sunvdc: compute vdisk geometry from capacity
[firefly-linux-kernel-4.4.55.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44
45 #include "rbd_types.h"
46
47 #define RBD_DEBUG       /* Activate rbd_assert() calls */
48
49 /*
50  * The basic unit of block I/O is a sector.  It is interpreted in a
51  * number of contexts in Linux (blk, bio, genhd), but the default is
52  * universally 512 bytes.  These symbols are just slightly more
53  * meaningful than the bare numbers they represent.
54  */
55 #define SECTOR_SHIFT    9
56 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
57
58 /*
59  * Increment the given counter and return its updated value.
60  * If the counter is already 0 it will not be incremented.
61  * If the counter is already at its maximum value returns
62  * -EINVAL without updating it.
63  */
64 static int atomic_inc_return_safe(atomic_t *v)
65 {
66         unsigned int counter;
67
68         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
69         if (counter <= (unsigned int)INT_MAX)
70                 return (int)counter;
71
72         atomic_dec(v);
73
74         return -EINVAL;
75 }
76
77 /* Decrement the counter.  Return the resulting value, or -EINVAL */
78 static int atomic_dec_return_safe(atomic_t *v)
79 {
80         int counter;
81
82         counter = atomic_dec_return(v);
83         if (counter >= 0)
84                 return counter;
85
86         atomic_inc(v);
87
88         return -EINVAL;
89 }
90
91 #define RBD_DRV_NAME "rbd"
92 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
93
94 #define RBD_MINORS_PER_MAJOR    256             /* max minors per blkdev */
95
96 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
97 #define RBD_MAX_SNAP_NAME_LEN   \
98                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
99
100 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
101
102 #define RBD_SNAP_HEAD_NAME      "-"
103
104 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
105
106 /* This allows a single page to hold an image name sent by OSD */
107 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
108 #define RBD_IMAGE_ID_LEN_MAX    64
109
110 #define RBD_OBJ_PREFIX_LEN_MAX  64
111
112 /* Feature bits */
113
114 #define RBD_FEATURE_LAYERING    (1<<0)
115 #define RBD_FEATURE_STRIPINGV2  (1<<1)
116 #define RBD_FEATURES_ALL \
117             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
118
119 /* Features supported by this (client software) implementation. */
120
121 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
122
123 /*
124  * An RBD device name will be "rbd#", where the "rbd" comes from
125  * RBD_DRV_NAME above, and # is a unique integer identifier.
126  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
127  * enough to hold all possible device names.
128  */
129 #define DEV_NAME_LEN            32
130 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
131
132 /*
133  * block device image metadata (in-memory version)
134  */
135 struct rbd_image_header {
136         /* These six fields never change for a given rbd image */
137         char *object_prefix;
138         __u8 obj_order;
139         __u8 crypt_type;
140         __u8 comp_type;
141         u64 stripe_unit;
142         u64 stripe_count;
143         u64 features;           /* Might be changeable someday? */
144
145         /* The remaining fields need to be updated occasionally */
146         u64 image_size;
147         struct ceph_snap_context *snapc;
148         char *snap_names;       /* format 1 only */
149         u64 *snap_sizes;        /* format 1 only */
150 };
151
152 /*
153  * An rbd image specification.
154  *
155  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
156  * identify an image.  Each rbd_dev structure includes a pointer to
157  * an rbd_spec structure that encapsulates this identity.
158  *
159  * Each of the id's in an rbd_spec has an associated name.  For a
160  * user-mapped image, the names are supplied and the id's associated
161  * with them are looked up.  For a layered image, a parent image is
162  * defined by the tuple, and the names are looked up.
163  *
164  * An rbd_dev structure contains a parent_spec pointer which is
165  * non-null if the image it represents is a child in a layered
166  * image.  This pointer will refer to the rbd_spec structure used
167  * by the parent rbd_dev for its own identity (i.e., the structure
168  * is shared between the parent and child).
169  *
170  * Since these structures are populated once, during the discovery
171  * phase of image construction, they are effectively immutable so
172  * we make no effort to synchronize access to them.
173  *
174  * Note that code herein does not assume the image name is known (it
175  * could be a null pointer).
176  */
177 struct rbd_spec {
178         u64             pool_id;
179         const char      *pool_name;
180
181         const char      *image_id;
182         const char      *image_name;
183
184         u64             snap_id;
185         const char      *snap_name;
186
187         struct kref     kref;
188 };
189
190 /*
191  * an instance of the client.  multiple devices may share an rbd client.
192  */
193 struct rbd_client {
194         struct ceph_client      *client;
195         struct kref             kref;
196         struct list_head        node;
197 };
198
199 struct rbd_img_request;
200 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
201
202 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
203
204 struct rbd_obj_request;
205 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
206
207 enum obj_request_type {
208         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
209 };
210
211 enum obj_req_flags {
212         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
213         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
214         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
215         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
216 };
217
218 struct rbd_obj_request {
219         const char              *object_name;
220         u64                     offset;         /* object start byte */
221         u64                     length;         /* bytes from offset */
222         unsigned long           flags;
223
224         /*
225          * An object request associated with an image will have its
226          * img_data flag set; a standalone object request will not.
227          *
228          * A standalone object request will have which == BAD_WHICH
229          * and a null obj_request pointer.
230          *
231          * An object request initiated in support of a layered image
232          * object (to check for its existence before a write) will
233          * have which == BAD_WHICH and a non-null obj_request pointer.
234          *
235          * Finally, an object request for rbd image data will have
236          * which != BAD_WHICH, and will have a non-null img_request
237          * pointer.  The value of which will be in the range
238          * 0..(img_request->obj_request_count-1).
239          */
240         union {
241                 struct rbd_obj_request  *obj_request;   /* STAT op */
242                 struct {
243                         struct rbd_img_request  *img_request;
244                         u64                     img_offset;
245                         /* links for img_request->obj_requests list */
246                         struct list_head        links;
247                 };
248         };
249         u32                     which;          /* posn image request list */
250
251         enum obj_request_type   type;
252         union {
253                 struct bio      *bio_list;
254                 struct {
255                         struct page     **pages;
256                         u32             page_count;
257                 };
258         };
259         struct page             **copyup_pages;
260         u32                     copyup_page_count;
261
262         struct ceph_osd_request *osd_req;
263
264         u64                     xferred;        /* bytes transferred */
265         int                     result;
266
267         rbd_obj_callback_t      callback;
268         struct completion       completion;
269
270         struct kref             kref;
271 };
272
273 enum img_req_flags {
274         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
275         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
276         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
277 };
278
279 struct rbd_img_request {
280         struct rbd_device       *rbd_dev;
281         u64                     offset; /* starting image byte offset */
282         u64                     length; /* byte count from offset */
283         unsigned long           flags;
284         union {
285                 u64                     snap_id;        /* for reads */
286                 struct ceph_snap_context *snapc;        /* for writes */
287         };
288         union {
289                 struct request          *rq;            /* block request */
290                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
291         };
292         struct page             **copyup_pages;
293         u32                     copyup_page_count;
294         spinlock_t              completion_lock;/* protects next_completion */
295         u32                     next_completion;
296         rbd_img_callback_t      callback;
297         u64                     xferred;/* aggregate bytes transferred */
298         int                     result; /* first nonzero obj_request result */
299
300         u32                     obj_request_count;
301         struct list_head        obj_requests;   /* rbd_obj_request structs */
302
303         struct kref             kref;
304 };
305
306 #define for_each_obj_request(ireq, oreq) \
307         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
308 #define for_each_obj_request_from(ireq, oreq) \
309         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
310 #define for_each_obj_request_safe(ireq, oreq, n) \
311         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
312
313 struct rbd_mapping {
314         u64                     size;
315         u64                     features;
316         bool                    read_only;
317 };
318
319 /*
320  * a single device
321  */
322 struct rbd_device {
323         int                     dev_id;         /* blkdev unique id */
324
325         int                     major;          /* blkdev assigned major */
326         struct gendisk          *disk;          /* blkdev's gendisk and rq */
327
328         u32                     image_format;   /* Either 1 or 2 */
329         struct rbd_client       *rbd_client;
330
331         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
332
333         spinlock_t              lock;           /* queue, flags, open_count */
334
335         struct rbd_image_header header;
336         unsigned long           flags;          /* possibly lock protected */
337         struct rbd_spec         *spec;
338
339         char                    *header_name;
340
341         struct ceph_file_layout layout;
342
343         struct ceph_osd_event   *watch_event;
344         struct rbd_obj_request  *watch_request;
345
346         struct rbd_spec         *parent_spec;
347         u64                     parent_overlap;
348         atomic_t                parent_ref;
349         struct rbd_device       *parent;
350
351         /* protects updating the header */
352         struct rw_semaphore     header_rwsem;
353
354         struct rbd_mapping      mapping;
355
356         struct list_head        node;
357
358         /* sysfs related */
359         struct device           dev;
360         unsigned long           open_count;     /* protected by lock */
361 };
362
363 /*
364  * Flag bits for rbd_dev->flags.  If atomicity is required,
365  * rbd_dev->lock is used to protect access.
366  *
367  * Currently, only the "removing" flag (which is coupled with the
368  * "open_count" field) requires atomic access.
369  */
370 enum rbd_dev_flags {
371         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
372         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
373 };
374
375 static DEFINE_MUTEX(ctl_mutex);   /* Serialize open/close/setup/teardown */
376
377 static LIST_HEAD(rbd_dev_list);    /* devices */
378 static DEFINE_SPINLOCK(rbd_dev_list_lock);
379
380 static LIST_HEAD(rbd_client_list);              /* clients */
381 static DEFINE_SPINLOCK(rbd_client_list_lock);
382
383 /* Slab caches for frequently-allocated structures */
384
385 static struct kmem_cache        *rbd_img_request_cache;
386 static struct kmem_cache        *rbd_obj_request_cache;
387 static struct kmem_cache        *rbd_segment_name_cache;
388
389 static int rbd_img_request_submit(struct rbd_img_request *img_request);
390
391 static void rbd_dev_device_release(struct device *dev);
392
393 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
394                        size_t count);
395 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
396                           size_t count);
397 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
398 static void rbd_spec_put(struct rbd_spec *spec);
399
400 static struct bus_attribute rbd_bus_attrs[] = {
401         __ATTR(add, S_IWUSR, NULL, rbd_add),
402         __ATTR(remove, S_IWUSR, NULL, rbd_remove),
403         __ATTR_NULL
404 };
405
406 static struct bus_type rbd_bus_type = {
407         .name           = "rbd",
408         .bus_attrs      = rbd_bus_attrs,
409 };
410
411 static void rbd_root_dev_release(struct device *dev)
412 {
413 }
414
415 static struct device rbd_root_dev = {
416         .init_name =    "rbd",
417         .release =      rbd_root_dev_release,
418 };
419
420 static __printf(2, 3)
421 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
422 {
423         struct va_format vaf;
424         va_list args;
425
426         va_start(args, fmt);
427         vaf.fmt = fmt;
428         vaf.va = &args;
429
430         if (!rbd_dev)
431                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
432         else if (rbd_dev->disk)
433                 printk(KERN_WARNING "%s: %s: %pV\n",
434                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
435         else if (rbd_dev->spec && rbd_dev->spec->image_name)
436                 printk(KERN_WARNING "%s: image %s: %pV\n",
437                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
438         else if (rbd_dev->spec && rbd_dev->spec->image_id)
439                 printk(KERN_WARNING "%s: id %s: %pV\n",
440                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
441         else    /* punt */
442                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
443                         RBD_DRV_NAME, rbd_dev, &vaf);
444         va_end(args);
445 }
446
447 #ifdef RBD_DEBUG
448 #define rbd_assert(expr)                                                \
449                 if (unlikely(!(expr))) {                                \
450                         printk(KERN_ERR "\nAssertion failure in %s() "  \
451                                                 "at line %d:\n\n"       \
452                                         "\trbd_assert(%s);\n\n",        \
453                                         __func__, __LINE__, #expr);     \
454                         BUG();                                          \
455                 }
456 #else /* !RBD_DEBUG */
457 #  define rbd_assert(expr)      ((void) 0)
458 #endif /* !RBD_DEBUG */
459
460 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
461 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
462 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
463
464 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
465 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
466 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
467 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
468                                         u64 snap_id);
469 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
470                                 u8 *order, u64 *snap_size);
471 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
472                 u64 *snap_features);
473 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
474
475 static int rbd_open(struct block_device *bdev, fmode_t mode)
476 {
477         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
478         bool removing = false;
479
480         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
481                 return -EROFS;
482
483         spin_lock_irq(&rbd_dev->lock);
484         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
485                 removing = true;
486         else
487                 rbd_dev->open_count++;
488         spin_unlock_irq(&rbd_dev->lock);
489         if (removing)
490                 return -ENOENT;
491
492         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
493         (void) get_device(&rbd_dev->dev);
494         set_device_ro(bdev, rbd_dev->mapping.read_only);
495         mutex_unlock(&ctl_mutex);
496
497         return 0;
498 }
499
500 static void rbd_release(struct gendisk *disk, fmode_t mode)
501 {
502         struct rbd_device *rbd_dev = disk->private_data;
503         unsigned long open_count_before;
504
505         spin_lock_irq(&rbd_dev->lock);
506         open_count_before = rbd_dev->open_count--;
507         spin_unlock_irq(&rbd_dev->lock);
508         rbd_assert(open_count_before > 0);
509
510         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
511         put_device(&rbd_dev->dev);
512         mutex_unlock(&ctl_mutex);
513 }
514
515 static const struct block_device_operations rbd_bd_ops = {
516         .owner                  = THIS_MODULE,
517         .open                   = rbd_open,
518         .release                = rbd_release,
519 };
520
521 /*
522  * Initialize an rbd client instance.  Success or not, this function
523  * consumes ceph_opts.
524  */
525 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
526 {
527         struct rbd_client *rbdc;
528         int ret = -ENOMEM;
529
530         dout("%s:\n", __func__);
531         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
532         if (!rbdc)
533                 goto out_opt;
534
535         kref_init(&rbdc->kref);
536         INIT_LIST_HEAD(&rbdc->node);
537
538         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
539
540         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
541         if (IS_ERR(rbdc->client))
542                 goto out_mutex;
543         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
544
545         ret = ceph_open_session(rbdc->client);
546         if (ret < 0)
547                 goto out_err;
548
549         spin_lock(&rbd_client_list_lock);
550         list_add_tail(&rbdc->node, &rbd_client_list);
551         spin_unlock(&rbd_client_list_lock);
552
553         mutex_unlock(&ctl_mutex);
554         dout("%s: rbdc %p\n", __func__, rbdc);
555
556         return rbdc;
557
558 out_err:
559         ceph_destroy_client(rbdc->client);
560 out_mutex:
561         mutex_unlock(&ctl_mutex);
562         kfree(rbdc);
563 out_opt:
564         if (ceph_opts)
565                 ceph_destroy_options(ceph_opts);
566         dout("%s: error %d\n", __func__, ret);
567
568         return ERR_PTR(ret);
569 }
570
571 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
572 {
573         kref_get(&rbdc->kref);
574
575         return rbdc;
576 }
577
578 /*
579  * Find a ceph client with specific addr and configuration.  If
580  * found, bump its reference count.
581  */
582 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
583 {
584         struct rbd_client *client_node;
585         bool found = false;
586
587         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
588                 return NULL;
589
590         spin_lock(&rbd_client_list_lock);
591         list_for_each_entry(client_node, &rbd_client_list, node) {
592                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
593                         __rbd_get_client(client_node);
594
595                         found = true;
596                         break;
597                 }
598         }
599         spin_unlock(&rbd_client_list_lock);
600
601         return found ? client_node : NULL;
602 }
603
604 /*
605  * mount options
606  */
607 enum {
608         Opt_last_int,
609         /* int args above */
610         Opt_last_string,
611         /* string args above */
612         Opt_read_only,
613         Opt_read_write,
614         /* Boolean args above */
615         Opt_last_bool,
616 };
617
618 static match_table_t rbd_opts_tokens = {
619         /* int args above */
620         /* string args above */
621         {Opt_read_only, "read_only"},
622         {Opt_read_only, "ro"},          /* Alternate spelling */
623         {Opt_read_write, "read_write"},
624         {Opt_read_write, "rw"},         /* Alternate spelling */
625         /* Boolean args above */
626         {-1, NULL}
627 };
628
629 struct rbd_options {
630         bool    read_only;
631 };
632
633 #define RBD_READ_ONLY_DEFAULT   false
634
635 static int parse_rbd_opts_token(char *c, void *private)
636 {
637         struct rbd_options *rbd_opts = private;
638         substring_t argstr[MAX_OPT_ARGS];
639         int token, intval, ret;
640
641         token = match_token(c, rbd_opts_tokens, argstr);
642         if (token < 0)
643                 return -EINVAL;
644
645         if (token < Opt_last_int) {
646                 ret = match_int(&argstr[0], &intval);
647                 if (ret < 0) {
648                         pr_err("bad mount option arg (not int) "
649                                "at '%s'\n", c);
650                         return ret;
651                 }
652                 dout("got int token %d val %d\n", token, intval);
653         } else if (token > Opt_last_int && token < Opt_last_string) {
654                 dout("got string token %d val %s\n", token,
655                      argstr[0].from);
656         } else if (token > Opt_last_string && token < Opt_last_bool) {
657                 dout("got Boolean token %d\n", token);
658         } else {
659                 dout("got token %d\n", token);
660         }
661
662         switch (token) {
663         case Opt_read_only:
664                 rbd_opts->read_only = true;
665                 break;
666         case Opt_read_write:
667                 rbd_opts->read_only = false;
668                 break;
669         default:
670                 rbd_assert(false);
671                 break;
672         }
673         return 0;
674 }
675
676 /*
677  * Get a ceph client with specific addr and configuration, if one does
678  * not exist create it.  Either way, ceph_opts is consumed by this
679  * function.
680  */
681 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
682 {
683         struct rbd_client *rbdc;
684
685         rbdc = rbd_client_find(ceph_opts);
686         if (rbdc)       /* using an existing client */
687                 ceph_destroy_options(ceph_opts);
688         else
689                 rbdc = rbd_client_create(ceph_opts);
690
691         return rbdc;
692 }
693
694 /*
695  * Destroy ceph client
696  *
697  * Caller must hold rbd_client_list_lock.
698  */
699 static void rbd_client_release(struct kref *kref)
700 {
701         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
702
703         dout("%s: rbdc %p\n", __func__, rbdc);
704         spin_lock(&rbd_client_list_lock);
705         list_del(&rbdc->node);
706         spin_unlock(&rbd_client_list_lock);
707
708         ceph_destroy_client(rbdc->client);
709         kfree(rbdc);
710 }
711
712 /*
713  * Drop reference to ceph client node. If it's not referenced anymore, release
714  * it.
715  */
716 static void rbd_put_client(struct rbd_client *rbdc)
717 {
718         if (rbdc)
719                 kref_put(&rbdc->kref, rbd_client_release);
720 }
721
722 static bool rbd_image_format_valid(u32 image_format)
723 {
724         return image_format == 1 || image_format == 2;
725 }
726
727 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
728 {
729         size_t size;
730         u32 snap_count;
731
732         /* The header has to start with the magic rbd header text */
733         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
734                 return false;
735
736         /* The bio layer requires at least sector-sized I/O */
737
738         if (ondisk->options.order < SECTOR_SHIFT)
739                 return false;
740
741         /* If we use u64 in a few spots we may be able to loosen this */
742
743         if (ondisk->options.order > 8 * sizeof (int) - 1)
744                 return false;
745
746         /*
747          * The size of a snapshot header has to fit in a size_t, and
748          * that limits the number of snapshots.
749          */
750         snap_count = le32_to_cpu(ondisk->snap_count);
751         size = SIZE_MAX - sizeof (struct ceph_snap_context);
752         if (snap_count > size / sizeof (__le64))
753                 return false;
754
755         /*
756          * Not only that, but the size of the entire the snapshot
757          * header must also be representable in a size_t.
758          */
759         size -= snap_count * sizeof (__le64);
760         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
761                 return false;
762
763         return true;
764 }
765
766 /*
767  * Fill an rbd image header with information from the given format 1
768  * on-disk header.
769  */
770 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
771                                  struct rbd_image_header_ondisk *ondisk)
772 {
773         struct rbd_image_header *header = &rbd_dev->header;
774         bool first_time = header->object_prefix == NULL;
775         struct ceph_snap_context *snapc;
776         char *object_prefix = NULL;
777         char *snap_names = NULL;
778         u64 *snap_sizes = NULL;
779         u32 snap_count;
780         size_t size;
781         int ret = -ENOMEM;
782         u32 i;
783
784         /* Allocate this now to avoid having to handle failure below */
785
786         if (first_time) {
787                 size_t len;
788
789                 len = strnlen(ondisk->object_prefix,
790                                 sizeof (ondisk->object_prefix));
791                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
792                 if (!object_prefix)
793                         return -ENOMEM;
794                 memcpy(object_prefix, ondisk->object_prefix, len);
795                 object_prefix[len] = '\0';
796         }
797
798         /* Allocate the snapshot context and fill it in */
799
800         snap_count = le32_to_cpu(ondisk->snap_count);
801         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
802         if (!snapc)
803                 goto out_err;
804         snapc->seq = le64_to_cpu(ondisk->snap_seq);
805         if (snap_count) {
806                 struct rbd_image_snap_ondisk *snaps;
807                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
808
809                 /* We'll keep a copy of the snapshot names... */
810
811                 if (snap_names_len > (u64)SIZE_MAX)
812                         goto out_2big;
813                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
814                 if (!snap_names)
815                         goto out_err;
816
817                 /* ...as well as the array of their sizes. */
818
819                 size = snap_count * sizeof (*header->snap_sizes);
820                 snap_sizes = kmalloc(size, GFP_KERNEL);
821                 if (!snap_sizes)
822                         goto out_err;
823
824                 /*
825                  * Copy the names, and fill in each snapshot's id
826                  * and size.
827                  *
828                  * Note that rbd_dev_v1_header_info() guarantees the
829                  * ondisk buffer we're working with has
830                  * snap_names_len bytes beyond the end of the
831                  * snapshot id array, this memcpy() is safe.
832                  */
833                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
834                 snaps = ondisk->snaps;
835                 for (i = 0; i < snap_count; i++) {
836                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
837                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
838                 }
839         }
840
841         /* We won't fail any more, fill in the header */
842
843         down_write(&rbd_dev->header_rwsem);
844         if (first_time) {
845                 header->object_prefix = object_prefix;
846                 header->obj_order = ondisk->options.order;
847                 header->crypt_type = ondisk->options.crypt_type;
848                 header->comp_type = ondisk->options.comp_type;
849                 /* The rest aren't used for format 1 images */
850                 header->stripe_unit = 0;
851                 header->stripe_count = 0;
852                 header->features = 0;
853         } else {
854                 ceph_put_snap_context(header->snapc);
855                 kfree(header->snap_names);
856                 kfree(header->snap_sizes);
857         }
858
859         /* The remaining fields always get updated (when we refresh) */
860
861         header->image_size = le64_to_cpu(ondisk->image_size);
862         header->snapc = snapc;
863         header->snap_names = snap_names;
864         header->snap_sizes = snap_sizes;
865
866         /* Make sure mapping size is consistent with header info */
867
868         if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
869                 if (rbd_dev->mapping.size != header->image_size)
870                         rbd_dev->mapping.size = header->image_size;
871
872         up_write(&rbd_dev->header_rwsem);
873
874         return 0;
875 out_2big:
876         ret = -EIO;
877 out_err:
878         kfree(snap_sizes);
879         kfree(snap_names);
880         ceph_put_snap_context(snapc);
881         kfree(object_prefix);
882
883         return ret;
884 }
885
886 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
887 {
888         const char *snap_name;
889
890         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
891
892         /* Skip over names until we find the one we are looking for */
893
894         snap_name = rbd_dev->header.snap_names;
895         while (which--)
896                 snap_name += strlen(snap_name) + 1;
897
898         return kstrdup(snap_name, GFP_KERNEL);
899 }
900
901 /*
902  * Snapshot id comparison function for use with qsort()/bsearch().
903  * Note that result is for snapshots in *descending* order.
904  */
905 static int snapid_compare_reverse(const void *s1, const void *s2)
906 {
907         u64 snap_id1 = *(u64 *)s1;
908         u64 snap_id2 = *(u64 *)s2;
909
910         if (snap_id1 < snap_id2)
911                 return 1;
912         return snap_id1 == snap_id2 ? 0 : -1;
913 }
914
915 /*
916  * Search a snapshot context to see if the given snapshot id is
917  * present.
918  *
919  * Returns the position of the snapshot id in the array if it's found,
920  * or BAD_SNAP_INDEX otherwise.
921  *
922  * Note: The snapshot array is in kept sorted (by the osd) in
923  * reverse order, highest snapshot id first.
924  */
925 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
926 {
927         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
928         u64 *found;
929
930         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
931                                 sizeof (snap_id), snapid_compare_reverse);
932
933         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
934 }
935
936 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
937                                         u64 snap_id)
938 {
939         u32 which;
940         const char *snap_name;
941
942         which = rbd_dev_snap_index(rbd_dev, snap_id);
943         if (which == BAD_SNAP_INDEX)
944                 return ERR_PTR(-ENOENT);
945
946         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
947         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
948 }
949
950 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
951 {
952         if (snap_id == CEPH_NOSNAP)
953                 return RBD_SNAP_HEAD_NAME;
954
955         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
956         if (rbd_dev->image_format == 1)
957                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
958
959         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
960 }
961
962 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
963                                 u64 *snap_size)
964 {
965         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
966         if (snap_id == CEPH_NOSNAP) {
967                 *snap_size = rbd_dev->header.image_size;
968         } else if (rbd_dev->image_format == 1) {
969                 u32 which;
970
971                 which = rbd_dev_snap_index(rbd_dev, snap_id);
972                 if (which == BAD_SNAP_INDEX)
973                         return -ENOENT;
974
975                 *snap_size = rbd_dev->header.snap_sizes[which];
976         } else {
977                 u64 size = 0;
978                 int ret;
979
980                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
981                 if (ret)
982                         return ret;
983
984                 *snap_size = size;
985         }
986         return 0;
987 }
988
989 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
990                         u64 *snap_features)
991 {
992         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
993         if (snap_id == CEPH_NOSNAP) {
994                 *snap_features = rbd_dev->header.features;
995         } else if (rbd_dev->image_format == 1) {
996                 *snap_features = 0;     /* No features for format 1 */
997         } else {
998                 u64 features = 0;
999                 int ret;
1000
1001                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1002                 if (ret)
1003                         return ret;
1004
1005                 *snap_features = features;
1006         }
1007         return 0;
1008 }
1009
1010 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1011 {
1012         u64 snap_id = rbd_dev->spec->snap_id;
1013         u64 size = 0;
1014         u64 features = 0;
1015         int ret;
1016
1017         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1018         if (ret)
1019                 return ret;
1020         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1021         if (ret)
1022                 return ret;
1023
1024         rbd_dev->mapping.size = size;
1025         rbd_dev->mapping.features = features;
1026
1027         return 0;
1028 }
1029
1030 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1031 {
1032         rbd_dev->mapping.size = 0;
1033         rbd_dev->mapping.features = 0;
1034 }
1035
1036 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1037 {
1038         char *name;
1039         u64 segment;
1040         int ret;
1041         char *name_format;
1042
1043         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1044         if (!name)
1045                 return NULL;
1046         segment = offset >> rbd_dev->header.obj_order;
1047         name_format = "%s.%012llx";
1048         if (rbd_dev->image_format == 2)
1049                 name_format = "%s.%016llx";
1050         ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, name_format,
1051                         rbd_dev->header.object_prefix, segment);
1052         if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
1053                 pr_err("error formatting segment name for #%llu (%d)\n",
1054                         segment, ret);
1055                 kfree(name);
1056                 name = NULL;
1057         }
1058
1059         return name;
1060 }
1061
1062 static void rbd_segment_name_free(const char *name)
1063 {
1064         /* The explicit cast here is needed to drop the const qualifier */
1065
1066         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1067 }
1068
1069 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1070 {
1071         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1072
1073         return offset & (segment_size - 1);
1074 }
1075
1076 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1077                                 u64 offset, u64 length)
1078 {
1079         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1080
1081         offset &= segment_size - 1;
1082
1083         rbd_assert(length <= U64_MAX - offset);
1084         if (offset + length > segment_size)
1085                 length = segment_size - offset;
1086
1087         return length;
1088 }
1089
1090 /*
1091  * returns the size of an object in the image
1092  */
1093 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1094 {
1095         return 1 << header->obj_order;
1096 }
1097
1098 /*
1099  * bio helpers
1100  */
1101
1102 static void bio_chain_put(struct bio *chain)
1103 {
1104         struct bio *tmp;
1105
1106         while (chain) {
1107                 tmp = chain;
1108                 chain = chain->bi_next;
1109                 bio_put(tmp);
1110         }
1111 }
1112
1113 /*
1114  * zeros a bio chain, starting at specific offset
1115  */
1116 static void zero_bio_chain(struct bio *chain, int start_ofs)
1117 {
1118         struct bio_vec *bv;
1119         unsigned long flags;
1120         void *buf;
1121         int i;
1122         int pos = 0;
1123
1124         while (chain) {
1125                 bio_for_each_segment(bv, chain, i) {
1126                         if (pos + bv->bv_len > start_ofs) {
1127                                 int remainder = max(start_ofs - pos, 0);
1128                                 buf = bvec_kmap_irq(bv, &flags);
1129                                 memset(buf + remainder, 0,
1130                                        bv->bv_len - remainder);
1131                                 flush_dcache_page(bv->bv_page);
1132                                 bvec_kunmap_irq(buf, &flags);
1133                         }
1134                         pos += bv->bv_len;
1135                 }
1136
1137                 chain = chain->bi_next;
1138         }
1139 }
1140
1141 /*
1142  * similar to zero_bio_chain(), zeros data defined by a page array,
1143  * starting at the given byte offset from the start of the array and
1144  * continuing up to the given end offset.  The pages array is
1145  * assumed to be big enough to hold all bytes up to the end.
1146  */
1147 static void zero_pages(struct page **pages, u64 offset, u64 end)
1148 {
1149         struct page **page = &pages[offset >> PAGE_SHIFT];
1150
1151         rbd_assert(end > offset);
1152         rbd_assert(end - offset <= (u64)SIZE_MAX);
1153         while (offset < end) {
1154                 size_t page_offset;
1155                 size_t length;
1156                 unsigned long flags;
1157                 void *kaddr;
1158
1159                 page_offset = (size_t)(offset & ~PAGE_MASK);
1160                 length = min(PAGE_SIZE - page_offset, (size_t)(end - offset));
1161                 local_irq_save(flags);
1162                 kaddr = kmap_atomic(*page);
1163                 memset(kaddr + page_offset, 0, length);
1164                 flush_dcache_page(*page);
1165                 kunmap_atomic(kaddr);
1166                 local_irq_restore(flags);
1167
1168                 offset += length;
1169                 page++;
1170         }
1171 }
1172
1173 /*
1174  * Clone a portion of a bio, starting at the given byte offset
1175  * and continuing for the number of bytes indicated.
1176  */
1177 static struct bio *bio_clone_range(struct bio *bio_src,
1178                                         unsigned int offset,
1179                                         unsigned int len,
1180                                         gfp_t gfpmask)
1181 {
1182         struct bio_vec *bv;
1183         unsigned int resid;
1184         unsigned short idx;
1185         unsigned int voff;
1186         unsigned short end_idx;
1187         unsigned short vcnt;
1188         struct bio *bio;
1189
1190         /* Handle the easy case for the caller */
1191
1192         if (!offset && len == bio_src->bi_size)
1193                 return bio_clone(bio_src, gfpmask);
1194
1195         if (WARN_ON_ONCE(!len))
1196                 return NULL;
1197         if (WARN_ON_ONCE(len > bio_src->bi_size))
1198                 return NULL;
1199         if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
1200                 return NULL;
1201
1202         /* Find first affected segment... */
1203
1204         resid = offset;
1205         bio_for_each_segment(bv, bio_src, idx) {
1206                 if (resid < bv->bv_len)
1207                         break;
1208                 resid -= bv->bv_len;
1209         }
1210         voff = resid;
1211
1212         /* ...and the last affected segment */
1213
1214         resid += len;
1215         __bio_for_each_segment(bv, bio_src, end_idx, idx) {
1216                 if (resid <= bv->bv_len)
1217                         break;
1218                 resid -= bv->bv_len;
1219         }
1220         vcnt = end_idx - idx + 1;
1221
1222         /* Build the clone */
1223
1224         bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1225         if (!bio)
1226                 return NULL;    /* ENOMEM */
1227
1228         bio->bi_bdev = bio_src->bi_bdev;
1229         bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1230         bio->bi_rw = bio_src->bi_rw;
1231         bio->bi_flags |= 1 << BIO_CLONED;
1232
1233         /*
1234          * Copy over our part of the bio_vec, then update the first
1235          * and last (or only) entries.
1236          */
1237         memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1238                         vcnt * sizeof (struct bio_vec));
1239         bio->bi_io_vec[0].bv_offset += voff;
1240         if (vcnt > 1) {
1241                 bio->bi_io_vec[0].bv_len -= voff;
1242                 bio->bi_io_vec[vcnt - 1].bv_len = resid;
1243         } else {
1244                 bio->bi_io_vec[0].bv_len = len;
1245         }
1246
1247         bio->bi_vcnt = vcnt;
1248         bio->bi_size = len;
1249         bio->bi_idx = 0;
1250
1251         return bio;
1252 }
1253
1254 /*
1255  * Clone a portion of a bio chain, starting at the given byte offset
1256  * into the first bio in the source chain and continuing for the
1257  * number of bytes indicated.  The result is another bio chain of
1258  * exactly the given length, or a null pointer on error.
1259  *
1260  * The bio_src and offset parameters are both in-out.  On entry they
1261  * refer to the first source bio and the offset into that bio where
1262  * the start of data to be cloned is located.
1263  *
1264  * On return, bio_src is updated to refer to the bio in the source
1265  * chain that contains first un-cloned byte, and *offset will
1266  * contain the offset of that byte within that bio.
1267  */
1268 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1269                                         unsigned int *offset,
1270                                         unsigned int len,
1271                                         gfp_t gfpmask)
1272 {
1273         struct bio *bi = *bio_src;
1274         unsigned int off = *offset;
1275         struct bio *chain = NULL;
1276         struct bio **end;
1277
1278         /* Build up a chain of clone bios up to the limit */
1279
1280         if (!bi || off >= bi->bi_size || !len)
1281                 return NULL;            /* Nothing to clone */
1282
1283         end = &chain;
1284         while (len) {
1285                 unsigned int bi_size;
1286                 struct bio *bio;
1287
1288                 if (!bi) {
1289                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1290                         goto out_err;   /* EINVAL; ran out of bio's */
1291                 }
1292                 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1293                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1294                 if (!bio)
1295                         goto out_err;   /* ENOMEM */
1296
1297                 *end = bio;
1298                 end = &bio->bi_next;
1299
1300                 off += bi_size;
1301                 if (off == bi->bi_size) {
1302                         bi = bi->bi_next;
1303                         off = 0;
1304                 }
1305                 len -= bi_size;
1306         }
1307         *bio_src = bi;
1308         *offset = off;
1309
1310         return chain;
1311 out_err:
1312         bio_chain_put(chain);
1313
1314         return NULL;
1315 }
1316
1317 /*
1318  * The default/initial value for all object request flags is 0.  For
1319  * each flag, once its value is set to 1 it is never reset to 0
1320  * again.
1321  */
1322 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1323 {
1324         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1325                 struct rbd_device *rbd_dev;
1326
1327                 rbd_dev = obj_request->img_request->rbd_dev;
1328                 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1329                         obj_request);
1330         }
1331 }
1332
1333 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1334 {
1335         smp_mb();
1336         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1337 }
1338
1339 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1340 {
1341         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1342                 struct rbd_device *rbd_dev = NULL;
1343
1344                 if (obj_request_img_data_test(obj_request))
1345                         rbd_dev = obj_request->img_request->rbd_dev;
1346                 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1347                         obj_request);
1348         }
1349 }
1350
1351 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1352 {
1353         smp_mb();
1354         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1355 }
1356
1357 /*
1358  * This sets the KNOWN flag after (possibly) setting the EXISTS
1359  * flag.  The latter is set based on the "exists" value provided.
1360  *
1361  * Note that for our purposes once an object exists it never goes
1362  * away again.  It's possible that the response from two existence
1363  * checks are separated by the creation of the target object, and
1364  * the first ("doesn't exist") response arrives *after* the second
1365  * ("does exist").  In that case we ignore the second one.
1366  */
1367 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1368                                 bool exists)
1369 {
1370         if (exists)
1371                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1372         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1373         smp_mb();
1374 }
1375
1376 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1377 {
1378         smp_mb();
1379         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1380 }
1381
1382 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1383 {
1384         smp_mb();
1385         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1386 }
1387
1388 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1389 {
1390         struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1391
1392         return obj_request->img_offset <
1393             round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1394 }
1395
1396 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1397 {
1398         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1399                 atomic_read(&obj_request->kref.refcount));
1400         kref_get(&obj_request->kref);
1401 }
1402
1403 static void rbd_obj_request_destroy(struct kref *kref);
1404 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1405 {
1406         rbd_assert(obj_request != NULL);
1407         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1408                 atomic_read(&obj_request->kref.refcount));
1409         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1410 }
1411
1412 static void rbd_img_request_get(struct rbd_img_request *img_request)
1413 {
1414         dout("%s: img %p (was %d)\n", __func__, img_request,
1415              atomic_read(&img_request->kref.refcount));
1416         kref_get(&img_request->kref);
1417 }
1418
1419 static bool img_request_child_test(struct rbd_img_request *img_request);
1420 static void rbd_parent_request_destroy(struct kref *kref);
1421 static void rbd_img_request_destroy(struct kref *kref);
1422 static void rbd_img_request_put(struct rbd_img_request *img_request)
1423 {
1424         rbd_assert(img_request != NULL);
1425         dout("%s: img %p (was %d)\n", __func__, img_request,
1426                 atomic_read(&img_request->kref.refcount));
1427         if (img_request_child_test(img_request))
1428                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1429         else
1430                 kref_put(&img_request->kref, rbd_img_request_destroy);
1431 }
1432
1433 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1434                                         struct rbd_obj_request *obj_request)
1435 {
1436         rbd_assert(obj_request->img_request == NULL);
1437
1438         /* Image request now owns object's original reference */
1439         obj_request->img_request = img_request;
1440         obj_request->which = img_request->obj_request_count;
1441         rbd_assert(!obj_request_img_data_test(obj_request));
1442         obj_request_img_data_set(obj_request);
1443         rbd_assert(obj_request->which != BAD_WHICH);
1444         img_request->obj_request_count++;
1445         list_add_tail(&obj_request->links, &img_request->obj_requests);
1446         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1447                 obj_request->which);
1448 }
1449
1450 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1451                                         struct rbd_obj_request *obj_request)
1452 {
1453         rbd_assert(obj_request->which != BAD_WHICH);
1454
1455         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1456                 obj_request->which);
1457         list_del(&obj_request->links);
1458         rbd_assert(img_request->obj_request_count > 0);
1459         img_request->obj_request_count--;
1460         rbd_assert(obj_request->which == img_request->obj_request_count);
1461         obj_request->which = BAD_WHICH;
1462         rbd_assert(obj_request_img_data_test(obj_request));
1463         rbd_assert(obj_request->img_request == img_request);
1464         obj_request->img_request = NULL;
1465         obj_request->callback = NULL;
1466         rbd_obj_request_put(obj_request);
1467 }
1468
1469 static bool obj_request_type_valid(enum obj_request_type type)
1470 {
1471         switch (type) {
1472         case OBJ_REQUEST_NODATA:
1473         case OBJ_REQUEST_BIO:
1474         case OBJ_REQUEST_PAGES:
1475                 return true;
1476         default:
1477                 return false;
1478         }
1479 }
1480
1481 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1482                                 struct rbd_obj_request *obj_request)
1483 {
1484         dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1485
1486         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1487 }
1488
1489 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1490 {
1491
1492         dout("%s: img %p\n", __func__, img_request);
1493
1494         /*
1495          * If no error occurred, compute the aggregate transfer
1496          * count for the image request.  We could instead use
1497          * atomic64_cmpxchg() to update it as each object request
1498          * completes; not clear which way is better off hand.
1499          */
1500         if (!img_request->result) {
1501                 struct rbd_obj_request *obj_request;
1502                 u64 xferred = 0;
1503
1504                 for_each_obj_request(img_request, obj_request)
1505                         xferred += obj_request->xferred;
1506                 img_request->xferred = xferred;
1507         }
1508
1509         if (img_request->callback)
1510                 img_request->callback(img_request);
1511         else
1512                 rbd_img_request_put(img_request);
1513 }
1514
1515 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1516
1517 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1518 {
1519         dout("%s: obj %p\n", __func__, obj_request);
1520
1521         return wait_for_completion_interruptible(&obj_request->completion);
1522 }
1523
1524 /*
1525  * The default/initial value for all image request flags is 0.  Each
1526  * is conditionally set to 1 at image request initialization time
1527  * and currently never change thereafter.
1528  */
1529 static void img_request_write_set(struct rbd_img_request *img_request)
1530 {
1531         set_bit(IMG_REQ_WRITE, &img_request->flags);
1532         smp_mb();
1533 }
1534
1535 static bool img_request_write_test(struct rbd_img_request *img_request)
1536 {
1537         smp_mb();
1538         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1539 }
1540
1541 static void img_request_child_set(struct rbd_img_request *img_request)
1542 {
1543         set_bit(IMG_REQ_CHILD, &img_request->flags);
1544         smp_mb();
1545 }
1546
1547 static void img_request_child_clear(struct rbd_img_request *img_request)
1548 {
1549         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1550         smp_mb();
1551 }
1552
1553 static bool img_request_child_test(struct rbd_img_request *img_request)
1554 {
1555         smp_mb();
1556         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1557 }
1558
1559 static void img_request_layered_set(struct rbd_img_request *img_request)
1560 {
1561         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1562         smp_mb();
1563 }
1564
1565 static void img_request_layered_clear(struct rbd_img_request *img_request)
1566 {
1567         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1568         smp_mb();
1569 }
1570
1571 static bool img_request_layered_test(struct rbd_img_request *img_request)
1572 {
1573         smp_mb();
1574         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1575 }
1576
1577 static void
1578 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1579 {
1580         u64 xferred = obj_request->xferred;
1581         u64 length = obj_request->length;
1582
1583         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1584                 obj_request, obj_request->img_request, obj_request->result,
1585                 xferred, length);
1586         /*
1587          * ENOENT means a hole in the image.  We zero-fill the entire
1588          * length of the request.  A short read also implies zero-fill
1589          * to the end of the request.  An error requires the whole
1590          * length of the request to be reported finished with an error
1591          * to the block layer.  In each case we update the xferred
1592          * count to indicate the whole request was satisfied.
1593          */
1594         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1595         if (obj_request->result == -ENOENT) {
1596                 if (obj_request->type == OBJ_REQUEST_BIO)
1597                         zero_bio_chain(obj_request->bio_list, 0);
1598                 else
1599                         zero_pages(obj_request->pages, 0, length);
1600                 obj_request->result = 0;
1601         } else if (xferred < length && !obj_request->result) {
1602                 if (obj_request->type == OBJ_REQUEST_BIO)
1603                         zero_bio_chain(obj_request->bio_list, xferred);
1604                 else
1605                         zero_pages(obj_request->pages, xferred, length);
1606         }
1607         obj_request->xferred = length;
1608         obj_request_done_set(obj_request);
1609 }
1610
1611 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1612 {
1613         dout("%s: obj %p cb %p\n", __func__, obj_request,
1614                 obj_request->callback);
1615         if (obj_request->callback)
1616                 obj_request->callback(obj_request);
1617         else
1618                 complete_all(&obj_request->completion);
1619 }
1620
1621 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1622 {
1623         dout("%s: obj %p\n", __func__, obj_request);
1624         obj_request_done_set(obj_request);
1625 }
1626
1627 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1628 {
1629         struct rbd_img_request *img_request = NULL;
1630         struct rbd_device *rbd_dev = NULL;
1631         bool layered = false;
1632
1633         if (obj_request_img_data_test(obj_request)) {
1634                 img_request = obj_request->img_request;
1635                 layered = img_request && img_request_layered_test(img_request);
1636                 rbd_dev = img_request->rbd_dev;
1637         }
1638
1639         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1640                 obj_request, img_request, obj_request->result,
1641                 obj_request->xferred, obj_request->length);
1642         if (layered && obj_request->result == -ENOENT &&
1643                         obj_request->img_offset < rbd_dev->parent_overlap)
1644                 rbd_img_parent_read(obj_request);
1645         else if (img_request)
1646                 rbd_img_obj_request_read_callback(obj_request);
1647         else
1648                 obj_request_done_set(obj_request);
1649 }
1650
1651 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1652 {
1653         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1654                 obj_request->result, obj_request->length);
1655         /*
1656          * There is no such thing as a successful short write.  Set
1657          * it to our originally-requested length.
1658          */
1659         obj_request->xferred = obj_request->length;
1660         obj_request_done_set(obj_request);
1661 }
1662
1663 /*
1664  * For a simple stat call there's nothing to do.  We'll do more if
1665  * this is part of a write sequence for a layered image.
1666  */
1667 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1668 {
1669         dout("%s: obj %p\n", __func__, obj_request);
1670         obj_request_done_set(obj_request);
1671 }
1672
1673 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1674                                 struct ceph_msg *msg)
1675 {
1676         struct rbd_obj_request *obj_request = osd_req->r_priv;
1677         u16 opcode;
1678
1679         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1680         rbd_assert(osd_req == obj_request->osd_req);
1681         if (obj_request_img_data_test(obj_request)) {
1682                 rbd_assert(obj_request->img_request);
1683                 rbd_assert(obj_request->which != BAD_WHICH);
1684         } else {
1685                 rbd_assert(obj_request->which == BAD_WHICH);
1686         }
1687
1688         if (osd_req->r_result < 0)
1689                 obj_request->result = osd_req->r_result;
1690
1691         BUG_ON(osd_req->r_num_ops > 2);
1692
1693         /*
1694          * We support a 64-bit length, but ultimately it has to be
1695          * passed to blk_end_request(), which takes an unsigned int.
1696          */
1697         obj_request->xferred = osd_req->r_reply_op_len[0];
1698         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1699         opcode = osd_req->r_ops[0].op;
1700         switch (opcode) {
1701         case CEPH_OSD_OP_READ:
1702                 rbd_osd_read_callback(obj_request);
1703                 break;
1704         case CEPH_OSD_OP_WRITE:
1705                 rbd_osd_write_callback(obj_request);
1706                 break;
1707         case CEPH_OSD_OP_STAT:
1708                 rbd_osd_stat_callback(obj_request);
1709                 break;
1710         case CEPH_OSD_OP_CALL:
1711         case CEPH_OSD_OP_NOTIFY_ACK:
1712         case CEPH_OSD_OP_WATCH:
1713                 rbd_osd_trivial_callback(obj_request);
1714                 break;
1715         default:
1716                 rbd_warn(NULL, "%s: unsupported op %hu\n",
1717                         obj_request->object_name, (unsigned short) opcode);
1718                 break;
1719         }
1720
1721         if (obj_request_done_test(obj_request))
1722                 rbd_obj_request_complete(obj_request);
1723 }
1724
1725 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1726 {
1727         struct rbd_img_request *img_request = obj_request->img_request;
1728         struct ceph_osd_request *osd_req = obj_request->osd_req;
1729         u64 snap_id;
1730
1731         rbd_assert(osd_req != NULL);
1732
1733         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1734         ceph_osdc_build_request(osd_req, obj_request->offset,
1735                         NULL, snap_id, NULL);
1736 }
1737
1738 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1739 {
1740         struct rbd_img_request *img_request = obj_request->img_request;
1741         struct ceph_osd_request *osd_req = obj_request->osd_req;
1742         struct ceph_snap_context *snapc;
1743         struct timespec mtime = CURRENT_TIME;
1744
1745         rbd_assert(osd_req != NULL);
1746
1747         snapc = img_request ? img_request->snapc : NULL;
1748         ceph_osdc_build_request(osd_req, obj_request->offset,
1749                         snapc, CEPH_NOSNAP, &mtime);
1750 }
1751
1752 static struct ceph_osd_request *rbd_osd_req_create(
1753                                         struct rbd_device *rbd_dev,
1754                                         bool write_request,
1755                                         struct rbd_obj_request *obj_request)
1756 {
1757         struct ceph_snap_context *snapc = NULL;
1758         struct ceph_osd_client *osdc;
1759         struct ceph_osd_request *osd_req;
1760
1761         if (obj_request_img_data_test(obj_request)) {
1762                 struct rbd_img_request *img_request = obj_request->img_request;
1763
1764                 rbd_assert(write_request ==
1765                                 img_request_write_test(img_request));
1766                 if (write_request)
1767                         snapc = img_request->snapc;
1768         }
1769
1770         /* Allocate and initialize the request, for the single op */
1771
1772         osdc = &rbd_dev->rbd_client->client->osdc;
1773         osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1774         if (!osd_req)
1775                 return NULL;    /* ENOMEM */
1776
1777         if (write_request)
1778                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1779         else
1780                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1781
1782         osd_req->r_callback = rbd_osd_req_callback;
1783         osd_req->r_priv = obj_request;
1784
1785         osd_req->r_oid_len = strlen(obj_request->object_name);
1786         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1787         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1788
1789         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1790
1791         return osd_req;
1792 }
1793
1794 /*
1795  * Create a copyup osd request based on the information in the
1796  * object request supplied.  A copyup request has two osd ops,
1797  * a copyup method call, and a "normal" write request.
1798  */
1799 static struct ceph_osd_request *
1800 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1801 {
1802         struct rbd_img_request *img_request;
1803         struct ceph_snap_context *snapc;
1804         struct rbd_device *rbd_dev;
1805         struct ceph_osd_client *osdc;
1806         struct ceph_osd_request *osd_req;
1807
1808         rbd_assert(obj_request_img_data_test(obj_request));
1809         img_request = obj_request->img_request;
1810         rbd_assert(img_request);
1811         rbd_assert(img_request_write_test(img_request));
1812
1813         /* Allocate and initialize the request, for the two ops */
1814
1815         snapc = img_request->snapc;
1816         rbd_dev = img_request->rbd_dev;
1817         osdc = &rbd_dev->rbd_client->client->osdc;
1818         osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1819         if (!osd_req)
1820                 return NULL;    /* ENOMEM */
1821
1822         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1823         osd_req->r_callback = rbd_osd_req_callback;
1824         osd_req->r_priv = obj_request;
1825
1826         osd_req->r_oid_len = strlen(obj_request->object_name);
1827         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1828         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1829
1830         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1831
1832         return osd_req;
1833 }
1834
1835
1836 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1837 {
1838         ceph_osdc_put_request(osd_req);
1839 }
1840
1841 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1842
1843 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1844                                                 u64 offset, u64 length,
1845                                                 enum obj_request_type type)
1846 {
1847         struct rbd_obj_request *obj_request;
1848         size_t size;
1849         char *name;
1850
1851         rbd_assert(obj_request_type_valid(type));
1852
1853         size = strlen(object_name) + 1;
1854         name = kmalloc(size, GFP_KERNEL);
1855         if (!name)
1856                 return NULL;
1857
1858         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1859         if (!obj_request) {
1860                 kfree(name);
1861                 return NULL;
1862         }
1863
1864         obj_request->object_name = memcpy(name, object_name, size);
1865         obj_request->offset = offset;
1866         obj_request->length = length;
1867         obj_request->flags = 0;
1868         obj_request->which = BAD_WHICH;
1869         obj_request->type = type;
1870         INIT_LIST_HEAD(&obj_request->links);
1871         init_completion(&obj_request->completion);
1872         kref_init(&obj_request->kref);
1873
1874         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1875                 offset, length, (int)type, obj_request);
1876
1877         return obj_request;
1878 }
1879
1880 static void rbd_obj_request_destroy(struct kref *kref)
1881 {
1882         struct rbd_obj_request *obj_request;
1883
1884         obj_request = container_of(kref, struct rbd_obj_request, kref);
1885
1886         dout("%s: obj %p\n", __func__, obj_request);
1887
1888         rbd_assert(obj_request->img_request == NULL);
1889         rbd_assert(obj_request->which == BAD_WHICH);
1890
1891         if (obj_request->osd_req)
1892                 rbd_osd_req_destroy(obj_request->osd_req);
1893
1894         rbd_assert(obj_request_type_valid(obj_request->type));
1895         switch (obj_request->type) {
1896         case OBJ_REQUEST_NODATA:
1897                 break;          /* Nothing to do */
1898         case OBJ_REQUEST_BIO:
1899                 if (obj_request->bio_list)
1900                         bio_chain_put(obj_request->bio_list);
1901                 break;
1902         case OBJ_REQUEST_PAGES:
1903                 if (obj_request->pages)
1904                         ceph_release_page_vector(obj_request->pages,
1905                                                 obj_request->page_count);
1906                 break;
1907         }
1908
1909         kfree(obj_request->object_name);
1910         obj_request->object_name = NULL;
1911         kmem_cache_free(rbd_obj_request_cache, obj_request);
1912 }
1913
1914 /* It's OK to call this for a device with no parent */
1915
1916 static void rbd_spec_put(struct rbd_spec *spec);
1917 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1918 {
1919         rbd_dev_remove_parent(rbd_dev);
1920         rbd_spec_put(rbd_dev->parent_spec);
1921         rbd_dev->parent_spec = NULL;
1922         rbd_dev->parent_overlap = 0;
1923 }
1924
1925 /*
1926  * Parent image reference counting is used to determine when an
1927  * image's parent fields can be safely torn down--after there are no
1928  * more in-flight requests to the parent image.  When the last
1929  * reference is dropped, cleaning them up is safe.
1930  */
1931 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1932 {
1933         int counter;
1934
1935         if (!rbd_dev->parent_spec)
1936                 return;
1937
1938         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1939         if (counter > 0)
1940                 return;
1941
1942         /* Last reference; clean up parent data structures */
1943
1944         if (!counter)
1945                 rbd_dev_unparent(rbd_dev);
1946         else
1947                 rbd_warn(rbd_dev, "parent reference underflow\n");
1948 }
1949
1950 /*
1951  * If an image has a non-zero parent overlap, get a reference to its
1952  * parent.
1953  *
1954  * We must get the reference before checking for the overlap to
1955  * coordinate properly with zeroing the parent overlap in
1956  * rbd_dev_v2_parent_info() when an image gets flattened.  We
1957  * drop it again if there is no overlap.
1958  *
1959  * Returns true if the rbd device has a parent with a non-zero
1960  * overlap and a reference for it was successfully taken, or
1961  * false otherwise.
1962  */
1963 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1964 {
1965         int counter;
1966
1967         if (!rbd_dev->parent_spec)
1968                 return false;
1969
1970         counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1971         if (counter > 0 && rbd_dev->parent_overlap)
1972                 return true;
1973
1974         /* Image was flattened, but parent is not yet torn down */
1975
1976         if (counter < 0)
1977                 rbd_warn(rbd_dev, "parent reference overflow\n");
1978
1979         return false;
1980 }
1981
1982 /*
1983  * Caller is responsible for filling in the list of object requests
1984  * that comprises the image request, and the Linux request pointer
1985  * (if there is one).
1986  */
1987 static struct rbd_img_request *rbd_img_request_create(
1988                                         struct rbd_device *rbd_dev,
1989                                         u64 offset, u64 length,
1990                                         bool write_request)
1991 {
1992         struct rbd_img_request *img_request;
1993
1994         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1995         if (!img_request)
1996                 return NULL;
1997
1998         if (write_request) {
1999                 down_read(&rbd_dev->header_rwsem);
2000                 ceph_get_snap_context(rbd_dev->header.snapc);
2001                 up_read(&rbd_dev->header_rwsem);
2002         }
2003
2004         img_request->rq = NULL;
2005         img_request->rbd_dev = rbd_dev;
2006         img_request->offset = offset;
2007         img_request->length = length;
2008         img_request->flags = 0;
2009         if (write_request) {
2010                 img_request_write_set(img_request);
2011                 img_request->snapc = rbd_dev->header.snapc;
2012         } else {
2013                 img_request->snap_id = rbd_dev->spec->snap_id;
2014         }
2015         if (rbd_dev_parent_get(rbd_dev))
2016                 img_request_layered_set(img_request);
2017         spin_lock_init(&img_request->completion_lock);
2018         img_request->next_completion = 0;
2019         img_request->callback = NULL;
2020         img_request->result = 0;
2021         img_request->obj_request_count = 0;
2022         INIT_LIST_HEAD(&img_request->obj_requests);
2023         kref_init(&img_request->kref);
2024
2025         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2026                 write_request ? "write" : "read", offset, length,
2027                 img_request);
2028
2029         return img_request;
2030 }
2031
2032 static void rbd_img_request_destroy(struct kref *kref)
2033 {
2034         struct rbd_img_request *img_request;
2035         struct rbd_obj_request *obj_request;
2036         struct rbd_obj_request *next_obj_request;
2037
2038         img_request = container_of(kref, struct rbd_img_request, kref);
2039
2040         dout("%s: img %p\n", __func__, img_request);
2041
2042         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2043                 rbd_img_obj_request_del(img_request, obj_request);
2044         rbd_assert(img_request->obj_request_count == 0);
2045
2046         if (img_request_layered_test(img_request)) {
2047                 img_request_layered_clear(img_request);
2048                 rbd_dev_parent_put(img_request->rbd_dev);
2049         }
2050
2051         if (img_request_write_test(img_request))
2052                 ceph_put_snap_context(img_request->snapc);
2053
2054         kmem_cache_free(rbd_img_request_cache, img_request);
2055 }
2056
2057 static struct rbd_img_request *rbd_parent_request_create(
2058                                         struct rbd_obj_request *obj_request,
2059                                         u64 img_offset, u64 length)
2060 {
2061         struct rbd_img_request *parent_request;
2062         struct rbd_device *rbd_dev;
2063
2064         rbd_assert(obj_request->img_request);
2065         rbd_dev = obj_request->img_request->rbd_dev;
2066
2067         parent_request = rbd_img_request_create(rbd_dev->parent,
2068                                                 img_offset, length, false);
2069         if (!parent_request)
2070                 return NULL;
2071
2072         img_request_child_set(parent_request);
2073         rbd_obj_request_get(obj_request);
2074         parent_request->obj_request = obj_request;
2075
2076         return parent_request;
2077 }
2078
2079 static void rbd_parent_request_destroy(struct kref *kref)
2080 {
2081         struct rbd_img_request *parent_request;
2082         struct rbd_obj_request *orig_request;
2083
2084         parent_request = container_of(kref, struct rbd_img_request, kref);
2085         orig_request = parent_request->obj_request;
2086
2087         parent_request->obj_request = NULL;
2088         rbd_obj_request_put(orig_request);
2089         img_request_child_clear(parent_request);
2090
2091         rbd_img_request_destroy(kref);
2092 }
2093
2094 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2095 {
2096         struct rbd_img_request *img_request;
2097         unsigned int xferred;
2098         int result;
2099         bool more;
2100
2101         rbd_assert(obj_request_img_data_test(obj_request));
2102         img_request = obj_request->img_request;
2103
2104         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2105         xferred = (unsigned int)obj_request->xferred;
2106         result = obj_request->result;
2107         if (result) {
2108                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2109
2110                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2111                         img_request_write_test(img_request) ? "write" : "read",
2112                         obj_request->length, obj_request->img_offset,
2113                         obj_request->offset);
2114                 rbd_warn(rbd_dev, "  result %d xferred %x\n",
2115                         result, xferred);
2116                 if (!img_request->result)
2117                         img_request->result = result;
2118         }
2119
2120         /* Image object requests don't own their page array */
2121
2122         if (obj_request->type == OBJ_REQUEST_PAGES) {
2123                 obj_request->pages = NULL;
2124                 obj_request->page_count = 0;
2125         }
2126
2127         if (img_request_child_test(img_request)) {
2128                 rbd_assert(img_request->obj_request != NULL);
2129                 more = obj_request->which < img_request->obj_request_count - 1;
2130         } else {
2131                 rbd_assert(img_request->rq != NULL);
2132                 more = blk_end_request(img_request->rq, result, xferred);
2133         }
2134
2135         return more;
2136 }
2137
2138 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2139 {
2140         struct rbd_img_request *img_request;
2141         u32 which = obj_request->which;
2142         bool more = true;
2143
2144         rbd_assert(obj_request_img_data_test(obj_request));
2145         img_request = obj_request->img_request;
2146
2147         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2148         rbd_assert(img_request != NULL);
2149         rbd_assert(img_request->obj_request_count > 0);
2150         rbd_assert(which != BAD_WHICH);
2151         rbd_assert(which < img_request->obj_request_count);
2152         rbd_assert(which >= img_request->next_completion);
2153
2154         spin_lock_irq(&img_request->completion_lock);
2155         if (which != img_request->next_completion)
2156                 goto out;
2157
2158         for_each_obj_request_from(img_request, obj_request) {
2159                 rbd_assert(more);
2160                 rbd_assert(which < img_request->obj_request_count);
2161
2162                 if (!obj_request_done_test(obj_request))
2163                         break;
2164                 more = rbd_img_obj_end_request(obj_request);
2165                 which++;
2166         }
2167
2168         rbd_assert(more ^ (which == img_request->obj_request_count));
2169         img_request->next_completion = which;
2170 out:
2171         spin_unlock_irq(&img_request->completion_lock);
2172         rbd_img_request_put(img_request);
2173
2174         if (!more)
2175                 rbd_img_request_complete(img_request);
2176 }
2177
2178 /*
2179  * Split up an image request into one or more object requests, each
2180  * to a different object.  The "type" parameter indicates whether
2181  * "data_desc" is the pointer to the head of a list of bio
2182  * structures, or the base of a page array.  In either case this
2183  * function assumes data_desc describes memory sufficient to hold
2184  * all data described by the image request.
2185  */
2186 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2187                                         enum obj_request_type type,
2188                                         void *data_desc)
2189 {
2190         struct rbd_device *rbd_dev = img_request->rbd_dev;
2191         struct rbd_obj_request *obj_request = NULL;
2192         struct rbd_obj_request *next_obj_request;
2193         bool write_request = img_request_write_test(img_request);
2194         struct bio *bio_list = 0;
2195         unsigned int bio_offset = 0;
2196         struct page **pages = 0;
2197         u64 img_offset;
2198         u64 resid;
2199         u16 opcode;
2200
2201         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2202                 (int)type, data_desc);
2203
2204         opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2205         img_offset = img_request->offset;
2206         resid = img_request->length;
2207         rbd_assert(resid > 0);
2208
2209         if (type == OBJ_REQUEST_BIO) {
2210                 bio_list = data_desc;
2211                 rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
2212         } else {
2213                 rbd_assert(type == OBJ_REQUEST_PAGES);
2214                 pages = data_desc;
2215         }
2216
2217         while (resid) {
2218                 struct ceph_osd_request *osd_req;
2219                 const char *object_name;
2220                 u64 offset;
2221                 u64 length;
2222
2223                 object_name = rbd_segment_name(rbd_dev, img_offset);
2224                 if (!object_name)
2225                         goto out_unwind;
2226                 offset = rbd_segment_offset(rbd_dev, img_offset);
2227                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2228                 obj_request = rbd_obj_request_create(object_name,
2229                                                 offset, length, type);
2230                 /* object request has its own copy of the object name */
2231                 rbd_segment_name_free(object_name);
2232                 if (!obj_request)
2233                         goto out_unwind;
2234                 /*
2235                  * set obj_request->img_request before creating the
2236                  * osd_request so that it gets the right snapc
2237                  */
2238                 rbd_img_obj_request_add(img_request, obj_request);
2239
2240                 if (type == OBJ_REQUEST_BIO) {
2241                         unsigned int clone_size;
2242
2243                         rbd_assert(length <= (u64)UINT_MAX);
2244                         clone_size = (unsigned int)length;
2245                         obj_request->bio_list =
2246                                         bio_chain_clone_range(&bio_list,
2247                                                                 &bio_offset,
2248                                                                 clone_size,
2249                                                                 GFP_ATOMIC);
2250                         if (!obj_request->bio_list)
2251                                 goto out_partial;
2252                 } else {
2253                         unsigned int page_count;
2254
2255                         obj_request->pages = pages;
2256                         page_count = (u32)calc_pages_for(offset, length);
2257                         obj_request->page_count = page_count;
2258                         if ((offset + length) & ~PAGE_MASK)
2259                                 page_count--;   /* more on last page */
2260                         pages += page_count;
2261                 }
2262
2263                 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2264                                                 obj_request);
2265                 if (!osd_req)
2266                         goto out_partial;
2267                 obj_request->osd_req = osd_req;
2268                 obj_request->callback = rbd_img_obj_callback;
2269                 rbd_img_request_get(img_request);
2270
2271                 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2272                                                 0, 0);
2273                 if (type == OBJ_REQUEST_BIO)
2274                         osd_req_op_extent_osd_data_bio(osd_req, 0,
2275                                         obj_request->bio_list, length);
2276                 else
2277                         osd_req_op_extent_osd_data_pages(osd_req, 0,
2278                                         obj_request->pages, length,
2279                                         offset & ~PAGE_MASK, false, false);
2280
2281                 if (write_request)
2282                         rbd_osd_req_format_write(obj_request);
2283                 else
2284                         rbd_osd_req_format_read(obj_request);
2285
2286                 obj_request->img_offset = img_offset;
2287
2288                 img_offset += length;
2289                 resid -= length;
2290         }
2291
2292         return 0;
2293
2294 out_partial:
2295         rbd_obj_request_put(obj_request);
2296 out_unwind:
2297         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2298                 rbd_img_obj_request_del(img_request, obj_request);
2299
2300         return -ENOMEM;
2301 }
2302
2303 static void
2304 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2305 {
2306         struct rbd_img_request *img_request;
2307         struct rbd_device *rbd_dev;
2308         struct page **pages;
2309         u32 page_count;
2310
2311         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2312         rbd_assert(obj_request_img_data_test(obj_request));
2313         img_request = obj_request->img_request;
2314         rbd_assert(img_request);
2315
2316         rbd_dev = img_request->rbd_dev;
2317         rbd_assert(rbd_dev);
2318
2319         pages = obj_request->copyup_pages;
2320         rbd_assert(pages != NULL);
2321         obj_request->copyup_pages = NULL;
2322         page_count = obj_request->copyup_page_count;
2323         rbd_assert(page_count);
2324         obj_request->copyup_page_count = 0;
2325         ceph_release_page_vector(pages, page_count);
2326
2327         /*
2328          * We want the transfer count to reflect the size of the
2329          * original write request.  There is no such thing as a
2330          * successful short write, so if the request was successful
2331          * we can just set it to the originally-requested length.
2332          */
2333         if (!obj_request->result)
2334                 obj_request->xferred = obj_request->length;
2335
2336         /* Finish up with the normal image object callback */
2337
2338         rbd_img_obj_callback(obj_request);
2339 }
2340
2341 static void
2342 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2343 {
2344         struct rbd_obj_request *orig_request;
2345         struct ceph_osd_request *osd_req;
2346         struct ceph_osd_client *osdc;
2347         struct rbd_device *rbd_dev;
2348         struct page **pages;
2349         u32 page_count;
2350         int img_result;
2351         u64 parent_length;
2352         u64 offset;
2353         u64 length;
2354
2355         rbd_assert(img_request_child_test(img_request));
2356
2357         /* First get what we need from the image request */
2358
2359         pages = img_request->copyup_pages;
2360         rbd_assert(pages != NULL);
2361         img_request->copyup_pages = NULL;
2362         page_count = img_request->copyup_page_count;
2363         rbd_assert(page_count);
2364         img_request->copyup_page_count = 0;
2365
2366         orig_request = img_request->obj_request;
2367         rbd_assert(orig_request != NULL);
2368         rbd_assert(obj_request_type_valid(orig_request->type));
2369         img_result = img_request->result;
2370         parent_length = img_request->length;
2371         rbd_assert(parent_length == img_request->xferred);
2372         rbd_img_request_put(img_request);
2373
2374         rbd_assert(orig_request->img_request);
2375         rbd_dev = orig_request->img_request->rbd_dev;
2376         rbd_assert(rbd_dev);
2377
2378         /*
2379          * If the overlap has become 0 (most likely because the
2380          * image has been flattened) we need to free the pages
2381          * and re-submit the original write request.
2382          */
2383         if (!rbd_dev->parent_overlap) {
2384                 struct ceph_osd_client *osdc;
2385
2386                 ceph_release_page_vector(pages, page_count);
2387                 osdc = &rbd_dev->rbd_client->client->osdc;
2388                 img_result = rbd_obj_request_submit(osdc, orig_request);
2389                 if (!img_result)
2390                         return;
2391         }
2392
2393         if (img_result)
2394                 goto out_err;
2395
2396         /*
2397          * The original osd request is of no use to use any more.
2398          * We need a new one that can hold the two ops in a copyup
2399          * request.  Allocate the new copyup osd request for the
2400          * original request, and release the old one.
2401          */
2402         img_result = -ENOMEM;
2403         osd_req = rbd_osd_req_create_copyup(orig_request);
2404         if (!osd_req)
2405                 goto out_err;
2406         rbd_osd_req_destroy(orig_request->osd_req);
2407         orig_request->osd_req = osd_req;
2408         orig_request->copyup_pages = pages;
2409         orig_request->copyup_page_count = page_count;
2410
2411         /* Initialize the copyup op */
2412
2413         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2414         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2415                                                 false, false);
2416
2417         /* Then the original write request op */
2418
2419         offset = orig_request->offset;
2420         length = orig_request->length;
2421         osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2422                                         offset, length, 0, 0);
2423         if (orig_request->type == OBJ_REQUEST_BIO)
2424                 osd_req_op_extent_osd_data_bio(osd_req, 1,
2425                                         orig_request->bio_list, length);
2426         else
2427                 osd_req_op_extent_osd_data_pages(osd_req, 1,
2428                                         orig_request->pages, length,
2429                                         offset & ~PAGE_MASK, false, false);
2430
2431         rbd_osd_req_format_write(orig_request);
2432
2433         /* All set, send it off. */
2434
2435         orig_request->callback = rbd_img_obj_copyup_callback;
2436         osdc = &rbd_dev->rbd_client->client->osdc;
2437         img_result = rbd_obj_request_submit(osdc, orig_request);
2438         if (!img_result)
2439                 return;
2440 out_err:
2441         /* Record the error code and complete the request */
2442
2443         orig_request->result = img_result;
2444         orig_request->xferred = 0;
2445         obj_request_done_set(orig_request);
2446         rbd_obj_request_complete(orig_request);
2447 }
2448
2449 /*
2450  * Read from the parent image the range of data that covers the
2451  * entire target of the given object request.  This is used for
2452  * satisfying a layered image write request when the target of an
2453  * object request from the image request does not exist.
2454  *
2455  * A page array big enough to hold the returned data is allocated
2456  * and supplied to rbd_img_request_fill() as the "data descriptor."
2457  * When the read completes, this page array will be transferred to
2458  * the original object request for the copyup operation.
2459  *
2460  * If an error occurs, record it as the result of the original
2461  * object request and mark it done so it gets completed.
2462  */
2463 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2464 {
2465         struct rbd_img_request *img_request = NULL;
2466         struct rbd_img_request *parent_request = NULL;
2467         struct rbd_device *rbd_dev;
2468         u64 img_offset;
2469         u64 length;
2470         struct page **pages = NULL;
2471         u32 page_count;
2472         int result;
2473
2474         rbd_assert(obj_request_img_data_test(obj_request));
2475         rbd_assert(obj_request_type_valid(obj_request->type));
2476
2477         img_request = obj_request->img_request;
2478         rbd_assert(img_request != NULL);
2479         rbd_dev = img_request->rbd_dev;
2480         rbd_assert(rbd_dev->parent != NULL);
2481
2482         /*
2483          * Determine the byte range covered by the object in the
2484          * child image to which the original request was to be sent.
2485          */
2486         img_offset = obj_request->img_offset - obj_request->offset;
2487         length = (u64)1 << rbd_dev->header.obj_order;
2488
2489         /*
2490          * There is no defined parent data beyond the parent
2491          * overlap, so limit what we read at that boundary if
2492          * necessary.
2493          */
2494         if (img_offset + length > rbd_dev->parent_overlap) {
2495                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2496                 length = rbd_dev->parent_overlap - img_offset;
2497         }
2498
2499         /*
2500          * Allocate a page array big enough to receive the data read
2501          * from the parent.
2502          */
2503         page_count = (u32)calc_pages_for(0, length);
2504         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2505         if (IS_ERR(pages)) {
2506                 result = PTR_ERR(pages);
2507                 pages = NULL;
2508                 goto out_err;
2509         }
2510
2511         result = -ENOMEM;
2512         parent_request = rbd_parent_request_create(obj_request,
2513                                                 img_offset, length);
2514         if (!parent_request)
2515                 goto out_err;
2516
2517         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2518         if (result)
2519                 goto out_err;
2520         parent_request->copyup_pages = pages;
2521         parent_request->copyup_page_count = page_count;
2522
2523         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2524         result = rbd_img_request_submit(parent_request);
2525         if (!result)
2526                 return 0;
2527
2528         parent_request->copyup_pages = NULL;
2529         parent_request->copyup_page_count = 0;
2530         parent_request->obj_request = NULL;
2531         rbd_obj_request_put(obj_request);
2532 out_err:
2533         if (pages)
2534                 ceph_release_page_vector(pages, page_count);
2535         if (parent_request)
2536                 rbd_img_request_put(parent_request);
2537         obj_request->result = result;
2538         obj_request->xferred = 0;
2539         obj_request_done_set(obj_request);
2540
2541         return result;
2542 }
2543
2544 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2545 {
2546         struct rbd_obj_request *orig_request;
2547         struct rbd_device *rbd_dev;
2548         int result;
2549
2550         rbd_assert(!obj_request_img_data_test(obj_request));
2551
2552         /*
2553          * All we need from the object request is the original
2554          * request and the result of the STAT op.  Grab those, then
2555          * we're done with the request.
2556          */
2557         orig_request = obj_request->obj_request;
2558         obj_request->obj_request = NULL;
2559         rbd_assert(orig_request);
2560         rbd_assert(orig_request->img_request);
2561
2562         result = obj_request->result;
2563         obj_request->result = 0;
2564
2565         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2566                 obj_request, orig_request, result,
2567                 obj_request->xferred, obj_request->length);
2568         rbd_obj_request_put(obj_request);
2569
2570         /*
2571          * If the overlap has become 0 (most likely because the
2572          * image has been flattened) we need to free the pages
2573          * and re-submit the original write request.
2574          */
2575         rbd_dev = orig_request->img_request->rbd_dev;
2576         if (!rbd_dev->parent_overlap) {
2577                 struct ceph_osd_client *osdc;
2578
2579                 rbd_obj_request_put(orig_request);
2580                 osdc = &rbd_dev->rbd_client->client->osdc;
2581                 result = rbd_obj_request_submit(osdc, orig_request);
2582                 if (!result)
2583                         return;
2584         }
2585
2586         /*
2587          * Our only purpose here is to determine whether the object
2588          * exists, and we don't want to treat the non-existence as
2589          * an error.  If something else comes back, transfer the
2590          * error to the original request and complete it now.
2591          */
2592         if (!result) {
2593                 obj_request_existence_set(orig_request, true);
2594         } else if (result == -ENOENT) {
2595                 obj_request_existence_set(orig_request, false);
2596         } else if (result) {
2597                 orig_request->result = result;
2598                 goto out;
2599         }
2600
2601         /*
2602          * Resubmit the original request now that we have recorded
2603          * whether the target object exists.
2604          */
2605         orig_request->result = rbd_img_obj_request_submit(orig_request);
2606 out:
2607         if (orig_request->result)
2608                 rbd_obj_request_complete(orig_request);
2609         rbd_obj_request_put(orig_request);
2610 }
2611
2612 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2613 {
2614         struct rbd_obj_request *stat_request;
2615         struct rbd_device *rbd_dev;
2616         struct ceph_osd_client *osdc;
2617         struct page **pages = NULL;
2618         u32 page_count;
2619         size_t size;
2620         int ret;
2621
2622         /*
2623          * The response data for a STAT call consists of:
2624          *     le64 length;
2625          *     struct {
2626          *         le32 tv_sec;
2627          *         le32 tv_nsec;
2628          *     } mtime;
2629          */
2630         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2631         page_count = (u32)calc_pages_for(0, size);
2632         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2633         if (IS_ERR(pages))
2634                 return PTR_ERR(pages);
2635
2636         ret = -ENOMEM;
2637         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2638                                                         OBJ_REQUEST_PAGES);
2639         if (!stat_request)
2640                 goto out;
2641
2642         rbd_obj_request_get(obj_request);
2643         stat_request->obj_request = obj_request;
2644         stat_request->pages = pages;
2645         stat_request->page_count = page_count;
2646
2647         rbd_assert(obj_request->img_request);
2648         rbd_dev = obj_request->img_request->rbd_dev;
2649         stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2650                                                 stat_request);
2651         if (!stat_request->osd_req)
2652                 goto out;
2653         stat_request->callback = rbd_img_obj_exists_callback;
2654
2655         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2656         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2657                                         false, false);
2658         rbd_osd_req_format_read(stat_request);
2659
2660         osdc = &rbd_dev->rbd_client->client->osdc;
2661         ret = rbd_obj_request_submit(osdc, stat_request);
2662 out:
2663         if (ret)
2664                 rbd_obj_request_put(obj_request);
2665
2666         return ret;
2667 }
2668
2669 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2670 {
2671         struct rbd_img_request *img_request;
2672         struct rbd_device *rbd_dev;
2673         bool known;
2674
2675         rbd_assert(obj_request_img_data_test(obj_request));
2676
2677         img_request = obj_request->img_request;
2678         rbd_assert(img_request);
2679         rbd_dev = img_request->rbd_dev;
2680
2681         /*
2682          * Only writes to layered images need special handling.
2683          * Reads and non-layered writes are simple object requests.
2684          * Layered writes that start beyond the end of the overlap
2685          * with the parent have no parent data, so they too are
2686          * simple object requests.  Finally, if the target object is
2687          * known to already exist, its parent data has already been
2688          * copied, so a write to the object can also be handled as a
2689          * simple object request.
2690          */
2691         if (!img_request_write_test(img_request) ||
2692                 !img_request_layered_test(img_request) ||
2693                 !obj_request_overlaps_parent(obj_request) ||
2694                 ((known = obj_request_known_test(obj_request)) &&
2695                         obj_request_exists_test(obj_request))) {
2696
2697                 struct rbd_device *rbd_dev;
2698                 struct ceph_osd_client *osdc;
2699
2700                 rbd_dev = obj_request->img_request->rbd_dev;
2701                 osdc = &rbd_dev->rbd_client->client->osdc;
2702
2703                 return rbd_obj_request_submit(osdc, obj_request);
2704         }
2705
2706         /*
2707          * It's a layered write.  The target object might exist but
2708          * we may not know that yet.  If we know it doesn't exist,
2709          * start by reading the data for the full target object from
2710          * the parent so we can use it for a copyup to the target.
2711          */
2712         if (known)
2713                 return rbd_img_obj_parent_read_full(obj_request);
2714
2715         /* We don't know whether the target exists.  Go find out. */
2716
2717         return rbd_img_obj_exists_submit(obj_request);
2718 }
2719
2720 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2721 {
2722         struct rbd_obj_request *obj_request;
2723         struct rbd_obj_request *next_obj_request;
2724
2725         dout("%s: img %p\n", __func__, img_request);
2726         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2727                 int ret;
2728
2729                 ret = rbd_img_obj_request_submit(obj_request);
2730                 if (ret)
2731                         return ret;
2732         }
2733
2734         return 0;
2735 }
2736
2737 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2738 {
2739         struct rbd_obj_request *obj_request;
2740         struct rbd_device *rbd_dev;
2741         u64 obj_end;
2742         u64 img_xferred;
2743         int img_result;
2744
2745         rbd_assert(img_request_child_test(img_request));
2746
2747         /* First get what we need from the image request and release it */
2748
2749         obj_request = img_request->obj_request;
2750         img_xferred = img_request->xferred;
2751         img_result = img_request->result;
2752         rbd_img_request_put(img_request);
2753
2754         /*
2755          * If the overlap has become 0 (most likely because the
2756          * image has been flattened) we need to re-submit the
2757          * original request.
2758          */
2759         rbd_assert(obj_request);
2760         rbd_assert(obj_request->img_request);
2761         rbd_dev = obj_request->img_request->rbd_dev;
2762         if (!rbd_dev->parent_overlap) {
2763                 struct ceph_osd_client *osdc;
2764
2765                 osdc = &rbd_dev->rbd_client->client->osdc;
2766                 img_result = rbd_obj_request_submit(osdc, obj_request);
2767                 if (!img_result)
2768                         return;
2769         }
2770
2771         obj_request->result = img_result;
2772         if (obj_request->result)
2773                 goto out;
2774
2775         /*
2776          * We need to zero anything beyond the parent overlap
2777          * boundary.  Since rbd_img_obj_request_read_callback()
2778          * will zero anything beyond the end of a short read, an
2779          * easy way to do this is to pretend the data from the
2780          * parent came up short--ending at the overlap boundary.
2781          */
2782         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2783         obj_end = obj_request->img_offset + obj_request->length;
2784         if (obj_end > rbd_dev->parent_overlap) {
2785                 u64 xferred = 0;
2786
2787                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2788                         xferred = rbd_dev->parent_overlap -
2789                                         obj_request->img_offset;
2790
2791                 obj_request->xferred = min(img_xferred, xferred);
2792         } else {
2793                 obj_request->xferred = img_xferred;
2794         }
2795 out:
2796         rbd_img_obj_request_read_callback(obj_request);
2797         rbd_obj_request_complete(obj_request);
2798 }
2799
2800 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2801 {
2802         struct rbd_img_request *img_request;
2803         int result;
2804
2805         rbd_assert(obj_request_img_data_test(obj_request));
2806         rbd_assert(obj_request->img_request != NULL);
2807         rbd_assert(obj_request->result == (s32) -ENOENT);
2808         rbd_assert(obj_request_type_valid(obj_request->type));
2809
2810         /* rbd_read_finish(obj_request, obj_request->length); */
2811         img_request = rbd_parent_request_create(obj_request,
2812                                                 obj_request->img_offset,
2813                                                 obj_request->length);
2814         result = -ENOMEM;
2815         if (!img_request)
2816                 goto out_err;
2817
2818         if (obj_request->type == OBJ_REQUEST_BIO)
2819                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2820                                                 obj_request->bio_list);
2821         else
2822                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2823                                                 obj_request->pages);
2824         if (result)
2825                 goto out_err;
2826
2827         img_request->callback = rbd_img_parent_read_callback;
2828         result = rbd_img_request_submit(img_request);
2829         if (result)
2830                 goto out_err;
2831
2832         return;
2833 out_err:
2834         if (img_request)
2835                 rbd_img_request_put(img_request);
2836         obj_request->result = result;
2837         obj_request->xferred = 0;
2838         obj_request_done_set(obj_request);
2839 }
2840
2841 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
2842 {
2843         struct rbd_obj_request *obj_request;
2844         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2845         int ret;
2846
2847         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2848                                                         OBJ_REQUEST_NODATA);
2849         if (!obj_request)
2850                 return -ENOMEM;
2851
2852         ret = -ENOMEM;
2853         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2854         if (!obj_request->osd_req)
2855                 goto out;
2856
2857         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2858                                         notify_id, 0, 0);
2859         rbd_osd_req_format_read(obj_request);
2860
2861         ret = rbd_obj_request_submit(osdc, obj_request);
2862         if (ret)
2863                 goto out;
2864         ret = rbd_obj_request_wait(obj_request);
2865 out:
2866         rbd_obj_request_put(obj_request);
2867
2868         return ret;
2869 }
2870
2871 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2872 {
2873         struct rbd_device *rbd_dev = (struct rbd_device *)data;
2874         int ret;
2875
2876         if (!rbd_dev)
2877                 return;
2878
2879         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2880                 rbd_dev->header_name, (unsigned long long)notify_id,
2881                 (unsigned int)opcode);
2882         ret = rbd_dev_refresh(rbd_dev);
2883         if (ret)
2884                 rbd_warn(rbd_dev, ": header refresh error (%d)\n", ret);
2885
2886         rbd_obj_notify_ack_sync(rbd_dev, notify_id);
2887 }
2888
2889 /*
2890  * Request sync osd watch/unwatch.  The value of "start" determines
2891  * whether a watch request is being initiated or torn down.
2892  */
2893 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start)
2894 {
2895         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2896         struct rbd_obj_request *obj_request;
2897         int ret;
2898
2899         rbd_assert(start ^ !!rbd_dev->watch_event);
2900         rbd_assert(start ^ !!rbd_dev->watch_request);
2901
2902         if (start) {
2903                 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2904                                                 &rbd_dev->watch_event);
2905                 if (ret < 0)
2906                         return ret;
2907                 rbd_assert(rbd_dev->watch_event != NULL);
2908         }
2909
2910         ret = -ENOMEM;
2911         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2912                                                         OBJ_REQUEST_NODATA);
2913         if (!obj_request)
2914                 goto out_cancel;
2915
2916         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2917         if (!obj_request->osd_req)
2918                 goto out_cancel;
2919
2920         if (start)
2921                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2922         else
2923                 ceph_osdc_unregister_linger_request(osdc,
2924                                         rbd_dev->watch_request->osd_req);
2925
2926         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2927                                 rbd_dev->watch_event->cookie, 0, start ? 1 : 0);
2928         rbd_osd_req_format_write(obj_request);
2929
2930         ret = rbd_obj_request_submit(osdc, obj_request);
2931         if (ret)
2932                 goto out_cancel;
2933         ret = rbd_obj_request_wait(obj_request);
2934         if (ret)
2935                 goto out_cancel;
2936         ret = obj_request->result;
2937         if (ret)
2938                 goto out_cancel;
2939
2940         /*
2941          * A watch request is set to linger, so the underlying osd
2942          * request won't go away until we unregister it.  We retain
2943          * a pointer to the object request during that time (in
2944          * rbd_dev->watch_request), so we'll keep a reference to
2945          * it.  We'll drop that reference (below) after we've
2946          * unregistered it.
2947          */
2948         if (start) {
2949                 rbd_dev->watch_request = obj_request;
2950
2951                 return 0;
2952         }
2953
2954         /* We have successfully torn down the watch request */
2955
2956         rbd_obj_request_put(rbd_dev->watch_request);
2957         rbd_dev->watch_request = NULL;
2958 out_cancel:
2959         /* Cancel the event if we're tearing down, or on error */
2960         ceph_osdc_cancel_event(rbd_dev->watch_event);
2961         rbd_dev->watch_event = NULL;
2962         if (obj_request)
2963                 rbd_obj_request_put(obj_request);
2964
2965         return ret;
2966 }
2967
2968 /*
2969  * Synchronous osd object method call.  Returns the number of bytes
2970  * returned in the outbound buffer, or a negative error code.
2971  */
2972 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2973                              const char *object_name,
2974                              const char *class_name,
2975                              const char *method_name,
2976                              const void *outbound,
2977                              size_t outbound_size,
2978                              void *inbound,
2979                              size_t inbound_size)
2980 {
2981         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2982         struct rbd_obj_request *obj_request;
2983         struct page **pages;
2984         u32 page_count;
2985         int ret;
2986
2987         /*
2988          * Method calls are ultimately read operations.  The result
2989          * should placed into the inbound buffer provided.  They
2990          * also supply outbound data--parameters for the object
2991          * method.  Currently if this is present it will be a
2992          * snapshot id.
2993          */
2994         page_count = (u32)calc_pages_for(0, inbound_size);
2995         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2996         if (IS_ERR(pages))
2997                 return PTR_ERR(pages);
2998
2999         ret = -ENOMEM;
3000         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3001                                                         OBJ_REQUEST_PAGES);
3002         if (!obj_request)
3003                 goto out;
3004
3005         obj_request->pages = pages;
3006         obj_request->page_count = page_count;
3007
3008         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3009         if (!obj_request->osd_req)
3010                 goto out;
3011
3012         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3013                                         class_name, method_name);
3014         if (outbound_size) {
3015                 struct ceph_pagelist *pagelist;
3016
3017                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3018                 if (!pagelist)
3019                         goto out;
3020
3021                 ceph_pagelist_init(pagelist);
3022                 ceph_pagelist_append(pagelist, outbound, outbound_size);
3023                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3024                                                 pagelist);
3025         }
3026         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3027                                         obj_request->pages, inbound_size,
3028                                         0, false, false);
3029         rbd_osd_req_format_read(obj_request);
3030
3031         ret = rbd_obj_request_submit(osdc, obj_request);
3032         if (ret)
3033                 goto out;
3034         ret = rbd_obj_request_wait(obj_request);
3035         if (ret)
3036                 goto out;
3037
3038         ret = obj_request->result;
3039         if (ret < 0)
3040                 goto out;
3041
3042         rbd_assert(obj_request->xferred < (u64)INT_MAX);
3043         ret = (int)obj_request->xferred;
3044         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3045 out:
3046         if (obj_request)
3047                 rbd_obj_request_put(obj_request);
3048         else
3049                 ceph_release_page_vector(pages, page_count);
3050
3051         return ret;
3052 }
3053
3054 static void rbd_request_fn(struct request_queue *q)
3055                 __releases(q->queue_lock) __acquires(q->queue_lock)
3056 {
3057         struct rbd_device *rbd_dev = q->queuedata;
3058         bool read_only = rbd_dev->mapping.read_only;
3059         struct request *rq;
3060         int result;
3061
3062         while ((rq = blk_fetch_request(q))) {
3063                 bool write_request = rq_data_dir(rq) == WRITE;
3064                 struct rbd_img_request *img_request;
3065                 u64 offset;
3066                 u64 length;
3067
3068                 /* Ignore any non-FS requests that filter through. */
3069
3070                 if (rq->cmd_type != REQ_TYPE_FS) {
3071                         dout("%s: non-fs request type %d\n", __func__,
3072                                 (int) rq->cmd_type);
3073                         __blk_end_request_all(rq, 0);
3074                         continue;
3075                 }
3076
3077                 /* Ignore/skip any zero-length requests */
3078
3079                 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3080                 length = (u64) blk_rq_bytes(rq);
3081
3082                 if (!length) {
3083                         dout("%s: zero-length request\n", __func__);
3084                         __blk_end_request_all(rq, 0);
3085                         continue;
3086                 }
3087
3088                 spin_unlock_irq(q->queue_lock);
3089
3090                 /* Disallow writes to a read-only device */
3091
3092                 if (write_request) {
3093                         result = -EROFS;
3094                         if (read_only)
3095                                 goto end_request;
3096                         rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3097                 }
3098
3099                 /*
3100                  * Quit early if the mapped snapshot no longer
3101                  * exists.  It's still possible the snapshot will
3102                  * have disappeared by the time our request arrives
3103                  * at the osd, but there's no sense in sending it if
3104                  * we already know.
3105                  */
3106                 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3107                         dout("request for non-existent snapshot");
3108                         rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3109                         result = -ENXIO;
3110                         goto end_request;
3111                 }
3112
3113                 result = -EINVAL;
3114                 if (offset && length > U64_MAX - offset + 1) {
3115                         rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3116                                 offset, length);
3117                         goto end_request;       /* Shouldn't happen */
3118                 }
3119
3120                 result = -EIO;
3121                 if (offset + length > rbd_dev->mapping.size) {
3122                         rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3123                                 offset, length, rbd_dev->mapping.size);
3124                         goto end_request;
3125                 }
3126
3127                 result = -ENOMEM;
3128                 img_request = rbd_img_request_create(rbd_dev, offset, length,
3129                                                         write_request);
3130                 if (!img_request)
3131                         goto end_request;
3132
3133                 img_request->rq = rq;
3134
3135                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3136                                                 rq->bio);
3137                 if (!result)
3138                         result = rbd_img_request_submit(img_request);
3139                 if (result)
3140                         rbd_img_request_put(img_request);
3141 end_request:
3142                 spin_lock_irq(q->queue_lock);
3143                 if (result < 0) {
3144                         rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3145                                 write_request ? "write" : "read",
3146                                 length, offset, result);
3147
3148                         __blk_end_request_all(rq, result);
3149                 }
3150         }
3151 }
3152
3153 /*
3154  * a queue callback. Makes sure that we don't create a bio that spans across
3155  * multiple osd objects. One exception would be with a single page bios,
3156  * which we handle later at bio_chain_clone_range()
3157  */
3158 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3159                           struct bio_vec *bvec)
3160 {
3161         struct rbd_device *rbd_dev = q->queuedata;
3162         sector_t sector_offset;
3163         sector_t sectors_per_obj;
3164         sector_t obj_sector_offset;
3165         int ret;
3166
3167         /*
3168          * Find how far into its rbd object the partition-relative
3169          * bio start sector is to offset relative to the enclosing
3170          * device.
3171          */
3172         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3173         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3174         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3175
3176         /*
3177          * Compute the number of bytes from that offset to the end
3178          * of the object.  Account for what's already used by the bio.
3179          */
3180         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3181         if (ret > bmd->bi_size)
3182                 ret -= bmd->bi_size;
3183         else
3184                 ret = 0;
3185
3186         /*
3187          * Don't send back more than was asked for.  And if the bio
3188          * was empty, let the whole thing through because:  "Note
3189          * that a block device *must* allow a single page to be
3190          * added to an empty bio."
3191          */
3192         rbd_assert(bvec->bv_len <= PAGE_SIZE);
3193         if (ret > (int) bvec->bv_len || !bmd->bi_size)
3194                 ret = (int) bvec->bv_len;
3195
3196         return ret;
3197 }
3198
3199 static void rbd_free_disk(struct rbd_device *rbd_dev)
3200 {
3201         struct gendisk *disk = rbd_dev->disk;
3202
3203         if (!disk)
3204                 return;
3205
3206         rbd_dev->disk = NULL;
3207         if (disk->flags & GENHD_FL_UP) {
3208                 del_gendisk(disk);
3209                 if (disk->queue)
3210                         blk_cleanup_queue(disk->queue);
3211         }
3212         put_disk(disk);
3213 }
3214
3215 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3216                                 const char *object_name,
3217                                 u64 offset, u64 length, void *buf)
3218
3219 {
3220         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3221         struct rbd_obj_request *obj_request;
3222         struct page **pages = NULL;
3223         u32 page_count;
3224         size_t size;
3225         int ret;
3226
3227         page_count = (u32) calc_pages_for(offset, length);
3228         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3229         if (IS_ERR(pages))
3230                 return PTR_ERR(pages);
3231
3232         ret = -ENOMEM;
3233         obj_request = rbd_obj_request_create(object_name, offset, length,
3234                                                         OBJ_REQUEST_PAGES);
3235         if (!obj_request)
3236                 goto out;
3237
3238         obj_request->pages = pages;
3239         obj_request->page_count = page_count;
3240
3241         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3242         if (!obj_request->osd_req)
3243                 goto out;
3244
3245         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3246                                         offset, length, 0, 0);
3247         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3248                                         obj_request->pages,
3249                                         obj_request->length,
3250                                         obj_request->offset & ~PAGE_MASK,
3251                                         false, false);
3252         rbd_osd_req_format_read(obj_request);
3253
3254         ret = rbd_obj_request_submit(osdc, obj_request);
3255         if (ret)
3256                 goto out;
3257         ret = rbd_obj_request_wait(obj_request);
3258         if (ret)
3259                 goto out;
3260
3261         ret = obj_request->result;
3262         if (ret < 0)
3263                 goto out;
3264
3265         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3266         size = (size_t) obj_request->xferred;
3267         ceph_copy_from_page_vector(pages, buf, 0, size);
3268         rbd_assert(size <= (size_t)INT_MAX);
3269         ret = (int)size;
3270 out:
3271         if (obj_request)
3272                 rbd_obj_request_put(obj_request);
3273         else
3274                 ceph_release_page_vector(pages, page_count);
3275
3276         return ret;
3277 }
3278
3279 /*
3280  * Read the complete header for the given rbd device.  On successful
3281  * return, the rbd_dev->header field will contain up-to-date
3282  * information about the image.
3283  */
3284 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3285 {
3286         struct rbd_image_header_ondisk *ondisk = NULL;
3287         u32 snap_count = 0;
3288         u64 names_size = 0;
3289         u32 want_count;
3290         int ret;
3291
3292         /*
3293          * The complete header will include an array of its 64-bit
3294          * snapshot ids, followed by the names of those snapshots as
3295          * a contiguous block of NUL-terminated strings.  Note that
3296          * the number of snapshots could change by the time we read
3297          * it in, in which case we re-read it.
3298          */
3299         do {
3300                 size_t size;
3301
3302                 kfree(ondisk);
3303
3304                 size = sizeof (*ondisk);
3305                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3306                 size += names_size;
3307                 ondisk = kmalloc(size, GFP_KERNEL);
3308                 if (!ondisk)
3309                         return -ENOMEM;
3310
3311                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3312                                        0, size, ondisk);
3313                 if (ret < 0)
3314                         goto out;
3315                 if ((size_t)ret < size) {
3316                         ret = -ENXIO;
3317                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3318                                 size, ret);
3319                         goto out;
3320                 }
3321                 if (!rbd_dev_ondisk_valid(ondisk)) {
3322                         ret = -ENXIO;
3323                         rbd_warn(rbd_dev, "invalid header");
3324                         goto out;
3325                 }
3326
3327                 names_size = le64_to_cpu(ondisk->snap_names_len);
3328                 want_count = snap_count;
3329                 snap_count = le32_to_cpu(ondisk->snap_count);
3330         } while (snap_count != want_count);
3331
3332         ret = rbd_header_from_disk(rbd_dev, ondisk);
3333 out:
3334         kfree(ondisk);
3335
3336         return ret;
3337 }
3338
3339 /*
3340  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3341  * has disappeared from the (just updated) snapshot context.
3342  */
3343 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3344 {
3345         u64 snap_id;
3346
3347         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3348                 return;
3349
3350         snap_id = rbd_dev->spec->snap_id;
3351         if (snap_id == CEPH_NOSNAP)
3352                 return;
3353
3354         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3355                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3356 }
3357
3358 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3359 {
3360         sector_t size;
3361         bool removing;
3362
3363         /*
3364          * Don't hold the lock while doing disk operations,
3365          * or lock ordering will conflict with the bdev mutex via:
3366          * rbd_add() -> blkdev_get() -> rbd_open()
3367          */
3368         spin_lock_irq(&rbd_dev->lock);
3369         removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3370         spin_unlock_irq(&rbd_dev->lock);
3371         /*
3372          * If the device is being removed, rbd_dev->disk has
3373          * been destroyed, so don't try to update its size
3374          */
3375         if (!removing) {
3376                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3377                 dout("setting size to %llu sectors", (unsigned long long)size);
3378                 set_capacity(rbd_dev->disk, size);
3379                 revalidate_disk(rbd_dev->disk);
3380         }
3381 }
3382
3383 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3384 {
3385         u64 mapping_size;
3386         int ret;
3387
3388         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3389         mapping_size = rbd_dev->mapping.size;
3390         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3391         if (rbd_dev->image_format == 1)
3392                 ret = rbd_dev_v1_header_info(rbd_dev);
3393         else
3394                 ret = rbd_dev_v2_header_info(rbd_dev);
3395
3396         /* If it's a mapped snapshot, validate its EXISTS flag */
3397
3398         rbd_exists_validate(rbd_dev);
3399         mutex_unlock(&ctl_mutex);
3400         if (mapping_size != rbd_dev->mapping.size) {
3401                 rbd_dev_update_size(rbd_dev);
3402         }
3403
3404         return ret;
3405 }
3406
3407 static int rbd_init_disk(struct rbd_device *rbd_dev)
3408 {
3409         struct gendisk *disk;
3410         struct request_queue *q;
3411         u64 segment_size;
3412
3413         /* create gendisk info */
3414         disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3415         if (!disk)
3416                 return -ENOMEM;
3417
3418         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3419                  rbd_dev->dev_id);
3420         disk->major = rbd_dev->major;
3421         disk->first_minor = 0;
3422         disk->fops = &rbd_bd_ops;
3423         disk->private_data = rbd_dev;
3424
3425         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3426         if (!q)
3427                 goto out_disk;
3428
3429         /* We use the default size, but let's be explicit about it. */
3430         blk_queue_physical_block_size(q, SECTOR_SIZE);
3431
3432         /* set io sizes to object size */
3433         segment_size = rbd_obj_bytes(&rbd_dev->header);
3434         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3435         blk_queue_max_segment_size(q, segment_size);
3436         blk_queue_io_min(q, segment_size);
3437         blk_queue_io_opt(q, segment_size);
3438
3439         blk_queue_merge_bvec(q, rbd_merge_bvec);
3440         disk->queue = q;
3441
3442         q->queuedata = rbd_dev;
3443
3444         rbd_dev->disk = disk;
3445
3446         return 0;
3447 out_disk:
3448         put_disk(disk);
3449
3450         return -ENOMEM;
3451 }
3452
3453 /*
3454   sysfs
3455 */
3456
3457 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3458 {
3459         return container_of(dev, struct rbd_device, dev);
3460 }
3461
3462 static ssize_t rbd_size_show(struct device *dev,
3463                              struct device_attribute *attr, char *buf)
3464 {
3465         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3466
3467         return sprintf(buf, "%llu\n",
3468                 (unsigned long long)rbd_dev->mapping.size);
3469 }
3470
3471 /*
3472  * Note this shows the features for whatever's mapped, which is not
3473  * necessarily the base image.
3474  */
3475 static ssize_t rbd_features_show(struct device *dev,
3476                              struct device_attribute *attr, char *buf)
3477 {
3478         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3479
3480         return sprintf(buf, "0x%016llx\n",
3481                         (unsigned long long)rbd_dev->mapping.features);
3482 }
3483
3484 static ssize_t rbd_major_show(struct device *dev,
3485                               struct device_attribute *attr, char *buf)
3486 {
3487         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3488
3489         if (rbd_dev->major)
3490                 return sprintf(buf, "%d\n", rbd_dev->major);
3491
3492         return sprintf(buf, "(none)\n");
3493
3494 }
3495
3496 static ssize_t rbd_client_id_show(struct device *dev,
3497                                   struct device_attribute *attr, char *buf)
3498 {
3499         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3500
3501         return sprintf(buf, "client%lld\n",
3502                         ceph_client_id(rbd_dev->rbd_client->client));
3503 }
3504
3505 static ssize_t rbd_pool_show(struct device *dev,
3506                              struct device_attribute *attr, char *buf)
3507 {
3508         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3509
3510         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3511 }
3512
3513 static ssize_t rbd_pool_id_show(struct device *dev,
3514                              struct device_attribute *attr, char *buf)
3515 {
3516         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3517
3518         return sprintf(buf, "%llu\n",
3519                         (unsigned long long) rbd_dev->spec->pool_id);
3520 }
3521
3522 static ssize_t rbd_name_show(struct device *dev,
3523                              struct device_attribute *attr, char *buf)
3524 {
3525         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3526
3527         if (rbd_dev->spec->image_name)
3528                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3529
3530         return sprintf(buf, "(unknown)\n");
3531 }
3532
3533 static ssize_t rbd_image_id_show(struct device *dev,
3534                              struct device_attribute *attr, char *buf)
3535 {
3536         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3537
3538         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3539 }
3540
3541 /*
3542  * Shows the name of the currently-mapped snapshot (or
3543  * RBD_SNAP_HEAD_NAME for the base image).
3544  */
3545 static ssize_t rbd_snap_show(struct device *dev,
3546                              struct device_attribute *attr,
3547                              char *buf)
3548 {
3549         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3550
3551         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3552 }
3553
3554 /*
3555  * For an rbd v2 image, shows the pool id, image id, and snapshot id
3556  * for the parent image.  If there is no parent, simply shows
3557  * "(no parent image)".
3558  */
3559 static ssize_t rbd_parent_show(struct device *dev,
3560                              struct device_attribute *attr,
3561                              char *buf)
3562 {
3563         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3564         struct rbd_spec *spec = rbd_dev->parent_spec;
3565         int count;
3566         char *bufp = buf;
3567
3568         if (!spec)
3569                 return sprintf(buf, "(no parent image)\n");
3570
3571         count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3572                         (unsigned long long) spec->pool_id, spec->pool_name);
3573         if (count < 0)
3574                 return count;
3575         bufp += count;
3576
3577         count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3578                         spec->image_name ? spec->image_name : "(unknown)");
3579         if (count < 0)
3580                 return count;
3581         bufp += count;
3582
3583         count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3584                         (unsigned long long) spec->snap_id, spec->snap_name);
3585         if (count < 0)
3586                 return count;
3587         bufp += count;
3588
3589         count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3590         if (count < 0)
3591                 return count;
3592         bufp += count;
3593
3594         return (ssize_t) (bufp - buf);
3595 }
3596
3597 static ssize_t rbd_image_refresh(struct device *dev,
3598                                  struct device_attribute *attr,
3599                                  const char *buf,
3600                                  size_t size)
3601 {
3602         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3603         int ret;
3604
3605         ret = rbd_dev_refresh(rbd_dev);
3606         if (ret)
3607                 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3608
3609         return ret < 0 ? ret : size;
3610 }
3611
3612 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3613 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3614 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3615 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3616 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3617 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3618 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3619 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3620 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3621 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3622 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3623
3624 static struct attribute *rbd_attrs[] = {
3625         &dev_attr_size.attr,
3626         &dev_attr_features.attr,
3627         &dev_attr_major.attr,
3628         &dev_attr_client_id.attr,
3629         &dev_attr_pool.attr,
3630         &dev_attr_pool_id.attr,
3631         &dev_attr_name.attr,
3632         &dev_attr_image_id.attr,
3633         &dev_attr_current_snap.attr,
3634         &dev_attr_parent.attr,
3635         &dev_attr_refresh.attr,
3636         NULL
3637 };
3638
3639 static struct attribute_group rbd_attr_group = {
3640         .attrs = rbd_attrs,
3641 };
3642
3643 static const struct attribute_group *rbd_attr_groups[] = {
3644         &rbd_attr_group,
3645         NULL
3646 };
3647
3648 static void rbd_sysfs_dev_release(struct device *dev)
3649 {
3650 }
3651
3652 static struct device_type rbd_device_type = {
3653         .name           = "rbd",
3654         .groups         = rbd_attr_groups,
3655         .release        = rbd_sysfs_dev_release,
3656 };
3657
3658 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3659 {
3660         kref_get(&spec->kref);
3661
3662         return spec;
3663 }
3664
3665 static void rbd_spec_free(struct kref *kref);
3666 static void rbd_spec_put(struct rbd_spec *spec)
3667 {
3668         if (spec)
3669                 kref_put(&spec->kref, rbd_spec_free);
3670 }
3671
3672 static struct rbd_spec *rbd_spec_alloc(void)
3673 {
3674         struct rbd_spec *spec;
3675
3676         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3677         if (!spec)
3678                 return NULL;
3679         kref_init(&spec->kref);
3680
3681         return spec;
3682 }
3683
3684 static void rbd_spec_free(struct kref *kref)
3685 {
3686         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3687
3688         kfree(spec->pool_name);
3689         kfree(spec->image_id);
3690         kfree(spec->image_name);
3691         kfree(spec->snap_name);
3692         kfree(spec);
3693 }
3694
3695 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3696                                 struct rbd_spec *spec)
3697 {
3698         struct rbd_device *rbd_dev;
3699
3700         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3701         if (!rbd_dev)
3702                 return NULL;
3703
3704         spin_lock_init(&rbd_dev->lock);
3705         rbd_dev->flags = 0;
3706         atomic_set(&rbd_dev->parent_ref, 0);
3707         INIT_LIST_HEAD(&rbd_dev->node);
3708         init_rwsem(&rbd_dev->header_rwsem);
3709
3710         rbd_dev->spec = spec;
3711         rbd_dev->rbd_client = rbdc;
3712
3713         /* Initialize the layout used for all rbd requests */
3714
3715         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3716         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3717         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3718         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3719
3720         return rbd_dev;
3721 }
3722
3723 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3724 {
3725         rbd_put_client(rbd_dev->rbd_client);
3726         rbd_spec_put(rbd_dev->spec);
3727         kfree(rbd_dev);
3728 }
3729
3730 /*
3731  * Get the size and object order for an image snapshot, or if
3732  * snap_id is CEPH_NOSNAP, gets this information for the base
3733  * image.
3734  */
3735 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3736                                 u8 *order, u64 *snap_size)
3737 {
3738         __le64 snapid = cpu_to_le64(snap_id);
3739         int ret;
3740         struct {
3741                 u8 order;
3742                 __le64 size;
3743         } __attribute__ ((packed)) size_buf = { 0 };
3744
3745         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3746                                 "rbd", "get_size",
3747                                 &snapid, sizeof (snapid),
3748                                 &size_buf, sizeof (size_buf));
3749         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3750         if (ret < 0)
3751                 return ret;
3752         if (ret < sizeof (size_buf))
3753                 return -ERANGE;
3754
3755         if (order) {
3756                 *order = size_buf.order;
3757                 dout("  order %u", (unsigned int)*order);
3758         }
3759         *snap_size = le64_to_cpu(size_buf.size);
3760
3761         dout("  snap_id 0x%016llx snap_size = %llu\n",
3762                 (unsigned long long)snap_id,
3763                 (unsigned long long)*snap_size);
3764
3765         return 0;
3766 }
3767
3768 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3769 {
3770         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3771                                         &rbd_dev->header.obj_order,
3772                                         &rbd_dev->header.image_size);
3773 }
3774
3775 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3776 {
3777         void *reply_buf;
3778         int ret;
3779         void *p;
3780
3781         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3782         if (!reply_buf)
3783                 return -ENOMEM;
3784
3785         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3786                                 "rbd", "get_object_prefix", NULL, 0,
3787                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3788         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3789         if (ret < 0)
3790                 goto out;
3791
3792         p = reply_buf;
3793         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3794                                                 p + ret, NULL, GFP_NOIO);
3795         ret = 0;
3796
3797         if (IS_ERR(rbd_dev->header.object_prefix)) {
3798                 ret = PTR_ERR(rbd_dev->header.object_prefix);
3799                 rbd_dev->header.object_prefix = NULL;
3800         } else {
3801                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3802         }
3803 out:
3804         kfree(reply_buf);
3805
3806         return ret;
3807 }
3808
3809 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3810                 u64 *snap_features)
3811 {
3812         __le64 snapid = cpu_to_le64(snap_id);
3813         struct {
3814                 __le64 features;
3815                 __le64 incompat;
3816         } __attribute__ ((packed)) features_buf = { 0 };
3817         u64 incompat;
3818         int ret;
3819
3820         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3821                                 "rbd", "get_features",
3822                                 &snapid, sizeof (snapid),
3823                                 &features_buf, sizeof (features_buf));
3824         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3825         if (ret < 0)
3826                 return ret;
3827         if (ret < sizeof (features_buf))
3828                 return -ERANGE;
3829
3830         incompat = le64_to_cpu(features_buf.incompat);
3831         if (incompat & ~RBD_FEATURES_SUPPORTED)
3832                 return -ENXIO;
3833
3834         *snap_features = le64_to_cpu(features_buf.features);
3835
3836         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3837                 (unsigned long long)snap_id,
3838                 (unsigned long long)*snap_features,
3839                 (unsigned long long)le64_to_cpu(features_buf.incompat));
3840
3841         return 0;
3842 }
3843
3844 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3845 {
3846         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3847                                                 &rbd_dev->header.features);
3848 }
3849
3850 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3851 {
3852         struct rbd_spec *parent_spec;
3853         size_t size;
3854         void *reply_buf = NULL;
3855         __le64 snapid;
3856         void *p;
3857         void *end;
3858         u64 pool_id;
3859         char *image_id;
3860         u64 overlap;
3861         int ret;
3862
3863         parent_spec = rbd_spec_alloc();
3864         if (!parent_spec)
3865                 return -ENOMEM;
3866
3867         size = sizeof (__le64) +                                /* pool_id */
3868                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
3869                 sizeof (__le64) +                               /* snap_id */
3870                 sizeof (__le64);                                /* overlap */
3871         reply_buf = kmalloc(size, GFP_KERNEL);
3872         if (!reply_buf) {
3873                 ret = -ENOMEM;
3874                 goto out_err;
3875         }
3876
3877         snapid = cpu_to_le64(CEPH_NOSNAP);
3878         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3879                                 "rbd", "get_parent",
3880                                 &snapid, sizeof (snapid),
3881                                 reply_buf, size);
3882         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3883         if (ret < 0)
3884                 goto out_err;
3885
3886         p = reply_buf;
3887         end = reply_buf + ret;
3888         ret = -ERANGE;
3889         ceph_decode_64_safe(&p, end, pool_id, out_err);
3890         if (pool_id == CEPH_NOPOOL) {
3891                 /*
3892                  * Either the parent never existed, or we have
3893                  * record of it but the image got flattened so it no
3894                  * longer has a parent.  When the parent of a
3895                  * layered image disappears we immediately set the
3896                  * overlap to 0.  The effect of this is that all new
3897                  * requests will be treated as if the image had no
3898                  * parent.
3899                  */
3900                 if (rbd_dev->parent_overlap) {
3901                         rbd_dev->parent_overlap = 0;
3902                         smp_mb();
3903                         rbd_dev_parent_put(rbd_dev);
3904                         pr_info("%s: clone image has been flattened\n",
3905                                 rbd_dev->disk->disk_name);
3906                 }
3907
3908                 goto out;       /* No parent?  No problem. */
3909         }
3910
3911         /* The ceph file layout needs to fit pool id in 32 bits */
3912
3913         ret = -EIO;
3914         if (pool_id > (u64)U32_MAX) {
3915                 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3916                         (unsigned long long)pool_id, U32_MAX);
3917                 goto out_err;
3918         }
3919         parent_spec->pool_id = pool_id;
3920
3921         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3922         if (IS_ERR(image_id)) {
3923                 ret = PTR_ERR(image_id);
3924                 goto out_err;
3925         }
3926         parent_spec->image_id = image_id;
3927         ceph_decode_64_safe(&p, end, parent_spec->snap_id, out_err);
3928         ceph_decode_64_safe(&p, end, overlap, out_err);
3929
3930         if (overlap) {
3931                 rbd_spec_put(rbd_dev->parent_spec);
3932                 rbd_dev->parent_spec = parent_spec;
3933                 parent_spec = NULL;     /* rbd_dev now owns this */
3934                 rbd_dev->parent_overlap = overlap;
3935         } else {
3936                 rbd_warn(rbd_dev, "ignoring parent of clone with overlap 0\n");
3937         }
3938 out:
3939         ret = 0;
3940 out_err:
3941         kfree(reply_buf);
3942         rbd_spec_put(parent_spec);
3943
3944         return ret;
3945 }
3946
3947 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3948 {
3949         struct {
3950                 __le64 stripe_unit;
3951                 __le64 stripe_count;
3952         } __attribute__ ((packed)) striping_info_buf = { 0 };
3953         size_t size = sizeof (striping_info_buf);
3954         void *p;
3955         u64 obj_size;
3956         u64 stripe_unit;
3957         u64 stripe_count;
3958         int ret;
3959
3960         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3961                                 "rbd", "get_stripe_unit_count", NULL, 0,
3962                                 (char *)&striping_info_buf, size);
3963         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3964         if (ret < 0)
3965                 return ret;
3966         if (ret < size)
3967                 return -ERANGE;
3968
3969         /*
3970          * We don't actually support the "fancy striping" feature
3971          * (STRIPINGV2) yet, but if the striping sizes are the
3972          * defaults the behavior is the same as before.  So find
3973          * out, and only fail if the image has non-default values.
3974          */
3975         ret = -EINVAL;
3976         obj_size = (u64)1 << rbd_dev->header.obj_order;
3977         p = &striping_info_buf;
3978         stripe_unit = ceph_decode_64(&p);
3979         if (stripe_unit != obj_size) {
3980                 rbd_warn(rbd_dev, "unsupported stripe unit "
3981                                 "(got %llu want %llu)",
3982                                 stripe_unit, obj_size);
3983                 return -EINVAL;
3984         }
3985         stripe_count = ceph_decode_64(&p);
3986         if (stripe_count != 1) {
3987                 rbd_warn(rbd_dev, "unsupported stripe count "
3988                                 "(got %llu want 1)", stripe_count);
3989                 return -EINVAL;
3990         }
3991         rbd_dev->header.stripe_unit = stripe_unit;
3992         rbd_dev->header.stripe_count = stripe_count;
3993
3994         return 0;
3995 }
3996
3997 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
3998 {
3999         size_t image_id_size;
4000         char *image_id;
4001         void *p;
4002         void *end;
4003         size_t size;
4004         void *reply_buf = NULL;
4005         size_t len = 0;
4006         char *image_name = NULL;
4007         int ret;
4008
4009         rbd_assert(!rbd_dev->spec->image_name);
4010
4011         len = strlen(rbd_dev->spec->image_id);
4012         image_id_size = sizeof (__le32) + len;
4013         image_id = kmalloc(image_id_size, GFP_KERNEL);
4014         if (!image_id)
4015                 return NULL;
4016
4017         p = image_id;
4018         end = image_id + image_id_size;
4019         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4020
4021         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4022         reply_buf = kmalloc(size, GFP_KERNEL);
4023         if (!reply_buf)
4024                 goto out;
4025
4026         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4027                                 "rbd", "dir_get_name",
4028                                 image_id, image_id_size,
4029                                 reply_buf, size);
4030         if (ret < 0)
4031                 goto out;
4032         p = reply_buf;
4033         end = reply_buf + ret;
4034
4035         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4036         if (IS_ERR(image_name))
4037                 image_name = NULL;
4038         else
4039                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4040 out:
4041         kfree(reply_buf);
4042         kfree(image_id);
4043
4044         return image_name;
4045 }
4046
4047 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4048 {
4049         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4050         const char *snap_name;
4051         u32 which = 0;
4052
4053         /* Skip over names until we find the one we are looking for */
4054
4055         snap_name = rbd_dev->header.snap_names;
4056         while (which < snapc->num_snaps) {
4057                 if (!strcmp(name, snap_name))
4058                         return snapc->snaps[which];
4059                 snap_name += strlen(snap_name) + 1;
4060                 which++;
4061         }
4062         return CEPH_NOSNAP;
4063 }
4064
4065 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4066 {
4067         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4068         u32 which;
4069         bool found = false;
4070         u64 snap_id;
4071
4072         for (which = 0; !found && which < snapc->num_snaps; which++) {
4073                 const char *snap_name;
4074
4075                 snap_id = snapc->snaps[which];
4076                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4077                 if (IS_ERR(snap_name)) {
4078                         /* ignore no-longer existing snapshots */
4079                         if (PTR_ERR(snap_name) == -ENOENT)
4080                                 continue;
4081                         else
4082                                 break;
4083                 }
4084                 found = !strcmp(name, snap_name);
4085                 kfree(snap_name);
4086         }
4087         return found ? snap_id : CEPH_NOSNAP;
4088 }
4089
4090 /*
4091  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4092  * no snapshot by that name is found, or if an error occurs.
4093  */
4094 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4095 {
4096         if (rbd_dev->image_format == 1)
4097                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4098
4099         return rbd_v2_snap_id_by_name(rbd_dev, name);
4100 }
4101
4102 /*
4103  * When an rbd image has a parent image, it is identified by the
4104  * pool, image, and snapshot ids (not names).  This function fills
4105  * in the names for those ids.  (It's OK if we can't figure out the
4106  * name for an image id, but the pool and snapshot ids should always
4107  * exist and have names.)  All names in an rbd spec are dynamically
4108  * allocated.
4109  *
4110  * When an image being mapped (not a parent) is probed, we have the
4111  * pool name and pool id, image name and image id, and the snapshot
4112  * name.  The only thing we're missing is the snapshot id.
4113  */
4114 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4115 {
4116         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4117         struct rbd_spec *spec = rbd_dev->spec;
4118         const char *pool_name;
4119         const char *image_name;
4120         const char *snap_name;
4121         int ret;
4122
4123         /*
4124          * An image being mapped will have the pool name (etc.), but
4125          * we need to look up the snapshot id.
4126          */
4127         if (spec->pool_name) {
4128                 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4129                         u64 snap_id;
4130
4131                         snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4132                         if (snap_id == CEPH_NOSNAP)
4133                                 return -ENOENT;
4134                         spec->snap_id = snap_id;
4135                 } else {
4136                         spec->snap_id = CEPH_NOSNAP;
4137                 }
4138
4139                 return 0;
4140         }
4141
4142         /* Get the pool name; we have to make our own copy of this */
4143
4144         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4145         if (!pool_name) {
4146                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4147                 return -EIO;
4148         }
4149         pool_name = kstrdup(pool_name, GFP_KERNEL);
4150         if (!pool_name)
4151                 return -ENOMEM;
4152
4153         /* Fetch the image name; tolerate failure here */
4154
4155         image_name = rbd_dev_image_name(rbd_dev);
4156         if (!image_name)
4157                 rbd_warn(rbd_dev, "unable to get image name");
4158
4159         /* Look up the snapshot name, and make a copy */
4160
4161         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4162         if (IS_ERR(snap_name)) {
4163                 ret = PTR_ERR(snap_name);
4164                 goto out_err;
4165         }
4166
4167         spec->pool_name = pool_name;
4168         spec->image_name = image_name;
4169         spec->snap_name = snap_name;
4170
4171         return 0;
4172 out_err:
4173         kfree(image_name);
4174         kfree(pool_name);
4175
4176         return ret;
4177 }
4178
4179 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4180 {
4181         size_t size;
4182         int ret;
4183         void *reply_buf;
4184         void *p;
4185         void *end;
4186         u64 seq;
4187         u32 snap_count;
4188         struct ceph_snap_context *snapc;
4189         u32 i;
4190
4191         /*
4192          * We'll need room for the seq value (maximum snapshot id),
4193          * snapshot count, and array of that many snapshot ids.
4194          * For now we have a fixed upper limit on the number we're
4195          * prepared to receive.
4196          */
4197         size = sizeof (__le64) + sizeof (__le32) +
4198                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4199         reply_buf = kzalloc(size, GFP_KERNEL);
4200         if (!reply_buf)
4201                 return -ENOMEM;
4202
4203         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4204                                 "rbd", "get_snapcontext", NULL, 0,
4205                                 reply_buf, size);
4206         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4207         if (ret < 0)
4208                 goto out;
4209
4210         p = reply_buf;
4211         end = reply_buf + ret;
4212         ret = -ERANGE;
4213         ceph_decode_64_safe(&p, end, seq, out);
4214         ceph_decode_32_safe(&p, end, snap_count, out);
4215
4216         /*
4217          * Make sure the reported number of snapshot ids wouldn't go
4218          * beyond the end of our buffer.  But before checking that,
4219          * make sure the computed size of the snapshot context we
4220          * allocate is representable in a size_t.
4221          */
4222         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4223                                  / sizeof (u64)) {
4224                 ret = -EINVAL;
4225                 goto out;
4226         }
4227         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4228                 goto out;
4229         ret = 0;
4230
4231         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4232         if (!snapc) {
4233                 ret = -ENOMEM;
4234                 goto out;
4235         }
4236         snapc->seq = seq;
4237         for (i = 0; i < snap_count; i++)
4238                 snapc->snaps[i] = ceph_decode_64(&p);
4239
4240         ceph_put_snap_context(rbd_dev->header.snapc);
4241         rbd_dev->header.snapc = snapc;
4242
4243         dout("  snap context seq = %llu, snap_count = %u\n",
4244                 (unsigned long long)seq, (unsigned int)snap_count);
4245 out:
4246         kfree(reply_buf);
4247
4248         return ret;
4249 }
4250
4251 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4252                                         u64 snap_id)
4253 {
4254         size_t size;
4255         void *reply_buf;
4256         __le64 snapid;
4257         int ret;
4258         void *p;
4259         void *end;
4260         char *snap_name;
4261
4262         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4263         reply_buf = kmalloc(size, GFP_KERNEL);
4264         if (!reply_buf)
4265                 return ERR_PTR(-ENOMEM);
4266
4267         snapid = cpu_to_le64(snap_id);
4268         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4269                                 "rbd", "get_snapshot_name",
4270                                 &snapid, sizeof (snapid),
4271                                 reply_buf, size);
4272         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4273         if (ret < 0) {
4274                 snap_name = ERR_PTR(ret);
4275                 goto out;
4276         }
4277
4278         p = reply_buf;
4279         end = reply_buf + ret;
4280         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4281         if (IS_ERR(snap_name))
4282                 goto out;
4283
4284         dout("  snap_id 0x%016llx snap_name = %s\n",
4285                 (unsigned long long)snap_id, snap_name);
4286 out:
4287         kfree(reply_buf);
4288
4289         return snap_name;
4290 }
4291
4292 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4293 {
4294         bool first_time = rbd_dev->header.object_prefix == NULL;
4295         int ret;
4296
4297         down_write(&rbd_dev->header_rwsem);
4298
4299         ret = rbd_dev_v2_image_size(rbd_dev);
4300         if (ret)
4301                 goto out;
4302
4303         if (first_time) {
4304                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4305                 if (ret)
4306                         goto out;
4307         }
4308
4309         /*
4310          * If the image supports layering, get the parent info.  We
4311          * need to probe the first time regardless.  Thereafter we
4312          * only need to if there's a parent, to see if it has
4313          * disappeared due to the mapped image getting flattened.
4314          */
4315         if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4316                         (first_time || rbd_dev->parent_spec)) {
4317                 bool warn;
4318
4319                 ret = rbd_dev_v2_parent_info(rbd_dev);
4320                 if (ret)
4321                         goto out;
4322
4323                 /*
4324                  * Print a warning if this is the initial probe and
4325                  * the image has a parent.  Don't print it if the
4326                  * image now being probed is itself a parent.  We
4327                  * can tell at this point because we won't know its
4328                  * pool name yet (just its pool id).
4329                  */
4330                 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4331                 if (first_time && warn)
4332                         rbd_warn(rbd_dev, "WARNING: kernel layering "
4333                                         "is EXPERIMENTAL!");
4334         }
4335
4336         if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4337                 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4338                         rbd_dev->mapping.size = rbd_dev->header.image_size;
4339
4340         ret = rbd_dev_v2_snap_context(rbd_dev);
4341         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4342 out:
4343         up_write(&rbd_dev->header_rwsem);
4344
4345         return ret;
4346 }
4347
4348 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4349 {
4350         struct device *dev;
4351         int ret;
4352
4353         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4354
4355         dev = &rbd_dev->dev;
4356         dev->bus = &rbd_bus_type;
4357         dev->type = &rbd_device_type;
4358         dev->parent = &rbd_root_dev;
4359         dev->release = rbd_dev_device_release;
4360         dev_set_name(dev, "%d", rbd_dev->dev_id);
4361         ret = device_register(dev);
4362
4363         mutex_unlock(&ctl_mutex);
4364
4365         return ret;
4366 }
4367
4368 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4369 {
4370         device_unregister(&rbd_dev->dev);
4371 }
4372
4373 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4374
4375 /*
4376  * Get a unique rbd identifier for the given new rbd_dev, and add
4377  * the rbd_dev to the global list.  The minimum rbd id is 1.
4378  */
4379 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4380 {
4381         rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4382
4383         spin_lock(&rbd_dev_list_lock);
4384         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4385         spin_unlock(&rbd_dev_list_lock);
4386         dout("rbd_dev %p given dev id %llu\n", rbd_dev,
4387                 (unsigned long long) rbd_dev->dev_id);
4388 }
4389
4390 /*
4391  * Remove an rbd_dev from the global list, and record that its
4392  * identifier is no longer in use.
4393  */
4394 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4395 {
4396         struct list_head *tmp;
4397         int rbd_id = rbd_dev->dev_id;
4398         int max_id;
4399
4400         rbd_assert(rbd_id > 0);
4401
4402         dout("rbd_dev %p released dev id %llu\n", rbd_dev,
4403                 (unsigned long long) rbd_dev->dev_id);
4404         spin_lock(&rbd_dev_list_lock);
4405         list_del_init(&rbd_dev->node);
4406
4407         /*
4408          * If the id being "put" is not the current maximum, there
4409          * is nothing special we need to do.
4410          */
4411         if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4412                 spin_unlock(&rbd_dev_list_lock);
4413                 return;
4414         }
4415
4416         /*
4417          * We need to update the current maximum id.  Search the
4418          * list to find out what it is.  We're more likely to find
4419          * the maximum at the end, so search the list backward.
4420          */
4421         max_id = 0;
4422         list_for_each_prev(tmp, &rbd_dev_list) {
4423                 struct rbd_device *rbd_dev;
4424
4425                 rbd_dev = list_entry(tmp, struct rbd_device, node);
4426                 if (rbd_dev->dev_id > max_id)
4427                         max_id = rbd_dev->dev_id;
4428         }
4429         spin_unlock(&rbd_dev_list_lock);
4430
4431         /*
4432          * The max id could have been updated by rbd_dev_id_get(), in
4433          * which case it now accurately reflects the new maximum.
4434          * Be careful not to overwrite the maximum value in that
4435          * case.
4436          */
4437         atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4438         dout("  max dev id has been reset\n");
4439 }
4440
4441 /*
4442  * Skips over white space at *buf, and updates *buf to point to the
4443  * first found non-space character (if any). Returns the length of
4444  * the token (string of non-white space characters) found.  Note
4445  * that *buf must be terminated with '\0'.
4446  */
4447 static inline size_t next_token(const char **buf)
4448 {
4449         /*
4450         * These are the characters that produce nonzero for
4451         * isspace() in the "C" and "POSIX" locales.
4452         */
4453         const char *spaces = " \f\n\r\t\v";
4454
4455         *buf += strspn(*buf, spaces);   /* Find start of token */
4456
4457         return strcspn(*buf, spaces);   /* Return token length */
4458 }
4459
4460 /*
4461  * Finds the next token in *buf, and if the provided token buffer is
4462  * big enough, copies the found token into it.  The result, if
4463  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4464  * must be terminated with '\0' on entry.
4465  *
4466  * Returns the length of the token found (not including the '\0').
4467  * Return value will be 0 if no token is found, and it will be >=
4468  * token_size if the token would not fit.
4469  *
4470  * The *buf pointer will be updated to point beyond the end of the
4471  * found token.  Note that this occurs even if the token buffer is
4472  * too small to hold it.
4473  */
4474 static inline size_t copy_token(const char **buf,
4475                                 char *token,
4476                                 size_t token_size)
4477 {
4478         size_t len;
4479
4480         len = next_token(buf);
4481         if (len < token_size) {
4482                 memcpy(token, *buf, len);
4483                 *(token + len) = '\0';
4484         }
4485         *buf += len;
4486
4487         return len;
4488 }
4489
4490 /*
4491  * Finds the next token in *buf, dynamically allocates a buffer big
4492  * enough to hold a copy of it, and copies the token into the new
4493  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4494  * that a duplicate buffer is created even for a zero-length token.
4495  *
4496  * Returns a pointer to the newly-allocated duplicate, or a null
4497  * pointer if memory for the duplicate was not available.  If
4498  * the lenp argument is a non-null pointer, the length of the token
4499  * (not including the '\0') is returned in *lenp.
4500  *
4501  * If successful, the *buf pointer will be updated to point beyond
4502  * the end of the found token.
4503  *
4504  * Note: uses GFP_KERNEL for allocation.
4505  */
4506 static inline char *dup_token(const char **buf, size_t *lenp)
4507 {
4508         char *dup;
4509         size_t len;
4510
4511         len = next_token(buf);
4512         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4513         if (!dup)
4514                 return NULL;
4515         *(dup + len) = '\0';
4516         *buf += len;
4517
4518         if (lenp)
4519                 *lenp = len;
4520
4521         return dup;
4522 }
4523
4524 /*
4525  * Parse the options provided for an "rbd add" (i.e., rbd image
4526  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4527  * and the data written is passed here via a NUL-terminated buffer.
4528  * Returns 0 if successful or an error code otherwise.
4529  *
4530  * The information extracted from these options is recorded in
4531  * the other parameters which return dynamically-allocated
4532  * structures:
4533  *  ceph_opts
4534  *      The address of a pointer that will refer to a ceph options
4535  *      structure.  Caller must release the returned pointer using
4536  *      ceph_destroy_options() when it is no longer needed.
4537  *  rbd_opts
4538  *      Address of an rbd options pointer.  Fully initialized by
4539  *      this function; caller must release with kfree().
4540  *  spec
4541  *      Address of an rbd image specification pointer.  Fully
4542  *      initialized by this function based on parsed options.
4543  *      Caller must release with rbd_spec_put().
4544  *
4545  * The options passed take this form:
4546  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4547  * where:
4548  *  <mon_addrs>
4549  *      A comma-separated list of one or more monitor addresses.
4550  *      A monitor address is an ip address, optionally followed
4551  *      by a port number (separated by a colon).
4552  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4553  *  <options>
4554  *      A comma-separated list of ceph and/or rbd options.
4555  *  <pool_name>
4556  *      The name of the rados pool containing the rbd image.
4557  *  <image_name>
4558  *      The name of the image in that pool to map.
4559  *  <snap_id>
4560  *      An optional snapshot id.  If provided, the mapping will
4561  *      present data from the image at the time that snapshot was
4562  *      created.  The image head is used if no snapshot id is
4563  *      provided.  Snapshot mappings are always read-only.
4564  */
4565 static int rbd_add_parse_args(const char *buf,
4566                                 struct ceph_options **ceph_opts,
4567                                 struct rbd_options **opts,
4568                                 struct rbd_spec **rbd_spec)
4569 {
4570         size_t len;
4571         char *options;
4572         const char *mon_addrs;
4573         char *snap_name;
4574         size_t mon_addrs_size;
4575         struct rbd_spec *spec = NULL;
4576         struct rbd_options *rbd_opts = NULL;
4577         struct ceph_options *copts;
4578         int ret;
4579
4580         /* The first four tokens are required */
4581
4582         len = next_token(&buf);
4583         if (!len) {
4584                 rbd_warn(NULL, "no monitor address(es) provided");
4585                 return -EINVAL;
4586         }
4587         mon_addrs = buf;
4588         mon_addrs_size = len + 1;
4589         buf += len;
4590
4591         ret = -EINVAL;
4592         options = dup_token(&buf, NULL);
4593         if (!options)
4594                 return -ENOMEM;
4595         if (!*options) {
4596                 rbd_warn(NULL, "no options provided");
4597                 goto out_err;
4598         }
4599
4600         spec = rbd_spec_alloc();
4601         if (!spec)
4602                 goto out_mem;
4603
4604         spec->pool_name = dup_token(&buf, NULL);
4605         if (!spec->pool_name)
4606                 goto out_mem;
4607         if (!*spec->pool_name) {
4608                 rbd_warn(NULL, "no pool name provided");
4609                 goto out_err;
4610         }
4611
4612         spec->image_name = dup_token(&buf, NULL);
4613         if (!spec->image_name)
4614                 goto out_mem;
4615         if (!*spec->image_name) {
4616                 rbd_warn(NULL, "no image name provided");
4617                 goto out_err;
4618         }
4619
4620         /*
4621          * Snapshot name is optional; default is to use "-"
4622          * (indicating the head/no snapshot).
4623          */
4624         len = next_token(&buf);
4625         if (!len) {
4626                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4627                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4628         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4629                 ret = -ENAMETOOLONG;
4630                 goto out_err;
4631         }
4632         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4633         if (!snap_name)
4634                 goto out_mem;
4635         *(snap_name + len) = '\0';
4636         spec->snap_name = snap_name;
4637
4638         /* Initialize all rbd options to the defaults */
4639
4640         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4641         if (!rbd_opts)
4642                 goto out_mem;
4643
4644         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4645
4646         copts = ceph_parse_options(options, mon_addrs,
4647                                         mon_addrs + mon_addrs_size - 1,
4648                                         parse_rbd_opts_token, rbd_opts);
4649         if (IS_ERR(copts)) {
4650                 ret = PTR_ERR(copts);
4651                 goto out_err;
4652         }
4653         kfree(options);
4654
4655         *ceph_opts = copts;
4656         *opts = rbd_opts;
4657         *rbd_spec = spec;
4658
4659         return 0;
4660 out_mem:
4661         ret = -ENOMEM;
4662 out_err:
4663         kfree(rbd_opts);
4664         rbd_spec_put(spec);
4665         kfree(options);
4666
4667         return ret;
4668 }
4669
4670 /*
4671  * An rbd format 2 image has a unique identifier, distinct from the
4672  * name given to it by the user.  Internally, that identifier is
4673  * what's used to specify the names of objects related to the image.
4674  *
4675  * A special "rbd id" object is used to map an rbd image name to its
4676  * id.  If that object doesn't exist, then there is no v2 rbd image
4677  * with the supplied name.
4678  *
4679  * This function will record the given rbd_dev's image_id field if
4680  * it can be determined, and in that case will return 0.  If any
4681  * errors occur a negative errno will be returned and the rbd_dev's
4682  * image_id field will be unchanged (and should be NULL).
4683  */
4684 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4685 {
4686         int ret;
4687         size_t size;
4688         char *object_name;
4689         void *response;
4690         char *image_id;
4691
4692         /*
4693          * When probing a parent image, the image id is already
4694          * known (and the image name likely is not).  There's no
4695          * need to fetch the image id again in this case.  We
4696          * do still need to set the image format though.
4697          */
4698         if (rbd_dev->spec->image_id) {
4699                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4700
4701                 return 0;
4702         }
4703
4704         /*
4705          * First, see if the format 2 image id file exists, and if
4706          * so, get the image's persistent id from it.
4707          */
4708         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4709         object_name = kmalloc(size, GFP_NOIO);
4710         if (!object_name)
4711                 return -ENOMEM;
4712         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4713         dout("rbd id object name is %s\n", object_name);
4714
4715         /* Response will be an encoded string, which includes a length */
4716
4717         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4718         response = kzalloc(size, GFP_NOIO);
4719         if (!response) {
4720                 ret = -ENOMEM;
4721                 goto out;
4722         }
4723
4724         /* If it doesn't exist we'll assume it's a format 1 image */
4725
4726         ret = rbd_obj_method_sync(rbd_dev, object_name,
4727                                 "rbd", "get_id", NULL, 0,
4728                                 response, RBD_IMAGE_ID_LEN_MAX);
4729         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4730         if (ret == -ENOENT) {
4731                 image_id = kstrdup("", GFP_KERNEL);
4732                 ret = image_id ? 0 : -ENOMEM;
4733                 if (!ret)
4734                         rbd_dev->image_format = 1;
4735         } else if (ret > sizeof (__le32)) {
4736                 void *p = response;
4737
4738                 image_id = ceph_extract_encoded_string(&p, p + ret,
4739                                                 NULL, GFP_NOIO);
4740                 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4741                 if (!ret)
4742                         rbd_dev->image_format = 2;
4743         } else {
4744                 ret = -EINVAL;
4745         }
4746
4747         if (!ret) {
4748                 rbd_dev->spec->image_id = image_id;
4749                 dout("image_id is %s\n", image_id);
4750         }
4751 out:
4752         kfree(response);
4753         kfree(object_name);
4754
4755         return ret;
4756 }
4757
4758 /*
4759  * Undo whatever state changes are made by v1 or v2 header info
4760  * call.
4761  */
4762 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4763 {
4764         struct rbd_image_header *header;
4765
4766         /* Drop parent reference unless it's already been done (or none) */
4767
4768         if (rbd_dev->parent_overlap)
4769                 rbd_dev_parent_put(rbd_dev);
4770
4771         /* Free dynamic fields from the header, then zero it out */
4772
4773         header = &rbd_dev->header;
4774         ceph_put_snap_context(header->snapc);
4775         kfree(header->snap_sizes);
4776         kfree(header->snap_names);
4777         kfree(header->object_prefix);
4778         memset(header, 0, sizeof (*header));
4779 }
4780
4781 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4782 {
4783         int ret;
4784
4785         ret = rbd_dev_v2_object_prefix(rbd_dev);
4786         if (ret)
4787                 goto out_err;
4788
4789         /*
4790          * Get the and check features for the image.  Currently the
4791          * features are assumed to never change.
4792          */
4793         ret = rbd_dev_v2_features(rbd_dev);
4794         if (ret)
4795                 goto out_err;
4796
4797         /* If the image supports fancy striping, get its parameters */
4798
4799         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4800                 ret = rbd_dev_v2_striping_info(rbd_dev);
4801                 if (ret < 0)
4802                         goto out_err;
4803         }
4804         /* No support for crypto and compression type format 2 images */
4805
4806         return 0;
4807 out_err:
4808         rbd_dev->header.features = 0;
4809         kfree(rbd_dev->header.object_prefix);
4810         rbd_dev->header.object_prefix = NULL;
4811
4812         return ret;
4813 }
4814
4815 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4816 {
4817         struct rbd_device *parent = NULL;
4818         struct rbd_spec *parent_spec;
4819         struct rbd_client *rbdc;
4820         int ret;
4821
4822         if (!rbd_dev->parent_spec)
4823                 return 0;
4824         /*
4825          * We need to pass a reference to the client and the parent
4826          * spec when creating the parent rbd_dev.  Images related by
4827          * parent/child relationships always share both.
4828          */
4829         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4830         rbdc = __rbd_get_client(rbd_dev->rbd_client);
4831
4832         ret = -ENOMEM;
4833         parent = rbd_dev_create(rbdc, parent_spec);
4834         if (!parent)
4835                 goto out_err;
4836
4837         ret = rbd_dev_image_probe(parent, false);
4838         if (ret < 0)
4839                 goto out_err;
4840         rbd_dev->parent = parent;
4841         atomic_set(&rbd_dev->parent_ref, 1);
4842
4843         return 0;
4844 out_err:
4845         if (parent) {
4846                 rbd_dev_unparent(rbd_dev);
4847                 kfree(rbd_dev->header_name);
4848                 rbd_dev_destroy(parent);
4849         } else {
4850                 rbd_put_client(rbdc);
4851                 rbd_spec_put(parent_spec);
4852         }
4853
4854         return ret;
4855 }
4856
4857 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4858 {
4859         int ret;
4860
4861         /* generate unique id: find highest unique id, add one */
4862         rbd_dev_id_get(rbd_dev);
4863
4864         /* Fill in the device name, now that we have its id. */
4865         BUILD_BUG_ON(DEV_NAME_LEN
4866                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4867         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4868
4869         /* Get our block major device number. */
4870
4871         ret = register_blkdev(0, rbd_dev->name);
4872         if (ret < 0)
4873                 goto err_out_id;
4874         rbd_dev->major = ret;
4875
4876         /* Set up the blkdev mapping. */
4877
4878         ret = rbd_init_disk(rbd_dev);
4879         if (ret)
4880                 goto err_out_blkdev;
4881
4882         ret = rbd_dev_mapping_set(rbd_dev);
4883         if (ret)
4884                 goto err_out_disk;
4885         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4886
4887         ret = rbd_bus_add_dev(rbd_dev);
4888         if (ret)
4889                 goto err_out_mapping;
4890
4891         /* Everything's ready.  Announce the disk to the world. */
4892
4893         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4894         add_disk(rbd_dev->disk);
4895
4896         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4897                 (unsigned long long) rbd_dev->mapping.size);
4898
4899         return ret;
4900
4901 err_out_mapping:
4902         rbd_dev_mapping_clear(rbd_dev);
4903 err_out_disk:
4904         rbd_free_disk(rbd_dev);
4905 err_out_blkdev:
4906         unregister_blkdev(rbd_dev->major, rbd_dev->name);
4907 err_out_id:
4908         rbd_dev_id_put(rbd_dev);
4909         rbd_dev_mapping_clear(rbd_dev);
4910
4911         return ret;
4912 }
4913
4914 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4915 {
4916         struct rbd_spec *spec = rbd_dev->spec;
4917         size_t size;
4918
4919         /* Record the header object name for this rbd image. */
4920
4921         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4922
4923         if (rbd_dev->image_format == 1)
4924                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4925         else
4926                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4927
4928         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4929         if (!rbd_dev->header_name)
4930                 return -ENOMEM;
4931
4932         if (rbd_dev->image_format == 1)
4933                 sprintf(rbd_dev->header_name, "%s%s",
4934                         spec->image_name, RBD_SUFFIX);
4935         else
4936                 sprintf(rbd_dev->header_name, "%s%s",
4937                         RBD_HEADER_PREFIX, spec->image_id);
4938         return 0;
4939 }
4940
4941 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4942 {
4943         rbd_dev_unprobe(rbd_dev);
4944         kfree(rbd_dev->header_name);
4945         rbd_dev->header_name = NULL;
4946         rbd_dev->image_format = 0;
4947         kfree(rbd_dev->spec->image_id);
4948         rbd_dev->spec->image_id = NULL;
4949
4950         rbd_dev_destroy(rbd_dev);
4951 }
4952
4953 /*
4954  * Probe for the existence of the header object for the given rbd
4955  * device.  If this image is the one being mapped (i.e., not a
4956  * parent), initiate a watch on its header object before using that
4957  * object to get detailed information about the rbd image.
4958  */
4959 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
4960 {
4961         int ret;
4962         int tmp;
4963
4964         /*
4965          * Get the id from the image id object.  Unless there's an
4966          * error, rbd_dev->spec->image_id will be filled in with
4967          * a dynamically-allocated string, and rbd_dev->image_format
4968          * will be set to either 1 or 2.
4969          */
4970         ret = rbd_dev_image_id(rbd_dev);
4971         if (ret)
4972                 return ret;
4973         rbd_assert(rbd_dev->spec->image_id);
4974         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4975
4976         ret = rbd_dev_header_name(rbd_dev);
4977         if (ret)
4978                 goto err_out_format;
4979
4980         if (mapping) {
4981                 ret = rbd_dev_header_watch_sync(rbd_dev, true);
4982                 if (ret)
4983                         goto out_header_name;
4984         }
4985
4986         if (rbd_dev->image_format == 1)
4987                 ret = rbd_dev_v1_header_info(rbd_dev);
4988         else
4989                 ret = rbd_dev_v2_header_info(rbd_dev);
4990         if (ret)
4991                 goto err_out_watch;
4992
4993         ret = rbd_dev_spec_update(rbd_dev);
4994         if (ret)
4995                 goto err_out_probe;
4996
4997         ret = rbd_dev_probe_parent(rbd_dev);
4998         if (ret)
4999                 goto err_out_probe;
5000
5001         dout("discovered format %u image, header name is %s\n",
5002                 rbd_dev->image_format, rbd_dev->header_name);
5003
5004         return 0;
5005 err_out_probe:
5006         rbd_dev_unprobe(rbd_dev);
5007 err_out_watch:
5008         if (mapping) {
5009                 tmp = rbd_dev_header_watch_sync(rbd_dev, false);
5010                 if (tmp)
5011                         rbd_warn(rbd_dev, "unable to tear down "
5012                                         "watch request (%d)\n", tmp);
5013         }
5014 out_header_name:
5015         kfree(rbd_dev->header_name);
5016         rbd_dev->header_name = NULL;
5017 err_out_format:
5018         rbd_dev->image_format = 0;
5019         kfree(rbd_dev->spec->image_id);
5020         rbd_dev->spec->image_id = NULL;
5021
5022         dout("probe failed, returning %d\n", ret);
5023
5024         return ret;
5025 }
5026
5027 static ssize_t rbd_add(struct bus_type *bus,
5028                        const char *buf,
5029                        size_t count)
5030 {
5031         struct rbd_device *rbd_dev = NULL;
5032         struct ceph_options *ceph_opts = NULL;
5033         struct rbd_options *rbd_opts = NULL;
5034         struct rbd_spec *spec = NULL;
5035         struct rbd_client *rbdc;
5036         struct ceph_osd_client *osdc;
5037         bool read_only;
5038         int rc = -ENOMEM;
5039
5040         if (!try_module_get(THIS_MODULE))
5041                 return -ENODEV;
5042
5043         /* parse add command */
5044         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5045         if (rc < 0)
5046                 goto err_out_module;
5047         read_only = rbd_opts->read_only;
5048         kfree(rbd_opts);
5049         rbd_opts = NULL;        /* done with this */
5050
5051         rbdc = rbd_get_client(ceph_opts);
5052         if (IS_ERR(rbdc)) {
5053                 rc = PTR_ERR(rbdc);
5054                 goto err_out_args;
5055         }
5056
5057         /* pick the pool */
5058         osdc = &rbdc->client->osdc;
5059         rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
5060         if (rc < 0)
5061                 goto err_out_client;
5062         spec->pool_id = (u64)rc;
5063
5064         /* The ceph file layout needs to fit pool id in 32 bits */
5065
5066         if (spec->pool_id > (u64)U32_MAX) {
5067                 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5068                                 (unsigned long long)spec->pool_id, U32_MAX);
5069                 rc = -EIO;
5070                 goto err_out_client;
5071         }
5072
5073         rbd_dev = rbd_dev_create(rbdc, spec);
5074         if (!rbd_dev)
5075                 goto err_out_client;
5076         rbdc = NULL;            /* rbd_dev now owns this */
5077         spec = NULL;            /* rbd_dev now owns this */
5078
5079         rc = rbd_dev_image_probe(rbd_dev, true);
5080         if (rc < 0)
5081                 goto err_out_rbd_dev;
5082
5083         /* If we are mapping a snapshot it must be marked read-only */
5084
5085         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5086                 read_only = true;
5087         rbd_dev->mapping.read_only = read_only;
5088
5089         rc = rbd_dev_device_setup(rbd_dev);
5090         if (rc) {
5091                 rbd_dev_image_release(rbd_dev);
5092                 goto err_out_module;
5093         }
5094
5095         return count;
5096
5097 err_out_rbd_dev:
5098         rbd_dev_destroy(rbd_dev);
5099 err_out_client:
5100         rbd_put_client(rbdc);
5101 err_out_args:
5102         rbd_spec_put(spec);
5103 err_out_module:
5104         module_put(THIS_MODULE);
5105
5106         dout("Error adding device %s\n", buf);
5107
5108         return (ssize_t)rc;
5109 }
5110
5111 static void rbd_dev_device_release(struct device *dev)
5112 {
5113         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5114
5115         rbd_free_disk(rbd_dev);
5116         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5117         rbd_dev_mapping_clear(rbd_dev);
5118         unregister_blkdev(rbd_dev->major, rbd_dev->name);
5119         rbd_dev->major = 0;
5120         rbd_dev_id_put(rbd_dev);
5121         rbd_dev_mapping_clear(rbd_dev);
5122 }
5123
5124 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5125 {
5126         while (rbd_dev->parent) {
5127                 struct rbd_device *first = rbd_dev;
5128                 struct rbd_device *second = first->parent;
5129                 struct rbd_device *third;
5130
5131                 /*
5132                  * Follow to the parent with no grandparent and
5133                  * remove it.
5134                  */
5135                 while (second && (third = second->parent)) {
5136                         first = second;
5137                         second = third;
5138                 }
5139                 rbd_assert(second);
5140                 rbd_dev_image_release(second);
5141                 first->parent = NULL;
5142                 first->parent_overlap = 0;
5143
5144                 rbd_assert(first->parent_spec);
5145                 rbd_spec_put(first->parent_spec);
5146                 first->parent_spec = NULL;
5147         }
5148 }
5149
5150 static ssize_t rbd_remove(struct bus_type *bus,
5151                           const char *buf,
5152                           size_t count)
5153 {
5154         struct rbd_device *rbd_dev = NULL;
5155         struct list_head *tmp;
5156         int dev_id;
5157         unsigned long ul;
5158         bool already = false;
5159         int ret;
5160
5161         ret = strict_strtoul(buf, 10, &ul);
5162         if (ret)
5163                 return ret;
5164
5165         /* convert to int; abort if we lost anything in the conversion */
5166         dev_id = (int)ul;
5167         if (dev_id != ul)
5168                 return -EINVAL;
5169
5170         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
5171
5172         ret = -ENOENT;
5173         spin_lock(&rbd_dev_list_lock);
5174         list_for_each(tmp, &rbd_dev_list) {
5175                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5176                 if (rbd_dev->dev_id == dev_id) {
5177                         ret = 0;
5178                         break;
5179                 }
5180         }
5181         if (!ret) {
5182                 spin_lock_irq(&rbd_dev->lock);
5183                 if (rbd_dev->open_count)
5184                         ret = -EBUSY;
5185                 else
5186                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5187                                                         &rbd_dev->flags);
5188                 spin_unlock_irq(&rbd_dev->lock);
5189         }
5190         spin_unlock(&rbd_dev_list_lock);
5191         if (ret < 0 || already)
5192                 goto done;
5193
5194         ret = rbd_dev_header_watch_sync(rbd_dev, false);
5195         if (ret)
5196                 rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret);
5197
5198         /*
5199          * flush remaining watch callbacks - these must be complete
5200          * before the osd_client is shutdown
5201          */
5202         dout("%s: flushing notifies", __func__);
5203         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5204         /*
5205          * Don't free anything from rbd_dev->disk until after all
5206          * notifies are completely processed. Otherwise
5207          * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5208          * in a potential use after free of rbd_dev->disk or rbd_dev.
5209          */
5210         rbd_bus_del_dev(rbd_dev);
5211         rbd_dev_image_release(rbd_dev);
5212         module_put(THIS_MODULE);
5213         ret = count;
5214 done:
5215         mutex_unlock(&ctl_mutex);
5216
5217         return ret;
5218 }
5219
5220 /*
5221  * create control files in sysfs
5222  * /sys/bus/rbd/...
5223  */
5224 static int rbd_sysfs_init(void)
5225 {
5226         int ret;
5227
5228         ret = device_register(&rbd_root_dev);
5229         if (ret < 0)
5230                 return ret;
5231
5232         ret = bus_register(&rbd_bus_type);
5233         if (ret < 0)
5234                 device_unregister(&rbd_root_dev);
5235
5236         return ret;
5237 }
5238
5239 static void rbd_sysfs_cleanup(void)
5240 {
5241         bus_unregister(&rbd_bus_type);
5242         device_unregister(&rbd_root_dev);
5243 }
5244
5245 static int rbd_slab_init(void)
5246 {
5247         rbd_assert(!rbd_img_request_cache);
5248         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5249                                         sizeof (struct rbd_img_request),
5250                                         __alignof__(struct rbd_img_request),
5251                                         0, NULL);
5252         if (!rbd_img_request_cache)
5253                 return -ENOMEM;
5254
5255         rbd_assert(!rbd_obj_request_cache);
5256         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5257                                         sizeof (struct rbd_obj_request),
5258                                         __alignof__(struct rbd_obj_request),
5259                                         0, NULL);
5260         if (!rbd_obj_request_cache)
5261                 goto out_err;
5262
5263         rbd_assert(!rbd_segment_name_cache);
5264         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5265                                         MAX_OBJ_NAME_SIZE + 1, 1, 0, NULL);
5266         if (rbd_segment_name_cache)
5267                 return 0;
5268 out_err:
5269         if (rbd_obj_request_cache) {
5270                 kmem_cache_destroy(rbd_obj_request_cache);
5271                 rbd_obj_request_cache = NULL;
5272         }
5273
5274         kmem_cache_destroy(rbd_img_request_cache);
5275         rbd_img_request_cache = NULL;
5276
5277         return -ENOMEM;
5278 }
5279
5280 static void rbd_slab_exit(void)
5281 {
5282         rbd_assert(rbd_segment_name_cache);
5283         kmem_cache_destroy(rbd_segment_name_cache);
5284         rbd_segment_name_cache = NULL;
5285
5286         rbd_assert(rbd_obj_request_cache);
5287         kmem_cache_destroy(rbd_obj_request_cache);
5288         rbd_obj_request_cache = NULL;
5289
5290         rbd_assert(rbd_img_request_cache);
5291         kmem_cache_destroy(rbd_img_request_cache);
5292         rbd_img_request_cache = NULL;
5293 }
5294
5295 static int __init rbd_init(void)
5296 {
5297         int rc;
5298
5299         if (!libceph_compatible(NULL)) {
5300                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5301
5302                 return -EINVAL;
5303         }
5304         rc = rbd_slab_init();
5305         if (rc)
5306                 return rc;
5307         rc = rbd_sysfs_init();
5308         if (rc)
5309                 rbd_slab_exit();
5310         else
5311                 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
5312
5313         return rc;
5314 }
5315
5316 static void __exit rbd_exit(void)
5317 {
5318         rbd_sysfs_cleanup();
5319         rbd_slab_exit();
5320 }
5321
5322 module_init(rbd_init);
5323 module_exit(rbd_exit);
5324
5325 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5326 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5327 MODULE_DESCRIPTION("rados block device");
5328
5329 /* following authorship retained from original osdblk.c */
5330 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5331
5332 MODULE_LICENSE("GPL");