                        size_t count);
395 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
396                           size_t count);
397 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
398 static void rbd_spec_put(struct rbd_spec *spec);
399
400 static struct bus_attribute rbd_bus_attrs[] = {
401         __ATTR(add, S_IWUSR, NULL, rbd_add),
402         __ATTR(remove, S_IWUSR, NULL, rbd_remove),
403         __ATTR_NULL
404 };
405
406 static struct bus_type rbd_bus_type = {
407         .name           = "rbd",
408         .bus_attrs      = rbd_bus_attrs,
409 };
410
411 static void rbd_root_dev_release(struct device *dev)
412 {
413 }
414
415 static struct device rbd_root_dev = {
416         .init_name =    "rbd",
417         .release =      rbd_root_dev_release,
418 };
419
420 static __printf(2, 3)
421 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
422 {
423         struct va_format vaf;
424         va_list args;
425
426         va_start(args, fmt);
427         vaf.fmt = fmt;
428         vaf.va = &args;
429
430         if (!rbd_dev)
431                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
432         else if (rbd_dev->disk)
433                 printk(KERN_WARNING "%s: %s: %pV\n",
434                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
435         else if (rbd_dev->spec && rbd_dev->spec->image_name)
436                 printk(KERN_WARNING "%s: image %s: %pV\n",
437                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
438         else if (rbd_dev->spec && rbd_dev->spec->image_id)
439                 printk(KERN_WARNING "%s: id %s: %pV\n",
440                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
441         else    /* punt */
442                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
443                         RBD_DRV_NAME, rbd_dev, &vaf);
444         va_end(args);
445 }
446
447 #ifdef RBD_DEBUG
448 #define rbd_assert(expr)                                                \
449                 if (unlikely(!(expr))) {                                \
450                         printk(KERN_ERR "\nAssertion failure in %s() "  \
451                                                 "at line %d:\n\n"       \
452                                         "\trbd_assert(%s);\n\n",        \
453                                         __func__, __LINE__, #expr);     \
454                         BUG();                                          \
455                 }
456 #else /* !RBD_DEBUG */
457 #  define rbd_assert(expr)      ((void) 0)
458 #endif /* !RBD_DEBUG */
459
460 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
461 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
462 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
463
464 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
465 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
466 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
467 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
468                                         u64 snap_id);
469 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
470                                 u8 *order, u64 *snap_size);
471 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
472                 u64 *snap_features);
473 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
474
475 static int rbd_open(struct block_device *bdev, fmode_t mode)
476 {
477         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
478         bool removing = false;
479
480         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
481                 return -EROFS;
482
483         spin_lock_irq(&rbd_dev->lock);
484         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
485                 removing = true;
486         else
487                 rbd_dev->open_count++;
488         spin_unlock_irq(&rbd_dev->lock);
489         if (removing)
490                 return -ENOENT;
491
492         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
493         (void) get_device(&rbd_dev->dev);
494         set_device_ro(bdev, rbd_dev->mapping.read_only);
495         mutex_unlock(&ctl_mutex);
496
497         return 0;
498 }
499
500 static int rbd_release(struct gendisk *disk, fmode_t mode)
501 {
502         struct rbd_device *rbd_dev = disk->private_data;
503         unsigned long open_count_before;
504
505         spin_lock_irq(&rbd_dev->lock);
506         open_count_before = rbd_dev->open_count--;
507         spin_unlock_irq(&rbd_dev->lock);
508         rbd_assert(open_count_before > 0);
509
510         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
511         put_device(&rbd_dev->dev);
512         mutex_unlock(&ctl_mutex);
513
514         return 0;
515 }
516
517 static const struct block_device_operations rbd_bd_ops = {
518         .owner                  = THIS_MODULE,
519         .open                   = rbd_open,
520         .release                = rbd_release,
521 };
522
523 /*
524  * Initialize an rbd client instance.
525  * We own *ceph_opts.
526  */
527 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
528 {
529         struct rbd_client *rbdc;
530         int ret = -ENOMEM;
531
532         dout("%s:\n", __func__);
533         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
534         if (!rbdc)
535                 goto out_opt;
536
537         kref_init(&rbdc->kref);
538         INIT_LIST_HEAD(&rbdc->node);
539
540         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
541
542         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
543         if (IS_ERR(rbdc->client))
544                 goto out_mutex;
545         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
546
547         ret = ceph_open_session(rbdc->client);
548         if (ret < 0)
549                 goto out_err;
550
551         spin_lock(&rbd_client_list_lock);
552         list_add_tail(&rbdc->node, &rbd_client_list);
553         spin_unlock(&rbd_client_list_lock);
554
555         mutex_unlock(&ctl_mutex);
556         dout("%s: rbdc %p\n", __func__, rbdc);
557
558         return rbdc;
559
560 out_err:
561         ceph_destroy_client(rbdc->client);
562 out_mutex:
563         mutex_unlock(&ctl_mutex);
564         kfree(rbdc);
565 out_opt:
566         if (ceph_opts)
567                 ceph_destroy_options(ceph_opts);
568         dout("%s: error %d\n", __func__, ret);
569
570         return ERR_PTR(ret);
571 }
572
573 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
574 {
575         kref_get(&rbdc->kref);
576
577         return rbdc;
578 }
579
580 /*
581  * Find a ceph client with specific addr and configuration.  If
582  * found, bump its reference count.
583  */
584 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
585 {
586         struct rbd_client *client_node;
587         bool found = false;
588
589         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
590                 return NULL;
591
592         spin_lock(&rbd_client_list_lock);
593         list_for_each_entry(client_node, &rbd_client_list, node) {
594                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
595                         __rbd_get_client(client_node);
596
597                         found = true;
598                         break;
599                 }
600         }
601         spin_unlock(&rbd_client_list_lock);
602
603         return found ? client_node : NULL;
604 }
605
606 /*
607  * mount options
608  */
609 enum {
610         Opt_last_int,
611         /* int args above */
612         Opt_last_string,
613         /* string args above */
614         Opt_read_only,
615         Opt_read_write,
616         /* Boolean args above */
617         Opt_last_bool,
618 };
619
620 static match_table_t rbd_opts_tokens = {
621         /* int args above */
622         /* string args above */
623         {Opt_read_only, "read_only"},
624         {Opt_read_only, "ro"},          /* Alternate spelling */
625         {Opt_read_write, "read_write"},
626         {Opt_read_write, "rw"},         /* Alternate spelling */
627         /* Boolean args above */
628         {-1, NULL}
629 };
630
631 struct rbd_options {
632         bool    read_only;
633 };
634
635 #define RBD_READ_ONLY_DEFAULT   false
636
637 static int parse_rbd_opts_token(char *c, void *private)
638 {
639         struct rbd_options *rbd_opts = private;
640         substring_t argstr[MAX_OPT_ARGS];
641         int token, intval, ret;
642
643         token = match_token(c, rbd_opts_tokens, argstr);
644         if (token < 0)
645                 return -EINVAL;
646
647         if (token < Opt_last_int) {
648                 ret = match_int(&argstr[0], &intval);
649                 if (ret < 0) {
650                         pr_err("bad mount option arg (not int) "
651                                "at '%s'\n", c);
652                         return ret;
653                 }
654                 dout("got int token %d val %d\n", token, intval);
655         } else if (token > Opt_last_int && token < Opt_last_string) {
656                 dout("got string token %d val %s\n", token,
657                      argstr[0].from);
658         } else if (token > Opt_last_string && token < Opt_last_bool) {
659                 dout("got Boolean token %d\n", token);
660         } else {
661                 dout("got token %d\n", token);
662         }
663
664         switch (token) {
665         case Opt_read_only:
666                 rbd_opts->read_only = true;
667                 break;
668         case Opt_read_write:
669                 rbd_opts->read_only = false;
670                 break;
671         default:
672                 rbd_assert(false);
673                 break;
674         }
675         return 0;
676 }
677
678 /*
679  * Get a ceph client with specific addr and configuration, if one does
680  * not exist create it.
681  */
682 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
683 {
684         struct rbd_client *rbdc;
685
686         rbdc = rbd_client_find(ceph_opts);
687         if (rbdc)       /* using an existing client */
688                 ceph_destroy_options(ceph_opts);
689         else
690                 rbdc = rbd_client_create(ceph_opts);
691
692         return rbdc;
693 }
694
695 /*
696  * Destroy ceph client
697  *
698  * Caller must hold rbd_client_list_lock.
699  */
700 static void rbd_client_release(struct kref *kref)
701 {
702         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
703
704         dout("%s: rbdc %p\n", __func__, rbdc);
705         spin_lock(&rbd_client_list_lock);
706         list_del(&rbdc->node);
707         spin_unlock(&rbd_client_list_lock);
708
709         ceph_destroy_client(rbdc->client);
710         kfree(rbdc);
711 }
712
713 /*
714  * Drop reference to ceph client node. If it's not referenced anymore, release
715  * it.
716  */
717 static void rbd_put_client(struct rbd_client *rbdc)
718 {
719         if (rbdc)
720                 kref_put(&rbdc->kref, rbd_client_release);
721 }
722
723 static bool rbd_image_format_valid(u32 image_format)
724 {
725         return image_format == 1 || image_format == 2;
726 }
727
728 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
729 {
730         size_t size;
731         u32 snap_count;
732
733         /* The header has to start with the magic rbd header text */
734         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
735                 return false;
736
737         /* The bio layer requires at least sector-sized I/O */
738
739         if (ondisk->options.order < SECTOR_SHIFT)
740                 return false;
741
742         /* If we use u64 in a few spots we may be able to loosen this */
743
744         if (ondisk->options.order > 8 * sizeof (int) - 1)
745                 return false;
746
747         /*
748          * The size of a snapshot header has to fit in a size_t, and
749          * that limits the number of snapshots.
750          */
751         snap_count = le32_to_cpu(ondisk->snap_count);
752         size = SIZE_MAX - sizeof (struct ceph_snap_context);
753         if (snap_count > size / sizeof (__le64))
754                 return false;
755
756         /*
757          * Not only that, but the size of the entire the snapshot
758          * header must also be representable in a size_t.
759          */
760         size -= snap_count * sizeof (__le64);
761         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
762                 return false;
763
764         return true;
765 }
766
767 /*
768  * Fill an rbd image header with information from the given format 1
769  * on-disk header.
770  */
771 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
772                                  struct rbd_image_header_ondisk *ondisk)
773 {
774         struct rbd_image_header *header = &rbd_dev->header;
775         bool first_time = header->object_prefix == NULL;
776         struct ceph_snap_context *snapc;
777         char *object_prefix = NULL;
778         char *snap_names = NULL;
779         u64 *snap_sizes = NULL;
780         u32 snap_count;
781         size_t size;
782         int ret = -ENOMEM;
783         u32 i;
784
785         /* Allocate this now to avoid having to handle failure below */
786
787         if (first_time) {
788                 size_t len;
789
790                 len = strnlen(ondisk->object_prefix,
791                                 sizeof (ondisk->object_prefix));
792                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
793                 if (!object_prefix)
794                         return -ENOMEM;
795                 memcpy(object_prefix, ondisk->object_prefix, len);
796                 object_prefix[len] = '\0';
797         }
798
799         /* Allocate the snapshot context and fill it in */
800
801         snap_count = le32_to_cpu(ondisk->snap_count);
802         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
803         if (!snapc)
804                 goto out_err;
805         snapc->seq = le64_to_cpu(ondisk->snap_seq);
806         if (snap_count) {
807                 struct rbd_image_snap_ondisk *snaps;
808                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
809
810                 /* We'll keep a copy of the snapshot names... */
811
812                 if (snap_names_len > (u64)SIZE_MAX)
813                         goto out_2big;
814                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
815                 if (!snap_names)
816                         goto out_err;
817
818                 /* ...as well as the array of their sizes. */
819
820                 size = snap_count * sizeof (*header->snap_sizes);
821                 snap_sizes = kmalloc(size, GFP_KERNEL);
822                 if (!snap_sizes)
823                         goto out_err;
824
825                 /*
826                  * Copy the names, and fill in each snapshot's id
827                  * and size.
828                  *
829                  * Note that rbd_dev_v1_header_info() guarantees the
830                  * ondisk buffer we're working with has
831                  * snap_names_len bytes beyond the end of the
832                  * snapshot id array, this memcpy() is safe.
833                  */
834                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
835                 snaps = ondisk->snaps;
836                 for (i = 0; i < snap_count; i++) {
837                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
838                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
839                 }
840         }
841
842         /* We won't fail any more, fill in the header */
843
844         down_write(&rbd_dev->header_rwsem);
845         if (first_time) {
846                 header->object_prefix = object_prefix;
847                 header->obj_order = ondisk->options.order;
848                 header->crypt_type = ondisk->options.crypt_type;
849                 header->comp_type = ondisk->options.comp_type;
850                 /* The rest aren't used for format 1 images */
851                 header->stripe_unit = 0;
852                 header->stripe_count = 0;
853                 header->features = 0;
854         } else {
855                 ceph_put_snap_context(header->snapc);
856                 kfree(header->snap_names);
857                 kfree(header->snap_sizes);
858         }
859
860         /* The remaining fields always get updated (when we refresh) */
861
862         header->image_size = le64_to_cpu(ondisk->image_size);
863         header->snapc = snapc;
864         header->snap_names = snap_names;
865         header->snap_sizes = snap_sizes;
866
867         /* Make sure mapping size is consistent with header info */
868
869         if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
870                 if (rbd_dev->mapping.size != header->image_size)
871                         rbd_dev->mapping.size = header->image_size;
872
873         up_write(&rbd_dev->header_rwsem);
874
875         return 0;
876 out_2big:
877         ret = -EIO;
878 out_err:
879         kfree(snap_sizes);
880         kfree(snap_names);
881         ceph_put_snap_context(snapc);
882         kfree(object_prefix);
883
884         return ret;
885 }
886
887 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
888 {
889         const char *snap_name;
890
891         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
892
893         /* Skip over names until we find the one we are looking for */
894
895         snap_name = rbd_dev->header.snap_names;
896         while (which--)
897                 snap_name += strlen(snap_name) + 1;
898
899         return kstrdup(snap_name, GFP_KERNEL);
900 }
901
902 /*
903  * Snapshot id comparison function for use with qsort()/bsearch().
904  * Note that result is for snapshots in *descending* order.
905  */
906 static int snapid_compare_reverse(const void *s1, const void *s2)
907 {
908         u64 snap_id1 = *(u64 *)s1;
909         u64 snap_id2 = *(u64 *)s2;
910
911         if (snap_id1 < snap_id2)
912                 return 1;
913         return snap_id1 == snap_id2 ? 0 : -1;
914 }
915
916 /*
917  * Search a snapshot context to see if the given snapshot id is
918  * present.
919  *
920  * Returns the position of the snapshot id in the array if it's found,
921  * or BAD_SNAP_INDEX otherwise.
922  *
923  * Note: The snapshot array is in kept sorted (by the osd) in
924  * reverse order, highest snapshot id first.
925  */
926 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
927 {
928         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
929         u64 *found;
930
931         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
932                                 sizeof (snap_id), snapid_compare_reverse);
933
934         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
935 }
936
937 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
938                                         u64 snap_id)
939 {
940         u32 which;
941
942         which = rbd_dev_snap_index(rbd_dev, snap_id);
943         if (which == BAD_SNAP_INDEX)
944                 return NULL;
945
946         return _rbd_dev_v1_snap_name(rbd_dev, which);
947 }
948
949 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
950 {
951         if (snap_id == CEPH_NOSNAP)
952                 return RBD_SNAP_HEAD_NAME;
953
954         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
955         if (rbd_dev->image_format == 1)
956                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
957
958         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
959 }
960
961 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
962                                 u64 *snap_size)
963 {
964         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
965         if (snap_id == CEPH_NOSNAP) {
966                 *snap_size = rbd_dev->header.image_size;
967         } else if (rbd_dev->image_format == 1) {
968                 u32 which;
969
970                 which = rbd_dev_snap_index(rbd_dev, snap_id);
971                 if (which == BAD_SNAP_INDEX)
972                         return -ENOENT;
973
974                 *snap_size = rbd_dev->header.snap_sizes[which];
975         } else {
976                 u64 size = 0;
977                 int ret;
978
979                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
980                 if (ret)
981                         return ret;
982
983                 *snap_size = size;
984         }
985         return 0;
986 }
987
988 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
989                         u64 *snap_features)
990 {
991         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
992         if (snap_id == CEPH_NOSNAP) {
993                 *snap_features = rbd_dev->header.features;
994         } else if (rbd_dev->image_format == 1) {
995                 *snap_features = 0;     /* No features for format 1 */
996         } else {
997                 u64 features = 0;
998                 int ret;
999
1000                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1001                 if (ret)
1002                         return ret;
1003
1004                 *snap_features = features;
1005         }
1006         return 0;
1007 }
1008
1009 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1010 {
1011         u64 snap_id = rbd_dev->spec->snap_id;
1012         u64 size = 0;
1013         u64 features = 0;
1014         int ret;
1015
1016         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1017         if (ret)
1018                 return ret;
1019         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1020         if (ret)
1021                 return ret;
1022
1023         rbd_dev->mapping.size = size;
1024         rbd_dev->mapping.features = features;
1025
1026         return 0;
1027 }
1028
1029 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1030 {
1031         rbd_dev->mapping.size = 0;
1032         rbd_dev->mapping.features = 0;
1033 }
1034
1035 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1036 {
1037         char *name;
1038         u64 segment;
1039         int ret;
1040
1041         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1042         if (!name)
1043                 return NULL;
1044         segment = offset >> rbd_dev->header.obj_order;
1045         ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, "%s.%012llx",
1046                         rbd_dev->header.object_prefix, segment);
1047         if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
1048                 pr_err("error formatting segment name for #%llu (%d)\n",
1049                         segment, ret);
1050                 kfree(name);
1051                 name = NULL;
1052         }
1053
1054         return name;
1055 }
1056
1057 static void rbd_segment_name_free(const char *name)
1058 {
1059         /* The explicit cast here is needed to drop the const qualifier */
1060
1061         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1062 }
1063
1064 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1065 {
1066         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1067
1068         return offset & (segment_size - 1);
1069 }
1070
1071 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1072                                 u64 offset, u64 length)
1073 {
1074         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1075
1076         offset &= segment_size - 1;
1077
1078         rbd_assert(length <= U64_MAX - offset);
1079         if (offset + length > segment_size)
1080                 length = segment_size - offset;
1081
1082         return length;
1083 }
1084
1085 /*
1086  * returns the size of an object in the image
1087  */
1088 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1089 {
1090         return 1 << header->obj_order;
1091 }
1092
1093 /*
1094  * bio helpers
1095  */
1096
1097 static void bio_chain_put(struct bio *chain)
1098 {
1099         struct bio *tmp;
1100
1101         while (chain) {
1102                 tmp = chain;
1103                 chain = chain->bi_next;
1104                 bio_put(tmp);
1105         }
1106 }
1107
1108 /*
1109  * zeros a bio chain, starting at specific offset
1110  */
1111 static void zero_bio_chain(struct bio *chain, int start_ofs)
1112 {
1113         struct bio_vec *bv;
1114         unsigned long flags;
1115         void *buf;
1116         int i;
1117         int pos = 0;
1118
1119         while (chain) {
1120                 bio_for_each_segment(bv, chain, i) {
1121                         if (pos + bv->bv_len > start_ofs) {
1122                                 int remainder = max(start_ofs - pos, 0);
1123                                 buf = bvec_kmap_irq(bv, &flags);
1124                                 memset(buf + remainder, 0,
1125                                        bv->bv_len - remainder);
1126                                 bvec_kunmap_irq(buf, &flags);
1127                         }
1128                         pos += bv->bv_len;
1129                 }
1130
1131                 chain = chain->bi_next;
1132         }
1133 }
1134
1135 /*
1136  * similar to zero_bio_chain(), zeros data defined by a page array,
1137  * starting at the given byte offset from the start of the array and
1138  * continuing up to the given end offset.  The pages array is
1139  * assumed to be big enough to hold all bytes up to the end.
1140  */
1141 static void zero_pages(struct page **pages, u64 offset, u64 end)
1142 {
1143         struct page **page = &pages[offset >> PAGE_SHIFT];
1144
1145         rbd_assert(end > offset);
1146         rbd_assert(end - offset <= (u64)SIZE_MAX);
1147         while (offset < end) {
1148                 size_t page_offset;
1149                 size_t length;
1150                 unsigned long flags;
1151                 void *kaddr;
1152
1153                 page_offset = (size_t)(offset & ~PAGE_MASK);
1154                 length = min(PAGE_SIZE - page_offset, (size_t)(end - offset));
1155                 local_irq_save(flags);
1156                 kaddr = kmap_atomic(*page);
1157                 memset(kaddr + page_offset, 0, length);
1158                 kunmap_atomic(kaddr);
1159                 local_irq_restore(flags);
1160
1161                 offset += length;
1162                 page++;
1163         }
1164 }
1165
1166 /*
1167  * Clone a portion of a bio, starting at the given byte offset
1168  * and continuing for the number of bytes indicated.
1169  */
1170 static struct bio *bio_clone_range(struct bio *bio_src,
1171                                         unsigned int offset,
1172                                         unsigned int len,
1173                                         gfp_t gfpmask)
1174 {
1175         struct bio_vec *bv;
1176         unsigned int resid;
1177         unsigned short idx;
1178         unsigned int voff;
1179         unsigned short end_idx;
1180         unsigned short vcnt;
1181         struct bio *bio;
1182
1183         /* Handle the easy case for the caller */
1184
1185         if (!offset && len == bio_src->bi_size)
1186                 return bio_clone(bio_src, gfpmask);
1187
1188         if (WARN_ON_ONCE(!len))
1189                 return NULL;
1190         if (WARN_ON_ONCE(len > bio_src->bi_size))
1191                 return NULL;
1192         if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
1193                 return NULL;
1194
1195         /* Find first affected segment... */
1196
1197         resid = offset;
1198         __bio_for_each_segment(bv, bio_src, idx, 0) {
1199                 if (resid < bv->bv_len)
1200                         break;
1201                 resid -= bv->bv_len;
1202         }
1203         voff = resid;
1204
1205         /* ...and the last affected segment */
1206
1207         resid += len;
1208         __bio_for_each_segment(bv, bio_src, end_idx, idx) {
1209                 if (resid <= bv->bv_len)
1210                         break;
1211                 resid -= bv->bv_len;
1212         }
1213         vcnt = end_idx - idx + 1;
1214
1215         /* Build the clone */
1216
1217         bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1218         if (!bio)
1219                 return NULL;    /* ENOMEM */
1220
1221         bio->bi_bdev = bio_src->bi_bdev;
1222         bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1223         bio->bi_rw = bio_src->bi_rw;
1224         bio->bi_flags |= 1 << BIO_CLONED;
1225
1226         /*
1227          * Copy over our part of the bio_vec, then update the first
1228          * and last (or only) entries.
1229          */
1230         memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1231                         vcnt * sizeof (struct bio_vec));
1232         bio->bi_io_vec[0].bv_offset += voff;
1233         if (vcnt > 1) {
1234                 bio->bi_io_vec[0].bv_len -= voff;
1235                 bio->bi_io_vec[vcnt - 1].bv_len = resid;
1236         } else {
1237                 bio->bi_io_vec[0].bv_len = len;
1238         }
1239
1240         bio->bi_vcnt = vcnt;
1241         bio->bi_size = len;
1242         bio->bi_idx = 0;
1243
1244         return bio;
1245 }
1246
1247 /*
1248  * Clone a portion of a bio chain, starting at the given byte offset
1249  * into the first bio in the source chain and continuing for the
1250  * number of bytes indicated.  The result is another bio chain of
1251  * exactly the given length, or a null pointer on error.
1252  *
1253  * The bio_src and offset parameters are both in-out.  On entry they
1254  * refer to the first source bio and the offset into that bio where
1255  * the start of data to be cloned is located.
1256  *
1257  * On return, bio_src is updated to refer to the bio in the source
1258  * chain that contains first un-cloned byte, and *offset will
1259  * contain the offset of that byte within that bio.
1260  */
1261 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1262                                         unsigned int *offset,
1263                                         unsigned int len,
1264                                         gfp_t gfpmask)
1265 {
1266         struct bio *bi = *bio_src;
1267         unsigned int off = *offset;
1268         struct bio *chain = NULL;
1269         struct bio **end;
1270
1271         /* Build up a chain of clone bios up to the limit */
1272
1273         if (!bi || off >= bi->bi_size || !len)
1274                 return NULL;            /* Nothing to clone */
1275
1276         end = &chain;
1277         while (len) {
1278                 unsigned int bi_size;
1279                 struct bio *bio;
1280
1281                 if (!bi) {
1282                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1283                         goto out_err;   /* EINVAL; ran out of bio's */
1284                 }
1285                 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1286                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1287                 if (!bio)
1288                         goto out_err;   /* ENOMEM */
1289
1290                 *end = bio;
1291                 end = &bio->bi_next;
1292
1293                 off += bi_size;
1294                 if (off == bi->bi_size) {
1295                         bi = bi->bi_next;
1296                         off = 0;
1297                 }
1298                 len -= bi_size;
1299         }
1300         *bio_src = bi;
1301         *offset = off;
1302
1303         return chain;
1304 out_err:
1305         bio_chain_put(chain);
1306
1307         return NULL;
1308 }
1309
1310 /*
1311  * The default/initial value for all object request flags is 0.  For
1312  * each flag, once its value is set to 1 it is never reset to 0
1313  * again.
1314  */
1315 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1316 {
1317         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1318                 struct rbd_device *rbd_dev;
1319
1320                 rbd_dev = obj_request->img_request->rbd_dev;
1321                 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1322                         obj_request);
1323         }
1324 }
1325
1326 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1327 {
1328         smp_mb();
1329         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1330 }
1331
1332 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1333 {
1334         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1335                 struct rbd_device *rbd_dev = NULL;
1336
1337                 if (obj_request_img_data_test(obj_request))
1338                         rbd_dev = obj_request->img_request->rbd_dev;
1339                 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1340                         obj_request);
1341         }
1342 }
1343
1344 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1345 {
1346         smp_mb();
1347         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1348 }
1349
1350 /*
1351  * This sets the KNOWN flag after (possibly) setting the EXISTS
1352  * flag.  The latter is set based on the "exists" value provided.
1353  *
1354  * Note that for our purposes once an object exists it never goes
1355  * away again.  It's possible that the response from two existence
1356  * checks are separated by the creation of the target object, and
1357  * the first ("doesn't exist") response arrives *after* the second
1358  * ("does exist").  In that case we ignore the second one.
1359  */
1360 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1361                                 bool exists)
1362 {
1363         if (exists)
1364                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1365         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1366         smp_mb();
1367 }
1368
1369 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1370 {
1371         smp_mb();
1372         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1373 }
1374
1375 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1376 {
1377         smp_mb();
1378         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1379 }
1380
1381 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1382 {
1383         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1384                 atomic_read(&obj_request->kref.refcount));
1385         kref_get(&obj_request->kref);
1386 }
1387
1388 static void rbd_obj_request_destroy(struct kref *kref);
1389 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1390 {
1391         rbd_assert(obj_request != NULL);
1392         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1393                 atomic_read(&obj_request->kref.refcount));
1394         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1395 }
1396
1397 static bool img_request_child_test(struct rbd_img_request *img_request);
1398 static void rbd_parent_request_destroy(struct kref *kref);
1399 static void rbd_img_request_destroy(struct kref *kref);
1400 static void rbd_img_request_put(struct rbd_img_request *img_request)
1401 {
1402         rbd_assert(img_request != NULL);
1403         dout("%s: img %p (was %d)\n", __func__, img_request,
1404                 atomic_read(&img_request->kref.refcount));
1405         if (img_request_child_test(img_request))
1406                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1407         else
1408                 kref_put(&img_request->kref, rbd_img_request_destroy);
1409 }
1410
1411 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1412                                         struct rbd_obj_request *obj_request)
1413 {
1414         rbd_assert(obj_request->img_request == NULL);
1415
1416         /* Image request now owns object's original reference */
1417         obj_request->img_request = img_request;
1418         obj_request->which = img_request->obj_request_count;
1419         rbd_assert(!obj_request_img_data_test(obj_request));
1420         obj_request_img_data_set(obj_request);
1421         rbd_assert(obj_request->which != BAD_WHICH);
1422         img_request->obj_request_count++;
1423         list_add_tail(&obj_request->links, &img_request->obj_requests);
1424         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1425                 obj_request->which);
1426 }
1427
1428 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1429                                         struct rbd_obj_request *obj_request)
1430 {
1431         rbd_assert(obj_request->which != BAD_WHICH);
1432
1433         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1434                 obj_request->which);
1435         list_del(&obj_request->links);
1436         rbd_assert(img_request->obj_request_count > 0);
1437         img_request->obj_request_count--;
1438         rbd_assert(obj_request->which == img_request->obj_request_count);
1439         obj_request->which = BAD_WHICH;
1440         rbd_assert(obj_request_img_data_test(obj_request));
1441         rbd_assert(obj_request->img_request == img_request);
1442         obj_request->img_request = NULL;
1443         obj_request->callback = NULL;
1444         rbd_obj_request_put(obj_request);
1445 }
1446
1447 static bool obj_request_type_valid(enum obj_request_type type)
1448 {
1449         switch (type) {
1450         case OBJ_REQUEST_NODATA:
1451         case OBJ_REQUEST_BIO:
1452         case OBJ_REQUEST_PAGES:
1453                 return true;
1454         default:
1455                 return false;
1456         }
1457 }
1458
1459 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1460                                 struct rbd_obj_request *obj_request)
1461 {
1462         dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1463
1464         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1465 }
1466
1467 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1468 {
1469
1470         dout("%s: img %p\n", __func__, img_request);
1471
1472         /*
1473          * If no error occurred, compute the aggregate transfer
1474          * count for the image request.  We could instead use
1475          * atomic64_cmpxchg() to update it as each object request
1476          * completes; not clear which way is better off hand.
1477          */
1478         if (!img_request->result) {
1479                 struct rbd_obj_request *obj_request;
1480                 u64 xferred = 0;
1481
1482                 for_each_obj_request(img_request, obj_request)
1483                         xferred += obj_request->xferred;
1484                 img_request->xferred = xferred;
1485         }
1486
1487         if (img_request->callback)
1488                 img_request->callback(img_request);
1489         else
1490                 rbd_img_request_put(img_request);
1491 }
1492
1493 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1494
1495 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1496 {
1497         dout("%s: obj %p\n", __func__, obj_request);
1498
1499         return wait_for_completion_interruptible(&obj_request->completion);
1500 }
1501
1502 /*
1503  * The default/initial value for all image request flags is 0.  Each
1504  * is conditionally set to 1 at image request initialization time
1505  * and currently never change thereafter.
1506  */
1507 static void img_request_write_set(struct rbd_img_request *img_request)
1508 {
1509         set_bit(IMG_REQ_WRITE, &img_request->flags);
1510         smp_mb();
1511 }
1512
1513 static bool img_request_write_test(struct rbd_img_request *img_request)
1514 {
1515         smp_mb();
1516         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1517 }
1518
1519 static void img_request_child_set(struct rbd_img_request *img_request)
1520 {
1521         set_bit(IMG_REQ_CHILD, &img_request->flags);
1522         smp_mb();
1523 }
1524
1525 static void img_request_child_clear(struct rbd_img_request *img_request)
1526 {
1527         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1528         smp_mb();
1529 }
1530
1531 static bool img_request_child_test(struct rbd_img_request *img_request)
1532 {
1533         smp_mb();
1534         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1535 }
1536
1537 static void img_request_layered_set(struct rbd_img_request *img_request)
1538 {
1539         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1540         smp_mb();
1541 }
1542
1543 static void img_request_layered_clear(struct rbd_img_request *img_request)
1544 {
1545         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1546         smp_mb();
1547 }
1548
1549 static bool img_request_layered_test(struct rbd_img_request *img_request)
1550 {
1551         smp_mb();
1552         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1553 }
1554
1555 static void
1556 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1557 {
1558         u64 xferred = obj_request->xferred;
1559         u64 length = obj_request->length;
1560
1561         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1562                 obj_request, obj_request->img_request, obj_request->result,
1563                 xferred, length);
1564         /*
1565          * ENOENT means a hole in the image.  We zero-fill the
1566          * entire length of the request.  A short read also implies
1567          * zero-fill to the end of the request.  Either way we
1568          * update the xferred count to indicate the whole request
1569          * was satisfied.
1570          */
1571         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1572         if (obj_request->result == -ENOENT) {
1573                 if (obj_request->type == OBJ_REQUEST_BIO)
1574                         zero_bio_chain(obj_request->bio_list, 0);
1575                 else
1576                         zero_pages(obj_request->pages, 0, length);
1577                 obj_request->result = 0;
1578                 obj_request->xferred = length;
1579         } else if (xferred < length && !obj_request->result) {
1580                 if (obj_request->type == OBJ_REQUEST_BIO)
1581                         zero_bio_chain(obj_request->bio_list, xferred);
1582                 else
1583                         zero_pages(obj_request->pages, xferred, length);
1584                 obj_request->xferred = length;
1585         }
1586         obj_request_done_set(obj_request);
1587 }
1588
1589 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1590 {
1591         dout("%s: obj %p cb %p\n", __func__, obj_request,
1592                 obj_request->callback);
1593         if (obj_request->callback)
1594                 obj_request->callback(obj_request);
1595         else
1596                 complete_all(&obj_request->completion);
1597 }
1598
1599 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1600 {
1601         dout("%s: obj %p\n", __func__, obj_request);
1602         obj_request_done_set(obj_request);
1603 }
1604
1605 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1606 {
1607         struct rbd_img_request *img_request = NULL;
1608         struct rbd_device *rbd_dev = NULL;
1609         bool layered = false;
1610
1611         if (obj_request_img_data_test(obj_request)) {
1612                 img_request = obj_request->img_request;
1613                 layered = img_request && img_request_layered_test(img_request);
1614                 rbd_dev = img_request->rbd_dev;
1615         }
1616
1617         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1618                 obj_request, img_request, obj_request->result,
1619                 obj_request->xferred, obj_request->length);
1620         if (layered && obj_request->result == -ENOENT &&
1621                         obj_request->img_offset < rbd_dev->parent_overlap)
1622                 rbd_img_parent_read(obj_request);
1623         else if (img_request)
1624                 rbd_img_obj_request_read_callback(obj_request);
1625         else
1626                 obj_request_done_set(obj_request);
1627 }
1628
1629 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1630 {
1631         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1632                 obj_request->result, obj_request->length);
1633         /*
1634          * There is no such thing as a successful short write.  Set
1635          * it to our originally-requested length.
1636          */
1637         obj_request->xferred = obj_request->length;
1638         obj_request_done_set(obj_request);
1639 }
1640
1641 /*
1642  * For a simple stat call there's nothing to do.  We'll do more if
1643  * this is part of a write sequence for a layered image.
1644  */
1645 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1646 {
1647         dout("%s: obj %p\n", __func__, obj_request);
1648         obj_request_done_set(obj_request);
1649 }
1650
1651 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1652                                 struct ceph_msg *msg)
1653 {
1654         struct rbd_obj_request *obj_request = osd_req->r_priv;
1655         u16 opcode;
1656
1657         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1658         rbd_assert(osd_req == obj_request->osd_req);
1659         if (obj_request_img_data_test(obj_request)) {
1660                 rbd_assert(obj_request->img_request);
1661                 rbd_assert(obj_request->which != BAD_WHICH);
1662         } else {
1663                 rbd_assert(obj_request->which == BAD_WHICH);
1664         }
1665
1666         if (osd_req->r_result < 0)
1667                 obj_request->result = osd_req->r_result;
1668
1669         BUG_ON(osd_req->r_num_ops > 2);
1670
1671         /*
1672          * We support a 64-bit length, but ultimately it has to be
1673          * passed to blk_end_request(), which takes an unsigned int.
1674          */
1675         obj_request->xferred = osd_req->r_reply_op_len[0];
1676         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1677         opcode = osd_req->r_ops[0].op;
1678         switch (opcode) {
1679         case CEPH_OSD_OP_READ:
1680                 rbd_osd_read_callback(obj_request);
1681                 break;
1682         case CEPH_OSD_OP_WRITE:
1683                 rbd_osd_write_callback(obj_request);
1684                 break;
1685         case CEPH_OSD_OP_STAT:
1686                 rbd_osd_stat_callback(obj_request);
1687                 break;
1688         case CEPH_OSD_OP_CALL:
1689         case CEPH_OSD_OP_NOTIFY_ACK:
1690         case CEPH_OSD_OP_WATCH:
1691                 rbd_osd_trivial_callback(obj_request);
1692                 break;
1693         default:
1694                 rbd_warn(NULL, "%s: unsupported op %hu\n",
1695                         obj_request->object_name, (unsigned short) opcode);
1696                 break;
1697         }
1698
1699         if (obj_request_done_test(obj_request))
1700                 rbd_obj_request_complete(obj_request);
1701 }
1702
1703 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1704 {
1705         struct rbd_img_request *img_request = obj_request->img_request;
1706         struct ceph_osd_request *osd_req = obj_request->osd_req;
1707         u64 snap_id;
1708
1709         rbd_assert(osd_req != NULL);
1710
1711         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1712         ceph_osdc_build_request(osd_req, obj_request->offset,
1713                         NULL, snap_id, NULL);
1714 }
1715
1716 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1717 {
1718         struct rbd_img_request *img_request = obj_request->img_request;
1719         struct ceph_osd_request *osd_req = obj_request->osd_req;
1720         struct ceph_snap_context *snapc;
1721         struct timespec mtime = CURRENT_TIME;
1722
1723         rbd_assert(osd_req != NULL);
1724
1725         snapc = img_request ? img_request->snapc : NULL;
1726         ceph_osdc_build_request(osd_req, obj_request->offset,
1727                         snapc, CEPH_NOSNAP, &mtime);
1728 }
1729
1730 static struct ceph_osd_request *rbd_osd_req_create(
1731                                         struct rbd_device *rbd_dev,
1732                                         bool write_request,
1733                                         struct rbd_obj_request *obj_request)
1734 {
1735         struct ceph_snap_context *snapc = NULL;
1736         struct ceph_osd_client *osdc;
1737         struct ceph_osd_request *osd_req;
1738
1739         if (obj_request_img_data_test(obj_request)) {
1740                 struct rbd_img_request *img_request = obj_request->img_request;
1741
1742                 rbd_assert(write_request ==
1743                                 img_request_write_test(img_request));
1744                 if (write_request)
1745                         snapc = img_request->snapc;
1746         }
1747
1748         /* Allocate and initialize the request, for the single op */
1749
1750         osdc = &rbd_dev->rbd_client->client->osdc;
1751         osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1752         if (!osd_req)
1753                 return NULL;    /* ENOMEM */
1754
1755         if (write_request)
1756                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1757         else
1758                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1759
1760         osd_req->r_callback = rbd_osd_req_callback;
1761         osd_req->r_priv = obj_request;
1762
1763         osd_req->r_oid_len = strlen(obj_request->object_name);
1764         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1765         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1766
1767         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1768
1769         return osd_req;
1770 }
1771
1772 /*
1773  * Create a copyup osd request based on the information in the
1774  * object request supplied.  A copyup request has two osd ops,
1775  * a copyup method call, and a "normal" write request.
1776  */
1777 static struct ceph_osd_request *
1778 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1779 {
1780         struct rbd_img_request *img_request;
1781         struct ceph_snap_context *snapc;
1782         struct rbd_device *rbd_dev;
1783         struct ceph_osd_client *osdc;
1784         struct ceph_osd_request *osd_req;
1785
1786         rbd_assert(obj_request_img_data_test(obj_request));
1787         img_request = obj_request->img_request;
1788         rbd_assert(img_request);
1789         rbd_assert(img_request_write_test(img_request));
1790
1791         /* Allocate and initialize the request, for the two ops */
1792
1793         snapc = img_request->snapc;
1794         rbd_dev = img_request->rbd_dev;
1795         osdc = &rbd_dev->rbd_client->client->osdc;
1796         osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1797         if (!osd_req)
1798                 return NULL;    /* ENOMEM */
1799
1800         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1801         osd_req->r_callback = rbd_osd_req_callback;
1802         osd_req->r_priv = obj_request;
1803
1804         osd_req->r_oid_len = strlen(obj_request->object_name);
1805         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1806         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1807
1808         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1809
1810         return osd_req;
1811 }
1812
1813
1814 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1815 {
1816         ceph_osdc_put_request(osd_req);
1817 }
1818
1819 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1820
1821 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1822                                                 u64 offset, u64 length,
1823                                                 enum obj_request_type type)
1824 {
1825         struct rbd_obj_request *obj_request;
1826         size_t size;
1827         char *name;
1828
1829         rbd_assert(obj_request_type_valid(type));
1830
1831         size = strlen(object_name) + 1;
1832         name = kmalloc(size, GFP_KERNEL);
1833         if (!name)
1834                 return NULL;
1835
1836         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1837         if (!obj_request) {
1838                 kfree(name);
1839                 return NULL;
1840         }
1841
1842         obj_request->object_name = memcpy(name, object_name, size);
1843         obj_request->offset = offset;
1844         obj_request->length = length;
1845         obj_request->flags = 0;
1846         obj_request->which = BAD_WHICH;
1847         obj_request->type = type;
1848         INIT_LIST_HEAD(&obj_request->links);
1849         init_completion(&obj_request->completion);
1850         kref_init(&obj_request->kref);
1851
1852         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1853                 offset, length, (int)type, obj_request);
1854
1855         return obj_request;
1856 }
1857
1858 static void rbd_obj_request_destroy(struct kref *kref)
1859 {
1860         struct rbd_obj_request *obj_request;
1861
1862         obj_request = container_of(kref, struct rbd_obj_request, kref);
1863
1864         dout("%s: obj %p\n", __func__, obj_request);
1865
1866         rbd_assert(obj_request->img_request == NULL);
1867         rbd_assert(obj_request->which == BAD_WHICH);
1868
1869         if (obj_request->osd_req)
1870                 rbd_osd_req_destroy(obj_request->osd_req);
1871
1872         rbd_assert(obj_request_type_valid(obj_request->type));
1873         switch (obj_request->type) {
1874         case OBJ_REQUEST_NODATA:
1875                 break;          /* Nothing to do */
1876         case OBJ_REQUEST_BIO:
1877                 if (obj_request->bio_list)
1878                         bio_chain_put(obj_request->bio_list);
1879                 break;
1880         case OBJ_REQUEST_PAGES:
1881                 if (obj_request->pages)
1882                         ceph_release_page_vector(obj_request->pages,
1883                                                 obj_request->page_count);
1884                 break;
1885         }
1886
1887         kfree(obj_request->object_name);
1888         obj_request->object_name = NULL;
1889         kmem_cache_free(rbd_obj_request_cache, obj_request);
1890 }
1891
1892 /* It's OK to call this for a device with no parent */
1893
1894 static void rbd_spec_put(struct rbd_spec *spec);
1895 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1896 {
1897         rbd_dev_remove_parent(rbd_dev);
1898         rbd_spec_put(rbd_dev->parent_spec);
1899         rbd_dev->parent_spec = NULL;
1900         rbd_dev->parent_overlap = 0;
1901 }
1902
1903 /*
1904  * Parent image reference counting is used to determine when an
1905  * image's parent fields can be safely torn down--after there are no
1906  * more in-flight requests to the parent image.  When the last
1907  * reference is dropped, cleaning them up is safe.
1908  */
1909 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1910 {
1911         int counter;
1912
1913         if (!rbd_dev->parent_spec)
1914                 return;
1915
1916         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1917         if (counter > 0)
1918                 return;
1919
1920         /* Last reference; clean up parent data structures */
1921
1922         if (!counter)
1923                 rbd_dev_unparent(rbd_dev);
1924         else
1925                 rbd_warn(rbd_dev, "parent reference underflow\n");
1926 }
1927
1928 /*
1929  * If an image has a non-zero parent overlap, get a reference to its
1930  * parent.
1931  *
1932  * We must get the reference before checking for the overlap to
1933  * coordinate properly with zeroing the parent overlap in
1934  * rbd_dev_v2_parent_info() when an image gets flattened.  We
1935  * drop it again if there is no overlap.
1936  *
1937  * Returns true if the rbd device has a parent with a non-zero
1938  * overlap and a reference for it was successfully taken, or
1939  * false otherwise.
1940  */
1941 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1942 {
1943         int counter;
1944
1945         if (!rbd_dev->parent_spec)
1946                 return false;
1947
1948         counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1949         if (counter > 0 && rbd_dev->parent_overlap)
1950                 return true;
1951
1952         /* Image was flattened, but parent is not yet torn down */
1953
1954         if (counter < 0)
1955                 rbd_warn(rbd_dev, "parent reference overflow\n");
1956
1957         return false;
1958 }
1959
1960 /*
1961  * Caller is responsible for filling in the list of object requests
1962  * that comprises the image request, and the Linux request pointer
1963  * (if there is one).
1964  */
1965 static struct rbd_img_request *rbd_img_request_create(
1966                                         struct rbd_device *rbd_dev,
1967                                         u64 offset, u64 length,
1968                                         bool write_request)
1969 {
1970         struct rbd_img_request *img_request;
1971
1972         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1973         if (!img_request)
1974                 return NULL;
1975
1976         if (write_request) {
1977                 down_read(&rbd_dev->header_rwsem);
1978                 ceph_get_snap_context(rbd_dev->header.snapc);
1979                 up_read(&rbd_dev->header_rwsem);
1980         }
1981
1982         img_request->rq = NULL;
1983         img_request->rbd_dev = rbd_dev;
1984         img_request->offset = offset;
1985         img_request->length = length;
1986         img_request->flags = 0;
1987         if (write_request) {
1988                 img_request_write_set(img_request);
1989                 img_request->snapc = rbd_dev->header.snapc;
1990         } else {
1991                 img_request->snap_id = rbd_dev->spec->snap_id;
1992         }
1993         if (rbd_dev_parent_get(rbd_dev))
1994                 img_request_layered_set(img_request);
1995         spin_lock_init(&img_request->completion_lock);
1996         img_request->next_completion = 0;
1997         img_request->callback = NULL;
1998         img_request->result = 0;
1999         img_request->obj_request_count = 0;
2000         INIT_LIST_HEAD(&img_request->obj_requests);
2001         kref_init(&img_request->kref);
2002
2003         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2004                 write_request ? "write" : "read", offset, length,
2005                 img_request);
2006
2007         return img_request;
2008 }
2009
2010 static void rbd_img_request_destroy(struct kref *kref)
2011 {
2012         struct rbd_img_request *img_request;
2013         struct rbd_obj_request *obj_request;
2014         struct rbd_obj_request *next_obj_request;
2015
2016         img_request = container_of(kref, struct rbd_img_request, kref);
2017
2018         dout("%s: img %p\n", __func__, img_request);
2019
2020         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2021                 rbd_img_obj_request_del(img_request, obj_request);
2022         rbd_assert(img_request->obj_request_count == 0);
2023
2024         if (img_request_layered_test(img_request)) {
2025                 img_request_layered_clear(img_request);
2026                 rbd_dev_parent_put(img_request->rbd_dev);
2027         }
2028
2029         if (img_request_write_test(img_request))
2030                 ceph_put_snap_context(img_request->snapc);
2031
2032         kmem_cache_free(rbd_img_request_cache, img_request);
2033 }
2034
2035 static struct rbd_img_request *rbd_parent_request_create(
2036                                         struct rbd_obj_request *obj_request,
2037                                         u64 img_offset, u64 length)
2038 {
2039         struct rbd_img_request *parent_request;
2040         struct rbd_device *rbd_dev;
2041
2042         rbd_assert(obj_request->img_request);
2043         rbd_dev = obj_request->img_request->rbd_dev;
2044
2045         parent_request = rbd_img_request_create(rbd_dev->parent,
2046                                                 img_offset, length, false);
2047         if (!parent_request)
2048                 return NULL;
2049
2050         img_request_child_set(parent_request);
2051         rbd_obj_request_get(obj_request);
2052         parent_request->obj_request = obj_request;
2053
2054         return parent_request;
2055 }
2056
2057 static void rbd_parent_request_destroy(struct kref *kref)
2058 {
2059         struct rbd_img_request *parent_request;
2060         struct rbd_obj_request *orig_request;
2061
2062         parent_request = container_of(kref, struct rbd_img_request, kref);
2063         orig_request = parent_request->obj_request;
2064
2065         parent_request->obj_request = NULL;
2066         rbd_obj_request_put(orig_request);
2067         img_request_child_clear(parent_request);
2068
2069         rbd_img_request_destroy(kref);
2070 }
2071
2072 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2073 {
2074         struct rbd_img_request *img_request;
2075         unsigned int xferred;
2076         int result;
2077         bool more;
2078
2079         rbd_assert(obj_request_img_data_test(obj_request));
2080         img_request = obj_request->img_request;
2081
2082         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2083         xferred = (unsigned int)obj_request->xferred;
2084         result = obj_request->result;
2085         if (result) {
2086                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2087
2088                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2089                         img_request_write_test(img_request) ? "write" : "read",
2090                         obj_request->length, obj_request->img_offset,
2091                         obj_request->offset);
2092                 rbd_warn(rbd_dev, "  result %d xferred %x\n",
2093                         result, xferred);
2094                 if (!img_request->result)
2095                         img_request->result = result;
2096         }
2097
2098         /* Image object requests don't own their page array */
2099
2100         if (obj_request->type == OBJ_REQUEST_PAGES) {
2101                 obj_request->pages = NULL;
2102                 obj_request->page_count = 0;
2103         }
2104
2105         if (img_request_child_test(img_request)) {
2106                 rbd_assert(img_request->obj_request != NULL);
2107                 more = obj_request->which < img_request->obj_request_count - 1;
2108         } else {
2109                 rbd_assert(img_request->rq != NULL);
2110                 more = blk_end_request(img_request->rq, result, xferred);
2111         }
2112
2113         return more;
2114 }
2115
2116 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2117 {
2118         struct rbd_img_request *img_request;
2119         u32 which = obj_request->which;
2120         bool more = true;
2121
2122         rbd_assert(obj_request_img_data_test(obj_request));
2123         img_request = obj_request->img_request;
2124
2125         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2126         rbd_assert(img_request != NULL);
2127         rbd_assert(img_request->obj_request_count > 0);
2128         rbd_assert(which != BAD_WHICH);
2129         rbd_assert(which < img_request->obj_request_count);
2130         rbd_assert(which >= img_request->next_completion);
2131
2132         spin_lock_irq(&img_request->completion_lock);
2133         if (which != img_request->next_completion)
2134                 goto out;
2135
2136         for_each_obj_request_from(img_request, obj_request) {
2137                 rbd_assert(more);
2138                 rbd_assert(which < img_request->obj_request_count);
2139
2140                 if (!obj_request_done_test(obj_request))
2141                         break;
2142                 more = rbd_img_obj_end_request(obj_request);
2143                 which++;
2144         }
2145
2146         rbd_assert(more ^ (which == img_request->obj_request_count));
2147         img_request->next_completion = which;
2148 out:
2149         spin_unlock_irq(&img_request->completion_lock);
2150
2151         if (!more)
2152                 rbd_img_request_complete(img_request);
2153 }
2154
2155 /*
2156  * Split up an image request into one or more object requests, each
2157  * to a different object.  The "type" parameter indicates whether
2158  * "data_desc" is the pointer to the head of a list of bio
2159  * structures, or the base of a page array.  In either case this
2160  * function assumes data_desc describes memory sufficient to hold
2161  * all data described by the image request.
2162  */
2163 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2164                                         enum obj_request_type type,
2165                                         void *data_desc)
2166 {
2167         struct rbd_device *rbd_dev = img_request->rbd_dev;
2168         struct rbd_obj_request *obj_request = NULL;
2169         struct rbd_obj_request *next_obj_request;
2170         bool write_request = img_request_write_test(img_request);
2171         struct bio *bio_list;
2172         unsigned int bio_offset = 0;
2173         struct page **pages;
2174         u64 img_offset;
2175         u64 resid;
2176         u16 opcode;
2177
2178         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2179                 (int)type, data_desc);
2180
2181         opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2182         img_offset = img_request->offset;
2183         resid = img_request->length;
2184         rbd_assert(resid > 0);
2185
2186         if (type == OBJ_REQUEST_BIO) {
2187                 bio_list = data_desc;
2188                 rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
2189         } else {
2190                 rbd_assert(type == OBJ_REQUEST_PAGES);
2191                 pages = data_desc;
2192         }
2193
2194         while (resid) {
2195                 struct ceph_osd_request *osd_req;
2196                 const char *object_name;
2197                 u64 offset;
2198                 u64 length;
2199
2200                 object_name = rbd_segment_name(rbd_dev, img_offset);
2201                 if (!object_name)
2202                         goto out_unwind;
2203                 offset = rbd_segment_offset(rbd_dev, img_offset);
2204                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2205                 obj_request = rbd_obj_request_create(object_name,
2206                                                 offset, length, type);
2207                 /* object request has its own copy of the object name */
2208                 rbd_segment_name_free(object_name);
2209                 if (!obj_request)
2210                         goto out_unwind;
2211
2212                 if (type == OBJ_REQUEST_BIO) {
2213                         unsigned int clone_size;
2214
2215                         rbd_assert(length <= (u64)UINT_MAX);
2216                         clone_size = (unsigned int)length;
2217                         obj_request->bio_list =
2218                                         bio_chain_clone_range(&bio_list,
2219                                                                 &bio_offset,
2220                                                                 clone_size,
2221                                                                 GFP_ATOMIC);
2222                         if (!obj_request->bio_list)
2223                                 goto out_partial;
2224                 } else {
2225                         unsigned int page_count;
2226
2227                         obj_request->pages = pages;
2228                         page_count = (u32)calc_pages_for(offset, length);
2229                         obj_request->page_count = page_count;
2230                         if ((offset + length) & ~PAGE_MASK)
2231                                 page_count--;   /* more on last page */
2232                         pages += page_count;
2233                 }
2234
2235                 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2236                                                 obj_request);
2237                 if (!osd_req)
2238                         goto out_partial;
2239                 obj_request->osd_req = osd_req;
2240                 obj_request->callback = rbd_img_obj_callback;
2241
2242                 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2243                                                 0, 0);
2244                 if (type == OBJ_REQUEST_BIO)
2245                         osd_req_op_extent_osd_data_bio(osd_req, 0,
2246                                         obj_request->bio_list, length);
2247                 else
2248                         osd_req_op_extent_osd_data_pages(osd_req, 0,
2249                                         obj_request->pages, length,
2250                                         offset & ~PAGE_MASK, false, false);
2251
2252                 if (write_request)
2253                         rbd_osd_req_format_write(obj_request);
2254                 else
2255                         rbd_osd_req_format_read(obj_request);
2256
2257                 obj_request->img_offset = img_offset;
2258                 rbd_img_obj_request_add(img_request, obj_request);
2259
2260                 img_offset += length;
2261                 resid -= length;
2262         }
2263
2264         return 0;
2265
2266 out_partial:
2267         rbd_obj_request_put(obj_request);
2268 out_unwind:
2269         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2270                 rbd_obj_request_put(obj_request);
2271
2272         return -ENOMEM;
2273 }
2274
2275 static void
2276 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2277 {
2278         struct rbd_img_request *img_request;
2279         struct rbd_device *rbd_dev;
2280         struct page **pages;
2281         u32 page_count;
2282
2283         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2284         rbd_assert(obj_request_img_data_test(obj_request));
2285         img_request = obj_request->img_request;
2286         rbd_assert(img_request);
2287
2288         rbd_dev = img_request->rbd_dev;
2289         rbd_assert(rbd_dev);
2290
2291         pages = obj_request->copyup_pages;
2292         rbd_assert(pages != NULL);
2293         obj_request->copyup_pages = NULL;
2294         page_count = obj_request->copyup_page_count;
2295         rbd_assert(page_count);
2296         obj_request->copyup_page_count = 0;
2297         ceph_release_page_vector(pages, page_count);
2298
2299         /*
2300          * We want the transfer count to reflect the size of the
2301          * original write request.  There is no such thing as a
2302          * successful short write, so if the request was successful
2303          * we can just set it to the originally-requested length.
2304          */
2305         if (!obj_request->result)
2306                 obj_request->xferred = obj_request->length;
2307
2308         /* Finish up with the normal image object callback */
2309
2310         rbd_img_obj_callback(obj_request);
2311 }
2312
2313 static void
2314 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2315 {
2316         struct rbd_obj_request *orig_request;
2317         struct ceph_osd_request *osd_req;
2318         struct ceph_osd_client *osdc;
2319         struct rbd_device *rbd_dev;
2320         struct page **pages;
2321         u32 page_count;
2322         int result;
2323         u64 parent_length;
2324         u64 offset;
2325         u64 length;
2326
2327         rbd_assert(img_request_child_test(img_request));
2328
2329         /* First get what we need from the image request */
2330
2331         pages = img_request->copyup_pages;
2332         rbd_assert(pages != NULL);
2333         img_request->copyup_pages = NULL;
2334         page_count = img_request->copyup_page_count;
2335         rbd_assert(page_count);
2336         img_request->copyup_page_count = 0;
2337
2338         orig_request = img_request->obj_request;
2339         rbd_assert(orig_request != NULL);
2340         rbd_assert(obj_request_type_valid(orig_request->type));
2341         result = img_request->result;
2342         parent_length = img_request->length;
2343         rbd_assert(parent_length == img_request->xferred);
2344         rbd_img_request_put(img_request);
2345
2346         rbd_assert(orig_request->img_request);
2347         rbd_dev = orig_request->img_request->rbd_dev;
2348         rbd_assert(rbd_dev);
2349
2350         if (result)
2351                 goto out_err;
2352
2353         /*
2354          * The original osd request is of no use to use any more.
2355          * We need a new one that can hold the two ops in a copyup
2356          * request.  Allocate the new copyup osd request for the
2357          * original request, and release the old one.
2358          */
2359         result = -ENOMEM;
2360         osd_req = rbd_osd_req_create_copyup(orig_request);
2361         if (!osd_req)
2362                 goto out_err;
2363         rbd_osd_req_destroy(orig_request->osd_req);
2364         orig_request->osd_req = osd_req;
2365         orig_request->copyup_pages = pages;
2366         orig_request->copyup_page_count = page_count;
2367
2368         /* Initialize the copyup op */
2369
2370         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2371         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2372                                                 false, false);
2373
2374         /* Then the original write request op */
2375
2376         offset = orig_request->offset;
2377         length = orig_request->length;
2378         osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2379                                         offset, length, 0, 0);
2380         if (orig_request->type == OBJ_REQUEST_BIO)
2381                 osd_req_op_extent_osd_data_bio(osd_req, 1,
2382                                         orig_request->bio_list, length);
2383         else
2384                 osd_req_op_extent_osd_data_pages(osd_req, 1,
2385                                         orig_request->pages, length,
2386                                         offset & ~PAGE_MASK, false, false);
2387
2388         rbd_osd_req_format_write(orig_request);
2389
2390         /* All set, send it off. */
2391
2392         orig_request->callback = rbd_img_obj_copyup_callback;
2393         osdc = &rbd_dev->rbd_client->client->osdc;
2394         result = rbd_obj_request_submit(osdc, orig_request);
2395         if (!result)
2396                 return;
2397 out_err:
2398         /* Record the error code and complete the request */
2399
2400         orig_request->result = result;
2401         orig_request->xferred = 0;
2402         obj_request_done_set(orig_request);
2403         rbd_obj_request_complete(orig_request);
2404 }
2405
2406 /*
2407  * Read from the parent image the range of data that covers the
2408  * entire target of the given object request.  This is used for
2409  * satisfying a layered image write request when the target of an
2410  * object request from the image request does not exist.
2411  *
2412  * A page array big enough to hold the returned data is allocated
2413  * and supplied to rbd_img_request_fill() as the "data descriptor."
2414  * When the read completes, this page array will be transferred to
2415  * the original object request for the copyup operation.
2416  *
2417  * If an error occurs, record it as the result of the original
2418  * object request and mark it done so it gets completed.
2419  */
2420 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2421 {
2422         struct rbd_img_request *img_request = NULL;
2423         struct rbd_img_request *parent_request = NULL;
2424         struct rbd_device *rbd_dev;
2425         u64 img_offset;
2426         u64 length;
2427         struct page **pages = NULL;
2428         u32 page_count;
2429         int result;
2430
2431         rbd_assert(obj_request_img_data_test(obj_request));
2432         rbd_assert(obj_request_type_valid(obj_request->type));
2433
2434         img_request = obj_request->img_request;
2435         rbd_assert(img_request != NULL);
2436         rbd_dev = img_request->rbd_dev;
2437         rbd_assert(rbd_dev->parent != NULL);
2438
2439         /*
2440          * Determine the byte range covered by the object in the
2441          * child image to which the original request was to be sent.
2442          */
2443         img_offset = obj_request->img_offset - obj_request->offset;
2444         length = (u64)1 << rbd_dev->header.obj_order;
2445
2446         /*
2447          * There is no defined parent data beyond the parent
2448          * overlap, so limit what we read at that boundary if
2449          * necessary.
2450          */
2451         if (img_offset + length > rbd_dev->parent_overlap) {
2452                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2453                 length = rbd_dev->parent_overlap - img_offset;
2454         }
2455
2456         /*
2457          * Allocate a page array big enough to receive the data read
2458          * from the parent.
2459          */
2460         page_count = (u32)calc_pages_for(0, length);
2461         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2462         if (IS_ERR(pages)) {
2463                 result = PTR_ERR(pages);
2464                 pages = NULL;
2465                 goto out_err;
2466         }
2467
2468         result = -ENOMEM;
2469         parent_request = rbd_parent_request_create(obj_request,
2470                                                 img_offset, length);
2471         if (!parent_request)
2472                 goto out_err;
2473
2474         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2475         if (result)
2476                 goto out_err;
2477         parent_request->copyup_pages = pages;
2478         parent_request->copyup_page_count = page_count;
2479
2480         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2481         result = rbd_img_request_submit(parent_request);
2482         if (!result)
2483                 return 0;
2484
2485         parent_request->copyup_pages = NULL;
2486         parent_request->copyup_page_count = 0;
2487         parent_request->obj_request = NULL;
2488         rbd_obj_request_put(obj_request);
2489 out_err:
2490         if (pages)
2491                 ceph_release_page_vector(pages, page_count);
2492         if (parent_request)
2493                 rbd_img_request_put(parent_request);
2494         obj_request->result = result;
2495         obj_request->xferred = 0;
2496         obj_request_done_set(obj_request);
2497
2498         return result;
2499 }
2500
2501 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2502 {
2503         struct rbd_obj_request *orig_request;
2504         int result;
2505
2506         rbd_assert(!obj_request_img_data_test(obj_request));
2507
2508         /*
2509          * All we need from the object request is the original
2510          * request and the result of the STAT op.  Grab those, then
2511          * we're done with the request.
2512          */
2513         orig_request = obj_request->obj_request;
2514         obj_request->obj_request = NULL;
2515         rbd_assert(orig_request);
2516         rbd_assert(orig_request->img_request);
2517
2518         result = obj_request->result;
2519         obj_request->result = 0;
2520
2521         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2522                 obj_request, orig_request, result,
2523                 obj_request->xferred, obj_request->length);
2524         rbd_obj_request_put(obj_request);
2525
2526         rbd_assert(orig_request);
2527         rbd_assert(orig_request->img_request);
2528
2529         /*
2530          * Our only purpose here is to determine whether the object
2531          * exists, and we don't want to treat the non-existence as
2532          * an error.  If something else comes back, transfer the
2533          * error to the original request and complete it now.
2534          */
2535         if (!result) {
2536                 obj_request_existence_set(orig_request, true);
2537         } else if (result == -ENOENT) {
2538                 obj_request_existence_set(orig_request, false);
2539         } else if (result) {
2540                 orig_request->result = result;
2541                 goto out;
2542         }
2543
2544         /*
2545          * Resubmit the original request now that we have recorded
2546          * whether the target object exists.
2547          */
2548         orig_request->result = rbd_img_obj_request_submit(orig_request);
2549 out:
2550         if (orig_request->result)
2551                 rbd_obj_request_complete(orig_request);
2552         rbd_obj_request_put(orig_request);
2553 }
2554
2555 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2556 {
2557         struct rbd_obj_request *stat_request;
2558         struct rbd_device *rbd_dev;
2559         struct ceph_osd_client *osdc;
2560         struct page **pages = NULL;
2561         u32 page_count;
2562         size_t size;
2563         int ret;
2564
2565         /*
2566          * The response data for a STAT call consists of:
2567          *     le64 length;
2568          *     struct {
2569          *         le32 tv_sec;
2570          *         le32 tv_nsec;
2571          *     } mtime;
2572          */
2573         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2574         page_count = (u32)calc_pages_for(0, size);
2575         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2576         if (IS_ERR(pages))
2577                 return PTR_ERR(pages);
2578
2579         ret = -ENOMEM;
2580         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2581                                                         OBJ_REQUEST_PAGES);
2582         if (!stat_request)
2583                 goto out;
2584
2585         rbd_obj_request_get(obj_request);
2586         stat_request->obj_request = obj_request;
2587         stat_request->pages = pages;
2588         stat_request->page_count = page_count;
2589
2590         rbd_assert(obj_request->img_request);
2591         rbd_dev = obj_request->img_request->rbd_dev;
2592         stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2593                                                 stat_request);
2594         if (!stat_request->osd_req)
2595                 goto out;
2596         stat_request->callback = rbd_img_obj_exists_callback;
2597
2598         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2599         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2600                                         false, false);
2601         rbd_osd_req_format_read(stat_request);
2602
2603         osdc = &rbd_dev->rbd_client->client->osdc;
2604         ret = rbd_obj_request_submit(osdc, stat_request);
2605 out:
2606         if (ret)
2607                 rbd_obj_request_put(obj_request);
2608
2609         return ret;
2610 }
2611
2612 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2613 {
2614         struct rbd_img_request *img_request;
2615         struct rbd_device *rbd_dev;
2616         bool known;
2617
2618         rbd_assert(obj_request_img_data_test(obj_request));
2619
2620         img_request = obj_request->img_request;
2621         rbd_assert(img_request);
2622         rbd_dev = img_request->rbd_dev;
2623
2624         /*
2625          * Only writes to layered images need special handling.
2626          * Reads and non-layered writes are simple object requests.
2627          * Layered writes that start beyond the end of the overlap
2628          * with the parent have no parent data, so they too are
2629          * simple object requests.  Finally, if the target object is
2630          * known to already exist, its parent data has already been
2631          * copied, so a write to the object can also be handled as a
2632          * simple object request.
2633          */
2634         if (!img_request_write_test(img_request) ||
2635                 !img_request_layered_test(img_request) ||
2636                 rbd_dev->parent_overlap <= obj_request->img_offset ||
2637                 ((known = obj_request_known_test(obj_request)) &&
2638                         obj_request_exists_test(obj_request))) {
2639
2640                 struct rbd_device *rbd_dev;
2641                 struct ceph_osd_client *osdc;
2642
2643                 rbd_dev = obj_request->img_request->rbd_dev;
2644                 osdc = &rbd_dev->rbd_client->client->osdc;
2645
2646                 return rbd_obj_request_submit(osdc, obj_request);
2647         }
2648
2649         /*
2650          * It's a layered write.  The target object might exist but
2651          * we may not know that yet.  If we know it doesn't exist,
2652          * start by reading the data for the full target object from
2653          * the parent so we can use it for a copyup to the target.
2654          */
2655         if (known)
2656                 return rbd_img_obj_parent_read_full(obj_request);
2657
2658         /* We don't know whether the target exists.  Go find out. */
2659
2660         return rbd_img_obj_exists_submit(obj_request);
2661 }
2662
2663 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2664 {
2665         struct rbd_obj_request *obj_request;
2666         struct rbd_obj_request *next_obj_request;
2667
2668         dout("%s: img %p\n", __func__, img_request);
2669         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2670                 int ret;
2671
2672                 ret = rbd_img_obj_request_submit(obj_request);
2673                 if (ret)
2674                         return ret;
2675         }
2676
2677         return 0;
2678 }
2679
2680 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2681 {
2682         struct rbd_obj_request *obj_request;
2683         struct rbd_device *rbd_dev;
2684         u64 obj_end;
2685
2686         rbd_assert(img_request_child_test(img_request));
2687
2688         obj_request = img_request->obj_request;
2689         rbd_assert(obj_request);
2690         rbd_assert(obj_request->img_request);
2691
2692         obj_request->result = img_request->result;
2693         if (obj_request->result)
2694                 goto out;
2695
2696         /*
2697          * We need to zero anything beyond the parent overlap
2698          * boundary.  Since rbd_img_obj_request_read_callback()
2699          * will zero anything beyond the end of a short read, an
2700          * easy way to do this is to pretend the data from the
2701          * parent came up short--ending at the overlap boundary.
2702          */
2703         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2704         obj_end = obj_request->img_offset + obj_request->length;
2705         rbd_dev = obj_request->img_request->rbd_dev;
2706         if (obj_end > rbd_dev->parent_overlap) {
2707                 u64 xferred = 0;
2708
2709                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2710                         xferred = rbd_dev->parent_overlap -
2711                                         obj_request->img_offset;
2712
2713                 obj_request->xferred = min(img_request->xferred, xferred);
2714         } else {
2715                 obj_request->xferred = img_request->xferred;
2716         }
2717 out:
2718         rbd_img_request_put(img_request);
2719         rbd_img_obj_request_read_callback(obj_request);
2720         rbd_obj_request_complete(obj_request);
2721 }
2722
2723 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2724 {
2725         struct rbd_img_request *img_request;
2726         int result;
2727
2728         rbd_assert(obj_request_img_data_test(obj_request));
2729         rbd_assert(obj_request->img_request != NULL);
2730         rbd_assert(obj_request->result == (s32) -ENOENT);
2731         rbd_assert(obj_request_type_valid(obj_request->type));
2732
2733         /* rbd_read_finish(obj_request, obj_request->length); */
2734         img_request = rbd_parent_request_create(obj_request,
2735                                                 obj_request->img_offset,
2736                                                 obj_request->length);
2737         result = -ENOMEM;
2738         if (!img_request)
2739                 goto out_err;
2740
2741         if (obj_request->type == OBJ_REQUEST_BIO)
2742                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2743                                                 obj_request->bio_list);
2744         else
2745                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2746                                                 obj_request->pages);
2747         if (result)
2748                 goto out_err;
2749
2750         img_request->callback = rbd_img_parent_read_callback;
2751         result = rbd_img_request_submit(img_request);
2752         if (result)
2753                 goto out_err;
2754
2755         return;
2756 out_err:
2757         if (img_request)
2758                 rbd_img_request_put(img_request);
2759         obj_request->result = result;
2760         obj_request->xferred = 0;
2761         obj_request_done_set(obj_request);
2762 }
2763
2764 static int rbd_obj_notify_ack(struct rbd_device *rbd_dev, u64 notify_id)
2765 {
2766         struct rbd_obj_request *obj_request;
2767         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2768         int ret;
2769
2770         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2771                                                         OBJ_REQUEST_NODATA);
2772         if (!obj_request)
2773                 return -ENOMEM;
2774
2775         ret = -ENOMEM;
2776         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2777         if (!obj_request->osd_req)
2778                 goto out;
2779         obj_request->callback = rbd_obj_request_put;
2780
2781         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2782                                         notify_id, 0, 0);
2783         rbd_osd_req_format_read(obj_request);
2784
2785         ret = rbd_obj_request_submit(osdc, obj_request);
2786 out:
2787         if (ret)
2788                 rbd_obj_request_put(obj_request);
2789
2790         return ret;
2791 }
2792
2793 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2794 {
2795         struct rbd_device *rbd_dev = (struct rbd_device *)data;
2796         int ret;
2797
2798         if (!rbd_dev)
2799                 return;
2800
2801         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2802                 rbd_dev->header_name, (unsigned long long)notify_id,
2803                 (unsigned int)opcode);
2804         ret = rbd_dev_refresh(rbd_dev);
2805         if (ret)
2806                 rbd_warn(rbd_dev, ": header refresh error (%d)\n", ret);
2807
2808         rbd_obj_notify_ack(rbd_dev, notify_id);
2809 }
2810
2811 /*
2812  * Request sync osd watch/unwatch.  The value of "start" determines
2813  * whether a watch request is being initiated or torn down.
2814  */
2815 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start)
2816 {
2817         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2818         struct rbd_obj_request *obj_request;
2819         int ret;
2820
2821         rbd_assert(start ^ !!rbd_dev->watch_event);
2822         rbd_assert(start ^ !!rbd_dev->watch_request);
2823
2824         if (start) {
2825                 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2826                                                 &rbd_dev->watch_event);
2827                 if (ret < 0)
2828                         return ret;
2829                 rbd_assert(rbd_dev->watch_event != NULL);
2830         }
2831
2832         ret = -ENOMEM;
2833         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2834                                                         OBJ_REQUEST_NODATA);
2835         if (!obj_request)
2836                 goto out_cancel;
2837
2838         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2839         if (!obj_request->osd_req)
2840                 goto out_cancel;
2841
2842         if (start)
2843                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2844         else
2845                 ceph_osdc_unregister_linger_request(osdc,
2846                                         rbd_dev->watch_request->osd_req);
2847
2848         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2849                                 rbd_dev->watch_event->cookie, 0, start ? 1 : 0);
2850         rbd_osd_req_format_write(obj_request);
2851
2852         ret = rbd_obj_request_submit(osdc, obj_request);
2853         if (ret)
2854                 goto out_cancel;
2855         ret = rbd_obj_request_wait(obj_request);
2856         if (ret)
2857                 goto out_cancel;
2858         ret = obj_request->result;
2859         if (ret)
2860                 goto out_cancel;
2861
2862         /*
2863          * A watch request is set to linger, so the underlying osd
2864          * request won't go away until we unregister it.  We retain
2865          * a pointer to the object request during that time (in
2866          * rbd_dev->watch_request), so we'll keep a reference to
2867          * it.  We'll drop that reference (below) after we've
2868          * unregistered it.
2869          */
2870         if (start) {
2871                 rbd_dev->watch_request = obj_request;
2872
2873                 return 0;
2874         }
2875
2876         /* We have successfully torn down the watch request */
2877
2878         rbd_obj_request_put(rbd_dev->watch_request);
2879         rbd_dev->watch_request = NULL;
2880 out_cancel:
2881         /* Cancel the event if we're tearing down, or on error */
2882         ceph_osdc_cancel_event(rbd_dev->watch_event);
2883         rbd_dev->watch_event = NULL;
2884         if (obj_request)
2885                 rbd_obj_request_put(obj_request);
2886
2887         return ret;
2888 }
2889
2890 /*
2891  * Synchronous osd object method call.  Returns the number of bytes
2892  * returned in the outbound buffer, or a negative error code.
2893  */
2894 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2895                              const char *object_name,
2896                              const char *class_name,
2897                              const char *method_name,
2898                              const void *outbound,
2899                              size_t outbound_size,
2900                              void *inbound,
2901                              size_t inbound_size)
2902 {
2903         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2904         struct rbd_obj_request *obj_request;
2905         struct page **pages;
2906         u32 page_count;
2907         int ret;
2908
2909         /*
2910          * Method calls are ultimately read operations.  The result
2911          * should placed into the inbound buffer provided.  They
2912          * also supply outbound data--parameters for the object
2913          * method.  Currently if this is present it will be a
2914          * snapshot id.
2915          */
2916         page_count = (u32)calc_pages_for(0, inbound_size);
2917         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2918         if (IS_ERR(pages))
2919                 return PTR_ERR(pages);
2920
2921         ret = -ENOMEM;
2922         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2923                                                         OBJ_REQUEST_PAGES);
2924         if (!obj_request)
2925                 goto out;
2926
2927         obj_request->pages = pages;
2928         obj_request->page_count = page_count;
2929
2930         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2931         if (!obj_request->osd_req)
2932                 goto out;
2933
2934         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
2935                                         class_name, method_name);
2936         if (outbound_size) {
2937                 struct ceph_pagelist *pagelist;
2938
2939                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
2940                 if (!pagelist)
2941                         goto out;
2942
2943                 ceph_pagelist_init(pagelist);
2944                 ceph_pagelist_append(pagelist, outbound, outbound_size);
2945                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
2946                                                 pagelist);
2947         }
2948         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
2949                                         obj_request->pages, inbound_size,
2950                                         0, false, false);
2951         rbd_osd_req_format_read(obj_request);
2952
2953         ret = rbd_obj_request_submit(osdc, obj_request);
2954         if (ret)
2955                 goto out;
2956         ret = rbd_obj_request_wait(obj_request);
2957         if (ret)
2958                 goto out;
2959
2960         ret = obj_request->result;
2961         if (ret < 0)
2962                 goto out;
2963
2964         rbd_assert(obj_request->xferred < (u64)INT_MAX);
2965         ret = (int)obj_request->xferred;
2966         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
2967 out:
2968         if (obj_request)
2969                 rbd_obj_request_put(obj_request);
2970         else
2971                 ceph_release_page_vector(pages, page_count);
2972
2973         return ret;
2974 }
2975
2976 static void rbd_request_fn(struct request_queue *q)
2977                 __releases(q->queue_lock) __acquires(q->queue_lock)
2978 {
2979         struct rbd_device *rbd_dev = q->queuedata;
2980         bool read_only = rbd_dev->mapping.read_only;
2981         struct request *rq;
2982         int result;
2983
2984         while ((rq = blk_fetch_request(q))) {
2985                 bool write_request = rq_data_dir(rq) == WRITE;
2986                 struct rbd_img_request *img_request;
2987                 u64 offset;
2988                 u64 length;
2989
2990                 /* Ignore any non-FS requests that filter through. */
2991
2992                 if (rq->cmd_type != REQ_TYPE_FS) {
2993                         dout("%s: non-fs request type %d\n", __func__,
2994                                 (int) rq->cmd_type);
2995                         __blk_end_request_all(rq, 0);
2996                         continue;
2997                 }
2998
2999                 /* Ignore/skip any zero-length requests */
3000
3001                 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3002                 length = (u64) blk_rq_bytes(rq);
3003
3004                 if (!length) {
3005                         dout("%s: zero-length request\n", __func__);
3006                         __blk_end_request_all(rq, 0);
3007                         continue;
3008                 }
3009
3010                 spin_unlock_irq(q->queue_lock);
3011
3012                 /* Disallow writes to a read-only device */
3013
3014                 if (write_request) {
3015                         result = -EROFS;
3016                         if (read_only)
3017                                 goto end_request;
3018                         rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3019                 }
3020
3021                 /*
3022                  * Quit early if the mapped snapshot no longer
3023                  * exists.  It's still possible the snapshot will
3024                  * have disappeared by the time our request arrives
3025                  * at the osd, but there's no sense in sending it if
3026                  * we already know.
3027                  */
3028                 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3029                         dout("request for non-existent snapshot");
3030                         rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3031                         result = -ENXIO;
3032                         goto end_request;
3033                 }
3034
3035                 result = -EINVAL;
3036                 if (offset && length > U64_MAX - offset + 1) {
3037                         rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3038                                 offset, length);
3039                         goto end_request;       /* Shouldn't happen */
3040                 }
3041
3042                 result = -EIO;
3043                 if (offset + length > rbd_dev->mapping.size) {
3044                         rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3045                                 offset, length, rbd_dev->mapping.size);
3046                         goto end_request;
3047                 }
3048
3049                 result = -ENOMEM;
3050                 img_request = rbd_img_request_create(rbd_dev, offset, length,
3051                                                         write_request);
3052                 if (!img_request)
3053                         goto end_request;
3054
3055                 img_request->rq = rq;
3056
3057                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3058                                                 rq->bio);
3059                 if (!result)
3060                         result = rbd_img_request_submit(img_request);
3061                 if (result)
3062                         rbd_img_request_put(img_request);
3063 end_request:
3064                 spin_lock_irq(q->queue_lock);
3065                 if (result < 0) {
3066                         rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3067                                 write_request ? "write" : "read",
3068                                 length, offset, result);
3069
3070                         __blk_end_request_all(rq, result);
3071                 }
3072         }
3073 }
3074
3075 /*
3076  * a queue callback. Makes sure that we don't create a bio that spans across
3077  * multiple osd objects. One exception would be with a single page bios,
3078  * which we handle later at bio_chain_clone_range()
3079  */
3080 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3081                           struct bio_vec *bvec)
3082 {
3083         struct rbd_device *rbd_dev = q->queuedata;
3084         sector_t sector_offset;
3085         sector_t sectors_per_obj;
3086         sector_t obj_sector_offset;
3087         int ret;
3088
3089         /*
3090          * Find how far into its rbd object the partition-relative
3091          * bio start sector is to offset relative to the enclosing
3092          * device.
3093          */
3094         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3095         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3096         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3097
3098         /*
3099          * Compute the number of bytes from that offset to the end
3100          * of the object.  Account for what's already used by the bio.
3101          */
3102         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3103         if (ret > bmd->bi_size)
3104                 ret -= bmd->bi_size;
3105         else
3106                 ret = 0;
3107
3108         /*
3109          * Don't send back more than was asked for.  And if the bio
3110          * was empty, let the whole thing through because:  "Note
3111          * that a block device *must* allow a single page to be
3112          * added to an empty bio."
3113          */
3114         rbd_assert(bvec->bv_len <= PAGE_SIZE);
3115         if (ret > (int) bvec->bv_len || !bmd->bi_size)
3116                 ret = (int) bvec->bv_len;
3117
3118         return ret;
3119 }
3120
3121 static void rbd_free_disk(struct rbd_device *rbd_dev)
3122 {
3123         struct gendisk *disk = rbd_dev->disk;
3124
3125         if (!disk)
3126                 return;
3127
3128         rbd_dev->disk = NULL;
3129         if (disk->flags & GENHD_FL_UP) {
3130                 del_gendisk(disk);
3131                 if (disk->queue)
3132                         blk_cleanup_queue(disk->queue);
3133         }
3134         put_disk(disk);
3135 }
3136
3137 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3138                                 const char *object_name,
3139                                 u64 offset, u64 length, void *buf)
3140
3141 {
3142         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3143         struct rbd_obj_request *obj_request;
3144         struct page **pages = NULL;
3145         u32 page_count;
3146         size_t size;
3147         int ret;
3148
3149         page_count = (u32) calc_pages_for(offset, length);
3150         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3151         if (IS_ERR(pages))
3152                 ret = PTR_ERR(pages);
3153
3154         ret = -ENOMEM;
3155         obj_request = rbd_obj_request_create(object_name, offset, length,
3156                                                         OBJ_REQUEST_PAGES);
3157         if (!obj_request)
3158                 goto out;
3159
3160         obj_request->pages = pages;
3161         obj_request->page_count = page_count;
3162
3163         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3164         if (!obj_request->osd_req)
3165                 goto out;
3166
3167         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3168                                         offset, length, 0, 0);
3169         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3170                                         obj_request->pages,
3171                                         obj_request->length,
3172                                         obj_request->offset & ~PAGE_MASK,
3173                                         false, false);
3174         rbd_osd_req_format_read(obj_request);
3175
3176         ret = rbd_obj_request_submit(osdc, obj_request);
3177         if (ret)
3178                 goto out;
3179         ret = rbd_obj_request_wait(obj_request);
3180         if (ret)
3181                 goto out;
3182
3183         ret = obj_request->result;
3184         if (ret < 0)
3185                 goto out;
3186
3187         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3188         size = (size_t) obj_request->xferred;
3189         ceph_copy_from_page_vector(pages, buf, 0, size);
3190         rbd_assert(size <= (size_t)INT_MAX);
3191         ret = (int)size;
3192 out:
3193         if (obj_request)
3194                 rbd_obj_request_put(obj_request);
3195         else
3196                 ceph_release_page_vector(pages, page_count);
3197
3198         return ret;
3199 }
3200
3201 /*
3202  * Read the complete header for the given rbd device.  On successful
3203  * return, the rbd_dev->header field will contain up-to-date
3204  * information about the image.
3205  */
3206 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3207 {
3208         struct rbd_image_header_ondisk *ondisk = NULL;
3209         u32 snap_count = 0;
3210         u64 names_size = 0;
3211         u32 want_count;
3212         int ret;
3213
3214         /*
3215          * The complete header will include an array of its 64-bit
3216          * snapshot ids, followed by the names of those snapshots as
3217          * a contiguous block of NUL-terminated strings.  Note that
3218          * the number of snapshots could change by the time we read
3219          * it in, in which case we re-read it.
3220          */
3221         do {
3222                 size_t size;
3223
3224                 kfree(ondisk);
3225
3226                 size = sizeof (*ondisk);
3227                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3228                 size += names_size;
3229                 ondisk = kmalloc(size, GFP_KERNEL);
3230                 if (!ondisk)
3231                         return -ENOMEM;
3232
3233                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3234                                        0, size, ondisk);
3235                 if (ret < 0)
3236                         goto out;
3237                 if ((size_t)ret < size) {
3238                         ret = -ENXIO;
3239                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3240                                 size, ret);
3241                         goto out;
3242                 }
3243                 if (!rbd_dev_ondisk_valid(ondisk)) {
3244                         ret = -ENXIO;
3245                         rbd_warn(rbd_dev, "invalid header");
3246                         goto out;
3247                 }
3248
3249                 names_size = le64_to_cpu(ondisk->snap_names_len);
3250                 want_count = snap_count;
3251                 snap_count = le32_to_cpu(ondisk->snap_count);
3252         } while (snap_count != want_count);
3253
3254         ret = rbd_header_from_disk(rbd_dev, ondisk);
3255 out:
3256         kfree(ondisk);
3257
3258         return ret;
3259 }
3260
3261 /*
3262  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3263  * has disappeared from the (just updated) snapshot context.
3264  */
3265 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3266 {
3267         u64 snap_id;
3268
3269         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3270                 return;
3271
3272         snap_id = rbd_dev->spec->snap_id;
3273         if (snap_id == CEPH_NOSNAP)
3274                 return;
3275
3276         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3277                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3278 }
3279
3280 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3281 {
3282         u64 mapping_size;
3283         int ret;
3284
3285         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3286         mapping_size = rbd_dev->mapping.size;
3287         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3288         if (rbd_dev->image_format == 1)
3289                 ret = rbd_dev_v1_header_info(rbd_dev);
3290         else
3291                 ret = rbd_dev_v2_header_info(rbd_dev);
3292
3293         /* If it's a mapped snapshot, validate its EXISTS flag */
3294
3295         rbd_exists_validate(rbd_dev);
3296         mutex_unlock(&ctl_mutex);
3297         if (mapping_size != rbd_dev->mapping.size) {
3298                 sector_t size;
3299
3300                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3301                 dout("setting size to %llu sectors", (unsigned long long)size);
3302                 set_capacity(rbd_dev->disk, size);
3303                 revalidate_disk(rbd_dev->disk);
3304         }
3305
3306         return ret;
3307 }
3308
3309 static int rbd_init_disk(struct rbd_device *rbd_dev)
3310 {
3311         struct gendisk *disk;
3312         struct request_queue *q;
3313         u64 segment_size;
3314
3315         /* create gendisk info */
3316         disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3317         if (!disk)
3318                 return -ENOMEM;
3319
3320         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3321                  rbd_dev->dev_id);
3322         disk->major = rbd_dev->major;
3323         disk->first_minor = 0;
3324         disk->fops = &rbd_bd_ops;
3325         disk->private_data = rbd_dev;
3326
3327         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3328         if (!q)
3329                 goto out_disk;
3330
3331         /* We use the default size, but let's be explicit about it. */
3332         blk_queue_physical_block_size(q, SECTOR_SIZE);
3333
3334         /* set io sizes to object size */
3335         segment_size = rbd_obj_bytes(&rbd_dev->header);
3336         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3337         blk_queue_max_segment_size(q, segment_size);
3338         blk_queue_io_min(q, segment_size);
3339         blk_queue_io_opt(q, segment_size);
3340
3341         blk_queue_merge_bvec(q, rbd_merge_bvec);
3342         disk->queue = q;
3343
3344         q->queuedata = rbd_dev;
3345
3346         rbd_dev->disk = disk;
3347
3348         return 0;
3349 out_disk:
3350         put_disk(disk);
3351
3352         return -ENOMEM;
3353 }
3354
3355 /*
3356   sysfs
3357 */
3358
3359 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3360 {
3361         return container_of(dev, struct rbd_device, dev);
3362 }
3363
3364 static ssize_t rbd_size_show(struct device *dev,
3365                              struct device_attribute *attr, char *buf)
3366 {
3367         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3368
3369         return sprintf(buf, "%llu\n",
3370                 (unsigned long long)rbd_dev->mapping.size);
3371 }
3372
3373 /*
3374  * Note this shows the features for whatever's mapped, which is not
3375  * necessarily the base image.
3376  */
3377 static ssize_t rbd_features_show(struct device *dev,
3378                              struct device_attribute *attr, char *buf)
3379 {
3380         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3381
3382         return sprintf(buf, "0x%016llx\n",
3383                         (unsigned long long)rbd_dev->mapping.features);
3384 }
3385
3386 static ssize_t rbd_major_show(struct device *dev,
3387                               struct device_attribute *attr, char *buf)
3388 {
3389         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3390
3391         if (rbd_dev->major)
3392                 return sprintf(buf, "%d\n", rbd_dev->major);
3393
3394         return sprintf(buf, "(none)\n");
3395
3396 }
3397
3398 static ssize_t rbd_client_id_show(struct device *dev,
3399                                   struct device_attribute *attr, char *buf)
3400 {
3401         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3402
3403         return sprintf(buf, "client%lld\n",
3404                         ceph_client_id(rbd_dev->rbd_client->client));
3405 }
3406
3407 static ssize_t rbd_pool_show(struct device *dev,
3408                              struct device_attribute *attr, char *buf)
3409 {
3410         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3411
3412         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3413 }
3414
3415 static ssize_t rbd_pool_id_show(struct device *dev,
3416                              struct device_attribute *attr, char *buf)
3417 {
3418         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3419
3420         return sprintf(buf, "%llu\n",
3421                         (unsigned long long) rbd_dev->spec->pool_id);
3422 }
3423
3424 static ssize_t rbd_name_show(struct device *dev,
3425                              struct device_attribute *attr, char *buf)
3426 {
3427         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3428
3429         if (rbd_dev->spec->image_name)
3430                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3431
3432         return sprintf(buf, "(unknown)\n");
3433 }
3434
3435 static ssize_t rbd_image_id_show(struct device *dev,
3436                              struct device_attribute *attr, char *buf)
3437 {
3438         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3439
3440         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3441 }
3442
3443 /*
3444  * Shows the name of the currently-mapped snapshot (or
3445  * RBD_SNAP_HEAD_NAME for the base image).
3446  */
3447 static ssize_t rbd_snap_show(struct device *dev,
3448                              struct device_attribute *attr,
3449                              char *buf)
3450 {
3451         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3452
3453         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3454 }
3455
3456 /*
3457  * For an rbd v2 image, shows the pool id, image id, and snapshot id
3458  * for the parent image.  If there is no parent, simply shows
3459  * "(no parent image)".
3460  */
3461 static ssize_t rbd_parent_show(struct device *dev,
3462                              struct device_attribute *attr,
3463                              char *buf)
3464 {
3465         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3466         struct rbd_spec *spec = rbd_dev->parent_spec;
3467         int count;
3468         char *bufp = buf;
3469
3470         if (!spec)
3471                 return sprintf(buf, "(no parent image)\n");
3472
3473         count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3474                         (unsigned long long) spec->pool_id, spec->pool_name);
3475         if (count < 0)
3476                 return count;
3477         bufp += count;
3478
3479         count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3480                         spec->image_name ? spec->image_name : "(unknown)");
3481         if (count < 0)
3482                 return count;
3483         bufp += count;
3484
3485         count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3486                         (unsigned long long) spec->snap_id, spec->snap_name);
3487         if (count < 0)
3488                 return count;
3489         bufp += count;
3490
3491         count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3492         if (count < 0)
3493                 return count;
3494         bufp += count;
3495
3496         return (ssize_t) (bufp - buf);
3497 }
3498
3499 static ssize_t rbd_image_refresh(struct device *dev,
3500                                  struct device_attribute *attr,
3501                                  const char *buf,
3502                                  size_t size)
3503 {
3504         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3505         int ret;
3506
3507         ret = rbd_dev_refresh(rbd_dev);
3508         if (ret)
3509                 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3510
3511         return ret < 0 ? ret : size;
3512 }
3513
3514 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3515 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3516 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3517 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3518 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3519 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3520 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3521 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3522 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3523 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3524 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3525
3526 static struct attribute *rbd_attrs[] = {
3527         &dev_attr_size.attr,
3528         &dev_attr_features.attr,
3529         &dev_attr_major.attr,
3530         &dev_attr_client_id.attr,
3531         &dev_attr_pool.attr,
3532         &dev_attr_pool_id.attr,
3533         &dev_attr_name.attr,
3534         &dev_attr_image_id.attr,
3535         &dev_attr_current_snap.attr,
3536         &dev_attr_parent.attr,
3537         &dev_attr_refresh.attr,
3538         NULL
3539 };
3540
3541 static struct attribute_group rbd_attr_group = {
3542         .attrs = rbd_attrs,
3543 };
3544
3545 static const struct attribute_group *rbd_attr_groups[] = {
3546         &rbd_attr_group,
3547         NULL
3548 };
3549
3550 static void rbd_sysfs_dev_release(struct device *dev)
3551 {
3552 }
3553
3554 static struct device_type rbd_device_type = {
3555         .name           = "rbd",
3556         .groups         = rbd_attr_groups,
3557         .release        = rbd_sysfs_dev_release,
3558 };
3559
3560 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3561 {
3562         kref_get(&spec->kref);
3563
3564         return spec;
3565 }
3566
3567 static void rbd_spec_free(struct kref *kref);
3568 static void rbd_spec_put(struct rbd_spec *spec)
3569 {
3570         if (spec)
3571                 kref_put(&spec->kref, rbd_spec_free);
3572 }
3573
3574 static struct rbd_spec *rbd_spec_alloc(void)
3575 {
3576         struct rbd_spec *spec;
3577
3578         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3579         if (!spec)
3580                 return NULL;
3581         kref_init(&spec->kref);
3582
3583         return spec;
3584 }
3585
3586 static void rbd_spec_free(struct kref *kref)
3587 {
3588         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3589
3590         kfree(spec->pool_name);
3591         kfree(spec->image_id);
3592         kfree(spec->image_name);
3593         kfree(spec->snap_name);
3594         kfree(spec);
3595 }
3596
3597 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3598                                 struct rbd_spec *spec)
3599 {
3600         struct rbd_device *rbd_dev;
3601
3602         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3603         if (!rbd_dev)
3604                 return NULL;
3605
3606         spin_lock_init(&rbd_dev->lock);
3607         rbd_dev->flags = 0;
3608         atomic_set(&rbd_dev->parent_ref, 0);
3609         INIT_LIST_HEAD(&rbd_dev->node);
3610         init_rwsem(&rbd_dev->header_rwsem);
3611
3612         rbd_dev->spec = spec;
3613         rbd_dev->rbd_client = rbdc;
3614
3615         /* Initialize the layout used for all rbd requests */
3616
3617         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3618         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3619         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3620         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3621
3622         return rbd_dev;
3623 }
3624
3625 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3626 {
3627         rbd_put_client(rbd_dev->rbd_client);
3628         rbd_spec_put(rbd_dev->spec);
3629         kfree(rbd_dev);
3630 }
3631
3632 /*
3633  * Get the size and object order for an image snapshot, or if
3634  * snap_id is CEPH_NOSNAP, gets this information for the base
3635  * image.
3636  */
3637 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3638                                 u8 *order, u64 *snap_size)
3639 {
3640         __le64 snapid = cpu_to_le64(snap_id);
3641         int ret;
3642         struct {
3643                 u8 order;
3644                 __le64 size;
3645         } __attribute__ ((packed)) size_buf = { 0 };
3646
3647         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3648                                 "rbd", "get_size",
3649                                 &snapid, sizeof (snapid),
3650                                 &size_buf, sizeof (size_buf));
3651         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3652         if (ret < 0)
3653                 return ret;
3654         if (ret < sizeof (size_buf))
3655                 return -ERANGE;
3656
3657         if (order)
3658                 *order = size_buf.order;
3659         *snap_size = le64_to_cpu(size_buf.size);
3660
3661         dout("  snap_id 0x%016llx order = %u, snap_size = %llu\n",
3662                 (unsigned long long)snap_id, (unsigned int)*order,
3663                 (unsigned long long)*snap_size);
3664
3665         return 0;
3666 }
3667
3668 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3669 {
3670         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3671                                         &rbd_dev->header.obj_order,
3672                                         &rbd_dev->header.image_size);
3673 }
3674
3675 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3676 {
3677         void *reply_buf;
3678         int ret;
3679         void *p;
3680
3681         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3682         if (!reply_buf)
3683                 return -ENOMEM;
3684
3685         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3686                                 "rbd", "get_object_prefix", NULL, 0,
3687                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3688         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3689         if (ret < 0)
3690                 goto out;
3691
3692         p = reply_buf;
3693         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3694                                                 p + ret, NULL, GFP_NOIO);
3695         ret = 0;
3696
3697         if (IS_ERR(rbd_dev->header.object_prefix)) {
3698                 ret = PTR_ERR(rbd_dev->header.object_prefix);
3699                 rbd_dev->header.object_prefix = NULL;
3700         } else {
3701                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3702         }
3703 out:
3704         kfree(reply_buf);
3705
3706         return ret;
3707 }
3708
3709 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3710                 u64 *snap_features)
3711 {
3712         __le64 snapid = cpu_to_le64(snap_id);
3713         struct {
3714                 __le64 features;
3715                 __le64 incompat;
3716         } __attribute__ ((packed)) features_buf = { 0 };
3717         u64 incompat;
3718         int ret;
3719
3720         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3721                                 "rbd", "get_features",
3722                                 &snapid, sizeof (snapid),
3723                                 &features_buf, sizeof (features_buf));
3724         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3725         if (ret < 0)
3726                 return ret;
3727         if (ret < sizeof (features_buf))
3728                 return -ERANGE;
3729
3730         incompat = le64_to_cpu(features_buf.incompat);
3731         if (incompat & ~RBD_FEATURES_SUPPORTED)
3732                 return -ENXIO;
3733
3734         *snap_features = le64_to_cpu(features_buf.features);
3735
3736         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3737                 (unsigned long long)snap_id,
3738                 (unsigned long long)*snap_features,
3739                 (unsigned long long)le64_to_cpu(features_buf.incompat));
3740
3741         return 0;
3742 }
3743
3744 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3745 {
3746         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3747                                                 &rbd_dev->header.features);
3748 }
3749
3750 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3751 {
3752         struct rbd_spec *parent_spec;
3753         size_t size;
3754         void *reply_buf = NULL;
3755         __le64 snapid;
3756         void *p;
3757         void *end;
3758         u64 pool_id;
3759         char *image_id;
3760         u64 overlap;
3761         int ret;
3762
3763         parent_spec = rbd_spec_alloc();
3764         if (!parent_spec)
3765                 return -ENOMEM;
3766
3767         size = sizeof (__le64) +                                /* pool_id */
3768                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
3769                 sizeof (__le64) +                               /* snap_id */
3770                 sizeof (__le64);                                /* overlap */
3771         reply_buf = kmalloc(size, GFP_KERNEL);
3772         if (!reply_buf) {
3773                 ret = -ENOMEM;
3774                 goto out_err;
3775         }
3776
3777         snapid = cpu_to_le64(CEPH_NOSNAP);
3778         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3779                                 "rbd", "get_parent",
3780                                 &snapid, sizeof (snapid),
3781                                 reply_buf, size);
3782         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3783         if (ret < 0)
3784                 goto out_err;
3785
3786         p = reply_buf;
3787         end = reply_buf + ret;
3788         ret = -ERANGE;
3789         ceph_decode_64_safe(&p, end, pool_id, out_err);
3790         if (pool_id == CEPH_NOPOOL) {
3791                 /*
3792                  * Either the parent never existed, or we have
3793                  * record of it but the image got flattened so it no
3794                  * longer has a parent.  When the parent of a
3795                  * layered image disappears we immediately set the
3796                  * overlap to 0.  The effect of this is that all new
3797                  * requests will be treated as if the image had no
3798                  * parent.
3799                  */
3800                 if (rbd_dev->parent_overlap) {
3801                         rbd_dev->parent_overlap = 0;
3802                         smp_mb();
3803                         rbd_dev_parent_put(rbd_dev);
3804                         pr_info("%s: clone image has been flattened\n",
3805                                 rbd_dev->disk->disk_name);
3806                 }
3807
3808                 goto out;       /* No parent?  No problem. */
3809         }
3810
3811         /* The ceph file layout needs to fit pool id in 32 bits */
3812
3813         ret = -EIO;
3814         if (pool_id > (u64)U32_MAX) {
3815                 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3816                         (unsigned long long)pool_id, U32_MAX);
3817                 goto out_err;
3818         }
3819         parent_spec->pool_id = pool_id;
3820
3821         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3822         if (IS_ERR(image_id)) {
3823                 ret = PTR_ERR(image_id);
3824                 goto out_err;
3825         }
3826         parent_spec->image_id = image_id;
3827         ceph_decode_64_safe(&p, end, parent_spec->snap_id, out_err);
3828         ceph_decode_64_safe(&p, end, overlap, out_err);
3829
3830         if (overlap) {
3831                 rbd_spec_put(rbd_dev->parent_spec);
3832                 rbd_dev->parent_spec = parent_spec;
3833                 parent_spec = NULL;     /* rbd_dev now owns this */
3834                 rbd_dev->parent_overlap = overlap;
3835         } else {
3836                 rbd_warn(rbd_dev, "ignoring parent of clone with overlap 0\n");
3837         }
3838 out:
3839         ret = 0;
3840 out_err:
3841         kfree(reply_buf);
3842         rbd_spec_put(parent_spec);
3843
3844         return ret;
3845 }
3846
3847 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3848 {
3849         struct {
3850                 __le64 stripe_unit;
3851                 __le64 stripe_count;
3852         } __attribute__ ((packed)) striping_info_buf = { 0 };
3853         size_t size = sizeof (striping_info_buf);
3854         void *p;
3855         u64 obj_size;
3856         u64 stripe_unit;
3857         u64 stripe_count;
3858         int ret;
3859
3860         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3861                                 "rbd", "get_stripe_unit_count", NULL, 0,
3862                                 (char *)&striping_info_buf, size);
3863         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3864         if (ret < 0)
3865                 return ret;
3866         if (ret < size)
3867                 return -ERANGE;
3868
3869         /*
3870          * We don't actually support the "fancy striping" feature
3871          * (STRIPINGV2) yet, but if the striping sizes are the
3872          * defaults the behavior is the same as before.  So find
3873          * out, and only fail if the image has non-default values.
3874          */
3875         ret = -EINVAL;
3876         obj_size = (u64)1 << rbd_dev->header.obj_order;
3877         p = &striping_info_buf;
3878         stripe_unit = ceph_decode_64(&p);
3879         if (stripe_unit != obj_size) {
3880                 rbd_warn(rbd_dev, "unsupported stripe unit "
3881                                 "(got %llu want %llu)",
3882                                 stripe_unit, obj_size);
3883                 return -EINVAL;
3884         }
3885         stripe_count = ceph_decode_64(&p);
3886         if (stripe_count != 1) {
3887                 rbd_warn(rbd_dev, "unsupported stripe count "
3888                                 "(got %llu want 1)", stripe_count);
3889                 return -EINVAL;
3890         }
3891         rbd_dev->header.stripe_unit = stripe_unit;
3892         rbd_dev->header.stripe_count = stripe_count;
3893
3894         return 0;
3895 }
3896
3897 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
3898 {
3899         size_t image_id_size;
3900         char *image_id;
3901         void *p;
3902         void *end;
3903         size_t size;
3904         void *reply_buf = NULL;
3905         size_t len = 0;
3906         char *image_name = NULL;
3907         int ret;
3908
3909         rbd_assert(!rbd_dev->spec->image_name);
3910
3911         len = strlen(rbd_dev->spec->image_id);
3912         image_id_size = sizeof (__le32) + len;
3913         image_id = kmalloc(image_id_size, GFP_KERNEL);
3914         if (!image_id)
3915                 return NULL;
3916
3917         p = image_id;
3918         end = image_id + image_id_size;
3919         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
3920
3921         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
3922         reply_buf = kmalloc(size, GFP_KERNEL);
3923         if (!reply_buf)
3924                 goto out;
3925
3926         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
3927                                 "rbd", "dir_get_name",
3928                                 image_id, image_id_size,
3929                                 reply_buf, size);
3930         if (ret < 0)
3931                 goto out;
3932         p = reply_buf;
3933         end = reply_buf + ret;
3934
3935         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
3936         if (IS_ERR(image_name))
3937                 image_name = NULL;
3938         else
3939                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
3940 out:
3941         kfree(reply_buf);
3942         kfree(image_id);
3943
3944         return image_name;
3945 }
3946
3947 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
3948 {
3949         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
3950         const char *snap_name;
3951         u32 which = 0;
3952
3953         /* Skip over names until we find the one we are looking for */
3954
3955         snap_name = rbd_dev->header.snap_names;
3956         while (which < snapc->num_snaps) {
3957                 if (!strcmp(name, snap_name))
3958                         return snapc->snaps[which];
3959                 snap_name += strlen(snap_name) + 1;
3960                 which++;
3961         }
3962         return CEPH_NOSNAP;
3963 }
3964
3965 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
3966 {
3967         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
3968         u32 which;
3969         bool found = false;
3970         u64 snap_id;
3971
3972         for (which = 0; !found && which < snapc->num_snaps; which++) {
3973                 const char *snap_name;
3974
3975                 snap_id = snapc->snaps[which];
3976                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
3977                 if (IS_ERR(snap_name))
3978                         break;
3979                 found = !strcmp(name, snap_name);
3980                 kfree(snap_name);
3981         }
3982         return found ? snap_id : CEPH_NOSNAP;
3983 }
3984
3985 /*
3986  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
3987  * no snapshot by that name is found, or if an error occurs.
3988  */
3989 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
3990 {
3991         if (rbd_dev->image_format == 1)
3992                 return rbd_v1_snap_id_by_name(rbd_dev, name);
3993
3994         return rbd_v2_snap_id_by_name(rbd_dev, name);
3995 }
3996
3997 /*
3998  * When an rbd image has a parent image, it is identified by the
3999  * pool, image, and snapshot ids (not names).  This function fills
4000  * in the names for those ids.  (It's OK if we can't figure out the
4001  * name for an image id, but the pool and snapshot ids should always
4002  * exist and have names.)  All names in an rbd spec are dynamically
4003  * allocated.
4004  *
4005  * When an image being mapped (not a parent) is probed, we have the
4006  * pool name and pool id, image name and image id, and the snapshot
4007  * name.  The only thing we're missing is the snapshot id.
4008  */
4009 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4010 {
4011         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4012         struct rbd_spec *spec = rbd_dev->spec;
4013         const char *pool_name;
4014         const char *image_name;
4015         const char *snap_name;
4016         int ret;
4017
4018         /*
4019          * An image being mapped will have the pool name (etc.), but
4020          * we need to look up the snapshot id.
4021          */
4022         if (spec->pool_name) {
4023                 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4024                         u64 snap_id;
4025
4026                         snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4027                         if (snap_id == CEPH_NOSNAP)
4028                                 return -ENOENT;
4029                         spec->snap_id = snap_id;
4030                 } else {
4031                         spec->snap_id = CEPH_NOSNAP;
4032                 }
4033
4034                 return 0;
4035         }
4036
4037         /* Get the pool name; we have to make our own copy of this */
4038
4039         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4040         if (!pool_name) {
4041                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4042                 return -EIO;
4043         }
4044         pool_name = kstrdup(pool_name, GFP_KERNEL);
4045         if (!pool_name)
4046                 return -ENOMEM;
4047
4048         /* Fetch the image name; tolerate failure here */
4049
4050         image_name = rbd_dev_image_name(rbd_dev);
4051         if (!image_name)
4052                 rbd_warn(rbd_dev, "unable to get image name");
4053
4054         /* Look up the snapshot name, and make a copy */
4055
4056         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4057         if (!snap_name) {
4058                 ret = -ENOMEM;
4059                 goto out_err;
4060         }
4061
4062         spec->pool_name = pool_name;
4063         spec->image_name = image_name;
4064         spec->snap_name = snap_name;
4065
4066         return 0;
4067 out_err:
4068         kfree(image_name);
4069         kfree(pool_name);
4070
4071         return ret;
4072 }
4073
4074 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4075 {
4076         size_t size;
4077         int ret;
4078         void *reply_buf;
4079         void *p;
4080         void *end;
4081         u64 seq;
4082         u32 snap_count;
4083         struct ceph_snap_context *snapc;
4084         u32 i;
4085
4086         /*
4087          * We'll need room for the seq value (maximum snapshot id),
4088          * snapshot count, and array of that many snapshot ids.
4089          * For now we have a fixed upper limit on the number we're
4090          * prepared to receive.
4091          */
4092         size = sizeof (__le64) + sizeof (__le32) +
4093                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4094         reply_buf = kzalloc(size, GFP_KERNEL);
4095         if (!reply_buf)
4096                 return -ENOMEM;
4097
4098         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4099                                 "rbd", "get_snapcontext", NULL, 0,
4100                                 reply_buf, size);
4101         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4102         if (ret < 0)
4103                 goto out;
4104
4105         p = reply_buf;
4106         end = reply_buf + ret;
4107         ret = -ERANGE;
4108         ceph_decode_64_safe(&p, end, seq, out);
4109         ceph_decode_32_safe(&p, end, snap_count, out);
4110
4111         /*
4112          * Make sure the reported number of snapshot ids wouldn't go
4113          * beyond the end of our buffer.  But before checking that,
4114          * make sure the computed size of the snapshot context we
4115          * allocate is representable in a size_t.
4116          */
4117         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4118                                  / sizeof (u64)) {
4119                 ret = -EINVAL;
4120                 goto out;
4121         }
4122         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4123                 goto out;
4124         ret = 0;
4125
4126         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4127         if (!snapc) {
4128                 ret = -ENOMEM;
4129                 goto out;
4130         }
4131         snapc->seq = seq;
4132         for (i = 0; i < snap_count; i++)
4133                 snapc->snaps[i] = ceph_decode_64(&p);
4134
4135         ceph_put_snap_context(rbd_dev->header.snapc);
4136         rbd_dev->header.snapc = snapc;
4137
4138         dout("  snap context seq = %llu, snap_count = %u\n",
4139                 (unsigned long long)seq, (unsigned int)snap_count);
4140 out:
4141         kfree(reply_buf);
4142
4143         return ret;
4144 }
4145
4146 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4147                                         u64 snap_id)
4148 {
4149         size_t size;
4150         void *reply_buf;
4151         __le64 snapid;
4152         int ret;
4153         void *p;
4154         void *end;
4155         char *snap_name;
4156
4157         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4158         reply_buf = kmalloc(size, GFP_KERNEL);
4159         if (!reply_buf)
4160                 return ERR_PTR(-ENOMEM);
4161
4162         snapid = cpu_to_le64(snap_id);
4163         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4164                                 "rbd", "get_snapshot_name",
4165                                 &snapid, sizeof (snapid),
4166                                 reply_buf, size);
4167         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4168         if (ret < 0) {
4169                 snap_name = ERR_PTR(ret);
4170                 goto out;
4171         }
4172
4173         p = reply_buf;
4174         end = reply_buf + ret;
4175         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4176         if (IS_ERR(snap_name))
4177                 goto out;
4178
4179         dout("  snap_id 0x%016llx snap_name = %s\n",
4180                 (unsigned long long)snap_id, snap_name);
4181 out:
4182         kfree(reply_buf);
4183
4184         return snap_name;
4185 }
4186
4187 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4188 {
4189         bool first_time = rbd_dev->header.object_prefix == NULL;
4190         int ret;
4191
4192         down_write(&rbd_dev->header_rwsem);
4193
4194         if (first_time) {
4195                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4196                 if (ret)
4197                         goto out;
4198         }
4199
4200         /*
4201          * If the image supports layering, get the parent info.  We
4202          * need to probe the first time regardless.  Thereafter we
4203          * only need to if there's a parent, to see if it has
4204          * disappeared due to the mapped image getting flattened.
4205          */
4206         if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4207                         (first_time || rbd_dev->parent_spec)) {
4208                 bool warn;
4209
4210                 ret = rbd_dev_v2_parent_info(rbd_dev);
4211                 if (ret)
4212                         goto out;
4213
4214                 /*
4215                  * Print a warning if this is the initial probe and
4216                  * the image has a parent.  Don't print it if the
4217                  * image now being probed is itself a parent.  We
4218                  * can tell at this point because we won't know its
4219                  * pool name yet (just its pool id).
4220                  */
4221                 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4222                 if (first_time && warn)
4223                         rbd_warn(rbd_dev, "WARNING: kernel layering "
4224                                         "is EXPERIMENTAL!");
4225         }
4226
4227         ret = rbd_dev_v2_image_size(rbd_dev);
4228         if (ret)
4229                 goto out;
4230
4231         if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4232                 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4233                         rbd_dev->mapping.size = rbd_dev->header.image_size;
4234
4235         ret = rbd_dev_v2_snap_context(rbd_dev);
4236         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4237 out:
4238         up_write(&rbd_dev->header_rwsem);
4239
4240         return ret;
4241 }
4242
4243 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4244 {
4245         struct device *dev;
4246         int ret;
4247
4248         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4249
4250         dev = &rbd_dev->dev;
4251         dev->bus = &rbd_bus_type;
4252         dev->type = &rbd_device_type;
4253         dev->parent = &rbd_root_dev;
4254         dev->release = rbd_dev_device_release;
4255         dev_set_name(dev, "%d", rbd_dev->dev_id);
4256         ret = device_register(dev);
4257
4258         mutex_unlock(&ctl_mutex);
4259
4260         return ret;
4261 }
4262
4263 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4264 {
4265         device_unregister(&rbd_dev->dev);
4266 }
4267
4268 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4269
4270 /*
4271  * Get a unique rbd identifier for the given new rbd_dev, and add
4272  * the rbd_dev to the global list.  The minimum rbd id is 1.
4273  */
4274 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4275 {
4276         rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4277
4278         spin_lock(&rbd_dev_list_lock);
4279         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4280         spin_unlock(&rbd_dev_list_lock);
4281         dout("rbd_dev %p given dev id %llu\n", rbd_dev,
4282                 (unsigned long long) rbd_dev->dev_id);
4283 }
4284
4285 /*
4286  * Remove an rbd_dev from the global list, and record that its
4287  * identifier is no longer in use.
4288  */
4289 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4290 {
4291         struct list_head *tmp;
4292         int rbd_id = rbd_dev->dev_id;
4293         int max_id;
4294
4295         rbd_assert(rbd_id > 0);
4296
4297         dout("rbd_dev %p released dev id %llu\n", rbd_dev,
4298                 (unsigned long long) rbd_dev->dev_id);
4299         spin_lock(&rbd_dev_list_lock);
4300         list_del_init(&rbd_dev->node);
4301
4302         /*
4303          * If the id being "put" is not the current maximum, there
4304          * is nothing special we need to do.
4305          */
4306         if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4307                 spin_unlock(&rbd_dev_list_lock);
4308                 return;
4309         }
4310
4311         /*
4312          * We need to update the current maximum id.  Search the
4313          * list to find out what it is.  We're more likely to find
4314          * the maximum at the end, so search the list backward.
4315          */
4316         max_id = 0;
4317         list_for_each_prev(tmp, &rbd_dev_list) {
4318                 struct rbd_device *rbd_dev;
4319
4320                 rbd_dev = list_entry(tmp, struct rbd_device, node);
4321                 if (rbd_dev->dev_id > max_id)
4322                         max_id = rbd_dev->dev_id;
4323         }
4324         spin_unlock(&rbd_dev_list_lock);
4325
4326         /*
4327          * The max id could have been updated by rbd_dev_id_get(), in
4328          * which case it now accurately reflects the new maximum.
4329          * Be careful not to overwrite the maximum value in that
4330          * case.
4331          */
4332         atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4333         dout("  max dev id has been reset\n");
4334 }
4335
4336 /*
4337  * Skips over white space at *buf, and updates *buf to point to the
4338  * first found non-space character (if any). Returns the length of
4339  * the token (string of non-white space characters) found.  Note
4340  * that *buf must be terminated with '\0'.
4341  */
4342 static inline size_t next_token(const char **buf)
4343 {
4344         /*
4345         * These are the characters that produce nonzero for
4346         * isspace() in the "C" and "POSIX" locales.
4347         */
4348         const char *spaces = " \f\n\r\t\v";
4349
4350         *buf += strspn(*buf, spaces);   /* Find start of token */
4351
4352         return strcspn(*buf, spaces);   /* Return token length */
4353 }
4354
4355 /*
4356  * Finds the next token in *buf, and if the provided token buffer is
4357  * big enough, copies the found token into it.  The result, if
4358  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4359  * must be terminated with '\0' on entry.
4360  *
4361  * Returns the length of the token found (not including the '\0').
4362  * Return value will be 0 if no token is found, and it will be >=
4363  * token_size if the token would not fit.
4364  *
4365  * The *buf pointer will be updated to point beyond the end of the
4366  * found token.  Note that this occurs even if the token buffer is
4367  * too small to hold it.
4368  */
4369 static inline size_t copy_token(const char **buf,
4370                                 char *token,
4371                                 size_t token_size)
4372 {
4373         size_t len;
4374
4375         len = next_token(buf);
4376         if (len < token_size) {
4377                 memcpy(token, *buf, len);
4378                 *(token + len) = '\0';
4379         }
4380         *buf += len;
4381
4382         return len;
4383 }
4384
4385 /*
4386  * Finds the next token in *buf, dynamically allocates a buffer big
4387  * enough to hold a copy of it, and copies the token into the new
4388  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4389  * that a duplicate buffer is created even for a zero-length token.
4390  *
4391  * Returns a pointer to the newly-allocated duplicate, or a null
4392  * pointer if memory for the duplicate was not available.  If
4393  * the lenp argument is a non-null pointer, the length of the token
4394  * (not including the '\0') is returned in *lenp.
4395  *
4396  * If successful, the *buf pointer will be updated to point beyond
4397  * the end of the found token.
4398  *
4399  * Note: uses GFP_KERNEL for allocation.
4400  */
4401 static inline char *dup_token(const char **buf, size_t *lenp)
4402 {
4403         char *dup;
4404         size_t len;
4405
4406         len = next_token(buf);
4407         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4408         if (!dup)
4409                 return NULL;
4410         *(dup + len) = '\0';
4411         *buf += len;
4412
4413         if (lenp)
4414                 *lenp = len;
4415
4416         return dup;
4417 }
4418
4419 /*
4420  * Parse the options provided for an "rbd add" (i.e., rbd image
4421  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4422  * and the data written is passed here via a NUL-terminated buffer.
4423  * Returns 0 if successful or an error code otherwise.
4424  *
4425  * The information extracted from these options is recorded in
4426  * the other parameters which return dynamically-allocated
4427  * structures:
4428  *  ceph_opts
4429  *      The address of a pointer that will refer to a ceph options
4430  *      structure.  Caller must release the returned pointer using
4431  *      ceph_destroy_options() when it is no longer needed.
4432  *  rbd_opts
4433  *      Address of an rbd options pointer.  Fully initialized by
4434  *      this function; caller must release with kfree().
4435  *  spec
4436  *      Address of an rbd image specification pointer.  Fully
4437  *      initialized by this function based on parsed options.
4438  *      Caller must release with rbd_spec_put().
4439  *
4440  * The options passed take this form:
4441  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4442  * where:
4443  *  <mon_addrs>
4444  *      A comma-separated list of one or more monitor addresses.
4445  *      A monitor address is an ip address, optionally followed
4446  *      by a port number (separated by a colon).
4447  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4448  *  <options>
4449  *      A comma-separated list of ceph and/or rbd options.
4450  *  <pool_name>
4451  *      The name of the rados pool containing the rbd image.
4452  *  <image_name>
4453  *      The name of the image in that pool to map.
4454  *  <snap_id>
4455  *      An optional snapshot id.  If provided, the mapping will
4456  *      present data from the image at the time that snapshot was
4457  *      created.  The image head is used if no snapshot id is
4458  *      provided.  Snapshot mappings are always read-only.
4459  */
4460 static int rbd_add_parse_args(const char *buf,
4461                                 struct ceph_options **ceph_opts,
4462                                 struct rbd_options **opts,
4463                                 struct rbd_spec **rbd_spec)
4464 {
4465         size_t len;
4466         char *options;
4467         const char *mon_addrs;
4468         char *snap_name;
4469         size_t mon_addrs_size;
4470         struct rbd_spec *spec = NULL;
4471         struct rbd_options *rbd_opts = NULL;
4472         struct ceph_options *copts;
4473         int ret;
4474
4475         /* The first four tokens are required */
4476
4477         len = next_token(&buf);
4478         if (!len) {
4479                 rbd_warn(NULL, "no monitor address(es) provided");
4480                 return -EINVAL;
4481         }
4482         mon_addrs = buf;
4483         mon_addrs_size = len + 1;
4484         buf += len;
4485
4486         ret = -EINVAL;
4487         options = dup_token(&buf, NULL);
4488         if (!options)
4489                 return -ENOMEM;
4490         if (!*options) {
4491                 rbd_warn(NULL, "no options provided");
4492                 goto out_err;
4493         }
4494
4495         spec = rbd_spec_alloc();
4496         if (!spec)
4497                 goto out_mem;
4498
4499         spec->pool_name = dup_token(&buf, NULL);
4500         if (!spec->pool_name)
4501                 goto out_mem;
4502         if (!*spec->pool_name) {
4503                 rbd_warn(NULL, "no pool name provided");
4504                 goto out_err;
4505         }
4506
4507         spec->image_name = dup_token(&buf, NULL);
4508         if (!spec->image_name)
4509                 goto out_mem;
4510         if (!*spec->image_name) {
4511                 rbd_warn(NULL, "no image name provided");
4512                 goto out_err;
4513         }
4514
4515         /*
4516          * Snapshot name is optional; default is to use "-"
4517          * (indicating the head/no snapshot).
4518          */
4519         len = next_token(&buf);
4520         if (!len) {
4521                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4522                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4523         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4524                 ret = -ENAMETOOLONG;
4525                 goto out_err;
4526         }
4527         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4528         if (!snap_name)
4529                 goto out_mem;
4530         *(snap_name + len) = '\0';
4531         spec->snap_name = snap_name;
4532
4533         /* Initialize all rbd options to the defaults */
4534
4535         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4536         if (!rbd_opts)
4537                 goto out_mem;
4538
4539         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4540
4541         copts = ceph_parse_options(options, mon_addrs,
4542                                         mon_addrs + mon_addrs_size - 1,
4543                                         parse_rbd_opts_token, rbd_opts);
4544         if (IS_ERR(copts)) {
4545                 ret = PTR_ERR(copts);
4546                 goto out_err;
4547         }
4548         kfree(options);
4549
4550         *ceph_opts = copts;
4551         *opts = rbd_opts;
4552         *rbd_spec = spec;
4553
4554         return 0;
4555 out_mem:
4556         ret = -ENOMEM;
4557 out_err:
4558         kfree(rbd_opts);
4559         rbd_spec_put(spec);
4560         kfree(options);
4561
4562         return ret;
4563 }
4564
4565 /*
4566  * An rbd format 2 image has a unique identifier, distinct from the
4567  * name given to it by the user.  Internally, that identifier is
4568  * what's used to specify the names of objects related to the image.
4569  *
4570  * A special "rbd id" object is used to map an rbd image name to its
4571  * id.  If that object doesn't exist, then there is no v2 rbd image
4572  * with the supplied name.
4573  *
4574  * This function will record the given rbd_dev's image_id field if
4575  * it can be determined, and in that case will return 0.  If any
4576  * errors occur a negative errno will be returned and the rbd_dev's
4577  * image_id field will be unchanged (and should be NULL).
4578  */
4579 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4580 {
4581         int ret;
4582         size_t size;
4583         char *object_name;
4584         void *response;
4585         char *image_id;
4586
4587         /*
4588          * When probing a parent image, the image id is already
4589          * known (and the image name likely is not).  There's no
4590          * need to fetch the image id again in this case.  We
4591          * do still need to set the image format though.
4592          */
4593         if (rbd_dev->spec->image_id) {
4594                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4595
4596                 return 0;
4597         }
4598
4599         /*
4600          * First, see if the format 2 image id file exists, and if
4601          * so, get the image's persistent id from it.
4602          */
4603         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4604         object_name = kmalloc(size, GFP_NOIO);
4605         if (!object_name)
4606                 return -ENOMEM;
4607         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4608         dout("rbd id object name is %s\n", object_name);
4609
4610         /* Response will be an encoded string, which includes a length */
4611
4612         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4613         response = kzalloc(size, GFP_NOIO);
4614         if (!response) {
4615                 ret = -ENOMEM;
4616                 goto out;
4617         }
4618
4619         /* If it doesn't exist we'll assume it's a format 1 image */
4620
4621         ret = rbd_obj_method_sync(rbd_dev, object_name,
4622                                 "rbd", "get_id", NULL, 0,
4623                                 response, RBD_IMAGE_ID_LEN_MAX);
4624         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4625         if (ret == -ENOENT) {
4626                 image_id = kstrdup("", GFP_KERNEL);
4627                 ret = image_id ? 0 : -ENOMEM;
4628                 if (!ret)
4629                         rbd_dev->image_format = 1;
4630         } else if (ret > sizeof (__le32)) {
4631                 void *p = response;
4632
4633                 image_id = ceph_extract_encoded_string(&p, p + ret,
4634                                                 NULL, GFP_NOIO);
4635                 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4636                 if (!ret)
4637                         rbd_dev->image_format = 2;
4638         } else {
4639                 ret = -EINVAL;
4640         }
4641
4642         if (!ret) {
4643                 rbd_dev->spec->image_id = image_id;
4644                 dout("image_id is %s\n", image_id);
4645         }
4646 out:
4647         kfree(response);
4648         kfree(object_name);
4649
4650         return ret;
4651 }
4652
4653 /* Undo whatever state changes are made by v1 or v2 image probe */
4654
4655 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4656 {
4657         struct rbd_image_header *header;
4658
4659         /* Drop parent reference unless it's already been done (or none) */
4660
4661         if (rbd_dev->parent_overlap)
4662                 rbd_dev_parent_put(rbd_dev);
4663
4664         /* Free dynamic fields from the header, then zero it out */
4665
4666         header = &rbd_dev->header;
4667         ceph_put_snap_context(header->snapc);
4668         kfree(header->snap_sizes);
4669         kfree(header->snap_names);
4670         kfree(header->object_prefix);
4671         memset(header, 0, sizeof (*header));
4672 }
4673
4674 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4675 {
4676         int ret;
4677
4678         ret = rbd_dev_v2_object_prefix(rbd_dev);
4679         if (ret)
4680                 goto out_err;
4681
4682         /*
4683          * Get the and check features for the image.  Currently the
4684          * features are assumed to never change.
4685          */
4686         ret = rbd_dev_v2_features(rbd_dev);
4687         if (ret)
4688                 goto out_err;
4689
4690         /* If the image supports fancy striping, get its parameters */
4691
4692         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4693                 ret = rbd_dev_v2_striping_info(rbd_dev);
4694                 if (ret < 0)
4695                         goto out_err;
4696         }
4697         /* No support for crypto and compression type format 2 images */
4698
4699         return 0;
4700 out_err:
4701         rbd_dev->header.features = 0;
4702         kfree(rbd_dev->header.object_prefix);
4703         rbd_dev->header.object_prefix = NULL;
4704
4705         return ret;
4706 }
4707
4708 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4709 {
4710         struct rbd_device *parent = NULL;
4711         struct rbd_spec *parent_spec;
4712         struct rbd_client *rbdc;
4713         int ret;
4714
4715         if (!rbd_dev->parent_spec)
4716                 return 0;
4717         /*
4718          * We need to pass a reference to the client and the parent
4719          * spec when creating the parent rbd_dev.  Images related by
4720          * parent/child relationships always share both.
4721          */
4722         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4723         rbdc = __rbd_get_client(rbd_dev->rbd_client);
4724
4725         ret = -ENOMEM;
4726         parent = rbd_dev_create(rbdc, parent_spec);
4727         if (!parent)
4728                 goto out_err;
4729
4730         ret = rbd_dev_image_probe(parent, false);
4731         if (ret < 0)
4732                 goto out_err;
4733         rbd_dev->parent = parent;
4734         atomic_set(&rbd_dev->parent_ref, 1);
4735
4736         return 0;
4737 out_err:
4738         if (parent) {
4739                 rbd_dev_unparent(rbd_dev);
4740                 kfree(rbd_dev->header_name);
4741                 rbd_dev_destroy(parent);
4742         } else {
4743                 rbd_put_client(rbdc);
4744                 rbd_spec_put(parent_spec);
4745         }
4746
4747         return ret;
4748 }
4749
4750 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4751 {
4752         int ret;
4753
4754         /* generate unique id: find highest unique id, add one */
4755         rbd_dev_id_get(rbd_dev);
4756
4757         /* Fill in the device name, now that we have its id. */
4758         BUILD_BUG_ON(DEV_NAME_LEN
4759                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4760         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4761
4762         /* Get our block major device number. */
4763
4764         ret = register_blkdev(0, rbd_dev->name);
4765         if (ret < 0)
4766                 goto err_out_id;
4767         rbd_dev->major = ret;
4768
4769         /* Set up the blkdev mapping. */
4770
4771         ret = rbd_init_disk(rbd_dev);
4772         if (ret)
4773                 goto err_out_blkdev;
4774
4775         ret = rbd_dev_mapping_set(rbd_dev);
4776         if (ret)
4777                 goto err_out_disk;
4778         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4779
4780         ret = rbd_bus_add_dev(rbd_dev);
4781         if (ret)
4782                 goto err_out_mapping;
4783
4784         /* Everything's ready.  Announce the disk to the world. */
4785
4786         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4787         add_disk(rbd_dev->disk);
4788
4789         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4790                 (unsigned long long) rbd_dev->mapping.size);
4791
4792         return ret;
4793
4794 err_out_mapping:
4795         rbd_dev_mapping_clear(rbd_dev);
4796 err_out_disk:
4797         rbd_free_disk(rbd_dev);
4798 err_out_blkdev:
4799         unregister_blkdev(rbd_dev->major, rbd_dev->name);
4800 err_out_id:
4801         rbd_dev_id_put(rbd_dev);
4802         rbd_dev_mapping_clear(rbd_dev);
4803
4804         return ret;
4805 }
4806
4807 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4808 {
4809         struct rbd_spec *spec = rbd_dev->spec;
4810         size_t size;
4811
4812         /* Record the header object name for this rbd image. */
4813
4814         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4815
4816         if (rbd_dev->image_format == 1)
4817                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4818         else
4819                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4820
4821         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4822         if (!rbd_dev->header_name)
4823                 return -ENOMEM;
4824
4825         if (rbd_dev->image_format == 1)
4826                 sprintf(rbd_dev->header_name, "%s%s",
4827                         spec->image_name, RBD_SUFFIX);
4828         else
4829                 sprintf(rbd_dev->header_name, "%s%s",
4830                         RBD_HEADER_PREFIX, spec->image_id);
4831         return 0;
4832 }
4833
4834 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4835 {
4836         rbd_dev_unprobe(rbd_dev);
4837         kfree(rbd_dev->header_name);
4838         rbd_dev->header_name = NULL;
4839         rbd_dev->image_format = 0;
4840         kfree(rbd_dev->spec->image_id);
4841         rbd_dev->spec->image_id = NULL;
4842
4843         rbd_dev_destroy(rbd_dev);
4844 }
4845
4846 /*
4847  * Probe for the existence of the header object for the given rbd
4848  * device.  If this image is the one being mapped (i.e., not a
4849  * parent), initiate a watch on its header object before using that
4850  * object to get detailed information about the rbd image.
4851  */
4852 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
4853 {
4854         int ret;
4855         int tmp;
4856
4857         /*
4858          * Get the id from the image id object.  If it's not a
4859          * format 2 image, we'll get ENOENT back, and we'll assume
4860          * it's a format 1 image.
4861          */
4862         ret = rbd_dev_image_id(rbd_dev);
4863         if (ret)
4864                 return ret;
4865         rbd_assert(rbd_dev->spec->image_id);
4866         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4867
4868         ret = rbd_dev_header_name(rbd_dev);
4869         if (ret)
4870                 goto err_out_format;
4871
4872         if (mapping) {
4873                 ret = rbd_dev_header_watch_sync(rbd_dev, true);
4874                 if (ret)
4875                         goto out_header_name;
4876         }
4877
4878         if (rbd_dev->image_format == 1)
4879                 ret = rbd_dev_v1_header_info(rbd_dev);
4880         else
4881                 ret = rbd_dev_v2_header_info(rbd_dev);
4882         if (ret)
4883                 goto err_out_watch;
4884
4885         ret = rbd_dev_spec_update(rbd_dev);
4886         if (ret)
4887                 goto err_out_probe;
4888
4889         ret = rbd_dev_probe_parent(rbd_dev);
4890         if (ret)
4891                 goto err_out_probe;
4892
4893         dout("discovered format %u image, header name is %s\n",
4894                 rbd_dev->image_format, rbd_dev->header_name);
4895
4896         return 0;
4897 err_out_probe:
4898         rbd_dev_unprobe(rbd_dev);
4899 err_out_watch:
4900         if (mapping) {
4901                 tmp = rbd_dev_header_watch_sync(rbd_dev, false);
4902                 if (tmp)
4903                         rbd_warn(rbd_dev, "unable to tear down "
4904                                         "watch request (%d)\n", tmp);
4905         }
4906 out_header_name:
4907         kfree(rbd_dev->header_name);
4908         rbd_dev->header_name = NULL;
4909 err_out_format:
4910         rbd_dev->image_format = 0;
4911         kfree(rbd_dev->spec->image_id);
4912         rbd_dev->spec->image_id = NULL;
4913
4914         dout("probe failed, returning %d\n", ret);
4915
4916         return ret;
4917 }
4918
4919 static ssize_t rbd_add(struct bus_type *bus,
4920                        const char *buf,
4921                        size_t count)
4922 {
4923         struct rbd_device *rbd_dev = NULL;
4924         struct ceph_options *ceph_opts = NULL;
4925         struct rbd_options *rbd_opts = NULL;
4926         struct rbd_spec *spec = NULL;
4927         struct rbd_client *rbdc;
4928         struct ceph_osd_client *osdc;
4929         bool read_only;
4930         int rc = -ENOMEM;
4931
4932         if (!try_module_get(THIS_MODULE))
4933                 return -ENODEV;
4934
4935         /* parse add command */
4936         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
4937         if (rc < 0)
4938                 goto err_out_module;
4939         read_only = rbd_opts->read_only;
4940         kfree(rbd_opts);
4941         rbd_opts = NULL;        /* done with this */
4942
4943         rbdc = rbd_get_client(ceph_opts);
4944         if (IS_ERR(rbdc)) {
4945                 rc = PTR_ERR(rbdc);
4946                 goto err_out_args;
4947         }
4948         ceph_opts = NULL;       /* rbd_dev client now owns this */
4949
4950         /* pick the pool */
4951         osdc = &rbdc->client->osdc;
4952         rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
4953         if (rc < 0)
4954                 goto err_out_client;
4955         spec->pool_id = (u64)rc;
4956
4957         /* The ceph file layout needs to fit pool id in 32 bits */
4958
4959         if (spec->pool_id > (u64)U32_MAX) {
4960                 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
4961                                 (unsigned long long)spec->pool_id, U32_MAX);
4962                 rc = -EIO;
4963                 goto err_out_client;
4964         }
4965
4966         rbd_dev = rbd_dev_create(rbdc, spec);
4967         if (!rbd_dev)
4968                 goto err_out_client;
4969         rbdc = NULL;            /* rbd_dev now owns this */
4970         spec = NULL;            /* rbd_dev now owns this */
4971
4972         rc = rbd_dev_image_probe(rbd_dev, true);
4973         if (rc < 0)
4974                 goto err_out_rbd_dev;
4975
4976         /* If we are mapping a snapshot it must be marked read-only */
4977
4978         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
4979                 read_only = true;
4980         rbd_dev->mapping.read_only = read_only;
4981
4982         rc = rbd_dev_device_setup(rbd_dev);
4983         if (!rc)
4984                 return count;
4985
4986         rbd_dev_image_release(rbd_dev);
4987 err_out_rbd_dev:
4988         rbd_dev_destroy(rbd_dev);
4989 err_out_client:
4990         rbd_put_client(rbdc);
4991 err_out_args:
4992         if (ceph_opts)
4993                 ceph_destroy_options(ceph_opts);
4994         kfree(rbd_opts);
4995         rbd_spec_put(spec);
4996 err_out_module:
4997         module_put(THIS_MODULE);
4998
4999         dout("Error adding device %s\n", buf);
5000
5001         return (ssize_t)rc;
5002 }
5003
5004 static struct rbd_device *__rbd_get_dev(unsigned long dev_id)
5005 {
5006         struct list_head *tmp;
5007         struct rbd_device *rbd_dev;
5008
5009         spin_lock(&rbd_dev_list_lock);
5010         list_for_each(tmp, &rbd_dev_list) {
5011                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5012                 if (rbd_dev->dev_id == dev_id) {
5013                         spin_unlock(&rbd_dev_list_lock);
5014                         return rbd_dev;
5015                 }
5016         }
5017         spin_unlock(&rbd_dev_list_lock);
5018         return NULL;
5019 }
5020
5021 static void rbd_dev_device_release(struct device *dev)
5022 {
5023         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5024
5025         rbd_free_disk(rbd_dev);
5026         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5027         rbd_dev_mapping_clear(rbd_dev);
5028         unregister_blkdev(rbd_dev->major, rbd_dev->name);
5029         rbd_dev->major = 0;
5030         rbd_dev_id_put(rbd_dev);
5031         rbd_dev_mapping_clear(rbd_dev);
5032 }
5033
5034 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5035 {
5036         while (rbd_dev->parent) {
5037                 struct rbd_device *first = rbd_dev;
5038                 struct rbd_device *second = first->parent;
5039                 struct rbd_device *third;
5040
5041                 /*
5042                  * Follow to the parent with no grandparent and
5043                  * remove it.
5044                  */
5045                 while (second && (third = second->parent)) {
5046                         first = second;
5047                         second = third;
5048                 }
5049                 rbd_assert(second);
5050                 rbd_dev_image_release(second);
5051                 first->parent = NULL;
5052                 first->parent_overlap = 0;
5053
5054                 rbd_assert(first->parent_spec);
5055                 rbd_spec_put(first->parent_spec);
5056                 first->parent_spec = NULL;
5057         }
5058 }
5059
5060 static ssize_t rbd_remove(struct bus_type *bus,
5061                           const char *buf,
5062                           size_t count)
5063 {
5064         struct rbd_device *rbd_dev = NULL;
5065         int target_id;
5066         unsigned long ul;
5067         int ret;
5068
5069         ret = strict_strtoul(buf, 10, &ul);
5070         if (ret)
5071                 return ret;
5072
5073         /* convert to int; abort if we lost anything in the conversion */
5074         target_id = (int) ul;
5075         if (target_id != ul)
5076                 return -EINVAL;
5077
5078         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
5079
5080         rbd_dev = __rbd_get_dev(target_id);
5081         if (!rbd_dev) {
5082                 ret = -ENOENT;
5083                 goto done;
5084         }
5085
5086         spin_lock_irq(&rbd_dev->lock);
5087         if (rbd_dev->open_count)
5088                 ret = -EBUSY;
5089         else
5090                 set_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
5091         spin_unlock_irq(&rbd_dev->lock);
5092         if (ret < 0)
5093                 goto done;
5094         rbd_bus_del_dev(rbd_dev);
5095         ret = rbd_dev_header_watch_sync(rbd_dev, false);
5096         if (ret)
5097                 rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret);
5098         rbd_dev_image_release(rbd_dev);
5099         module_put(THIS_MODULE);
5100         ret = count;
5101 done:
5102         mutex_unlock(&ctl_mutex);
5103
5104         return ret;
5105 }
5106
5107 /*
5108  * create control files in sysfs
5109  * /sys/bus/rbd/...
5110  */
5111 static int rbd_sysfs_init(void)
5112 {
5113         int ret;
5114
5115         ret = device_register(&rbd_root_dev);
5116         if (ret < 0)
5117                 return ret;
5118
5119         ret = bus_register(&rbd_bus_type);
5120         if (ret < 0)
5121                 device_unregister(&rbd_root_dev);
5122
5123         return ret;
5124 }
5125
5126 static void rbd_sysfs_cleanup(void)
5127 {
5128         bus_unregister(&rbd_bus_type);
5129         device_unregister(&rbd_root_dev);
5130 }
5131
5132 static int rbd_slab_init(void)
5133 {
5134         rbd_assert(!rbd_img_request_cache);
5135         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5136                                         sizeof (struct rbd_img_request),
5137                                         __alignof__(struct rbd_img_request),
5138                                         0, NULL);
5139         if (!rbd_img_request_cache)
5140                 return -ENOMEM;
5141
5142         rbd_assert(!rbd_obj_request_cache);
5143         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5144                                         sizeof (struct rbd_obj_request),
5145                                         __alignof__(struct rbd_obj_request),
5146                                         0, NULL);
5147         if (!rbd_obj_request_cache)
5148                 goto out_err;
5149
5150         rbd_assert(!rbd_segment_name_cache);
5151         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5152                                         MAX_OBJ_NAME_SIZE + 1, 1, 0, NULL);
5153         if (rbd_segment_name_cache)
5154                 return 0;
5155 out_err:
5156         if (rbd_obj_request_cache) {
5157                 kmem_cache_destroy(rbd_obj_request_cache);
5158                 rbd_obj_request_cache = NULL;
5159         }
5160
5161         kmem_cache_destroy(rbd_img_request_cache);
5162         rbd_img_request_cache = NULL;
5163
5164         return -ENOMEM;
5165 }
5166
5167 static void rbd_slab_exit(void)
5168 {
5169         rbd_assert(rbd_segment_name_cache);
5170         kmem_cache_destroy(rbd_segment_name_cache);
5171         rbd_segment_name_cache = NULL;
5172
5173         rbd_assert(rbd_obj_request_cache);
5174         kmem_cache_destroy(rbd_obj_request_cache);
5175         rbd_obj_request_cache = NULL;
5176
5177         rbd_assert(rbd_img_request_cache);
5178         kmem_cache_destroy(rbd_img_request_cache);
5179         rbd_img_request_cache = NULL;
5180 }
5181
5182 static int __init rbd_init(void)
5183 {
5184         int rc;
5185
5186         if (!libceph_compatible(NULL)) {
5187                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5188
5189                 return -EINVAL;
5190         }
5191         rc = rbd_slab_init();
5192         if (rc)
5193                 return rc;
5194         rc = rbd_sysfs_init();
5195         if (rc)
5196                 rbd_slab_exit();
5197         else
5198                 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
5199
5200         return rc;
5201 }
5202
5203 static void __exit rbd_exit(void)
5204 {
5205         rbd_sysfs_cleanup();
5206         rbd_slab_exit();
5207 }
5208
5209 module_init(rbd_init);
5210 module_exit(rbd_exit);
5211
5212 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5213 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5214 MODULE_DESCRIPTION("rados block device");
5215
5216 /* following authorship retained from original osdblk.c */
5217 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5218
5219 MODULE_LICENSE("GPL");