rbd: harden rbd_dev_refresh() and callers a bit
[firefly-linux-kernel-4.4.55.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44 #include <linux/idr.h>
45
46 #include "rbd_types.h"
47
48 #define RBD_DEBUG       /* Activate rbd_assert() calls */
49
50 /*
51  * The basic unit of block I/O is a sector.  It is interpreted in a
52  * number of contexts in Linux (blk, bio, genhd), but the default is
53  * universally 512 bytes.  These symbols are just slightly more
54  * meaningful than the bare numbers they represent.
55  */
56 #define SECTOR_SHIFT    9
57 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
58
59 /*
60  * Increment the given counter and return its updated value.
61  * If the counter is already 0 it will not be incremented.
62  * If the counter is already at its maximum value returns
63  * -EINVAL without updating it.
64  */
65 static int atomic_inc_return_safe(atomic_t *v)
66 {
67         unsigned int counter;
68
69         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
70         if (counter <= (unsigned int)INT_MAX)
71                 return (int)counter;
72
73         atomic_dec(v);
74
75         return -EINVAL;
76 }
77
78 /* Decrement the counter.  Return the resulting value, or -EINVAL */
79 static int atomic_dec_return_safe(atomic_t *v)
80 {
81         int counter;
82
83         counter = atomic_dec_return(v);
84         if (counter >= 0)
85                 return counter;
86
87         atomic_inc(v);
88
89         return -EINVAL;
90 }
91
92 #define RBD_DRV_NAME "rbd"
93
94 #define RBD_MINORS_PER_MAJOR            256
95 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
96
97 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
98 #define RBD_MAX_SNAP_NAME_LEN   \
99                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
100
101 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
102
103 #define RBD_SNAP_HEAD_NAME      "-"
104
105 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
106
107 /* This allows a single page to hold an image name sent by OSD */
108 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
109 #define RBD_IMAGE_ID_LEN_MAX    64
110
111 #define RBD_OBJ_PREFIX_LEN_MAX  64
112
113 /* Feature bits */
114
115 #define RBD_FEATURE_LAYERING    (1<<0)
116 #define RBD_FEATURE_STRIPINGV2  (1<<1)
117 #define RBD_FEATURES_ALL \
118             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
119
120 /* Features supported by this (client software) implementation. */
121
122 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
123
124 /*
125  * An RBD device name will be "rbd#", where the "rbd" comes from
126  * RBD_DRV_NAME above, and # is a unique integer identifier.
127  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
128  * enough to hold all possible device names.
129  */
130 #define DEV_NAME_LEN            32
131 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
132
133 /*
134  * block device image metadata (in-memory version)
135  */
136 struct rbd_image_header {
137         /* These six fields never change for a given rbd image */
138         char *object_prefix;
139         __u8 obj_order;
140         __u8 crypt_type;
141         __u8 comp_type;
142         u64 stripe_unit;
143         u64 stripe_count;
144         u64 features;           /* Might be changeable someday? */
145
146         /* The remaining fields need to be updated occasionally */
147         u64 image_size;
148         struct ceph_snap_context *snapc;
149         char *snap_names;       /* format 1 only */
150         u64 *snap_sizes;        /* format 1 only */
151 };
152
153 /*
154  * An rbd image specification.
155  *
156  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
157  * identify an image.  Each rbd_dev structure includes a pointer to
158  * an rbd_spec structure that encapsulates this identity.
159  *
160  * Each of the id's in an rbd_spec has an associated name.  For a
161  * user-mapped image, the names are supplied and the id's associated
162  * with them are looked up.  For a layered image, a parent image is
163  * defined by the tuple, and the names are looked up.
164  *
165  * An rbd_dev structure contains a parent_spec pointer which is
166  * non-null if the image it represents is a child in a layered
167  * image.  This pointer will refer to the rbd_spec structure used
168  * by the parent rbd_dev for its own identity (i.e., the structure
169  * is shared between the parent and child).
170  *
171  * Since these structures are populated once, during the discovery
172  * phase of image construction, they are effectively immutable so
173  * we make no effort to synchronize access to them.
174  *
175  * Note that code herein does not assume the image name is known (it
176  * could be a null pointer).
177  */
178 struct rbd_spec {
179         u64             pool_id;
180         const char      *pool_name;
181
182         const char      *image_id;
183         const char      *image_name;
184
185         u64             snap_id;
186         const char      *snap_name;
187
188         struct kref     kref;
189 };
190
191 /*
192  * an instance of the client.  multiple devices may share an rbd client.
193  */
194 struct rbd_client {
195         struct ceph_client      *client;
196         struct kref             kref;
197         struct list_head        node;
198 };
199
200 struct rbd_img_request;
201 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
202
203 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
204
205 struct rbd_obj_request;
206 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
207
208 enum obj_request_type {
209         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
210 };
211
212 enum obj_req_flags {
213         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
214         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
215         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
216         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
217 };
218
219 struct rbd_obj_request {
220         const char              *object_name;
221         u64                     offset;         /* object start byte */
222         u64                     length;         /* bytes from offset */
223         unsigned long           flags;
224
225         /*
226          * An object request associated with an image will have its
227          * img_data flag set; a standalone object request will not.
228          *
229          * A standalone object request will have which == BAD_WHICH
230          * and a null obj_request pointer.
231          *
232          * An object request initiated in support of a layered image
233          * object (to check for its existence before a write) will
234          * have which == BAD_WHICH and a non-null obj_request pointer.
235          *
236          * Finally, an object request for rbd image data will have
237          * which != BAD_WHICH, and will have a non-null img_request
238          * pointer.  The value of which will be in the range
239          * 0..(img_request->obj_request_count-1).
240          */
241         union {
242                 struct rbd_obj_request  *obj_request;   /* STAT op */
243                 struct {
244                         struct rbd_img_request  *img_request;
245                         u64                     img_offset;
246                         /* links for img_request->obj_requests list */
247                         struct list_head        links;
248                 };
249         };
250         u32                     which;          /* posn image request list */
251
252         enum obj_request_type   type;
253         union {
254                 struct bio      *bio_list;
255                 struct {
256                         struct page     **pages;
257                         u32             page_count;
258                 };
259         };
260         struct page             **copyup_pages;
261         u32                     copyup_page_count;
262
263         struct ceph_osd_request *osd_req;
264
265         u64                     xferred;        /* bytes transferred */
266         int                     result;
267
268         rbd_obj_callback_t      callback;
269         struct completion       completion;
270
271         struct kref             kref;
272 };
273
274 enum img_req_flags {
275         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
276         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
277         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
278 };
279
280 struct rbd_img_request {
281         struct rbd_device       *rbd_dev;
282         u64                     offset; /* starting image byte offset */
283         u64                     length; /* byte count from offset */
284         unsigned long           flags;
285         union {
286                 u64                     snap_id;        /* for reads */
287                 struct ceph_snap_context *snapc;        /* for writes */
288         };
289         union {
290                 struct request          *rq;            /* block request */
291                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
292         };
293         struct page             **copyup_pages;
294         u32                     copyup_page_count;
295         spinlock_t              completion_lock;/* protects next_completion */
296         u32                     next_completion;
297         rbd_img_callback_t      callback;
298         u64                     xferred;/* aggregate bytes transferred */
299         int                     result; /* first nonzero obj_request result */
300
301         u32                     obj_request_count;
302         struct list_head        obj_requests;   /* rbd_obj_request structs */
303
304         struct kref             kref;
305 };
306
307 #define for_each_obj_request(ireq, oreq) \
308         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
309 #define for_each_obj_request_from(ireq, oreq) \
310         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
311 #define for_each_obj_request_safe(ireq, oreq, n) \
312         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
313
314 struct rbd_mapping {
315         u64                     size;
316         u64                     features;
317         bool                    read_only;
318 };
319
320 /*
321  * a single device
322  */
323 struct rbd_device {
324         int                     dev_id;         /* blkdev unique id */
325
326         int                     major;          /* blkdev assigned major */
327         int                     minor;
328         struct gendisk          *disk;          /* blkdev's gendisk and rq */
329
330         u32                     image_format;   /* Either 1 or 2 */
331         struct rbd_client       *rbd_client;
332
333         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
334
335         spinlock_t              lock;           /* queue, flags, open_count */
336
337         struct rbd_image_header header;
338         unsigned long           flags;          /* possibly lock protected */
339         struct rbd_spec         *spec;
340
341         char                    *header_name;
342
343         struct ceph_file_layout layout;
344
345         struct ceph_osd_event   *watch_event;
346         struct rbd_obj_request  *watch_request;
347
348         struct rbd_spec         *parent_spec;
349         u64                     parent_overlap;
350         atomic_t                parent_ref;
351         struct rbd_device       *parent;
352
353         /* protects updating the header */
354         struct rw_semaphore     header_rwsem;
355
356         struct rbd_mapping      mapping;
357
358         struct list_head        node;
359
360         /* sysfs related */
361         struct device           dev;
362         unsigned long           open_count;     /* protected by lock */
363 };
364
365 /*
366  * Flag bits for rbd_dev->flags.  If atomicity is required,
367  * rbd_dev->lock is used to protect access.
368  *
369  * Currently, only the "removing" flag (which is coupled with the
370  * "open_count" field) requires atomic access.
371  */
372 enum rbd_dev_flags {
373         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
374         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
375 };
376
377 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
378
379 static LIST_HEAD(rbd_dev_list);    /* devices */
380 static DEFINE_SPINLOCK(rbd_dev_list_lock);
381
382 static LIST_HEAD(rbd_client_list);              /* clients */
383 static DEFINE_SPINLOCK(rbd_client_list_lock);
384
385 /* Slab caches for frequently-allocated structures */
386
387 static struct kmem_cache        *rbd_img_request_cache;
388 static struct kmem_cache        *rbd_obj_request_cache;
389 static struct kmem_cache        *rbd_segment_name_cache;
390
391 static int rbd_major;
392 static DEFINE_IDA(rbd_dev_id_ida);
393
394 /*
395  * Default to false for now, as single-major requires >= 0.75 version of
396  * userspace rbd utility.
397  */
398 static bool single_major = false;
399 module_param(single_major, bool, S_IRUGO);
400 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
401
402 static int rbd_img_request_submit(struct rbd_img_request *img_request);
403
404 static void rbd_dev_device_release(struct device *dev);
405
406 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
407                        size_t count);
408 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
409                           size_t count);
410 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
411                                     size_t count);
412 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
413                                        size_t count);
414 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
415 static void rbd_spec_put(struct rbd_spec *spec);
416
417 static int rbd_dev_id_to_minor(int dev_id)
418 {
419         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
420 }
421
422 static int minor_to_rbd_dev_id(int minor)
423 {
424         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
425 }
426
427 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
428 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
429 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
430 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
431
432 static struct attribute *rbd_bus_attrs[] = {
433         &bus_attr_add.attr,
434         &bus_attr_remove.attr,
435         &bus_attr_add_single_major.attr,
436         &bus_attr_remove_single_major.attr,
437         NULL,
438 };
439
440 static umode_t rbd_bus_is_visible(struct kobject *kobj,
441                                   struct attribute *attr, int index)
442 {
443         if (!single_major &&
444             (attr == &bus_attr_add_single_major.attr ||
445              attr == &bus_attr_remove_single_major.attr))
446                 return 0;
447
448         return attr->mode;
449 }
450
451 static const struct attribute_group rbd_bus_group = {
452         .attrs = rbd_bus_attrs,
453         .is_visible = rbd_bus_is_visible,
454 };
455 __ATTRIBUTE_GROUPS(rbd_bus);
456
457 static struct bus_type rbd_bus_type = {
458         .name           = "rbd",
459         .bus_groups     = rbd_bus_groups,
460 };
461
462 static void rbd_root_dev_release(struct device *dev)
463 {
464 }
465
466 static struct device rbd_root_dev = {
467         .init_name =    "rbd",
468         .release =      rbd_root_dev_release,
469 };
470
471 static __printf(2, 3)
472 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
473 {
474         struct va_format vaf;
475         va_list args;
476
477         va_start(args, fmt);
478         vaf.fmt = fmt;
479         vaf.va = &args;
480
481         if (!rbd_dev)
482                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
483         else if (rbd_dev->disk)
484                 printk(KERN_WARNING "%s: %s: %pV\n",
485                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
486         else if (rbd_dev->spec && rbd_dev->spec->image_name)
487                 printk(KERN_WARNING "%s: image %s: %pV\n",
488                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
489         else if (rbd_dev->spec && rbd_dev->spec->image_id)
490                 printk(KERN_WARNING "%s: id %s: %pV\n",
491                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
492         else    /* punt */
493                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
494                         RBD_DRV_NAME, rbd_dev, &vaf);
495         va_end(args);
496 }
497
498 #ifdef RBD_DEBUG
499 #define rbd_assert(expr)                                                \
500                 if (unlikely(!(expr))) {                                \
501                         printk(KERN_ERR "\nAssertion failure in %s() "  \
502                                                 "at line %d:\n\n"       \
503                                         "\trbd_assert(%s);\n\n",        \
504                                         __func__, __LINE__, #expr);     \
505                         BUG();                                          \
506                 }
507 #else /* !RBD_DEBUG */
508 #  define rbd_assert(expr)      ((void) 0)
509 #endif /* !RBD_DEBUG */
510
511 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
512 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
513 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
514
515 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
516 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
517 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
518 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
519                                         u64 snap_id);
520 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
521                                 u8 *order, u64 *snap_size);
522 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
523                 u64 *snap_features);
524 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
525
526 static int rbd_open(struct block_device *bdev, fmode_t mode)
527 {
528         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
529         bool removing = false;
530
531         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
532                 return -EROFS;
533
534         spin_lock_irq(&rbd_dev->lock);
535         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
536                 removing = true;
537         else
538                 rbd_dev->open_count++;
539         spin_unlock_irq(&rbd_dev->lock);
540         if (removing)
541                 return -ENOENT;
542
543         (void) get_device(&rbd_dev->dev);
544
545         return 0;
546 }
547
548 static void rbd_release(struct gendisk *disk, fmode_t mode)
549 {
550         struct rbd_device *rbd_dev = disk->private_data;
551         unsigned long open_count_before;
552
553         spin_lock_irq(&rbd_dev->lock);
554         open_count_before = rbd_dev->open_count--;
555         spin_unlock_irq(&rbd_dev->lock);
556         rbd_assert(open_count_before > 0);
557
558         put_device(&rbd_dev->dev);
559 }
560
561 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
562 {
563         int ret = 0;
564         int val;
565         bool ro;
566         bool ro_changed = false;
567
568         /* get_user() may sleep, so call it before taking rbd_dev->lock */
569         if (get_user(val, (int __user *)(arg)))
570                 return -EFAULT;
571
572         ro = val ? true : false;
573         /* Snapshot doesn't allow to write*/
574         if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
575                 return -EROFS;
576
577         spin_lock_irq(&rbd_dev->lock);
578         /* prevent others open this device */
579         if (rbd_dev->open_count > 1) {
580                 ret = -EBUSY;
581                 goto out;
582         }
583
584         if (rbd_dev->mapping.read_only != ro) {
585                 rbd_dev->mapping.read_only = ro;
586                 ro_changed = true;
587         }
588
589 out:
590         spin_unlock_irq(&rbd_dev->lock);
591         /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
592         if (ret == 0 && ro_changed)
593                 set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
594
595         return ret;
596 }
597
598 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
599                         unsigned int cmd, unsigned long arg)
600 {
601         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
602         int ret = 0;
603
604         switch (cmd) {
605         case BLKROSET:
606                 ret = rbd_ioctl_set_ro(rbd_dev, arg);
607                 break;
608         default:
609                 ret = -ENOTTY;
610         }
611
612         return ret;
613 }
614
615 #ifdef CONFIG_COMPAT
616 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
617                                 unsigned int cmd, unsigned long arg)
618 {
619         return rbd_ioctl(bdev, mode, cmd, arg);
620 }
621 #endif /* CONFIG_COMPAT */
622
623 static const struct block_device_operations rbd_bd_ops = {
624         .owner                  = THIS_MODULE,
625         .open                   = rbd_open,
626         .release                = rbd_release,
627         .ioctl                  = rbd_ioctl,
628 #ifdef CONFIG_COMPAT
629         .compat_ioctl           = rbd_compat_ioctl,
630 #endif
631 };
632
633 /*
634  * Initialize an rbd client instance.  Success or not, this function
635  * consumes ceph_opts.  Caller holds client_mutex.
636  */
637 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
638 {
639         struct rbd_client *rbdc;
640         int ret = -ENOMEM;
641
642         dout("%s:\n", __func__);
643         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
644         if (!rbdc)
645                 goto out_opt;
646
647         kref_init(&rbdc->kref);
648         INIT_LIST_HEAD(&rbdc->node);
649
650         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
651         if (IS_ERR(rbdc->client))
652                 goto out_rbdc;
653         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
654
655         ret = ceph_open_session(rbdc->client);
656         if (ret < 0)
657                 goto out_client;
658
659         spin_lock(&rbd_client_list_lock);
660         list_add_tail(&rbdc->node, &rbd_client_list);
661         spin_unlock(&rbd_client_list_lock);
662
663         dout("%s: rbdc %p\n", __func__, rbdc);
664
665         return rbdc;
666 out_client:
667         ceph_destroy_client(rbdc->client);
668 out_rbdc:
669         kfree(rbdc);
670 out_opt:
671         if (ceph_opts)
672                 ceph_destroy_options(ceph_opts);
673         dout("%s: error %d\n", __func__, ret);
674
675         return ERR_PTR(ret);
676 }
677
678 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
679 {
680         kref_get(&rbdc->kref);
681
682         return rbdc;
683 }
684
685 /*
686  * Find a ceph client with specific addr and configuration.  If
687  * found, bump its reference count.
688  */
689 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
690 {
691         struct rbd_client *client_node;
692         bool found = false;
693
694         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
695                 return NULL;
696
697         spin_lock(&rbd_client_list_lock);
698         list_for_each_entry(client_node, &rbd_client_list, node) {
699                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
700                         __rbd_get_client(client_node);
701
702                         found = true;
703                         break;
704                 }
705         }
706         spin_unlock(&rbd_client_list_lock);
707
708         return found ? client_node : NULL;
709 }
710
711 /*
712  * mount options
713  */
714 enum {
715         Opt_last_int,
716         /* int args above */
717         Opt_last_string,
718         /* string args above */
719         Opt_read_only,
720         Opt_read_write,
721         /* Boolean args above */
722         Opt_last_bool,
723 };
724
725 static match_table_t rbd_opts_tokens = {
726         /* int args above */
727         /* string args above */
728         {Opt_read_only, "read_only"},
729         {Opt_read_only, "ro"},          /* Alternate spelling */
730         {Opt_read_write, "read_write"},
731         {Opt_read_write, "rw"},         /* Alternate spelling */
732         /* Boolean args above */
733         {-1, NULL}
734 };
735
736 struct rbd_options {
737         bool    read_only;
738 };
739
740 #define RBD_READ_ONLY_DEFAULT   false
741
742 static int parse_rbd_opts_token(char *c, void *private)
743 {
744         struct rbd_options *rbd_opts = private;
745         substring_t argstr[MAX_OPT_ARGS];
746         int token, intval, ret;
747
748         token = match_token(c, rbd_opts_tokens, argstr);
749         if (token < 0)
750                 return -EINVAL;
751
752         if (token < Opt_last_int) {
753                 ret = match_int(&argstr[0], &intval);
754                 if (ret < 0) {
755                         pr_err("bad mount option arg (not int) "
756                                "at '%s'\n", c);
757                         return ret;
758                 }
759                 dout("got int token %d val %d\n", token, intval);
760         } else if (token > Opt_last_int && token < Opt_last_string) {
761                 dout("got string token %d val %s\n", token,
762                      argstr[0].from);
763         } else if (token > Opt_last_string && token < Opt_last_bool) {
764                 dout("got Boolean token %d\n", token);
765         } else {
766                 dout("got token %d\n", token);
767         }
768
769         switch (token) {
770         case Opt_read_only:
771                 rbd_opts->read_only = true;
772                 break;
773         case Opt_read_write:
774                 rbd_opts->read_only = false;
775                 break;
776         default:
777                 rbd_assert(false);
778                 break;
779         }
780         return 0;
781 }
782
783 /*
784  * Get a ceph client with specific addr and configuration, if one does
785  * not exist create it.  Either way, ceph_opts is consumed by this
786  * function.
787  */
788 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
789 {
790         struct rbd_client *rbdc;
791
792         mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
793         rbdc = rbd_client_find(ceph_opts);
794         if (rbdc)       /* using an existing client */
795                 ceph_destroy_options(ceph_opts);
796         else
797                 rbdc = rbd_client_create(ceph_opts);
798         mutex_unlock(&client_mutex);
799
800         return rbdc;
801 }
802
803 /*
804  * Destroy ceph client
805  *
806  * Caller must hold rbd_client_list_lock.
807  */
808 static void rbd_client_release(struct kref *kref)
809 {
810         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
811
812         dout("%s: rbdc %p\n", __func__, rbdc);
813         spin_lock(&rbd_client_list_lock);
814         list_del(&rbdc->node);
815         spin_unlock(&rbd_client_list_lock);
816
817         ceph_destroy_client(rbdc->client);
818         kfree(rbdc);
819 }
820
821 /*
822  * Drop reference to ceph client node. If it's not referenced anymore, release
823  * it.
824  */
825 static void rbd_put_client(struct rbd_client *rbdc)
826 {
827         if (rbdc)
828                 kref_put(&rbdc->kref, rbd_client_release);
829 }
830
831 static bool rbd_image_format_valid(u32 image_format)
832 {
833         return image_format == 1 || image_format == 2;
834 }
835
836 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
837 {
838         size_t size;
839         u32 snap_count;
840
841         /* The header has to start with the magic rbd header text */
842         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
843                 return false;
844
845         /* The bio layer requires at least sector-sized I/O */
846
847         if (ondisk->options.order < SECTOR_SHIFT)
848                 return false;
849
850         /* If we use u64 in a few spots we may be able to loosen this */
851
852         if (ondisk->options.order > 8 * sizeof (int) - 1)
853                 return false;
854
855         /*
856          * The size of a snapshot header has to fit in a size_t, and
857          * that limits the number of snapshots.
858          */
859         snap_count = le32_to_cpu(ondisk->snap_count);
860         size = SIZE_MAX - sizeof (struct ceph_snap_context);
861         if (snap_count > size / sizeof (__le64))
862                 return false;
863
864         /*
865          * Not only that, but the size of the entire the snapshot
866          * header must also be representable in a size_t.
867          */
868         size -= snap_count * sizeof (__le64);
869         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
870                 return false;
871
872         return true;
873 }
874
875 /*
876  * Fill an rbd image header with information from the given format 1
877  * on-disk header.
878  */
879 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
880                                  struct rbd_image_header_ondisk *ondisk)
881 {
882         struct rbd_image_header *header = &rbd_dev->header;
883         bool first_time = header->object_prefix == NULL;
884         struct ceph_snap_context *snapc;
885         char *object_prefix = NULL;
886         char *snap_names = NULL;
887         u64 *snap_sizes = NULL;
888         u32 snap_count;
889         size_t size;
890         int ret = -ENOMEM;
891         u32 i;
892
893         /* Allocate this now to avoid having to handle failure below */
894
895         if (first_time) {
896                 size_t len;
897
898                 len = strnlen(ondisk->object_prefix,
899                                 sizeof (ondisk->object_prefix));
900                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
901                 if (!object_prefix)
902                         return -ENOMEM;
903                 memcpy(object_prefix, ondisk->object_prefix, len);
904                 object_prefix[len] = '\0';
905         }
906
907         /* Allocate the snapshot context and fill it in */
908
909         snap_count = le32_to_cpu(ondisk->snap_count);
910         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
911         if (!snapc)
912                 goto out_err;
913         snapc->seq = le64_to_cpu(ondisk->snap_seq);
914         if (snap_count) {
915                 struct rbd_image_snap_ondisk *snaps;
916                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
917
918                 /* We'll keep a copy of the snapshot names... */
919
920                 if (snap_names_len > (u64)SIZE_MAX)
921                         goto out_2big;
922                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
923                 if (!snap_names)
924                         goto out_err;
925
926                 /* ...as well as the array of their sizes. */
927
928                 size = snap_count * sizeof (*header->snap_sizes);
929                 snap_sizes = kmalloc(size, GFP_KERNEL);
930                 if (!snap_sizes)
931                         goto out_err;
932
933                 /*
934                  * Copy the names, and fill in each snapshot's id
935                  * and size.
936                  *
937                  * Note that rbd_dev_v1_header_info() guarantees the
938                  * ondisk buffer we're working with has
939                  * snap_names_len bytes beyond the end of the
940                  * snapshot id array, this memcpy() is safe.
941                  */
942                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
943                 snaps = ondisk->snaps;
944                 for (i = 0; i < snap_count; i++) {
945                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
946                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
947                 }
948         }
949
950         /* We won't fail any more, fill in the header */
951
952         if (first_time) {
953                 header->object_prefix = object_prefix;
954                 header->obj_order = ondisk->options.order;
955                 header->crypt_type = ondisk->options.crypt_type;
956                 header->comp_type = ondisk->options.comp_type;
957                 /* The rest aren't used for format 1 images */
958                 header->stripe_unit = 0;
959                 header->stripe_count = 0;
960                 header->features = 0;
961         } else {
962                 ceph_put_snap_context(header->snapc);
963                 kfree(header->snap_names);
964                 kfree(header->snap_sizes);
965         }
966
967         /* The remaining fields always get updated (when we refresh) */
968
969         header->image_size = le64_to_cpu(ondisk->image_size);
970         header->snapc = snapc;
971         header->snap_names = snap_names;
972         header->snap_sizes = snap_sizes;
973
974         /* Make sure mapping size is consistent with header info */
975
976         if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
977                 if (rbd_dev->mapping.size != header->image_size)
978                         rbd_dev->mapping.size = header->image_size;
979
980         return 0;
981 out_2big:
982         ret = -EIO;
983 out_err:
984         kfree(snap_sizes);
985         kfree(snap_names);
986         ceph_put_snap_context(snapc);
987         kfree(object_prefix);
988
989         return ret;
990 }
991
992 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
993 {
994         const char *snap_name;
995
996         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
997
998         /* Skip over names until we find the one we are looking for */
999
1000         snap_name = rbd_dev->header.snap_names;
1001         while (which--)
1002                 snap_name += strlen(snap_name) + 1;
1003
1004         return kstrdup(snap_name, GFP_KERNEL);
1005 }
1006
1007 /*
1008  * Snapshot id comparison function for use with qsort()/bsearch().
1009  * Note that result is for snapshots in *descending* order.
1010  */
1011 static int snapid_compare_reverse(const void *s1, const void *s2)
1012 {
1013         u64 snap_id1 = *(u64 *)s1;
1014         u64 snap_id2 = *(u64 *)s2;
1015
1016         if (snap_id1 < snap_id2)
1017                 return 1;
1018         return snap_id1 == snap_id2 ? 0 : -1;
1019 }
1020
1021 /*
1022  * Search a snapshot context to see if the given snapshot id is
1023  * present.
1024  *
1025  * Returns the position of the snapshot id in the array if it's found,
1026  * or BAD_SNAP_INDEX otherwise.
1027  *
1028  * Note: The snapshot array is in kept sorted (by the osd) in
1029  * reverse order, highest snapshot id first.
1030  */
1031 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1032 {
1033         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1034         u64 *found;
1035
1036         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1037                                 sizeof (snap_id), snapid_compare_reverse);
1038
1039         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1040 }
1041
1042 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1043                                         u64 snap_id)
1044 {
1045         u32 which;
1046         const char *snap_name;
1047
1048         which = rbd_dev_snap_index(rbd_dev, snap_id);
1049         if (which == BAD_SNAP_INDEX)
1050                 return ERR_PTR(-ENOENT);
1051
1052         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1053         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1054 }
1055
1056 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1057 {
1058         if (snap_id == CEPH_NOSNAP)
1059                 return RBD_SNAP_HEAD_NAME;
1060
1061         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1062         if (rbd_dev->image_format == 1)
1063                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1064
1065         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1066 }
1067
1068 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1069                                 u64 *snap_size)
1070 {
1071         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1072         if (snap_id == CEPH_NOSNAP) {
1073                 *snap_size = rbd_dev->header.image_size;
1074         } else if (rbd_dev->image_format == 1) {
1075                 u32 which;
1076
1077                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1078                 if (which == BAD_SNAP_INDEX)
1079                         return -ENOENT;
1080
1081                 *snap_size = rbd_dev->header.snap_sizes[which];
1082         } else {
1083                 u64 size = 0;
1084                 int ret;
1085
1086                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1087                 if (ret)
1088                         return ret;
1089
1090                 *snap_size = size;
1091         }
1092         return 0;
1093 }
1094
1095 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1096                         u64 *snap_features)
1097 {
1098         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1099         if (snap_id == CEPH_NOSNAP) {
1100                 *snap_features = rbd_dev->header.features;
1101         } else if (rbd_dev->image_format == 1) {
1102                 *snap_features = 0;     /* No features for format 1 */
1103         } else {
1104                 u64 features = 0;
1105                 int ret;
1106
1107                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1108                 if (ret)
1109                         return ret;
1110
1111                 *snap_features = features;
1112         }
1113         return 0;
1114 }
1115
1116 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1117 {
1118         u64 snap_id = rbd_dev->spec->snap_id;
1119         u64 size = 0;
1120         u64 features = 0;
1121         int ret;
1122
1123         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1124         if (ret)
1125                 return ret;
1126         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1127         if (ret)
1128                 return ret;
1129
1130         rbd_dev->mapping.size = size;
1131         rbd_dev->mapping.features = features;
1132
1133         return 0;
1134 }
1135
1136 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1137 {
1138         rbd_dev->mapping.size = 0;
1139         rbd_dev->mapping.features = 0;
1140 }
1141
1142 static void rbd_segment_name_free(const char *name)
1143 {
1144         /* The explicit cast here is needed to drop the const qualifier */
1145
1146         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1147 }
1148
1149 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1150 {
1151         char *name;
1152         u64 segment;
1153         int ret;
1154         char *name_format;
1155
1156         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1157         if (!name)
1158                 return NULL;
1159         segment = offset >> rbd_dev->header.obj_order;
1160         name_format = "%s.%012llx";
1161         if (rbd_dev->image_format == 2)
1162                 name_format = "%s.%016llx";
1163         ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1164                         rbd_dev->header.object_prefix, segment);
1165         if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1166                 pr_err("error formatting segment name for #%llu (%d)\n",
1167                         segment, ret);
1168                 rbd_segment_name_free(name);
1169                 name = NULL;
1170         }
1171
1172         return name;
1173 }
1174
1175 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1176 {
1177         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1178
1179         return offset & (segment_size - 1);
1180 }
1181
1182 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1183                                 u64 offset, u64 length)
1184 {
1185         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1186
1187         offset &= segment_size - 1;
1188
1189         rbd_assert(length <= U64_MAX - offset);
1190         if (offset + length > segment_size)
1191                 length = segment_size - offset;
1192
1193         return length;
1194 }
1195
1196 /*
1197  * returns the size of an object in the image
1198  */
1199 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1200 {
1201         return 1 << header->obj_order;
1202 }
1203
1204 /*
1205  * bio helpers
1206  */
1207
1208 static void bio_chain_put(struct bio *chain)
1209 {
1210         struct bio *tmp;
1211
1212         while (chain) {
1213                 tmp = chain;
1214                 chain = chain->bi_next;
1215                 bio_put(tmp);
1216         }
1217 }
1218
1219 /*
1220  * zeros a bio chain, starting at specific offset
1221  */
1222 static void zero_bio_chain(struct bio *chain, int start_ofs)
1223 {
1224         struct bio_vec bv;
1225         struct bvec_iter iter;
1226         unsigned long flags;
1227         void *buf;
1228         int pos = 0;
1229
1230         while (chain) {
1231                 bio_for_each_segment(bv, chain, iter) {
1232                         if (pos + bv.bv_len > start_ofs) {
1233                                 int remainder = max(start_ofs - pos, 0);
1234                                 buf = bvec_kmap_irq(&bv, &flags);
1235                                 memset(buf + remainder, 0,
1236                                        bv.bv_len - remainder);
1237                                 flush_dcache_page(bv.bv_page);
1238                                 bvec_kunmap_irq(buf, &flags);
1239                         }
1240                         pos += bv.bv_len;
1241                 }
1242
1243                 chain = chain->bi_next;
1244         }
1245 }
1246
1247 /*
1248  * similar to zero_bio_chain(), zeros data defined by a page array,
1249  * starting at the given byte offset from the start of the array and
1250  * continuing up to the given end offset.  The pages array is
1251  * assumed to be big enough to hold all bytes up to the end.
1252  */
1253 static void zero_pages(struct page **pages, u64 offset, u64 end)
1254 {
1255         struct page **page = &pages[offset >> PAGE_SHIFT];
1256
1257         rbd_assert(end > offset);
1258         rbd_assert(end - offset <= (u64)SIZE_MAX);
1259         while (offset < end) {
1260                 size_t page_offset;
1261                 size_t length;
1262                 unsigned long flags;
1263                 void *kaddr;
1264
1265                 page_offset = offset & ~PAGE_MASK;
1266                 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1267                 local_irq_save(flags);
1268                 kaddr = kmap_atomic(*page);
1269                 memset(kaddr + page_offset, 0, length);
1270                 flush_dcache_page(*page);
1271                 kunmap_atomic(kaddr);
1272                 local_irq_restore(flags);
1273
1274                 offset += length;
1275                 page++;
1276         }
1277 }
1278
1279 /*
1280  * Clone a portion of a bio, starting at the given byte offset
1281  * and continuing for the number of bytes indicated.
1282  */
1283 static struct bio *bio_clone_range(struct bio *bio_src,
1284                                         unsigned int offset,
1285                                         unsigned int len,
1286                                         gfp_t gfpmask)
1287 {
1288         struct bio *bio;
1289
1290         bio = bio_clone(bio_src, gfpmask);
1291         if (!bio)
1292                 return NULL;    /* ENOMEM */
1293
1294         bio_advance(bio, offset);
1295         bio->bi_iter.bi_size = len;
1296
1297         return bio;
1298 }
1299
1300 /*
1301  * Clone a portion of a bio chain, starting at the given byte offset
1302  * into the first bio in the source chain and continuing for the
1303  * number of bytes indicated.  The result is another bio chain of
1304  * exactly the given length, or a null pointer on error.
1305  *
1306  * The bio_src and offset parameters are both in-out.  On entry they
1307  * refer to the first source bio and the offset into that bio where
1308  * the start of data to be cloned is located.
1309  *
1310  * On return, bio_src is updated to refer to the bio in the source
1311  * chain that contains first un-cloned byte, and *offset will
1312  * contain the offset of that byte within that bio.
1313  */
1314 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1315                                         unsigned int *offset,
1316                                         unsigned int len,
1317                                         gfp_t gfpmask)
1318 {
1319         struct bio *bi = *bio_src;
1320         unsigned int off = *offset;
1321         struct bio *chain = NULL;
1322         struct bio **end;
1323
1324         /* Build up a chain of clone bios up to the limit */
1325
1326         if (!bi || off >= bi->bi_iter.bi_size || !len)
1327                 return NULL;            /* Nothing to clone */
1328
1329         end = &chain;
1330         while (len) {
1331                 unsigned int bi_size;
1332                 struct bio *bio;
1333
1334                 if (!bi) {
1335                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1336                         goto out_err;   /* EINVAL; ran out of bio's */
1337                 }
1338                 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1339                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1340                 if (!bio)
1341                         goto out_err;   /* ENOMEM */
1342
1343                 *end = bio;
1344                 end = &bio->bi_next;
1345
1346                 off += bi_size;
1347                 if (off == bi->bi_iter.bi_size) {
1348                         bi = bi->bi_next;
1349                         off = 0;
1350                 }
1351                 len -= bi_size;
1352         }
1353         *bio_src = bi;
1354         *offset = off;
1355
1356         return chain;
1357 out_err:
1358         bio_chain_put(chain);
1359
1360         return NULL;
1361 }
1362
1363 /*
1364  * The default/initial value for all object request flags is 0.  For
1365  * each flag, once its value is set to 1 it is never reset to 0
1366  * again.
1367  */
1368 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1369 {
1370         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1371                 struct rbd_device *rbd_dev;
1372
1373                 rbd_dev = obj_request->img_request->rbd_dev;
1374                 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1375                         obj_request);
1376         }
1377 }
1378
1379 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1380 {
1381         smp_mb();
1382         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1383 }
1384
1385 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1386 {
1387         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1388                 struct rbd_device *rbd_dev = NULL;
1389
1390                 if (obj_request_img_data_test(obj_request))
1391                         rbd_dev = obj_request->img_request->rbd_dev;
1392                 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1393                         obj_request);
1394         }
1395 }
1396
1397 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1398 {
1399         smp_mb();
1400         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1401 }
1402
1403 /*
1404  * This sets the KNOWN flag after (possibly) setting the EXISTS
1405  * flag.  The latter is set based on the "exists" value provided.
1406  *
1407  * Note that for our purposes once an object exists it never goes
1408  * away again.  It's possible that the response from two existence
1409  * checks are separated by the creation of the target object, and
1410  * the first ("doesn't exist") response arrives *after* the second
1411  * ("does exist").  In that case we ignore the second one.
1412  */
1413 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1414                                 bool exists)
1415 {
1416         if (exists)
1417                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1418         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1419         smp_mb();
1420 }
1421
1422 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1423 {
1424         smp_mb();
1425         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1426 }
1427
1428 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1429 {
1430         smp_mb();
1431         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1432 }
1433
1434 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1435 {
1436         struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1437
1438         return obj_request->img_offset <
1439             round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1440 }
1441
1442 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1443 {
1444         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1445                 atomic_read(&obj_request->kref.refcount));
1446         kref_get(&obj_request->kref);
1447 }
1448
1449 static void rbd_obj_request_destroy(struct kref *kref);
1450 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1451 {
1452         rbd_assert(obj_request != NULL);
1453         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1454                 atomic_read(&obj_request->kref.refcount));
1455         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1456 }
1457
1458 static void rbd_img_request_get(struct rbd_img_request *img_request)
1459 {
1460         dout("%s: img %p (was %d)\n", __func__, img_request,
1461              atomic_read(&img_request->kref.refcount));
1462         kref_get(&img_request->kref);
1463 }
1464
1465 static bool img_request_child_test(struct rbd_img_request *img_request);
1466 static void rbd_parent_request_destroy(struct kref *kref);
1467 static void rbd_img_request_destroy(struct kref *kref);
1468 static void rbd_img_request_put(struct rbd_img_request *img_request)
1469 {
1470         rbd_assert(img_request != NULL);
1471         dout("%s: img %p (was %d)\n", __func__, img_request,
1472                 atomic_read(&img_request->kref.refcount));
1473         if (img_request_child_test(img_request))
1474                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1475         else
1476                 kref_put(&img_request->kref, rbd_img_request_destroy);
1477 }
1478
1479 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1480                                         struct rbd_obj_request *obj_request)
1481 {
1482         rbd_assert(obj_request->img_request == NULL);
1483
1484         /* Image request now owns object's original reference */
1485         obj_request->img_request = img_request;
1486         obj_request->which = img_request->obj_request_count;
1487         rbd_assert(!obj_request_img_data_test(obj_request));
1488         obj_request_img_data_set(obj_request);
1489         rbd_assert(obj_request->which != BAD_WHICH);
1490         img_request->obj_request_count++;
1491         list_add_tail(&obj_request->links, &img_request->obj_requests);
1492         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1493                 obj_request->which);
1494 }
1495
1496 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1497                                         struct rbd_obj_request *obj_request)
1498 {
1499         rbd_assert(obj_request->which != BAD_WHICH);
1500
1501         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1502                 obj_request->which);
1503         list_del(&obj_request->links);
1504         rbd_assert(img_request->obj_request_count > 0);
1505         img_request->obj_request_count--;
1506         rbd_assert(obj_request->which == img_request->obj_request_count);
1507         obj_request->which = BAD_WHICH;
1508         rbd_assert(obj_request_img_data_test(obj_request));
1509         rbd_assert(obj_request->img_request == img_request);
1510         obj_request->img_request = NULL;
1511         obj_request->callback = NULL;
1512         rbd_obj_request_put(obj_request);
1513 }
1514
1515 static bool obj_request_type_valid(enum obj_request_type type)
1516 {
1517         switch (type) {
1518         case OBJ_REQUEST_NODATA:
1519         case OBJ_REQUEST_BIO:
1520         case OBJ_REQUEST_PAGES:
1521                 return true;
1522         default:
1523                 return false;
1524         }
1525 }
1526
1527 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1528                                 struct rbd_obj_request *obj_request)
1529 {
1530         dout("%s %p\n", __func__, obj_request);
1531         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1532 }
1533
1534 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1535 {
1536         dout("%s %p\n", __func__, obj_request);
1537         ceph_osdc_cancel_request(obj_request->osd_req);
1538 }
1539
1540 /*
1541  * Wait for an object request to complete.  If interrupted, cancel the
1542  * underlying osd request.
1543  */
1544 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1545 {
1546         int ret;
1547
1548         dout("%s %p\n", __func__, obj_request);
1549
1550         ret = wait_for_completion_interruptible(&obj_request->completion);
1551         if (ret < 0) {
1552                 dout("%s %p interrupted\n", __func__, obj_request);
1553                 rbd_obj_request_end(obj_request);
1554                 return ret;
1555         }
1556
1557         dout("%s %p done\n", __func__, obj_request);
1558         return 0;
1559 }
1560
1561 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1562 {
1563
1564         dout("%s: img %p\n", __func__, img_request);
1565
1566         /*
1567          * If no error occurred, compute the aggregate transfer
1568          * count for the image request.  We could instead use
1569          * atomic64_cmpxchg() to update it as each object request
1570          * completes; not clear which way is better off hand.
1571          */
1572         if (!img_request->result) {
1573                 struct rbd_obj_request *obj_request;
1574                 u64 xferred = 0;
1575
1576                 for_each_obj_request(img_request, obj_request)
1577                         xferred += obj_request->xferred;
1578                 img_request->xferred = xferred;
1579         }
1580
1581         if (img_request->callback)
1582                 img_request->callback(img_request);
1583         else
1584                 rbd_img_request_put(img_request);
1585 }
1586
1587 /*
1588  * The default/initial value for all image request flags is 0.  Each
1589  * is conditionally set to 1 at image request initialization time
1590  * and currently never change thereafter.
1591  */
1592 static void img_request_write_set(struct rbd_img_request *img_request)
1593 {
1594         set_bit(IMG_REQ_WRITE, &img_request->flags);
1595         smp_mb();
1596 }
1597
1598 static bool img_request_write_test(struct rbd_img_request *img_request)
1599 {
1600         smp_mb();
1601         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1602 }
1603
1604 static void img_request_child_set(struct rbd_img_request *img_request)
1605 {
1606         set_bit(IMG_REQ_CHILD, &img_request->flags);
1607         smp_mb();
1608 }
1609
1610 static void img_request_child_clear(struct rbd_img_request *img_request)
1611 {
1612         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1613         smp_mb();
1614 }
1615
1616 static bool img_request_child_test(struct rbd_img_request *img_request)
1617 {
1618         smp_mb();
1619         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1620 }
1621
1622 static void img_request_layered_set(struct rbd_img_request *img_request)
1623 {
1624         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1625         smp_mb();
1626 }
1627
1628 static void img_request_layered_clear(struct rbd_img_request *img_request)
1629 {
1630         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1631         smp_mb();
1632 }
1633
1634 static bool img_request_layered_test(struct rbd_img_request *img_request)
1635 {
1636         smp_mb();
1637         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1638 }
1639
1640 static void
1641 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1642 {
1643         u64 xferred = obj_request->xferred;
1644         u64 length = obj_request->length;
1645
1646         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1647                 obj_request, obj_request->img_request, obj_request->result,
1648                 xferred, length);
1649         /*
1650          * ENOENT means a hole in the image.  We zero-fill the entire
1651          * length of the request.  A short read also implies zero-fill
1652          * to the end of the request.  An error requires the whole
1653          * length of the request to be reported finished with an error
1654          * to the block layer.  In each case we update the xferred
1655          * count to indicate the whole request was satisfied.
1656          */
1657         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1658         if (obj_request->result == -ENOENT) {
1659                 if (obj_request->type == OBJ_REQUEST_BIO)
1660                         zero_bio_chain(obj_request->bio_list, 0);
1661                 else
1662                         zero_pages(obj_request->pages, 0, length);
1663                 obj_request->result = 0;
1664         } else if (xferred < length && !obj_request->result) {
1665                 if (obj_request->type == OBJ_REQUEST_BIO)
1666                         zero_bio_chain(obj_request->bio_list, xferred);
1667                 else
1668                         zero_pages(obj_request->pages, xferred, length);
1669         }
1670         obj_request->xferred = length;
1671         obj_request_done_set(obj_request);
1672 }
1673
1674 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1675 {
1676         dout("%s: obj %p cb %p\n", __func__, obj_request,
1677                 obj_request->callback);
1678         if (obj_request->callback)
1679                 obj_request->callback(obj_request);
1680         else
1681                 complete_all(&obj_request->completion);
1682 }
1683
1684 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1685 {
1686         dout("%s: obj %p\n", __func__, obj_request);
1687         obj_request_done_set(obj_request);
1688 }
1689
1690 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1691 {
1692         struct rbd_img_request *img_request = NULL;
1693         struct rbd_device *rbd_dev = NULL;
1694         bool layered = false;
1695
1696         if (obj_request_img_data_test(obj_request)) {
1697                 img_request = obj_request->img_request;
1698                 layered = img_request && img_request_layered_test(img_request);
1699                 rbd_dev = img_request->rbd_dev;
1700         }
1701
1702         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1703                 obj_request, img_request, obj_request->result,
1704                 obj_request->xferred, obj_request->length);
1705         if (layered && obj_request->result == -ENOENT &&
1706                         obj_request->img_offset < rbd_dev->parent_overlap)
1707                 rbd_img_parent_read(obj_request);
1708         else if (img_request)
1709                 rbd_img_obj_request_read_callback(obj_request);
1710         else
1711                 obj_request_done_set(obj_request);
1712 }
1713
1714 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1715 {
1716         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1717                 obj_request->result, obj_request->length);
1718         /*
1719          * There is no such thing as a successful short write.  Set
1720          * it to our originally-requested length.
1721          */
1722         obj_request->xferred = obj_request->length;
1723         obj_request_done_set(obj_request);
1724 }
1725
1726 /*
1727  * For a simple stat call there's nothing to do.  We'll do more if
1728  * this is part of a write sequence for a layered image.
1729  */
1730 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1731 {
1732         dout("%s: obj %p\n", __func__, obj_request);
1733         obj_request_done_set(obj_request);
1734 }
1735
1736 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1737                                 struct ceph_msg *msg)
1738 {
1739         struct rbd_obj_request *obj_request = osd_req->r_priv;
1740         u16 opcode;
1741
1742         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1743         rbd_assert(osd_req == obj_request->osd_req);
1744         if (obj_request_img_data_test(obj_request)) {
1745                 rbd_assert(obj_request->img_request);
1746                 rbd_assert(obj_request->which != BAD_WHICH);
1747         } else {
1748                 rbd_assert(obj_request->which == BAD_WHICH);
1749         }
1750
1751         if (osd_req->r_result < 0)
1752                 obj_request->result = osd_req->r_result;
1753
1754         rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1755
1756         /*
1757          * We support a 64-bit length, but ultimately it has to be
1758          * passed to blk_end_request(), which takes an unsigned int.
1759          */
1760         obj_request->xferred = osd_req->r_reply_op_len[0];
1761         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1762
1763         opcode = osd_req->r_ops[0].op;
1764         switch (opcode) {
1765         case CEPH_OSD_OP_READ:
1766                 rbd_osd_read_callback(obj_request);
1767                 break;
1768         case CEPH_OSD_OP_SETALLOCHINT:
1769                 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1770                 /* fall through */
1771         case CEPH_OSD_OP_WRITE:
1772                 rbd_osd_write_callback(obj_request);
1773                 break;
1774         case CEPH_OSD_OP_STAT:
1775                 rbd_osd_stat_callback(obj_request);
1776                 break;
1777         case CEPH_OSD_OP_CALL:
1778         case CEPH_OSD_OP_NOTIFY_ACK:
1779         case CEPH_OSD_OP_WATCH:
1780                 rbd_osd_trivial_callback(obj_request);
1781                 break;
1782         default:
1783                 rbd_warn(NULL, "%s: unsupported op %hu\n",
1784                         obj_request->object_name, (unsigned short) opcode);
1785                 break;
1786         }
1787
1788         if (obj_request_done_test(obj_request))
1789                 rbd_obj_request_complete(obj_request);
1790 }
1791
1792 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1793 {
1794         struct rbd_img_request *img_request = obj_request->img_request;
1795         struct ceph_osd_request *osd_req = obj_request->osd_req;
1796         u64 snap_id;
1797
1798         rbd_assert(osd_req != NULL);
1799
1800         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1801         ceph_osdc_build_request(osd_req, obj_request->offset,
1802                         NULL, snap_id, NULL);
1803 }
1804
1805 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1806 {
1807         struct rbd_img_request *img_request = obj_request->img_request;
1808         struct ceph_osd_request *osd_req = obj_request->osd_req;
1809         struct ceph_snap_context *snapc;
1810         struct timespec mtime = CURRENT_TIME;
1811
1812         rbd_assert(osd_req != NULL);
1813
1814         snapc = img_request ? img_request->snapc : NULL;
1815         ceph_osdc_build_request(osd_req, obj_request->offset,
1816                         snapc, CEPH_NOSNAP, &mtime);
1817 }
1818
1819 /*
1820  * Create an osd request.  A read request has one osd op (read).
1821  * A write request has either one (watch) or two (hint+write) osd ops.
1822  * (All rbd data writes are prefixed with an allocation hint op, but
1823  * technically osd watch is a write request, hence this distinction.)
1824  */
1825 static struct ceph_osd_request *rbd_osd_req_create(
1826                                         struct rbd_device *rbd_dev,
1827                                         bool write_request,
1828                                         unsigned int num_ops,
1829                                         struct rbd_obj_request *obj_request)
1830 {
1831         struct ceph_snap_context *snapc = NULL;
1832         struct ceph_osd_client *osdc;
1833         struct ceph_osd_request *osd_req;
1834
1835         if (obj_request_img_data_test(obj_request)) {
1836                 struct rbd_img_request *img_request = obj_request->img_request;
1837
1838                 rbd_assert(write_request ==
1839                                 img_request_write_test(img_request));
1840                 if (write_request)
1841                         snapc = img_request->snapc;
1842         }
1843
1844         rbd_assert(num_ops == 1 || (write_request && num_ops == 2));
1845
1846         /* Allocate and initialize the request, for the num_ops ops */
1847
1848         osdc = &rbd_dev->rbd_client->client->osdc;
1849         osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1850                                           GFP_ATOMIC);
1851         if (!osd_req)
1852                 return NULL;    /* ENOMEM */
1853
1854         if (write_request)
1855                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1856         else
1857                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1858
1859         osd_req->r_callback = rbd_osd_req_callback;
1860         osd_req->r_priv = obj_request;
1861
1862         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1863         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1864
1865         return osd_req;
1866 }
1867
1868 /*
1869  * Create a copyup osd request based on the information in the
1870  * object request supplied.  A copyup request has three osd ops,
1871  * a copyup method call, a hint op, and a write op.
1872  */
1873 static struct ceph_osd_request *
1874 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1875 {
1876         struct rbd_img_request *img_request;
1877         struct ceph_snap_context *snapc;
1878         struct rbd_device *rbd_dev;
1879         struct ceph_osd_client *osdc;
1880         struct ceph_osd_request *osd_req;
1881
1882         rbd_assert(obj_request_img_data_test(obj_request));
1883         img_request = obj_request->img_request;
1884         rbd_assert(img_request);
1885         rbd_assert(img_request_write_test(img_request));
1886
1887         /* Allocate and initialize the request, for the three ops */
1888
1889         snapc = img_request->snapc;
1890         rbd_dev = img_request->rbd_dev;
1891         osdc = &rbd_dev->rbd_client->client->osdc;
1892         osd_req = ceph_osdc_alloc_request(osdc, snapc, 3, false, GFP_ATOMIC);
1893         if (!osd_req)
1894                 return NULL;    /* ENOMEM */
1895
1896         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1897         osd_req->r_callback = rbd_osd_req_callback;
1898         osd_req->r_priv = obj_request;
1899
1900         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1901         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1902
1903         return osd_req;
1904 }
1905
1906
1907 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1908 {
1909         ceph_osdc_put_request(osd_req);
1910 }
1911
1912 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1913
1914 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1915                                                 u64 offset, u64 length,
1916                                                 enum obj_request_type type)
1917 {
1918         struct rbd_obj_request *obj_request;
1919         size_t size;
1920         char *name;
1921
1922         rbd_assert(obj_request_type_valid(type));
1923
1924         size = strlen(object_name) + 1;
1925         name = kmalloc(size, GFP_KERNEL);
1926         if (!name)
1927                 return NULL;
1928
1929         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1930         if (!obj_request) {
1931                 kfree(name);
1932                 return NULL;
1933         }
1934
1935         obj_request->object_name = memcpy(name, object_name, size);
1936         obj_request->offset = offset;
1937         obj_request->length = length;
1938         obj_request->flags = 0;
1939         obj_request->which = BAD_WHICH;
1940         obj_request->type = type;
1941         INIT_LIST_HEAD(&obj_request->links);
1942         init_completion(&obj_request->completion);
1943         kref_init(&obj_request->kref);
1944
1945         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1946                 offset, length, (int)type, obj_request);
1947
1948         return obj_request;
1949 }
1950
1951 static void rbd_obj_request_destroy(struct kref *kref)
1952 {
1953         struct rbd_obj_request *obj_request;
1954
1955         obj_request = container_of(kref, struct rbd_obj_request, kref);
1956
1957         dout("%s: obj %p\n", __func__, obj_request);
1958
1959         rbd_assert(obj_request->img_request == NULL);
1960         rbd_assert(obj_request->which == BAD_WHICH);
1961
1962         if (obj_request->osd_req)
1963                 rbd_osd_req_destroy(obj_request->osd_req);
1964
1965         rbd_assert(obj_request_type_valid(obj_request->type));
1966         switch (obj_request->type) {
1967         case OBJ_REQUEST_NODATA:
1968                 break;          /* Nothing to do */
1969         case OBJ_REQUEST_BIO:
1970                 if (obj_request->bio_list)
1971                         bio_chain_put(obj_request->bio_list);
1972                 break;
1973         case OBJ_REQUEST_PAGES:
1974                 if (obj_request->pages)
1975                         ceph_release_page_vector(obj_request->pages,
1976                                                 obj_request->page_count);
1977                 break;
1978         }
1979
1980         kfree(obj_request->object_name);
1981         obj_request->object_name = NULL;
1982         kmem_cache_free(rbd_obj_request_cache, obj_request);
1983 }
1984
1985 /* It's OK to call this for a device with no parent */
1986
1987 static void rbd_spec_put(struct rbd_spec *spec);
1988 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1989 {
1990         rbd_dev_remove_parent(rbd_dev);
1991         rbd_spec_put(rbd_dev->parent_spec);
1992         rbd_dev->parent_spec = NULL;
1993         rbd_dev->parent_overlap = 0;
1994 }
1995
1996 /*
1997  * Parent image reference counting is used to determine when an
1998  * image's parent fields can be safely torn down--after there are no
1999  * more in-flight requests to the parent image.  When the last
2000  * reference is dropped, cleaning them up is safe.
2001  */
2002 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2003 {
2004         int counter;
2005
2006         if (!rbd_dev->parent_spec)
2007                 return;
2008
2009         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2010         if (counter > 0)
2011                 return;
2012
2013         /* Last reference; clean up parent data structures */
2014
2015         if (!counter)
2016                 rbd_dev_unparent(rbd_dev);
2017         else
2018                 rbd_warn(rbd_dev, "parent reference underflow\n");
2019 }
2020
2021 /*
2022  * If an image has a non-zero parent overlap, get a reference to its
2023  * parent.
2024  *
2025  * We must get the reference before checking for the overlap to
2026  * coordinate properly with zeroing the parent overlap in
2027  * rbd_dev_v2_parent_info() when an image gets flattened.  We
2028  * drop it again if there is no overlap.
2029  *
2030  * Returns true if the rbd device has a parent with a non-zero
2031  * overlap and a reference for it was successfully taken, or
2032  * false otherwise.
2033  */
2034 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2035 {
2036         int counter;
2037
2038         if (!rbd_dev->parent_spec)
2039                 return false;
2040
2041         counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2042         if (counter > 0 && rbd_dev->parent_overlap)
2043                 return true;
2044
2045         /* Image was flattened, but parent is not yet torn down */
2046
2047         if (counter < 0)
2048                 rbd_warn(rbd_dev, "parent reference overflow\n");
2049
2050         return false;
2051 }
2052
2053 /*
2054  * Caller is responsible for filling in the list of object requests
2055  * that comprises the image request, and the Linux request pointer
2056  * (if there is one).
2057  */
2058 static struct rbd_img_request *rbd_img_request_create(
2059                                         struct rbd_device *rbd_dev,
2060                                         u64 offset, u64 length,
2061                                         bool write_request)
2062 {
2063         struct rbd_img_request *img_request;
2064
2065         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
2066         if (!img_request)
2067                 return NULL;
2068
2069         if (write_request) {
2070                 down_read(&rbd_dev->header_rwsem);
2071                 ceph_get_snap_context(rbd_dev->header.snapc);
2072                 up_read(&rbd_dev->header_rwsem);
2073         }
2074
2075         img_request->rq = NULL;
2076         img_request->rbd_dev = rbd_dev;
2077         img_request->offset = offset;
2078         img_request->length = length;
2079         img_request->flags = 0;
2080         if (write_request) {
2081                 img_request_write_set(img_request);
2082                 img_request->snapc = rbd_dev->header.snapc;
2083         } else {
2084                 img_request->snap_id = rbd_dev->spec->snap_id;
2085         }
2086         if (rbd_dev_parent_get(rbd_dev))
2087                 img_request_layered_set(img_request);
2088         spin_lock_init(&img_request->completion_lock);
2089         img_request->next_completion = 0;
2090         img_request->callback = NULL;
2091         img_request->result = 0;
2092         img_request->obj_request_count = 0;
2093         INIT_LIST_HEAD(&img_request->obj_requests);
2094         kref_init(&img_request->kref);
2095
2096         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2097                 write_request ? "write" : "read", offset, length,
2098                 img_request);
2099
2100         return img_request;
2101 }
2102
2103 static void rbd_img_request_destroy(struct kref *kref)
2104 {
2105         struct rbd_img_request *img_request;
2106         struct rbd_obj_request *obj_request;
2107         struct rbd_obj_request *next_obj_request;
2108
2109         img_request = container_of(kref, struct rbd_img_request, kref);
2110
2111         dout("%s: img %p\n", __func__, img_request);
2112
2113         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2114                 rbd_img_obj_request_del(img_request, obj_request);
2115         rbd_assert(img_request->obj_request_count == 0);
2116
2117         if (img_request_layered_test(img_request)) {
2118                 img_request_layered_clear(img_request);
2119                 rbd_dev_parent_put(img_request->rbd_dev);
2120         }
2121
2122         if (img_request_write_test(img_request))
2123                 ceph_put_snap_context(img_request->snapc);
2124
2125         kmem_cache_free(rbd_img_request_cache, img_request);
2126 }
2127
2128 static struct rbd_img_request *rbd_parent_request_create(
2129                                         struct rbd_obj_request *obj_request,
2130                                         u64 img_offset, u64 length)
2131 {
2132         struct rbd_img_request *parent_request;
2133         struct rbd_device *rbd_dev;
2134
2135         rbd_assert(obj_request->img_request);
2136         rbd_dev = obj_request->img_request->rbd_dev;
2137
2138         parent_request = rbd_img_request_create(rbd_dev->parent,
2139                                                 img_offset, length, false);
2140         if (!parent_request)
2141                 return NULL;
2142
2143         img_request_child_set(parent_request);
2144         rbd_obj_request_get(obj_request);
2145         parent_request->obj_request = obj_request;
2146
2147         return parent_request;
2148 }
2149
2150 static void rbd_parent_request_destroy(struct kref *kref)
2151 {
2152         struct rbd_img_request *parent_request;
2153         struct rbd_obj_request *orig_request;
2154
2155         parent_request = container_of(kref, struct rbd_img_request, kref);
2156         orig_request = parent_request->obj_request;
2157
2158         parent_request->obj_request = NULL;
2159         rbd_obj_request_put(orig_request);
2160         img_request_child_clear(parent_request);
2161
2162         rbd_img_request_destroy(kref);
2163 }
2164
2165 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2166 {
2167         struct rbd_img_request *img_request;
2168         unsigned int xferred;
2169         int result;
2170         bool more;
2171
2172         rbd_assert(obj_request_img_data_test(obj_request));
2173         img_request = obj_request->img_request;
2174
2175         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2176         xferred = (unsigned int)obj_request->xferred;
2177         result = obj_request->result;
2178         if (result) {
2179                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2180
2181                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2182                         img_request_write_test(img_request) ? "write" : "read",
2183                         obj_request->length, obj_request->img_offset,
2184                         obj_request->offset);
2185                 rbd_warn(rbd_dev, "  result %d xferred %x\n",
2186                         result, xferred);
2187                 if (!img_request->result)
2188                         img_request->result = result;
2189         }
2190
2191         /* Image object requests don't own their page array */
2192
2193         if (obj_request->type == OBJ_REQUEST_PAGES) {
2194                 obj_request->pages = NULL;
2195                 obj_request->page_count = 0;
2196         }
2197
2198         if (img_request_child_test(img_request)) {
2199                 rbd_assert(img_request->obj_request != NULL);
2200                 more = obj_request->which < img_request->obj_request_count - 1;
2201         } else {
2202                 rbd_assert(img_request->rq != NULL);
2203                 more = blk_end_request(img_request->rq, result, xferred);
2204         }
2205
2206         return more;
2207 }
2208
2209 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2210 {
2211         struct rbd_img_request *img_request;
2212         u32 which = obj_request->which;
2213         bool more = true;
2214
2215         rbd_assert(obj_request_img_data_test(obj_request));
2216         img_request = obj_request->img_request;
2217
2218         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2219         rbd_assert(img_request != NULL);
2220         rbd_assert(img_request->obj_request_count > 0);
2221         rbd_assert(which != BAD_WHICH);
2222         rbd_assert(which < img_request->obj_request_count);
2223
2224         spin_lock_irq(&img_request->completion_lock);
2225         if (which != img_request->next_completion)
2226                 goto out;
2227
2228         for_each_obj_request_from(img_request, obj_request) {
2229                 rbd_assert(more);
2230                 rbd_assert(which < img_request->obj_request_count);
2231
2232                 if (!obj_request_done_test(obj_request))
2233                         break;
2234                 more = rbd_img_obj_end_request(obj_request);
2235                 which++;
2236         }
2237
2238         rbd_assert(more ^ (which == img_request->obj_request_count));
2239         img_request->next_completion = which;
2240 out:
2241         spin_unlock_irq(&img_request->completion_lock);
2242         rbd_img_request_put(img_request);
2243
2244         if (!more)
2245                 rbd_img_request_complete(img_request);
2246 }
2247
2248 /*
2249  * Split up an image request into one or more object requests, each
2250  * to a different object.  The "type" parameter indicates whether
2251  * "data_desc" is the pointer to the head of a list of bio
2252  * structures, or the base of a page array.  In either case this
2253  * function assumes data_desc describes memory sufficient to hold
2254  * all data described by the image request.
2255  */
2256 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2257                                         enum obj_request_type type,
2258                                         void *data_desc)
2259 {
2260         struct rbd_device *rbd_dev = img_request->rbd_dev;
2261         struct rbd_obj_request *obj_request = NULL;
2262         struct rbd_obj_request *next_obj_request;
2263         bool write_request = img_request_write_test(img_request);
2264         struct bio *bio_list = NULL;
2265         unsigned int bio_offset = 0;
2266         struct page **pages = NULL;
2267         u64 img_offset;
2268         u64 resid;
2269         u16 opcode;
2270
2271         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2272                 (int)type, data_desc);
2273
2274         opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2275         img_offset = img_request->offset;
2276         resid = img_request->length;
2277         rbd_assert(resid > 0);
2278
2279         if (type == OBJ_REQUEST_BIO) {
2280                 bio_list = data_desc;
2281                 rbd_assert(img_offset ==
2282                            bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2283         } else {
2284                 rbd_assert(type == OBJ_REQUEST_PAGES);
2285                 pages = data_desc;
2286         }
2287
2288         while (resid) {
2289                 struct ceph_osd_request *osd_req;
2290                 const char *object_name;
2291                 u64 offset;
2292                 u64 length;
2293                 unsigned int which = 0;
2294
2295                 object_name = rbd_segment_name(rbd_dev, img_offset);
2296                 if (!object_name)
2297                         goto out_unwind;
2298                 offset = rbd_segment_offset(rbd_dev, img_offset);
2299                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2300                 obj_request = rbd_obj_request_create(object_name,
2301                                                 offset, length, type);
2302                 /* object request has its own copy of the object name */
2303                 rbd_segment_name_free(object_name);
2304                 if (!obj_request)
2305                         goto out_unwind;
2306
2307                 /*
2308                  * set obj_request->img_request before creating the
2309                  * osd_request so that it gets the right snapc
2310                  */
2311                 rbd_img_obj_request_add(img_request, obj_request);
2312
2313                 if (type == OBJ_REQUEST_BIO) {
2314                         unsigned int clone_size;
2315
2316                         rbd_assert(length <= (u64)UINT_MAX);
2317                         clone_size = (unsigned int)length;
2318                         obj_request->bio_list =
2319                                         bio_chain_clone_range(&bio_list,
2320                                                                 &bio_offset,
2321                                                                 clone_size,
2322                                                                 GFP_ATOMIC);
2323                         if (!obj_request->bio_list)
2324                                 goto out_unwind;
2325                 } else {
2326                         unsigned int page_count;
2327
2328                         obj_request->pages = pages;
2329                         page_count = (u32)calc_pages_for(offset, length);
2330                         obj_request->page_count = page_count;
2331                         if ((offset + length) & ~PAGE_MASK)
2332                                 page_count--;   /* more on last page */
2333                         pages += page_count;
2334                 }
2335
2336                 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2337                                              (write_request ? 2 : 1),
2338                                              obj_request);
2339                 if (!osd_req)
2340                         goto out_unwind;
2341                 obj_request->osd_req = osd_req;
2342                 obj_request->callback = rbd_img_obj_callback;
2343                 rbd_img_request_get(img_request);
2344
2345                 if (write_request) {
2346                         osd_req_op_alloc_hint_init(osd_req, which,
2347                                              rbd_obj_bytes(&rbd_dev->header),
2348                                              rbd_obj_bytes(&rbd_dev->header));
2349                         which++;
2350                 }
2351
2352                 osd_req_op_extent_init(osd_req, which, opcode, offset, length,
2353                                        0, 0);
2354                 if (type == OBJ_REQUEST_BIO)
2355                         osd_req_op_extent_osd_data_bio(osd_req, which,
2356                                         obj_request->bio_list, length);
2357                 else
2358                         osd_req_op_extent_osd_data_pages(osd_req, which,
2359                                         obj_request->pages, length,
2360                                         offset & ~PAGE_MASK, false, false);
2361
2362                 if (write_request)
2363                         rbd_osd_req_format_write(obj_request);
2364                 else
2365                         rbd_osd_req_format_read(obj_request);
2366
2367                 obj_request->img_offset = img_offset;
2368
2369                 img_offset += length;
2370                 resid -= length;
2371         }
2372
2373         return 0;
2374
2375 out_unwind:
2376         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2377                 rbd_img_obj_request_del(img_request, obj_request);
2378
2379         return -ENOMEM;
2380 }
2381
2382 static void
2383 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2384 {
2385         struct rbd_img_request *img_request;
2386         struct rbd_device *rbd_dev;
2387         struct page **pages;
2388         u32 page_count;
2389
2390         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2391         rbd_assert(obj_request_img_data_test(obj_request));
2392         img_request = obj_request->img_request;
2393         rbd_assert(img_request);
2394
2395         rbd_dev = img_request->rbd_dev;
2396         rbd_assert(rbd_dev);
2397
2398         pages = obj_request->copyup_pages;
2399         rbd_assert(pages != NULL);
2400         obj_request->copyup_pages = NULL;
2401         page_count = obj_request->copyup_page_count;
2402         rbd_assert(page_count);
2403         obj_request->copyup_page_count = 0;
2404         ceph_release_page_vector(pages, page_count);
2405
2406         /*
2407          * We want the transfer count to reflect the size of the
2408          * original write request.  There is no such thing as a
2409          * successful short write, so if the request was successful
2410          * we can just set it to the originally-requested length.
2411          */
2412         if (!obj_request->result)
2413                 obj_request->xferred = obj_request->length;
2414
2415         /* Finish up with the normal image object callback */
2416
2417         rbd_img_obj_callback(obj_request);
2418 }
2419
2420 static void
2421 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2422 {
2423         struct rbd_obj_request *orig_request;
2424         struct ceph_osd_request *osd_req;
2425         struct ceph_osd_client *osdc;
2426         struct rbd_device *rbd_dev;
2427         struct page **pages;
2428         u32 page_count;
2429         int img_result;
2430         u64 parent_length;
2431         u64 offset;
2432         u64 length;
2433
2434         rbd_assert(img_request_child_test(img_request));
2435
2436         /* First get what we need from the image request */
2437
2438         pages = img_request->copyup_pages;
2439         rbd_assert(pages != NULL);
2440         img_request->copyup_pages = NULL;
2441         page_count = img_request->copyup_page_count;
2442         rbd_assert(page_count);
2443         img_request->copyup_page_count = 0;
2444
2445         orig_request = img_request->obj_request;
2446         rbd_assert(orig_request != NULL);
2447         rbd_assert(obj_request_type_valid(orig_request->type));
2448         img_result = img_request->result;
2449         parent_length = img_request->length;
2450         rbd_assert(parent_length == img_request->xferred);
2451         rbd_img_request_put(img_request);
2452
2453         rbd_assert(orig_request->img_request);
2454         rbd_dev = orig_request->img_request->rbd_dev;
2455         rbd_assert(rbd_dev);
2456
2457         /*
2458          * If the overlap has become 0 (most likely because the
2459          * image has been flattened) we need to free the pages
2460          * and re-submit the original write request.
2461          */
2462         if (!rbd_dev->parent_overlap) {
2463                 struct ceph_osd_client *osdc;
2464
2465                 ceph_release_page_vector(pages, page_count);
2466                 osdc = &rbd_dev->rbd_client->client->osdc;
2467                 img_result = rbd_obj_request_submit(osdc, orig_request);
2468                 if (!img_result)
2469                         return;
2470         }
2471
2472         if (img_result)
2473                 goto out_err;
2474
2475         /*
2476          * The original osd request is of no use to use any more.
2477          * We need a new one that can hold the three ops in a copyup
2478          * request.  Allocate the new copyup osd request for the
2479          * original request, and release the old one.
2480          */
2481         img_result = -ENOMEM;
2482         osd_req = rbd_osd_req_create_copyup(orig_request);
2483         if (!osd_req)
2484                 goto out_err;
2485         rbd_osd_req_destroy(orig_request->osd_req);
2486         orig_request->osd_req = osd_req;
2487         orig_request->copyup_pages = pages;
2488         orig_request->copyup_page_count = page_count;
2489
2490         /* Initialize the copyup op */
2491
2492         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2493         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2494                                                 false, false);
2495
2496         /* Then the hint op */
2497
2498         osd_req_op_alloc_hint_init(osd_req, 1, rbd_obj_bytes(&rbd_dev->header),
2499                                    rbd_obj_bytes(&rbd_dev->header));
2500
2501         /* And the original write request op */
2502
2503         offset = orig_request->offset;
2504         length = orig_request->length;
2505         osd_req_op_extent_init(osd_req, 2, CEPH_OSD_OP_WRITE,
2506                                         offset, length, 0, 0);
2507         if (orig_request->type == OBJ_REQUEST_BIO)
2508                 osd_req_op_extent_osd_data_bio(osd_req, 2,
2509                                         orig_request->bio_list, length);
2510         else
2511                 osd_req_op_extent_osd_data_pages(osd_req, 2,
2512                                         orig_request->pages, length,
2513                                         offset & ~PAGE_MASK, false, false);
2514
2515         rbd_osd_req_format_write(orig_request);
2516
2517         /* All set, send it off. */
2518
2519         orig_request->callback = rbd_img_obj_copyup_callback;
2520         osdc = &rbd_dev->rbd_client->client->osdc;
2521         img_result = rbd_obj_request_submit(osdc, orig_request);
2522         if (!img_result)
2523                 return;
2524 out_err:
2525         /* Record the error code and complete the request */
2526
2527         orig_request->result = img_result;
2528         orig_request->xferred = 0;
2529         obj_request_done_set(orig_request);
2530         rbd_obj_request_complete(orig_request);
2531 }
2532
2533 /*
2534  * Read from the parent image the range of data that covers the
2535  * entire target of the given object request.  This is used for
2536  * satisfying a layered image write request when the target of an
2537  * object request from the image request does not exist.
2538  *
2539  * A page array big enough to hold the returned data is allocated
2540  * and supplied to rbd_img_request_fill() as the "data descriptor."
2541  * When the read completes, this page array will be transferred to
2542  * the original object request for the copyup operation.
2543  *
2544  * If an error occurs, record it as the result of the original
2545  * object request and mark it done so it gets completed.
2546  */
2547 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2548 {
2549         struct rbd_img_request *img_request = NULL;
2550         struct rbd_img_request *parent_request = NULL;
2551         struct rbd_device *rbd_dev;
2552         u64 img_offset;
2553         u64 length;
2554         struct page **pages = NULL;
2555         u32 page_count;
2556         int result;
2557
2558         rbd_assert(obj_request_img_data_test(obj_request));
2559         rbd_assert(obj_request_type_valid(obj_request->type));
2560
2561         img_request = obj_request->img_request;
2562         rbd_assert(img_request != NULL);
2563         rbd_dev = img_request->rbd_dev;
2564         rbd_assert(rbd_dev->parent != NULL);
2565
2566         /*
2567          * Determine the byte range covered by the object in the
2568          * child image to which the original request was to be sent.
2569          */
2570         img_offset = obj_request->img_offset - obj_request->offset;
2571         length = (u64)1 << rbd_dev->header.obj_order;
2572
2573         /*
2574          * There is no defined parent data beyond the parent
2575          * overlap, so limit what we read at that boundary if
2576          * necessary.
2577          */
2578         if (img_offset + length > rbd_dev->parent_overlap) {
2579                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2580                 length = rbd_dev->parent_overlap - img_offset;
2581         }
2582
2583         /*
2584          * Allocate a page array big enough to receive the data read
2585          * from the parent.
2586          */
2587         page_count = (u32)calc_pages_for(0, length);
2588         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2589         if (IS_ERR(pages)) {
2590                 result = PTR_ERR(pages);
2591                 pages = NULL;
2592                 goto out_err;
2593         }
2594
2595         result = -ENOMEM;
2596         parent_request = rbd_parent_request_create(obj_request,
2597                                                 img_offset, length);
2598         if (!parent_request)
2599                 goto out_err;
2600
2601         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2602         if (result)
2603                 goto out_err;
2604         parent_request->copyup_pages = pages;
2605         parent_request->copyup_page_count = page_count;
2606
2607         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2608         result = rbd_img_request_submit(parent_request);
2609         if (!result)
2610                 return 0;
2611
2612         parent_request->copyup_pages = NULL;
2613         parent_request->copyup_page_count = 0;
2614         parent_request->obj_request = NULL;
2615         rbd_obj_request_put(obj_request);
2616 out_err:
2617         if (pages)
2618                 ceph_release_page_vector(pages, page_count);
2619         if (parent_request)
2620                 rbd_img_request_put(parent_request);
2621         obj_request->result = result;
2622         obj_request->xferred = 0;
2623         obj_request_done_set(obj_request);
2624
2625         return result;
2626 }
2627
2628 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2629 {
2630         struct rbd_obj_request *orig_request;
2631         struct rbd_device *rbd_dev;
2632         int result;
2633
2634         rbd_assert(!obj_request_img_data_test(obj_request));
2635
2636         /*
2637          * All we need from the object request is the original
2638          * request and the result of the STAT op.  Grab those, then
2639          * we're done with the request.
2640          */
2641         orig_request = obj_request->obj_request;
2642         obj_request->obj_request = NULL;
2643         rbd_obj_request_put(orig_request);
2644         rbd_assert(orig_request);
2645         rbd_assert(orig_request->img_request);
2646
2647         result = obj_request->result;
2648         obj_request->result = 0;
2649
2650         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2651                 obj_request, orig_request, result,
2652                 obj_request->xferred, obj_request->length);
2653         rbd_obj_request_put(obj_request);
2654
2655         /*
2656          * If the overlap has become 0 (most likely because the
2657          * image has been flattened) we need to free the pages
2658          * and re-submit the original write request.
2659          */
2660         rbd_dev = orig_request->img_request->rbd_dev;
2661         if (!rbd_dev->parent_overlap) {
2662                 struct ceph_osd_client *osdc;
2663
2664                 osdc = &rbd_dev->rbd_client->client->osdc;
2665                 result = rbd_obj_request_submit(osdc, orig_request);
2666                 if (!result)
2667                         return;
2668         }
2669
2670         /*
2671          * Our only purpose here is to determine whether the object
2672          * exists, and we don't want to treat the non-existence as
2673          * an error.  If something else comes back, transfer the
2674          * error to the original request and complete it now.
2675          */
2676         if (!result) {
2677                 obj_request_existence_set(orig_request, true);
2678         } else if (result == -ENOENT) {
2679                 obj_request_existence_set(orig_request, false);
2680         } else if (result) {
2681                 orig_request->result = result;
2682                 goto out;
2683         }
2684
2685         /*
2686          * Resubmit the original request now that we have recorded
2687          * whether the target object exists.
2688          */
2689         orig_request->result = rbd_img_obj_request_submit(orig_request);
2690 out:
2691         if (orig_request->result)
2692                 rbd_obj_request_complete(orig_request);
2693 }
2694
2695 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2696 {
2697         struct rbd_obj_request *stat_request;
2698         struct rbd_device *rbd_dev;
2699         struct ceph_osd_client *osdc;
2700         struct page **pages = NULL;
2701         u32 page_count;
2702         size_t size;
2703         int ret;
2704
2705         /*
2706          * The response data for a STAT call consists of:
2707          *     le64 length;
2708          *     struct {
2709          *         le32 tv_sec;
2710          *         le32 tv_nsec;
2711          *     } mtime;
2712          */
2713         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2714         page_count = (u32)calc_pages_for(0, size);
2715         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2716         if (IS_ERR(pages))
2717                 return PTR_ERR(pages);
2718
2719         ret = -ENOMEM;
2720         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2721                                                         OBJ_REQUEST_PAGES);
2722         if (!stat_request)
2723                 goto out;
2724
2725         rbd_obj_request_get(obj_request);
2726         stat_request->obj_request = obj_request;
2727         stat_request->pages = pages;
2728         stat_request->page_count = page_count;
2729
2730         rbd_assert(obj_request->img_request);
2731         rbd_dev = obj_request->img_request->rbd_dev;
2732         stat_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
2733                                                    stat_request);
2734         if (!stat_request->osd_req)
2735                 goto out;
2736         stat_request->callback = rbd_img_obj_exists_callback;
2737
2738         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2739         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2740                                         false, false);
2741         rbd_osd_req_format_read(stat_request);
2742
2743         osdc = &rbd_dev->rbd_client->client->osdc;
2744         ret = rbd_obj_request_submit(osdc, stat_request);
2745 out:
2746         if (ret)
2747                 rbd_obj_request_put(obj_request);
2748
2749         return ret;
2750 }
2751
2752 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2753 {
2754         struct rbd_img_request *img_request;
2755         struct rbd_device *rbd_dev;
2756         bool known;
2757
2758         rbd_assert(obj_request_img_data_test(obj_request));
2759
2760         img_request = obj_request->img_request;
2761         rbd_assert(img_request);
2762         rbd_dev = img_request->rbd_dev;
2763
2764         /*
2765          * Only writes to layered images need special handling.
2766          * Reads and non-layered writes are simple object requests.
2767          * Layered writes that start beyond the end of the overlap
2768          * with the parent have no parent data, so they too are
2769          * simple object requests.  Finally, if the target object is
2770          * known to already exist, its parent data has already been
2771          * copied, so a write to the object can also be handled as a
2772          * simple object request.
2773          */
2774         if (!img_request_write_test(img_request) ||
2775                 !img_request_layered_test(img_request) ||
2776                 !obj_request_overlaps_parent(obj_request) ||
2777                 ((known = obj_request_known_test(obj_request)) &&
2778                         obj_request_exists_test(obj_request))) {
2779
2780                 struct rbd_device *rbd_dev;
2781                 struct ceph_osd_client *osdc;
2782
2783                 rbd_dev = obj_request->img_request->rbd_dev;
2784                 osdc = &rbd_dev->rbd_client->client->osdc;
2785
2786                 return rbd_obj_request_submit(osdc, obj_request);
2787         }
2788
2789         /*
2790          * It's a layered write.  The target object might exist but
2791          * we may not know that yet.  If we know it doesn't exist,
2792          * start by reading the data for the full target object from
2793          * the parent so we can use it for a copyup to the target.
2794          */
2795         if (known)
2796                 return rbd_img_obj_parent_read_full(obj_request);
2797
2798         /* We don't know whether the target exists.  Go find out. */
2799
2800         return rbd_img_obj_exists_submit(obj_request);
2801 }
2802
2803 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2804 {
2805         struct rbd_obj_request *obj_request;
2806         struct rbd_obj_request *next_obj_request;
2807
2808         dout("%s: img %p\n", __func__, img_request);
2809         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2810                 int ret;
2811
2812                 ret = rbd_img_obj_request_submit(obj_request);
2813                 if (ret)
2814                         return ret;
2815         }
2816
2817         return 0;
2818 }
2819
2820 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2821 {
2822         struct rbd_obj_request *obj_request;
2823         struct rbd_device *rbd_dev;
2824         u64 obj_end;
2825         u64 img_xferred;
2826         int img_result;
2827
2828         rbd_assert(img_request_child_test(img_request));
2829
2830         /* First get what we need from the image request and release it */
2831
2832         obj_request = img_request->obj_request;
2833         img_xferred = img_request->xferred;
2834         img_result = img_request->result;
2835         rbd_img_request_put(img_request);
2836
2837         /*
2838          * If the overlap has become 0 (most likely because the
2839          * image has been flattened) we need to re-submit the
2840          * original request.
2841          */
2842         rbd_assert(obj_request);
2843         rbd_assert(obj_request->img_request);
2844         rbd_dev = obj_request->img_request->rbd_dev;
2845         if (!rbd_dev->parent_overlap) {
2846                 struct ceph_osd_client *osdc;
2847
2848                 osdc = &rbd_dev->rbd_client->client->osdc;
2849                 img_result = rbd_obj_request_submit(osdc, obj_request);
2850                 if (!img_result)
2851                         return;
2852         }
2853
2854         obj_request->result = img_result;
2855         if (obj_request->result)
2856                 goto out;
2857
2858         /*
2859          * We need to zero anything beyond the parent overlap
2860          * boundary.  Since rbd_img_obj_request_read_callback()
2861          * will zero anything beyond the end of a short read, an
2862          * easy way to do this is to pretend the data from the
2863          * parent came up short--ending at the overlap boundary.
2864          */
2865         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2866         obj_end = obj_request->img_offset + obj_request->length;
2867         if (obj_end > rbd_dev->parent_overlap) {
2868                 u64 xferred = 0;
2869
2870                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2871                         xferred = rbd_dev->parent_overlap -
2872                                         obj_request->img_offset;
2873
2874                 obj_request->xferred = min(img_xferred, xferred);
2875         } else {
2876                 obj_request->xferred = img_xferred;
2877         }
2878 out:
2879         rbd_img_obj_request_read_callback(obj_request);
2880         rbd_obj_request_complete(obj_request);
2881 }
2882
2883 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2884 {
2885         struct rbd_img_request *img_request;
2886         int result;
2887
2888         rbd_assert(obj_request_img_data_test(obj_request));
2889         rbd_assert(obj_request->img_request != NULL);
2890         rbd_assert(obj_request->result == (s32) -ENOENT);
2891         rbd_assert(obj_request_type_valid(obj_request->type));
2892
2893         /* rbd_read_finish(obj_request, obj_request->length); */
2894         img_request = rbd_parent_request_create(obj_request,
2895                                                 obj_request->img_offset,
2896                                                 obj_request->length);
2897         result = -ENOMEM;
2898         if (!img_request)
2899                 goto out_err;
2900
2901         if (obj_request->type == OBJ_REQUEST_BIO)
2902                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2903                                                 obj_request->bio_list);
2904         else
2905                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2906                                                 obj_request->pages);
2907         if (result)
2908                 goto out_err;
2909
2910         img_request->callback = rbd_img_parent_read_callback;
2911         result = rbd_img_request_submit(img_request);
2912         if (result)
2913                 goto out_err;
2914
2915         return;
2916 out_err:
2917         if (img_request)
2918                 rbd_img_request_put(img_request);
2919         obj_request->result = result;
2920         obj_request->xferred = 0;
2921         obj_request_done_set(obj_request);
2922 }
2923
2924 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
2925 {
2926         struct rbd_obj_request *obj_request;
2927         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2928         int ret;
2929
2930         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2931                                                         OBJ_REQUEST_NODATA);
2932         if (!obj_request)
2933                 return -ENOMEM;
2934
2935         ret = -ENOMEM;
2936         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
2937                                                   obj_request);
2938         if (!obj_request->osd_req)
2939                 goto out;
2940
2941         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2942                                         notify_id, 0, 0);
2943         rbd_osd_req_format_read(obj_request);
2944
2945         ret = rbd_obj_request_submit(osdc, obj_request);
2946         if (ret)
2947                 goto out;
2948         ret = rbd_obj_request_wait(obj_request);
2949 out:
2950         rbd_obj_request_put(obj_request);
2951
2952         return ret;
2953 }
2954
2955 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2956 {
2957         struct rbd_device *rbd_dev = (struct rbd_device *)data;
2958         int ret;
2959
2960         if (!rbd_dev)
2961                 return;
2962
2963         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2964                 rbd_dev->header_name, (unsigned long long)notify_id,
2965                 (unsigned int)opcode);
2966
2967         /*
2968          * Until adequate refresh error handling is in place, there is
2969          * not much we can do here, except warn.
2970          *
2971          * See http://tracker.ceph.com/issues/5040
2972          */
2973         ret = rbd_dev_refresh(rbd_dev);
2974         if (ret)
2975                 rbd_warn(rbd_dev, "refresh failed: %d\n", ret);
2976
2977         ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id);
2978         if (ret)
2979                 rbd_warn(rbd_dev, "notify_ack ret %d\n", ret);
2980 }
2981
2982 /*
2983  * Send a (un)watch request and wait for the ack.  Return a request
2984  * with a ref held on success or error.
2985  */
2986 static struct rbd_obj_request *rbd_obj_watch_request_helper(
2987                                                 struct rbd_device *rbd_dev,
2988                                                 bool watch)
2989 {
2990         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2991         struct rbd_obj_request *obj_request;
2992         int ret;
2993
2994         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2995                                              OBJ_REQUEST_NODATA);
2996         if (!obj_request)
2997                 return ERR_PTR(-ENOMEM);
2998
2999         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, 1,
3000                                                   obj_request);
3001         if (!obj_request->osd_req) {
3002                 ret = -ENOMEM;
3003                 goto out;
3004         }
3005
3006         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3007                               rbd_dev->watch_event->cookie, 0, watch);
3008         rbd_osd_req_format_write(obj_request);
3009
3010         if (watch)
3011                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3012
3013         ret = rbd_obj_request_submit(osdc, obj_request);
3014         if (ret)
3015                 goto out;
3016
3017         ret = rbd_obj_request_wait(obj_request);
3018         if (ret)
3019                 goto out;
3020
3021         ret = obj_request->result;
3022         if (ret) {
3023                 if (watch)
3024                         rbd_obj_request_end(obj_request);
3025                 goto out;
3026         }
3027
3028         return obj_request;
3029
3030 out:
3031         rbd_obj_request_put(obj_request);
3032         return ERR_PTR(ret);
3033 }
3034
3035 /*
3036  * Initiate a watch request, synchronously.
3037  */
3038 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3039 {
3040         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3041         struct rbd_obj_request *obj_request;
3042         int ret;
3043
3044         rbd_assert(!rbd_dev->watch_event);
3045         rbd_assert(!rbd_dev->watch_request);
3046
3047         ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3048                                      &rbd_dev->watch_event);
3049         if (ret < 0)
3050                 return ret;
3051
3052         obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3053         if (IS_ERR(obj_request)) {
3054                 ceph_osdc_cancel_event(rbd_dev->watch_event);
3055                 rbd_dev->watch_event = NULL;
3056                 return PTR_ERR(obj_request);
3057         }
3058
3059         /*
3060          * A watch request is set to linger, so the underlying osd
3061          * request won't go away until we unregister it.  We retain
3062          * a pointer to the object request during that time (in
3063          * rbd_dev->watch_request), so we'll keep a reference to it.
3064          * We'll drop that reference after we've unregistered it in
3065          * rbd_dev_header_unwatch_sync().
3066          */
3067         rbd_dev->watch_request = obj_request;
3068
3069         return 0;
3070 }
3071
3072 /*
3073  * Tear down a watch request, synchronously.
3074  */
3075 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3076 {
3077         struct rbd_obj_request *obj_request;
3078
3079         rbd_assert(rbd_dev->watch_event);
3080         rbd_assert(rbd_dev->watch_request);
3081
3082         rbd_obj_request_end(rbd_dev->watch_request);
3083         rbd_obj_request_put(rbd_dev->watch_request);
3084         rbd_dev->watch_request = NULL;
3085
3086         obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3087         if (!IS_ERR(obj_request))
3088                 rbd_obj_request_put(obj_request);
3089         else
3090                 rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3091                          PTR_ERR(obj_request));
3092
3093         ceph_osdc_cancel_event(rbd_dev->watch_event);
3094         rbd_dev->watch_event = NULL;
3095 }
3096
3097 /*
3098  * Synchronous osd object method call.  Returns the number of bytes
3099  * returned in the outbound buffer, or a negative error code.
3100  */
3101 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3102                              const char *object_name,
3103                              const char *class_name,
3104                              const char *method_name,
3105                              const void *outbound,
3106                              size_t outbound_size,
3107                              void *inbound,
3108                              size_t inbound_size)
3109 {
3110         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3111         struct rbd_obj_request *obj_request;
3112         struct page **pages;
3113         u32 page_count;
3114         int ret;
3115
3116         /*
3117          * Method calls are ultimately read operations.  The result
3118          * should placed into the inbound buffer provided.  They
3119          * also supply outbound data--parameters for the object
3120          * method.  Currently if this is present it will be a
3121          * snapshot id.
3122          */
3123         page_count = (u32)calc_pages_for(0, inbound_size);
3124         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3125         if (IS_ERR(pages))
3126                 return PTR_ERR(pages);
3127
3128         ret = -ENOMEM;
3129         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3130                                                         OBJ_REQUEST_PAGES);
3131         if (!obj_request)
3132                 goto out;
3133
3134         obj_request->pages = pages;
3135         obj_request->page_count = page_count;
3136
3137         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
3138                                                   obj_request);
3139         if (!obj_request->osd_req)
3140                 goto out;
3141
3142         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3143                                         class_name, method_name);
3144         if (outbound_size) {
3145                 struct ceph_pagelist *pagelist;
3146
3147                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3148                 if (!pagelist)
3149                         goto out;
3150
3151                 ceph_pagelist_init(pagelist);
3152                 ceph_pagelist_append(pagelist, outbound, outbound_size);
3153                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3154                                                 pagelist);
3155         }
3156         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3157                                         obj_request->pages, inbound_size,
3158                                         0, false, false);
3159         rbd_osd_req_format_read(obj_request);
3160
3161         ret = rbd_obj_request_submit(osdc, obj_request);
3162         if (ret)
3163                 goto out;
3164         ret = rbd_obj_request_wait(obj_request);
3165         if (ret)
3166                 goto out;
3167
3168         ret = obj_request->result;
3169         if (ret < 0)
3170                 goto out;
3171
3172         rbd_assert(obj_request->xferred < (u64)INT_MAX);
3173         ret = (int)obj_request->xferred;
3174         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3175 out:
3176         if (obj_request)
3177                 rbd_obj_request_put(obj_request);
3178         else
3179                 ceph_release_page_vector(pages, page_count);
3180
3181         return ret;
3182 }
3183
3184 static void rbd_request_fn(struct request_queue *q)
3185                 __releases(q->queue_lock) __acquires(q->queue_lock)
3186 {
3187         struct rbd_device *rbd_dev = q->queuedata;
3188         struct request *rq;
3189         int result;
3190
3191         while ((rq = blk_fetch_request(q))) {
3192                 bool write_request = rq_data_dir(rq) == WRITE;
3193                 struct rbd_img_request *img_request;
3194                 u64 offset;
3195                 u64 length;
3196
3197                 /* Ignore any non-FS requests that filter through. */
3198
3199                 if (rq->cmd_type != REQ_TYPE_FS) {
3200                         dout("%s: non-fs request type %d\n", __func__,
3201                                 (int) rq->cmd_type);
3202                         __blk_end_request_all(rq, 0);
3203                         continue;
3204                 }
3205
3206                 /* Ignore/skip any zero-length requests */
3207
3208                 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3209                 length = (u64) blk_rq_bytes(rq);
3210
3211                 if (!length) {
3212                         dout("%s: zero-length request\n", __func__);
3213                         __blk_end_request_all(rq, 0);
3214                         continue;
3215                 }
3216
3217                 spin_unlock_irq(q->queue_lock);
3218
3219                 /* Disallow writes to a read-only device */
3220
3221                 if (write_request) {
3222                         result = -EROFS;
3223                         if (rbd_dev->mapping.read_only)
3224                                 goto end_request;
3225                         rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3226                 }
3227
3228                 /*
3229                  * Quit early if the mapped snapshot no longer
3230                  * exists.  It's still possible the snapshot will
3231                  * have disappeared by the time our request arrives
3232                  * at the osd, but there's no sense in sending it if
3233                  * we already know.
3234                  */
3235                 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3236                         dout("request for non-existent snapshot");
3237                         rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3238                         result = -ENXIO;
3239                         goto end_request;
3240                 }
3241
3242                 result = -EINVAL;
3243                 if (offset && length > U64_MAX - offset + 1) {
3244                         rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3245                                 offset, length);
3246                         goto end_request;       /* Shouldn't happen */
3247                 }
3248
3249                 result = -EIO;
3250                 if (offset + length > rbd_dev->mapping.size) {
3251                         rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3252                                 offset, length, rbd_dev->mapping.size);
3253                         goto end_request;
3254                 }
3255
3256                 result = -ENOMEM;
3257                 img_request = rbd_img_request_create(rbd_dev, offset, length,
3258                                                         write_request);
3259                 if (!img_request)
3260                         goto end_request;
3261
3262                 img_request->rq = rq;
3263
3264                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3265                                                 rq->bio);
3266                 if (!result)
3267                         result = rbd_img_request_submit(img_request);
3268                 if (result)
3269                         rbd_img_request_put(img_request);
3270 end_request:
3271                 spin_lock_irq(q->queue_lock);
3272                 if (result < 0) {
3273                         rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3274                                 write_request ? "write" : "read",
3275                                 length, offset, result);
3276
3277                         __blk_end_request_all(rq, result);
3278                 }
3279         }
3280 }
3281
3282 /*
3283  * a queue callback. Makes sure that we don't create a bio that spans across
3284  * multiple osd objects. One exception would be with a single page bios,
3285  * which we handle later at bio_chain_clone_range()
3286  */
3287 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3288                           struct bio_vec *bvec)
3289 {
3290         struct rbd_device *rbd_dev = q->queuedata;
3291         sector_t sector_offset;
3292         sector_t sectors_per_obj;
3293         sector_t obj_sector_offset;
3294         int ret;
3295
3296         /*
3297          * Find how far into its rbd object the partition-relative
3298          * bio start sector is to offset relative to the enclosing
3299          * device.
3300          */
3301         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3302         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3303         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3304
3305         /*
3306          * Compute the number of bytes from that offset to the end
3307          * of the object.  Account for what's already used by the bio.
3308          */
3309         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3310         if (ret > bmd->bi_size)
3311                 ret -= bmd->bi_size;
3312         else
3313                 ret = 0;
3314
3315         /*
3316          * Don't send back more than was asked for.  And if the bio
3317          * was empty, let the whole thing through because:  "Note
3318          * that a block device *must* allow a single page to be
3319          * added to an empty bio."
3320          */
3321         rbd_assert(bvec->bv_len <= PAGE_SIZE);
3322         if (ret > (int) bvec->bv_len || !bmd->bi_size)
3323                 ret = (int) bvec->bv_len;
3324
3325         return ret;
3326 }
3327
3328 static void rbd_free_disk(struct rbd_device *rbd_dev)
3329 {
3330         struct gendisk *disk = rbd_dev->disk;
3331
3332         if (!disk)
3333                 return;
3334
3335         rbd_dev->disk = NULL;
3336         if (disk->flags & GENHD_FL_UP) {
3337                 del_gendisk(disk);
3338                 if (disk->queue)
3339                         blk_cleanup_queue(disk->queue);
3340         }
3341         put_disk(disk);
3342 }
3343
3344 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3345                                 const char *object_name,
3346                                 u64 offset, u64 length, void *buf)
3347
3348 {
3349         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3350         struct rbd_obj_request *obj_request;
3351         struct page **pages = NULL;
3352         u32 page_count;
3353         size_t size;
3354         int ret;
3355
3356         page_count = (u32) calc_pages_for(offset, length);
3357         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3358         if (IS_ERR(pages))
3359                 ret = PTR_ERR(pages);
3360
3361         ret = -ENOMEM;
3362         obj_request = rbd_obj_request_create(object_name, offset, length,
3363                                                         OBJ_REQUEST_PAGES);
3364         if (!obj_request)
3365                 goto out;
3366
3367         obj_request->pages = pages;
3368         obj_request->page_count = page_count;
3369
3370         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
3371                                                   obj_request);
3372         if (!obj_request->osd_req)
3373                 goto out;
3374
3375         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3376                                         offset, length, 0, 0);
3377         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3378                                         obj_request->pages,
3379                                         obj_request->length,
3380                                         obj_request->offset & ~PAGE_MASK,
3381                                         false, false);
3382         rbd_osd_req_format_read(obj_request);
3383
3384         ret = rbd_obj_request_submit(osdc, obj_request);
3385         if (ret)
3386                 goto out;
3387         ret = rbd_obj_request_wait(obj_request);
3388         if (ret)
3389                 goto out;
3390
3391         ret = obj_request->result;
3392         if (ret < 0)
3393                 goto out;
3394
3395         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3396         size = (size_t) obj_request->xferred;
3397         ceph_copy_from_page_vector(pages, buf, 0, size);
3398         rbd_assert(size <= (size_t)INT_MAX);
3399         ret = (int)size;
3400 out:
3401         if (obj_request)
3402                 rbd_obj_request_put(obj_request);
3403         else
3404                 ceph_release_page_vector(pages, page_count);
3405
3406         return ret;
3407 }
3408
3409 /*
3410  * Read the complete header for the given rbd device.  On successful
3411  * return, the rbd_dev->header field will contain up-to-date
3412  * information about the image.
3413  */
3414 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3415 {
3416         struct rbd_image_header_ondisk *ondisk = NULL;
3417         u32 snap_count = 0;
3418         u64 names_size = 0;
3419         u32 want_count;
3420         int ret;
3421
3422         /*
3423          * The complete header will include an array of its 64-bit
3424          * snapshot ids, followed by the names of those snapshots as
3425          * a contiguous block of NUL-terminated strings.  Note that
3426          * the number of snapshots could change by the time we read
3427          * it in, in which case we re-read it.
3428          */
3429         do {
3430                 size_t size;
3431
3432                 kfree(ondisk);
3433
3434                 size = sizeof (*ondisk);
3435                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3436                 size += names_size;
3437                 ondisk = kmalloc(size, GFP_KERNEL);
3438                 if (!ondisk)
3439                         return -ENOMEM;
3440
3441                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3442                                        0, size, ondisk);
3443                 if (ret < 0)
3444                         goto out;
3445                 if ((size_t)ret < size) {
3446                         ret = -ENXIO;
3447                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3448                                 size, ret);
3449                         goto out;
3450                 }
3451                 if (!rbd_dev_ondisk_valid(ondisk)) {
3452                         ret = -ENXIO;
3453                         rbd_warn(rbd_dev, "invalid header");
3454                         goto out;
3455                 }
3456
3457                 names_size = le64_to_cpu(ondisk->snap_names_len);
3458                 want_count = snap_count;
3459                 snap_count = le32_to_cpu(ondisk->snap_count);
3460         } while (snap_count != want_count);
3461
3462         ret = rbd_header_from_disk(rbd_dev, ondisk);
3463 out:
3464         kfree(ondisk);
3465
3466         return ret;
3467 }
3468
3469 /*
3470  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3471  * has disappeared from the (just updated) snapshot context.
3472  */
3473 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3474 {
3475         u64 snap_id;
3476
3477         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3478                 return;
3479
3480         snap_id = rbd_dev->spec->snap_id;
3481         if (snap_id == CEPH_NOSNAP)
3482                 return;
3483
3484         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3485                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3486 }
3487
3488 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3489 {
3490         sector_t size;
3491         bool removing;
3492
3493         /*
3494          * Don't hold the lock while doing disk operations,
3495          * or lock ordering will conflict with the bdev mutex via:
3496          * rbd_add() -> blkdev_get() -> rbd_open()
3497          */
3498         spin_lock_irq(&rbd_dev->lock);
3499         removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3500         spin_unlock_irq(&rbd_dev->lock);
3501         /*
3502          * If the device is being removed, rbd_dev->disk has
3503          * been destroyed, so don't try to update its size
3504          */
3505         if (!removing) {
3506                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3507                 dout("setting size to %llu sectors", (unsigned long long)size);
3508                 set_capacity(rbd_dev->disk, size);
3509                 revalidate_disk(rbd_dev->disk);
3510         }
3511 }
3512
3513 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3514 {
3515         u64 mapping_size;
3516         int ret;
3517
3518         down_write(&rbd_dev->header_rwsem);
3519         mapping_size = rbd_dev->mapping.size;
3520
3521         ret = rbd_dev_header_info(rbd_dev);
3522         if (ret)
3523                 return ret;
3524
3525         /* If it's a mapped snapshot, validate its EXISTS flag */
3526
3527         rbd_exists_validate(rbd_dev);
3528         up_write(&rbd_dev->header_rwsem);
3529
3530         if (mapping_size != rbd_dev->mapping.size) {
3531                 rbd_dev_update_size(rbd_dev);
3532         }
3533
3534         return 0;
3535 }
3536
3537 static int rbd_init_disk(struct rbd_device *rbd_dev)
3538 {
3539         struct gendisk *disk;
3540         struct request_queue *q;
3541         u64 segment_size;
3542
3543         /* create gendisk info */
3544         disk = alloc_disk(single_major ?
3545                           (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3546                           RBD_MINORS_PER_MAJOR);
3547         if (!disk)
3548                 return -ENOMEM;
3549
3550         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3551                  rbd_dev->dev_id);
3552         disk->major = rbd_dev->major;
3553         disk->first_minor = rbd_dev->minor;
3554         if (single_major)
3555                 disk->flags |= GENHD_FL_EXT_DEVT;
3556         disk->fops = &rbd_bd_ops;
3557         disk->private_data = rbd_dev;
3558
3559         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3560         if (!q)
3561                 goto out_disk;
3562
3563         /* We use the default size, but let's be explicit about it. */
3564         blk_queue_physical_block_size(q, SECTOR_SIZE);
3565
3566         /* set io sizes to object size */
3567         segment_size = rbd_obj_bytes(&rbd_dev->header);
3568         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3569         blk_queue_max_segment_size(q, segment_size);
3570         blk_queue_io_min(q, segment_size);
3571         blk_queue_io_opt(q, segment_size);
3572
3573         blk_queue_merge_bvec(q, rbd_merge_bvec);
3574         disk->queue = q;
3575
3576         q->queuedata = rbd_dev;
3577
3578         rbd_dev->disk = disk;
3579
3580         return 0;
3581 out_disk:
3582         put_disk(disk);
3583
3584         return -ENOMEM;
3585 }
3586
3587 /*
3588   sysfs
3589 */
3590
3591 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3592 {
3593         return container_of(dev, struct rbd_device, dev);
3594 }
3595
3596 static ssize_t rbd_size_show(struct device *dev,
3597                              struct device_attribute *attr, char *buf)
3598 {
3599         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3600
3601         return sprintf(buf, "%llu\n",
3602                 (unsigned long long)rbd_dev->mapping.size);
3603 }
3604
3605 /*
3606  * Note this shows the features for whatever's mapped, which is not
3607  * necessarily the base image.
3608  */
3609 static ssize_t rbd_features_show(struct device *dev,
3610                              struct device_attribute *attr, char *buf)
3611 {
3612         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3613
3614         return sprintf(buf, "0x%016llx\n",
3615                         (unsigned long long)rbd_dev->mapping.features);
3616 }
3617
3618 static ssize_t rbd_major_show(struct device *dev,
3619                               struct device_attribute *attr, char *buf)
3620 {
3621         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3622
3623         if (rbd_dev->major)
3624                 return sprintf(buf, "%d\n", rbd_dev->major);
3625
3626         return sprintf(buf, "(none)\n");
3627 }
3628
3629 static ssize_t rbd_minor_show(struct device *dev,
3630                               struct device_attribute *attr, char *buf)
3631 {
3632         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3633
3634         return sprintf(buf, "%d\n", rbd_dev->minor);
3635 }
3636
3637 static ssize_t rbd_client_id_show(struct device *dev,
3638                                   struct device_attribute *attr, char *buf)
3639 {
3640         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3641
3642         return sprintf(buf, "client%lld\n",
3643                         ceph_client_id(rbd_dev->rbd_client->client));
3644 }
3645
3646 static ssize_t rbd_pool_show(struct device *dev,
3647                              struct device_attribute *attr, char *buf)
3648 {
3649         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3650
3651         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3652 }
3653
3654 static ssize_t rbd_pool_id_show(struct device *dev,
3655                              struct device_attribute *attr, char *buf)
3656 {
3657         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3658
3659         return sprintf(buf, "%llu\n",
3660                         (unsigned long long) rbd_dev->spec->pool_id);
3661 }
3662
3663 static ssize_t rbd_name_show(struct device *dev,
3664                              struct device_attribute *attr, char *buf)
3665 {
3666         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3667
3668         if (rbd_dev->spec->image_name)
3669                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3670
3671         return sprintf(buf, "(unknown)\n");
3672 }
3673
3674 static ssize_t rbd_image_id_show(struct device *dev,
3675                              struct device_attribute *attr, char *buf)
3676 {
3677         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3678
3679         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3680 }
3681
3682 /*
3683  * Shows the name of the currently-mapped snapshot (or
3684  * RBD_SNAP_HEAD_NAME for the base image).
3685  */
3686 static ssize_t rbd_snap_show(struct device *dev,
3687                              struct device_attribute *attr,
3688                              char *buf)
3689 {
3690         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3691
3692         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3693 }
3694
3695 /*
3696  * For a v2 image, shows the chain of parent images, separated by empty
3697  * lines.  For v1 images or if there is no parent, shows "(no parent
3698  * image)".
3699  */
3700 static ssize_t rbd_parent_show(struct device *dev,
3701                                struct device_attribute *attr,
3702                                char *buf)
3703 {
3704         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3705         ssize_t count = 0;
3706
3707         if (!rbd_dev->parent)
3708                 return sprintf(buf, "(no parent image)\n");
3709
3710         for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3711                 struct rbd_spec *spec = rbd_dev->parent_spec;
3712
3713                 count += sprintf(&buf[count], "%s"
3714                             "pool_id %llu\npool_name %s\n"
3715                             "image_id %s\nimage_name %s\n"
3716                             "snap_id %llu\nsnap_name %s\n"
3717                             "overlap %llu\n",
3718                             !count ? "" : "\n", /* first? */
3719                             spec->pool_id, spec->pool_name,
3720                             spec->image_id, spec->image_name ?: "(unknown)",
3721                             spec->snap_id, spec->snap_name,
3722                             rbd_dev->parent_overlap);
3723         }
3724
3725         return count;
3726 }
3727
3728 static ssize_t rbd_image_refresh(struct device *dev,
3729                                  struct device_attribute *attr,
3730                                  const char *buf,
3731                                  size_t size)
3732 {
3733         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3734         int ret;
3735
3736         ret = rbd_dev_refresh(rbd_dev);
3737         if (ret)
3738                 return ret;
3739
3740         return size;
3741 }
3742
3743 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3744 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3745 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3746 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3747 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3748 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3749 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3750 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3751 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3752 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3753 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3754 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3755
3756 static struct attribute *rbd_attrs[] = {
3757         &dev_attr_size.attr,
3758         &dev_attr_features.attr,
3759         &dev_attr_major.attr,
3760         &dev_attr_minor.attr,
3761         &dev_attr_client_id.attr,
3762         &dev_attr_pool.attr,
3763         &dev_attr_pool_id.attr,
3764         &dev_attr_name.attr,
3765         &dev_attr_image_id.attr,
3766         &dev_attr_current_snap.attr,
3767         &dev_attr_parent.attr,
3768         &dev_attr_refresh.attr,
3769         NULL
3770 };
3771
3772 static struct attribute_group rbd_attr_group = {
3773         .attrs = rbd_attrs,
3774 };
3775
3776 static const struct attribute_group *rbd_attr_groups[] = {
3777         &rbd_attr_group,
3778         NULL
3779 };
3780
3781 static void rbd_sysfs_dev_release(struct device *dev)
3782 {
3783 }
3784
3785 static struct device_type rbd_device_type = {
3786         .name           = "rbd",
3787         .groups         = rbd_attr_groups,
3788         .release        = rbd_sysfs_dev_release,
3789 };
3790
3791 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3792 {
3793         kref_get(&spec->kref);
3794
3795         return spec;
3796 }
3797
3798 static void rbd_spec_free(struct kref *kref);
3799 static void rbd_spec_put(struct rbd_spec *spec)
3800 {
3801         if (spec)
3802                 kref_put(&spec->kref, rbd_spec_free);
3803 }
3804
3805 static struct rbd_spec *rbd_spec_alloc(void)
3806 {
3807         struct rbd_spec *spec;
3808
3809         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3810         if (!spec)
3811                 return NULL;
3812
3813         spec->pool_id = CEPH_NOPOOL;
3814         spec->snap_id = CEPH_NOSNAP;
3815         kref_init(&spec->kref);
3816
3817         return spec;
3818 }
3819
3820 static void rbd_spec_free(struct kref *kref)
3821 {
3822         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3823
3824         kfree(spec->pool_name);
3825         kfree(spec->image_id);
3826         kfree(spec->image_name);
3827         kfree(spec->snap_name);
3828         kfree(spec);
3829 }
3830
3831 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3832                                 struct rbd_spec *spec)
3833 {
3834         struct rbd_device *rbd_dev;
3835
3836         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3837         if (!rbd_dev)
3838                 return NULL;
3839
3840         spin_lock_init(&rbd_dev->lock);
3841         rbd_dev->flags = 0;
3842         atomic_set(&rbd_dev->parent_ref, 0);
3843         INIT_LIST_HEAD(&rbd_dev->node);
3844         init_rwsem(&rbd_dev->header_rwsem);
3845
3846         rbd_dev->spec = spec;
3847         rbd_dev->rbd_client = rbdc;
3848
3849         /* Initialize the layout used for all rbd requests */
3850
3851         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3852         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3853         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3854         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3855
3856         return rbd_dev;
3857 }
3858
3859 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3860 {
3861         rbd_put_client(rbd_dev->rbd_client);
3862         rbd_spec_put(rbd_dev->spec);
3863         kfree(rbd_dev);
3864 }
3865
3866 /*
3867  * Get the size and object order for an image snapshot, or if
3868  * snap_id is CEPH_NOSNAP, gets this information for the base
3869  * image.
3870  */
3871 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3872                                 u8 *order, u64 *snap_size)
3873 {
3874         __le64 snapid = cpu_to_le64(snap_id);
3875         int ret;
3876         struct {
3877                 u8 order;
3878                 __le64 size;
3879         } __attribute__ ((packed)) size_buf = { 0 };
3880
3881         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3882                                 "rbd", "get_size",
3883                                 &snapid, sizeof (snapid),
3884                                 &size_buf, sizeof (size_buf));
3885         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3886         if (ret < 0)
3887                 return ret;
3888         if (ret < sizeof (size_buf))
3889                 return -ERANGE;
3890
3891         if (order) {
3892                 *order = size_buf.order;
3893                 dout("  order %u", (unsigned int)*order);
3894         }
3895         *snap_size = le64_to_cpu(size_buf.size);
3896
3897         dout("  snap_id 0x%016llx snap_size = %llu\n",
3898                 (unsigned long long)snap_id,
3899                 (unsigned long long)*snap_size);
3900
3901         return 0;
3902 }
3903
3904 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3905 {
3906         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3907                                         &rbd_dev->header.obj_order,
3908                                         &rbd_dev->header.image_size);
3909 }
3910
3911 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3912 {
3913         void *reply_buf;
3914         int ret;
3915         void *p;
3916
3917         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3918         if (!reply_buf)
3919                 return -ENOMEM;
3920
3921         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3922                                 "rbd", "get_object_prefix", NULL, 0,
3923                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3924         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3925         if (ret < 0)
3926                 goto out;
3927
3928         p = reply_buf;
3929         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3930                                                 p + ret, NULL, GFP_NOIO);
3931         ret = 0;
3932
3933         if (IS_ERR(rbd_dev->header.object_prefix)) {
3934                 ret = PTR_ERR(rbd_dev->header.object_prefix);
3935                 rbd_dev->header.object_prefix = NULL;
3936         } else {
3937                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3938         }
3939 out:
3940         kfree(reply_buf);
3941
3942         return ret;
3943 }
3944
3945 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3946                 u64 *snap_features)
3947 {
3948         __le64 snapid = cpu_to_le64(snap_id);
3949         struct {
3950                 __le64 features;
3951                 __le64 incompat;
3952         } __attribute__ ((packed)) features_buf = { 0 };
3953         u64 incompat;
3954         int ret;
3955
3956         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3957                                 "rbd", "get_features",
3958                                 &snapid, sizeof (snapid),
3959                                 &features_buf, sizeof (features_buf));
3960         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3961         if (ret < 0)
3962                 return ret;
3963         if (ret < sizeof (features_buf))
3964                 return -ERANGE;
3965
3966         incompat = le64_to_cpu(features_buf.incompat);
3967         if (incompat & ~RBD_FEATURES_SUPPORTED)
3968                 return -ENXIO;
3969
3970         *snap_features = le64_to_cpu(features_buf.features);
3971
3972         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3973                 (unsigned long long)snap_id,
3974                 (unsigned long long)*snap_features,
3975                 (unsigned long long)le64_to_cpu(features_buf.incompat));
3976
3977         return 0;
3978 }
3979
3980 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3981 {
3982         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3983                                                 &rbd_dev->header.features);
3984 }
3985
3986 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3987 {
3988         struct rbd_spec *parent_spec;
3989         size_t size;
3990         void *reply_buf = NULL;
3991         __le64 snapid;
3992         void *p;
3993         void *end;
3994         u64 pool_id;
3995         char *image_id;
3996         u64 snap_id;
3997         u64 overlap;
3998         int ret;
3999
4000         parent_spec = rbd_spec_alloc();
4001         if (!parent_spec)
4002                 return -ENOMEM;
4003
4004         size = sizeof (__le64) +                                /* pool_id */
4005                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
4006                 sizeof (__le64) +                               /* snap_id */
4007                 sizeof (__le64);                                /* overlap */
4008         reply_buf = kmalloc(size, GFP_KERNEL);
4009         if (!reply_buf) {
4010                 ret = -ENOMEM;
4011                 goto out_err;
4012         }
4013
4014         snapid = cpu_to_le64(CEPH_NOSNAP);
4015         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4016                                 "rbd", "get_parent",
4017                                 &snapid, sizeof (snapid),
4018                                 reply_buf, size);
4019         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4020         if (ret < 0)
4021                 goto out_err;
4022
4023         p = reply_buf;
4024         end = reply_buf + ret;
4025         ret = -ERANGE;
4026         ceph_decode_64_safe(&p, end, pool_id, out_err);
4027         if (pool_id == CEPH_NOPOOL) {
4028                 /*
4029                  * Either the parent never existed, or we have
4030                  * record of it but the image got flattened so it no
4031                  * longer has a parent.  When the parent of a
4032                  * layered image disappears we immediately set the
4033                  * overlap to 0.  The effect of this is that all new
4034                  * requests will be treated as if the image had no
4035                  * parent.
4036                  */
4037                 if (rbd_dev->parent_overlap) {
4038                         rbd_dev->parent_overlap = 0;
4039                         smp_mb();
4040                         rbd_dev_parent_put(rbd_dev);
4041                         pr_info("%s: clone image has been flattened\n",
4042                                 rbd_dev->disk->disk_name);
4043                 }
4044
4045                 goto out;       /* No parent?  No problem. */
4046         }
4047
4048         /* The ceph file layout needs to fit pool id in 32 bits */
4049
4050         ret = -EIO;
4051         if (pool_id > (u64)U32_MAX) {
4052                 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
4053                         (unsigned long long)pool_id, U32_MAX);
4054                 goto out_err;
4055         }
4056
4057         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4058         if (IS_ERR(image_id)) {
4059                 ret = PTR_ERR(image_id);
4060                 goto out_err;
4061         }
4062         ceph_decode_64_safe(&p, end, snap_id, out_err);
4063         ceph_decode_64_safe(&p, end, overlap, out_err);
4064
4065         /*
4066          * The parent won't change (except when the clone is
4067          * flattened, already handled that).  So we only need to
4068          * record the parent spec we have not already done so.
4069          */
4070         if (!rbd_dev->parent_spec) {
4071                 parent_spec->pool_id = pool_id;
4072                 parent_spec->image_id = image_id;
4073                 parent_spec->snap_id = snap_id;
4074                 rbd_dev->parent_spec = parent_spec;
4075                 parent_spec = NULL;     /* rbd_dev now owns this */
4076         } else {
4077                 kfree(image_id);
4078         }
4079
4080         /*
4081          * We always update the parent overlap.  If it's zero we
4082          * treat it specially.
4083          */
4084         rbd_dev->parent_overlap = overlap;
4085         smp_mb();
4086         if (!overlap) {
4087
4088                 /* A null parent_spec indicates it's the initial probe */
4089
4090                 if (parent_spec) {
4091                         /*
4092                          * The overlap has become zero, so the clone
4093                          * must have been resized down to 0 at some
4094                          * point.  Treat this the same as a flatten.
4095                          */
4096                         rbd_dev_parent_put(rbd_dev);
4097                         pr_info("%s: clone image now standalone\n",
4098                                 rbd_dev->disk->disk_name);
4099                 } else {
4100                         /*
4101                          * For the initial probe, if we find the
4102                          * overlap is zero we just pretend there was
4103                          * no parent image.
4104                          */
4105                         rbd_warn(rbd_dev, "ignoring parent of "
4106                                                 "clone with overlap 0\n");
4107                 }
4108         }
4109 out:
4110         ret = 0;
4111 out_err:
4112         kfree(reply_buf);
4113         rbd_spec_put(parent_spec);
4114
4115         return ret;
4116 }
4117
4118 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4119 {
4120         struct {
4121                 __le64 stripe_unit;
4122                 __le64 stripe_count;
4123         } __attribute__ ((packed)) striping_info_buf = { 0 };
4124         size_t size = sizeof (striping_info_buf);
4125         void *p;
4126         u64 obj_size;
4127         u64 stripe_unit;
4128         u64 stripe_count;
4129         int ret;
4130
4131         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4132                                 "rbd", "get_stripe_unit_count", NULL, 0,
4133                                 (char *)&striping_info_buf, size);
4134         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4135         if (ret < 0)
4136                 return ret;
4137         if (ret < size)
4138                 return -ERANGE;
4139
4140         /*
4141          * We don't actually support the "fancy striping" feature
4142          * (STRIPINGV2) yet, but if the striping sizes are the
4143          * defaults the behavior is the same as before.  So find
4144          * out, and only fail if the image has non-default values.
4145          */
4146         ret = -EINVAL;
4147         obj_size = (u64)1 << rbd_dev->header.obj_order;
4148         p = &striping_info_buf;
4149         stripe_unit = ceph_decode_64(&p);
4150         if (stripe_unit != obj_size) {
4151                 rbd_warn(rbd_dev, "unsupported stripe unit "
4152                                 "(got %llu want %llu)",
4153                                 stripe_unit, obj_size);
4154                 return -EINVAL;
4155         }
4156         stripe_count = ceph_decode_64(&p);
4157         if (stripe_count != 1) {
4158                 rbd_warn(rbd_dev, "unsupported stripe count "
4159                                 "(got %llu want 1)", stripe_count);
4160                 return -EINVAL;
4161         }
4162         rbd_dev->header.stripe_unit = stripe_unit;
4163         rbd_dev->header.stripe_count = stripe_count;
4164
4165         return 0;
4166 }
4167
4168 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4169 {
4170         size_t image_id_size;
4171         char *image_id;
4172         void *p;
4173         void *end;
4174         size_t size;
4175         void *reply_buf = NULL;
4176         size_t len = 0;
4177         char *image_name = NULL;
4178         int ret;
4179
4180         rbd_assert(!rbd_dev->spec->image_name);
4181
4182         len = strlen(rbd_dev->spec->image_id);
4183         image_id_size = sizeof (__le32) + len;
4184         image_id = kmalloc(image_id_size, GFP_KERNEL);
4185         if (!image_id)
4186                 return NULL;
4187
4188         p = image_id;
4189         end = image_id + image_id_size;
4190         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4191
4192         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4193         reply_buf = kmalloc(size, GFP_KERNEL);
4194         if (!reply_buf)
4195                 goto out;
4196
4197         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4198                                 "rbd", "dir_get_name",
4199                                 image_id, image_id_size,
4200                                 reply_buf, size);
4201         if (ret < 0)
4202                 goto out;
4203         p = reply_buf;
4204         end = reply_buf + ret;
4205
4206         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4207         if (IS_ERR(image_name))
4208                 image_name = NULL;
4209         else
4210                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4211 out:
4212         kfree(reply_buf);
4213         kfree(image_id);
4214
4215         return image_name;
4216 }
4217
4218 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4219 {
4220         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4221         const char *snap_name;
4222         u32 which = 0;
4223
4224         /* Skip over names until we find the one we are looking for */
4225
4226         snap_name = rbd_dev->header.snap_names;
4227         while (which < snapc->num_snaps) {
4228                 if (!strcmp(name, snap_name))
4229                         return snapc->snaps[which];
4230                 snap_name += strlen(snap_name) + 1;
4231                 which++;
4232         }
4233         return CEPH_NOSNAP;
4234 }
4235
4236 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4237 {
4238         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4239         u32 which;
4240         bool found = false;
4241         u64 snap_id;
4242
4243         for (which = 0; !found && which < snapc->num_snaps; which++) {
4244                 const char *snap_name;
4245
4246                 snap_id = snapc->snaps[which];
4247                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4248                 if (IS_ERR(snap_name)) {
4249                         /* ignore no-longer existing snapshots */
4250                         if (PTR_ERR(snap_name) == -ENOENT)
4251                                 continue;
4252                         else
4253                                 break;
4254                 }
4255                 found = !strcmp(name, snap_name);
4256                 kfree(snap_name);
4257         }
4258         return found ? snap_id : CEPH_NOSNAP;
4259 }
4260
4261 /*
4262  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4263  * no snapshot by that name is found, or if an error occurs.
4264  */
4265 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4266 {
4267         if (rbd_dev->image_format == 1)
4268                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4269
4270         return rbd_v2_snap_id_by_name(rbd_dev, name);
4271 }
4272
4273 /*
4274  * An image being mapped will have everything but the snap id.
4275  */
4276 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4277 {
4278         struct rbd_spec *spec = rbd_dev->spec;
4279
4280         rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4281         rbd_assert(spec->image_id && spec->image_name);
4282         rbd_assert(spec->snap_name);
4283
4284         if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4285                 u64 snap_id;
4286
4287                 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4288                 if (snap_id == CEPH_NOSNAP)
4289                         return -ENOENT;
4290
4291                 spec->snap_id = snap_id;
4292         } else {
4293                 spec->snap_id = CEPH_NOSNAP;
4294         }
4295
4296         return 0;
4297 }
4298
4299 /*
4300  * A parent image will have all ids but none of the names.
4301  *
4302  * All names in an rbd spec are dynamically allocated.  It's OK if we
4303  * can't figure out the name for an image id.
4304  */
4305 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4306 {
4307         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4308         struct rbd_spec *spec = rbd_dev->spec;
4309         const char *pool_name;
4310         const char *image_name;
4311         const char *snap_name;
4312         int ret;
4313
4314         rbd_assert(spec->pool_id != CEPH_NOPOOL);
4315         rbd_assert(spec->image_id);
4316         rbd_assert(spec->snap_id != CEPH_NOSNAP);
4317
4318         /* Get the pool name; we have to make our own copy of this */
4319
4320         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4321         if (!pool_name) {
4322                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4323                 return -EIO;
4324         }
4325         pool_name = kstrdup(pool_name, GFP_KERNEL);
4326         if (!pool_name)
4327                 return -ENOMEM;
4328
4329         /* Fetch the image name; tolerate failure here */
4330
4331         image_name = rbd_dev_image_name(rbd_dev);
4332         if (!image_name)
4333                 rbd_warn(rbd_dev, "unable to get image name");
4334
4335         /* Fetch the snapshot name */
4336
4337         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4338         if (IS_ERR(snap_name)) {
4339                 ret = PTR_ERR(snap_name);
4340                 goto out_err;
4341         }
4342
4343         spec->pool_name = pool_name;
4344         spec->image_name = image_name;
4345         spec->snap_name = snap_name;
4346
4347         return 0;
4348
4349 out_err:
4350         kfree(image_name);
4351         kfree(pool_name);
4352         return ret;
4353 }
4354
4355 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4356 {
4357         size_t size;
4358         int ret;
4359         void *reply_buf;
4360         void *p;
4361         void *end;
4362         u64 seq;
4363         u32 snap_count;
4364         struct ceph_snap_context *snapc;
4365         u32 i;
4366
4367         /*
4368          * We'll need room for the seq value (maximum snapshot id),
4369          * snapshot count, and array of that many snapshot ids.
4370          * For now we have a fixed upper limit on the number we're
4371          * prepared to receive.
4372          */
4373         size = sizeof (__le64) + sizeof (__le32) +
4374                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4375         reply_buf = kzalloc(size, GFP_KERNEL);
4376         if (!reply_buf)
4377                 return -ENOMEM;
4378
4379         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4380                                 "rbd", "get_snapcontext", NULL, 0,
4381                                 reply_buf, size);
4382         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4383         if (ret < 0)
4384                 goto out;
4385
4386         p = reply_buf;
4387         end = reply_buf + ret;
4388         ret = -ERANGE;
4389         ceph_decode_64_safe(&p, end, seq, out);
4390         ceph_decode_32_safe(&p, end, snap_count, out);
4391
4392         /*
4393          * Make sure the reported number of snapshot ids wouldn't go
4394          * beyond the end of our buffer.  But before checking that,
4395          * make sure the computed size of the snapshot context we
4396          * allocate is representable in a size_t.
4397          */
4398         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4399                                  / sizeof (u64)) {
4400                 ret = -EINVAL;
4401                 goto out;
4402         }
4403         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4404                 goto out;
4405         ret = 0;
4406
4407         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4408         if (!snapc) {
4409                 ret = -ENOMEM;
4410                 goto out;
4411         }
4412         snapc->seq = seq;
4413         for (i = 0; i < snap_count; i++)
4414                 snapc->snaps[i] = ceph_decode_64(&p);
4415
4416         ceph_put_snap_context(rbd_dev->header.snapc);
4417         rbd_dev->header.snapc = snapc;
4418
4419         dout("  snap context seq = %llu, snap_count = %u\n",
4420                 (unsigned long long)seq, (unsigned int)snap_count);
4421 out:
4422         kfree(reply_buf);
4423
4424         return ret;
4425 }
4426
4427 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4428                                         u64 snap_id)
4429 {
4430         size_t size;
4431         void *reply_buf;
4432         __le64 snapid;
4433         int ret;
4434         void *p;
4435         void *end;
4436         char *snap_name;
4437
4438         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4439         reply_buf = kmalloc(size, GFP_KERNEL);
4440         if (!reply_buf)
4441                 return ERR_PTR(-ENOMEM);
4442
4443         snapid = cpu_to_le64(snap_id);
4444         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4445                                 "rbd", "get_snapshot_name",
4446                                 &snapid, sizeof (snapid),
4447                                 reply_buf, size);
4448         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4449         if (ret < 0) {
4450                 snap_name = ERR_PTR(ret);
4451                 goto out;
4452         }
4453
4454         p = reply_buf;
4455         end = reply_buf + ret;
4456         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4457         if (IS_ERR(snap_name))
4458                 goto out;
4459
4460         dout("  snap_id 0x%016llx snap_name = %s\n",
4461                 (unsigned long long)snap_id, snap_name);
4462 out:
4463         kfree(reply_buf);
4464
4465         return snap_name;
4466 }
4467
4468 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4469 {
4470         bool first_time = rbd_dev->header.object_prefix == NULL;
4471         int ret;
4472
4473         ret = rbd_dev_v2_image_size(rbd_dev);
4474         if (ret)
4475                 return ret;
4476
4477         if (first_time) {
4478                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4479                 if (ret)
4480                         return ret;
4481         }
4482
4483         /*
4484          * If the image supports layering, get the parent info.  We
4485          * need to probe the first time regardless.  Thereafter we
4486          * only need to if there's a parent, to see if it has
4487          * disappeared due to the mapped image getting flattened.
4488          */
4489         if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4490                         (first_time || rbd_dev->parent_spec)) {
4491                 bool warn;
4492
4493                 ret = rbd_dev_v2_parent_info(rbd_dev);
4494                 if (ret)
4495                         return ret;
4496
4497                 /*
4498                  * Print a warning if this is the initial probe and
4499                  * the image has a parent.  Don't print it if the
4500                  * image now being probed is itself a parent.  We
4501                  * can tell at this point because we won't know its
4502                  * pool name yet (just its pool id).
4503                  */
4504                 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4505                 if (first_time && warn)
4506                         rbd_warn(rbd_dev, "WARNING: kernel layering "
4507                                         "is EXPERIMENTAL!");
4508         }
4509
4510         if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4511                 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4512                         rbd_dev->mapping.size = rbd_dev->header.image_size;
4513
4514         ret = rbd_dev_v2_snap_context(rbd_dev);
4515         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4516
4517         return ret;
4518 }
4519
4520 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4521 {
4522         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4523
4524         if (rbd_dev->image_format == 1)
4525                 return rbd_dev_v1_header_info(rbd_dev);
4526
4527         return rbd_dev_v2_header_info(rbd_dev);
4528 }
4529
4530 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4531 {
4532         struct device *dev;
4533         int ret;
4534
4535         dev = &rbd_dev->dev;
4536         dev->bus = &rbd_bus_type;
4537         dev->type = &rbd_device_type;
4538         dev->parent = &rbd_root_dev;
4539         dev->release = rbd_dev_device_release;
4540         dev_set_name(dev, "%d", rbd_dev->dev_id);
4541         ret = device_register(dev);
4542
4543         return ret;
4544 }
4545
4546 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4547 {
4548         device_unregister(&rbd_dev->dev);
4549 }
4550
4551 /*
4552  * Get a unique rbd identifier for the given new rbd_dev, and add
4553  * the rbd_dev to the global list.
4554  */
4555 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4556 {
4557         int new_dev_id;
4558
4559         new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4560                                     0, minor_to_rbd_dev_id(1 << MINORBITS),
4561                                     GFP_KERNEL);
4562         if (new_dev_id < 0)
4563                 return new_dev_id;
4564
4565         rbd_dev->dev_id = new_dev_id;
4566
4567         spin_lock(&rbd_dev_list_lock);
4568         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4569         spin_unlock(&rbd_dev_list_lock);
4570
4571         dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4572
4573         return 0;
4574 }
4575
4576 /*
4577  * Remove an rbd_dev from the global list, and record that its
4578  * identifier is no longer in use.
4579  */
4580 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4581 {
4582         spin_lock(&rbd_dev_list_lock);
4583         list_del_init(&rbd_dev->node);
4584         spin_unlock(&rbd_dev_list_lock);
4585
4586         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4587
4588         dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4589 }
4590
4591 /*
4592  * Skips over white space at *buf, and updates *buf to point to the
4593  * first found non-space character (if any). Returns the length of
4594  * the token (string of non-white space characters) found.  Note
4595  * that *buf must be terminated with '\0'.
4596  */
4597 static inline size_t next_token(const char **buf)
4598 {
4599         /*
4600         * These are the characters that produce nonzero for
4601         * isspace() in the "C" and "POSIX" locales.
4602         */
4603         const char *spaces = " \f\n\r\t\v";
4604
4605         *buf += strspn(*buf, spaces);   /* Find start of token */
4606
4607         return strcspn(*buf, spaces);   /* Return token length */
4608 }
4609
4610 /*
4611  * Finds the next token in *buf, and if the provided token buffer is
4612  * big enough, copies the found token into it.  The result, if
4613  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4614  * must be terminated with '\0' on entry.
4615  *
4616  * Returns the length of the token found (not including the '\0').
4617  * Return value will be 0 if no token is found, and it will be >=
4618  * token_size if the token would not fit.
4619  *
4620  * The *buf pointer will be updated to point beyond the end of the
4621  * found token.  Note that this occurs even if the token buffer is
4622  * too small to hold it.
4623  */
4624 static inline size_t copy_token(const char **buf,
4625                                 char *token,
4626                                 size_t token_size)
4627 {
4628         size_t len;
4629
4630         len = next_token(buf);
4631         if (len < token_size) {
4632                 memcpy(token, *buf, len);
4633                 *(token + len) = '\0';
4634         }
4635         *buf += len;
4636
4637         return len;
4638 }
4639
4640 /*
4641  * Finds the next token in *buf, dynamically allocates a buffer big
4642  * enough to hold a copy of it, and copies the token into the new
4643  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4644  * that a duplicate buffer is created even for a zero-length token.
4645  *
4646  * Returns a pointer to the newly-allocated duplicate, or a null
4647  * pointer if memory for the duplicate was not available.  If
4648  * the lenp argument is a non-null pointer, the length of the token
4649  * (not including the '\0') is returned in *lenp.
4650  *
4651  * If successful, the *buf pointer will be updated to point beyond
4652  * the end of the found token.
4653  *
4654  * Note: uses GFP_KERNEL for allocation.
4655  */
4656 static inline char *dup_token(const char **buf, size_t *lenp)
4657 {
4658         char *dup;
4659         size_t len;
4660
4661         len = next_token(buf);
4662         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4663         if (!dup)
4664                 return NULL;
4665         *(dup + len) = '\0';
4666         *buf += len;
4667
4668         if (lenp)
4669                 *lenp = len;
4670
4671         return dup;
4672 }
4673
4674 /*
4675  * Parse the options provided for an "rbd add" (i.e., rbd image
4676  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4677  * and the data written is passed here via a NUL-terminated buffer.
4678  * Returns 0 if successful or an error code otherwise.
4679  *
4680  * The information extracted from these options is recorded in
4681  * the other parameters which return dynamically-allocated
4682  * structures:
4683  *  ceph_opts
4684  *      The address of a pointer that will refer to a ceph options
4685  *      structure.  Caller must release the returned pointer using
4686  *      ceph_destroy_options() when it is no longer needed.
4687  *  rbd_opts
4688  *      Address of an rbd options pointer.  Fully initialized by
4689  *      this function; caller must release with kfree().
4690  *  spec
4691  *      Address of an rbd image specification pointer.  Fully
4692  *      initialized by this function based on parsed options.
4693  *      Caller must release with rbd_spec_put().
4694  *
4695  * The options passed take this form:
4696  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4697  * where:
4698  *  <mon_addrs>
4699  *      A comma-separated list of one or more monitor addresses.
4700  *      A monitor address is an ip address, optionally followed
4701  *      by a port number (separated by a colon).
4702  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4703  *  <options>
4704  *      A comma-separated list of ceph and/or rbd options.
4705  *  <pool_name>
4706  *      The name of the rados pool containing the rbd image.
4707  *  <image_name>
4708  *      The name of the image in that pool to map.
4709  *  <snap_id>
4710  *      An optional snapshot id.  If provided, the mapping will
4711  *      present data from the image at the time that snapshot was
4712  *      created.  The image head is used if no snapshot id is
4713  *      provided.  Snapshot mappings are always read-only.
4714  */
4715 static int rbd_add_parse_args(const char *buf,
4716                                 struct ceph_options **ceph_opts,
4717                                 struct rbd_options **opts,
4718                                 struct rbd_spec **rbd_spec)
4719 {
4720         size_t len;
4721         char *options;
4722         const char *mon_addrs;
4723         char *snap_name;
4724         size_t mon_addrs_size;
4725         struct rbd_spec *spec = NULL;
4726         struct rbd_options *rbd_opts = NULL;
4727         struct ceph_options *copts;
4728         int ret;
4729
4730         /* The first four tokens are required */
4731
4732         len = next_token(&buf);
4733         if (!len) {
4734                 rbd_warn(NULL, "no monitor address(es) provided");
4735                 return -EINVAL;
4736         }
4737         mon_addrs = buf;
4738         mon_addrs_size = len + 1;
4739         buf += len;
4740
4741         ret = -EINVAL;
4742         options = dup_token(&buf, NULL);
4743         if (!options)
4744                 return -ENOMEM;
4745         if (!*options) {
4746                 rbd_warn(NULL, "no options provided");
4747                 goto out_err;
4748         }
4749
4750         spec = rbd_spec_alloc();
4751         if (!spec)
4752                 goto out_mem;
4753
4754         spec->pool_name = dup_token(&buf, NULL);
4755         if (!spec->pool_name)
4756                 goto out_mem;
4757         if (!*spec->pool_name) {
4758                 rbd_warn(NULL, "no pool name provided");
4759                 goto out_err;
4760         }
4761
4762         spec->image_name = dup_token(&buf, NULL);
4763         if (!spec->image_name)
4764                 goto out_mem;
4765         if (!*spec->image_name) {
4766                 rbd_warn(NULL, "no image name provided");
4767                 goto out_err;
4768         }
4769
4770         /*
4771          * Snapshot name is optional; default is to use "-"
4772          * (indicating the head/no snapshot).
4773          */
4774         len = next_token(&buf);
4775         if (!len) {
4776                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4777                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4778         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4779                 ret = -ENAMETOOLONG;
4780                 goto out_err;
4781         }
4782         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4783         if (!snap_name)
4784                 goto out_mem;
4785         *(snap_name + len) = '\0';
4786         spec->snap_name = snap_name;
4787
4788         /* Initialize all rbd options to the defaults */
4789
4790         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4791         if (!rbd_opts)
4792                 goto out_mem;
4793
4794         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4795
4796         copts = ceph_parse_options(options, mon_addrs,
4797                                         mon_addrs + mon_addrs_size - 1,
4798                                         parse_rbd_opts_token, rbd_opts);
4799         if (IS_ERR(copts)) {
4800                 ret = PTR_ERR(copts);
4801                 goto out_err;
4802         }
4803         kfree(options);
4804
4805         *ceph_opts = copts;
4806         *opts = rbd_opts;
4807         *rbd_spec = spec;
4808
4809         return 0;
4810 out_mem:
4811         ret = -ENOMEM;
4812 out_err:
4813         kfree(rbd_opts);
4814         rbd_spec_put(spec);
4815         kfree(options);
4816
4817         return ret;
4818 }
4819
4820 /*
4821  * Return pool id (>= 0) or a negative error code.
4822  */
4823 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4824 {
4825         u64 newest_epoch;
4826         unsigned long timeout = rbdc->client->options->mount_timeout * HZ;
4827         int tries = 0;
4828         int ret;
4829
4830 again:
4831         ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4832         if (ret == -ENOENT && tries++ < 1) {
4833                 ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
4834                                                &newest_epoch);
4835                 if (ret < 0)
4836                         return ret;
4837
4838                 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
4839                         ceph_monc_request_next_osdmap(&rbdc->client->monc);
4840                         (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
4841                                                      newest_epoch, timeout);
4842                         goto again;
4843                 } else {
4844                         /* the osdmap we have is new enough */
4845                         return -ENOENT;
4846                 }
4847         }
4848
4849         return ret;
4850 }
4851
4852 /*
4853  * An rbd format 2 image has a unique identifier, distinct from the
4854  * name given to it by the user.  Internally, that identifier is
4855  * what's used to specify the names of objects related to the image.
4856  *
4857  * A special "rbd id" object is used to map an rbd image name to its
4858  * id.  If that object doesn't exist, then there is no v2 rbd image
4859  * with the supplied name.
4860  *
4861  * This function will record the given rbd_dev's image_id field if
4862  * it can be determined, and in that case will return 0.  If any
4863  * errors occur a negative errno will be returned and the rbd_dev's
4864  * image_id field will be unchanged (and should be NULL).
4865  */
4866 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4867 {
4868         int ret;
4869         size_t size;
4870         char *object_name;
4871         void *response;
4872         char *image_id;
4873
4874         /*
4875          * When probing a parent image, the image id is already
4876          * known (and the image name likely is not).  There's no
4877          * need to fetch the image id again in this case.  We
4878          * do still need to set the image format though.
4879          */
4880         if (rbd_dev->spec->image_id) {
4881                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4882
4883                 return 0;
4884         }
4885
4886         /*
4887          * First, see if the format 2 image id file exists, and if
4888          * so, get the image's persistent id from it.
4889          */
4890         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4891         object_name = kmalloc(size, GFP_NOIO);
4892         if (!object_name)
4893                 return -ENOMEM;
4894         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4895         dout("rbd id object name is %s\n", object_name);
4896
4897         /* Response will be an encoded string, which includes a length */
4898
4899         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4900         response = kzalloc(size, GFP_NOIO);
4901         if (!response) {
4902                 ret = -ENOMEM;
4903                 goto out;
4904         }
4905
4906         /* If it doesn't exist we'll assume it's a format 1 image */
4907
4908         ret = rbd_obj_method_sync(rbd_dev, object_name,
4909                                 "rbd", "get_id", NULL, 0,
4910                                 response, RBD_IMAGE_ID_LEN_MAX);
4911         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4912         if (ret == -ENOENT) {
4913                 image_id = kstrdup("", GFP_KERNEL);
4914                 ret = image_id ? 0 : -ENOMEM;
4915                 if (!ret)
4916                         rbd_dev->image_format = 1;
4917         } else if (ret > sizeof (__le32)) {
4918                 void *p = response;
4919
4920                 image_id = ceph_extract_encoded_string(&p, p + ret,
4921                                                 NULL, GFP_NOIO);
4922                 ret = PTR_ERR_OR_ZERO(image_id);
4923                 if (!ret)
4924                         rbd_dev->image_format = 2;
4925         } else {
4926                 ret = -EINVAL;
4927         }
4928
4929         if (!ret) {
4930                 rbd_dev->spec->image_id = image_id;
4931                 dout("image_id is %s\n", image_id);
4932         }
4933 out:
4934         kfree(response);
4935         kfree(object_name);
4936
4937         return ret;
4938 }
4939
4940 /*
4941  * Undo whatever state changes are made by v1 or v2 header info
4942  * call.
4943  */
4944 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4945 {
4946         struct rbd_image_header *header;
4947
4948         /* Drop parent reference unless it's already been done (or none) */
4949
4950         if (rbd_dev->parent_overlap)
4951                 rbd_dev_parent_put(rbd_dev);
4952
4953         /* Free dynamic fields from the header, then zero it out */
4954
4955         header = &rbd_dev->header;
4956         ceph_put_snap_context(header->snapc);
4957         kfree(header->snap_sizes);
4958         kfree(header->snap_names);
4959         kfree(header->object_prefix);
4960         memset(header, 0, sizeof (*header));
4961 }
4962
4963 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4964 {
4965         int ret;
4966
4967         ret = rbd_dev_v2_object_prefix(rbd_dev);
4968         if (ret)
4969                 goto out_err;
4970
4971         /*
4972          * Get the and check features for the image.  Currently the
4973          * features are assumed to never change.
4974          */
4975         ret = rbd_dev_v2_features(rbd_dev);
4976         if (ret)
4977                 goto out_err;
4978
4979         /* If the image supports fancy striping, get its parameters */
4980
4981         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4982                 ret = rbd_dev_v2_striping_info(rbd_dev);
4983                 if (ret < 0)
4984                         goto out_err;
4985         }
4986         /* No support for crypto and compression type format 2 images */
4987
4988         return 0;
4989 out_err:
4990         rbd_dev->header.features = 0;
4991         kfree(rbd_dev->header.object_prefix);
4992         rbd_dev->header.object_prefix = NULL;
4993
4994         return ret;
4995 }
4996
4997 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4998 {
4999         struct rbd_device *parent = NULL;
5000         struct rbd_spec *parent_spec;
5001         struct rbd_client *rbdc;
5002         int ret;
5003
5004         if (!rbd_dev->parent_spec)
5005                 return 0;
5006         /*
5007          * We need to pass a reference to the client and the parent
5008          * spec when creating the parent rbd_dev.  Images related by
5009          * parent/child relationships always share both.
5010          */
5011         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
5012         rbdc = __rbd_get_client(rbd_dev->rbd_client);
5013
5014         ret = -ENOMEM;
5015         parent = rbd_dev_create(rbdc, parent_spec);
5016         if (!parent)
5017                 goto out_err;
5018
5019         ret = rbd_dev_image_probe(parent, false);
5020         if (ret < 0)
5021                 goto out_err;
5022         rbd_dev->parent = parent;
5023         atomic_set(&rbd_dev->parent_ref, 1);
5024
5025         return 0;
5026 out_err:
5027         if (parent) {
5028                 rbd_dev_unparent(rbd_dev);
5029                 kfree(rbd_dev->header_name);
5030                 rbd_dev_destroy(parent);
5031         } else {
5032                 rbd_put_client(rbdc);
5033                 rbd_spec_put(parent_spec);
5034         }
5035
5036         return ret;
5037 }
5038
5039 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5040 {
5041         int ret;
5042
5043         /* Get an id and fill in device name. */
5044
5045         ret = rbd_dev_id_get(rbd_dev);
5046         if (ret)
5047                 return ret;
5048
5049         BUILD_BUG_ON(DEV_NAME_LEN
5050                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5051         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5052
5053         /* Record our major and minor device numbers. */
5054
5055         if (!single_major) {
5056                 ret = register_blkdev(0, rbd_dev->name);
5057                 if (ret < 0)
5058                         goto err_out_id;
5059
5060                 rbd_dev->major = ret;
5061                 rbd_dev->minor = 0;
5062         } else {
5063                 rbd_dev->major = rbd_major;
5064                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5065         }
5066
5067         /* Set up the blkdev mapping. */
5068
5069         ret = rbd_init_disk(rbd_dev);
5070         if (ret)
5071                 goto err_out_blkdev;
5072
5073         ret = rbd_dev_mapping_set(rbd_dev);
5074         if (ret)
5075                 goto err_out_disk;
5076         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5077         set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5078
5079         ret = rbd_bus_add_dev(rbd_dev);
5080         if (ret)
5081                 goto err_out_mapping;
5082
5083         /* Everything's ready.  Announce the disk to the world. */
5084
5085         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5086         add_disk(rbd_dev->disk);
5087
5088         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5089                 (unsigned long long) rbd_dev->mapping.size);
5090
5091         return ret;
5092
5093 err_out_mapping:
5094         rbd_dev_mapping_clear(rbd_dev);
5095 err_out_disk:
5096         rbd_free_disk(rbd_dev);
5097 err_out_blkdev:
5098         if (!single_major)
5099                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5100 err_out_id:
5101         rbd_dev_id_put(rbd_dev);
5102         rbd_dev_mapping_clear(rbd_dev);
5103
5104         return ret;
5105 }
5106
5107 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5108 {
5109         struct rbd_spec *spec = rbd_dev->spec;
5110         size_t size;
5111
5112         /* Record the header object name for this rbd image. */
5113
5114         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5115
5116         if (rbd_dev->image_format == 1)
5117                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5118         else
5119                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5120
5121         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5122         if (!rbd_dev->header_name)
5123                 return -ENOMEM;
5124
5125         if (rbd_dev->image_format == 1)
5126                 sprintf(rbd_dev->header_name, "%s%s",
5127                         spec->image_name, RBD_SUFFIX);
5128         else
5129                 sprintf(rbd_dev->header_name, "%s%s",
5130                         RBD_HEADER_PREFIX, spec->image_id);
5131         return 0;
5132 }
5133
5134 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5135 {
5136         rbd_dev_unprobe(rbd_dev);
5137         kfree(rbd_dev->header_name);
5138         rbd_dev->header_name = NULL;
5139         rbd_dev->image_format = 0;
5140         kfree(rbd_dev->spec->image_id);
5141         rbd_dev->spec->image_id = NULL;
5142
5143         rbd_dev_destroy(rbd_dev);
5144 }
5145
5146 /*
5147  * Probe for the existence of the header object for the given rbd
5148  * device.  If this image is the one being mapped (i.e., not a
5149  * parent), initiate a watch on its header object before using that
5150  * object to get detailed information about the rbd image.
5151  */
5152 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
5153 {
5154         int ret;
5155
5156         /*
5157          * Get the id from the image id object.  Unless there's an
5158          * error, rbd_dev->spec->image_id will be filled in with
5159          * a dynamically-allocated string, and rbd_dev->image_format
5160          * will be set to either 1 or 2.
5161          */
5162         ret = rbd_dev_image_id(rbd_dev);
5163         if (ret)
5164                 return ret;
5165
5166         ret = rbd_dev_header_name(rbd_dev);
5167         if (ret)
5168                 goto err_out_format;
5169
5170         if (mapping) {
5171                 ret = rbd_dev_header_watch_sync(rbd_dev);
5172                 if (ret)
5173                         goto out_header_name;
5174         }
5175
5176         ret = rbd_dev_header_info(rbd_dev);
5177         if (ret)
5178                 goto err_out_watch;
5179
5180         /*
5181          * If this image is the one being mapped, we have pool name and
5182          * id, image name and id, and snap name - need to fill snap id.
5183          * Otherwise this is a parent image, identified by pool, image
5184          * and snap ids - need to fill in names for those ids.
5185          */
5186         if (mapping)
5187                 ret = rbd_spec_fill_snap_id(rbd_dev);
5188         else
5189                 ret = rbd_spec_fill_names(rbd_dev);
5190         if (ret)
5191                 goto err_out_probe;
5192
5193         ret = rbd_dev_probe_parent(rbd_dev);
5194         if (ret)
5195                 goto err_out_probe;
5196
5197         dout("discovered format %u image, header name is %s\n",
5198                 rbd_dev->image_format, rbd_dev->header_name);
5199
5200         return 0;
5201 err_out_probe:
5202         rbd_dev_unprobe(rbd_dev);
5203 err_out_watch:
5204         if (mapping)
5205                 rbd_dev_header_unwatch_sync(rbd_dev);
5206 out_header_name:
5207         kfree(rbd_dev->header_name);
5208         rbd_dev->header_name = NULL;
5209 err_out_format:
5210         rbd_dev->image_format = 0;
5211         kfree(rbd_dev->spec->image_id);
5212         rbd_dev->spec->image_id = NULL;
5213
5214         dout("probe failed, returning %d\n", ret);
5215
5216         return ret;
5217 }
5218
5219 static ssize_t do_rbd_add(struct bus_type *bus,
5220                           const char *buf,
5221                           size_t count)
5222 {
5223         struct rbd_device *rbd_dev = NULL;
5224         struct ceph_options *ceph_opts = NULL;
5225         struct rbd_options *rbd_opts = NULL;
5226         struct rbd_spec *spec = NULL;
5227         struct rbd_client *rbdc;
5228         bool read_only;
5229         int rc = -ENOMEM;
5230
5231         if (!try_module_get(THIS_MODULE))
5232                 return -ENODEV;
5233
5234         /* parse add command */
5235         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5236         if (rc < 0)
5237                 goto err_out_module;
5238         read_only = rbd_opts->read_only;
5239         kfree(rbd_opts);
5240         rbd_opts = NULL;        /* done with this */
5241
5242         rbdc = rbd_get_client(ceph_opts);
5243         if (IS_ERR(rbdc)) {
5244                 rc = PTR_ERR(rbdc);
5245                 goto err_out_args;
5246         }
5247
5248         /* pick the pool */
5249         rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5250         if (rc < 0)
5251                 goto err_out_client;
5252         spec->pool_id = (u64)rc;
5253
5254         /* The ceph file layout needs to fit pool id in 32 bits */
5255
5256         if (spec->pool_id > (u64)U32_MAX) {
5257                 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5258                                 (unsigned long long)spec->pool_id, U32_MAX);
5259                 rc = -EIO;
5260                 goto err_out_client;
5261         }
5262
5263         rbd_dev = rbd_dev_create(rbdc, spec);
5264         if (!rbd_dev)
5265                 goto err_out_client;
5266         rbdc = NULL;            /* rbd_dev now owns this */
5267         spec = NULL;            /* rbd_dev now owns this */
5268
5269         rc = rbd_dev_image_probe(rbd_dev, true);
5270         if (rc < 0)
5271                 goto err_out_rbd_dev;
5272
5273         /* If we are mapping a snapshot it must be marked read-only */
5274
5275         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5276                 read_only = true;
5277         rbd_dev->mapping.read_only = read_only;
5278
5279         rc = rbd_dev_device_setup(rbd_dev);
5280         if (rc) {
5281                 /*
5282                  * rbd_dev_header_unwatch_sync() can't be moved into
5283                  * rbd_dev_image_release() without refactoring, see
5284                  * commit 1f3ef78861ac.
5285                  */
5286                 rbd_dev_header_unwatch_sync(rbd_dev);
5287                 rbd_dev_image_release(rbd_dev);
5288                 goto err_out_module;
5289         }
5290
5291         return count;
5292
5293 err_out_rbd_dev:
5294         rbd_dev_destroy(rbd_dev);
5295 err_out_client:
5296         rbd_put_client(rbdc);
5297 err_out_args:
5298         rbd_spec_put(spec);
5299 err_out_module:
5300         module_put(THIS_MODULE);
5301
5302         dout("Error adding device %s\n", buf);
5303
5304         return (ssize_t)rc;
5305 }
5306
5307 static ssize_t rbd_add(struct bus_type *bus,
5308                        const char *buf,
5309                        size_t count)
5310 {
5311         if (single_major)
5312                 return -EINVAL;
5313
5314         return do_rbd_add(bus, buf, count);
5315 }
5316
5317 static ssize_t rbd_add_single_major(struct bus_type *bus,
5318                                     const char *buf,
5319                                     size_t count)
5320 {
5321         return do_rbd_add(bus, buf, count);
5322 }
5323
5324 static void rbd_dev_device_release(struct device *dev)
5325 {
5326         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5327
5328         rbd_free_disk(rbd_dev);
5329         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5330         rbd_dev_mapping_clear(rbd_dev);
5331         if (!single_major)
5332                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5333         rbd_dev_id_put(rbd_dev);
5334         rbd_dev_mapping_clear(rbd_dev);
5335 }
5336
5337 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5338 {
5339         while (rbd_dev->parent) {
5340                 struct rbd_device *first = rbd_dev;
5341                 struct rbd_device *second = first->parent;
5342                 struct rbd_device *third;
5343
5344                 /*
5345                  * Follow to the parent with no grandparent and
5346                  * remove it.
5347                  */
5348                 while (second && (third = second->parent)) {
5349                         first = second;
5350                         second = third;
5351                 }
5352                 rbd_assert(second);
5353                 rbd_dev_image_release(second);
5354                 first->parent = NULL;
5355                 first->parent_overlap = 0;
5356
5357                 rbd_assert(first->parent_spec);
5358                 rbd_spec_put(first->parent_spec);
5359                 first->parent_spec = NULL;
5360         }
5361 }
5362
5363 static ssize_t do_rbd_remove(struct bus_type *bus,
5364                              const char *buf,
5365                              size_t count)
5366 {
5367         struct rbd_device *rbd_dev = NULL;
5368         struct list_head *tmp;
5369         int dev_id;
5370         unsigned long ul;
5371         bool already = false;
5372         int ret;
5373
5374         ret = kstrtoul(buf, 10, &ul);
5375         if (ret)
5376                 return ret;
5377
5378         /* convert to int; abort if we lost anything in the conversion */
5379         dev_id = (int)ul;
5380         if (dev_id != ul)
5381                 return -EINVAL;
5382
5383         ret = -ENOENT;
5384         spin_lock(&rbd_dev_list_lock);
5385         list_for_each(tmp, &rbd_dev_list) {
5386                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5387                 if (rbd_dev->dev_id == dev_id) {
5388                         ret = 0;
5389                         break;
5390                 }
5391         }
5392         if (!ret) {
5393                 spin_lock_irq(&rbd_dev->lock);
5394                 if (rbd_dev->open_count)
5395                         ret = -EBUSY;
5396                 else
5397                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5398                                                         &rbd_dev->flags);
5399                 spin_unlock_irq(&rbd_dev->lock);
5400         }
5401         spin_unlock(&rbd_dev_list_lock);
5402         if (ret < 0 || already)
5403                 return ret;
5404
5405         rbd_dev_header_unwatch_sync(rbd_dev);
5406         /*
5407          * flush remaining watch callbacks - these must be complete
5408          * before the osd_client is shutdown
5409          */
5410         dout("%s: flushing notifies", __func__);
5411         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5412
5413         /*
5414          * Don't free anything from rbd_dev->disk until after all
5415          * notifies are completely processed. Otherwise
5416          * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5417          * in a potential use after free of rbd_dev->disk or rbd_dev.
5418          */
5419         rbd_bus_del_dev(rbd_dev);
5420         rbd_dev_image_release(rbd_dev);
5421         module_put(THIS_MODULE);
5422
5423         return count;
5424 }
5425
5426 static ssize_t rbd_remove(struct bus_type *bus,
5427                           const char *buf,
5428                           size_t count)
5429 {
5430         if (single_major)
5431                 return -EINVAL;
5432
5433         return do_rbd_remove(bus, buf, count);
5434 }
5435
5436 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5437                                        const char *buf,
5438                                        size_t count)
5439 {
5440         return do_rbd_remove(bus, buf, count);
5441 }
5442
5443 /*
5444  * create control files in sysfs
5445  * /sys/bus/rbd/...
5446  */
5447 static int rbd_sysfs_init(void)
5448 {
5449         int ret;
5450
5451         ret = device_register(&rbd_root_dev);
5452         if (ret < 0)
5453                 return ret;
5454
5455         ret = bus_register(&rbd_bus_type);
5456         if (ret < 0)
5457                 device_unregister(&rbd_root_dev);
5458
5459         return ret;
5460 }
5461
5462 static void rbd_sysfs_cleanup(void)
5463 {
5464         bus_unregister(&rbd_bus_type);
5465         device_unregister(&rbd_root_dev);
5466 }
5467
5468 static int rbd_slab_init(void)
5469 {
5470         rbd_assert(!rbd_img_request_cache);
5471         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5472                                         sizeof (struct rbd_img_request),
5473                                         __alignof__(struct rbd_img_request),
5474                                         0, NULL);
5475         if (!rbd_img_request_cache)
5476                 return -ENOMEM;
5477
5478         rbd_assert(!rbd_obj_request_cache);
5479         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5480                                         sizeof (struct rbd_obj_request),
5481                                         __alignof__(struct rbd_obj_request),
5482                                         0, NULL);
5483         if (!rbd_obj_request_cache)
5484                 goto out_err;
5485
5486         rbd_assert(!rbd_segment_name_cache);
5487         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5488                                         CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5489         if (rbd_segment_name_cache)
5490                 return 0;
5491 out_err:
5492         if (rbd_obj_request_cache) {
5493                 kmem_cache_destroy(rbd_obj_request_cache);
5494                 rbd_obj_request_cache = NULL;
5495         }
5496
5497         kmem_cache_destroy(rbd_img_request_cache);
5498         rbd_img_request_cache = NULL;
5499
5500         return -ENOMEM;
5501 }
5502
5503 static void rbd_slab_exit(void)
5504 {
5505         rbd_assert(rbd_segment_name_cache);
5506         kmem_cache_destroy(rbd_segment_name_cache);
5507         rbd_segment_name_cache = NULL;
5508
5509         rbd_assert(rbd_obj_request_cache);
5510         kmem_cache_destroy(rbd_obj_request_cache);
5511         rbd_obj_request_cache = NULL;
5512
5513         rbd_assert(rbd_img_request_cache);
5514         kmem_cache_destroy(rbd_img_request_cache);
5515         rbd_img_request_cache = NULL;
5516 }
5517
5518 static int __init rbd_init(void)
5519 {
5520         int rc;
5521
5522         if (!libceph_compatible(NULL)) {
5523                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5524                 return -EINVAL;
5525         }
5526
5527         rc = rbd_slab_init();
5528         if (rc)
5529                 return rc;
5530
5531         if (single_major) {
5532                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5533                 if (rbd_major < 0) {
5534                         rc = rbd_major;
5535                         goto err_out_slab;
5536                 }
5537         }
5538
5539         rc = rbd_sysfs_init();
5540         if (rc)
5541                 goto err_out_blkdev;
5542
5543         if (single_major)
5544                 pr_info("loaded (major %d)\n", rbd_major);
5545         else
5546                 pr_info("loaded\n");
5547
5548         return 0;
5549
5550 err_out_blkdev:
5551         if (single_major)
5552                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5553 err_out_slab:
5554         rbd_slab_exit();
5555         return rc;
5556 }
5557
5558 static void __exit rbd_exit(void)
5559 {
5560         ida_destroy(&rbd_dev_id_ida);
5561         rbd_sysfs_cleanup();
5562         if (single_major)
5563                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5564         rbd_slab_exit();
5565 }
5566
5567 module_init(rbd_init);
5568 module_exit(rbd_exit);
5569
5570 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5571 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5572 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5573 /* following authorship retained from original osdblk.c */
5574 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5575
5576 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5577 MODULE_LICENSE("GPL");