rbd: update mapping size only on refresh
[firefly-linux-kernel-4.4.55.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44 #include <linux/idr.h>
45
46 #include "rbd_types.h"
47
48 #define RBD_DEBUG       /* Activate rbd_assert() calls */
49
50 /*
51  * The basic unit of block I/O is a sector.  It is interpreted in a
52  * number of contexts in Linux (blk, bio, genhd), but the default is
53  * universally 512 bytes.  These symbols are just slightly more
54  * meaningful than the bare numbers they represent.
55  */
56 #define SECTOR_SHIFT    9
57 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
58
59 /*
60  * Increment the given counter and return its updated value.
61  * If the counter is already 0 it will not be incremented.
62  * If the counter is already at its maximum value returns
63  * -EINVAL without updating it.
64  */
65 static int atomic_inc_return_safe(atomic_t *v)
66 {
67         unsigned int counter;
68
69         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
70         if (counter <= (unsigned int)INT_MAX)
71                 return (int)counter;
72
73         atomic_dec(v);
74
75         return -EINVAL;
76 }
77
78 /* Decrement the counter.  Return the resulting value, or -EINVAL */
79 static int atomic_dec_return_safe(atomic_t *v)
80 {
81         int counter;
82
83         counter = atomic_dec_return(v);
84         if (counter >= 0)
85                 return counter;
86
87         atomic_inc(v);
88
89         return -EINVAL;
90 }
91
92 #define RBD_DRV_NAME "rbd"
93
94 #define RBD_MINORS_PER_MAJOR            256
95 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
96
97 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
98 #define RBD_MAX_SNAP_NAME_LEN   \
99                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
100
101 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
102
103 #define RBD_SNAP_HEAD_NAME      "-"
104
105 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
106
107 /* This allows a single page to hold an image name sent by OSD */
108 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
109 #define RBD_IMAGE_ID_LEN_MAX    64
110
111 #define RBD_OBJ_PREFIX_LEN_MAX  64
112
113 /* Feature bits */
114
115 #define RBD_FEATURE_LAYERING    (1<<0)
116 #define RBD_FEATURE_STRIPINGV2  (1<<1)
117 #define RBD_FEATURES_ALL \
118             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
119
120 /* Features supported by this (client software) implementation. */
121
122 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
123
124 /*
125  * An RBD device name will be "rbd#", where the "rbd" comes from
126  * RBD_DRV_NAME above, and # is a unique integer identifier.
127  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
128  * enough to hold all possible device names.
129  */
130 #define DEV_NAME_LEN            32
131 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
132
133 /*
134  * block device image metadata (in-memory version)
135  */
136 struct rbd_image_header {
137         /* These six fields never change for a given rbd image */
138         char *object_prefix;
139         __u8 obj_order;
140         __u8 crypt_type;
141         __u8 comp_type;
142         u64 stripe_unit;
143         u64 stripe_count;
144         u64 features;           /* Might be changeable someday? */
145
146         /* The remaining fields need to be updated occasionally */
147         u64 image_size;
148         struct ceph_snap_context *snapc;
149         char *snap_names;       /* format 1 only */
150         u64 *snap_sizes;        /* format 1 only */
151 };
152
153 /*
154  * An rbd image specification.
155  *
156  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
157  * identify an image.  Each rbd_dev structure includes a pointer to
158  * an rbd_spec structure that encapsulates this identity.
159  *
160  * Each of the id's in an rbd_spec has an associated name.  For a
161  * user-mapped image, the names are supplied and the id's associated
162  * with them are looked up.  For a layered image, a parent image is
163  * defined by the tuple, and the names are looked up.
164  *
165  * An rbd_dev structure contains a parent_spec pointer which is
166  * non-null if the image it represents is a child in a layered
167  * image.  This pointer will refer to the rbd_spec structure used
168  * by the parent rbd_dev for its own identity (i.e., the structure
169  * is shared between the parent and child).
170  *
171  * Since these structures are populated once, during the discovery
172  * phase of image construction, they are effectively immutable so
173  * we make no effort to synchronize access to them.
174  *
175  * Note that code herein does not assume the image name is known (it
176  * could be a null pointer).
177  */
178 struct rbd_spec {
179         u64             pool_id;
180         const char      *pool_name;
181
182         const char      *image_id;
183         const char      *image_name;
184
185         u64             snap_id;
186         const char      *snap_name;
187
188         struct kref     kref;
189 };
190
191 /*
192  * an instance of the client.  multiple devices may share an rbd client.
193  */
194 struct rbd_client {
195         struct ceph_client      *client;
196         struct kref             kref;
197         struct list_head        node;
198 };
199
200 struct rbd_img_request;
201 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
202
203 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
204
205 struct rbd_obj_request;
206 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
207
208 enum obj_request_type {
209         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
210 };
211
212 enum obj_req_flags {
213         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
214         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
215         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
216         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
217 };
218
219 struct rbd_obj_request {
220         const char              *object_name;
221         u64                     offset;         /* object start byte */
222         u64                     length;         /* bytes from offset */
223         unsigned long           flags;
224
225         /*
226          * An object request associated with an image will have its
227          * img_data flag set; a standalone object request will not.
228          *
229          * A standalone object request will have which == BAD_WHICH
230          * and a null obj_request pointer.
231          *
232          * An object request initiated in support of a layered image
233          * object (to check for its existence before a write) will
234          * have which == BAD_WHICH and a non-null obj_request pointer.
235          *
236          * Finally, an object request for rbd image data will have
237          * which != BAD_WHICH, and will have a non-null img_request
238          * pointer.  The value of which will be in the range
239          * 0..(img_request->obj_request_count-1).
240          */
241         union {
242                 struct rbd_obj_request  *obj_request;   /* STAT op */
243                 struct {
244                         struct rbd_img_request  *img_request;
245                         u64                     img_offset;
246                         /* links for img_request->obj_requests list */
247                         struct list_head        links;
248                 };
249         };
250         u32                     which;          /* posn image request list */
251
252         enum obj_request_type   type;
253         union {
254                 struct bio      *bio_list;
255                 struct {
256                         struct page     **pages;
257                         u32             page_count;
258                 };
259         };
260         struct page             **copyup_pages;
261         u32                     copyup_page_count;
262
263         struct ceph_osd_request *osd_req;
264
265         u64                     xferred;        /* bytes transferred */
266         int                     result;
267
268         rbd_obj_callback_t      callback;
269         struct completion       completion;
270
271         struct kref             kref;
272 };
273
274 enum img_req_flags {
275         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
276         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
277         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
278 };
279
280 struct rbd_img_request {
281         struct rbd_device       *rbd_dev;
282         u64                     offset; /* starting image byte offset */
283         u64                     length; /* byte count from offset */
284         unsigned long           flags;
285         union {
286                 u64                     snap_id;        /* for reads */
287                 struct ceph_snap_context *snapc;        /* for writes */
288         };
289         union {
290                 struct request          *rq;            /* block request */
291                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
292         };
293         struct page             **copyup_pages;
294         u32                     copyup_page_count;
295         spinlock_t              completion_lock;/* protects next_completion */
296         u32                     next_completion;
297         rbd_img_callback_t      callback;
298         u64                     xferred;/* aggregate bytes transferred */
299         int                     result; /* first nonzero obj_request result */
300
301         u32                     obj_request_count;
302         struct list_head        obj_requests;   /* rbd_obj_request structs */
303
304         struct kref             kref;
305 };
306
307 #define for_each_obj_request(ireq, oreq) \
308         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
309 #define for_each_obj_request_from(ireq, oreq) \
310         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
311 #define for_each_obj_request_safe(ireq, oreq, n) \
312         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
313
314 struct rbd_mapping {
315         u64                     size;
316         u64                     features;
317         bool                    read_only;
318 };
319
320 /*
321  * a single device
322  */
323 struct rbd_device {
324         int                     dev_id;         /* blkdev unique id */
325
326         int                     major;          /* blkdev assigned major */
327         int                     minor;
328         struct gendisk          *disk;          /* blkdev's gendisk and rq */
329
330         u32                     image_format;   /* Either 1 or 2 */
331         struct rbd_client       *rbd_client;
332
333         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
334
335         spinlock_t              lock;           /* queue, flags, open_count */
336
337         struct rbd_image_header header;
338         unsigned long           flags;          /* possibly lock protected */
339         struct rbd_spec         *spec;
340
341         char                    *header_name;
342
343         struct ceph_file_layout layout;
344
345         struct ceph_osd_event   *watch_event;
346         struct rbd_obj_request  *watch_request;
347
348         struct rbd_spec         *parent_spec;
349         u64                     parent_overlap;
350         atomic_t                parent_ref;
351         struct rbd_device       *parent;
352
353         /* protects updating the header */
354         struct rw_semaphore     header_rwsem;
355
356         struct rbd_mapping      mapping;
357
358         struct list_head        node;
359
360         /* sysfs related */
361         struct device           dev;
362         unsigned long           open_count;     /* protected by lock */
363 };
364
365 /*
366  * Flag bits for rbd_dev->flags.  If atomicity is required,
367  * rbd_dev->lock is used to protect access.
368  *
369  * Currently, only the "removing" flag (which is coupled with the
370  * "open_count" field) requires atomic access.
371  */
372 enum rbd_dev_flags {
373         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
374         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
375 };
376
377 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
378
379 static LIST_HEAD(rbd_dev_list);    /* devices */
380 static DEFINE_SPINLOCK(rbd_dev_list_lock);
381
382 static LIST_HEAD(rbd_client_list);              /* clients */
383 static DEFINE_SPINLOCK(rbd_client_list_lock);
384
385 /* Slab caches for frequently-allocated structures */
386
387 static struct kmem_cache        *rbd_img_request_cache;
388 static struct kmem_cache        *rbd_obj_request_cache;
389 static struct kmem_cache        *rbd_segment_name_cache;
390
391 static int rbd_major;
392 static DEFINE_IDA(rbd_dev_id_ida);
393
394 /*
395  * Default to false for now, as single-major requires >= 0.75 version of
396  * userspace rbd utility.
397  */
398 static bool single_major = false;
399 module_param(single_major, bool, S_IRUGO);
400 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
401
402 static int rbd_img_request_submit(struct rbd_img_request *img_request);
403
404 static void rbd_dev_device_release(struct device *dev);
405
406 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
407                        size_t count);
408 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
409                           size_t count);
410 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
411                                     size_t count);
412 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
413                                        size_t count);
414 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
415 static void rbd_spec_put(struct rbd_spec *spec);
416
417 static int rbd_dev_id_to_minor(int dev_id)
418 {
419         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
420 }
421
422 static int minor_to_rbd_dev_id(int minor)
423 {
424         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
425 }
426
427 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
428 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
429 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
430 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
431
432 static struct attribute *rbd_bus_attrs[] = {
433         &bus_attr_add.attr,
434         &bus_attr_remove.attr,
435         &bus_attr_add_single_major.attr,
436         &bus_attr_remove_single_major.attr,
437         NULL,
438 };
439
440 static umode_t rbd_bus_is_visible(struct kobject *kobj,
441                                   struct attribute *attr, int index)
442 {
443         if (!single_major &&
444             (attr == &bus_attr_add_single_major.attr ||
445              attr == &bus_attr_remove_single_major.attr))
446                 return 0;
447
448         return attr->mode;
449 }
450
451 static const struct attribute_group rbd_bus_group = {
452         .attrs = rbd_bus_attrs,
453         .is_visible = rbd_bus_is_visible,
454 };
455 __ATTRIBUTE_GROUPS(rbd_bus);
456
457 static struct bus_type rbd_bus_type = {
458         .name           = "rbd",
459         .bus_groups     = rbd_bus_groups,
460 };
461
462 static void rbd_root_dev_release(struct device *dev)
463 {
464 }
465
466 static struct device rbd_root_dev = {
467         .init_name =    "rbd",
468         .release =      rbd_root_dev_release,
469 };
470
471 static __printf(2, 3)
472 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
473 {
474         struct va_format vaf;
475         va_list args;
476
477         va_start(args, fmt);
478         vaf.fmt = fmt;
479         vaf.va = &args;
480
481         if (!rbd_dev)
482                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
483         else if (rbd_dev->disk)
484                 printk(KERN_WARNING "%s: %s: %pV\n",
485                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
486         else if (rbd_dev->spec && rbd_dev->spec->image_name)
487                 printk(KERN_WARNING "%s: image %s: %pV\n",
488                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
489         else if (rbd_dev->spec && rbd_dev->spec->image_id)
490                 printk(KERN_WARNING "%s: id %s: %pV\n",
491                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
492         else    /* punt */
493                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
494                         RBD_DRV_NAME, rbd_dev, &vaf);
495         va_end(args);
496 }
497
498 #ifdef RBD_DEBUG
499 #define rbd_assert(expr)                                                \
500                 if (unlikely(!(expr))) {                                \
501                         printk(KERN_ERR "\nAssertion failure in %s() "  \
502                                                 "at line %d:\n\n"       \
503                                         "\trbd_assert(%s);\n\n",        \
504                                         __func__, __LINE__, #expr);     \
505                         BUG();                                          \
506                 }
507 #else /* !RBD_DEBUG */
508 #  define rbd_assert(expr)      ((void) 0)
509 #endif /* !RBD_DEBUG */
510
511 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
512 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
513 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
514
515 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
516 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
517 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
518 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
519                                         u64 snap_id);
520 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
521                                 u8 *order, u64 *snap_size);
522 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
523                 u64 *snap_features);
524 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
525
526 static int rbd_open(struct block_device *bdev, fmode_t mode)
527 {
528         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
529         bool removing = false;
530
531         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
532                 return -EROFS;
533
534         spin_lock_irq(&rbd_dev->lock);
535         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
536                 removing = true;
537         else
538                 rbd_dev->open_count++;
539         spin_unlock_irq(&rbd_dev->lock);
540         if (removing)
541                 return -ENOENT;
542
543         (void) get_device(&rbd_dev->dev);
544
545         return 0;
546 }
547
548 static void rbd_release(struct gendisk *disk, fmode_t mode)
549 {
550         struct rbd_device *rbd_dev = disk->private_data;
551         unsigned long open_count_before;
552
553         spin_lock_irq(&rbd_dev->lock);
554         open_count_before = rbd_dev->open_count--;
555         spin_unlock_irq(&rbd_dev->lock);
556         rbd_assert(open_count_before > 0);
557
558         put_device(&rbd_dev->dev);
559 }
560
561 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
562 {
563         int ret = 0;
564         int val;
565         bool ro;
566         bool ro_changed = false;
567
568         /* get_user() may sleep, so call it before taking rbd_dev->lock */
569         if (get_user(val, (int __user *)(arg)))
570                 return -EFAULT;
571
572         ro = val ? true : false;
573         /* Snapshot doesn't allow to write*/
574         if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
575                 return -EROFS;
576
577         spin_lock_irq(&rbd_dev->lock);
578         /* prevent others open this device */
579         if (rbd_dev->open_count > 1) {
580                 ret = -EBUSY;
581                 goto out;
582         }
583
584         if (rbd_dev->mapping.read_only != ro) {
585                 rbd_dev->mapping.read_only = ro;
586                 ro_changed = true;
587         }
588
589 out:
590         spin_unlock_irq(&rbd_dev->lock);
591         /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
592         if (ret == 0 && ro_changed)
593                 set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
594
595         return ret;
596 }
597
598 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
599                         unsigned int cmd, unsigned long arg)
600 {
601         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
602         int ret = 0;
603
604         switch (cmd) {
605         case BLKROSET:
606                 ret = rbd_ioctl_set_ro(rbd_dev, arg);
607                 break;
608         default:
609                 ret = -ENOTTY;
610         }
611
612         return ret;
613 }
614
615 #ifdef CONFIG_COMPAT
616 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
617                                 unsigned int cmd, unsigned long arg)
618 {
619         return rbd_ioctl(bdev, mode, cmd, arg);
620 }
621 #endif /* CONFIG_COMPAT */
622
623 static const struct block_device_operations rbd_bd_ops = {
624         .owner                  = THIS_MODULE,
625         .open                   = rbd_open,
626         .release                = rbd_release,
627         .ioctl                  = rbd_ioctl,
628 #ifdef CONFIG_COMPAT
629         .compat_ioctl           = rbd_compat_ioctl,
630 #endif
631 };
632
633 /*
634  * Initialize an rbd client instance.  Success or not, this function
635  * consumes ceph_opts.  Caller holds client_mutex.
636  */
637 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
638 {
639         struct rbd_client *rbdc;
640         int ret = -ENOMEM;
641
642         dout("%s:\n", __func__);
643         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
644         if (!rbdc)
645                 goto out_opt;
646
647         kref_init(&rbdc->kref);
648         INIT_LIST_HEAD(&rbdc->node);
649
650         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
651         if (IS_ERR(rbdc->client))
652                 goto out_rbdc;
653         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
654
655         ret = ceph_open_session(rbdc->client);
656         if (ret < 0)
657                 goto out_client;
658
659         spin_lock(&rbd_client_list_lock);
660         list_add_tail(&rbdc->node, &rbd_client_list);
661         spin_unlock(&rbd_client_list_lock);
662
663         dout("%s: rbdc %p\n", __func__, rbdc);
664
665         return rbdc;
666 out_client:
667         ceph_destroy_client(rbdc->client);
668 out_rbdc:
669         kfree(rbdc);
670 out_opt:
671         if (ceph_opts)
672                 ceph_destroy_options(ceph_opts);
673         dout("%s: error %d\n", __func__, ret);
674
675         return ERR_PTR(ret);
676 }
677
678 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
679 {
680         kref_get(&rbdc->kref);
681
682         return rbdc;
683 }
684
685 /*
686  * Find a ceph client with specific addr and configuration.  If
687  * found, bump its reference count.
688  */
689 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
690 {
691         struct rbd_client *client_node;
692         bool found = false;
693
694         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
695                 return NULL;
696
697         spin_lock(&rbd_client_list_lock);
698         list_for_each_entry(client_node, &rbd_client_list, node) {
699                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
700                         __rbd_get_client(client_node);
701
702                         found = true;
703                         break;
704                 }
705         }
706         spin_unlock(&rbd_client_list_lock);
707
708         return found ? client_node : NULL;
709 }
710
711 /*
712  * mount options
713  */
714 enum {
715         Opt_last_int,
716         /* int args above */
717         Opt_last_string,
718         /* string args above */
719         Opt_read_only,
720         Opt_read_write,
721         /* Boolean args above */
722         Opt_last_bool,
723 };
724
725 static match_table_t rbd_opts_tokens = {
726         /* int args above */
727         /* string args above */
728         {Opt_read_only, "read_only"},
729         {Opt_read_only, "ro"},          /* Alternate spelling */
730         {Opt_read_write, "read_write"},
731         {Opt_read_write, "rw"},         /* Alternate spelling */
732         /* Boolean args above */
733         {-1, NULL}
734 };
735
736 struct rbd_options {
737         bool    read_only;
738 };
739
740 #define RBD_READ_ONLY_DEFAULT   false
741
742 static int parse_rbd_opts_token(char *c, void *private)
743 {
744         struct rbd_options *rbd_opts = private;
745         substring_t argstr[MAX_OPT_ARGS];
746         int token, intval, ret;
747
748         token = match_token(c, rbd_opts_tokens, argstr);
749         if (token < 0)
750                 return -EINVAL;
751
752         if (token < Opt_last_int) {
753                 ret = match_int(&argstr[0], &intval);
754                 if (ret < 0) {
755                         pr_err("bad mount option arg (not int) "
756                                "at '%s'\n", c);
757                         return ret;
758                 }
759                 dout("got int token %d val %d\n", token, intval);
760         } else if (token > Opt_last_int && token < Opt_last_string) {
761                 dout("got string token %d val %s\n", token,
762                      argstr[0].from);
763         } else if (token > Opt_last_string && token < Opt_last_bool) {
764                 dout("got Boolean token %d\n", token);
765         } else {
766                 dout("got token %d\n", token);
767         }
768
769         switch (token) {
770         case Opt_read_only:
771                 rbd_opts->read_only = true;
772                 break;
773         case Opt_read_write:
774                 rbd_opts->read_only = false;
775                 break;
776         default:
777                 rbd_assert(false);
778                 break;
779         }
780         return 0;
781 }
782
783 /*
784  * Get a ceph client with specific addr and configuration, if one does
785  * not exist create it.  Either way, ceph_opts is consumed by this
786  * function.
787  */
788 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
789 {
790         struct rbd_client *rbdc;
791
792         mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
793         rbdc = rbd_client_find(ceph_opts);
794         if (rbdc)       /* using an existing client */
795                 ceph_destroy_options(ceph_opts);
796         else
797                 rbdc = rbd_client_create(ceph_opts);
798         mutex_unlock(&client_mutex);
799
800         return rbdc;
801 }
802
803 /*
804  * Destroy ceph client
805  *
806  * Caller must hold rbd_client_list_lock.
807  */
808 static void rbd_client_release(struct kref *kref)
809 {
810         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
811
812         dout("%s: rbdc %p\n", __func__, rbdc);
813         spin_lock(&rbd_client_list_lock);
814         list_del(&rbdc->node);
815         spin_unlock(&rbd_client_list_lock);
816
817         ceph_destroy_client(rbdc->client);
818         kfree(rbdc);
819 }
820
821 /*
822  * Drop reference to ceph client node. If it's not referenced anymore, release
823  * it.
824  */
825 static void rbd_put_client(struct rbd_client *rbdc)
826 {
827         if (rbdc)
828                 kref_put(&rbdc->kref, rbd_client_release);
829 }
830
831 static bool rbd_image_format_valid(u32 image_format)
832 {
833         return image_format == 1 || image_format == 2;
834 }
835
836 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
837 {
838         size_t size;
839         u32 snap_count;
840
841         /* The header has to start with the magic rbd header text */
842         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
843                 return false;
844
845         /* The bio layer requires at least sector-sized I/O */
846
847         if (ondisk->options.order < SECTOR_SHIFT)
848                 return false;
849
850         /* If we use u64 in a few spots we may be able to loosen this */
851
852         if (ondisk->options.order > 8 * sizeof (int) - 1)
853                 return false;
854
855         /*
856          * The size of a snapshot header has to fit in a size_t, and
857          * that limits the number of snapshots.
858          */
859         snap_count = le32_to_cpu(ondisk->snap_count);
860         size = SIZE_MAX - sizeof (struct ceph_snap_context);
861         if (snap_count > size / sizeof (__le64))
862                 return false;
863
864         /*
865          * Not only that, but the size of the entire the snapshot
866          * header must also be representable in a size_t.
867          */
868         size -= snap_count * sizeof (__le64);
869         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
870                 return false;
871
872         return true;
873 }
874
875 /*
876  * Fill an rbd image header with information from the given format 1
877  * on-disk header.
878  */
879 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
880                                  struct rbd_image_header_ondisk *ondisk)
881 {
882         struct rbd_image_header *header = &rbd_dev->header;
883         bool first_time = header->object_prefix == NULL;
884         struct ceph_snap_context *snapc;
885         char *object_prefix = NULL;
886         char *snap_names = NULL;
887         u64 *snap_sizes = NULL;
888         u32 snap_count;
889         size_t size;
890         int ret = -ENOMEM;
891         u32 i;
892
893         /* Allocate this now to avoid having to handle failure below */
894
895         if (first_time) {
896                 size_t len;
897
898                 len = strnlen(ondisk->object_prefix,
899                                 sizeof (ondisk->object_prefix));
900                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
901                 if (!object_prefix)
902                         return -ENOMEM;
903                 memcpy(object_prefix, ondisk->object_prefix, len);
904                 object_prefix[len] = '\0';
905         }
906
907         /* Allocate the snapshot context and fill it in */
908
909         snap_count = le32_to_cpu(ondisk->snap_count);
910         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
911         if (!snapc)
912                 goto out_err;
913         snapc->seq = le64_to_cpu(ondisk->snap_seq);
914         if (snap_count) {
915                 struct rbd_image_snap_ondisk *snaps;
916                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
917
918                 /* We'll keep a copy of the snapshot names... */
919
920                 if (snap_names_len > (u64)SIZE_MAX)
921                         goto out_2big;
922                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
923                 if (!snap_names)
924                         goto out_err;
925
926                 /* ...as well as the array of their sizes. */
927
928                 size = snap_count * sizeof (*header->snap_sizes);
929                 snap_sizes = kmalloc(size, GFP_KERNEL);
930                 if (!snap_sizes)
931                         goto out_err;
932
933                 /*
934                  * Copy the names, and fill in each snapshot's id
935                  * and size.
936                  *
937                  * Note that rbd_dev_v1_header_info() guarantees the
938                  * ondisk buffer we're working with has
939                  * snap_names_len bytes beyond the end of the
940                  * snapshot id array, this memcpy() is safe.
941                  */
942                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
943                 snaps = ondisk->snaps;
944                 for (i = 0; i < snap_count; i++) {
945                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
946                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
947                 }
948         }
949
950         /* We won't fail any more, fill in the header */
951
952         if (first_time) {
953                 header->object_prefix = object_prefix;
954                 header->obj_order = ondisk->options.order;
955                 header->crypt_type = ondisk->options.crypt_type;
956                 header->comp_type = ondisk->options.comp_type;
957                 /* The rest aren't used for format 1 images */
958                 header->stripe_unit = 0;
959                 header->stripe_count = 0;
960                 header->features = 0;
961         } else {
962                 ceph_put_snap_context(header->snapc);
963                 kfree(header->snap_names);
964                 kfree(header->snap_sizes);
965         }
966
967         /* The remaining fields always get updated (when we refresh) */
968
969         header->image_size = le64_to_cpu(ondisk->image_size);
970         header->snapc = snapc;
971         header->snap_names = snap_names;
972         header->snap_sizes = snap_sizes;
973
974         return 0;
975 out_2big:
976         ret = -EIO;
977 out_err:
978         kfree(snap_sizes);
979         kfree(snap_names);
980         ceph_put_snap_context(snapc);
981         kfree(object_prefix);
982
983         return ret;
984 }
985
986 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
987 {
988         const char *snap_name;
989
990         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
991
992         /* Skip over names until we find the one we are looking for */
993
994         snap_name = rbd_dev->header.snap_names;
995         while (which--)
996                 snap_name += strlen(snap_name) + 1;
997
998         return kstrdup(snap_name, GFP_KERNEL);
999 }
1000
1001 /*
1002  * Snapshot id comparison function for use with qsort()/bsearch().
1003  * Note that result is for snapshots in *descending* order.
1004  */
1005 static int snapid_compare_reverse(const void *s1, const void *s2)
1006 {
1007         u64 snap_id1 = *(u64 *)s1;
1008         u64 snap_id2 = *(u64 *)s2;
1009
1010         if (snap_id1 < snap_id2)
1011                 return 1;
1012         return snap_id1 == snap_id2 ? 0 : -1;
1013 }
1014
1015 /*
1016  * Search a snapshot context to see if the given snapshot id is
1017  * present.
1018  *
1019  * Returns the position of the snapshot id in the array if it's found,
1020  * or BAD_SNAP_INDEX otherwise.
1021  *
1022  * Note: The snapshot array is in kept sorted (by the osd) in
1023  * reverse order, highest snapshot id first.
1024  */
1025 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1026 {
1027         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1028         u64 *found;
1029
1030         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1031                                 sizeof (snap_id), snapid_compare_reverse);
1032
1033         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1034 }
1035
1036 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1037                                         u64 snap_id)
1038 {
1039         u32 which;
1040         const char *snap_name;
1041
1042         which = rbd_dev_snap_index(rbd_dev, snap_id);
1043         if (which == BAD_SNAP_INDEX)
1044                 return ERR_PTR(-ENOENT);
1045
1046         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1047         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1048 }
1049
1050 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1051 {
1052         if (snap_id == CEPH_NOSNAP)
1053                 return RBD_SNAP_HEAD_NAME;
1054
1055         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1056         if (rbd_dev->image_format == 1)
1057                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1058
1059         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1060 }
1061
1062 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1063                                 u64 *snap_size)
1064 {
1065         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1066         if (snap_id == CEPH_NOSNAP) {
1067                 *snap_size = rbd_dev->header.image_size;
1068         } else if (rbd_dev->image_format == 1) {
1069                 u32 which;
1070
1071                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1072                 if (which == BAD_SNAP_INDEX)
1073                         return -ENOENT;
1074
1075                 *snap_size = rbd_dev->header.snap_sizes[which];
1076         } else {
1077                 u64 size = 0;
1078                 int ret;
1079
1080                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1081                 if (ret)
1082                         return ret;
1083
1084                 *snap_size = size;
1085         }
1086         return 0;
1087 }
1088
1089 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1090                         u64 *snap_features)
1091 {
1092         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1093         if (snap_id == CEPH_NOSNAP) {
1094                 *snap_features = rbd_dev->header.features;
1095         } else if (rbd_dev->image_format == 1) {
1096                 *snap_features = 0;     /* No features for format 1 */
1097         } else {
1098                 u64 features = 0;
1099                 int ret;
1100
1101                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1102                 if (ret)
1103                         return ret;
1104
1105                 *snap_features = features;
1106         }
1107         return 0;
1108 }
1109
1110 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1111 {
1112         u64 snap_id = rbd_dev->spec->snap_id;
1113         u64 size = 0;
1114         u64 features = 0;
1115         int ret;
1116
1117         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1118         if (ret)
1119                 return ret;
1120         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1121         if (ret)
1122                 return ret;
1123
1124         rbd_dev->mapping.size = size;
1125         rbd_dev->mapping.features = features;
1126
1127         return 0;
1128 }
1129
1130 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1131 {
1132         rbd_dev->mapping.size = 0;
1133         rbd_dev->mapping.features = 0;
1134 }
1135
1136 static void rbd_segment_name_free(const char *name)
1137 {
1138         /* The explicit cast here is needed to drop the const qualifier */
1139
1140         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1141 }
1142
1143 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1144 {
1145         char *name;
1146         u64 segment;
1147         int ret;
1148         char *name_format;
1149
1150         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1151         if (!name)
1152                 return NULL;
1153         segment = offset >> rbd_dev->header.obj_order;
1154         name_format = "%s.%012llx";
1155         if (rbd_dev->image_format == 2)
1156                 name_format = "%s.%016llx";
1157         ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1158                         rbd_dev->header.object_prefix, segment);
1159         if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1160                 pr_err("error formatting segment name for #%llu (%d)\n",
1161                         segment, ret);
1162                 rbd_segment_name_free(name);
1163                 name = NULL;
1164         }
1165
1166         return name;
1167 }
1168
1169 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1170 {
1171         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1172
1173         return offset & (segment_size - 1);
1174 }
1175
1176 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1177                                 u64 offset, u64 length)
1178 {
1179         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1180
1181         offset &= segment_size - 1;
1182
1183         rbd_assert(length <= U64_MAX - offset);
1184         if (offset + length > segment_size)
1185                 length = segment_size - offset;
1186
1187         return length;
1188 }
1189
1190 /*
1191  * returns the size of an object in the image
1192  */
1193 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1194 {
1195         return 1 << header->obj_order;
1196 }
1197
1198 /*
1199  * bio helpers
1200  */
1201
1202 static void bio_chain_put(struct bio *chain)
1203 {
1204         struct bio *tmp;
1205
1206         while (chain) {
1207                 tmp = chain;
1208                 chain = chain->bi_next;
1209                 bio_put(tmp);
1210         }
1211 }
1212
1213 /*
1214  * zeros a bio chain, starting at specific offset
1215  */
1216 static void zero_bio_chain(struct bio *chain, int start_ofs)
1217 {
1218         struct bio_vec bv;
1219         struct bvec_iter iter;
1220         unsigned long flags;
1221         void *buf;
1222         int pos = 0;
1223
1224         while (chain) {
1225                 bio_for_each_segment(bv, chain, iter) {
1226                         if (pos + bv.bv_len > start_ofs) {
1227                                 int remainder = max(start_ofs - pos, 0);
1228                                 buf = bvec_kmap_irq(&bv, &flags);
1229                                 memset(buf + remainder, 0,
1230                                        bv.bv_len - remainder);
1231                                 flush_dcache_page(bv.bv_page);
1232                                 bvec_kunmap_irq(buf, &flags);
1233                         }
1234                         pos += bv.bv_len;
1235                 }
1236
1237                 chain = chain->bi_next;
1238         }
1239 }
1240
1241 /*
1242  * similar to zero_bio_chain(), zeros data defined by a page array,
1243  * starting at the given byte offset from the start of the array and
1244  * continuing up to the given end offset.  The pages array is
1245  * assumed to be big enough to hold all bytes up to the end.
1246  */
1247 static void zero_pages(struct page **pages, u64 offset, u64 end)
1248 {
1249         struct page **page = &pages[offset >> PAGE_SHIFT];
1250
1251         rbd_assert(end > offset);
1252         rbd_assert(end - offset <= (u64)SIZE_MAX);
1253         while (offset < end) {
1254                 size_t page_offset;
1255                 size_t length;
1256                 unsigned long flags;
1257                 void *kaddr;
1258
1259                 page_offset = offset & ~PAGE_MASK;
1260                 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1261                 local_irq_save(flags);
1262                 kaddr = kmap_atomic(*page);
1263                 memset(kaddr + page_offset, 0, length);
1264                 flush_dcache_page(*page);
1265                 kunmap_atomic(kaddr);
1266                 local_irq_restore(flags);
1267
1268                 offset += length;
1269                 page++;
1270         }
1271 }
1272
1273 /*
1274  * Clone a portion of a bio, starting at the given byte offset
1275  * and continuing for the number of bytes indicated.
1276  */
1277 static struct bio *bio_clone_range(struct bio *bio_src,
1278                                         unsigned int offset,
1279                                         unsigned int len,
1280                                         gfp_t gfpmask)
1281 {
1282         struct bio *bio;
1283
1284         bio = bio_clone(bio_src, gfpmask);
1285         if (!bio)
1286                 return NULL;    /* ENOMEM */
1287
1288         bio_advance(bio, offset);
1289         bio->bi_iter.bi_size = len;
1290
1291         return bio;
1292 }
1293
1294 /*
1295  * Clone a portion of a bio chain, starting at the given byte offset
1296  * into the first bio in the source chain and continuing for the
1297  * number of bytes indicated.  The result is another bio chain of
1298  * exactly the given length, or a null pointer on error.
1299  *
1300  * The bio_src and offset parameters are both in-out.  On entry they
1301  * refer to the first source bio and the offset into that bio where
1302  * the start of data to be cloned is located.
1303  *
1304  * On return, bio_src is updated to refer to the bio in the source
1305  * chain that contains first un-cloned byte, and *offset will
1306  * contain the offset of that byte within that bio.
1307  */
1308 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1309                                         unsigned int *offset,
1310                                         unsigned int len,
1311                                         gfp_t gfpmask)
1312 {
1313         struct bio *bi = *bio_src;
1314         unsigned int off = *offset;
1315         struct bio *chain = NULL;
1316         struct bio **end;
1317
1318         /* Build up a chain of clone bios up to the limit */
1319
1320         if (!bi || off >= bi->bi_iter.bi_size || !len)
1321                 return NULL;            /* Nothing to clone */
1322
1323         end = &chain;
1324         while (len) {
1325                 unsigned int bi_size;
1326                 struct bio *bio;
1327
1328                 if (!bi) {
1329                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1330                         goto out_err;   /* EINVAL; ran out of bio's */
1331                 }
1332                 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1333                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1334                 if (!bio)
1335                         goto out_err;   /* ENOMEM */
1336
1337                 *end = bio;
1338                 end = &bio->bi_next;
1339
1340                 off += bi_size;
1341                 if (off == bi->bi_iter.bi_size) {
1342                         bi = bi->bi_next;
1343                         off = 0;
1344                 }
1345                 len -= bi_size;
1346         }
1347         *bio_src = bi;
1348         *offset = off;
1349
1350         return chain;
1351 out_err:
1352         bio_chain_put(chain);
1353
1354         return NULL;
1355 }
1356
1357 /*
1358  * The default/initial value for all object request flags is 0.  For
1359  * each flag, once its value is set to 1 it is never reset to 0
1360  * again.
1361  */
1362 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1363 {
1364         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1365                 struct rbd_device *rbd_dev;
1366
1367                 rbd_dev = obj_request->img_request->rbd_dev;
1368                 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1369                         obj_request);
1370         }
1371 }
1372
1373 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1374 {
1375         smp_mb();
1376         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1377 }
1378
1379 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1380 {
1381         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1382                 struct rbd_device *rbd_dev = NULL;
1383
1384                 if (obj_request_img_data_test(obj_request))
1385                         rbd_dev = obj_request->img_request->rbd_dev;
1386                 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1387                         obj_request);
1388         }
1389 }
1390
1391 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1392 {
1393         smp_mb();
1394         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1395 }
1396
1397 /*
1398  * This sets the KNOWN flag after (possibly) setting the EXISTS
1399  * flag.  The latter is set based on the "exists" value provided.
1400  *
1401  * Note that for our purposes once an object exists it never goes
1402  * away again.  It's possible that the response from two existence
1403  * checks are separated by the creation of the target object, and
1404  * the first ("doesn't exist") response arrives *after* the second
1405  * ("does exist").  In that case we ignore the second one.
1406  */
1407 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1408                                 bool exists)
1409 {
1410         if (exists)
1411                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1412         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1413         smp_mb();
1414 }
1415
1416 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1417 {
1418         smp_mb();
1419         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1420 }
1421
1422 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1423 {
1424         smp_mb();
1425         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1426 }
1427
1428 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1429 {
1430         struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1431
1432         return obj_request->img_offset <
1433             round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1434 }
1435
1436 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1437 {
1438         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1439                 atomic_read(&obj_request->kref.refcount));
1440         kref_get(&obj_request->kref);
1441 }
1442
1443 static void rbd_obj_request_destroy(struct kref *kref);
1444 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1445 {
1446         rbd_assert(obj_request != NULL);
1447         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1448                 atomic_read(&obj_request->kref.refcount));
1449         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1450 }
1451
1452 static void rbd_img_request_get(struct rbd_img_request *img_request)
1453 {
1454         dout("%s: img %p (was %d)\n", __func__, img_request,
1455              atomic_read(&img_request->kref.refcount));
1456         kref_get(&img_request->kref);
1457 }
1458
1459 static bool img_request_child_test(struct rbd_img_request *img_request);
1460 static void rbd_parent_request_destroy(struct kref *kref);
1461 static void rbd_img_request_destroy(struct kref *kref);
1462 static void rbd_img_request_put(struct rbd_img_request *img_request)
1463 {
1464         rbd_assert(img_request != NULL);
1465         dout("%s: img %p (was %d)\n", __func__, img_request,
1466                 atomic_read(&img_request->kref.refcount));
1467         if (img_request_child_test(img_request))
1468                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1469         else
1470                 kref_put(&img_request->kref, rbd_img_request_destroy);
1471 }
1472
1473 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1474                                         struct rbd_obj_request *obj_request)
1475 {
1476         rbd_assert(obj_request->img_request == NULL);
1477
1478         /* Image request now owns object's original reference */
1479         obj_request->img_request = img_request;
1480         obj_request->which = img_request->obj_request_count;
1481         rbd_assert(!obj_request_img_data_test(obj_request));
1482         obj_request_img_data_set(obj_request);
1483         rbd_assert(obj_request->which != BAD_WHICH);
1484         img_request->obj_request_count++;
1485         list_add_tail(&obj_request->links, &img_request->obj_requests);
1486         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1487                 obj_request->which);
1488 }
1489
1490 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1491                                         struct rbd_obj_request *obj_request)
1492 {
1493         rbd_assert(obj_request->which != BAD_WHICH);
1494
1495         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1496                 obj_request->which);
1497         list_del(&obj_request->links);
1498         rbd_assert(img_request->obj_request_count > 0);
1499         img_request->obj_request_count--;
1500         rbd_assert(obj_request->which == img_request->obj_request_count);
1501         obj_request->which = BAD_WHICH;
1502         rbd_assert(obj_request_img_data_test(obj_request));
1503         rbd_assert(obj_request->img_request == img_request);
1504         obj_request->img_request = NULL;
1505         obj_request->callback = NULL;
1506         rbd_obj_request_put(obj_request);
1507 }
1508
1509 static bool obj_request_type_valid(enum obj_request_type type)
1510 {
1511         switch (type) {
1512         case OBJ_REQUEST_NODATA:
1513         case OBJ_REQUEST_BIO:
1514         case OBJ_REQUEST_PAGES:
1515                 return true;
1516         default:
1517                 return false;
1518         }
1519 }
1520
1521 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1522                                 struct rbd_obj_request *obj_request)
1523 {
1524         dout("%s %p\n", __func__, obj_request);
1525         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1526 }
1527
1528 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1529 {
1530         dout("%s %p\n", __func__, obj_request);
1531         ceph_osdc_cancel_request(obj_request->osd_req);
1532 }
1533
1534 /*
1535  * Wait for an object request to complete.  If interrupted, cancel the
1536  * underlying osd request.
1537  */
1538 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1539 {
1540         int ret;
1541
1542         dout("%s %p\n", __func__, obj_request);
1543
1544         ret = wait_for_completion_interruptible(&obj_request->completion);
1545         if (ret < 0) {
1546                 dout("%s %p interrupted\n", __func__, obj_request);
1547                 rbd_obj_request_end(obj_request);
1548                 return ret;
1549         }
1550
1551         dout("%s %p done\n", __func__, obj_request);
1552         return 0;
1553 }
1554
1555 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1556 {
1557
1558         dout("%s: img %p\n", __func__, img_request);
1559
1560         /*
1561          * If no error occurred, compute the aggregate transfer
1562          * count for the image request.  We could instead use
1563          * atomic64_cmpxchg() to update it as each object request
1564          * completes; not clear which way is better off hand.
1565          */
1566         if (!img_request->result) {
1567                 struct rbd_obj_request *obj_request;
1568                 u64 xferred = 0;
1569
1570                 for_each_obj_request(img_request, obj_request)
1571                         xferred += obj_request->xferred;
1572                 img_request->xferred = xferred;
1573         }
1574
1575         if (img_request->callback)
1576                 img_request->callback(img_request);
1577         else
1578                 rbd_img_request_put(img_request);
1579 }
1580
1581 /*
1582  * The default/initial value for all image request flags is 0.  Each
1583  * is conditionally set to 1 at image request initialization time
1584  * and currently never change thereafter.
1585  */
1586 static void img_request_write_set(struct rbd_img_request *img_request)
1587 {
1588         set_bit(IMG_REQ_WRITE, &img_request->flags);
1589         smp_mb();
1590 }
1591
1592 static bool img_request_write_test(struct rbd_img_request *img_request)
1593 {
1594         smp_mb();
1595         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1596 }
1597
1598 static void img_request_child_set(struct rbd_img_request *img_request)
1599 {
1600         set_bit(IMG_REQ_CHILD, &img_request->flags);
1601         smp_mb();
1602 }
1603
1604 static void img_request_child_clear(struct rbd_img_request *img_request)
1605 {
1606         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1607         smp_mb();
1608 }
1609
1610 static bool img_request_child_test(struct rbd_img_request *img_request)
1611 {
1612         smp_mb();
1613         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1614 }
1615
1616 static void img_request_layered_set(struct rbd_img_request *img_request)
1617 {
1618         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1619         smp_mb();
1620 }
1621
1622 static void img_request_layered_clear(struct rbd_img_request *img_request)
1623 {
1624         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1625         smp_mb();
1626 }
1627
1628 static bool img_request_layered_test(struct rbd_img_request *img_request)
1629 {
1630         smp_mb();
1631         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1632 }
1633
1634 static void
1635 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1636 {
1637         u64 xferred = obj_request->xferred;
1638         u64 length = obj_request->length;
1639
1640         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1641                 obj_request, obj_request->img_request, obj_request->result,
1642                 xferred, length);
1643         /*
1644          * ENOENT means a hole in the image.  We zero-fill the entire
1645          * length of the request.  A short read also implies zero-fill
1646          * to the end of the request.  An error requires the whole
1647          * length of the request to be reported finished with an error
1648          * to the block layer.  In each case we update the xferred
1649          * count to indicate the whole request was satisfied.
1650          */
1651         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1652         if (obj_request->result == -ENOENT) {
1653                 if (obj_request->type == OBJ_REQUEST_BIO)
1654                         zero_bio_chain(obj_request->bio_list, 0);
1655                 else
1656                         zero_pages(obj_request->pages, 0, length);
1657                 obj_request->result = 0;
1658         } else if (xferred < length && !obj_request->result) {
1659                 if (obj_request->type == OBJ_REQUEST_BIO)
1660                         zero_bio_chain(obj_request->bio_list, xferred);
1661                 else
1662                         zero_pages(obj_request->pages, xferred, length);
1663         }
1664         obj_request->xferred = length;
1665         obj_request_done_set(obj_request);
1666 }
1667
1668 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1669 {
1670         dout("%s: obj %p cb %p\n", __func__, obj_request,
1671                 obj_request->callback);
1672         if (obj_request->callback)
1673                 obj_request->callback(obj_request);
1674         else
1675                 complete_all(&obj_request->completion);
1676 }
1677
1678 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1679 {
1680         dout("%s: obj %p\n", __func__, obj_request);
1681         obj_request_done_set(obj_request);
1682 }
1683
1684 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1685 {
1686         struct rbd_img_request *img_request = NULL;
1687         struct rbd_device *rbd_dev = NULL;
1688         bool layered = false;
1689
1690         if (obj_request_img_data_test(obj_request)) {
1691                 img_request = obj_request->img_request;
1692                 layered = img_request && img_request_layered_test(img_request);
1693                 rbd_dev = img_request->rbd_dev;
1694         }
1695
1696         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1697                 obj_request, img_request, obj_request->result,
1698                 obj_request->xferred, obj_request->length);
1699         if (layered && obj_request->result == -ENOENT &&
1700                         obj_request->img_offset < rbd_dev->parent_overlap)
1701                 rbd_img_parent_read(obj_request);
1702         else if (img_request)
1703                 rbd_img_obj_request_read_callback(obj_request);
1704         else
1705                 obj_request_done_set(obj_request);
1706 }
1707
1708 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1709 {
1710         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1711                 obj_request->result, obj_request->length);
1712         /*
1713          * There is no such thing as a successful short write.  Set
1714          * it to our originally-requested length.
1715          */
1716         obj_request->xferred = obj_request->length;
1717         obj_request_done_set(obj_request);
1718 }
1719
1720 /*
1721  * For a simple stat call there's nothing to do.  We'll do more if
1722  * this is part of a write sequence for a layered image.
1723  */
1724 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1725 {
1726         dout("%s: obj %p\n", __func__, obj_request);
1727         obj_request_done_set(obj_request);
1728 }
1729
1730 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1731                                 struct ceph_msg *msg)
1732 {
1733         struct rbd_obj_request *obj_request = osd_req->r_priv;
1734         u16 opcode;
1735
1736         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1737         rbd_assert(osd_req == obj_request->osd_req);
1738         if (obj_request_img_data_test(obj_request)) {
1739                 rbd_assert(obj_request->img_request);
1740                 rbd_assert(obj_request->which != BAD_WHICH);
1741         } else {
1742                 rbd_assert(obj_request->which == BAD_WHICH);
1743         }
1744
1745         if (osd_req->r_result < 0)
1746                 obj_request->result = osd_req->r_result;
1747
1748         rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1749
1750         /*
1751          * We support a 64-bit length, but ultimately it has to be
1752          * passed to blk_end_request(), which takes an unsigned int.
1753          */
1754         obj_request->xferred = osd_req->r_reply_op_len[0];
1755         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1756
1757         opcode = osd_req->r_ops[0].op;
1758         switch (opcode) {
1759         case CEPH_OSD_OP_READ:
1760                 rbd_osd_read_callback(obj_request);
1761                 break;
1762         case CEPH_OSD_OP_SETALLOCHINT:
1763                 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1764                 /* fall through */
1765         case CEPH_OSD_OP_WRITE:
1766                 rbd_osd_write_callback(obj_request);
1767                 break;
1768         case CEPH_OSD_OP_STAT:
1769                 rbd_osd_stat_callback(obj_request);
1770                 break;
1771         case CEPH_OSD_OP_CALL:
1772         case CEPH_OSD_OP_NOTIFY_ACK:
1773         case CEPH_OSD_OP_WATCH:
1774                 rbd_osd_trivial_callback(obj_request);
1775                 break;
1776         default:
1777                 rbd_warn(NULL, "%s: unsupported op %hu\n",
1778                         obj_request->object_name, (unsigned short) opcode);
1779                 break;
1780         }
1781
1782         if (obj_request_done_test(obj_request))
1783                 rbd_obj_request_complete(obj_request);
1784 }
1785
1786 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1787 {
1788         struct rbd_img_request *img_request = obj_request->img_request;
1789         struct ceph_osd_request *osd_req = obj_request->osd_req;
1790         u64 snap_id;
1791
1792         rbd_assert(osd_req != NULL);
1793
1794         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1795         ceph_osdc_build_request(osd_req, obj_request->offset,
1796                         NULL, snap_id, NULL);
1797 }
1798
1799 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1800 {
1801         struct rbd_img_request *img_request = obj_request->img_request;
1802         struct ceph_osd_request *osd_req = obj_request->osd_req;
1803         struct ceph_snap_context *snapc;
1804         struct timespec mtime = CURRENT_TIME;
1805
1806         rbd_assert(osd_req != NULL);
1807
1808         snapc = img_request ? img_request->snapc : NULL;
1809         ceph_osdc_build_request(osd_req, obj_request->offset,
1810                         snapc, CEPH_NOSNAP, &mtime);
1811 }
1812
1813 /*
1814  * Create an osd request.  A read request has one osd op (read).
1815  * A write request has either one (watch) or two (hint+write) osd ops.
1816  * (All rbd data writes are prefixed with an allocation hint op, but
1817  * technically osd watch is a write request, hence this distinction.)
1818  */
1819 static struct ceph_osd_request *rbd_osd_req_create(
1820                                         struct rbd_device *rbd_dev,
1821                                         bool write_request,
1822                                         unsigned int num_ops,
1823                                         struct rbd_obj_request *obj_request)
1824 {
1825         struct ceph_snap_context *snapc = NULL;
1826         struct ceph_osd_client *osdc;
1827         struct ceph_osd_request *osd_req;
1828
1829         if (obj_request_img_data_test(obj_request)) {
1830                 struct rbd_img_request *img_request = obj_request->img_request;
1831
1832                 rbd_assert(write_request ==
1833                                 img_request_write_test(img_request));
1834                 if (write_request)
1835                         snapc = img_request->snapc;
1836         }
1837
1838         rbd_assert(num_ops == 1 || (write_request && num_ops == 2));
1839
1840         /* Allocate and initialize the request, for the num_ops ops */
1841
1842         osdc = &rbd_dev->rbd_client->client->osdc;
1843         osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1844                                           GFP_ATOMIC);
1845         if (!osd_req)
1846                 return NULL;    /* ENOMEM */
1847
1848         if (write_request)
1849                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1850         else
1851                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1852
1853         osd_req->r_callback = rbd_osd_req_callback;
1854         osd_req->r_priv = obj_request;
1855
1856         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1857         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1858
1859         return osd_req;
1860 }
1861
1862 /*
1863  * Create a copyup osd request based on the information in the
1864  * object request supplied.  A copyup request has three osd ops,
1865  * a copyup method call, a hint op, and a write op.
1866  */
1867 static struct ceph_osd_request *
1868 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1869 {
1870         struct rbd_img_request *img_request;
1871         struct ceph_snap_context *snapc;
1872         struct rbd_device *rbd_dev;
1873         struct ceph_osd_client *osdc;
1874         struct ceph_osd_request *osd_req;
1875
1876         rbd_assert(obj_request_img_data_test(obj_request));
1877         img_request = obj_request->img_request;
1878         rbd_assert(img_request);
1879         rbd_assert(img_request_write_test(img_request));
1880
1881         /* Allocate and initialize the request, for the three ops */
1882
1883         snapc = img_request->snapc;
1884         rbd_dev = img_request->rbd_dev;
1885         osdc = &rbd_dev->rbd_client->client->osdc;
1886         osd_req = ceph_osdc_alloc_request(osdc, snapc, 3, false, GFP_ATOMIC);
1887         if (!osd_req)
1888                 return NULL;    /* ENOMEM */
1889
1890         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1891         osd_req->r_callback = rbd_osd_req_callback;
1892         osd_req->r_priv = obj_request;
1893
1894         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1895         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1896
1897         return osd_req;
1898 }
1899
1900
1901 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1902 {
1903         ceph_osdc_put_request(osd_req);
1904 }
1905
1906 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1907
1908 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1909                                                 u64 offset, u64 length,
1910                                                 enum obj_request_type type)
1911 {
1912         struct rbd_obj_request *obj_request;
1913         size_t size;
1914         char *name;
1915
1916         rbd_assert(obj_request_type_valid(type));
1917
1918         size = strlen(object_name) + 1;
1919         name = kmalloc(size, GFP_KERNEL);
1920         if (!name)
1921                 return NULL;
1922
1923         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1924         if (!obj_request) {
1925                 kfree(name);
1926                 return NULL;
1927         }
1928
1929         obj_request->object_name = memcpy(name, object_name, size);
1930         obj_request->offset = offset;
1931         obj_request->length = length;
1932         obj_request->flags = 0;
1933         obj_request->which = BAD_WHICH;
1934         obj_request->type = type;
1935         INIT_LIST_HEAD(&obj_request->links);
1936         init_completion(&obj_request->completion);
1937         kref_init(&obj_request->kref);
1938
1939         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1940                 offset, length, (int)type, obj_request);
1941
1942         return obj_request;
1943 }
1944
1945 static void rbd_obj_request_destroy(struct kref *kref)
1946 {
1947         struct rbd_obj_request *obj_request;
1948
1949         obj_request = container_of(kref, struct rbd_obj_request, kref);
1950
1951         dout("%s: obj %p\n", __func__, obj_request);
1952
1953         rbd_assert(obj_request->img_request == NULL);
1954         rbd_assert(obj_request->which == BAD_WHICH);
1955
1956         if (obj_request->osd_req)
1957                 rbd_osd_req_destroy(obj_request->osd_req);
1958
1959         rbd_assert(obj_request_type_valid(obj_request->type));
1960         switch (obj_request->type) {
1961         case OBJ_REQUEST_NODATA:
1962                 break;          /* Nothing to do */
1963         case OBJ_REQUEST_BIO:
1964                 if (obj_request->bio_list)
1965                         bio_chain_put(obj_request->bio_list);
1966                 break;
1967         case OBJ_REQUEST_PAGES:
1968                 if (obj_request->pages)
1969                         ceph_release_page_vector(obj_request->pages,
1970                                                 obj_request->page_count);
1971                 break;
1972         }
1973
1974         kfree(obj_request->object_name);
1975         obj_request->object_name = NULL;
1976         kmem_cache_free(rbd_obj_request_cache, obj_request);
1977 }
1978
1979 /* It's OK to call this for a device with no parent */
1980
1981 static void rbd_spec_put(struct rbd_spec *spec);
1982 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1983 {
1984         rbd_dev_remove_parent(rbd_dev);
1985         rbd_spec_put(rbd_dev->parent_spec);
1986         rbd_dev->parent_spec = NULL;
1987         rbd_dev->parent_overlap = 0;
1988 }
1989
1990 /*
1991  * Parent image reference counting is used to determine when an
1992  * image's parent fields can be safely torn down--after there are no
1993  * more in-flight requests to the parent image.  When the last
1994  * reference is dropped, cleaning them up is safe.
1995  */
1996 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1997 {
1998         int counter;
1999
2000         if (!rbd_dev->parent_spec)
2001                 return;
2002
2003         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2004         if (counter > 0)
2005                 return;
2006
2007         /* Last reference; clean up parent data structures */
2008
2009         if (!counter)
2010                 rbd_dev_unparent(rbd_dev);
2011         else
2012                 rbd_warn(rbd_dev, "parent reference underflow\n");
2013 }
2014
2015 /*
2016  * If an image has a non-zero parent overlap, get a reference to its
2017  * parent.
2018  *
2019  * We must get the reference before checking for the overlap to
2020  * coordinate properly with zeroing the parent overlap in
2021  * rbd_dev_v2_parent_info() when an image gets flattened.  We
2022  * drop it again if there is no overlap.
2023  *
2024  * Returns true if the rbd device has a parent with a non-zero
2025  * overlap and a reference for it was successfully taken, or
2026  * false otherwise.
2027  */
2028 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2029 {
2030         int counter;
2031
2032         if (!rbd_dev->parent_spec)
2033                 return false;
2034
2035         counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2036         if (counter > 0 && rbd_dev->parent_overlap)
2037                 return true;
2038
2039         /* Image was flattened, but parent is not yet torn down */
2040
2041         if (counter < 0)
2042                 rbd_warn(rbd_dev, "parent reference overflow\n");
2043
2044         return false;
2045 }
2046
2047 /*
2048  * Caller is responsible for filling in the list of object requests
2049  * that comprises the image request, and the Linux request pointer
2050  * (if there is one).
2051  */
2052 static struct rbd_img_request *rbd_img_request_create(
2053                                         struct rbd_device *rbd_dev,
2054                                         u64 offset, u64 length,
2055                                         bool write_request)
2056 {
2057         struct rbd_img_request *img_request;
2058
2059         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
2060         if (!img_request)
2061                 return NULL;
2062
2063         if (write_request) {
2064                 down_read(&rbd_dev->header_rwsem);
2065                 ceph_get_snap_context(rbd_dev->header.snapc);
2066                 up_read(&rbd_dev->header_rwsem);
2067         }
2068
2069         img_request->rq = NULL;
2070         img_request->rbd_dev = rbd_dev;
2071         img_request->offset = offset;
2072         img_request->length = length;
2073         img_request->flags = 0;
2074         if (write_request) {
2075                 img_request_write_set(img_request);
2076                 img_request->snapc = rbd_dev->header.snapc;
2077         } else {
2078                 img_request->snap_id = rbd_dev->spec->snap_id;
2079         }
2080         if (rbd_dev_parent_get(rbd_dev))
2081                 img_request_layered_set(img_request);
2082         spin_lock_init(&img_request->completion_lock);
2083         img_request->next_completion = 0;
2084         img_request->callback = NULL;
2085         img_request->result = 0;
2086         img_request->obj_request_count = 0;
2087         INIT_LIST_HEAD(&img_request->obj_requests);
2088         kref_init(&img_request->kref);
2089
2090         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2091                 write_request ? "write" : "read", offset, length,
2092                 img_request);
2093
2094         return img_request;
2095 }
2096
2097 static void rbd_img_request_destroy(struct kref *kref)
2098 {
2099         struct rbd_img_request *img_request;
2100         struct rbd_obj_request *obj_request;
2101         struct rbd_obj_request *next_obj_request;
2102
2103         img_request = container_of(kref, struct rbd_img_request, kref);
2104
2105         dout("%s: img %p\n", __func__, img_request);
2106
2107         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2108                 rbd_img_obj_request_del(img_request, obj_request);
2109         rbd_assert(img_request->obj_request_count == 0);
2110
2111         if (img_request_layered_test(img_request)) {
2112                 img_request_layered_clear(img_request);
2113                 rbd_dev_parent_put(img_request->rbd_dev);
2114         }
2115
2116         if (img_request_write_test(img_request))
2117                 ceph_put_snap_context(img_request->snapc);
2118
2119         kmem_cache_free(rbd_img_request_cache, img_request);
2120 }
2121
2122 static struct rbd_img_request *rbd_parent_request_create(
2123                                         struct rbd_obj_request *obj_request,
2124                                         u64 img_offset, u64 length)
2125 {
2126         struct rbd_img_request *parent_request;
2127         struct rbd_device *rbd_dev;
2128
2129         rbd_assert(obj_request->img_request);
2130         rbd_dev = obj_request->img_request->rbd_dev;
2131
2132         parent_request = rbd_img_request_create(rbd_dev->parent,
2133                                                 img_offset, length, false);
2134         if (!parent_request)
2135                 return NULL;
2136
2137         img_request_child_set(parent_request);
2138         rbd_obj_request_get(obj_request);
2139         parent_request->obj_request = obj_request;
2140
2141         return parent_request;
2142 }
2143
2144 static void rbd_parent_request_destroy(struct kref *kref)
2145 {
2146         struct rbd_img_request *parent_request;
2147         struct rbd_obj_request *orig_request;
2148
2149         parent_request = container_of(kref, struct rbd_img_request, kref);
2150         orig_request = parent_request->obj_request;
2151
2152         parent_request->obj_request = NULL;
2153         rbd_obj_request_put(orig_request);
2154         img_request_child_clear(parent_request);
2155
2156         rbd_img_request_destroy(kref);
2157 }
2158
2159 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2160 {
2161         struct rbd_img_request *img_request;
2162         unsigned int xferred;
2163         int result;
2164         bool more;
2165
2166         rbd_assert(obj_request_img_data_test(obj_request));
2167         img_request = obj_request->img_request;
2168
2169         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2170         xferred = (unsigned int)obj_request->xferred;
2171         result = obj_request->result;
2172         if (result) {
2173                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2174
2175                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2176                         img_request_write_test(img_request) ? "write" : "read",
2177                         obj_request->length, obj_request->img_offset,
2178                         obj_request->offset);
2179                 rbd_warn(rbd_dev, "  result %d xferred %x\n",
2180                         result, xferred);
2181                 if (!img_request->result)
2182                         img_request->result = result;
2183         }
2184
2185         /* Image object requests don't own their page array */
2186
2187         if (obj_request->type == OBJ_REQUEST_PAGES) {
2188                 obj_request->pages = NULL;
2189                 obj_request->page_count = 0;
2190         }
2191
2192         if (img_request_child_test(img_request)) {
2193                 rbd_assert(img_request->obj_request != NULL);
2194                 more = obj_request->which < img_request->obj_request_count - 1;
2195         } else {
2196                 rbd_assert(img_request->rq != NULL);
2197                 more = blk_end_request(img_request->rq, result, xferred);
2198         }
2199
2200         return more;
2201 }
2202
2203 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2204 {
2205         struct rbd_img_request *img_request;
2206         u32 which = obj_request->which;
2207         bool more = true;
2208
2209         rbd_assert(obj_request_img_data_test(obj_request));
2210         img_request = obj_request->img_request;
2211
2212         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2213         rbd_assert(img_request != NULL);
2214         rbd_assert(img_request->obj_request_count > 0);
2215         rbd_assert(which != BAD_WHICH);
2216         rbd_assert(which < img_request->obj_request_count);
2217
2218         spin_lock_irq(&img_request->completion_lock);
2219         if (which != img_request->next_completion)
2220                 goto out;
2221
2222         for_each_obj_request_from(img_request, obj_request) {
2223                 rbd_assert(more);
2224                 rbd_assert(which < img_request->obj_request_count);
2225
2226                 if (!obj_request_done_test(obj_request))
2227                         break;
2228                 more = rbd_img_obj_end_request(obj_request);
2229                 which++;
2230         }
2231
2232         rbd_assert(more ^ (which == img_request->obj_request_count));
2233         img_request->next_completion = which;
2234 out:
2235         spin_unlock_irq(&img_request->completion_lock);
2236         rbd_img_request_put(img_request);
2237
2238         if (!more)
2239                 rbd_img_request_complete(img_request);
2240 }
2241
2242 /*
2243  * Split up an image request into one or more object requests, each
2244  * to a different object.  The "type" parameter indicates whether
2245  * "data_desc" is the pointer to the head of a list of bio
2246  * structures, or the base of a page array.  In either case this
2247  * function assumes data_desc describes memory sufficient to hold
2248  * all data described by the image request.
2249  */
2250 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2251                                         enum obj_request_type type,
2252                                         void *data_desc)
2253 {
2254         struct rbd_device *rbd_dev = img_request->rbd_dev;
2255         struct rbd_obj_request *obj_request = NULL;
2256         struct rbd_obj_request *next_obj_request;
2257         bool write_request = img_request_write_test(img_request);
2258         struct bio *bio_list = NULL;
2259         unsigned int bio_offset = 0;
2260         struct page **pages = NULL;
2261         u64 img_offset;
2262         u64 resid;
2263         u16 opcode;
2264
2265         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2266                 (int)type, data_desc);
2267
2268         opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2269         img_offset = img_request->offset;
2270         resid = img_request->length;
2271         rbd_assert(resid > 0);
2272
2273         if (type == OBJ_REQUEST_BIO) {
2274                 bio_list = data_desc;
2275                 rbd_assert(img_offset ==
2276                            bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2277         } else {
2278                 rbd_assert(type == OBJ_REQUEST_PAGES);
2279                 pages = data_desc;
2280         }
2281
2282         while (resid) {
2283                 struct ceph_osd_request *osd_req;
2284                 const char *object_name;
2285                 u64 offset;
2286                 u64 length;
2287                 unsigned int which = 0;
2288
2289                 object_name = rbd_segment_name(rbd_dev, img_offset);
2290                 if (!object_name)
2291                         goto out_unwind;
2292                 offset = rbd_segment_offset(rbd_dev, img_offset);
2293                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2294                 obj_request = rbd_obj_request_create(object_name,
2295                                                 offset, length, type);
2296                 /* object request has its own copy of the object name */
2297                 rbd_segment_name_free(object_name);
2298                 if (!obj_request)
2299                         goto out_unwind;
2300
2301                 /*
2302                  * set obj_request->img_request before creating the
2303                  * osd_request so that it gets the right snapc
2304                  */
2305                 rbd_img_obj_request_add(img_request, obj_request);
2306
2307                 if (type == OBJ_REQUEST_BIO) {
2308                         unsigned int clone_size;
2309
2310                         rbd_assert(length <= (u64)UINT_MAX);
2311                         clone_size = (unsigned int)length;
2312                         obj_request->bio_list =
2313                                         bio_chain_clone_range(&bio_list,
2314                                                                 &bio_offset,
2315                                                                 clone_size,
2316                                                                 GFP_ATOMIC);
2317                         if (!obj_request->bio_list)
2318                                 goto out_unwind;
2319                 } else {
2320                         unsigned int page_count;
2321
2322                         obj_request->pages = pages;
2323                         page_count = (u32)calc_pages_for(offset, length);
2324                         obj_request->page_count = page_count;
2325                         if ((offset + length) & ~PAGE_MASK)
2326                                 page_count--;   /* more on last page */
2327                         pages += page_count;
2328                 }
2329
2330                 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2331                                              (write_request ? 2 : 1),
2332                                              obj_request);
2333                 if (!osd_req)
2334                         goto out_unwind;
2335                 obj_request->osd_req = osd_req;
2336                 obj_request->callback = rbd_img_obj_callback;
2337                 rbd_img_request_get(img_request);
2338
2339                 if (write_request) {
2340                         osd_req_op_alloc_hint_init(osd_req, which,
2341                                              rbd_obj_bytes(&rbd_dev->header),
2342                                              rbd_obj_bytes(&rbd_dev->header));
2343                         which++;
2344                 }
2345
2346                 osd_req_op_extent_init(osd_req, which, opcode, offset, length,
2347                                        0, 0);
2348                 if (type == OBJ_REQUEST_BIO)
2349                         osd_req_op_extent_osd_data_bio(osd_req, which,
2350                                         obj_request->bio_list, length);
2351                 else
2352                         osd_req_op_extent_osd_data_pages(osd_req, which,
2353                                         obj_request->pages, length,
2354                                         offset & ~PAGE_MASK, false, false);
2355
2356                 if (write_request)
2357                         rbd_osd_req_format_write(obj_request);
2358                 else
2359                         rbd_osd_req_format_read(obj_request);
2360
2361                 obj_request->img_offset = img_offset;
2362
2363                 img_offset += length;
2364                 resid -= length;
2365         }
2366
2367         return 0;
2368
2369 out_unwind:
2370         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2371                 rbd_img_obj_request_del(img_request, obj_request);
2372
2373         return -ENOMEM;
2374 }
2375
2376 static void
2377 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2378 {
2379         struct rbd_img_request *img_request;
2380         struct rbd_device *rbd_dev;
2381         struct page **pages;
2382         u32 page_count;
2383
2384         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2385         rbd_assert(obj_request_img_data_test(obj_request));
2386         img_request = obj_request->img_request;
2387         rbd_assert(img_request);
2388
2389         rbd_dev = img_request->rbd_dev;
2390         rbd_assert(rbd_dev);
2391
2392         pages = obj_request->copyup_pages;
2393         rbd_assert(pages != NULL);
2394         obj_request->copyup_pages = NULL;
2395         page_count = obj_request->copyup_page_count;
2396         rbd_assert(page_count);
2397         obj_request->copyup_page_count = 0;
2398         ceph_release_page_vector(pages, page_count);
2399
2400         /*
2401          * We want the transfer count to reflect the size of the
2402          * original write request.  There is no such thing as a
2403          * successful short write, so if the request was successful
2404          * we can just set it to the originally-requested length.
2405          */
2406         if (!obj_request->result)
2407                 obj_request->xferred = obj_request->length;
2408
2409         /* Finish up with the normal image object callback */
2410
2411         rbd_img_obj_callback(obj_request);
2412 }
2413
2414 static void
2415 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2416 {
2417         struct rbd_obj_request *orig_request;
2418         struct ceph_osd_request *osd_req;
2419         struct ceph_osd_client *osdc;
2420         struct rbd_device *rbd_dev;
2421         struct page **pages;
2422         u32 page_count;
2423         int img_result;
2424         u64 parent_length;
2425         u64 offset;
2426         u64 length;
2427
2428         rbd_assert(img_request_child_test(img_request));
2429
2430         /* First get what we need from the image request */
2431
2432         pages = img_request->copyup_pages;
2433         rbd_assert(pages != NULL);
2434         img_request->copyup_pages = NULL;
2435         page_count = img_request->copyup_page_count;
2436         rbd_assert(page_count);
2437         img_request->copyup_page_count = 0;
2438
2439         orig_request = img_request->obj_request;
2440         rbd_assert(orig_request != NULL);
2441         rbd_assert(obj_request_type_valid(orig_request->type));
2442         img_result = img_request->result;
2443         parent_length = img_request->length;
2444         rbd_assert(parent_length == img_request->xferred);
2445         rbd_img_request_put(img_request);
2446
2447         rbd_assert(orig_request->img_request);
2448         rbd_dev = orig_request->img_request->rbd_dev;
2449         rbd_assert(rbd_dev);
2450
2451         /*
2452          * If the overlap has become 0 (most likely because the
2453          * image has been flattened) we need to free the pages
2454          * and re-submit the original write request.
2455          */
2456         if (!rbd_dev->parent_overlap) {
2457                 struct ceph_osd_client *osdc;
2458
2459                 ceph_release_page_vector(pages, page_count);
2460                 osdc = &rbd_dev->rbd_client->client->osdc;
2461                 img_result = rbd_obj_request_submit(osdc, orig_request);
2462                 if (!img_result)
2463                         return;
2464         }
2465
2466         if (img_result)
2467                 goto out_err;
2468
2469         /*
2470          * The original osd request is of no use to use any more.
2471          * We need a new one that can hold the three ops in a copyup
2472          * request.  Allocate the new copyup osd request for the
2473          * original request, and release the old one.
2474          */
2475         img_result = -ENOMEM;
2476         osd_req = rbd_osd_req_create_copyup(orig_request);
2477         if (!osd_req)
2478                 goto out_err;
2479         rbd_osd_req_destroy(orig_request->osd_req);
2480         orig_request->osd_req = osd_req;
2481         orig_request->copyup_pages = pages;
2482         orig_request->copyup_page_count = page_count;
2483
2484         /* Initialize the copyup op */
2485
2486         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2487         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2488                                                 false, false);
2489
2490         /* Then the hint op */
2491
2492         osd_req_op_alloc_hint_init(osd_req, 1, rbd_obj_bytes(&rbd_dev->header),
2493                                    rbd_obj_bytes(&rbd_dev->header));
2494
2495         /* And the original write request op */
2496
2497         offset = orig_request->offset;
2498         length = orig_request->length;
2499         osd_req_op_extent_init(osd_req, 2, CEPH_OSD_OP_WRITE,
2500                                         offset, length, 0, 0);
2501         if (orig_request->type == OBJ_REQUEST_BIO)
2502                 osd_req_op_extent_osd_data_bio(osd_req, 2,
2503                                         orig_request->bio_list, length);
2504         else
2505                 osd_req_op_extent_osd_data_pages(osd_req, 2,
2506                                         orig_request->pages, length,
2507                                         offset & ~PAGE_MASK, false, false);
2508
2509         rbd_osd_req_format_write(orig_request);
2510
2511         /* All set, send it off. */
2512
2513         orig_request->callback = rbd_img_obj_copyup_callback;
2514         osdc = &rbd_dev->rbd_client->client->osdc;
2515         img_result = rbd_obj_request_submit(osdc, orig_request);
2516         if (!img_result)
2517                 return;
2518 out_err:
2519         /* Record the error code and complete the request */
2520
2521         orig_request->result = img_result;
2522         orig_request->xferred = 0;
2523         obj_request_done_set(orig_request);
2524         rbd_obj_request_complete(orig_request);
2525 }
2526
2527 /*
2528  * Read from the parent image the range of data that covers the
2529  * entire target of the given object request.  This is used for
2530  * satisfying a layered image write request when the target of an
2531  * object request from the image request does not exist.
2532  *
2533  * A page array big enough to hold the returned data is allocated
2534  * and supplied to rbd_img_request_fill() as the "data descriptor."
2535  * When the read completes, this page array will be transferred to
2536  * the original object request for the copyup operation.
2537  *
2538  * If an error occurs, record it as the result of the original
2539  * object request and mark it done so it gets completed.
2540  */
2541 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2542 {
2543         struct rbd_img_request *img_request = NULL;
2544         struct rbd_img_request *parent_request = NULL;
2545         struct rbd_device *rbd_dev;
2546         u64 img_offset;
2547         u64 length;
2548         struct page **pages = NULL;
2549         u32 page_count;
2550         int result;
2551
2552         rbd_assert(obj_request_img_data_test(obj_request));
2553         rbd_assert(obj_request_type_valid(obj_request->type));
2554
2555         img_request = obj_request->img_request;
2556         rbd_assert(img_request != NULL);
2557         rbd_dev = img_request->rbd_dev;
2558         rbd_assert(rbd_dev->parent != NULL);
2559
2560         /*
2561          * Determine the byte range covered by the object in the
2562          * child image to which the original request was to be sent.
2563          */
2564         img_offset = obj_request->img_offset - obj_request->offset;
2565         length = (u64)1 << rbd_dev->header.obj_order;
2566
2567         /*
2568          * There is no defined parent data beyond the parent
2569          * overlap, so limit what we read at that boundary if
2570          * necessary.
2571          */
2572         if (img_offset + length > rbd_dev->parent_overlap) {
2573                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2574                 length = rbd_dev->parent_overlap - img_offset;
2575         }
2576
2577         /*
2578          * Allocate a page array big enough to receive the data read
2579          * from the parent.
2580          */
2581         page_count = (u32)calc_pages_for(0, length);
2582         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2583         if (IS_ERR(pages)) {
2584                 result = PTR_ERR(pages);
2585                 pages = NULL;
2586                 goto out_err;
2587         }
2588
2589         result = -ENOMEM;
2590         parent_request = rbd_parent_request_create(obj_request,
2591                                                 img_offset, length);
2592         if (!parent_request)
2593                 goto out_err;
2594
2595         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2596         if (result)
2597                 goto out_err;
2598         parent_request->copyup_pages = pages;
2599         parent_request->copyup_page_count = page_count;
2600
2601         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2602         result = rbd_img_request_submit(parent_request);
2603         if (!result)
2604                 return 0;
2605
2606         parent_request->copyup_pages = NULL;
2607         parent_request->copyup_page_count = 0;
2608         parent_request->obj_request = NULL;
2609         rbd_obj_request_put(obj_request);
2610 out_err:
2611         if (pages)
2612                 ceph_release_page_vector(pages, page_count);
2613         if (parent_request)
2614                 rbd_img_request_put(parent_request);
2615         obj_request->result = result;
2616         obj_request->xferred = 0;
2617         obj_request_done_set(obj_request);
2618
2619         return result;
2620 }
2621
2622 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2623 {
2624         struct rbd_obj_request *orig_request;
2625         struct rbd_device *rbd_dev;
2626         int result;
2627
2628         rbd_assert(!obj_request_img_data_test(obj_request));
2629
2630         /*
2631          * All we need from the object request is the original
2632          * request and the result of the STAT op.  Grab those, then
2633          * we're done with the request.
2634          */
2635         orig_request = obj_request->obj_request;
2636         obj_request->obj_request = NULL;
2637         rbd_obj_request_put(orig_request);
2638         rbd_assert(orig_request);
2639         rbd_assert(orig_request->img_request);
2640
2641         result = obj_request->result;
2642         obj_request->result = 0;
2643
2644         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2645                 obj_request, orig_request, result,
2646                 obj_request->xferred, obj_request->length);
2647         rbd_obj_request_put(obj_request);
2648
2649         /*
2650          * If the overlap has become 0 (most likely because the
2651          * image has been flattened) we need to free the pages
2652          * and re-submit the original write request.
2653          */
2654         rbd_dev = orig_request->img_request->rbd_dev;
2655         if (!rbd_dev->parent_overlap) {
2656                 struct ceph_osd_client *osdc;
2657
2658                 osdc = &rbd_dev->rbd_client->client->osdc;
2659                 result = rbd_obj_request_submit(osdc, orig_request);
2660                 if (!result)
2661                         return;
2662         }
2663
2664         /*
2665          * Our only purpose here is to determine whether the object
2666          * exists, and we don't want to treat the non-existence as
2667          * an error.  If something else comes back, transfer the
2668          * error to the original request and complete it now.
2669          */
2670         if (!result) {
2671                 obj_request_existence_set(orig_request, true);
2672         } else if (result == -ENOENT) {
2673                 obj_request_existence_set(orig_request, false);
2674         } else if (result) {
2675                 orig_request->result = result;
2676                 goto out;
2677         }
2678
2679         /*
2680          * Resubmit the original request now that we have recorded
2681          * whether the target object exists.
2682          */
2683         orig_request->result = rbd_img_obj_request_submit(orig_request);
2684 out:
2685         if (orig_request->result)
2686                 rbd_obj_request_complete(orig_request);
2687 }
2688
2689 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2690 {
2691         struct rbd_obj_request *stat_request;
2692         struct rbd_device *rbd_dev;
2693         struct ceph_osd_client *osdc;
2694         struct page **pages = NULL;
2695         u32 page_count;
2696         size_t size;
2697         int ret;
2698
2699         /*
2700          * The response data for a STAT call consists of:
2701          *     le64 length;
2702          *     struct {
2703          *         le32 tv_sec;
2704          *         le32 tv_nsec;
2705          *     } mtime;
2706          */
2707         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2708         page_count = (u32)calc_pages_for(0, size);
2709         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2710         if (IS_ERR(pages))
2711                 return PTR_ERR(pages);
2712
2713         ret = -ENOMEM;
2714         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2715                                                         OBJ_REQUEST_PAGES);
2716         if (!stat_request)
2717                 goto out;
2718
2719         rbd_obj_request_get(obj_request);
2720         stat_request->obj_request = obj_request;
2721         stat_request->pages = pages;
2722         stat_request->page_count = page_count;
2723
2724         rbd_assert(obj_request->img_request);
2725         rbd_dev = obj_request->img_request->rbd_dev;
2726         stat_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
2727                                                    stat_request);
2728         if (!stat_request->osd_req)
2729                 goto out;
2730         stat_request->callback = rbd_img_obj_exists_callback;
2731
2732         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2733         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2734                                         false, false);
2735         rbd_osd_req_format_read(stat_request);
2736
2737         osdc = &rbd_dev->rbd_client->client->osdc;
2738         ret = rbd_obj_request_submit(osdc, stat_request);
2739 out:
2740         if (ret)
2741                 rbd_obj_request_put(obj_request);
2742
2743         return ret;
2744 }
2745
2746 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2747 {
2748         struct rbd_img_request *img_request;
2749         struct rbd_device *rbd_dev;
2750         bool known;
2751
2752         rbd_assert(obj_request_img_data_test(obj_request));
2753
2754         img_request = obj_request->img_request;
2755         rbd_assert(img_request);
2756         rbd_dev = img_request->rbd_dev;
2757
2758         /*
2759          * Only writes to layered images need special handling.
2760          * Reads and non-layered writes are simple object requests.
2761          * Layered writes that start beyond the end of the overlap
2762          * with the parent have no parent data, so they too are
2763          * simple object requests.  Finally, if the target object is
2764          * known to already exist, its parent data has already been
2765          * copied, so a write to the object can also be handled as a
2766          * simple object request.
2767          */
2768         if (!img_request_write_test(img_request) ||
2769                 !img_request_layered_test(img_request) ||
2770                 !obj_request_overlaps_parent(obj_request) ||
2771                 ((known = obj_request_known_test(obj_request)) &&
2772                         obj_request_exists_test(obj_request))) {
2773
2774                 struct rbd_device *rbd_dev;
2775                 struct ceph_osd_client *osdc;
2776
2777                 rbd_dev = obj_request->img_request->rbd_dev;
2778                 osdc = &rbd_dev->rbd_client->client->osdc;
2779
2780                 return rbd_obj_request_submit(osdc, obj_request);
2781         }
2782
2783         /*
2784          * It's a layered write.  The target object might exist but
2785          * we may not know that yet.  If we know it doesn't exist,
2786          * start by reading the data for the full target object from
2787          * the parent so we can use it for a copyup to the target.
2788          */
2789         if (known)
2790                 return rbd_img_obj_parent_read_full(obj_request);
2791
2792         /* We don't know whether the target exists.  Go find out. */
2793
2794         return rbd_img_obj_exists_submit(obj_request);
2795 }
2796
2797 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2798 {
2799         struct rbd_obj_request *obj_request;
2800         struct rbd_obj_request *next_obj_request;
2801
2802         dout("%s: img %p\n", __func__, img_request);
2803         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2804                 int ret;
2805
2806                 ret = rbd_img_obj_request_submit(obj_request);
2807                 if (ret)
2808                         return ret;
2809         }
2810
2811         return 0;
2812 }
2813
2814 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2815 {
2816         struct rbd_obj_request *obj_request;
2817         struct rbd_device *rbd_dev;
2818         u64 obj_end;
2819         u64 img_xferred;
2820         int img_result;
2821
2822         rbd_assert(img_request_child_test(img_request));
2823
2824         /* First get what we need from the image request and release it */
2825
2826         obj_request = img_request->obj_request;
2827         img_xferred = img_request->xferred;
2828         img_result = img_request->result;
2829         rbd_img_request_put(img_request);
2830
2831         /*
2832          * If the overlap has become 0 (most likely because the
2833          * image has been flattened) we need to re-submit the
2834          * original request.
2835          */
2836         rbd_assert(obj_request);
2837         rbd_assert(obj_request->img_request);
2838         rbd_dev = obj_request->img_request->rbd_dev;
2839         if (!rbd_dev->parent_overlap) {
2840                 struct ceph_osd_client *osdc;
2841
2842                 osdc = &rbd_dev->rbd_client->client->osdc;
2843                 img_result = rbd_obj_request_submit(osdc, obj_request);
2844                 if (!img_result)
2845                         return;
2846         }
2847
2848         obj_request->result = img_result;
2849         if (obj_request->result)
2850                 goto out;
2851
2852         /*
2853          * We need to zero anything beyond the parent overlap
2854          * boundary.  Since rbd_img_obj_request_read_callback()
2855          * will zero anything beyond the end of a short read, an
2856          * easy way to do this is to pretend the data from the
2857          * parent came up short--ending at the overlap boundary.
2858          */
2859         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2860         obj_end = obj_request->img_offset + obj_request->length;
2861         if (obj_end > rbd_dev->parent_overlap) {
2862                 u64 xferred = 0;
2863
2864                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2865                         xferred = rbd_dev->parent_overlap -
2866                                         obj_request->img_offset;
2867
2868                 obj_request->xferred = min(img_xferred, xferred);
2869         } else {
2870                 obj_request->xferred = img_xferred;
2871         }
2872 out:
2873         rbd_img_obj_request_read_callback(obj_request);
2874         rbd_obj_request_complete(obj_request);
2875 }
2876
2877 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2878 {
2879         struct rbd_img_request *img_request;
2880         int result;
2881
2882         rbd_assert(obj_request_img_data_test(obj_request));
2883         rbd_assert(obj_request->img_request != NULL);
2884         rbd_assert(obj_request->result == (s32) -ENOENT);
2885         rbd_assert(obj_request_type_valid(obj_request->type));
2886
2887         /* rbd_read_finish(obj_request, obj_request->length); */
2888         img_request = rbd_parent_request_create(obj_request,
2889                                                 obj_request->img_offset,
2890                                                 obj_request->length);
2891         result = -ENOMEM;
2892         if (!img_request)
2893                 goto out_err;
2894
2895         if (obj_request->type == OBJ_REQUEST_BIO)
2896                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2897                                                 obj_request->bio_list);
2898         else
2899                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2900                                                 obj_request->pages);
2901         if (result)
2902                 goto out_err;
2903
2904         img_request->callback = rbd_img_parent_read_callback;
2905         result = rbd_img_request_submit(img_request);
2906         if (result)
2907                 goto out_err;
2908
2909         return;
2910 out_err:
2911         if (img_request)
2912                 rbd_img_request_put(img_request);
2913         obj_request->result = result;
2914         obj_request->xferred = 0;
2915         obj_request_done_set(obj_request);
2916 }
2917
2918 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
2919 {
2920         struct rbd_obj_request *obj_request;
2921         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2922         int ret;
2923
2924         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2925                                                         OBJ_REQUEST_NODATA);
2926         if (!obj_request)
2927                 return -ENOMEM;
2928
2929         ret = -ENOMEM;
2930         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
2931                                                   obj_request);
2932         if (!obj_request->osd_req)
2933                 goto out;
2934
2935         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2936                                         notify_id, 0, 0);
2937         rbd_osd_req_format_read(obj_request);
2938
2939         ret = rbd_obj_request_submit(osdc, obj_request);
2940         if (ret)
2941                 goto out;
2942         ret = rbd_obj_request_wait(obj_request);
2943 out:
2944         rbd_obj_request_put(obj_request);
2945
2946         return ret;
2947 }
2948
2949 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2950 {
2951         struct rbd_device *rbd_dev = (struct rbd_device *)data;
2952         int ret;
2953
2954         if (!rbd_dev)
2955                 return;
2956
2957         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2958                 rbd_dev->header_name, (unsigned long long)notify_id,
2959                 (unsigned int)opcode);
2960
2961         /*
2962          * Until adequate refresh error handling is in place, there is
2963          * not much we can do here, except warn.
2964          *
2965          * See http://tracker.ceph.com/issues/5040
2966          */
2967         ret = rbd_dev_refresh(rbd_dev);
2968         if (ret)
2969                 rbd_warn(rbd_dev, "refresh failed: %d\n", ret);
2970
2971         ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id);
2972         if (ret)
2973                 rbd_warn(rbd_dev, "notify_ack ret %d\n", ret);
2974 }
2975
2976 /*
2977  * Send a (un)watch request and wait for the ack.  Return a request
2978  * with a ref held on success or error.
2979  */
2980 static struct rbd_obj_request *rbd_obj_watch_request_helper(
2981                                                 struct rbd_device *rbd_dev,
2982                                                 bool watch)
2983 {
2984         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2985         struct rbd_obj_request *obj_request;
2986         int ret;
2987
2988         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2989                                              OBJ_REQUEST_NODATA);
2990         if (!obj_request)
2991                 return ERR_PTR(-ENOMEM);
2992
2993         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, 1,
2994                                                   obj_request);
2995         if (!obj_request->osd_req) {
2996                 ret = -ENOMEM;
2997                 goto out;
2998         }
2999
3000         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3001                               rbd_dev->watch_event->cookie, 0, watch);
3002         rbd_osd_req_format_write(obj_request);
3003
3004         if (watch)
3005                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3006
3007         ret = rbd_obj_request_submit(osdc, obj_request);
3008         if (ret)
3009                 goto out;
3010
3011         ret = rbd_obj_request_wait(obj_request);
3012         if (ret)
3013                 goto out;
3014
3015         ret = obj_request->result;
3016         if (ret) {
3017                 if (watch)
3018                         rbd_obj_request_end(obj_request);
3019                 goto out;
3020         }
3021
3022         return obj_request;
3023
3024 out:
3025         rbd_obj_request_put(obj_request);
3026         return ERR_PTR(ret);
3027 }
3028
3029 /*
3030  * Initiate a watch request, synchronously.
3031  */
3032 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3033 {
3034         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3035         struct rbd_obj_request *obj_request;
3036         int ret;
3037
3038         rbd_assert(!rbd_dev->watch_event);
3039         rbd_assert(!rbd_dev->watch_request);
3040
3041         ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3042                                      &rbd_dev->watch_event);
3043         if (ret < 0)
3044                 return ret;
3045
3046         obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3047         if (IS_ERR(obj_request)) {
3048                 ceph_osdc_cancel_event(rbd_dev->watch_event);
3049                 rbd_dev->watch_event = NULL;
3050                 return PTR_ERR(obj_request);
3051         }
3052
3053         /*
3054          * A watch request is set to linger, so the underlying osd
3055          * request won't go away until we unregister it.  We retain
3056          * a pointer to the object request during that time (in
3057          * rbd_dev->watch_request), so we'll keep a reference to it.
3058          * We'll drop that reference after we've unregistered it in
3059          * rbd_dev_header_unwatch_sync().
3060          */
3061         rbd_dev->watch_request = obj_request;
3062
3063         return 0;
3064 }
3065
3066 /*
3067  * Tear down a watch request, synchronously.
3068  */
3069 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3070 {
3071         struct rbd_obj_request *obj_request;
3072
3073         rbd_assert(rbd_dev->watch_event);
3074         rbd_assert(rbd_dev->watch_request);
3075
3076         rbd_obj_request_end(rbd_dev->watch_request);
3077         rbd_obj_request_put(rbd_dev->watch_request);
3078         rbd_dev->watch_request = NULL;
3079
3080         obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3081         if (!IS_ERR(obj_request))
3082                 rbd_obj_request_put(obj_request);
3083         else
3084                 rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3085                          PTR_ERR(obj_request));
3086
3087         ceph_osdc_cancel_event(rbd_dev->watch_event);
3088         rbd_dev->watch_event = NULL;
3089 }
3090
3091 /*
3092  * Synchronous osd object method call.  Returns the number of bytes
3093  * returned in the outbound buffer, or a negative error code.
3094  */
3095 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3096                              const char *object_name,
3097                              const char *class_name,
3098                              const char *method_name,
3099                              const void *outbound,
3100                              size_t outbound_size,
3101                              void *inbound,
3102                              size_t inbound_size)
3103 {
3104         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3105         struct rbd_obj_request *obj_request;
3106         struct page **pages;
3107         u32 page_count;
3108         int ret;
3109
3110         /*
3111          * Method calls are ultimately read operations.  The result
3112          * should placed into the inbound buffer provided.  They
3113          * also supply outbound data--parameters for the object
3114          * method.  Currently if this is present it will be a
3115          * snapshot id.
3116          */
3117         page_count = (u32)calc_pages_for(0, inbound_size);
3118         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3119         if (IS_ERR(pages))
3120                 return PTR_ERR(pages);
3121
3122         ret = -ENOMEM;
3123         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3124                                                         OBJ_REQUEST_PAGES);
3125         if (!obj_request)
3126                 goto out;
3127
3128         obj_request->pages = pages;
3129         obj_request->page_count = page_count;
3130
3131         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
3132                                                   obj_request);
3133         if (!obj_request->osd_req)
3134                 goto out;
3135
3136         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3137                                         class_name, method_name);
3138         if (outbound_size) {
3139                 struct ceph_pagelist *pagelist;
3140
3141                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3142                 if (!pagelist)
3143                         goto out;
3144
3145                 ceph_pagelist_init(pagelist);
3146                 ceph_pagelist_append(pagelist, outbound, outbound_size);
3147                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3148                                                 pagelist);
3149         }
3150         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3151                                         obj_request->pages, inbound_size,
3152                                         0, false, false);
3153         rbd_osd_req_format_read(obj_request);
3154
3155         ret = rbd_obj_request_submit(osdc, obj_request);
3156         if (ret)
3157                 goto out;
3158         ret = rbd_obj_request_wait(obj_request);
3159         if (ret)
3160                 goto out;
3161
3162         ret = obj_request->result;
3163         if (ret < 0)
3164                 goto out;
3165
3166         rbd_assert(obj_request->xferred < (u64)INT_MAX);
3167         ret = (int)obj_request->xferred;
3168         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3169 out:
3170         if (obj_request)
3171                 rbd_obj_request_put(obj_request);
3172         else
3173                 ceph_release_page_vector(pages, page_count);
3174
3175         return ret;
3176 }
3177
3178 static void rbd_request_fn(struct request_queue *q)
3179                 __releases(q->queue_lock) __acquires(q->queue_lock)
3180 {
3181         struct rbd_device *rbd_dev = q->queuedata;
3182         struct request *rq;
3183         int result;
3184
3185         while ((rq = blk_fetch_request(q))) {
3186                 bool write_request = rq_data_dir(rq) == WRITE;
3187                 struct rbd_img_request *img_request;
3188                 u64 offset;
3189                 u64 length;
3190
3191                 /* Ignore any non-FS requests that filter through. */
3192
3193                 if (rq->cmd_type != REQ_TYPE_FS) {
3194                         dout("%s: non-fs request type %d\n", __func__,
3195                                 (int) rq->cmd_type);
3196                         __blk_end_request_all(rq, 0);
3197                         continue;
3198                 }
3199
3200                 /* Ignore/skip any zero-length requests */
3201
3202                 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3203                 length = (u64) blk_rq_bytes(rq);
3204
3205                 if (!length) {
3206                         dout("%s: zero-length request\n", __func__);
3207                         __blk_end_request_all(rq, 0);
3208                         continue;
3209                 }
3210
3211                 spin_unlock_irq(q->queue_lock);
3212
3213                 /* Disallow writes to a read-only device */
3214
3215                 if (write_request) {
3216                         result = -EROFS;
3217                         if (rbd_dev->mapping.read_only)
3218                                 goto end_request;
3219                         rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3220                 }
3221
3222                 /*
3223                  * Quit early if the mapped snapshot no longer
3224                  * exists.  It's still possible the snapshot will
3225                  * have disappeared by the time our request arrives
3226                  * at the osd, but there's no sense in sending it if
3227                  * we already know.
3228                  */
3229                 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3230                         dout("request for non-existent snapshot");
3231                         rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3232                         result = -ENXIO;
3233                         goto end_request;
3234                 }
3235
3236                 result = -EINVAL;
3237                 if (offset && length > U64_MAX - offset + 1) {
3238                         rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3239                                 offset, length);
3240                         goto end_request;       /* Shouldn't happen */
3241                 }
3242
3243                 result = -EIO;
3244                 if (offset + length > rbd_dev->mapping.size) {
3245                         rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3246                                 offset, length, rbd_dev->mapping.size);
3247                         goto end_request;
3248                 }
3249
3250                 result = -ENOMEM;
3251                 img_request = rbd_img_request_create(rbd_dev, offset, length,
3252                                                         write_request);
3253                 if (!img_request)
3254                         goto end_request;
3255
3256                 img_request->rq = rq;
3257
3258                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3259                                                 rq->bio);
3260                 if (!result)
3261                         result = rbd_img_request_submit(img_request);
3262                 if (result)
3263                         rbd_img_request_put(img_request);
3264 end_request:
3265                 spin_lock_irq(q->queue_lock);
3266                 if (result < 0) {
3267                         rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3268                                 write_request ? "write" : "read",
3269                                 length, offset, result);
3270
3271                         __blk_end_request_all(rq, result);
3272                 }
3273         }
3274 }
3275
3276 /*
3277  * a queue callback. Makes sure that we don't create a bio that spans across
3278  * multiple osd objects. One exception would be with a single page bios,
3279  * which we handle later at bio_chain_clone_range()
3280  */
3281 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3282                           struct bio_vec *bvec)
3283 {
3284         struct rbd_device *rbd_dev = q->queuedata;
3285         sector_t sector_offset;
3286         sector_t sectors_per_obj;
3287         sector_t obj_sector_offset;
3288         int ret;
3289
3290         /*
3291          * Find how far into its rbd object the partition-relative
3292          * bio start sector is to offset relative to the enclosing
3293          * device.
3294          */
3295         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3296         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3297         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3298
3299         /*
3300          * Compute the number of bytes from that offset to the end
3301          * of the object.  Account for what's already used by the bio.
3302          */
3303         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3304         if (ret > bmd->bi_size)
3305                 ret -= bmd->bi_size;
3306         else
3307                 ret = 0;
3308
3309         /*
3310          * Don't send back more than was asked for.  And if the bio
3311          * was empty, let the whole thing through because:  "Note
3312          * that a block device *must* allow a single page to be
3313          * added to an empty bio."
3314          */
3315         rbd_assert(bvec->bv_len <= PAGE_SIZE);
3316         if (ret > (int) bvec->bv_len || !bmd->bi_size)
3317                 ret = (int) bvec->bv_len;
3318
3319         return ret;
3320 }
3321
3322 static void rbd_free_disk(struct rbd_device *rbd_dev)
3323 {
3324         struct gendisk *disk = rbd_dev->disk;
3325
3326         if (!disk)
3327                 return;
3328
3329         rbd_dev->disk = NULL;
3330         if (disk->flags & GENHD_FL_UP) {
3331                 del_gendisk(disk);
3332                 if (disk->queue)
3333                         blk_cleanup_queue(disk->queue);
3334         }
3335         put_disk(disk);
3336 }
3337
3338 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3339                                 const char *object_name,
3340                                 u64 offset, u64 length, void *buf)
3341
3342 {
3343         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3344         struct rbd_obj_request *obj_request;
3345         struct page **pages = NULL;
3346         u32 page_count;
3347         size_t size;
3348         int ret;
3349
3350         page_count = (u32) calc_pages_for(offset, length);
3351         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3352         if (IS_ERR(pages))
3353                 ret = PTR_ERR(pages);
3354
3355         ret = -ENOMEM;
3356         obj_request = rbd_obj_request_create(object_name, offset, length,
3357                                                         OBJ_REQUEST_PAGES);
3358         if (!obj_request)
3359                 goto out;
3360
3361         obj_request->pages = pages;
3362         obj_request->page_count = page_count;
3363
3364         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
3365                                                   obj_request);
3366         if (!obj_request->osd_req)
3367                 goto out;
3368
3369         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3370                                         offset, length, 0, 0);
3371         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3372                                         obj_request->pages,
3373                                         obj_request->length,
3374                                         obj_request->offset & ~PAGE_MASK,
3375                                         false, false);
3376         rbd_osd_req_format_read(obj_request);
3377
3378         ret = rbd_obj_request_submit(osdc, obj_request);
3379         if (ret)
3380                 goto out;
3381         ret = rbd_obj_request_wait(obj_request);
3382         if (ret)
3383                 goto out;
3384
3385         ret = obj_request->result;
3386         if (ret < 0)
3387                 goto out;
3388
3389         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3390         size = (size_t) obj_request->xferred;
3391         ceph_copy_from_page_vector(pages, buf, 0, size);
3392         rbd_assert(size <= (size_t)INT_MAX);
3393         ret = (int)size;
3394 out:
3395         if (obj_request)
3396                 rbd_obj_request_put(obj_request);
3397         else
3398                 ceph_release_page_vector(pages, page_count);
3399
3400         return ret;
3401 }
3402
3403 /*
3404  * Read the complete header for the given rbd device.  On successful
3405  * return, the rbd_dev->header field will contain up-to-date
3406  * information about the image.
3407  */
3408 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3409 {
3410         struct rbd_image_header_ondisk *ondisk = NULL;
3411         u32 snap_count = 0;
3412         u64 names_size = 0;
3413         u32 want_count;
3414         int ret;
3415
3416         /*
3417          * The complete header will include an array of its 64-bit
3418          * snapshot ids, followed by the names of those snapshots as
3419          * a contiguous block of NUL-terminated strings.  Note that
3420          * the number of snapshots could change by the time we read
3421          * it in, in which case we re-read it.
3422          */
3423         do {
3424                 size_t size;
3425
3426                 kfree(ondisk);
3427
3428                 size = sizeof (*ondisk);
3429                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3430                 size += names_size;
3431                 ondisk = kmalloc(size, GFP_KERNEL);
3432                 if (!ondisk)
3433                         return -ENOMEM;
3434
3435                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3436                                        0, size, ondisk);
3437                 if (ret < 0)
3438                         goto out;
3439                 if ((size_t)ret < size) {
3440                         ret = -ENXIO;
3441                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3442                                 size, ret);
3443                         goto out;
3444                 }
3445                 if (!rbd_dev_ondisk_valid(ondisk)) {
3446                         ret = -ENXIO;
3447                         rbd_warn(rbd_dev, "invalid header");
3448                         goto out;
3449                 }
3450
3451                 names_size = le64_to_cpu(ondisk->snap_names_len);
3452                 want_count = snap_count;
3453                 snap_count = le32_to_cpu(ondisk->snap_count);
3454         } while (snap_count != want_count);
3455
3456         ret = rbd_header_from_disk(rbd_dev, ondisk);
3457 out:
3458         kfree(ondisk);
3459
3460         return ret;
3461 }
3462
3463 /*
3464  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3465  * has disappeared from the (just updated) snapshot context.
3466  */
3467 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3468 {
3469         u64 snap_id;
3470
3471         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3472                 return;
3473
3474         snap_id = rbd_dev->spec->snap_id;
3475         if (snap_id == CEPH_NOSNAP)
3476                 return;
3477
3478         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3479                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3480 }
3481
3482 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3483 {
3484         sector_t size;
3485         bool removing;
3486
3487         /*
3488          * Don't hold the lock while doing disk operations,
3489          * or lock ordering will conflict with the bdev mutex via:
3490          * rbd_add() -> blkdev_get() -> rbd_open()
3491          */
3492         spin_lock_irq(&rbd_dev->lock);
3493         removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3494         spin_unlock_irq(&rbd_dev->lock);
3495         /*
3496          * If the device is being removed, rbd_dev->disk has
3497          * been destroyed, so don't try to update its size
3498          */
3499         if (!removing) {
3500                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3501                 dout("setting size to %llu sectors", (unsigned long long)size);
3502                 set_capacity(rbd_dev->disk, size);
3503                 revalidate_disk(rbd_dev->disk);
3504         }
3505 }
3506
3507 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3508 {
3509         u64 mapping_size;
3510         int ret;
3511
3512         down_write(&rbd_dev->header_rwsem);
3513         mapping_size = rbd_dev->mapping.size;
3514
3515         ret = rbd_dev_header_info(rbd_dev);
3516         if (ret)
3517                 return ret;
3518
3519         if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3520                 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
3521                         rbd_dev->mapping.size = rbd_dev->header.image_size;
3522         } else {
3523                 /* validate mapped snapshot's EXISTS flag */
3524                 rbd_exists_validate(rbd_dev);
3525         }
3526
3527         up_write(&rbd_dev->header_rwsem);
3528
3529         if (mapping_size != rbd_dev->mapping.size) {
3530                 rbd_dev_update_size(rbd_dev);
3531         }
3532
3533         return 0;
3534 }
3535
3536 static int rbd_init_disk(struct rbd_device *rbd_dev)
3537 {
3538         struct gendisk *disk;
3539         struct request_queue *q;
3540         u64 segment_size;
3541
3542         /* create gendisk info */
3543         disk = alloc_disk(single_major ?
3544                           (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3545                           RBD_MINORS_PER_MAJOR);
3546         if (!disk)
3547                 return -ENOMEM;
3548
3549         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3550                  rbd_dev->dev_id);
3551         disk->major = rbd_dev->major;
3552         disk->first_minor = rbd_dev->minor;
3553         if (single_major)
3554                 disk->flags |= GENHD_FL_EXT_DEVT;
3555         disk->fops = &rbd_bd_ops;
3556         disk->private_data = rbd_dev;
3557
3558         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3559         if (!q)
3560                 goto out_disk;
3561
3562         /* We use the default size, but let's be explicit about it. */
3563         blk_queue_physical_block_size(q, SECTOR_SIZE);
3564
3565         /* set io sizes to object size */
3566         segment_size = rbd_obj_bytes(&rbd_dev->header);
3567         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3568         blk_queue_max_segment_size(q, segment_size);
3569         blk_queue_io_min(q, segment_size);
3570         blk_queue_io_opt(q, segment_size);
3571
3572         blk_queue_merge_bvec(q, rbd_merge_bvec);
3573         disk->queue = q;
3574
3575         q->queuedata = rbd_dev;
3576
3577         rbd_dev->disk = disk;
3578
3579         return 0;
3580 out_disk:
3581         put_disk(disk);
3582
3583         return -ENOMEM;
3584 }
3585
3586 /*
3587   sysfs
3588 */
3589
3590 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3591 {
3592         return container_of(dev, struct rbd_device, dev);
3593 }
3594
3595 static ssize_t rbd_size_show(struct device *dev,
3596                              struct device_attribute *attr, char *buf)
3597 {
3598         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3599
3600         return sprintf(buf, "%llu\n",
3601                 (unsigned long long)rbd_dev->mapping.size);
3602 }
3603
3604 /*
3605  * Note this shows the features for whatever's mapped, which is not
3606  * necessarily the base image.
3607  */
3608 static ssize_t rbd_features_show(struct device *dev,
3609                              struct device_attribute *attr, char *buf)
3610 {
3611         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3612
3613         return sprintf(buf, "0x%016llx\n",
3614                         (unsigned long long)rbd_dev->mapping.features);
3615 }
3616
3617 static ssize_t rbd_major_show(struct device *dev,
3618                               struct device_attribute *attr, char *buf)
3619 {
3620         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3621
3622         if (rbd_dev->major)
3623                 return sprintf(buf, "%d\n", rbd_dev->major);
3624
3625         return sprintf(buf, "(none)\n");
3626 }
3627
3628 static ssize_t rbd_minor_show(struct device *dev,
3629                               struct device_attribute *attr, char *buf)
3630 {
3631         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3632
3633         return sprintf(buf, "%d\n", rbd_dev->minor);
3634 }
3635
3636 static ssize_t rbd_client_id_show(struct device *dev,
3637                                   struct device_attribute *attr, char *buf)
3638 {
3639         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3640
3641         return sprintf(buf, "client%lld\n",
3642                         ceph_client_id(rbd_dev->rbd_client->client));
3643 }
3644
3645 static ssize_t rbd_pool_show(struct device *dev,
3646                              struct device_attribute *attr, char *buf)
3647 {
3648         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3649
3650         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3651 }
3652
3653 static ssize_t rbd_pool_id_show(struct device *dev,
3654                              struct device_attribute *attr, char *buf)
3655 {
3656         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3657
3658         return sprintf(buf, "%llu\n",
3659                         (unsigned long long) rbd_dev->spec->pool_id);
3660 }
3661
3662 static ssize_t rbd_name_show(struct device *dev,
3663                              struct device_attribute *attr, char *buf)
3664 {
3665         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3666
3667         if (rbd_dev->spec->image_name)
3668                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3669
3670         return sprintf(buf, "(unknown)\n");
3671 }
3672
3673 static ssize_t rbd_image_id_show(struct device *dev,
3674                              struct device_attribute *attr, char *buf)
3675 {
3676         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3677
3678         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3679 }
3680
3681 /*
3682  * Shows the name of the currently-mapped snapshot (or
3683  * RBD_SNAP_HEAD_NAME for the base image).
3684  */
3685 static ssize_t rbd_snap_show(struct device *dev,
3686                              struct device_attribute *attr,
3687                              char *buf)
3688 {
3689         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3690
3691         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3692 }
3693
3694 /*
3695  * For a v2 image, shows the chain of parent images, separated by empty
3696  * lines.  For v1 images or if there is no parent, shows "(no parent
3697  * image)".
3698  */
3699 static ssize_t rbd_parent_show(struct device *dev,
3700                                struct device_attribute *attr,
3701                                char *buf)
3702 {
3703         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3704         ssize_t count = 0;
3705
3706         if (!rbd_dev->parent)
3707                 return sprintf(buf, "(no parent image)\n");
3708
3709         for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3710                 struct rbd_spec *spec = rbd_dev->parent_spec;
3711
3712                 count += sprintf(&buf[count], "%s"
3713                             "pool_id %llu\npool_name %s\n"
3714                             "image_id %s\nimage_name %s\n"
3715                             "snap_id %llu\nsnap_name %s\n"
3716                             "overlap %llu\n",
3717                             !count ? "" : "\n", /* first? */
3718                             spec->pool_id, spec->pool_name,
3719                             spec->image_id, spec->image_name ?: "(unknown)",
3720                             spec->snap_id, spec->snap_name,
3721                             rbd_dev->parent_overlap);
3722         }
3723
3724         return count;
3725 }
3726
3727 static ssize_t rbd_image_refresh(struct device *dev,
3728                                  struct device_attribute *attr,
3729                                  const char *buf,
3730                                  size_t size)
3731 {
3732         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3733         int ret;
3734
3735         ret = rbd_dev_refresh(rbd_dev);
3736         if (ret)
3737                 return ret;
3738
3739         return size;
3740 }
3741
3742 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3743 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3744 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3745 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3746 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3747 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3748 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3749 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3750 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3751 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3752 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3753 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3754
3755 static struct attribute *rbd_attrs[] = {
3756         &dev_attr_size.attr,
3757         &dev_attr_features.attr,
3758         &dev_attr_major.attr,
3759         &dev_attr_minor.attr,
3760         &dev_attr_client_id.attr,
3761         &dev_attr_pool.attr,
3762         &dev_attr_pool_id.attr,
3763         &dev_attr_name.attr,
3764         &dev_attr_image_id.attr,
3765         &dev_attr_current_snap.attr,
3766         &dev_attr_parent.attr,
3767         &dev_attr_refresh.attr,
3768         NULL
3769 };
3770
3771 static struct attribute_group rbd_attr_group = {
3772         .attrs = rbd_attrs,
3773 };
3774
3775 static const struct attribute_group *rbd_attr_groups[] = {
3776         &rbd_attr_group,
3777         NULL
3778 };
3779
3780 static void rbd_sysfs_dev_release(struct device *dev)
3781 {
3782 }
3783
3784 static struct device_type rbd_device_type = {
3785         .name           = "rbd",
3786         .groups         = rbd_attr_groups,
3787         .release        = rbd_sysfs_dev_release,
3788 };
3789
3790 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3791 {
3792         kref_get(&spec->kref);
3793
3794         return spec;
3795 }
3796
3797 static void rbd_spec_free(struct kref *kref);
3798 static void rbd_spec_put(struct rbd_spec *spec)
3799 {
3800         if (spec)
3801                 kref_put(&spec->kref, rbd_spec_free);
3802 }
3803
3804 static struct rbd_spec *rbd_spec_alloc(void)
3805 {
3806         struct rbd_spec *spec;
3807
3808         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3809         if (!spec)
3810                 return NULL;
3811
3812         spec->pool_id = CEPH_NOPOOL;
3813         spec->snap_id = CEPH_NOSNAP;
3814         kref_init(&spec->kref);
3815
3816         return spec;
3817 }
3818
3819 static void rbd_spec_free(struct kref *kref)
3820 {
3821         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3822
3823         kfree(spec->pool_name);
3824         kfree(spec->image_id);
3825         kfree(spec->image_name);
3826         kfree(spec->snap_name);
3827         kfree(spec);
3828 }
3829
3830 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3831                                 struct rbd_spec *spec)
3832 {
3833         struct rbd_device *rbd_dev;
3834
3835         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3836         if (!rbd_dev)
3837                 return NULL;
3838
3839         spin_lock_init(&rbd_dev->lock);
3840         rbd_dev->flags = 0;
3841         atomic_set(&rbd_dev->parent_ref, 0);
3842         INIT_LIST_HEAD(&rbd_dev->node);
3843         init_rwsem(&rbd_dev->header_rwsem);
3844
3845         rbd_dev->spec = spec;
3846         rbd_dev->rbd_client = rbdc;
3847
3848         /* Initialize the layout used for all rbd requests */
3849
3850         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3851         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3852         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3853         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3854
3855         return rbd_dev;
3856 }
3857
3858 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3859 {
3860         rbd_put_client(rbd_dev->rbd_client);
3861         rbd_spec_put(rbd_dev->spec);
3862         kfree(rbd_dev);
3863 }
3864
3865 /*
3866  * Get the size and object order for an image snapshot, or if
3867  * snap_id is CEPH_NOSNAP, gets this information for the base
3868  * image.
3869  */
3870 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3871                                 u8 *order, u64 *snap_size)
3872 {
3873         __le64 snapid = cpu_to_le64(snap_id);
3874         int ret;
3875         struct {
3876                 u8 order;
3877                 __le64 size;
3878         } __attribute__ ((packed)) size_buf = { 0 };
3879
3880         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3881                                 "rbd", "get_size",
3882                                 &snapid, sizeof (snapid),
3883                                 &size_buf, sizeof (size_buf));
3884         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3885         if (ret < 0)
3886                 return ret;
3887         if (ret < sizeof (size_buf))
3888                 return -ERANGE;
3889
3890         if (order) {
3891                 *order = size_buf.order;
3892                 dout("  order %u", (unsigned int)*order);
3893         }
3894         *snap_size = le64_to_cpu(size_buf.size);
3895
3896         dout("  snap_id 0x%016llx snap_size = %llu\n",
3897                 (unsigned long long)snap_id,
3898                 (unsigned long long)*snap_size);
3899
3900         return 0;
3901 }
3902
3903 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3904 {
3905         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3906                                         &rbd_dev->header.obj_order,
3907                                         &rbd_dev->header.image_size);
3908 }
3909
3910 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3911 {
3912         void *reply_buf;
3913         int ret;
3914         void *p;
3915
3916         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3917         if (!reply_buf)
3918                 return -ENOMEM;
3919
3920         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3921                                 "rbd", "get_object_prefix", NULL, 0,
3922                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3923         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3924         if (ret < 0)
3925                 goto out;
3926
3927         p = reply_buf;
3928         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3929                                                 p + ret, NULL, GFP_NOIO);
3930         ret = 0;
3931
3932         if (IS_ERR(rbd_dev->header.object_prefix)) {
3933                 ret = PTR_ERR(rbd_dev->header.object_prefix);
3934                 rbd_dev->header.object_prefix = NULL;
3935         } else {
3936                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3937         }
3938 out:
3939         kfree(reply_buf);
3940
3941         return ret;
3942 }
3943
3944 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3945                 u64 *snap_features)
3946 {
3947         __le64 snapid = cpu_to_le64(snap_id);
3948         struct {
3949                 __le64 features;
3950                 __le64 incompat;
3951         } __attribute__ ((packed)) features_buf = { 0 };
3952         u64 incompat;
3953         int ret;
3954
3955         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3956                                 "rbd", "get_features",
3957                                 &snapid, sizeof (snapid),
3958                                 &features_buf, sizeof (features_buf));
3959         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3960         if (ret < 0)
3961                 return ret;
3962         if (ret < sizeof (features_buf))
3963                 return -ERANGE;
3964
3965         incompat = le64_to_cpu(features_buf.incompat);
3966         if (incompat & ~RBD_FEATURES_SUPPORTED)
3967                 return -ENXIO;
3968
3969         *snap_features = le64_to_cpu(features_buf.features);
3970
3971         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3972                 (unsigned long long)snap_id,
3973                 (unsigned long long)*snap_features,
3974                 (unsigned long long)le64_to_cpu(features_buf.incompat));
3975
3976         return 0;
3977 }
3978
3979 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3980 {
3981         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3982                                                 &rbd_dev->header.features);
3983 }
3984
3985 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3986 {
3987         struct rbd_spec *parent_spec;
3988         size_t size;
3989         void *reply_buf = NULL;
3990         __le64 snapid;
3991         void *p;
3992         void *end;
3993         u64 pool_id;
3994         char *image_id;
3995         u64 snap_id;
3996         u64 overlap;
3997         int ret;
3998
3999         parent_spec = rbd_spec_alloc();
4000         if (!parent_spec)
4001                 return -ENOMEM;
4002
4003         size = sizeof (__le64) +                                /* pool_id */
4004                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
4005                 sizeof (__le64) +                               /* snap_id */
4006                 sizeof (__le64);                                /* overlap */
4007         reply_buf = kmalloc(size, GFP_KERNEL);
4008         if (!reply_buf) {
4009                 ret = -ENOMEM;
4010                 goto out_err;
4011         }
4012
4013         snapid = cpu_to_le64(CEPH_NOSNAP);
4014         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4015                                 "rbd", "get_parent",
4016                                 &snapid, sizeof (snapid),
4017                                 reply_buf, size);
4018         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4019         if (ret < 0)
4020                 goto out_err;
4021
4022         p = reply_buf;
4023         end = reply_buf + ret;
4024         ret = -ERANGE;
4025         ceph_decode_64_safe(&p, end, pool_id, out_err);
4026         if (pool_id == CEPH_NOPOOL) {
4027                 /*
4028                  * Either the parent never existed, or we have
4029                  * record of it but the image got flattened so it no
4030                  * longer has a parent.  When the parent of a
4031                  * layered image disappears we immediately set the
4032                  * overlap to 0.  The effect of this is that all new
4033                  * requests will be treated as if the image had no
4034                  * parent.
4035                  */
4036                 if (rbd_dev->parent_overlap) {
4037                         rbd_dev->parent_overlap = 0;
4038                         smp_mb();
4039                         rbd_dev_parent_put(rbd_dev);
4040                         pr_info("%s: clone image has been flattened\n",
4041                                 rbd_dev->disk->disk_name);
4042                 }
4043
4044                 goto out;       /* No parent?  No problem. */
4045         }
4046
4047         /* The ceph file layout needs to fit pool id in 32 bits */
4048
4049         ret = -EIO;
4050         if (pool_id > (u64)U32_MAX) {
4051                 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
4052                         (unsigned long long)pool_id, U32_MAX);
4053                 goto out_err;
4054         }
4055
4056         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4057         if (IS_ERR(image_id)) {
4058                 ret = PTR_ERR(image_id);
4059                 goto out_err;
4060         }
4061         ceph_decode_64_safe(&p, end, snap_id, out_err);
4062         ceph_decode_64_safe(&p, end, overlap, out_err);
4063
4064         /*
4065          * The parent won't change (except when the clone is
4066          * flattened, already handled that).  So we only need to
4067          * record the parent spec we have not already done so.
4068          */
4069         if (!rbd_dev->parent_spec) {
4070                 parent_spec->pool_id = pool_id;
4071                 parent_spec->image_id = image_id;
4072                 parent_spec->snap_id = snap_id;
4073                 rbd_dev->parent_spec = parent_spec;
4074                 parent_spec = NULL;     /* rbd_dev now owns this */
4075         } else {
4076                 kfree(image_id);
4077         }
4078
4079         /*
4080          * We always update the parent overlap.  If it's zero we
4081          * treat it specially.
4082          */
4083         rbd_dev->parent_overlap = overlap;
4084         smp_mb();
4085         if (!overlap) {
4086
4087                 /* A null parent_spec indicates it's the initial probe */
4088
4089                 if (parent_spec) {
4090                         /*
4091                          * The overlap has become zero, so the clone
4092                          * must have been resized down to 0 at some
4093                          * point.  Treat this the same as a flatten.
4094                          */
4095                         rbd_dev_parent_put(rbd_dev);
4096                         pr_info("%s: clone image now standalone\n",
4097                                 rbd_dev->disk->disk_name);
4098                 } else {
4099                         /*
4100                          * For the initial probe, if we find the
4101                          * overlap is zero we just pretend there was
4102                          * no parent image.
4103                          */
4104                         rbd_warn(rbd_dev, "ignoring parent of "
4105                                                 "clone with overlap 0\n");
4106                 }
4107         }
4108 out:
4109         ret = 0;
4110 out_err:
4111         kfree(reply_buf);
4112         rbd_spec_put(parent_spec);
4113
4114         return ret;
4115 }
4116
4117 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4118 {
4119         struct {
4120                 __le64 stripe_unit;
4121                 __le64 stripe_count;
4122         } __attribute__ ((packed)) striping_info_buf = { 0 };
4123         size_t size = sizeof (striping_info_buf);
4124         void *p;
4125         u64 obj_size;
4126         u64 stripe_unit;
4127         u64 stripe_count;
4128         int ret;
4129
4130         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4131                                 "rbd", "get_stripe_unit_count", NULL, 0,
4132                                 (char *)&striping_info_buf, size);
4133         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4134         if (ret < 0)
4135                 return ret;
4136         if (ret < size)
4137                 return -ERANGE;
4138
4139         /*
4140          * We don't actually support the "fancy striping" feature
4141          * (STRIPINGV2) yet, but if the striping sizes are the
4142          * defaults the behavior is the same as before.  So find
4143          * out, and only fail if the image has non-default values.
4144          */
4145         ret = -EINVAL;
4146         obj_size = (u64)1 << rbd_dev->header.obj_order;
4147         p = &striping_info_buf;
4148         stripe_unit = ceph_decode_64(&p);
4149         if (stripe_unit != obj_size) {
4150                 rbd_warn(rbd_dev, "unsupported stripe unit "
4151                                 "(got %llu want %llu)",
4152                                 stripe_unit, obj_size);
4153                 return -EINVAL;
4154         }
4155         stripe_count = ceph_decode_64(&p);
4156         if (stripe_count != 1) {
4157                 rbd_warn(rbd_dev, "unsupported stripe count "
4158                                 "(got %llu want 1)", stripe_count);
4159                 return -EINVAL;
4160         }
4161         rbd_dev->header.stripe_unit = stripe_unit;
4162         rbd_dev->header.stripe_count = stripe_count;
4163
4164         return 0;
4165 }
4166
4167 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4168 {
4169         size_t image_id_size;
4170         char *image_id;
4171         void *p;
4172         void *end;
4173         size_t size;
4174         void *reply_buf = NULL;
4175         size_t len = 0;
4176         char *image_name = NULL;
4177         int ret;
4178
4179         rbd_assert(!rbd_dev->spec->image_name);
4180
4181         len = strlen(rbd_dev->spec->image_id);
4182         image_id_size = sizeof (__le32) + len;
4183         image_id = kmalloc(image_id_size, GFP_KERNEL);
4184         if (!image_id)
4185                 return NULL;
4186
4187         p = image_id;
4188         end = image_id + image_id_size;
4189         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4190
4191         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4192         reply_buf = kmalloc(size, GFP_KERNEL);
4193         if (!reply_buf)
4194                 goto out;
4195
4196         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4197                                 "rbd", "dir_get_name",
4198                                 image_id, image_id_size,
4199                                 reply_buf, size);
4200         if (ret < 0)
4201                 goto out;
4202         p = reply_buf;
4203         end = reply_buf + ret;
4204
4205         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4206         if (IS_ERR(image_name))
4207                 image_name = NULL;
4208         else
4209                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4210 out:
4211         kfree(reply_buf);
4212         kfree(image_id);
4213
4214         return image_name;
4215 }
4216
4217 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4218 {
4219         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4220         const char *snap_name;
4221         u32 which = 0;
4222
4223         /* Skip over names until we find the one we are looking for */
4224
4225         snap_name = rbd_dev->header.snap_names;
4226         while (which < snapc->num_snaps) {
4227                 if (!strcmp(name, snap_name))
4228                         return snapc->snaps[which];
4229                 snap_name += strlen(snap_name) + 1;
4230                 which++;
4231         }
4232         return CEPH_NOSNAP;
4233 }
4234
4235 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4236 {
4237         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4238         u32 which;
4239         bool found = false;
4240         u64 snap_id;
4241
4242         for (which = 0; !found && which < snapc->num_snaps; which++) {
4243                 const char *snap_name;
4244
4245                 snap_id = snapc->snaps[which];
4246                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4247                 if (IS_ERR(snap_name)) {
4248                         /* ignore no-longer existing snapshots */
4249                         if (PTR_ERR(snap_name) == -ENOENT)
4250                                 continue;
4251                         else
4252                                 break;
4253                 }
4254                 found = !strcmp(name, snap_name);
4255                 kfree(snap_name);
4256         }
4257         return found ? snap_id : CEPH_NOSNAP;
4258 }
4259
4260 /*
4261  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4262  * no snapshot by that name is found, or if an error occurs.
4263  */
4264 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4265 {
4266         if (rbd_dev->image_format == 1)
4267                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4268
4269         return rbd_v2_snap_id_by_name(rbd_dev, name);
4270 }
4271
4272 /*
4273  * An image being mapped will have everything but the snap id.
4274  */
4275 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4276 {
4277         struct rbd_spec *spec = rbd_dev->spec;
4278
4279         rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4280         rbd_assert(spec->image_id && spec->image_name);
4281         rbd_assert(spec->snap_name);
4282
4283         if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4284                 u64 snap_id;
4285
4286                 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4287                 if (snap_id == CEPH_NOSNAP)
4288                         return -ENOENT;
4289
4290                 spec->snap_id = snap_id;
4291         } else {
4292                 spec->snap_id = CEPH_NOSNAP;
4293         }
4294
4295         return 0;
4296 }
4297
4298 /*
4299  * A parent image will have all ids but none of the names.
4300  *
4301  * All names in an rbd spec are dynamically allocated.  It's OK if we
4302  * can't figure out the name for an image id.
4303  */
4304 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4305 {
4306         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4307         struct rbd_spec *spec = rbd_dev->spec;
4308         const char *pool_name;
4309         const char *image_name;
4310         const char *snap_name;
4311         int ret;
4312
4313         rbd_assert(spec->pool_id != CEPH_NOPOOL);
4314         rbd_assert(spec->image_id);
4315         rbd_assert(spec->snap_id != CEPH_NOSNAP);
4316
4317         /* Get the pool name; we have to make our own copy of this */
4318
4319         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4320         if (!pool_name) {
4321                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4322                 return -EIO;
4323         }
4324         pool_name = kstrdup(pool_name, GFP_KERNEL);
4325         if (!pool_name)
4326                 return -ENOMEM;
4327
4328         /* Fetch the image name; tolerate failure here */
4329
4330         image_name = rbd_dev_image_name(rbd_dev);
4331         if (!image_name)
4332                 rbd_warn(rbd_dev, "unable to get image name");
4333
4334         /* Fetch the snapshot name */
4335
4336         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4337         if (IS_ERR(snap_name)) {
4338                 ret = PTR_ERR(snap_name);
4339                 goto out_err;
4340         }
4341
4342         spec->pool_name = pool_name;
4343         spec->image_name = image_name;
4344         spec->snap_name = snap_name;
4345
4346         return 0;
4347
4348 out_err:
4349         kfree(image_name);
4350         kfree(pool_name);
4351         return ret;
4352 }
4353
4354 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4355 {
4356         size_t size;
4357         int ret;
4358         void *reply_buf;
4359         void *p;
4360         void *end;
4361         u64 seq;
4362         u32 snap_count;
4363         struct ceph_snap_context *snapc;
4364         u32 i;
4365
4366         /*
4367          * We'll need room for the seq value (maximum snapshot id),
4368          * snapshot count, and array of that many snapshot ids.
4369          * For now we have a fixed upper limit on the number we're
4370          * prepared to receive.
4371          */
4372         size = sizeof (__le64) + sizeof (__le32) +
4373                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4374         reply_buf = kzalloc(size, GFP_KERNEL);
4375         if (!reply_buf)
4376                 return -ENOMEM;
4377
4378         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4379                                 "rbd", "get_snapcontext", NULL, 0,
4380                                 reply_buf, size);
4381         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4382         if (ret < 0)
4383                 goto out;
4384
4385         p = reply_buf;
4386         end = reply_buf + ret;
4387         ret = -ERANGE;
4388         ceph_decode_64_safe(&p, end, seq, out);
4389         ceph_decode_32_safe(&p, end, snap_count, out);
4390
4391         /*
4392          * Make sure the reported number of snapshot ids wouldn't go
4393          * beyond the end of our buffer.  But before checking that,
4394          * make sure the computed size of the snapshot context we
4395          * allocate is representable in a size_t.
4396          */
4397         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4398                                  / sizeof (u64)) {
4399                 ret = -EINVAL;
4400                 goto out;
4401         }
4402         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4403                 goto out;
4404         ret = 0;
4405
4406         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4407         if (!snapc) {
4408                 ret = -ENOMEM;
4409                 goto out;
4410         }
4411         snapc->seq = seq;
4412         for (i = 0; i < snap_count; i++)
4413                 snapc->snaps[i] = ceph_decode_64(&p);
4414
4415         ceph_put_snap_context(rbd_dev->header.snapc);
4416         rbd_dev->header.snapc = snapc;
4417
4418         dout("  snap context seq = %llu, snap_count = %u\n",
4419                 (unsigned long long)seq, (unsigned int)snap_count);
4420 out:
4421         kfree(reply_buf);
4422
4423         return ret;
4424 }
4425
4426 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4427                                         u64 snap_id)
4428 {
4429         size_t size;
4430         void *reply_buf;
4431         __le64 snapid;
4432         int ret;
4433         void *p;
4434         void *end;
4435         char *snap_name;
4436
4437         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4438         reply_buf = kmalloc(size, GFP_KERNEL);
4439         if (!reply_buf)
4440                 return ERR_PTR(-ENOMEM);
4441
4442         snapid = cpu_to_le64(snap_id);
4443         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4444                                 "rbd", "get_snapshot_name",
4445                                 &snapid, sizeof (snapid),
4446                                 reply_buf, size);
4447         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4448         if (ret < 0) {
4449                 snap_name = ERR_PTR(ret);
4450                 goto out;
4451         }
4452
4453         p = reply_buf;
4454         end = reply_buf + ret;
4455         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4456         if (IS_ERR(snap_name))
4457                 goto out;
4458
4459         dout("  snap_id 0x%016llx snap_name = %s\n",
4460                 (unsigned long long)snap_id, snap_name);
4461 out:
4462         kfree(reply_buf);
4463
4464         return snap_name;
4465 }
4466
4467 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4468 {
4469         bool first_time = rbd_dev->header.object_prefix == NULL;
4470         int ret;
4471
4472         ret = rbd_dev_v2_image_size(rbd_dev);
4473         if (ret)
4474                 return ret;
4475
4476         if (first_time) {
4477                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4478                 if (ret)
4479                         return ret;
4480         }
4481
4482         /*
4483          * If the image supports layering, get the parent info.  We
4484          * need to probe the first time regardless.  Thereafter we
4485          * only need to if there's a parent, to see if it has
4486          * disappeared due to the mapped image getting flattened.
4487          */
4488         if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4489                         (first_time || rbd_dev->parent_spec)) {
4490                 bool warn;
4491
4492                 ret = rbd_dev_v2_parent_info(rbd_dev);
4493                 if (ret)
4494                         return ret;
4495
4496                 /*
4497                  * Print a warning if this is the initial probe and
4498                  * the image has a parent.  Don't print it if the
4499                  * image now being probed is itself a parent.  We
4500                  * can tell at this point because we won't know its
4501                  * pool name yet (just its pool id).
4502                  */
4503                 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4504                 if (first_time && warn)
4505                         rbd_warn(rbd_dev, "WARNING: kernel layering "
4506                                         "is EXPERIMENTAL!");
4507         }
4508
4509         ret = rbd_dev_v2_snap_context(rbd_dev);
4510         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4511
4512         return ret;
4513 }
4514
4515 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4516 {
4517         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4518
4519         if (rbd_dev->image_format == 1)
4520                 return rbd_dev_v1_header_info(rbd_dev);
4521
4522         return rbd_dev_v2_header_info(rbd_dev);
4523 }
4524
4525 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4526 {
4527         struct device *dev;
4528         int ret;
4529
4530         dev = &rbd_dev->dev;
4531         dev->bus = &rbd_bus_type;
4532         dev->type = &rbd_device_type;
4533         dev->parent = &rbd_root_dev;
4534         dev->release = rbd_dev_device_release;
4535         dev_set_name(dev, "%d", rbd_dev->dev_id);
4536         ret = device_register(dev);
4537
4538         return ret;
4539 }
4540
4541 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4542 {
4543         device_unregister(&rbd_dev->dev);
4544 }
4545
4546 /*
4547  * Get a unique rbd identifier for the given new rbd_dev, and add
4548  * the rbd_dev to the global list.
4549  */
4550 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4551 {
4552         int new_dev_id;
4553
4554         new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4555                                     0, minor_to_rbd_dev_id(1 << MINORBITS),
4556                                     GFP_KERNEL);
4557         if (new_dev_id < 0)
4558                 return new_dev_id;
4559
4560         rbd_dev->dev_id = new_dev_id;
4561
4562         spin_lock(&rbd_dev_list_lock);
4563         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4564         spin_unlock(&rbd_dev_list_lock);
4565
4566         dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4567
4568         return 0;
4569 }
4570
4571 /*
4572  * Remove an rbd_dev from the global list, and record that its
4573  * identifier is no longer in use.
4574  */
4575 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4576 {
4577         spin_lock(&rbd_dev_list_lock);
4578         list_del_init(&rbd_dev->node);
4579         spin_unlock(&rbd_dev_list_lock);
4580
4581         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4582
4583         dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4584 }
4585
4586 /*
4587  * Skips over white space at *buf, and updates *buf to point to the
4588  * first found non-space character (if any). Returns the length of
4589  * the token (string of non-white space characters) found.  Note
4590  * that *buf must be terminated with '\0'.
4591  */
4592 static inline size_t next_token(const char **buf)
4593 {
4594         /*
4595         * These are the characters that produce nonzero for
4596         * isspace() in the "C" and "POSIX" locales.
4597         */
4598         const char *spaces = " \f\n\r\t\v";
4599
4600         *buf += strspn(*buf, spaces);   /* Find start of token */
4601
4602         return strcspn(*buf, spaces);   /* Return token length */
4603 }
4604
4605 /*
4606  * Finds the next token in *buf, and if the provided token buffer is
4607  * big enough, copies the found token into it.  The result, if
4608  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4609  * must be terminated with '\0' on entry.
4610  *
4611  * Returns the length of the token found (not including the '\0').
4612  * Return value will be 0 if no token is found, and it will be >=
4613  * token_size if the token would not fit.
4614  *
4615  * The *buf pointer will be updated to point beyond the end of the
4616  * found token.  Note that this occurs even if the token buffer is
4617  * too small to hold it.
4618  */
4619 static inline size_t copy_token(const char **buf,
4620                                 char *token,
4621                                 size_t token_size)
4622 {
4623         size_t len;
4624
4625         len = next_token(buf);
4626         if (len < token_size) {
4627                 memcpy(token, *buf, len);
4628                 *(token + len) = '\0';
4629         }
4630         *buf += len;
4631
4632         return len;
4633 }
4634
4635 /*
4636  * Finds the next token in *buf, dynamically allocates a buffer big
4637  * enough to hold a copy of it, and copies the token into the new
4638  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4639  * that a duplicate buffer is created even for a zero-length token.
4640  *
4641  * Returns a pointer to the newly-allocated duplicate, or a null
4642  * pointer if memory for the duplicate was not available.  If
4643  * the lenp argument is a non-null pointer, the length of the token
4644  * (not including the '\0') is returned in *lenp.
4645  *
4646  * If successful, the *buf pointer will be updated to point beyond
4647  * the end of the found token.
4648  *
4649  * Note: uses GFP_KERNEL for allocation.
4650  */
4651 static inline char *dup_token(const char **buf, size_t *lenp)
4652 {
4653         char *dup;
4654         size_t len;
4655
4656         len = next_token(buf);
4657         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4658         if (!dup)
4659                 return NULL;
4660         *(dup + len) = '\0';
4661         *buf += len;
4662
4663         if (lenp)
4664                 *lenp = len;
4665
4666         return dup;
4667 }
4668
4669 /*
4670  * Parse the options provided for an "rbd add" (i.e., rbd image
4671  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4672  * and the data written is passed here via a NUL-terminated buffer.
4673  * Returns 0 if successful or an error code otherwise.
4674  *
4675  * The information extracted from these options is recorded in
4676  * the other parameters which return dynamically-allocated
4677  * structures:
4678  *  ceph_opts
4679  *      The address of a pointer that will refer to a ceph options
4680  *      structure.  Caller must release the returned pointer using
4681  *      ceph_destroy_options() when it is no longer needed.
4682  *  rbd_opts
4683  *      Address of an rbd options pointer.  Fully initialized by
4684  *      this function; caller must release with kfree().
4685  *  spec
4686  *      Address of an rbd image specification pointer.  Fully
4687  *      initialized by this function based on parsed options.
4688  *      Caller must release with rbd_spec_put().
4689  *
4690  * The options passed take this form:
4691  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4692  * where:
4693  *  <mon_addrs>
4694  *      A comma-separated list of one or more monitor addresses.
4695  *      A monitor address is an ip address, optionally followed
4696  *      by a port number (separated by a colon).
4697  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4698  *  <options>
4699  *      A comma-separated list of ceph and/or rbd options.
4700  *  <pool_name>
4701  *      The name of the rados pool containing the rbd image.
4702  *  <image_name>
4703  *      The name of the image in that pool to map.
4704  *  <snap_id>
4705  *      An optional snapshot id.  If provided, the mapping will
4706  *      present data from the image at the time that snapshot was
4707  *      created.  The image head is used if no snapshot id is
4708  *      provided.  Snapshot mappings are always read-only.
4709  */
4710 static int rbd_add_parse_args(const char *buf,
4711                                 struct ceph_options **ceph_opts,
4712                                 struct rbd_options **opts,
4713                                 struct rbd_spec **rbd_spec)
4714 {
4715         size_t len;
4716         char *options;
4717         const char *mon_addrs;
4718         char *snap_name;
4719         size_t mon_addrs_size;
4720         struct rbd_spec *spec = NULL;
4721         struct rbd_options *rbd_opts = NULL;
4722         struct ceph_options *copts;
4723         int ret;
4724
4725         /* The first four tokens are required */
4726
4727         len = next_token(&buf);
4728         if (!len) {
4729                 rbd_warn(NULL, "no monitor address(es) provided");
4730                 return -EINVAL;
4731         }
4732         mon_addrs = buf;
4733         mon_addrs_size = len + 1;
4734         buf += len;
4735
4736         ret = -EINVAL;
4737         options = dup_token(&buf, NULL);
4738         if (!options)
4739                 return -ENOMEM;
4740         if (!*options) {
4741                 rbd_warn(NULL, "no options provided");
4742                 goto out_err;
4743         }
4744
4745         spec = rbd_spec_alloc();
4746         if (!spec)
4747                 goto out_mem;
4748
4749         spec->pool_name = dup_token(&buf, NULL);
4750         if (!spec->pool_name)
4751                 goto out_mem;
4752         if (!*spec->pool_name) {
4753                 rbd_warn(NULL, "no pool name provided");
4754                 goto out_err;
4755         }
4756
4757         spec->image_name = dup_token(&buf, NULL);
4758         if (!spec->image_name)
4759                 goto out_mem;
4760         if (!*spec->image_name) {
4761                 rbd_warn(NULL, "no image name provided");
4762                 goto out_err;
4763         }
4764
4765         /*
4766          * Snapshot name is optional; default is to use "-"
4767          * (indicating the head/no snapshot).
4768          */
4769         len = next_token(&buf);
4770         if (!len) {
4771                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4772                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4773         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4774                 ret = -ENAMETOOLONG;
4775                 goto out_err;
4776         }
4777         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4778         if (!snap_name)
4779                 goto out_mem;
4780         *(snap_name + len) = '\0';
4781         spec->snap_name = snap_name;
4782
4783         /* Initialize all rbd options to the defaults */
4784
4785         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4786         if (!rbd_opts)
4787                 goto out_mem;
4788
4789         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4790
4791         copts = ceph_parse_options(options, mon_addrs,
4792                                         mon_addrs + mon_addrs_size - 1,
4793                                         parse_rbd_opts_token, rbd_opts);
4794         if (IS_ERR(copts)) {
4795                 ret = PTR_ERR(copts);
4796                 goto out_err;
4797         }
4798         kfree(options);
4799
4800         *ceph_opts = copts;
4801         *opts = rbd_opts;
4802         *rbd_spec = spec;
4803
4804         return 0;
4805 out_mem:
4806         ret = -ENOMEM;
4807 out_err:
4808         kfree(rbd_opts);
4809         rbd_spec_put(spec);
4810         kfree(options);
4811
4812         return ret;
4813 }
4814
4815 /*
4816  * Return pool id (>= 0) or a negative error code.
4817  */
4818 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4819 {
4820         u64 newest_epoch;
4821         unsigned long timeout = rbdc->client->options->mount_timeout * HZ;
4822         int tries = 0;
4823         int ret;
4824
4825 again:
4826         ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4827         if (ret == -ENOENT && tries++ < 1) {
4828                 ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
4829                                                &newest_epoch);
4830                 if (ret < 0)
4831                         return ret;
4832
4833                 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
4834                         ceph_monc_request_next_osdmap(&rbdc->client->monc);
4835                         (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
4836                                                      newest_epoch, timeout);
4837                         goto again;
4838                 } else {
4839                         /* the osdmap we have is new enough */
4840                         return -ENOENT;
4841                 }
4842         }
4843
4844         return ret;
4845 }
4846
4847 /*
4848  * An rbd format 2 image has a unique identifier, distinct from the
4849  * name given to it by the user.  Internally, that identifier is
4850  * what's used to specify the names of objects related to the image.
4851  *
4852  * A special "rbd id" object is used to map an rbd image name to its
4853  * id.  If that object doesn't exist, then there is no v2 rbd image
4854  * with the supplied name.
4855  *
4856  * This function will record the given rbd_dev's image_id field if
4857  * it can be determined, and in that case will return 0.  If any
4858  * errors occur a negative errno will be returned and the rbd_dev's
4859  * image_id field will be unchanged (and should be NULL).
4860  */
4861 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4862 {
4863         int ret;
4864         size_t size;
4865         char *object_name;
4866         void *response;
4867         char *image_id;
4868
4869         /*
4870          * When probing a parent image, the image id is already
4871          * known (and the image name likely is not).  There's no
4872          * need to fetch the image id again in this case.  We
4873          * do still need to set the image format though.
4874          */
4875         if (rbd_dev->spec->image_id) {
4876                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4877
4878                 return 0;
4879         }
4880
4881         /*
4882          * First, see if the format 2 image id file exists, and if
4883          * so, get the image's persistent id from it.
4884          */
4885         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4886         object_name = kmalloc(size, GFP_NOIO);
4887         if (!object_name)
4888                 return -ENOMEM;
4889         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4890         dout("rbd id object name is %s\n", object_name);
4891
4892         /* Response will be an encoded string, which includes a length */
4893
4894         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4895         response = kzalloc(size, GFP_NOIO);
4896         if (!response) {
4897                 ret = -ENOMEM;
4898                 goto out;
4899         }
4900
4901         /* If it doesn't exist we'll assume it's a format 1 image */
4902
4903         ret = rbd_obj_method_sync(rbd_dev, object_name,
4904                                 "rbd", "get_id", NULL, 0,
4905                                 response, RBD_IMAGE_ID_LEN_MAX);
4906         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4907         if (ret == -ENOENT) {
4908                 image_id = kstrdup("", GFP_KERNEL);
4909                 ret = image_id ? 0 : -ENOMEM;
4910                 if (!ret)
4911                         rbd_dev->image_format = 1;
4912         } else if (ret > sizeof (__le32)) {
4913                 void *p = response;
4914
4915                 image_id = ceph_extract_encoded_string(&p, p + ret,
4916                                                 NULL, GFP_NOIO);
4917                 ret = PTR_ERR_OR_ZERO(image_id);
4918                 if (!ret)
4919                         rbd_dev->image_format = 2;
4920         } else {
4921                 ret = -EINVAL;
4922         }
4923
4924         if (!ret) {
4925                 rbd_dev->spec->image_id = image_id;
4926                 dout("image_id is %s\n", image_id);
4927         }
4928 out:
4929         kfree(response);
4930         kfree(object_name);
4931
4932         return ret;
4933 }
4934
4935 /*
4936  * Undo whatever state changes are made by v1 or v2 header info
4937  * call.
4938  */
4939 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4940 {
4941         struct rbd_image_header *header;
4942
4943         /* Drop parent reference unless it's already been done (or none) */
4944
4945         if (rbd_dev->parent_overlap)
4946                 rbd_dev_parent_put(rbd_dev);
4947
4948         /* Free dynamic fields from the header, then zero it out */
4949
4950         header = &rbd_dev->header;
4951         ceph_put_snap_context(header->snapc);
4952         kfree(header->snap_sizes);
4953         kfree(header->snap_names);
4954         kfree(header->object_prefix);
4955         memset(header, 0, sizeof (*header));
4956 }
4957
4958 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4959 {
4960         int ret;
4961
4962         ret = rbd_dev_v2_object_prefix(rbd_dev);
4963         if (ret)
4964                 goto out_err;
4965
4966         /*
4967          * Get the and check features for the image.  Currently the
4968          * features are assumed to never change.
4969          */
4970         ret = rbd_dev_v2_features(rbd_dev);
4971         if (ret)
4972                 goto out_err;
4973
4974         /* If the image supports fancy striping, get its parameters */
4975
4976         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4977                 ret = rbd_dev_v2_striping_info(rbd_dev);
4978                 if (ret < 0)
4979                         goto out_err;
4980         }
4981         /* No support for crypto and compression type format 2 images */
4982
4983         return 0;
4984 out_err:
4985         rbd_dev->header.features = 0;
4986         kfree(rbd_dev->header.object_prefix);
4987         rbd_dev->header.object_prefix = NULL;
4988
4989         return ret;
4990 }
4991
4992 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4993 {
4994         struct rbd_device *parent = NULL;
4995         struct rbd_spec *parent_spec;
4996         struct rbd_client *rbdc;
4997         int ret;
4998
4999         if (!rbd_dev->parent_spec)
5000                 return 0;
5001         /*
5002          * We need to pass a reference to the client and the parent
5003          * spec when creating the parent rbd_dev.  Images related by
5004          * parent/child relationships always share both.
5005          */
5006         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
5007         rbdc = __rbd_get_client(rbd_dev->rbd_client);
5008
5009         ret = -ENOMEM;
5010         parent = rbd_dev_create(rbdc, parent_spec);
5011         if (!parent)
5012                 goto out_err;
5013
5014         ret = rbd_dev_image_probe(parent, false);
5015         if (ret < 0)
5016                 goto out_err;
5017         rbd_dev->parent = parent;
5018         atomic_set(&rbd_dev->parent_ref, 1);
5019
5020         return 0;
5021 out_err:
5022         if (parent) {
5023                 rbd_dev_unparent(rbd_dev);
5024                 kfree(rbd_dev->header_name);
5025                 rbd_dev_destroy(parent);
5026         } else {
5027                 rbd_put_client(rbdc);
5028                 rbd_spec_put(parent_spec);
5029         }
5030
5031         return ret;
5032 }
5033
5034 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5035 {
5036         int ret;
5037
5038         /* Get an id and fill in device name. */
5039
5040         ret = rbd_dev_id_get(rbd_dev);
5041         if (ret)
5042                 return ret;
5043
5044         BUILD_BUG_ON(DEV_NAME_LEN
5045                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5046         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5047
5048         /* Record our major and minor device numbers. */
5049
5050         if (!single_major) {
5051                 ret = register_blkdev(0, rbd_dev->name);
5052                 if (ret < 0)
5053                         goto err_out_id;
5054
5055                 rbd_dev->major = ret;
5056                 rbd_dev->minor = 0;
5057         } else {
5058                 rbd_dev->major = rbd_major;
5059                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5060         }
5061
5062         /* Set up the blkdev mapping. */
5063
5064         ret = rbd_init_disk(rbd_dev);
5065         if (ret)
5066                 goto err_out_blkdev;
5067
5068         ret = rbd_dev_mapping_set(rbd_dev);
5069         if (ret)
5070                 goto err_out_disk;
5071         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5072         set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5073
5074         ret = rbd_bus_add_dev(rbd_dev);
5075         if (ret)
5076                 goto err_out_mapping;
5077
5078         /* Everything's ready.  Announce the disk to the world. */
5079
5080         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5081         add_disk(rbd_dev->disk);
5082
5083         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5084                 (unsigned long long) rbd_dev->mapping.size);
5085
5086         return ret;
5087
5088 err_out_mapping:
5089         rbd_dev_mapping_clear(rbd_dev);
5090 err_out_disk:
5091         rbd_free_disk(rbd_dev);
5092 err_out_blkdev:
5093         if (!single_major)
5094                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5095 err_out_id:
5096         rbd_dev_id_put(rbd_dev);
5097         rbd_dev_mapping_clear(rbd_dev);
5098
5099         return ret;
5100 }
5101
5102 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5103 {
5104         struct rbd_spec *spec = rbd_dev->spec;
5105         size_t size;
5106
5107         /* Record the header object name for this rbd image. */
5108
5109         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5110
5111         if (rbd_dev->image_format == 1)
5112                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5113         else
5114                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5115
5116         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5117         if (!rbd_dev->header_name)
5118                 return -ENOMEM;
5119
5120         if (rbd_dev->image_format == 1)
5121                 sprintf(rbd_dev->header_name, "%s%s",
5122                         spec->image_name, RBD_SUFFIX);
5123         else
5124                 sprintf(rbd_dev->header_name, "%s%s",
5125                         RBD_HEADER_PREFIX, spec->image_id);
5126         return 0;
5127 }
5128
5129 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5130 {
5131         rbd_dev_unprobe(rbd_dev);
5132         kfree(rbd_dev->header_name);
5133         rbd_dev->header_name = NULL;
5134         rbd_dev->image_format = 0;
5135         kfree(rbd_dev->spec->image_id);
5136         rbd_dev->spec->image_id = NULL;
5137
5138         rbd_dev_destroy(rbd_dev);
5139 }
5140
5141 /*
5142  * Probe for the existence of the header object for the given rbd
5143  * device.  If this image is the one being mapped (i.e., not a
5144  * parent), initiate a watch on its header object before using that
5145  * object to get detailed information about the rbd image.
5146  */
5147 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
5148 {
5149         int ret;
5150
5151         /*
5152          * Get the id from the image id object.  Unless there's an
5153          * error, rbd_dev->spec->image_id will be filled in with
5154          * a dynamically-allocated string, and rbd_dev->image_format
5155          * will be set to either 1 or 2.
5156          */
5157         ret = rbd_dev_image_id(rbd_dev);
5158         if (ret)
5159                 return ret;
5160
5161         ret = rbd_dev_header_name(rbd_dev);
5162         if (ret)
5163                 goto err_out_format;
5164
5165         if (mapping) {
5166                 ret = rbd_dev_header_watch_sync(rbd_dev);
5167                 if (ret)
5168                         goto out_header_name;
5169         }
5170
5171         ret = rbd_dev_header_info(rbd_dev);
5172         if (ret)
5173                 goto err_out_watch;
5174
5175         /*
5176          * If this image is the one being mapped, we have pool name and
5177          * id, image name and id, and snap name - need to fill snap id.
5178          * Otherwise this is a parent image, identified by pool, image
5179          * and snap ids - need to fill in names for those ids.
5180          */
5181         if (mapping)
5182                 ret = rbd_spec_fill_snap_id(rbd_dev);
5183         else
5184                 ret = rbd_spec_fill_names(rbd_dev);
5185         if (ret)
5186                 goto err_out_probe;
5187
5188         ret = rbd_dev_probe_parent(rbd_dev);
5189         if (ret)
5190                 goto err_out_probe;
5191
5192         dout("discovered format %u image, header name is %s\n",
5193                 rbd_dev->image_format, rbd_dev->header_name);
5194
5195         return 0;
5196 err_out_probe:
5197         rbd_dev_unprobe(rbd_dev);
5198 err_out_watch:
5199         if (mapping)
5200                 rbd_dev_header_unwatch_sync(rbd_dev);
5201 out_header_name:
5202         kfree(rbd_dev->header_name);
5203         rbd_dev->header_name = NULL;
5204 err_out_format:
5205         rbd_dev->image_format = 0;
5206         kfree(rbd_dev->spec->image_id);
5207         rbd_dev->spec->image_id = NULL;
5208
5209         dout("probe failed, returning %d\n", ret);
5210
5211         return ret;
5212 }
5213
5214 static ssize_t do_rbd_add(struct bus_type *bus,
5215                           const char *buf,
5216                           size_t count)
5217 {
5218         struct rbd_device *rbd_dev = NULL;
5219         struct ceph_options *ceph_opts = NULL;
5220         struct rbd_options *rbd_opts = NULL;
5221         struct rbd_spec *spec = NULL;
5222         struct rbd_client *rbdc;
5223         bool read_only;
5224         int rc = -ENOMEM;
5225
5226         if (!try_module_get(THIS_MODULE))
5227                 return -ENODEV;
5228
5229         /* parse add command */
5230         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5231         if (rc < 0)
5232                 goto err_out_module;
5233         read_only = rbd_opts->read_only;
5234         kfree(rbd_opts);
5235         rbd_opts = NULL;        /* done with this */
5236
5237         rbdc = rbd_get_client(ceph_opts);
5238         if (IS_ERR(rbdc)) {
5239                 rc = PTR_ERR(rbdc);
5240                 goto err_out_args;
5241         }
5242
5243         /* pick the pool */
5244         rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5245         if (rc < 0)
5246                 goto err_out_client;
5247         spec->pool_id = (u64)rc;
5248
5249         /* The ceph file layout needs to fit pool id in 32 bits */
5250
5251         if (spec->pool_id > (u64)U32_MAX) {
5252                 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5253                                 (unsigned long long)spec->pool_id, U32_MAX);
5254                 rc = -EIO;
5255                 goto err_out_client;
5256         }
5257
5258         rbd_dev = rbd_dev_create(rbdc, spec);
5259         if (!rbd_dev)
5260                 goto err_out_client;
5261         rbdc = NULL;            /* rbd_dev now owns this */
5262         spec = NULL;            /* rbd_dev now owns this */
5263
5264         rc = rbd_dev_image_probe(rbd_dev, true);
5265         if (rc < 0)
5266                 goto err_out_rbd_dev;
5267
5268         /* If we are mapping a snapshot it must be marked read-only */
5269
5270         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5271                 read_only = true;
5272         rbd_dev->mapping.read_only = read_only;
5273
5274         rc = rbd_dev_device_setup(rbd_dev);
5275         if (rc) {
5276                 /*
5277                  * rbd_dev_header_unwatch_sync() can't be moved into
5278                  * rbd_dev_image_release() without refactoring, see
5279                  * commit 1f3ef78861ac.
5280                  */
5281                 rbd_dev_header_unwatch_sync(rbd_dev);
5282                 rbd_dev_image_release(rbd_dev);
5283                 goto err_out_module;
5284         }
5285
5286         return count;
5287
5288 err_out_rbd_dev:
5289         rbd_dev_destroy(rbd_dev);
5290 err_out_client:
5291         rbd_put_client(rbdc);
5292 err_out_args:
5293         rbd_spec_put(spec);
5294 err_out_module:
5295         module_put(THIS_MODULE);
5296
5297         dout("Error adding device %s\n", buf);
5298
5299         return (ssize_t)rc;
5300 }
5301
5302 static ssize_t rbd_add(struct bus_type *bus,
5303                        const char *buf,
5304                        size_t count)
5305 {
5306         if (single_major)
5307                 return -EINVAL;
5308
5309         return do_rbd_add(bus, buf, count);
5310 }
5311
5312 static ssize_t rbd_add_single_major(struct bus_type *bus,
5313                                     const char *buf,
5314                                     size_t count)
5315 {
5316         return do_rbd_add(bus, buf, count);
5317 }
5318
5319 static void rbd_dev_device_release(struct device *dev)
5320 {
5321         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5322
5323         rbd_free_disk(rbd_dev);
5324         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5325         rbd_dev_mapping_clear(rbd_dev);
5326         if (!single_major)
5327                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5328         rbd_dev_id_put(rbd_dev);
5329         rbd_dev_mapping_clear(rbd_dev);
5330 }
5331
5332 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5333 {
5334         while (rbd_dev->parent) {
5335                 struct rbd_device *first = rbd_dev;
5336                 struct rbd_device *second = first->parent;
5337                 struct rbd_device *third;
5338
5339                 /*
5340                  * Follow to the parent with no grandparent and
5341                  * remove it.
5342                  */
5343                 while (second && (third = second->parent)) {
5344                         first = second;
5345                         second = third;
5346                 }
5347                 rbd_assert(second);
5348                 rbd_dev_image_release(second);
5349                 first->parent = NULL;
5350                 first->parent_overlap = 0;
5351
5352                 rbd_assert(first->parent_spec);
5353                 rbd_spec_put(first->parent_spec);
5354                 first->parent_spec = NULL;
5355         }
5356 }
5357
5358 static ssize_t do_rbd_remove(struct bus_type *bus,
5359                              const char *buf,
5360                              size_t count)
5361 {
5362         struct rbd_device *rbd_dev = NULL;
5363         struct list_head *tmp;
5364         int dev_id;
5365         unsigned long ul;
5366         bool already = false;
5367         int ret;
5368
5369         ret = kstrtoul(buf, 10, &ul);
5370         if (ret)
5371                 return ret;
5372
5373         /* convert to int; abort if we lost anything in the conversion */
5374         dev_id = (int)ul;
5375         if (dev_id != ul)
5376                 return -EINVAL;
5377
5378         ret = -ENOENT;
5379         spin_lock(&rbd_dev_list_lock);
5380         list_for_each(tmp, &rbd_dev_list) {
5381                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5382                 if (rbd_dev->dev_id == dev_id) {
5383                         ret = 0;
5384                         break;
5385                 }
5386         }
5387         if (!ret) {
5388                 spin_lock_irq(&rbd_dev->lock);
5389                 if (rbd_dev->open_count)
5390                         ret = -EBUSY;
5391                 else
5392                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5393                                                         &rbd_dev->flags);
5394                 spin_unlock_irq(&rbd_dev->lock);
5395         }
5396         spin_unlock(&rbd_dev_list_lock);
5397         if (ret < 0 || already)
5398                 return ret;
5399
5400         rbd_dev_header_unwatch_sync(rbd_dev);
5401         /*
5402          * flush remaining watch callbacks - these must be complete
5403          * before the osd_client is shutdown
5404          */
5405         dout("%s: flushing notifies", __func__);
5406         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5407
5408         /*
5409          * Don't free anything from rbd_dev->disk until after all
5410          * notifies are completely processed. Otherwise
5411          * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5412          * in a potential use after free of rbd_dev->disk or rbd_dev.
5413          */
5414         rbd_bus_del_dev(rbd_dev);
5415         rbd_dev_image_release(rbd_dev);
5416         module_put(THIS_MODULE);
5417
5418         return count;
5419 }
5420
5421 static ssize_t rbd_remove(struct bus_type *bus,
5422                           const char *buf,
5423                           size_t count)
5424 {
5425         if (single_major)
5426                 return -EINVAL;
5427
5428         return do_rbd_remove(bus, buf, count);
5429 }
5430
5431 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5432                                        const char *buf,
5433                                        size_t count)
5434 {
5435         return do_rbd_remove(bus, buf, count);
5436 }
5437
5438 /*
5439  * create control files in sysfs
5440  * /sys/bus/rbd/...
5441  */
5442 static int rbd_sysfs_init(void)
5443 {
5444         int ret;
5445
5446         ret = device_register(&rbd_root_dev);
5447         if (ret < 0)
5448                 return ret;
5449
5450         ret = bus_register(&rbd_bus_type);
5451         if (ret < 0)
5452                 device_unregister(&rbd_root_dev);
5453
5454         return ret;
5455 }
5456
5457 static void rbd_sysfs_cleanup(void)
5458 {
5459         bus_unregister(&rbd_bus_type);
5460         device_unregister(&rbd_root_dev);
5461 }
5462
5463 static int rbd_slab_init(void)
5464 {
5465         rbd_assert(!rbd_img_request_cache);
5466         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5467                                         sizeof (struct rbd_img_request),
5468                                         __alignof__(struct rbd_img_request),
5469                                         0, NULL);
5470         if (!rbd_img_request_cache)
5471                 return -ENOMEM;
5472
5473         rbd_assert(!rbd_obj_request_cache);
5474         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5475                                         sizeof (struct rbd_obj_request),
5476                                         __alignof__(struct rbd_obj_request),
5477                                         0, NULL);
5478         if (!rbd_obj_request_cache)
5479                 goto out_err;
5480
5481         rbd_assert(!rbd_segment_name_cache);
5482         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5483                                         CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5484         if (rbd_segment_name_cache)
5485                 return 0;
5486 out_err:
5487         if (rbd_obj_request_cache) {
5488                 kmem_cache_destroy(rbd_obj_request_cache);
5489                 rbd_obj_request_cache = NULL;
5490         }
5491
5492         kmem_cache_destroy(rbd_img_request_cache);
5493         rbd_img_request_cache = NULL;
5494
5495         return -ENOMEM;
5496 }
5497
5498 static void rbd_slab_exit(void)
5499 {
5500         rbd_assert(rbd_segment_name_cache);
5501         kmem_cache_destroy(rbd_segment_name_cache);
5502         rbd_segment_name_cache = NULL;
5503
5504         rbd_assert(rbd_obj_request_cache);
5505         kmem_cache_destroy(rbd_obj_request_cache);
5506         rbd_obj_request_cache = NULL;
5507
5508         rbd_assert(rbd_img_request_cache);
5509         kmem_cache_destroy(rbd_img_request_cache);
5510         rbd_img_request_cache = NULL;
5511 }
5512
5513 static int __init rbd_init(void)
5514 {
5515         int rc;
5516
5517         if (!libceph_compatible(NULL)) {
5518                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5519                 return -EINVAL;
5520         }
5521
5522         rc = rbd_slab_init();
5523         if (rc)
5524                 return rc;
5525
5526         if (single_major) {
5527                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5528                 if (rbd_major < 0) {
5529                         rc = rbd_major;
5530                         goto err_out_slab;
5531                 }
5532         }
5533
5534         rc = rbd_sysfs_init();
5535         if (rc)
5536                 goto err_out_blkdev;
5537
5538         if (single_major)
5539                 pr_info("loaded (major %d)\n", rbd_major);
5540         else
5541                 pr_info("loaded\n");
5542
5543         return 0;
5544
5545 err_out_blkdev:
5546         if (single_major)
5547                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5548 err_out_slab:
5549         rbd_slab_exit();
5550         return rc;
5551 }
5552
5553 static void __exit rbd_exit(void)
5554 {
5555         ida_destroy(&rbd_dev_id_ida);
5556         rbd_sysfs_cleanup();
5557         if (single_major)
5558                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5559         rbd_slab_exit();
5560 }
5561
5562 module_init(rbd_init);
5563 module_exit(rbd_exit);
5564
5565 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5566 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5567 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5568 /* following authorship retained from original osdblk.c */
5569 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5570
5571 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5572 MODULE_LICENSE("GPL");