3 rbd.c -- Export ceph rados objects as a Linux block device
6 based on drivers/block/osdblk.c:
8 Copyright 2009 Red Hat, Inc.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 For usage instructions, please refer to:
27 Documentation/ABI/testing/sysfs-bus-rbd
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
45 #include "rbd_types.h"
47 #define RBD_DEBUG /* Activate rbd_assert() calls */
50 * The basic unit of block I/O is a sector. It is interpreted in a
51 * number of contexts in Linux (blk, bio, genhd), but the default is
52 * universally 512 bytes. These symbols are just slightly more
53 * meaningful than the bare numbers they represent.
55 #define SECTOR_SHIFT 9
56 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
59 * Increment the given counter and return its updated value.
60 * If the counter is already 0 it will not be incremented.
61 * If the counter is already at its maximum value returns
62 * -EINVAL without updating it.
64 static int atomic_inc_return_safe(atomic_t *v)
68 counter = (unsigned int)__atomic_add_unless(v, 1, 0);
69 if (counter <= (unsigned int)INT_MAX)
77 /* Decrement the counter. Return the resulting value, or -EINVAL */
78 static int atomic_dec_return_safe(atomic_t *v)
82 counter = atomic_dec_return(v);
91 #define RBD_DRV_NAME "rbd"
92 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
94 #define RBD_MINORS_PER_MAJOR 256 /* max minors per blkdev */
96 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
97 #define RBD_MAX_SNAP_NAME_LEN \
98 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
100 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
102 #define RBD_SNAP_HEAD_NAME "-"
104 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
106 /* This allows a single page to hold an image name sent by OSD */
107 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
108 #define RBD_IMAGE_ID_LEN_MAX 64
110 #define RBD_OBJ_PREFIX_LEN_MAX 64
114 #define RBD_FEATURE_LAYERING (1<<0)
115 #define RBD_FEATURE_STRIPINGV2 (1<<1)
116 #define RBD_FEATURES_ALL \
117 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
119 /* Features supported by this (client software) implementation. */
121 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
124 * An RBD device name will be "rbd#", where the "rbd" comes from
125 * RBD_DRV_NAME above, and # is a unique integer identifier.
126 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
127 * enough to hold all possible device names.
129 #define DEV_NAME_LEN 32
130 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
133 * block device image metadata (in-memory version)
135 struct rbd_image_header {
136 /* These six fields never change for a given rbd image */
143 u64 features; /* Might be changeable someday? */
145 /* The remaining fields need to be updated occasionally */
147 struct ceph_snap_context *snapc;
148 char *snap_names; /* format 1 only */
149 u64 *snap_sizes; /* format 1 only */
153 * An rbd image specification.
155 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
156 * identify an image. Each rbd_dev structure includes a pointer to
157 * an rbd_spec structure that encapsulates this identity.
159 * Each of the id's in an rbd_spec has an associated name. For a
160 * user-mapped image, the names are supplied and the id's associated
161 * with them are looked up. For a layered image, a parent image is
162 * defined by the tuple, and the names are looked up.
164 * An rbd_dev structure contains a parent_spec pointer which is
165 * non-null if the image it represents is a child in a layered
166 * image. This pointer will refer to the rbd_spec structure used
167 * by the parent rbd_dev for its own identity (i.e., the structure
168 * is shared between the parent and child).
170 * Since these structures are populated once, during the discovery
171 * phase of image construction, they are effectively immutable so
172 * we make no effort to synchronize access to them.
174 * Note that code herein does not assume the image name is known (it
175 * could be a null pointer).
179 const char *pool_name;
181 const char *image_id;
182 const char *image_name;
185 const char *snap_name;
191 * an instance of the client. multiple devices may share an rbd client.
194 struct ceph_client *client;
196 struct list_head node;
199 struct rbd_img_request;
200 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
202 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
204 struct rbd_obj_request;
205 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
207 enum obj_request_type {
208 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
212 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */
213 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */
214 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */
215 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */
218 struct rbd_obj_request {
219 const char *object_name;
220 u64 offset; /* object start byte */
221 u64 length; /* bytes from offset */
225 * An object request associated with an image will have its
226 * img_data flag set; a standalone object request will not.
228 * A standalone object request will have which == BAD_WHICH
229 * and a null obj_request pointer.
231 * An object request initiated in support of a layered image
232 * object (to check for its existence before a write) will
233 * have which == BAD_WHICH and a non-null obj_request pointer.
235 * Finally, an object request for rbd image data will have
236 * which != BAD_WHICH, and will have a non-null img_request
237 * pointer. The value of which will be in the range
238 * 0..(img_request->obj_request_count-1).
241 struct rbd_obj_request *obj_request; /* STAT op */
243 struct rbd_img_request *img_request;
245 /* links for img_request->obj_requests list */
246 struct list_head links;
249 u32 which; /* posn image request list */
251 enum obj_request_type type;
253 struct bio *bio_list;
259 struct page **copyup_pages;
260 u32 copyup_page_count;
262 struct ceph_osd_request *osd_req;
264 u64 xferred; /* bytes transferred */
267 rbd_obj_callback_t callback;
268 struct completion completion;
274 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */
275 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
276 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
279 struct rbd_img_request {
280 struct rbd_device *rbd_dev;
281 u64 offset; /* starting image byte offset */
282 u64 length; /* byte count from offset */
285 u64 snap_id; /* for reads */
286 struct ceph_snap_context *snapc; /* for writes */
289 struct request *rq; /* block request */
290 struct rbd_obj_request *obj_request; /* obj req initiator */
292 struct page **copyup_pages;
293 u32 copyup_page_count;
294 spinlock_t completion_lock;/* protects next_completion */
296 rbd_img_callback_t callback;
297 u64 xferred;/* aggregate bytes transferred */
298 int result; /* first nonzero obj_request result */
300 u32 obj_request_count;
301 struct list_head obj_requests; /* rbd_obj_request structs */
306 #define for_each_obj_request(ireq, oreq) \
307 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
308 #define for_each_obj_request_from(ireq, oreq) \
309 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
310 #define for_each_obj_request_safe(ireq, oreq, n) \
311 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
323 int dev_id; /* blkdev unique id */
325 int major; /* blkdev assigned major */
326 struct gendisk *disk; /* blkdev's gendisk and rq */
328 u32 image_format; /* Either 1 or 2 */
329 struct rbd_client *rbd_client;
331 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
333 spinlock_t lock; /* queue, flags, open_count */
335 struct rbd_image_header header;
336 unsigned long flags; /* possibly lock protected */
337 struct rbd_spec *spec;
341 struct ceph_file_layout layout;
343 struct ceph_osd_event *watch_event;
344 struct rbd_obj_request *watch_request;
346 struct rbd_spec *parent_spec;
349 struct rbd_device *parent;
351 /* protects updating the header */
352 struct rw_semaphore header_rwsem;
354 struct rbd_mapping mapping;
356 struct list_head node;
360 unsigned long open_count; /* protected by lock */
364 * Flag bits for rbd_dev->flags. If atomicity is required,
365 * rbd_dev->lock is used to protect access.
367 * Currently, only the "removing" flag (which is coupled with the
368 * "open_count" field) requires atomic access.
371 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
372 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
375 static DEFINE_MUTEX(ctl_mutex); /* Serialize open/close/setup/teardown */
377 static LIST_HEAD(rbd_dev_list); /* devices */
378 static DEFINE_SPINLOCK(rbd_dev_list_lock);
380 static LIST_HEAD(rbd_client_list); /* clients */
381 static DEFINE_SPINLOCK(rbd_client_list_lock);
383 /* Slab caches for frequently-allocated structures */
385 static struct kmem_cache *rbd_img_request_cache;
386 static struct kmem_cache *rbd_obj_request_cache;
387 static struct kmem_cache *rbd_segment_name_cache;
389 static int rbd_img_request_submit(struct rbd_img_request *img_request);
391 static void rbd_dev_device_release(struct device *dev);
393 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
395 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
397 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
398 static void rbd_spec_put(struct rbd_spec *spec);
400 static struct bus_attribute rbd_bus_attrs[] = {
401 __ATTR(add, S_IWUSR, NULL, rbd_add),
402 __ATTR(remove, S_IWUSR, NULL, rbd_remove),
406 static struct bus_type rbd_bus_type = {
408 .bus_attrs = rbd_bus_attrs,
411 static void rbd_root_dev_release(struct device *dev)
415 static struct device rbd_root_dev = {
417 .release = rbd_root_dev_release,
420 static __printf(2, 3)
421 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
423 struct va_format vaf;
431 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
432 else if (rbd_dev->disk)
433 printk(KERN_WARNING "%s: %s: %pV\n",
434 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
435 else if (rbd_dev->spec && rbd_dev->spec->image_name)
436 printk(KERN_WARNING "%s: image %s: %pV\n",
437 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
438 else if (rbd_dev->spec && rbd_dev->spec->image_id)
439 printk(KERN_WARNING "%s: id %s: %pV\n",
440 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
442 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
443 RBD_DRV_NAME, rbd_dev, &vaf);
448 #define rbd_assert(expr) \
449 if (unlikely(!(expr))) { \
450 printk(KERN_ERR "\nAssertion failure in %s() " \
452 "\trbd_assert(%s);\n\n", \
453 __func__, __LINE__, #expr); \
456 #else /* !RBD_DEBUG */
457 # define rbd_assert(expr) ((void) 0)
458 #endif /* !RBD_DEBUG */
460 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
461 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
462 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
464 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
465 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
466 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
467 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
469 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
470 u8 *order, u64 *snap_size);
471 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
473 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
475 static int rbd_open(struct block_device *bdev, fmode_t mode)
477 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
478 bool removing = false;
480 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
483 spin_lock_irq(&rbd_dev->lock);
484 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
487 rbd_dev->open_count++;
488 spin_unlock_irq(&rbd_dev->lock);
492 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
493 (void) get_device(&rbd_dev->dev);
494 set_device_ro(bdev, rbd_dev->mapping.read_only);
495 mutex_unlock(&ctl_mutex);
500 static void rbd_release(struct gendisk *disk, fmode_t mode)
502 struct rbd_device *rbd_dev = disk->private_data;
503 unsigned long open_count_before;
505 spin_lock_irq(&rbd_dev->lock);
506 open_count_before = rbd_dev->open_count--;
507 spin_unlock_irq(&rbd_dev->lock);
508 rbd_assert(open_count_before > 0);
510 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
511 put_device(&rbd_dev->dev);
512 mutex_unlock(&ctl_mutex);
515 static const struct block_device_operations rbd_bd_ops = {
516 .owner = THIS_MODULE,
518 .release = rbd_release,
522 * Initialize an rbd client instance. Success or not, this function
523 * consumes ceph_opts.
525 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
527 struct rbd_client *rbdc;
530 dout("%s:\n", __func__);
531 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
535 kref_init(&rbdc->kref);
536 INIT_LIST_HEAD(&rbdc->node);
538 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
540 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
541 if (IS_ERR(rbdc->client))
543 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
545 ret = ceph_open_session(rbdc->client);
549 spin_lock(&rbd_client_list_lock);
550 list_add_tail(&rbdc->node, &rbd_client_list);
551 spin_unlock(&rbd_client_list_lock);
553 mutex_unlock(&ctl_mutex);
554 dout("%s: rbdc %p\n", __func__, rbdc);
559 ceph_destroy_client(rbdc->client);
561 mutex_unlock(&ctl_mutex);
565 ceph_destroy_options(ceph_opts);
566 dout("%s: error %d\n", __func__, ret);
571 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
573 kref_get(&rbdc->kref);
579 * Find a ceph client with specific addr and configuration. If
580 * found, bump its reference count.
582 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
584 struct rbd_client *client_node;
587 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
590 spin_lock(&rbd_client_list_lock);
591 list_for_each_entry(client_node, &rbd_client_list, node) {
592 if (!ceph_compare_options(ceph_opts, client_node->client)) {
593 __rbd_get_client(client_node);
599 spin_unlock(&rbd_client_list_lock);
601 return found ? client_node : NULL;
611 /* string args above */
614 /* Boolean args above */
618 static match_table_t rbd_opts_tokens = {
620 /* string args above */
621 {Opt_read_only, "read_only"},
622 {Opt_read_only, "ro"}, /* Alternate spelling */
623 {Opt_read_write, "read_write"},
624 {Opt_read_write, "rw"}, /* Alternate spelling */
625 /* Boolean args above */
633 #define RBD_READ_ONLY_DEFAULT false
635 static int parse_rbd_opts_token(char *c, void *private)
637 struct rbd_options *rbd_opts = private;
638 substring_t argstr[MAX_OPT_ARGS];
639 int token, intval, ret;
641 token = match_token(c, rbd_opts_tokens, argstr);
645 if (token < Opt_last_int) {
646 ret = match_int(&argstr[0], &intval);
648 pr_err("bad mount option arg (not int) "
652 dout("got int token %d val %d\n", token, intval);
653 } else if (token > Opt_last_int && token < Opt_last_string) {
654 dout("got string token %d val %s\n", token,
656 } else if (token > Opt_last_string && token < Opt_last_bool) {
657 dout("got Boolean token %d\n", token);
659 dout("got token %d\n", token);
664 rbd_opts->read_only = true;
667 rbd_opts->read_only = false;
677 * Get a ceph client with specific addr and configuration, if one does
678 * not exist create it. Either way, ceph_opts is consumed by this
681 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
683 struct rbd_client *rbdc;
685 rbdc = rbd_client_find(ceph_opts);
686 if (rbdc) /* using an existing client */
687 ceph_destroy_options(ceph_opts);
689 rbdc = rbd_client_create(ceph_opts);
695 * Destroy ceph client
697 * Caller must hold rbd_client_list_lock.
699 static void rbd_client_release(struct kref *kref)
701 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
703 dout("%s: rbdc %p\n", __func__, rbdc);
704 spin_lock(&rbd_client_list_lock);
705 list_del(&rbdc->node);
706 spin_unlock(&rbd_client_list_lock);
708 ceph_destroy_client(rbdc->client);
713 * Drop reference to ceph client node. If it's not referenced anymore, release
716 static void rbd_put_client(struct rbd_client *rbdc)
719 kref_put(&rbdc->kref, rbd_client_release);
722 static bool rbd_image_format_valid(u32 image_format)
724 return image_format == 1 || image_format == 2;
727 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
732 /* The header has to start with the magic rbd header text */
733 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
736 /* The bio layer requires at least sector-sized I/O */
738 if (ondisk->options.order < SECTOR_SHIFT)
741 /* If we use u64 in a few spots we may be able to loosen this */
743 if (ondisk->options.order > 8 * sizeof (int) - 1)
747 * The size of a snapshot header has to fit in a size_t, and
748 * that limits the number of snapshots.
750 snap_count = le32_to_cpu(ondisk->snap_count);
751 size = SIZE_MAX - sizeof (struct ceph_snap_context);
752 if (snap_count > size / sizeof (__le64))
756 * Not only that, but the size of the entire the snapshot
757 * header must also be representable in a size_t.
759 size -= snap_count * sizeof (__le64);
760 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
767 * Fill an rbd image header with information from the given format 1
770 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
771 struct rbd_image_header_ondisk *ondisk)
773 struct rbd_image_header *header = &rbd_dev->header;
774 bool first_time = header->object_prefix == NULL;
775 struct ceph_snap_context *snapc;
776 char *object_prefix = NULL;
777 char *snap_names = NULL;
778 u64 *snap_sizes = NULL;
784 /* Allocate this now to avoid having to handle failure below */
789 len = strnlen(ondisk->object_prefix,
790 sizeof (ondisk->object_prefix));
791 object_prefix = kmalloc(len + 1, GFP_KERNEL);
794 memcpy(object_prefix, ondisk->object_prefix, len);
795 object_prefix[len] = '\0';
798 /* Allocate the snapshot context and fill it in */
800 snap_count = le32_to_cpu(ondisk->snap_count);
801 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
804 snapc->seq = le64_to_cpu(ondisk->snap_seq);
806 struct rbd_image_snap_ondisk *snaps;
807 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
809 /* We'll keep a copy of the snapshot names... */
811 if (snap_names_len > (u64)SIZE_MAX)
813 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
817 /* ...as well as the array of their sizes. */
819 size = snap_count * sizeof (*header->snap_sizes);
820 snap_sizes = kmalloc(size, GFP_KERNEL);
825 * Copy the names, and fill in each snapshot's id
828 * Note that rbd_dev_v1_header_info() guarantees the
829 * ondisk buffer we're working with has
830 * snap_names_len bytes beyond the end of the
831 * snapshot id array, this memcpy() is safe.
833 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
834 snaps = ondisk->snaps;
835 for (i = 0; i < snap_count; i++) {
836 snapc->snaps[i] = le64_to_cpu(snaps[i].id);
837 snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
841 /* We won't fail any more, fill in the header */
843 down_write(&rbd_dev->header_rwsem);
845 header->object_prefix = object_prefix;
846 header->obj_order = ondisk->options.order;
847 header->crypt_type = ondisk->options.crypt_type;
848 header->comp_type = ondisk->options.comp_type;
849 /* The rest aren't used for format 1 images */
850 header->stripe_unit = 0;
851 header->stripe_count = 0;
852 header->features = 0;
854 ceph_put_snap_context(header->snapc);
855 kfree(header->snap_names);
856 kfree(header->snap_sizes);
859 /* The remaining fields always get updated (when we refresh) */
861 header->image_size = le64_to_cpu(ondisk->image_size);
862 header->snapc = snapc;
863 header->snap_names = snap_names;
864 header->snap_sizes = snap_sizes;
866 /* Make sure mapping size is consistent with header info */
868 if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
869 if (rbd_dev->mapping.size != header->image_size)
870 rbd_dev->mapping.size = header->image_size;
872 up_write(&rbd_dev->header_rwsem);
880 ceph_put_snap_context(snapc);
881 kfree(object_prefix);
886 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
888 const char *snap_name;
890 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
892 /* Skip over names until we find the one we are looking for */
894 snap_name = rbd_dev->header.snap_names;
896 snap_name += strlen(snap_name) + 1;
898 return kstrdup(snap_name, GFP_KERNEL);
902 * Snapshot id comparison function for use with qsort()/bsearch().
903 * Note that result is for snapshots in *descending* order.
905 static int snapid_compare_reverse(const void *s1, const void *s2)
907 u64 snap_id1 = *(u64 *)s1;
908 u64 snap_id2 = *(u64 *)s2;
910 if (snap_id1 < snap_id2)
912 return snap_id1 == snap_id2 ? 0 : -1;
916 * Search a snapshot context to see if the given snapshot id is
919 * Returns the position of the snapshot id in the array if it's found,
920 * or BAD_SNAP_INDEX otherwise.
922 * Note: The snapshot array is in kept sorted (by the osd) in
923 * reverse order, highest snapshot id first.
925 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
927 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
930 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
931 sizeof (snap_id), snapid_compare_reverse);
933 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
936 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
940 const char *snap_name;
942 which = rbd_dev_snap_index(rbd_dev, snap_id);
943 if (which == BAD_SNAP_INDEX)
944 return ERR_PTR(-ENOENT);
946 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
947 return snap_name ? snap_name : ERR_PTR(-ENOMEM);
950 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
952 if (snap_id == CEPH_NOSNAP)
953 return RBD_SNAP_HEAD_NAME;
955 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
956 if (rbd_dev->image_format == 1)
957 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
959 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
962 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
965 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
966 if (snap_id == CEPH_NOSNAP) {
967 *snap_size = rbd_dev->header.image_size;
968 } else if (rbd_dev->image_format == 1) {
971 which = rbd_dev_snap_index(rbd_dev, snap_id);
972 if (which == BAD_SNAP_INDEX)
975 *snap_size = rbd_dev->header.snap_sizes[which];
980 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
989 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
992 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
993 if (snap_id == CEPH_NOSNAP) {
994 *snap_features = rbd_dev->header.features;
995 } else if (rbd_dev->image_format == 1) {
996 *snap_features = 0; /* No features for format 1 */
1001 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1005 *snap_features = features;
1010 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1012 u64 snap_id = rbd_dev->spec->snap_id;
1017 ret = rbd_snap_size(rbd_dev, snap_id, &size);
1020 ret = rbd_snap_features(rbd_dev, snap_id, &features);
1024 rbd_dev->mapping.size = size;
1025 rbd_dev->mapping.features = features;
1030 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1032 rbd_dev->mapping.size = 0;
1033 rbd_dev->mapping.features = 0;
1036 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1043 name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1046 segment = offset >> rbd_dev->header.obj_order;
1047 name_format = "%s.%012llx";
1048 if (rbd_dev->image_format == 2)
1049 name_format = "%s.%016llx";
1050 ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, name_format,
1051 rbd_dev->header.object_prefix, segment);
1052 if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
1053 pr_err("error formatting segment name for #%llu (%d)\n",
1062 static void rbd_segment_name_free(const char *name)
1064 /* The explicit cast here is needed to drop the const qualifier */
1066 kmem_cache_free(rbd_segment_name_cache, (void *)name);
1069 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1071 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1073 return offset & (segment_size - 1);
1076 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1077 u64 offset, u64 length)
1079 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1081 offset &= segment_size - 1;
1083 rbd_assert(length <= U64_MAX - offset);
1084 if (offset + length > segment_size)
1085 length = segment_size - offset;
1091 * returns the size of an object in the image
1093 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1095 return 1 << header->obj_order;
1102 static void bio_chain_put(struct bio *chain)
1108 chain = chain->bi_next;
1114 * zeros a bio chain, starting at specific offset
1116 static void zero_bio_chain(struct bio *chain, int start_ofs)
1119 unsigned long flags;
1125 bio_for_each_segment(bv, chain, i) {
1126 if (pos + bv->bv_len > start_ofs) {
1127 int remainder = max(start_ofs - pos, 0);
1128 buf = bvec_kmap_irq(bv, &flags);
1129 memset(buf + remainder, 0,
1130 bv->bv_len - remainder);
1131 flush_dcache_page(bv->bv_page);
1132 bvec_kunmap_irq(buf, &flags);
1137 chain = chain->bi_next;
1142 * similar to zero_bio_chain(), zeros data defined by a page array,
1143 * starting at the given byte offset from the start of the array and
1144 * continuing up to the given end offset. The pages array is
1145 * assumed to be big enough to hold all bytes up to the end.
1147 static void zero_pages(struct page **pages, u64 offset, u64 end)
1149 struct page **page = &pages[offset >> PAGE_SHIFT];
1151 rbd_assert(end > offset);
1152 rbd_assert(end - offset <= (u64)SIZE_MAX);
1153 while (offset < end) {
1156 unsigned long flags;
1159 page_offset = (size_t)(offset & ~PAGE_MASK);
1160 length = min(PAGE_SIZE - page_offset, (size_t)(end - offset));
1161 local_irq_save(flags);
1162 kaddr = kmap_atomic(*page);
1163 memset(kaddr + page_offset, 0, length);
1164 flush_dcache_page(*page);
1165 kunmap_atomic(kaddr);
1166 local_irq_restore(flags);
1174 * Clone a portion of a bio, starting at the given byte offset
1175 * and continuing for the number of bytes indicated.
1177 static struct bio *bio_clone_range(struct bio *bio_src,
1178 unsigned int offset,
1186 unsigned short end_idx;
1187 unsigned short vcnt;
1190 /* Handle the easy case for the caller */
1192 if (!offset && len == bio_src->bi_size)
1193 return bio_clone(bio_src, gfpmask);
1195 if (WARN_ON_ONCE(!len))
1197 if (WARN_ON_ONCE(len > bio_src->bi_size))
1199 if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
1202 /* Find first affected segment... */
1205 bio_for_each_segment(bv, bio_src, idx) {
1206 if (resid < bv->bv_len)
1208 resid -= bv->bv_len;
1212 /* ...and the last affected segment */
1215 __bio_for_each_segment(bv, bio_src, end_idx, idx) {
1216 if (resid <= bv->bv_len)
1218 resid -= bv->bv_len;
1220 vcnt = end_idx - idx + 1;
1222 /* Build the clone */
1224 bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1226 return NULL; /* ENOMEM */
1228 bio->bi_bdev = bio_src->bi_bdev;
1229 bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1230 bio->bi_rw = bio_src->bi_rw;
1231 bio->bi_flags |= 1 << BIO_CLONED;
1234 * Copy over our part of the bio_vec, then update the first
1235 * and last (or only) entries.
1237 memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1238 vcnt * sizeof (struct bio_vec));
1239 bio->bi_io_vec[0].bv_offset += voff;
1241 bio->bi_io_vec[0].bv_len -= voff;
1242 bio->bi_io_vec[vcnt - 1].bv_len = resid;
1244 bio->bi_io_vec[0].bv_len = len;
1247 bio->bi_vcnt = vcnt;
1255 * Clone a portion of a bio chain, starting at the given byte offset
1256 * into the first bio in the source chain and continuing for the
1257 * number of bytes indicated. The result is another bio chain of
1258 * exactly the given length, or a null pointer on error.
1260 * The bio_src and offset parameters are both in-out. On entry they
1261 * refer to the first source bio and the offset into that bio where
1262 * the start of data to be cloned is located.
1264 * On return, bio_src is updated to refer to the bio in the source
1265 * chain that contains first un-cloned byte, and *offset will
1266 * contain the offset of that byte within that bio.
1268 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1269 unsigned int *offset,
1273 struct bio *bi = *bio_src;
1274 unsigned int off = *offset;
1275 struct bio *chain = NULL;
1278 /* Build up a chain of clone bios up to the limit */
1280 if (!bi || off >= bi->bi_size || !len)
1281 return NULL; /* Nothing to clone */
1285 unsigned int bi_size;
1289 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1290 goto out_err; /* EINVAL; ran out of bio's */
1292 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1293 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1295 goto out_err; /* ENOMEM */
1298 end = &bio->bi_next;
1301 if (off == bi->bi_size) {
1312 bio_chain_put(chain);
1318 * The default/initial value for all object request flags is 0. For
1319 * each flag, once its value is set to 1 it is never reset to 0
1322 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1324 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1325 struct rbd_device *rbd_dev;
1327 rbd_dev = obj_request->img_request->rbd_dev;
1328 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1333 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1336 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1339 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1341 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1342 struct rbd_device *rbd_dev = NULL;
1344 if (obj_request_img_data_test(obj_request))
1345 rbd_dev = obj_request->img_request->rbd_dev;
1346 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1351 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1354 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1358 * This sets the KNOWN flag after (possibly) setting the EXISTS
1359 * flag. The latter is set based on the "exists" value provided.
1361 * Note that for our purposes once an object exists it never goes
1362 * away again. It's possible that the response from two existence
1363 * checks are separated by the creation of the target object, and
1364 * the first ("doesn't exist") response arrives *after* the second
1365 * ("does exist"). In that case we ignore the second one.
1367 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1371 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1372 set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1376 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1379 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1382 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1385 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1388 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1390 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1392 return obj_request->img_offset <
1393 round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1396 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1398 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1399 atomic_read(&obj_request->kref.refcount));
1400 kref_get(&obj_request->kref);
1403 static void rbd_obj_request_destroy(struct kref *kref);
1404 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1406 rbd_assert(obj_request != NULL);
1407 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1408 atomic_read(&obj_request->kref.refcount));
1409 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1412 static void rbd_img_request_get(struct rbd_img_request *img_request)
1414 dout("%s: img %p (was %d)\n", __func__, img_request,
1415 atomic_read(&img_request->kref.refcount));
1416 kref_get(&img_request->kref);
1419 static bool img_request_child_test(struct rbd_img_request *img_request);
1420 static void rbd_parent_request_destroy(struct kref *kref);
1421 static void rbd_img_request_destroy(struct kref *kref);
1422 static void rbd_img_request_put(struct rbd_img_request *img_request)
1424 rbd_assert(img_request != NULL);
1425 dout("%s: img %p (was %d)\n", __func__, img_request,
1426 atomic_read(&img_request->kref.refcount));
1427 if (img_request_child_test(img_request))
1428 kref_put(&img_request->kref, rbd_parent_request_destroy);
1430 kref_put(&img_request->kref, rbd_img_request_destroy);
1433 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1434 struct rbd_obj_request *obj_request)
1436 rbd_assert(obj_request->img_request == NULL);
1438 /* Image request now owns object's original reference */
1439 obj_request->img_request = img_request;
1440 obj_request->which = img_request->obj_request_count;
1441 rbd_assert(!obj_request_img_data_test(obj_request));
1442 obj_request_img_data_set(obj_request);
1443 rbd_assert(obj_request->which != BAD_WHICH);
1444 img_request->obj_request_count++;
1445 list_add_tail(&obj_request->links, &img_request->obj_requests);
1446 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1447 obj_request->which);
1450 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1451 struct rbd_obj_request *obj_request)
1453 rbd_assert(obj_request->which != BAD_WHICH);
1455 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1456 obj_request->which);
1457 list_del(&obj_request->links);
1458 rbd_assert(img_request->obj_request_count > 0);
1459 img_request->obj_request_count--;
1460 rbd_assert(obj_request->which == img_request->obj_request_count);
1461 obj_request->which = BAD_WHICH;
1462 rbd_assert(obj_request_img_data_test(obj_request));
1463 rbd_assert(obj_request->img_request == img_request);
1464 obj_request->img_request = NULL;
1465 obj_request->callback = NULL;
1466 rbd_obj_request_put(obj_request);
1469 static bool obj_request_type_valid(enum obj_request_type type)
1472 case OBJ_REQUEST_NODATA:
1473 case OBJ_REQUEST_BIO:
1474 case OBJ_REQUEST_PAGES:
1481 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1482 struct rbd_obj_request *obj_request)
1484 dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1486 return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1489 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1492 dout("%s: img %p\n", __func__, img_request);
1495 * If no error occurred, compute the aggregate transfer
1496 * count for the image request. We could instead use
1497 * atomic64_cmpxchg() to update it as each object request
1498 * completes; not clear which way is better off hand.
1500 if (!img_request->result) {
1501 struct rbd_obj_request *obj_request;
1504 for_each_obj_request(img_request, obj_request)
1505 xferred += obj_request->xferred;
1506 img_request->xferred = xferred;
1509 if (img_request->callback)
1510 img_request->callback(img_request);
1512 rbd_img_request_put(img_request);
1515 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1517 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1519 dout("%s: obj %p\n", __func__, obj_request);
1521 return wait_for_completion_interruptible(&obj_request->completion);
1525 * The default/initial value for all image request flags is 0. Each
1526 * is conditionally set to 1 at image request initialization time
1527 * and currently never change thereafter.
1529 static void img_request_write_set(struct rbd_img_request *img_request)
1531 set_bit(IMG_REQ_WRITE, &img_request->flags);
1535 static bool img_request_write_test(struct rbd_img_request *img_request)
1538 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1541 static void img_request_child_set(struct rbd_img_request *img_request)
1543 set_bit(IMG_REQ_CHILD, &img_request->flags);
1547 static void img_request_child_clear(struct rbd_img_request *img_request)
1549 clear_bit(IMG_REQ_CHILD, &img_request->flags);
1553 static bool img_request_child_test(struct rbd_img_request *img_request)
1556 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1559 static void img_request_layered_set(struct rbd_img_request *img_request)
1561 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1565 static void img_request_layered_clear(struct rbd_img_request *img_request)
1567 clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1571 static bool img_request_layered_test(struct rbd_img_request *img_request)
1574 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1578 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1580 u64 xferred = obj_request->xferred;
1581 u64 length = obj_request->length;
1583 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1584 obj_request, obj_request->img_request, obj_request->result,
1587 * ENOENT means a hole in the image. We zero-fill the entire
1588 * length of the request. A short read also implies zero-fill
1589 * to the end of the request. An error requires the whole
1590 * length of the request to be reported finished with an error
1591 * to the block layer. In each case we update the xferred
1592 * count to indicate the whole request was satisfied.
1594 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1595 if (obj_request->result == -ENOENT) {
1596 if (obj_request->type == OBJ_REQUEST_BIO)
1597 zero_bio_chain(obj_request->bio_list, 0);
1599 zero_pages(obj_request->pages, 0, length);
1600 obj_request->result = 0;
1601 } else if (xferred < length && !obj_request->result) {
1602 if (obj_request->type == OBJ_REQUEST_BIO)
1603 zero_bio_chain(obj_request->bio_list, xferred);
1605 zero_pages(obj_request->pages, xferred, length);
1607 obj_request->xferred = length;
1608 obj_request_done_set(obj_request);
1611 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1613 dout("%s: obj %p cb %p\n", __func__, obj_request,
1614 obj_request->callback);
1615 if (obj_request->callback)
1616 obj_request->callback(obj_request);
1618 complete_all(&obj_request->completion);
1621 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1623 dout("%s: obj %p\n", __func__, obj_request);
1624 obj_request_done_set(obj_request);
1627 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1629 struct rbd_img_request *img_request = NULL;
1630 struct rbd_device *rbd_dev = NULL;
1631 bool layered = false;
1633 if (obj_request_img_data_test(obj_request)) {
1634 img_request = obj_request->img_request;
1635 layered = img_request && img_request_layered_test(img_request);
1636 rbd_dev = img_request->rbd_dev;
1639 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1640 obj_request, img_request, obj_request->result,
1641 obj_request->xferred, obj_request->length);
1642 if (layered && obj_request->result == -ENOENT &&
1643 obj_request->img_offset < rbd_dev->parent_overlap)
1644 rbd_img_parent_read(obj_request);
1645 else if (img_request)
1646 rbd_img_obj_request_read_callback(obj_request);
1648 obj_request_done_set(obj_request);
1651 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1653 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1654 obj_request->result, obj_request->length);
1656 * There is no such thing as a successful short write. Set
1657 * it to our originally-requested length.
1659 obj_request->xferred = obj_request->length;
1660 obj_request_done_set(obj_request);
1664 * For a simple stat call there's nothing to do. We'll do more if
1665 * this is part of a write sequence for a layered image.
1667 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1669 dout("%s: obj %p\n", __func__, obj_request);
1670 obj_request_done_set(obj_request);
1673 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1674 struct ceph_msg *msg)
1676 struct rbd_obj_request *obj_request = osd_req->r_priv;
1679 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1680 rbd_assert(osd_req == obj_request->osd_req);
1681 if (obj_request_img_data_test(obj_request)) {
1682 rbd_assert(obj_request->img_request);
1683 rbd_assert(obj_request->which != BAD_WHICH);
1685 rbd_assert(obj_request->which == BAD_WHICH);
1688 if (osd_req->r_result < 0)
1689 obj_request->result = osd_req->r_result;
1691 BUG_ON(osd_req->r_num_ops > 2);
1694 * We support a 64-bit length, but ultimately it has to be
1695 * passed to blk_end_request(), which takes an unsigned int.
1697 obj_request->xferred = osd_req->r_reply_op_len[0];
1698 rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1699 opcode = osd_req->r_ops[0].op;
1701 case CEPH_OSD_OP_READ:
1702 rbd_osd_read_callback(obj_request);
1704 case CEPH_OSD_OP_WRITE:
1705 rbd_osd_write_callback(obj_request);
1707 case CEPH_OSD_OP_STAT:
1708 rbd_osd_stat_callback(obj_request);
1710 case CEPH_OSD_OP_CALL:
1711 case CEPH_OSD_OP_NOTIFY_ACK:
1712 case CEPH_OSD_OP_WATCH:
1713 rbd_osd_trivial_callback(obj_request);
1716 rbd_warn(NULL, "%s: unsupported op %hu\n",
1717 obj_request->object_name, (unsigned short) opcode);
1721 if (obj_request_done_test(obj_request))
1722 rbd_obj_request_complete(obj_request);
1725 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1727 struct rbd_img_request *img_request = obj_request->img_request;
1728 struct ceph_osd_request *osd_req = obj_request->osd_req;
1731 rbd_assert(osd_req != NULL);
1733 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1734 ceph_osdc_build_request(osd_req, obj_request->offset,
1735 NULL, snap_id, NULL);
1738 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1740 struct rbd_img_request *img_request = obj_request->img_request;
1741 struct ceph_osd_request *osd_req = obj_request->osd_req;
1742 struct ceph_snap_context *snapc;
1743 struct timespec mtime = CURRENT_TIME;
1745 rbd_assert(osd_req != NULL);
1747 snapc = img_request ? img_request->snapc : NULL;
1748 ceph_osdc_build_request(osd_req, obj_request->offset,
1749 snapc, CEPH_NOSNAP, &mtime);
1752 static struct ceph_osd_request *rbd_osd_req_create(
1753 struct rbd_device *rbd_dev,
1755 struct rbd_obj_request *obj_request)
1757 struct ceph_snap_context *snapc = NULL;
1758 struct ceph_osd_client *osdc;
1759 struct ceph_osd_request *osd_req;
1761 if (obj_request_img_data_test(obj_request)) {
1762 struct rbd_img_request *img_request = obj_request->img_request;
1764 rbd_assert(write_request ==
1765 img_request_write_test(img_request));
1767 snapc = img_request->snapc;
1770 /* Allocate and initialize the request, for the single op */
1772 osdc = &rbd_dev->rbd_client->client->osdc;
1773 osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1775 return NULL; /* ENOMEM */
1778 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1780 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1782 osd_req->r_callback = rbd_osd_req_callback;
1783 osd_req->r_priv = obj_request;
1785 osd_req->r_oid_len = strlen(obj_request->object_name);
1786 rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1787 memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1789 osd_req->r_file_layout = rbd_dev->layout; /* struct */
1795 * Create a copyup osd request based on the information in the
1796 * object request supplied. A copyup request has two osd ops,
1797 * a copyup method call, and a "normal" write request.
1799 static struct ceph_osd_request *
1800 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1802 struct rbd_img_request *img_request;
1803 struct ceph_snap_context *snapc;
1804 struct rbd_device *rbd_dev;
1805 struct ceph_osd_client *osdc;
1806 struct ceph_osd_request *osd_req;
1808 rbd_assert(obj_request_img_data_test(obj_request));
1809 img_request = obj_request->img_request;
1810 rbd_assert(img_request);
1811 rbd_assert(img_request_write_test(img_request));
1813 /* Allocate and initialize the request, for the two ops */
1815 snapc = img_request->snapc;
1816 rbd_dev = img_request->rbd_dev;
1817 osdc = &rbd_dev->rbd_client->client->osdc;
1818 osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1820 return NULL; /* ENOMEM */
1822 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1823 osd_req->r_callback = rbd_osd_req_callback;
1824 osd_req->r_priv = obj_request;
1826 osd_req->r_oid_len = strlen(obj_request->object_name);
1827 rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1828 memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1830 osd_req->r_file_layout = rbd_dev->layout; /* struct */
1836 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1838 ceph_osdc_put_request(osd_req);
1841 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1843 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1844 u64 offset, u64 length,
1845 enum obj_request_type type)
1847 struct rbd_obj_request *obj_request;
1851 rbd_assert(obj_request_type_valid(type));
1853 size = strlen(object_name) + 1;
1854 name = kmalloc(size, GFP_KERNEL);
1858 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1864 obj_request->object_name = memcpy(name, object_name, size);
1865 obj_request->offset = offset;
1866 obj_request->length = length;
1867 obj_request->flags = 0;
1868 obj_request->which = BAD_WHICH;
1869 obj_request->type = type;
1870 INIT_LIST_HEAD(&obj_request->links);
1871 init_completion(&obj_request->completion);
1872 kref_init(&obj_request->kref);
1874 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1875 offset, length, (int)type, obj_request);
1880 static void rbd_obj_request_destroy(struct kref *kref)
1882 struct rbd_obj_request *obj_request;
1884 obj_request = container_of(kref, struct rbd_obj_request, kref);
1886 dout("%s: obj %p\n", __func__, obj_request);
1888 rbd_assert(obj_request->img_request == NULL);
1889 rbd_assert(obj_request->which == BAD_WHICH);
1891 if (obj_request->osd_req)
1892 rbd_osd_req_destroy(obj_request->osd_req);
1894 rbd_assert(obj_request_type_valid(obj_request->type));
1895 switch (obj_request->type) {
1896 case OBJ_REQUEST_NODATA:
1897 break; /* Nothing to do */
1898 case OBJ_REQUEST_BIO:
1899 if (obj_request->bio_list)
1900 bio_chain_put(obj_request->bio_list);
1902 case OBJ_REQUEST_PAGES:
1903 if (obj_request->pages)
1904 ceph_release_page_vector(obj_request->pages,
1905 obj_request->page_count);
1909 kfree(obj_request->object_name);
1910 obj_request->object_name = NULL;
1911 kmem_cache_free(rbd_obj_request_cache, obj_request);
1914 /* It's OK to call this for a device with no parent */
1916 static void rbd_spec_put(struct rbd_spec *spec);
1917 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1919 rbd_dev_remove_parent(rbd_dev);
1920 rbd_spec_put(rbd_dev->parent_spec);
1921 rbd_dev->parent_spec = NULL;
1922 rbd_dev->parent_overlap = 0;
1926 * Parent image reference counting is used to determine when an
1927 * image's parent fields can be safely torn down--after there are no
1928 * more in-flight requests to the parent image. When the last
1929 * reference is dropped, cleaning them up is safe.
1931 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1935 if (!rbd_dev->parent_spec)
1938 counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1942 /* Last reference; clean up parent data structures */
1945 rbd_dev_unparent(rbd_dev);
1947 rbd_warn(rbd_dev, "parent reference underflow\n");
1951 * If an image has a non-zero parent overlap, get a reference to its
1954 * We must get the reference before checking for the overlap to
1955 * coordinate properly with zeroing the parent overlap in
1956 * rbd_dev_v2_parent_info() when an image gets flattened. We
1957 * drop it again if there is no overlap.
1959 * Returns true if the rbd device has a parent with a non-zero
1960 * overlap and a reference for it was successfully taken, or
1963 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1967 if (!rbd_dev->parent_spec)
1970 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1971 if (counter > 0 && rbd_dev->parent_overlap)
1974 /* Image was flattened, but parent is not yet torn down */
1977 rbd_warn(rbd_dev, "parent reference overflow\n");
1983 * Caller is responsible for filling in the list of object requests
1984 * that comprises the image request, and the Linux request pointer
1985 * (if there is one).
1987 static struct rbd_img_request *rbd_img_request_create(
1988 struct rbd_device *rbd_dev,
1989 u64 offset, u64 length,
1992 struct rbd_img_request *img_request;
1994 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1998 if (write_request) {
1999 down_read(&rbd_dev->header_rwsem);
2000 ceph_get_snap_context(rbd_dev->header.snapc);
2001 up_read(&rbd_dev->header_rwsem);
2004 img_request->rq = NULL;
2005 img_request->rbd_dev = rbd_dev;
2006 img_request->offset = offset;
2007 img_request->length = length;
2008 img_request->flags = 0;
2009 if (write_request) {
2010 img_request_write_set(img_request);
2011 img_request->snapc = rbd_dev->header.snapc;
2013 img_request->snap_id = rbd_dev->spec->snap_id;
2015 if (rbd_dev_parent_get(rbd_dev))
2016 img_request_layered_set(img_request);
2017 spin_lock_init(&img_request->completion_lock);
2018 img_request->next_completion = 0;
2019 img_request->callback = NULL;
2020 img_request->result = 0;
2021 img_request->obj_request_count = 0;
2022 INIT_LIST_HEAD(&img_request->obj_requests);
2023 kref_init(&img_request->kref);
2025 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2026 write_request ? "write" : "read", offset, length,
2032 static void rbd_img_request_destroy(struct kref *kref)
2034 struct rbd_img_request *img_request;
2035 struct rbd_obj_request *obj_request;
2036 struct rbd_obj_request *next_obj_request;
2038 img_request = container_of(kref, struct rbd_img_request, kref);
2040 dout("%s: img %p\n", __func__, img_request);
2042 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2043 rbd_img_obj_request_del(img_request, obj_request);
2044 rbd_assert(img_request->obj_request_count == 0);
2046 if (img_request_layered_test(img_request)) {
2047 img_request_layered_clear(img_request);
2048 rbd_dev_parent_put(img_request->rbd_dev);
2051 if (img_request_write_test(img_request))
2052 ceph_put_snap_context(img_request->snapc);
2054 kmem_cache_free(rbd_img_request_cache, img_request);
2057 static struct rbd_img_request *rbd_parent_request_create(
2058 struct rbd_obj_request *obj_request,
2059 u64 img_offset, u64 length)
2061 struct rbd_img_request *parent_request;
2062 struct rbd_device *rbd_dev;
2064 rbd_assert(obj_request->img_request);
2065 rbd_dev = obj_request->img_request->rbd_dev;
2067 parent_request = rbd_img_request_create(rbd_dev->parent,
2068 img_offset, length, false);
2069 if (!parent_request)
2072 img_request_child_set(parent_request);
2073 rbd_obj_request_get(obj_request);
2074 parent_request->obj_request = obj_request;
2076 return parent_request;
2079 static void rbd_parent_request_destroy(struct kref *kref)
2081 struct rbd_img_request *parent_request;
2082 struct rbd_obj_request *orig_request;
2084 parent_request = container_of(kref, struct rbd_img_request, kref);
2085 orig_request = parent_request->obj_request;
2087 parent_request->obj_request = NULL;
2088 rbd_obj_request_put(orig_request);
2089 img_request_child_clear(parent_request);
2091 rbd_img_request_destroy(kref);
2094 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2096 struct rbd_img_request *img_request;
2097 unsigned int xferred;
2101 rbd_assert(obj_request_img_data_test(obj_request));
2102 img_request = obj_request->img_request;
2104 rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2105 xferred = (unsigned int)obj_request->xferred;
2106 result = obj_request->result;
2108 struct rbd_device *rbd_dev = img_request->rbd_dev;
2110 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2111 img_request_write_test(img_request) ? "write" : "read",
2112 obj_request->length, obj_request->img_offset,
2113 obj_request->offset);
2114 rbd_warn(rbd_dev, " result %d xferred %x\n",
2116 if (!img_request->result)
2117 img_request->result = result;
2120 /* Image object requests don't own their page array */
2122 if (obj_request->type == OBJ_REQUEST_PAGES) {
2123 obj_request->pages = NULL;
2124 obj_request->page_count = 0;
2127 if (img_request_child_test(img_request)) {
2128 rbd_assert(img_request->obj_request != NULL);
2129 more = obj_request->which < img_request->obj_request_count - 1;
2131 rbd_assert(img_request->rq != NULL);
2132 more = blk_end_request(img_request->rq, result, xferred);
2138 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2140 struct rbd_img_request *img_request;
2141 u32 which = obj_request->which;
2144 rbd_assert(obj_request_img_data_test(obj_request));
2145 img_request = obj_request->img_request;
2147 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2148 rbd_assert(img_request != NULL);
2149 rbd_assert(img_request->obj_request_count > 0);
2150 rbd_assert(which != BAD_WHICH);
2151 rbd_assert(which < img_request->obj_request_count);
2152 rbd_assert(which >= img_request->next_completion);
2154 spin_lock_irq(&img_request->completion_lock);
2155 if (which != img_request->next_completion)
2158 for_each_obj_request_from(img_request, obj_request) {
2160 rbd_assert(which < img_request->obj_request_count);
2162 if (!obj_request_done_test(obj_request))
2164 more = rbd_img_obj_end_request(obj_request);
2168 rbd_assert(more ^ (which == img_request->obj_request_count));
2169 img_request->next_completion = which;
2171 spin_unlock_irq(&img_request->completion_lock);
2172 rbd_img_request_put(img_request);
2175 rbd_img_request_complete(img_request);
2179 * Split up an image request into one or more object requests, each
2180 * to a different object. The "type" parameter indicates whether
2181 * "data_desc" is the pointer to the head of a list of bio
2182 * structures, or the base of a page array. In either case this
2183 * function assumes data_desc describes memory sufficient to hold
2184 * all data described by the image request.
2186 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2187 enum obj_request_type type,
2190 struct rbd_device *rbd_dev = img_request->rbd_dev;
2191 struct rbd_obj_request *obj_request = NULL;
2192 struct rbd_obj_request *next_obj_request;
2193 bool write_request = img_request_write_test(img_request);
2194 struct bio *bio_list = 0;
2195 unsigned int bio_offset = 0;
2196 struct page **pages = 0;
2201 dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2202 (int)type, data_desc);
2204 opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2205 img_offset = img_request->offset;
2206 resid = img_request->length;
2207 rbd_assert(resid > 0);
2209 if (type == OBJ_REQUEST_BIO) {
2210 bio_list = data_desc;
2211 rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
2213 rbd_assert(type == OBJ_REQUEST_PAGES);
2218 struct ceph_osd_request *osd_req;
2219 const char *object_name;
2223 object_name = rbd_segment_name(rbd_dev, img_offset);
2226 offset = rbd_segment_offset(rbd_dev, img_offset);
2227 length = rbd_segment_length(rbd_dev, img_offset, resid);
2228 obj_request = rbd_obj_request_create(object_name,
2229 offset, length, type);
2230 /* object request has its own copy of the object name */
2231 rbd_segment_name_free(object_name);
2235 * set obj_request->img_request before creating the
2236 * osd_request so that it gets the right snapc
2238 rbd_img_obj_request_add(img_request, obj_request);
2240 if (type == OBJ_REQUEST_BIO) {
2241 unsigned int clone_size;
2243 rbd_assert(length <= (u64)UINT_MAX);
2244 clone_size = (unsigned int)length;
2245 obj_request->bio_list =
2246 bio_chain_clone_range(&bio_list,
2250 if (!obj_request->bio_list)
2253 unsigned int page_count;
2255 obj_request->pages = pages;
2256 page_count = (u32)calc_pages_for(offset, length);
2257 obj_request->page_count = page_count;
2258 if ((offset + length) & ~PAGE_MASK)
2259 page_count--; /* more on last page */
2260 pages += page_count;
2263 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2267 obj_request->osd_req = osd_req;
2268 obj_request->callback = rbd_img_obj_callback;
2269 rbd_img_request_get(img_request);
2271 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2273 if (type == OBJ_REQUEST_BIO)
2274 osd_req_op_extent_osd_data_bio(osd_req, 0,
2275 obj_request->bio_list, length);
2277 osd_req_op_extent_osd_data_pages(osd_req, 0,
2278 obj_request->pages, length,
2279 offset & ~PAGE_MASK, false, false);
2282 rbd_osd_req_format_write(obj_request);
2284 rbd_osd_req_format_read(obj_request);
2286 obj_request->img_offset = img_offset;
2288 img_offset += length;
2295 rbd_obj_request_put(obj_request);
2297 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2298 rbd_img_obj_request_del(img_request, obj_request);
2304 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2306 struct rbd_img_request *img_request;
2307 struct rbd_device *rbd_dev;
2308 struct page **pages;
2311 rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2312 rbd_assert(obj_request_img_data_test(obj_request));
2313 img_request = obj_request->img_request;
2314 rbd_assert(img_request);
2316 rbd_dev = img_request->rbd_dev;
2317 rbd_assert(rbd_dev);
2319 pages = obj_request->copyup_pages;
2320 rbd_assert(pages != NULL);
2321 obj_request->copyup_pages = NULL;
2322 page_count = obj_request->copyup_page_count;
2323 rbd_assert(page_count);
2324 obj_request->copyup_page_count = 0;
2325 ceph_release_page_vector(pages, page_count);
2328 * We want the transfer count to reflect the size of the
2329 * original write request. There is no such thing as a
2330 * successful short write, so if the request was successful
2331 * we can just set it to the originally-requested length.
2333 if (!obj_request->result)
2334 obj_request->xferred = obj_request->length;
2336 /* Finish up with the normal image object callback */
2338 rbd_img_obj_callback(obj_request);
2342 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2344 struct rbd_obj_request *orig_request;
2345 struct ceph_osd_request *osd_req;
2346 struct ceph_osd_client *osdc;
2347 struct rbd_device *rbd_dev;
2348 struct page **pages;
2355 rbd_assert(img_request_child_test(img_request));
2357 /* First get what we need from the image request */
2359 pages = img_request->copyup_pages;
2360 rbd_assert(pages != NULL);
2361 img_request->copyup_pages = NULL;
2362 page_count = img_request->copyup_page_count;
2363 rbd_assert(page_count);
2364 img_request->copyup_page_count = 0;
2366 orig_request = img_request->obj_request;
2367 rbd_assert(orig_request != NULL);
2368 rbd_assert(obj_request_type_valid(orig_request->type));
2369 img_result = img_request->result;
2370 parent_length = img_request->length;
2371 rbd_assert(parent_length == img_request->xferred);
2372 rbd_img_request_put(img_request);
2374 rbd_assert(orig_request->img_request);
2375 rbd_dev = orig_request->img_request->rbd_dev;
2376 rbd_assert(rbd_dev);
2379 * If the overlap has become 0 (most likely because the
2380 * image has been flattened) we need to free the pages
2381 * and re-submit the original write request.
2383 if (!rbd_dev->parent_overlap) {
2384 struct ceph_osd_client *osdc;
2386 ceph_release_page_vector(pages, page_count);
2387 osdc = &rbd_dev->rbd_client->client->osdc;
2388 img_result = rbd_obj_request_submit(osdc, orig_request);
2397 * The original osd request is of no use to use any more.
2398 * We need a new one that can hold the two ops in a copyup
2399 * request. Allocate the new copyup osd request for the
2400 * original request, and release the old one.
2402 img_result = -ENOMEM;
2403 osd_req = rbd_osd_req_create_copyup(orig_request);
2406 rbd_osd_req_destroy(orig_request->osd_req);
2407 orig_request->osd_req = osd_req;
2408 orig_request->copyup_pages = pages;
2409 orig_request->copyup_page_count = page_count;
2411 /* Initialize the copyup op */
2413 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2414 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2417 /* Then the original write request op */
2419 offset = orig_request->offset;
2420 length = orig_request->length;
2421 osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2422 offset, length, 0, 0);
2423 if (orig_request->type == OBJ_REQUEST_BIO)
2424 osd_req_op_extent_osd_data_bio(osd_req, 1,
2425 orig_request->bio_list, length);
2427 osd_req_op_extent_osd_data_pages(osd_req, 1,
2428 orig_request->pages, length,
2429 offset & ~PAGE_MASK, false, false);
2431 rbd_osd_req_format_write(orig_request);
2433 /* All set, send it off. */
2435 orig_request->callback = rbd_img_obj_copyup_callback;
2436 osdc = &rbd_dev->rbd_client->client->osdc;
2437 img_result = rbd_obj_request_submit(osdc, orig_request);
2441 /* Record the error code and complete the request */
2443 orig_request->result = img_result;
2444 orig_request->xferred = 0;
2445 obj_request_done_set(orig_request);
2446 rbd_obj_request_complete(orig_request);
2450 * Read from the parent image the range of data that covers the
2451 * entire target of the given object request. This is used for
2452 * satisfying a layered image write request when the target of an
2453 * object request from the image request does not exist.
2455 * A page array big enough to hold the returned data is allocated
2456 * and supplied to rbd_img_request_fill() as the "data descriptor."
2457 * When the read completes, this page array will be transferred to
2458 * the original object request for the copyup operation.
2460 * If an error occurs, record it as the result of the original
2461 * object request and mark it done so it gets completed.
2463 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2465 struct rbd_img_request *img_request = NULL;
2466 struct rbd_img_request *parent_request = NULL;
2467 struct rbd_device *rbd_dev;
2470 struct page **pages = NULL;
2474 rbd_assert(obj_request_img_data_test(obj_request));
2475 rbd_assert(obj_request_type_valid(obj_request->type));
2477 img_request = obj_request->img_request;
2478 rbd_assert(img_request != NULL);
2479 rbd_dev = img_request->rbd_dev;
2480 rbd_assert(rbd_dev->parent != NULL);
2483 * Determine the byte range covered by the object in the
2484 * child image to which the original request was to be sent.
2486 img_offset = obj_request->img_offset - obj_request->offset;
2487 length = (u64)1 << rbd_dev->header.obj_order;
2490 * There is no defined parent data beyond the parent
2491 * overlap, so limit what we read at that boundary if
2494 if (img_offset + length > rbd_dev->parent_overlap) {
2495 rbd_assert(img_offset < rbd_dev->parent_overlap);
2496 length = rbd_dev->parent_overlap - img_offset;
2500 * Allocate a page array big enough to receive the data read
2503 page_count = (u32)calc_pages_for(0, length);
2504 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2505 if (IS_ERR(pages)) {
2506 result = PTR_ERR(pages);
2512 parent_request = rbd_parent_request_create(obj_request,
2513 img_offset, length);
2514 if (!parent_request)
2517 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2520 parent_request->copyup_pages = pages;
2521 parent_request->copyup_page_count = page_count;
2523 parent_request->callback = rbd_img_obj_parent_read_full_callback;
2524 result = rbd_img_request_submit(parent_request);
2528 parent_request->copyup_pages = NULL;
2529 parent_request->copyup_page_count = 0;
2530 parent_request->obj_request = NULL;
2531 rbd_obj_request_put(obj_request);
2534 ceph_release_page_vector(pages, page_count);
2536 rbd_img_request_put(parent_request);
2537 obj_request->result = result;
2538 obj_request->xferred = 0;
2539 obj_request_done_set(obj_request);
2544 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2546 struct rbd_obj_request *orig_request;
2547 struct rbd_device *rbd_dev;
2550 rbd_assert(!obj_request_img_data_test(obj_request));
2553 * All we need from the object request is the original
2554 * request and the result of the STAT op. Grab those, then
2555 * we're done with the request.
2557 orig_request = obj_request->obj_request;
2558 obj_request->obj_request = NULL;
2559 rbd_assert(orig_request);
2560 rbd_assert(orig_request->img_request);
2562 result = obj_request->result;
2563 obj_request->result = 0;
2565 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2566 obj_request, orig_request, result,
2567 obj_request->xferred, obj_request->length);
2568 rbd_obj_request_put(obj_request);
2571 * If the overlap has become 0 (most likely because the
2572 * image has been flattened) we need to free the pages
2573 * and re-submit the original write request.
2575 rbd_dev = orig_request->img_request->rbd_dev;
2576 if (!rbd_dev->parent_overlap) {
2577 struct ceph_osd_client *osdc;
2579 rbd_obj_request_put(orig_request);
2580 osdc = &rbd_dev->rbd_client->client->osdc;
2581 result = rbd_obj_request_submit(osdc, orig_request);
2587 * Our only purpose here is to determine whether the object
2588 * exists, and we don't want to treat the non-existence as
2589 * an error. If something else comes back, transfer the
2590 * error to the original request and complete it now.
2593 obj_request_existence_set(orig_request, true);
2594 } else if (result == -ENOENT) {
2595 obj_request_existence_set(orig_request, false);
2596 } else if (result) {
2597 orig_request->result = result;
2602 * Resubmit the original request now that we have recorded
2603 * whether the target object exists.
2605 orig_request->result = rbd_img_obj_request_submit(orig_request);
2607 if (orig_request->result)
2608 rbd_obj_request_complete(orig_request);
2609 rbd_obj_request_put(orig_request);
2612 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2614 struct rbd_obj_request *stat_request;
2615 struct rbd_device *rbd_dev;
2616 struct ceph_osd_client *osdc;
2617 struct page **pages = NULL;
2623 * The response data for a STAT call consists of:
2630 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2631 page_count = (u32)calc_pages_for(0, size);
2632 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2634 return PTR_ERR(pages);
2637 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2642 rbd_obj_request_get(obj_request);
2643 stat_request->obj_request = obj_request;
2644 stat_request->pages = pages;
2645 stat_request->page_count = page_count;
2647 rbd_assert(obj_request->img_request);
2648 rbd_dev = obj_request->img_request->rbd_dev;
2649 stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2651 if (!stat_request->osd_req)
2653 stat_request->callback = rbd_img_obj_exists_callback;
2655 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2656 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2658 rbd_osd_req_format_read(stat_request);
2660 osdc = &rbd_dev->rbd_client->client->osdc;
2661 ret = rbd_obj_request_submit(osdc, stat_request);
2664 rbd_obj_request_put(obj_request);
2669 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2671 struct rbd_img_request *img_request;
2672 struct rbd_device *rbd_dev;
2675 rbd_assert(obj_request_img_data_test(obj_request));
2677 img_request = obj_request->img_request;
2678 rbd_assert(img_request);
2679 rbd_dev = img_request->rbd_dev;
2682 * Only writes to layered images need special handling.
2683 * Reads and non-layered writes are simple object requests.
2684 * Layered writes that start beyond the end of the overlap
2685 * with the parent have no parent data, so they too are
2686 * simple object requests. Finally, if the target object is
2687 * known to already exist, its parent data has already been
2688 * copied, so a write to the object can also be handled as a
2689 * simple object request.
2691 if (!img_request_write_test(img_request) ||
2692 !img_request_layered_test(img_request) ||
2693 !obj_request_overlaps_parent(obj_request) ||
2694 ((known = obj_request_known_test(obj_request)) &&
2695 obj_request_exists_test(obj_request))) {
2697 struct rbd_device *rbd_dev;
2698 struct ceph_osd_client *osdc;
2700 rbd_dev = obj_request->img_request->rbd_dev;
2701 osdc = &rbd_dev->rbd_client->client->osdc;
2703 return rbd_obj_request_submit(osdc, obj_request);
2707 * It's a layered write. The target object might exist but
2708 * we may not know that yet. If we know it doesn't exist,
2709 * start by reading the data for the full target object from
2710 * the parent so we can use it for a copyup to the target.
2713 return rbd_img_obj_parent_read_full(obj_request);
2715 /* We don't know whether the target exists. Go find out. */
2717 return rbd_img_obj_exists_submit(obj_request);
2720 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2722 struct rbd_obj_request *obj_request;
2723 struct rbd_obj_request *next_obj_request;
2725 dout("%s: img %p\n", __func__, img_request);
2726 for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2729 ret = rbd_img_obj_request_submit(obj_request);
2737 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2739 struct rbd_obj_request *obj_request;
2740 struct rbd_device *rbd_dev;
2745 rbd_assert(img_request_child_test(img_request));
2747 /* First get what we need from the image request and release it */
2749 obj_request = img_request->obj_request;
2750 img_xferred = img_request->xferred;
2751 img_result = img_request->result;
2752 rbd_img_request_put(img_request);
2755 * If the overlap has become 0 (most likely because the
2756 * image has been flattened) we need to re-submit the
2759 rbd_assert(obj_request);
2760 rbd_assert(obj_request->img_request);
2761 rbd_dev = obj_request->img_request->rbd_dev;
2762 if (!rbd_dev->parent_overlap) {
2763 struct ceph_osd_client *osdc;
2765 osdc = &rbd_dev->rbd_client->client->osdc;
2766 img_result = rbd_obj_request_submit(osdc, obj_request);
2771 obj_request->result = img_result;
2772 if (obj_request->result)
2776 * We need to zero anything beyond the parent overlap
2777 * boundary. Since rbd_img_obj_request_read_callback()
2778 * will zero anything beyond the end of a short read, an
2779 * easy way to do this is to pretend the data from the
2780 * parent came up short--ending at the overlap boundary.
2782 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2783 obj_end = obj_request->img_offset + obj_request->length;
2784 if (obj_end > rbd_dev->parent_overlap) {
2787 if (obj_request->img_offset < rbd_dev->parent_overlap)
2788 xferred = rbd_dev->parent_overlap -
2789 obj_request->img_offset;
2791 obj_request->xferred = min(img_xferred, xferred);
2793 obj_request->xferred = img_xferred;
2796 rbd_img_obj_request_read_callback(obj_request);
2797 rbd_obj_request_complete(obj_request);
2800 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2802 struct rbd_img_request *img_request;
2805 rbd_assert(obj_request_img_data_test(obj_request));
2806 rbd_assert(obj_request->img_request != NULL);
2807 rbd_assert(obj_request->result == (s32) -ENOENT);
2808 rbd_assert(obj_request_type_valid(obj_request->type));
2810 /* rbd_read_finish(obj_request, obj_request->length); */
2811 img_request = rbd_parent_request_create(obj_request,
2812 obj_request->img_offset,
2813 obj_request->length);
2818 if (obj_request->type == OBJ_REQUEST_BIO)
2819 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2820 obj_request->bio_list);
2822 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2823 obj_request->pages);
2827 img_request->callback = rbd_img_parent_read_callback;
2828 result = rbd_img_request_submit(img_request);
2835 rbd_img_request_put(img_request);
2836 obj_request->result = result;
2837 obj_request->xferred = 0;
2838 obj_request_done_set(obj_request);
2841 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
2843 struct rbd_obj_request *obj_request;
2844 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2847 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2848 OBJ_REQUEST_NODATA);
2853 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2854 if (!obj_request->osd_req)
2857 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2859 rbd_osd_req_format_read(obj_request);
2861 ret = rbd_obj_request_submit(osdc, obj_request);
2864 ret = rbd_obj_request_wait(obj_request);
2866 rbd_obj_request_put(obj_request);
2871 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2873 struct rbd_device *rbd_dev = (struct rbd_device *)data;
2879 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2880 rbd_dev->header_name, (unsigned long long)notify_id,
2881 (unsigned int)opcode);
2882 ret = rbd_dev_refresh(rbd_dev);
2884 rbd_warn(rbd_dev, ": header refresh error (%d)\n", ret);
2886 rbd_obj_notify_ack_sync(rbd_dev, notify_id);
2890 * Request sync osd watch/unwatch. The value of "start" determines
2891 * whether a watch request is being initiated or torn down.
2893 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start)
2895 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2896 struct rbd_obj_request *obj_request;
2899 rbd_assert(start ^ !!rbd_dev->watch_event);
2900 rbd_assert(start ^ !!rbd_dev->watch_request);
2903 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2904 &rbd_dev->watch_event);
2907 rbd_assert(rbd_dev->watch_event != NULL);
2911 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2912 OBJ_REQUEST_NODATA);
2916 obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2917 if (!obj_request->osd_req)
2921 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2923 ceph_osdc_unregister_linger_request(osdc,
2924 rbd_dev->watch_request->osd_req);
2926 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2927 rbd_dev->watch_event->cookie, 0, start ? 1 : 0);
2928 rbd_osd_req_format_write(obj_request);
2930 ret = rbd_obj_request_submit(osdc, obj_request);
2933 ret = rbd_obj_request_wait(obj_request);
2936 ret = obj_request->result;
2941 * A watch request is set to linger, so the underlying osd
2942 * request won't go away until we unregister it. We retain
2943 * a pointer to the object request during that time (in
2944 * rbd_dev->watch_request), so we'll keep a reference to
2945 * it. We'll drop that reference (below) after we've
2949 rbd_dev->watch_request = obj_request;
2954 /* We have successfully torn down the watch request */
2956 rbd_obj_request_put(rbd_dev->watch_request);
2957 rbd_dev->watch_request = NULL;
2959 /* Cancel the event if we're tearing down, or on error */
2960 ceph_osdc_cancel_event(rbd_dev->watch_event);
2961 rbd_dev->watch_event = NULL;
2963 rbd_obj_request_put(obj_request);
2969 * Synchronous osd object method call. Returns the number of bytes
2970 * returned in the outbound buffer, or a negative error code.
2972 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2973 const char *object_name,
2974 const char *class_name,
2975 const char *method_name,
2976 const void *outbound,
2977 size_t outbound_size,
2979 size_t inbound_size)
2981 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2982 struct rbd_obj_request *obj_request;
2983 struct page **pages;
2988 * Method calls are ultimately read operations. The result
2989 * should placed into the inbound buffer provided. They
2990 * also supply outbound data--parameters for the object
2991 * method. Currently if this is present it will be a
2994 page_count = (u32)calc_pages_for(0, inbound_size);
2995 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2997 return PTR_ERR(pages);
3000 obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3005 obj_request->pages = pages;
3006 obj_request->page_count = page_count;
3008 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3009 if (!obj_request->osd_req)
3012 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3013 class_name, method_name);
3014 if (outbound_size) {
3015 struct ceph_pagelist *pagelist;
3017 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3021 ceph_pagelist_init(pagelist);
3022 ceph_pagelist_append(pagelist, outbound, outbound_size);
3023 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3026 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3027 obj_request->pages, inbound_size,
3029 rbd_osd_req_format_read(obj_request);
3031 ret = rbd_obj_request_submit(osdc, obj_request);
3034 ret = rbd_obj_request_wait(obj_request);
3038 ret = obj_request->result;
3042 rbd_assert(obj_request->xferred < (u64)INT_MAX);
3043 ret = (int)obj_request->xferred;
3044 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3047 rbd_obj_request_put(obj_request);
3049 ceph_release_page_vector(pages, page_count);
3054 static void rbd_request_fn(struct request_queue *q)
3055 __releases(q->queue_lock) __acquires(q->queue_lock)
3057 struct rbd_device *rbd_dev = q->queuedata;
3058 bool read_only = rbd_dev->mapping.read_only;
3062 while ((rq = blk_fetch_request(q))) {
3063 bool write_request = rq_data_dir(rq) == WRITE;
3064 struct rbd_img_request *img_request;
3068 /* Ignore any non-FS requests that filter through. */
3070 if (rq->cmd_type != REQ_TYPE_FS) {
3071 dout("%s: non-fs request type %d\n", __func__,
3072 (int) rq->cmd_type);
3073 __blk_end_request_all(rq, 0);
3077 /* Ignore/skip any zero-length requests */
3079 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3080 length = (u64) blk_rq_bytes(rq);
3083 dout("%s: zero-length request\n", __func__);
3084 __blk_end_request_all(rq, 0);
3088 spin_unlock_irq(q->queue_lock);
3090 /* Disallow writes to a read-only device */
3092 if (write_request) {
3096 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3100 * Quit early if the mapped snapshot no longer
3101 * exists. It's still possible the snapshot will
3102 * have disappeared by the time our request arrives
3103 * at the osd, but there's no sense in sending it if
3106 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3107 dout("request for non-existent snapshot");
3108 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3114 if (offset && length > U64_MAX - offset + 1) {
3115 rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3117 goto end_request; /* Shouldn't happen */
3121 if (offset + length > rbd_dev->mapping.size) {
3122 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3123 offset, length, rbd_dev->mapping.size);
3128 img_request = rbd_img_request_create(rbd_dev, offset, length,
3133 img_request->rq = rq;
3135 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3138 result = rbd_img_request_submit(img_request);
3140 rbd_img_request_put(img_request);
3142 spin_lock_irq(q->queue_lock);
3144 rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3145 write_request ? "write" : "read",
3146 length, offset, result);
3148 __blk_end_request_all(rq, result);
3154 * a queue callback. Makes sure that we don't create a bio that spans across
3155 * multiple osd objects. One exception would be with a single page bios,
3156 * which we handle later at bio_chain_clone_range()
3158 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3159 struct bio_vec *bvec)
3161 struct rbd_device *rbd_dev = q->queuedata;
3162 sector_t sector_offset;
3163 sector_t sectors_per_obj;
3164 sector_t obj_sector_offset;
3168 * Find how far into its rbd object the partition-relative
3169 * bio start sector is to offset relative to the enclosing
3172 sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3173 sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3174 obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3177 * Compute the number of bytes from that offset to the end
3178 * of the object. Account for what's already used by the bio.
3180 ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3181 if (ret > bmd->bi_size)
3182 ret -= bmd->bi_size;
3187 * Don't send back more than was asked for. And if the bio
3188 * was empty, let the whole thing through because: "Note
3189 * that a block device *must* allow a single page to be
3190 * added to an empty bio."
3192 rbd_assert(bvec->bv_len <= PAGE_SIZE);
3193 if (ret > (int) bvec->bv_len || !bmd->bi_size)
3194 ret = (int) bvec->bv_len;
3199 static void rbd_free_disk(struct rbd_device *rbd_dev)
3201 struct gendisk *disk = rbd_dev->disk;
3206 rbd_dev->disk = NULL;
3207 if (disk->flags & GENHD_FL_UP) {
3210 blk_cleanup_queue(disk->queue);
3215 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3216 const char *object_name,
3217 u64 offset, u64 length, void *buf)
3220 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3221 struct rbd_obj_request *obj_request;
3222 struct page **pages = NULL;
3227 page_count = (u32) calc_pages_for(offset, length);
3228 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3230 return PTR_ERR(pages);
3233 obj_request = rbd_obj_request_create(object_name, offset, length,
3238 obj_request->pages = pages;
3239 obj_request->page_count = page_count;
3241 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3242 if (!obj_request->osd_req)
3245 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3246 offset, length, 0, 0);
3247 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3249 obj_request->length,
3250 obj_request->offset & ~PAGE_MASK,
3252 rbd_osd_req_format_read(obj_request);
3254 ret = rbd_obj_request_submit(osdc, obj_request);
3257 ret = rbd_obj_request_wait(obj_request);
3261 ret = obj_request->result;
3265 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3266 size = (size_t) obj_request->xferred;
3267 ceph_copy_from_page_vector(pages, buf, 0, size);
3268 rbd_assert(size <= (size_t)INT_MAX);
3272 rbd_obj_request_put(obj_request);
3274 ceph_release_page_vector(pages, page_count);
3280 * Read the complete header for the given rbd device. On successful
3281 * return, the rbd_dev->header field will contain up-to-date
3282 * information about the image.
3284 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3286 struct rbd_image_header_ondisk *ondisk = NULL;
3293 * The complete header will include an array of its 64-bit
3294 * snapshot ids, followed by the names of those snapshots as
3295 * a contiguous block of NUL-terminated strings. Note that
3296 * the number of snapshots could change by the time we read
3297 * it in, in which case we re-read it.
3304 size = sizeof (*ondisk);
3305 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3307 ondisk = kmalloc(size, GFP_KERNEL);
3311 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3315 if ((size_t)ret < size) {
3317 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3321 if (!rbd_dev_ondisk_valid(ondisk)) {
3323 rbd_warn(rbd_dev, "invalid header");
3327 names_size = le64_to_cpu(ondisk->snap_names_len);
3328 want_count = snap_count;
3329 snap_count = le32_to_cpu(ondisk->snap_count);
3330 } while (snap_count != want_count);
3332 ret = rbd_header_from_disk(rbd_dev, ondisk);
3340 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3341 * has disappeared from the (just updated) snapshot context.
3343 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3347 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3350 snap_id = rbd_dev->spec->snap_id;
3351 if (snap_id == CEPH_NOSNAP)
3354 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3355 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3358 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3364 * Don't hold the lock while doing disk operations,
3365 * or lock ordering will conflict with the bdev mutex via:
3366 * rbd_add() -> blkdev_get() -> rbd_open()
3368 spin_lock_irq(&rbd_dev->lock);
3369 removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3370 spin_unlock_irq(&rbd_dev->lock);
3372 * If the device is being removed, rbd_dev->disk has
3373 * been destroyed, so don't try to update its size
3376 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3377 dout("setting size to %llu sectors", (unsigned long long)size);
3378 set_capacity(rbd_dev->disk, size);
3379 revalidate_disk(rbd_dev->disk);
3383 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3388 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3389 mapping_size = rbd_dev->mapping.size;
3390 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3391 if (rbd_dev->image_format == 1)
3392 ret = rbd_dev_v1_header_info(rbd_dev);
3394 ret = rbd_dev_v2_header_info(rbd_dev);
3396 /* If it's a mapped snapshot, validate its EXISTS flag */
3398 rbd_exists_validate(rbd_dev);
3399 mutex_unlock(&ctl_mutex);
3400 if (mapping_size != rbd_dev->mapping.size) {
3401 rbd_dev_update_size(rbd_dev);
3407 static int rbd_init_disk(struct rbd_device *rbd_dev)
3409 struct gendisk *disk;
3410 struct request_queue *q;
3413 /* create gendisk info */
3414 disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3418 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3420 disk->major = rbd_dev->major;
3421 disk->first_minor = 0;
3422 disk->fops = &rbd_bd_ops;
3423 disk->private_data = rbd_dev;
3425 q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3429 /* We use the default size, but let's be explicit about it. */
3430 blk_queue_physical_block_size(q, SECTOR_SIZE);
3432 /* set io sizes to object size */
3433 segment_size = rbd_obj_bytes(&rbd_dev->header);
3434 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3435 blk_queue_max_segment_size(q, segment_size);
3436 blk_queue_io_min(q, segment_size);
3437 blk_queue_io_opt(q, segment_size);
3439 blk_queue_merge_bvec(q, rbd_merge_bvec);
3442 q->queuedata = rbd_dev;
3444 rbd_dev->disk = disk;
3457 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3459 return container_of(dev, struct rbd_device, dev);
3462 static ssize_t rbd_size_show(struct device *dev,
3463 struct device_attribute *attr, char *buf)
3465 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3467 return sprintf(buf, "%llu\n",
3468 (unsigned long long)rbd_dev->mapping.size);
3472 * Note this shows the features for whatever's mapped, which is not
3473 * necessarily the base image.
3475 static ssize_t rbd_features_show(struct device *dev,
3476 struct device_attribute *attr, char *buf)
3478 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3480 return sprintf(buf, "0x%016llx\n",
3481 (unsigned long long)rbd_dev->mapping.features);
3484 static ssize_t rbd_major_show(struct device *dev,
3485 struct device_attribute *attr, char *buf)
3487 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3490 return sprintf(buf, "%d\n", rbd_dev->major);
3492 return sprintf(buf, "(none)\n");
3496 static ssize_t rbd_client_id_show(struct device *dev,
3497 struct device_attribute *attr, char *buf)
3499 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3501 return sprintf(buf, "client%lld\n",
3502 ceph_client_id(rbd_dev->rbd_client->client));
3505 static ssize_t rbd_pool_show(struct device *dev,
3506 struct device_attribute *attr, char *buf)
3508 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3510 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3513 static ssize_t rbd_pool_id_show(struct device *dev,
3514 struct device_attribute *attr, char *buf)
3516 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3518 return sprintf(buf, "%llu\n",
3519 (unsigned long long) rbd_dev->spec->pool_id);
3522 static ssize_t rbd_name_show(struct device *dev,
3523 struct device_attribute *attr, char *buf)
3525 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3527 if (rbd_dev->spec->image_name)
3528 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3530 return sprintf(buf, "(unknown)\n");
3533 static ssize_t rbd_image_id_show(struct device *dev,
3534 struct device_attribute *attr, char *buf)
3536 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3538 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3542 * Shows the name of the currently-mapped snapshot (or
3543 * RBD_SNAP_HEAD_NAME for the base image).
3545 static ssize_t rbd_snap_show(struct device *dev,
3546 struct device_attribute *attr,
3549 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3551 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3555 * For an rbd v2 image, shows the pool id, image id, and snapshot id
3556 * for the parent image. If there is no parent, simply shows
3557 * "(no parent image)".
3559 static ssize_t rbd_parent_show(struct device *dev,
3560 struct device_attribute *attr,
3563 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3564 struct rbd_spec *spec = rbd_dev->parent_spec;
3569 return sprintf(buf, "(no parent image)\n");
3571 count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3572 (unsigned long long) spec->pool_id, spec->pool_name);
3577 count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3578 spec->image_name ? spec->image_name : "(unknown)");
3583 count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3584 (unsigned long long) spec->snap_id, spec->snap_name);
3589 count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3594 return (ssize_t) (bufp - buf);
3597 static ssize_t rbd_image_refresh(struct device *dev,
3598 struct device_attribute *attr,
3602 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3605 ret = rbd_dev_refresh(rbd_dev);
3607 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3609 return ret < 0 ? ret : size;
3612 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3613 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3614 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3615 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3616 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3617 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3618 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3619 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3620 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3621 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3622 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3624 static struct attribute *rbd_attrs[] = {
3625 &dev_attr_size.attr,
3626 &dev_attr_features.attr,
3627 &dev_attr_major.attr,
3628 &dev_attr_client_id.attr,
3629 &dev_attr_pool.attr,
3630 &dev_attr_pool_id.attr,
3631 &dev_attr_name.attr,
3632 &dev_attr_image_id.attr,
3633 &dev_attr_current_snap.attr,
3634 &dev_attr_parent.attr,
3635 &dev_attr_refresh.attr,
3639 static struct attribute_group rbd_attr_group = {
3643 static const struct attribute_group *rbd_attr_groups[] = {
3648 static void rbd_sysfs_dev_release(struct device *dev)
3652 static struct device_type rbd_device_type = {
3654 .groups = rbd_attr_groups,
3655 .release = rbd_sysfs_dev_release,
3658 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3660 kref_get(&spec->kref);
3665 static void rbd_spec_free(struct kref *kref);
3666 static void rbd_spec_put(struct rbd_spec *spec)
3669 kref_put(&spec->kref, rbd_spec_free);
3672 static struct rbd_spec *rbd_spec_alloc(void)
3674 struct rbd_spec *spec;
3676 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3679 kref_init(&spec->kref);
3684 static void rbd_spec_free(struct kref *kref)
3686 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3688 kfree(spec->pool_name);
3689 kfree(spec->image_id);
3690 kfree(spec->image_name);
3691 kfree(spec->snap_name);
3695 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3696 struct rbd_spec *spec)
3698 struct rbd_device *rbd_dev;
3700 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3704 spin_lock_init(&rbd_dev->lock);
3706 atomic_set(&rbd_dev->parent_ref, 0);
3707 INIT_LIST_HEAD(&rbd_dev->node);
3708 init_rwsem(&rbd_dev->header_rwsem);
3710 rbd_dev->spec = spec;
3711 rbd_dev->rbd_client = rbdc;
3713 /* Initialize the layout used for all rbd requests */
3715 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3716 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3717 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3718 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3723 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3725 rbd_put_client(rbd_dev->rbd_client);
3726 rbd_spec_put(rbd_dev->spec);
3731 * Get the size and object order for an image snapshot, or if
3732 * snap_id is CEPH_NOSNAP, gets this information for the base
3735 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3736 u8 *order, u64 *snap_size)
3738 __le64 snapid = cpu_to_le64(snap_id);
3743 } __attribute__ ((packed)) size_buf = { 0 };
3745 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3747 &snapid, sizeof (snapid),
3748 &size_buf, sizeof (size_buf));
3749 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3752 if (ret < sizeof (size_buf))
3756 *order = size_buf.order;
3757 dout(" order %u", (unsigned int)*order);
3759 *snap_size = le64_to_cpu(size_buf.size);
3761 dout(" snap_id 0x%016llx snap_size = %llu\n",
3762 (unsigned long long)snap_id,
3763 (unsigned long long)*snap_size);
3768 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3770 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3771 &rbd_dev->header.obj_order,
3772 &rbd_dev->header.image_size);
3775 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3781 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3785 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3786 "rbd", "get_object_prefix", NULL, 0,
3787 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3788 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3793 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3794 p + ret, NULL, GFP_NOIO);
3797 if (IS_ERR(rbd_dev->header.object_prefix)) {
3798 ret = PTR_ERR(rbd_dev->header.object_prefix);
3799 rbd_dev->header.object_prefix = NULL;
3801 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
3809 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3812 __le64 snapid = cpu_to_le64(snap_id);
3816 } __attribute__ ((packed)) features_buf = { 0 };
3820 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3821 "rbd", "get_features",
3822 &snapid, sizeof (snapid),
3823 &features_buf, sizeof (features_buf));
3824 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3827 if (ret < sizeof (features_buf))
3830 incompat = le64_to_cpu(features_buf.incompat);
3831 if (incompat & ~RBD_FEATURES_SUPPORTED)
3834 *snap_features = le64_to_cpu(features_buf.features);
3836 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3837 (unsigned long long)snap_id,
3838 (unsigned long long)*snap_features,
3839 (unsigned long long)le64_to_cpu(features_buf.incompat));
3844 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3846 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3847 &rbd_dev->header.features);
3850 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3852 struct rbd_spec *parent_spec;
3854 void *reply_buf = NULL;
3863 parent_spec = rbd_spec_alloc();
3867 size = sizeof (__le64) + /* pool_id */
3868 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
3869 sizeof (__le64) + /* snap_id */
3870 sizeof (__le64); /* overlap */
3871 reply_buf = kmalloc(size, GFP_KERNEL);
3877 snapid = cpu_to_le64(CEPH_NOSNAP);
3878 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3879 "rbd", "get_parent",
3880 &snapid, sizeof (snapid),
3882 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3887 end = reply_buf + ret;
3889 ceph_decode_64_safe(&p, end, pool_id, out_err);
3890 if (pool_id == CEPH_NOPOOL) {
3892 * Either the parent never existed, or we have
3893 * record of it but the image got flattened so it no
3894 * longer has a parent. When the parent of a
3895 * layered image disappears we immediately set the
3896 * overlap to 0. The effect of this is that all new
3897 * requests will be treated as if the image had no
3900 if (rbd_dev->parent_overlap) {
3901 rbd_dev->parent_overlap = 0;
3903 rbd_dev_parent_put(rbd_dev);
3904 pr_info("%s: clone image has been flattened\n",
3905 rbd_dev->disk->disk_name);
3908 goto out; /* No parent? No problem. */
3911 /* The ceph file layout needs to fit pool id in 32 bits */
3914 if (pool_id > (u64)U32_MAX) {
3915 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3916 (unsigned long long)pool_id, U32_MAX);
3919 parent_spec->pool_id = pool_id;
3921 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3922 if (IS_ERR(image_id)) {
3923 ret = PTR_ERR(image_id);
3926 parent_spec->image_id = image_id;
3927 ceph_decode_64_safe(&p, end, parent_spec->snap_id, out_err);
3928 ceph_decode_64_safe(&p, end, overlap, out_err);
3931 rbd_spec_put(rbd_dev->parent_spec);
3932 rbd_dev->parent_spec = parent_spec;
3933 parent_spec = NULL; /* rbd_dev now owns this */
3934 rbd_dev->parent_overlap = overlap;
3936 rbd_warn(rbd_dev, "ignoring parent of clone with overlap 0\n");
3942 rbd_spec_put(parent_spec);
3947 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3951 __le64 stripe_count;
3952 } __attribute__ ((packed)) striping_info_buf = { 0 };
3953 size_t size = sizeof (striping_info_buf);
3960 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3961 "rbd", "get_stripe_unit_count", NULL, 0,
3962 (char *)&striping_info_buf, size);
3963 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3970 * We don't actually support the "fancy striping" feature
3971 * (STRIPINGV2) yet, but if the striping sizes are the
3972 * defaults the behavior is the same as before. So find
3973 * out, and only fail if the image has non-default values.
3976 obj_size = (u64)1 << rbd_dev->header.obj_order;
3977 p = &striping_info_buf;
3978 stripe_unit = ceph_decode_64(&p);
3979 if (stripe_unit != obj_size) {
3980 rbd_warn(rbd_dev, "unsupported stripe unit "
3981 "(got %llu want %llu)",
3982 stripe_unit, obj_size);
3985 stripe_count = ceph_decode_64(&p);
3986 if (stripe_count != 1) {
3987 rbd_warn(rbd_dev, "unsupported stripe count "
3988 "(got %llu want 1)", stripe_count);
3991 rbd_dev->header.stripe_unit = stripe_unit;
3992 rbd_dev->header.stripe_count = stripe_count;
3997 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
3999 size_t image_id_size;
4004 void *reply_buf = NULL;
4006 char *image_name = NULL;
4009 rbd_assert(!rbd_dev->spec->image_name);
4011 len = strlen(rbd_dev->spec->image_id);
4012 image_id_size = sizeof (__le32) + len;
4013 image_id = kmalloc(image_id_size, GFP_KERNEL);
4018 end = image_id + image_id_size;
4019 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4021 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4022 reply_buf = kmalloc(size, GFP_KERNEL);
4026 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4027 "rbd", "dir_get_name",
4028 image_id, image_id_size,
4033 end = reply_buf + ret;
4035 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4036 if (IS_ERR(image_name))
4039 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4047 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4049 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4050 const char *snap_name;
4053 /* Skip over names until we find the one we are looking for */
4055 snap_name = rbd_dev->header.snap_names;
4056 while (which < snapc->num_snaps) {
4057 if (!strcmp(name, snap_name))
4058 return snapc->snaps[which];
4059 snap_name += strlen(snap_name) + 1;
4065 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4067 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4072 for (which = 0; !found && which < snapc->num_snaps; which++) {
4073 const char *snap_name;
4075 snap_id = snapc->snaps[which];
4076 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4077 if (IS_ERR(snap_name)) {
4078 /* ignore no-longer existing snapshots */
4079 if (PTR_ERR(snap_name) == -ENOENT)
4084 found = !strcmp(name, snap_name);
4087 return found ? snap_id : CEPH_NOSNAP;
4091 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4092 * no snapshot by that name is found, or if an error occurs.
4094 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4096 if (rbd_dev->image_format == 1)
4097 return rbd_v1_snap_id_by_name(rbd_dev, name);
4099 return rbd_v2_snap_id_by_name(rbd_dev, name);
4103 * When an rbd image has a parent image, it is identified by the
4104 * pool, image, and snapshot ids (not names). This function fills
4105 * in the names for those ids. (It's OK if we can't figure out the
4106 * name for an image id, but the pool and snapshot ids should always
4107 * exist and have names.) All names in an rbd spec are dynamically
4110 * When an image being mapped (not a parent) is probed, we have the
4111 * pool name and pool id, image name and image id, and the snapshot
4112 * name. The only thing we're missing is the snapshot id.
4114 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4116 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4117 struct rbd_spec *spec = rbd_dev->spec;
4118 const char *pool_name;
4119 const char *image_name;
4120 const char *snap_name;
4124 * An image being mapped will have the pool name (etc.), but
4125 * we need to look up the snapshot id.
4127 if (spec->pool_name) {
4128 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4131 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4132 if (snap_id == CEPH_NOSNAP)
4134 spec->snap_id = snap_id;
4136 spec->snap_id = CEPH_NOSNAP;
4142 /* Get the pool name; we have to make our own copy of this */
4144 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4146 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4149 pool_name = kstrdup(pool_name, GFP_KERNEL);
4153 /* Fetch the image name; tolerate failure here */
4155 image_name = rbd_dev_image_name(rbd_dev);
4157 rbd_warn(rbd_dev, "unable to get image name");
4159 /* Look up the snapshot name, and make a copy */
4161 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4162 if (IS_ERR(snap_name)) {
4163 ret = PTR_ERR(snap_name);
4167 spec->pool_name = pool_name;
4168 spec->image_name = image_name;
4169 spec->snap_name = snap_name;
4179 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4188 struct ceph_snap_context *snapc;
4192 * We'll need room for the seq value (maximum snapshot id),
4193 * snapshot count, and array of that many snapshot ids.
4194 * For now we have a fixed upper limit on the number we're
4195 * prepared to receive.
4197 size = sizeof (__le64) + sizeof (__le32) +
4198 RBD_MAX_SNAP_COUNT * sizeof (__le64);
4199 reply_buf = kzalloc(size, GFP_KERNEL);
4203 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4204 "rbd", "get_snapcontext", NULL, 0,
4206 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4211 end = reply_buf + ret;
4213 ceph_decode_64_safe(&p, end, seq, out);
4214 ceph_decode_32_safe(&p, end, snap_count, out);
4217 * Make sure the reported number of snapshot ids wouldn't go
4218 * beyond the end of our buffer. But before checking that,
4219 * make sure the computed size of the snapshot context we
4220 * allocate is representable in a size_t.
4222 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4227 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4231 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4237 for (i = 0; i < snap_count; i++)
4238 snapc->snaps[i] = ceph_decode_64(&p);
4240 ceph_put_snap_context(rbd_dev->header.snapc);
4241 rbd_dev->header.snapc = snapc;
4243 dout(" snap context seq = %llu, snap_count = %u\n",
4244 (unsigned long long)seq, (unsigned int)snap_count);
4251 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4262 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4263 reply_buf = kmalloc(size, GFP_KERNEL);
4265 return ERR_PTR(-ENOMEM);
4267 snapid = cpu_to_le64(snap_id);
4268 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4269 "rbd", "get_snapshot_name",
4270 &snapid, sizeof (snapid),
4272 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4274 snap_name = ERR_PTR(ret);
4279 end = reply_buf + ret;
4280 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4281 if (IS_ERR(snap_name))
4284 dout(" snap_id 0x%016llx snap_name = %s\n",
4285 (unsigned long long)snap_id, snap_name);
4292 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4294 bool first_time = rbd_dev->header.object_prefix == NULL;
4297 down_write(&rbd_dev->header_rwsem);
4299 ret = rbd_dev_v2_image_size(rbd_dev);
4304 ret = rbd_dev_v2_header_onetime(rbd_dev);
4310 * If the image supports layering, get the parent info. We
4311 * need to probe the first time regardless. Thereafter we
4312 * only need to if there's a parent, to see if it has
4313 * disappeared due to the mapped image getting flattened.
4315 if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4316 (first_time || rbd_dev->parent_spec)) {
4319 ret = rbd_dev_v2_parent_info(rbd_dev);
4324 * Print a warning if this is the initial probe and
4325 * the image has a parent. Don't print it if the
4326 * image now being probed is itself a parent. We
4327 * can tell at this point because we won't know its
4328 * pool name yet (just its pool id).
4330 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4331 if (first_time && warn)
4332 rbd_warn(rbd_dev, "WARNING: kernel layering "
4333 "is EXPERIMENTAL!");
4336 if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4337 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4338 rbd_dev->mapping.size = rbd_dev->header.image_size;
4340 ret = rbd_dev_v2_snap_context(rbd_dev);
4341 dout("rbd_dev_v2_snap_context returned %d\n", ret);
4343 up_write(&rbd_dev->header_rwsem);
4348 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4353 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4355 dev = &rbd_dev->dev;
4356 dev->bus = &rbd_bus_type;
4357 dev->type = &rbd_device_type;
4358 dev->parent = &rbd_root_dev;
4359 dev->release = rbd_dev_device_release;
4360 dev_set_name(dev, "%d", rbd_dev->dev_id);
4361 ret = device_register(dev);
4363 mutex_unlock(&ctl_mutex);
4368 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4370 device_unregister(&rbd_dev->dev);
4373 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4376 * Get a unique rbd identifier for the given new rbd_dev, and add
4377 * the rbd_dev to the global list. The minimum rbd id is 1.
4379 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4381 rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4383 spin_lock(&rbd_dev_list_lock);
4384 list_add_tail(&rbd_dev->node, &rbd_dev_list);
4385 spin_unlock(&rbd_dev_list_lock);
4386 dout("rbd_dev %p given dev id %llu\n", rbd_dev,
4387 (unsigned long long) rbd_dev->dev_id);
4391 * Remove an rbd_dev from the global list, and record that its
4392 * identifier is no longer in use.
4394 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4396 struct list_head *tmp;
4397 int rbd_id = rbd_dev->dev_id;
4400 rbd_assert(rbd_id > 0);
4402 dout("rbd_dev %p released dev id %llu\n", rbd_dev,
4403 (unsigned long long) rbd_dev->dev_id);
4404 spin_lock(&rbd_dev_list_lock);
4405 list_del_init(&rbd_dev->node);
4408 * If the id being "put" is not the current maximum, there
4409 * is nothing special we need to do.
4411 if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4412 spin_unlock(&rbd_dev_list_lock);
4417 * We need to update the current maximum id. Search the
4418 * list to find out what it is. We're more likely to find
4419 * the maximum at the end, so search the list backward.
4422 list_for_each_prev(tmp, &rbd_dev_list) {
4423 struct rbd_device *rbd_dev;
4425 rbd_dev = list_entry(tmp, struct rbd_device, node);
4426 if (rbd_dev->dev_id > max_id)
4427 max_id = rbd_dev->dev_id;
4429 spin_unlock(&rbd_dev_list_lock);
4432 * The max id could have been updated by rbd_dev_id_get(), in
4433 * which case it now accurately reflects the new maximum.
4434 * Be careful not to overwrite the maximum value in that
4437 atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4438 dout(" max dev id has been reset\n");
4442 * Skips over white space at *buf, and updates *buf to point to the
4443 * first found non-space character (if any). Returns the length of
4444 * the token (string of non-white space characters) found. Note
4445 * that *buf must be terminated with '\0'.
4447 static inline size_t next_token(const char **buf)
4450 * These are the characters that produce nonzero for
4451 * isspace() in the "C" and "POSIX" locales.
4453 const char *spaces = " \f\n\r\t\v";
4455 *buf += strspn(*buf, spaces); /* Find start of token */
4457 return strcspn(*buf, spaces); /* Return token length */
4461 * Finds the next token in *buf, and if the provided token buffer is
4462 * big enough, copies the found token into it. The result, if
4463 * copied, is guaranteed to be terminated with '\0'. Note that *buf
4464 * must be terminated with '\0' on entry.
4466 * Returns the length of the token found (not including the '\0').
4467 * Return value will be 0 if no token is found, and it will be >=
4468 * token_size if the token would not fit.
4470 * The *buf pointer will be updated to point beyond the end of the
4471 * found token. Note that this occurs even if the token buffer is
4472 * too small to hold it.
4474 static inline size_t copy_token(const char **buf,
4480 len = next_token(buf);
4481 if (len < token_size) {
4482 memcpy(token, *buf, len);
4483 *(token + len) = '\0';
4491 * Finds the next token in *buf, dynamically allocates a buffer big
4492 * enough to hold a copy of it, and copies the token into the new
4493 * buffer. The copy is guaranteed to be terminated with '\0'. Note
4494 * that a duplicate buffer is created even for a zero-length token.
4496 * Returns a pointer to the newly-allocated duplicate, or a null
4497 * pointer if memory for the duplicate was not available. If
4498 * the lenp argument is a non-null pointer, the length of the token
4499 * (not including the '\0') is returned in *lenp.
4501 * If successful, the *buf pointer will be updated to point beyond
4502 * the end of the found token.
4504 * Note: uses GFP_KERNEL for allocation.
4506 static inline char *dup_token(const char **buf, size_t *lenp)
4511 len = next_token(buf);
4512 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4515 *(dup + len) = '\0';
4525 * Parse the options provided for an "rbd add" (i.e., rbd image
4526 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
4527 * and the data written is passed here via a NUL-terminated buffer.
4528 * Returns 0 if successful or an error code otherwise.
4530 * The information extracted from these options is recorded in
4531 * the other parameters which return dynamically-allocated
4534 * The address of a pointer that will refer to a ceph options
4535 * structure. Caller must release the returned pointer using
4536 * ceph_destroy_options() when it is no longer needed.
4538 * Address of an rbd options pointer. Fully initialized by
4539 * this function; caller must release with kfree().
4541 * Address of an rbd image specification pointer. Fully
4542 * initialized by this function based on parsed options.
4543 * Caller must release with rbd_spec_put().
4545 * The options passed take this form:
4546 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4549 * A comma-separated list of one or more monitor addresses.
4550 * A monitor address is an ip address, optionally followed
4551 * by a port number (separated by a colon).
4552 * I.e.: ip1[:port1][,ip2[:port2]...]
4554 * A comma-separated list of ceph and/or rbd options.
4556 * The name of the rados pool containing the rbd image.
4558 * The name of the image in that pool to map.
4560 * An optional snapshot id. If provided, the mapping will
4561 * present data from the image at the time that snapshot was
4562 * created. The image head is used if no snapshot id is
4563 * provided. Snapshot mappings are always read-only.
4565 static int rbd_add_parse_args(const char *buf,
4566 struct ceph_options **ceph_opts,
4567 struct rbd_options **opts,
4568 struct rbd_spec **rbd_spec)
4572 const char *mon_addrs;
4574 size_t mon_addrs_size;
4575 struct rbd_spec *spec = NULL;
4576 struct rbd_options *rbd_opts = NULL;
4577 struct ceph_options *copts;
4580 /* The first four tokens are required */
4582 len = next_token(&buf);
4584 rbd_warn(NULL, "no monitor address(es) provided");
4588 mon_addrs_size = len + 1;
4592 options = dup_token(&buf, NULL);
4596 rbd_warn(NULL, "no options provided");
4600 spec = rbd_spec_alloc();
4604 spec->pool_name = dup_token(&buf, NULL);
4605 if (!spec->pool_name)
4607 if (!*spec->pool_name) {
4608 rbd_warn(NULL, "no pool name provided");
4612 spec->image_name = dup_token(&buf, NULL);
4613 if (!spec->image_name)
4615 if (!*spec->image_name) {
4616 rbd_warn(NULL, "no image name provided");
4621 * Snapshot name is optional; default is to use "-"
4622 * (indicating the head/no snapshot).
4624 len = next_token(&buf);
4626 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4627 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4628 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4629 ret = -ENAMETOOLONG;
4632 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4635 *(snap_name + len) = '\0';
4636 spec->snap_name = snap_name;
4638 /* Initialize all rbd options to the defaults */
4640 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4644 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4646 copts = ceph_parse_options(options, mon_addrs,
4647 mon_addrs + mon_addrs_size - 1,
4648 parse_rbd_opts_token, rbd_opts);
4649 if (IS_ERR(copts)) {
4650 ret = PTR_ERR(copts);
4671 * An rbd format 2 image has a unique identifier, distinct from the
4672 * name given to it by the user. Internally, that identifier is
4673 * what's used to specify the names of objects related to the image.
4675 * A special "rbd id" object is used to map an rbd image name to its
4676 * id. If that object doesn't exist, then there is no v2 rbd image
4677 * with the supplied name.
4679 * This function will record the given rbd_dev's image_id field if
4680 * it can be determined, and in that case will return 0. If any
4681 * errors occur a negative errno will be returned and the rbd_dev's
4682 * image_id field will be unchanged (and should be NULL).
4684 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4693 * When probing a parent image, the image id is already
4694 * known (and the image name likely is not). There's no
4695 * need to fetch the image id again in this case. We
4696 * do still need to set the image format though.
4698 if (rbd_dev->spec->image_id) {
4699 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4705 * First, see if the format 2 image id file exists, and if
4706 * so, get the image's persistent id from it.
4708 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4709 object_name = kmalloc(size, GFP_NOIO);
4712 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4713 dout("rbd id object name is %s\n", object_name);
4715 /* Response will be an encoded string, which includes a length */
4717 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4718 response = kzalloc(size, GFP_NOIO);
4724 /* If it doesn't exist we'll assume it's a format 1 image */
4726 ret = rbd_obj_method_sync(rbd_dev, object_name,
4727 "rbd", "get_id", NULL, 0,
4728 response, RBD_IMAGE_ID_LEN_MAX);
4729 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4730 if (ret == -ENOENT) {
4731 image_id = kstrdup("", GFP_KERNEL);
4732 ret = image_id ? 0 : -ENOMEM;
4734 rbd_dev->image_format = 1;
4735 } else if (ret > sizeof (__le32)) {
4738 image_id = ceph_extract_encoded_string(&p, p + ret,
4740 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4742 rbd_dev->image_format = 2;
4748 rbd_dev->spec->image_id = image_id;
4749 dout("image_id is %s\n", image_id);
4759 * Undo whatever state changes are made by v1 or v2 header info
4762 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4764 struct rbd_image_header *header;
4766 /* Drop parent reference unless it's already been done (or none) */
4768 if (rbd_dev->parent_overlap)
4769 rbd_dev_parent_put(rbd_dev);
4771 /* Free dynamic fields from the header, then zero it out */
4773 header = &rbd_dev->header;
4774 ceph_put_snap_context(header->snapc);
4775 kfree(header->snap_sizes);
4776 kfree(header->snap_names);
4777 kfree(header->object_prefix);
4778 memset(header, 0, sizeof (*header));
4781 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4785 ret = rbd_dev_v2_object_prefix(rbd_dev);
4790 * Get the and check features for the image. Currently the
4791 * features are assumed to never change.
4793 ret = rbd_dev_v2_features(rbd_dev);
4797 /* If the image supports fancy striping, get its parameters */
4799 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4800 ret = rbd_dev_v2_striping_info(rbd_dev);
4804 /* No support for crypto and compression type format 2 images */
4808 rbd_dev->header.features = 0;
4809 kfree(rbd_dev->header.object_prefix);
4810 rbd_dev->header.object_prefix = NULL;
4815 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4817 struct rbd_device *parent = NULL;
4818 struct rbd_spec *parent_spec;
4819 struct rbd_client *rbdc;
4822 if (!rbd_dev->parent_spec)
4825 * We need to pass a reference to the client and the parent
4826 * spec when creating the parent rbd_dev. Images related by
4827 * parent/child relationships always share both.
4829 parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4830 rbdc = __rbd_get_client(rbd_dev->rbd_client);
4833 parent = rbd_dev_create(rbdc, parent_spec);
4837 ret = rbd_dev_image_probe(parent, false);
4840 rbd_dev->parent = parent;
4841 atomic_set(&rbd_dev->parent_ref, 1);
4846 rbd_dev_unparent(rbd_dev);
4847 kfree(rbd_dev->header_name);
4848 rbd_dev_destroy(parent);
4850 rbd_put_client(rbdc);
4851 rbd_spec_put(parent_spec);
4857 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4861 /* generate unique id: find highest unique id, add one */
4862 rbd_dev_id_get(rbd_dev);
4864 /* Fill in the device name, now that we have its id. */
4865 BUILD_BUG_ON(DEV_NAME_LEN
4866 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4867 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4869 /* Get our block major device number. */
4871 ret = register_blkdev(0, rbd_dev->name);
4874 rbd_dev->major = ret;
4876 /* Set up the blkdev mapping. */
4878 ret = rbd_init_disk(rbd_dev);
4880 goto err_out_blkdev;
4882 ret = rbd_dev_mapping_set(rbd_dev);
4885 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4887 ret = rbd_bus_add_dev(rbd_dev);
4889 goto err_out_mapping;
4891 /* Everything's ready. Announce the disk to the world. */
4893 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4894 add_disk(rbd_dev->disk);
4896 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4897 (unsigned long long) rbd_dev->mapping.size);
4902 rbd_dev_mapping_clear(rbd_dev);
4904 rbd_free_disk(rbd_dev);
4906 unregister_blkdev(rbd_dev->major, rbd_dev->name);
4908 rbd_dev_id_put(rbd_dev);
4909 rbd_dev_mapping_clear(rbd_dev);
4914 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4916 struct rbd_spec *spec = rbd_dev->spec;
4919 /* Record the header object name for this rbd image. */
4921 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4923 if (rbd_dev->image_format == 1)
4924 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4926 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4928 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4929 if (!rbd_dev->header_name)
4932 if (rbd_dev->image_format == 1)
4933 sprintf(rbd_dev->header_name, "%s%s",
4934 spec->image_name, RBD_SUFFIX);
4936 sprintf(rbd_dev->header_name, "%s%s",
4937 RBD_HEADER_PREFIX, spec->image_id);
4941 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4943 rbd_dev_unprobe(rbd_dev);
4944 kfree(rbd_dev->header_name);
4945 rbd_dev->header_name = NULL;
4946 rbd_dev->image_format = 0;
4947 kfree(rbd_dev->spec->image_id);
4948 rbd_dev->spec->image_id = NULL;
4950 rbd_dev_destroy(rbd_dev);
4954 * Probe for the existence of the header object for the given rbd
4955 * device. If this image is the one being mapped (i.e., not a
4956 * parent), initiate a watch on its header object before using that
4957 * object to get detailed information about the rbd image.
4959 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
4965 * Get the id from the image id object. Unless there's an
4966 * error, rbd_dev->spec->image_id will be filled in with
4967 * a dynamically-allocated string, and rbd_dev->image_format
4968 * will be set to either 1 or 2.
4970 ret = rbd_dev_image_id(rbd_dev);
4973 rbd_assert(rbd_dev->spec->image_id);
4974 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4976 ret = rbd_dev_header_name(rbd_dev);
4978 goto err_out_format;
4981 ret = rbd_dev_header_watch_sync(rbd_dev, true);
4983 goto out_header_name;
4986 if (rbd_dev->image_format == 1)
4987 ret = rbd_dev_v1_header_info(rbd_dev);
4989 ret = rbd_dev_v2_header_info(rbd_dev);
4993 ret = rbd_dev_spec_update(rbd_dev);
4997 ret = rbd_dev_probe_parent(rbd_dev);
5001 dout("discovered format %u image, header name is %s\n",
5002 rbd_dev->image_format, rbd_dev->header_name);
5006 rbd_dev_unprobe(rbd_dev);
5009 tmp = rbd_dev_header_watch_sync(rbd_dev, false);
5011 rbd_warn(rbd_dev, "unable to tear down "
5012 "watch request (%d)\n", tmp);
5015 kfree(rbd_dev->header_name);
5016 rbd_dev->header_name = NULL;
5018 rbd_dev->image_format = 0;
5019 kfree(rbd_dev->spec->image_id);
5020 rbd_dev->spec->image_id = NULL;
5022 dout("probe failed, returning %d\n", ret);
5027 static ssize_t rbd_add(struct bus_type *bus,
5031 struct rbd_device *rbd_dev = NULL;
5032 struct ceph_options *ceph_opts = NULL;
5033 struct rbd_options *rbd_opts = NULL;
5034 struct rbd_spec *spec = NULL;
5035 struct rbd_client *rbdc;
5036 struct ceph_osd_client *osdc;
5040 if (!try_module_get(THIS_MODULE))
5043 /* parse add command */
5044 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5046 goto err_out_module;
5047 read_only = rbd_opts->read_only;
5049 rbd_opts = NULL; /* done with this */
5051 rbdc = rbd_get_client(ceph_opts);
5058 osdc = &rbdc->client->osdc;
5059 rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
5061 goto err_out_client;
5062 spec->pool_id = (u64)rc;
5064 /* The ceph file layout needs to fit pool id in 32 bits */
5066 if (spec->pool_id > (u64)U32_MAX) {
5067 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5068 (unsigned long long)spec->pool_id, U32_MAX);
5070 goto err_out_client;
5073 rbd_dev = rbd_dev_create(rbdc, spec);
5075 goto err_out_client;
5076 rbdc = NULL; /* rbd_dev now owns this */
5077 spec = NULL; /* rbd_dev now owns this */
5079 rc = rbd_dev_image_probe(rbd_dev, true);
5081 goto err_out_rbd_dev;
5083 /* If we are mapping a snapshot it must be marked read-only */
5085 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5087 rbd_dev->mapping.read_only = read_only;
5089 rc = rbd_dev_device_setup(rbd_dev);
5091 rbd_dev_image_release(rbd_dev);
5092 goto err_out_module;
5098 rbd_dev_destroy(rbd_dev);
5100 rbd_put_client(rbdc);
5104 module_put(THIS_MODULE);
5106 dout("Error adding device %s\n", buf);
5111 static void rbd_dev_device_release(struct device *dev)
5113 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5115 rbd_free_disk(rbd_dev);
5116 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5117 rbd_dev_mapping_clear(rbd_dev);
5118 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5120 rbd_dev_id_put(rbd_dev);
5121 rbd_dev_mapping_clear(rbd_dev);
5124 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5126 while (rbd_dev->parent) {
5127 struct rbd_device *first = rbd_dev;
5128 struct rbd_device *second = first->parent;
5129 struct rbd_device *third;
5132 * Follow to the parent with no grandparent and
5135 while (second && (third = second->parent)) {
5140 rbd_dev_image_release(second);
5141 first->parent = NULL;
5142 first->parent_overlap = 0;
5144 rbd_assert(first->parent_spec);
5145 rbd_spec_put(first->parent_spec);
5146 first->parent_spec = NULL;
5150 static ssize_t rbd_remove(struct bus_type *bus,
5154 struct rbd_device *rbd_dev = NULL;
5155 struct list_head *tmp;
5158 bool already = false;
5161 ret = strict_strtoul(buf, 10, &ul);
5165 /* convert to int; abort if we lost anything in the conversion */
5170 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
5173 spin_lock(&rbd_dev_list_lock);
5174 list_for_each(tmp, &rbd_dev_list) {
5175 rbd_dev = list_entry(tmp, struct rbd_device, node);
5176 if (rbd_dev->dev_id == dev_id) {
5182 spin_lock_irq(&rbd_dev->lock);
5183 if (rbd_dev->open_count)
5186 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5188 spin_unlock_irq(&rbd_dev->lock);
5190 spin_unlock(&rbd_dev_list_lock);
5191 if (ret < 0 || already)
5194 ret = rbd_dev_header_watch_sync(rbd_dev, false);
5196 rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret);
5199 * flush remaining watch callbacks - these must be complete
5200 * before the osd_client is shutdown
5202 dout("%s: flushing notifies", __func__);
5203 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5205 * Don't free anything from rbd_dev->disk until after all
5206 * notifies are completely processed. Otherwise
5207 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5208 * in a potential use after free of rbd_dev->disk or rbd_dev.
5210 rbd_bus_del_dev(rbd_dev);
5211 rbd_dev_image_release(rbd_dev);
5212 module_put(THIS_MODULE);
5215 mutex_unlock(&ctl_mutex);
5221 * create control files in sysfs
5224 static int rbd_sysfs_init(void)
5228 ret = device_register(&rbd_root_dev);
5232 ret = bus_register(&rbd_bus_type);
5234 device_unregister(&rbd_root_dev);
5239 static void rbd_sysfs_cleanup(void)
5241 bus_unregister(&rbd_bus_type);
5242 device_unregister(&rbd_root_dev);
5245 static int rbd_slab_init(void)
5247 rbd_assert(!rbd_img_request_cache);
5248 rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5249 sizeof (struct rbd_img_request),
5250 __alignof__(struct rbd_img_request),
5252 if (!rbd_img_request_cache)
5255 rbd_assert(!rbd_obj_request_cache);
5256 rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5257 sizeof (struct rbd_obj_request),
5258 __alignof__(struct rbd_obj_request),
5260 if (!rbd_obj_request_cache)
5263 rbd_assert(!rbd_segment_name_cache);
5264 rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5265 MAX_OBJ_NAME_SIZE + 1, 1, 0, NULL);
5266 if (rbd_segment_name_cache)
5269 if (rbd_obj_request_cache) {
5270 kmem_cache_destroy(rbd_obj_request_cache);
5271 rbd_obj_request_cache = NULL;
5274 kmem_cache_destroy(rbd_img_request_cache);
5275 rbd_img_request_cache = NULL;
5280 static void rbd_slab_exit(void)
5282 rbd_assert(rbd_segment_name_cache);
5283 kmem_cache_destroy(rbd_segment_name_cache);
5284 rbd_segment_name_cache = NULL;
5286 rbd_assert(rbd_obj_request_cache);
5287 kmem_cache_destroy(rbd_obj_request_cache);
5288 rbd_obj_request_cache = NULL;
5290 rbd_assert(rbd_img_request_cache);
5291 kmem_cache_destroy(rbd_img_request_cache);
5292 rbd_img_request_cache = NULL;
5295 static int __init rbd_init(void)
5299 if (!libceph_compatible(NULL)) {
5300 rbd_warn(NULL, "libceph incompatibility (quitting)");
5304 rc = rbd_slab_init();
5307 rc = rbd_sysfs_init();
5311 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
5316 static void __exit rbd_exit(void)
5318 rbd_sysfs_cleanup();
5322 module_init(rbd_init);
5323 module_exit(rbd_exit);
5325 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5326 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5327 MODULE_DESCRIPTION("rados block device");
5329 /* following authorship retained from original osdblk.c */
5330 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5332 MODULE_LICENSE("GPL");