rbd: move calls that may sleep out of spin lock range
[firefly-linux-kernel-4.4.55.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44 #include <linux/idr.h>
45
46 #include "rbd_types.h"
47
48 #define RBD_DEBUG       /* Activate rbd_assert() calls */
49
50 /*
51  * The basic unit of block I/O is a sector.  It is interpreted in a
52  * number of contexts in Linux (blk, bio, genhd), but the default is
53  * universally 512 bytes.  These symbols are just slightly more
54  * meaningful than the bare numbers they represent.
55  */
56 #define SECTOR_SHIFT    9
57 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
58
59 /*
60  * Increment the given counter and return its updated value.
61  * If the counter is already 0 it will not be incremented.
62  * If the counter is already at its maximum value returns
63  * -EINVAL without updating it.
64  */
65 static int atomic_inc_return_safe(atomic_t *v)
66 {
67         unsigned int counter;
68
69         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
70         if (counter <= (unsigned int)INT_MAX)
71                 return (int)counter;
72
73         atomic_dec(v);
74
75         return -EINVAL;
76 }
77
78 /* Decrement the counter.  Return the resulting value, or -EINVAL */
79 static int atomic_dec_return_safe(atomic_t *v)
80 {
81         int counter;
82
83         counter = atomic_dec_return(v);
84         if (counter >= 0)
85                 return counter;
86
87         atomic_inc(v);
88
89         return -EINVAL;
90 }
91
92 #define RBD_DRV_NAME "rbd"
93
94 #define RBD_MINORS_PER_MAJOR            256
95 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
96
97 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
98 #define RBD_MAX_SNAP_NAME_LEN   \
99                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
100
101 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
102
103 #define RBD_SNAP_HEAD_NAME      "-"
104
105 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
106
107 /* This allows a single page to hold an image name sent by OSD */
108 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
109 #define RBD_IMAGE_ID_LEN_MAX    64
110
111 #define RBD_OBJ_PREFIX_LEN_MAX  64
112
113 /* Feature bits */
114
115 #define RBD_FEATURE_LAYERING    (1<<0)
116 #define RBD_FEATURE_STRIPINGV2  (1<<1)
117 #define RBD_FEATURES_ALL \
118             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
119
120 /* Features supported by this (client software) implementation. */
121
122 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
123
124 /*
125  * An RBD device name will be "rbd#", where the "rbd" comes from
126  * RBD_DRV_NAME above, and # is a unique integer identifier.
127  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
128  * enough to hold all possible device names.
129  */
130 #define DEV_NAME_LEN            32
131 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
132
133 /*
134  * block device image metadata (in-memory version)
135  */
136 struct rbd_image_header {
137         /* These six fields never change for a given rbd image */
138         char *object_prefix;
139         __u8 obj_order;
140         __u8 crypt_type;
141         __u8 comp_type;
142         u64 stripe_unit;
143         u64 stripe_count;
144         u64 features;           /* Might be changeable someday? */
145
146         /* The remaining fields need to be updated occasionally */
147         u64 image_size;
148         struct ceph_snap_context *snapc;
149         char *snap_names;       /* format 1 only */
150         u64 *snap_sizes;        /* format 1 only */
151 };
152
153 /*
154  * An rbd image specification.
155  *
156  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
157  * identify an image.  Each rbd_dev structure includes a pointer to
158  * an rbd_spec structure that encapsulates this identity.
159  *
160  * Each of the id's in an rbd_spec has an associated name.  For a
161  * user-mapped image, the names are supplied and the id's associated
162  * with them are looked up.  For a layered image, a parent image is
163  * defined by the tuple, and the names are looked up.
164  *
165  * An rbd_dev structure contains a parent_spec pointer which is
166  * non-null if the image it represents is a child in a layered
167  * image.  This pointer will refer to the rbd_spec structure used
168  * by the parent rbd_dev for its own identity (i.e., the structure
169  * is shared between the parent and child).
170  *
171  * Since these structures are populated once, during the discovery
172  * phase of image construction, they are effectively immutable so
173  * we make no effort to synchronize access to them.
174  *
175  * Note that code herein does not assume the image name is known (it
176  * could be a null pointer).
177  */
178 struct rbd_spec {
179         u64             pool_id;
180         const char      *pool_name;
181
182         const char      *image_id;
183         const char      *image_name;
184
185         u64             snap_id;
186         const char      *snap_name;
187
188         struct kref     kref;
189 };
190
191 /*
192  * an instance of the client.  multiple devices may share an rbd client.
193  */
194 struct rbd_client {
195         struct ceph_client      *client;
196         struct kref             kref;
197         struct list_head        node;
198 };
199
200 struct rbd_img_request;
201 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
202
203 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
204
205 struct rbd_obj_request;
206 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
207
208 enum obj_request_type {
209         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
210 };
211
212 enum obj_req_flags {
213         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
214         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
215         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
216         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
217 };
218
219 struct rbd_obj_request {
220         const char              *object_name;
221         u64                     offset;         /* object start byte */
222         u64                     length;         /* bytes from offset */
223         unsigned long           flags;
224
225         /*
226          * An object request associated with an image will have its
227          * img_data flag set; a standalone object request will not.
228          *
229          * A standalone object request will have which == BAD_WHICH
230          * and a null obj_request pointer.
231          *
232          * An object request initiated in support of a layered image
233          * object (to check for its existence before a write) will
234          * have which == BAD_WHICH and a non-null obj_request pointer.
235          *
236          * Finally, an object request for rbd image data will have
237          * which != BAD_WHICH, and will have a non-null img_request
238          * pointer.  The value of which will be in the range
239          * 0..(img_request->obj_request_count-1).
240          */
241         union {
242                 struct rbd_obj_request  *obj_request;   /* STAT op */
243                 struct {
244                         struct rbd_img_request  *img_request;
245                         u64                     img_offset;
246                         /* links for img_request->obj_requests list */
247                         struct list_head        links;
248                 };
249         };
250         u32                     which;          /* posn image request list */
251
252         enum obj_request_type   type;
253         union {
254                 struct bio      *bio_list;
255                 struct {
256                         struct page     **pages;
257                         u32             page_count;
258                 };
259         };
260         struct page             **copyup_pages;
261         u32                     copyup_page_count;
262
263         struct ceph_osd_request *osd_req;
264
265         u64                     xferred;        /* bytes transferred */
266         int                     result;
267
268         rbd_obj_callback_t      callback;
269         struct completion       completion;
270
271         struct kref             kref;
272 };
273
274 enum img_req_flags {
275         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
276         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
277         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
278 };
279
280 struct rbd_img_request {
281         struct rbd_device       *rbd_dev;
282         u64                     offset; /* starting image byte offset */
283         u64                     length; /* byte count from offset */
284         unsigned long           flags;
285         union {
286                 u64                     snap_id;        /* for reads */
287                 struct ceph_snap_context *snapc;        /* for writes */
288         };
289         union {
290                 struct request          *rq;            /* block request */
291                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
292         };
293         struct page             **copyup_pages;
294         u32                     copyup_page_count;
295         spinlock_t              completion_lock;/* protects next_completion */
296         u32                     next_completion;
297         rbd_img_callback_t      callback;
298         u64                     xferred;/* aggregate bytes transferred */
299         int                     result; /* first nonzero obj_request result */
300
301         u32                     obj_request_count;
302         struct list_head        obj_requests;   /* rbd_obj_request structs */
303
304         struct kref             kref;
305 };
306
307 #define for_each_obj_request(ireq, oreq) \
308         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
309 #define for_each_obj_request_from(ireq, oreq) \
310         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
311 #define for_each_obj_request_safe(ireq, oreq, n) \
312         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
313
314 struct rbd_mapping {
315         u64                     size;
316         u64                     features;
317         bool                    read_only;
318 };
319
320 /*
321  * a single device
322  */
323 struct rbd_device {
324         int                     dev_id;         /* blkdev unique id */
325
326         int                     major;          /* blkdev assigned major */
327         int                     minor;
328         struct gendisk          *disk;          /* blkdev's gendisk and rq */
329
330         u32                     image_format;   /* Either 1 or 2 */
331         struct rbd_client       *rbd_client;
332
333         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
334
335         spinlock_t              lock;           /* queue, flags, open_count */
336
337         struct rbd_image_header header;
338         unsigned long           flags;          /* possibly lock protected */
339         struct rbd_spec         *spec;
340
341         char                    *header_name;
342
343         struct ceph_file_layout layout;
344
345         struct ceph_osd_event   *watch_event;
346         struct rbd_obj_request  *watch_request;
347
348         struct rbd_spec         *parent_spec;
349         u64                     parent_overlap;
350         atomic_t                parent_ref;
351         struct rbd_device       *parent;
352
353         /* protects updating the header */
354         struct rw_semaphore     header_rwsem;
355
356         struct rbd_mapping      mapping;
357
358         struct list_head        node;
359
360         /* sysfs related */
361         struct device           dev;
362         unsigned long           open_count;     /* protected by lock */
363 };
364
365 /*
366  * Flag bits for rbd_dev->flags.  If atomicity is required,
367  * rbd_dev->lock is used to protect access.
368  *
369  * Currently, only the "removing" flag (which is coupled with the
370  * "open_count" field) requires atomic access.
371  */
372 enum rbd_dev_flags {
373         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
374         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
375 };
376
377 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
378
379 static LIST_HEAD(rbd_dev_list);    /* devices */
380 static DEFINE_SPINLOCK(rbd_dev_list_lock);
381
382 static LIST_HEAD(rbd_client_list);              /* clients */
383 static DEFINE_SPINLOCK(rbd_client_list_lock);
384
385 /* Slab caches for frequently-allocated structures */
386
387 static struct kmem_cache        *rbd_img_request_cache;
388 static struct kmem_cache        *rbd_obj_request_cache;
389 static struct kmem_cache        *rbd_segment_name_cache;
390
391 static int rbd_major;
392 static DEFINE_IDA(rbd_dev_id_ida);
393
394 /*
395  * Default to false for now, as single-major requires >= 0.75 version of
396  * userspace rbd utility.
397  */
398 static bool single_major = false;
399 module_param(single_major, bool, S_IRUGO);
400 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
401
402 static int rbd_img_request_submit(struct rbd_img_request *img_request);
403
404 static void rbd_dev_device_release(struct device *dev);
405
406 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
407                        size_t count);
408 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
409                           size_t count);
410 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
411                                     size_t count);
412 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
413                                        size_t count);
414 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
415 static void rbd_spec_put(struct rbd_spec *spec);
416
417 static int rbd_dev_id_to_minor(int dev_id)
418 {
419         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
420 }
421
422 static int minor_to_rbd_dev_id(int minor)
423 {
424         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
425 }
426
427 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
428 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
429 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
430 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
431
432 static struct attribute *rbd_bus_attrs[] = {
433         &bus_attr_add.attr,
434         &bus_attr_remove.attr,
435         &bus_attr_add_single_major.attr,
436         &bus_attr_remove_single_major.attr,
437         NULL,
438 };
439
440 static umode_t rbd_bus_is_visible(struct kobject *kobj,
441                                   struct attribute *attr, int index)
442 {
443         if (!single_major &&
444             (attr == &bus_attr_add_single_major.attr ||
445              attr == &bus_attr_remove_single_major.attr))
446                 return 0;
447
448         return attr->mode;
449 }
450
451 static const struct attribute_group rbd_bus_group = {
452         .attrs = rbd_bus_attrs,
453         .is_visible = rbd_bus_is_visible,
454 };
455 __ATTRIBUTE_GROUPS(rbd_bus);
456
457 static struct bus_type rbd_bus_type = {
458         .name           = "rbd",
459         .bus_groups     = rbd_bus_groups,
460 };
461
462 static void rbd_root_dev_release(struct device *dev)
463 {
464 }
465
466 static struct device rbd_root_dev = {
467         .init_name =    "rbd",
468         .release =      rbd_root_dev_release,
469 };
470
471 static __printf(2, 3)
472 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
473 {
474         struct va_format vaf;
475         va_list args;
476
477         va_start(args, fmt);
478         vaf.fmt = fmt;
479         vaf.va = &args;
480
481         if (!rbd_dev)
482                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
483         else if (rbd_dev->disk)
484                 printk(KERN_WARNING "%s: %s: %pV\n",
485                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
486         else if (rbd_dev->spec && rbd_dev->spec->image_name)
487                 printk(KERN_WARNING "%s: image %s: %pV\n",
488                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
489         else if (rbd_dev->spec && rbd_dev->spec->image_id)
490                 printk(KERN_WARNING "%s: id %s: %pV\n",
491                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
492         else    /* punt */
493                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
494                         RBD_DRV_NAME, rbd_dev, &vaf);
495         va_end(args);
496 }
497
498 #ifdef RBD_DEBUG
499 #define rbd_assert(expr)                                                \
500                 if (unlikely(!(expr))) {                                \
501                         printk(KERN_ERR "\nAssertion failure in %s() "  \
502                                                 "at line %d:\n\n"       \
503                                         "\trbd_assert(%s);\n\n",        \
504                                         __func__, __LINE__, #expr);     \
505                         BUG();                                          \
506                 }
507 #else /* !RBD_DEBUG */
508 #  define rbd_assert(expr)      ((void) 0)
509 #endif /* !RBD_DEBUG */
510
511 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
512 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
513 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
514
515 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
516 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
517 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
518 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
519                                         u64 snap_id);
520 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
521                                 u8 *order, u64 *snap_size);
522 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
523                 u64 *snap_features);
524 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
525
526 static int rbd_open(struct block_device *bdev, fmode_t mode)
527 {
528         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
529         bool removing = false;
530
531         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
532                 return -EROFS;
533
534         spin_lock_irq(&rbd_dev->lock);
535         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
536                 removing = true;
537         else
538                 rbd_dev->open_count++;
539         spin_unlock_irq(&rbd_dev->lock);
540         if (removing)
541                 return -ENOENT;
542
543         (void) get_device(&rbd_dev->dev);
544         set_device_ro(bdev, rbd_dev->mapping.read_only);
545
546         return 0;
547 }
548
549 static void rbd_release(struct gendisk *disk, fmode_t mode)
550 {
551         struct rbd_device *rbd_dev = disk->private_data;
552         unsigned long open_count_before;
553
554         spin_lock_irq(&rbd_dev->lock);
555         open_count_before = rbd_dev->open_count--;
556         spin_unlock_irq(&rbd_dev->lock);
557         rbd_assert(open_count_before > 0);
558
559         put_device(&rbd_dev->dev);
560 }
561
562 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
563 {
564         int ret = 0;
565         int val;
566         bool ro;
567         bool ro_changed = false;
568
569         /* get_user() may sleep, so call it before taking rbd_dev->lock */
570         if (get_user(val, (int __user *)(arg)))
571                 return -EFAULT;
572
573         ro = val ? true : false;
574         /* Snapshot doesn't allow to write*/
575         if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
576                 return -EROFS;
577
578         spin_lock_irq(&rbd_dev->lock);
579         /* prevent others open this device */
580         if (rbd_dev->open_count > 1) {
581                 ret = -EBUSY;
582                 goto out;
583         }
584
585         if (rbd_dev->mapping.read_only != ro) {
586                 rbd_dev->mapping.read_only = ro;
587                 ro_changed = true;
588         }
589
590 out:
591         spin_unlock_irq(&rbd_dev->lock);
592         /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
593         if (ret == 0 && ro_changed)
594                 set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
595
596         return ret;
597 }
598
599 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
600                         unsigned int cmd, unsigned long arg)
601 {
602         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
603         int ret = 0;
604
605         switch (cmd) {
606         case BLKROSET:
607                 ret = rbd_ioctl_set_ro(rbd_dev, arg);
608                 break;
609         default:
610                 ret = -ENOTTY;
611         }
612
613         return ret;
614 }
615
616 #ifdef CONFIG_COMPAT
617 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
618                                 unsigned int cmd, unsigned long arg)
619 {
620         return rbd_ioctl(bdev, mode, cmd, arg);
621 }
622 #endif /* CONFIG_COMPAT */
623
624 static const struct block_device_operations rbd_bd_ops = {
625         .owner                  = THIS_MODULE,
626         .open                   = rbd_open,
627         .release                = rbd_release,
628         .ioctl                  = rbd_ioctl,
629 #ifdef CONFIG_COMPAT
630         .compat_ioctl           = rbd_compat_ioctl,
631 #endif
632 };
633
634 /*
635  * Initialize an rbd client instance.  Success or not, this function
636  * consumes ceph_opts.  Caller holds client_mutex.
637  */
638 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
639 {
640         struct rbd_client *rbdc;
641         int ret = -ENOMEM;
642
643         dout("%s:\n", __func__);
644         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
645         if (!rbdc)
646                 goto out_opt;
647
648         kref_init(&rbdc->kref);
649         INIT_LIST_HEAD(&rbdc->node);
650
651         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
652         if (IS_ERR(rbdc->client))
653                 goto out_rbdc;
654         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
655
656         ret = ceph_open_session(rbdc->client);
657         if (ret < 0)
658                 goto out_client;
659
660         spin_lock(&rbd_client_list_lock);
661         list_add_tail(&rbdc->node, &rbd_client_list);
662         spin_unlock(&rbd_client_list_lock);
663
664         dout("%s: rbdc %p\n", __func__, rbdc);
665
666         return rbdc;
667 out_client:
668         ceph_destroy_client(rbdc->client);
669 out_rbdc:
670         kfree(rbdc);
671 out_opt:
672         if (ceph_opts)
673                 ceph_destroy_options(ceph_opts);
674         dout("%s: error %d\n", __func__, ret);
675
676         return ERR_PTR(ret);
677 }
678
679 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
680 {
681         kref_get(&rbdc->kref);
682
683         return rbdc;
684 }
685
686 /*
687  * Find a ceph client with specific addr and configuration.  If
688  * found, bump its reference count.
689  */
690 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
691 {
692         struct rbd_client *client_node;
693         bool found = false;
694
695         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
696                 return NULL;
697
698         spin_lock(&rbd_client_list_lock);
699         list_for_each_entry(client_node, &rbd_client_list, node) {
700                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
701                         __rbd_get_client(client_node);
702
703                         found = true;
704                         break;
705                 }
706         }
707         spin_unlock(&rbd_client_list_lock);
708
709         return found ? client_node : NULL;
710 }
711
712 /*
713  * mount options
714  */
715 enum {
716         Opt_last_int,
717         /* int args above */
718         Opt_last_string,
719         /* string args above */
720         Opt_read_only,
721         Opt_read_write,
722         /* Boolean args above */
723         Opt_last_bool,
724 };
725
726 static match_table_t rbd_opts_tokens = {
727         /* int args above */
728         /* string args above */
729         {Opt_read_only, "read_only"},
730         {Opt_read_only, "ro"},          /* Alternate spelling */
731         {Opt_read_write, "read_write"},
732         {Opt_read_write, "rw"},         /* Alternate spelling */
733         /* Boolean args above */
734         {-1, NULL}
735 };
736
737 struct rbd_options {
738         bool    read_only;
739 };
740
741 #define RBD_READ_ONLY_DEFAULT   false
742
743 static int parse_rbd_opts_token(char *c, void *private)
744 {
745         struct rbd_options *rbd_opts = private;
746         substring_t argstr[MAX_OPT_ARGS];
747         int token, intval, ret;
748
749         token = match_token(c, rbd_opts_tokens, argstr);
750         if (token < 0)
751                 return -EINVAL;
752
753         if (token < Opt_last_int) {
754                 ret = match_int(&argstr[0], &intval);
755                 if (ret < 0) {
756                         pr_err("bad mount option arg (not int) "
757                                "at '%s'\n", c);
758                         return ret;
759                 }
760                 dout("got int token %d val %d\n", token, intval);
761         } else if (token > Opt_last_int && token < Opt_last_string) {
762                 dout("got string token %d val %s\n", token,
763                      argstr[0].from);
764         } else if (token > Opt_last_string && token < Opt_last_bool) {
765                 dout("got Boolean token %d\n", token);
766         } else {
767                 dout("got token %d\n", token);
768         }
769
770         switch (token) {
771         case Opt_read_only:
772                 rbd_opts->read_only = true;
773                 break;
774         case Opt_read_write:
775                 rbd_opts->read_only = false;
776                 break;
777         default:
778                 rbd_assert(false);
779                 break;
780         }
781         return 0;
782 }
783
784 /*
785  * Get a ceph client with specific addr and configuration, if one does
786  * not exist create it.  Either way, ceph_opts is consumed by this
787  * function.
788  */
789 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
790 {
791         struct rbd_client *rbdc;
792
793         mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
794         rbdc = rbd_client_find(ceph_opts);
795         if (rbdc)       /* using an existing client */
796                 ceph_destroy_options(ceph_opts);
797         else
798                 rbdc = rbd_client_create(ceph_opts);
799         mutex_unlock(&client_mutex);
800
801         return rbdc;
802 }
803
804 /*
805  * Destroy ceph client
806  *
807  * Caller must hold rbd_client_list_lock.
808  */
809 static void rbd_client_release(struct kref *kref)
810 {
811         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
812
813         dout("%s: rbdc %p\n", __func__, rbdc);
814         spin_lock(&rbd_client_list_lock);
815         list_del(&rbdc->node);
816         spin_unlock(&rbd_client_list_lock);
817
818         ceph_destroy_client(rbdc->client);
819         kfree(rbdc);
820 }
821
822 /*
823  * Drop reference to ceph client node. If it's not referenced anymore, release
824  * it.
825  */
826 static void rbd_put_client(struct rbd_client *rbdc)
827 {
828         if (rbdc)
829                 kref_put(&rbdc->kref, rbd_client_release);
830 }
831
832 static bool rbd_image_format_valid(u32 image_format)
833 {
834         return image_format == 1 || image_format == 2;
835 }
836
837 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
838 {
839         size_t size;
840         u32 snap_count;
841
842         /* The header has to start with the magic rbd header text */
843         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
844                 return false;
845
846         /* The bio layer requires at least sector-sized I/O */
847
848         if (ondisk->options.order < SECTOR_SHIFT)
849                 return false;
850
851         /* If we use u64 in a few spots we may be able to loosen this */
852
853         if (ondisk->options.order > 8 * sizeof (int) - 1)
854                 return false;
855
856         /*
857          * The size of a snapshot header has to fit in a size_t, and
858          * that limits the number of snapshots.
859          */
860         snap_count = le32_to_cpu(ondisk->snap_count);
861         size = SIZE_MAX - sizeof (struct ceph_snap_context);
862         if (snap_count > size / sizeof (__le64))
863                 return false;
864
865         /*
866          * Not only that, but the size of the entire the snapshot
867          * header must also be representable in a size_t.
868          */
869         size -= snap_count * sizeof (__le64);
870         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
871                 return false;
872
873         return true;
874 }
875
876 /*
877  * Fill an rbd image header with information from the given format 1
878  * on-disk header.
879  */
880 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
881                                  struct rbd_image_header_ondisk *ondisk)
882 {
883         struct rbd_image_header *header = &rbd_dev->header;
884         bool first_time = header->object_prefix == NULL;
885         struct ceph_snap_context *snapc;
886         char *object_prefix = NULL;
887         char *snap_names = NULL;
888         u64 *snap_sizes = NULL;
889         u32 snap_count;
890         size_t size;
891         int ret = -ENOMEM;
892         u32 i;
893
894         /* Allocate this now to avoid having to handle failure below */
895
896         if (first_time) {
897                 size_t len;
898
899                 len = strnlen(ondisk->object_prefix,
900                                 sizeof (ondisk->object_prefix));
901                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
902                 if (!object_prefix)
903                         return -ENOMEM;
904                 memcpy(object_prefix, ondisk->object_prefix, len);
905                 object_prefix[len] = '\0';
906         }
907
908         /* Allocate the snapshot context and fill it in */
909
910         snap_count = le32_to_cpu(ondisk->snap_count);
911         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
912         if (!snapc)
913                 goto out_err;
914         snapc->seq = le64_to_cpu(ondisk->snap_seq);
915         if (snap_count) {
916                 struct rbd_image_snap_ondisk *snaps;
917                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
918
919                 /* We'll keep a copy of the snapshot names... */
920
921                 if (snap_names_len > (u64)SIZE_MAX)
922                         goto out_2big;
923                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
924                 if (!snap_names)
925                         goto out_err;
926
927                 /* ...as well as the array of their sizes. */
928
929                 size = snap_count * sizeof (*header->snap_sizes);
930                 snap_sizes = kmalloc(size, GFP_KERNEL);
931                 if (!snap_sizes)
932                         goto out_err;
933
934                 /*
935                  * Copy the names, and fill in each snapshot's id
936                  * and size.
937                  *
938                  * Note that rbd_dev_v1_header_info() guarantees the
939                  * ondisk buffer we're working with has
940                  * snap_names_len bytes beyond the end of the
941                  * snapshot id array, this memcpy() is safe.
942                  */
943                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
944                 snaps = ondisk->snaps;
945                 for (i = 0; i < snap_count; i++) {
946                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
947                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
948                 }
949         }
950
951         /* We won't fail any more, fill in the header */
952
953         if (first_time) {
954                 header->object_prefix = object_prefix;
955                 header->obj_order = ondisk->options.order;
956                 header->crypt_type = ondisk->options.crypt_type;
957                 header->comp_type = ondisk->options.comp_type;
958                 /* The rest aren't used for format 1 images */
959                 header->stripe_unit = 0;
960                 header->stripe_count = 0;
961                 header->features = 0;
962         } else {
963                 ceph_put_snap_context(header->snapc);
964                 kfree(header->snap_names);
965                 kfree(header->snap_sizes);
966         }
967
968         /* The remaining fields always get updated (when we refresh) */
969
970         header->image_size = le64_to_cpu(ondisk->image_size);
971         header->snapc = snapc;
972         header->snap_names = snap_names;
973         header->snap_sizes = snap_sizes;
974
975         /* Make sure mapping size is consistent with header info */
976
977         if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
978                 if (rbd_dev->mapping.size != header->image_size)
979                         rbd_dev->mapping.size = header->image_size;
980
981         return 0;
982 out_2big:
983         ret = -EIO;
984 out_err:
985         kfree(snap_sizes);
986         kfree(snap_names);
987         ceph_put_snap_context(snapc);
988         kfree(object_prefix);
989
990         return ret;
991 }
992
993 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
994 {
995         const char *snap_name;
996
997         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
998
999         /* Skip over names until we find the one we are looking for */
1000
1001         snap_name = rbd_dev->header.snap_names;
1002         while (which--)
1003                 snap_name += strlen(snap_name) + 1;
1004
1005         return kstrdup(snap_name, GFP_KERNEL);
1006 }
1007
1008 /*
1009  * Snapshot id comparison function for use with qsort()/bsearch().
1010  * Note that result is for snapshots in *descending* order.
1011  */
1012 static int snapid_compare_reverse(const void *s1, const void *s2)
1013 {
1014         u64 snap_id1 = *(u64 *)s1;
1015         u64 snap_id2 = *(u64 *)s2;
1016
1017         if (snap_id1 < snap_id2)
1018                 return 1;
1019         return snap_id1 == snap_id2 ? 0 : -1;
1020 }
1021
1022 /*
1023  * Search a snapshot context to see if the given snapshot id is
1024  * present.
1025  *
1026  * Returns the position of the snapshot id in the array if it's found,
1027  * or BAD_SNAP_INDEX otherwise.
1028  *
1029  * Note: The snapshot array is in kept sorted (by the osd) in
1030  * reverse order, highest snapshot id first.
1031  */
1032 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1033 {
1034         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1035         u64 *found;
1036
1037         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1038                                 sizeof (snap_id), snapid_compare_reverse);
1039
1040         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1041 }
1042
1043 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1044                                         u64 snap_id)
1045 {
1046         u32 which;
1047         const char *snap_name;
1048
1049         which = rbd_dev_snap_index(rbd_dev, snap_id);
1050         if (which == BAD_SNAP_INDEX)
1051                 return ERR_PTR(-ENOENT);
1052
1053         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1054         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1055 }
1056
1057 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1058 {
1059         if (snap_id == CEPH_NOSNAP)
1060                 return RBD_SNAP_HEAD_NAME;
1061
1062         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1063         if (rbd_dev->image_format == 1)
1064                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1065
1066         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1067 }
1068
1069 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1070                                 u64 *snap_size)
1071 {
1072         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1073         if (snap_id == CEPH_NOSNAP) {
1074                 *snap_size = rbd_dev->header.image_size;
1075         } else if (rbd_dev->image_format == 1) {
1076                 u32 which;
1077
1078                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1079                 if (which == BAD_SNAP_INDEX)
1080                         return -ENOENT;
1081
1082                 *snap_size = rbd_dev->header.snap_sizes[which];
1083         } else {
1084                 u64 size = 0;
1085                 int ret;
1086
1087                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1088                 if (ret)
1089                         return ret;
1090
1091                 *snap_size = size;
1092         }
1093         return 0;
1094 }
1095
1096 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1097                         u64 *snap_features)
1098 {
1099         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1100         if (snap_id == CEPH_NOSNAP) {
1101                 *snap_features = rbd_dev->header.features;
1102         } else if (rbd_dev->image_format == 1) {
1103                 *snap_features = 0;     /* No features for format 1 */
1104         } else {
1105                 u64 features = 0;
1106                 int ret;
1107
1108                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1109                 if (ret)
1110                         return ret;
1111
1112                 *snap_features = features;
1113         }
1114         return 0;
1115 }
1116
1117 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1118 {
1119         u64 snap_id = rbd_dev->spec->snap_id;
1120         u64 size = 0;
1121         u64 features = 0;
1122         int ret;
1123
1124         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1125         if (ret)
1126                 return ret;
1127         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1128         if (ret)
1129                 return ret;
1130
1131         rbd_dev->mapping.size = size;
1132         rbd_dev->mapping.features = features;
1133
1134         return 0;
1135 }
1136
1137 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1138 {
1139         rbd_dev->mapping.size = 0;
1140         rbd_dev->mapping.features = 0;
1141 }
1142
1143 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1144 {
1145         char *name;
1146         u64 segment;
1147         int ret;
1148         char *name_format;
1149
1150         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1151         if (!name)
1152                 return NULL;
1153         segment = offset >> rbd_dev->header.obj_order;
1154         name_format = "%s.%012llx";
1155         if (rbd_dev->image_format == 2)
1156                 name_format = "%s.%016llx";
1157         ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1158                         rbd_dev->header.object_prefix, segment);
1159         if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1160                 pr_err("error formatting segment name for #%llu (%d)\n",
1161                         segment, ret);
1162                 kfree(name);
1163                 name = NULL;
1164         }
1165
1166         return name;
1167 }
1168
1169 static void rbd_segment_name_free(const char *name)
1170 {
1171         /* The explicit cast here is needed to drop the const qualifier */
1172
1173         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1174 }
1175
1176 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1177 {
1178         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1179
1180         return offset & (segment_size - 1);
1181 }
1182
1183 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1184                                 u64 offset, u64 length)
1185 {
1186         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1187
1188         offset &= segment_size - 1;
1189
1190         rbd_assert(length <= U64_MAX - offset);
1191         if (offset + length > segment_size)
1192                 length = segment_size - offset;
1193
1194         return length;
1195 }
1196
1197 /*
1198  * returns the size of an object in the image
1199  */
1200 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1201 {
1202         return 1 << header->obj_order;
1203 }
1204
1205 /*
1206  * bio helpers
1207  */
1208
1209 static void bio_chain_put(struct bio *chain)
1210 {
1211         struct bio *tmp;
1212
1213         while (chain) {
1214                 tmp = chain;
1215                 chain = chain->bi_next;
1216                 bio_put(tmp);
1217         }
1218 }
1219
1220 /*
1221  * zeros a bio chain, starting at specific offset
1222  */
1223 static void zero_bio_chain(struct bio *chain, int start_ofs)
1224 {
1225         struct bio_vec bv;
1226         struct bvec_iter iter;
1227         unsigned long flags;
1228         void *buf;
1229         int pos = 0;
1230
1231         while (chain) {
1232                 bio_for_each_segment(bv, chain, iter) {
1233                         if (pos + bv.bv_len > start_ofs) {
1234                                 int remainder = max(start_ofs - pos, 0);
1235                                 buf = bvec_kmap_irq(&bv, &flags);
1236                                 memset(buf + remainder, 0,
1237                                        bv.bv_len - remainder);
1238                                 flush_dcache_page(bv.bv_page);
1239                                 bvec_kunmap_irq(buf, &flags);
1240                         }
1241                         pos += bv.bv_len;
1242                 }
1243
1244                 chain = chain->bi_next;
1245         }
1246 }
1247
1248 /*
1249  * similar to zero_bio_chain(), zeros data defined by a page array,
1250  * starting at the given byte offset from the start of the array and
1251  * continuing up to the given end offset.  The pages array is
1252  * assumed to be big enough to hold all bytes up to the end.
1253  */
1254 static void zero_pages(struct page **pages, u64 offset, u64 end)
1255 {
1256         struct page **page = &pages[offset >> PAGE_SHIFT];
1257
1258         rbd_assert(end > offset);
1259         rbd_assert(end - offset <= (u64)SIZE_MAX);
1260         while (offset < end) {
1261                 size_t page_offset;
1262                 size_t length;
1263                 unsigned long flags;
1264                 void *kaddr;
1265
1266                 page_offset = offset & ~PAGE_MASK;
1267                 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1268                 local_irq_save(flags);
1269                 kaddr = kmap_atomic(*page);
1270                 memset(kaddr + page_offset, 0, length);
1271                 flush_dcache_page(*page);
1272                 kunmap_atomic(kaddr);
1273                 local_irq_restore(flags);
1274
1275                 offset += length;
1276                 page++;
1277         }
1278 }
1279
1280 /*
1281  * Clone a portion of a bio, starting at the given byte offset
1282  * and continuing for the number of bytes indicated.
1283  */
1284 static struct bio *bio_clone_range(struct bio *bio_src,
1285                                         unsigned int offset,
1286                                         unsigned int len,
1287                                         gfp_t gfpmask)
1288 {
1289         struct bio *bio;
1290
1291         bio = bio_clone(bio_src, gfpmask);
1292         if (!bio)
1293                 return NULL;    /* ENOMEM */
1294
1295         bio_advance(bio, offset);
1296         bio->bi_iter.bi_size = len;
1297
1298         return bio;
1299 }
1300
1301 /*
1302  * Clone a portion of a bio chain, starting at the given byte offset
1303  * into the first bio in the source chain and continuing for the
1304  * number of bytes indicated.  The result is another bio chain of
1305  * exactly the given length, or a null pointer on error.
1306  *
1307  * The bio_src and offset parameters are both in-out.  On entry they
1308  * refer to the first source bio and the offset into that bio where
1309  * the start of data to be cloned is located.
1310  *
1311  * On return, bio_src is updated to refer to the bio in the source
1312  * chain that contains first un-cloned byte, and *offset will
1313  * contain the offset of that byte within that bio.
1314  */
1315 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1316                                         unsigned int *offset,
1317                                         unsigned int len,
1318                                         gfp_t gfpmask)
1319 {
1320         struct bio *bi = *bio_src;
1321         unsigned int off = *offset;
1322         struct bio *chain = NULL;
1323         struct bio **end;
1324
1325         /* Build up a chain of clone bios up to the limit */
1326
1327         if (!bi || off >= bi->bi_iter.bi_size || !len)
1328                 return NULL;            /* Nothing to clone */
1329
1330         end = &chain;
1331         while (len) {
1332                 unsigned int bi_size;
1333                 struct bio *bio;
1334
1335                 if (!bi) {
1336                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1337                         goto out_err;   /* EINVAL; ran out of bio's */
1338                 }
1339                 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1340                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1341                 if (!bio)
1342                         goto out_err;   /* ENOMEM */
1343
1344                 *end = bio;
1345                 end = &bio->bi_next;
1346
1347                 off += bi_size;
1348                 if (off == bi->bi_iter.bi_size) {
1349                         bi = bi->bi_next;
1350                         off = 0;
1351                 }
1352                 len -= bi_size;
1353         }
1354         *bio_src = bi;
1355         *offset = off;
1356
1357         return chain;
1358 out_err:
1359         bio_chain_put(chain);
1360
1361         return NULL;
1362 }
1363
1364 /*
1365  * The default/initial value for all object request flags is 0.  For
1366  * each flag, once its value is set to 1 it is never reset to 0
1367  * again.
1368  */
1369 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1370 {
1371         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1372                 struct rbd_device *rbd_dev;
1373
1374                 rbd_dev = obj_request->img_request->rbd_dev;
1375                 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1376                         obj_request);
1377         }
1378 }
1379
1380 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1381 {
1382         smp_mb();
1383         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1384 }
1385
1386 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1387 {
1388         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1389                 struct rbd_device *rbd_dev = NULL;
1390
1391                 if (obj_request_img_data_test(obj_request))
1392                         rbd_dev = obj_request->img_request->rbd_dev;
1393                 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1394                         obj_request);
1395         }
1396 }
1397
1398 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1399 {
1400         smp_mb();
1401         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1402 }
1403
1404 /*
1405  * This sets the KNOWN flag after (possibly) setting the EXISTS
1406  * flag.  The latter is set based on the "exists" value provided.
1407  *
1408  * Note that for our purposes once an object exists it never goes
1409  * away again.  It's possible that the response from two existence
1410  * checks are separated by the creation of the target object, and
1411  * the first ("doesn't exist") response arrives *after* the second
1412  * ("does exist").  In that case we ignore the second one.
1413  */
1414 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1415                                 bool exists)
1416 {
1417         if (exists)
1418                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1419         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1420         smp_mb();
1421 }
1422
1423 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1424 {
1425         smp_mb();
1426         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1427 }
1428
1429 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1430 {
1431         smp_mb();
1432         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1433 }
1434
1435 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1436 {
1437         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1438                 atomic_read(&obj_request->kref.refcount));
1439         kref_get(&obj_request->kref);
1440 }
1441
1442 static void rbd_obj_request_destroy(struct kref *kref);
1443 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1444 {
1445         rbd_assert(obj_request != NULL);
1446         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1447                 atomic_read(&obj_request->kref.refcount));
1448         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1449 }
1450
1451 static void rbd_img_request_get(struct rbd_img_request *img_request)
1452 {
1453         dout("%s: img %p (was %d)\n", __func__, img_request,
1454              atomic_read(&img_request->kref.refcount));
1455         kref_get(&img_request->kref);
1456 }
1457
1458 static bool img_request_child_test(struct rbd_img_request *img_request);
1459 static void rbd_parent_request_destroy(struct kref *kref);
1460 static void rbd_img_request_destroy(struct kref *kref);
1461 static void rbd_img_request_put(struct rbd_img_request *img_request)
1462 {
1463         rbd_assert(img_request != NULL);
1464         dout("%s: img %p (was %d)\n", __func__, img_request,
1465                 atomic_read(&img_request->kref.refcount));
1466         if (img_request_child_test(img_request))
1467                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1468         else
1469                 kref_put(&img_request->kref, rbd_img_request_destroy);
1470 }
1471
1472 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1473                                         struct rbd_obj_request *obj_request)
1474 {
1475         rbd_assert(obj_request->img_request == NULL);
1476
1477         /* Image request now owns object's original reference */
1478         obj_request->img_request = img_request;
1479         obj_request->which = img_request->obj_request_count;
1480         rbd_assert(!obj_request_img_data_test(obj_request));
1481         obj_request_img_data_set(obj_request);
1482         rbd_assert(obj_request->which != BAD_WHICH);
1483         img_request->obj_request_count++;
1484         list_add_tail(&obj_request->links, &img_request->obj_requests);
1485         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1486                 obj_request->which);
1487 }
1488
1489 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1490                                         struct rbd_obj_request *obj_request)
1491 {
1492         rbd_assert(obj_request->which != BAD_WHICH);
1493
1494         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1495                 obj_request->which);
1496         list_del(&obj_request->links);
1497         rbd_assert(img_request->obj_request_count > 0);
1498         img_request->obj_request_count--;
1499         rbd_assert(obj_request->which == img_request->obj_request_count);
1500         obj_request->which = BAD_WHICH;
1501         rbd_assert(obj_request_img_data_test(obj_request));
1502         rbd_assert(obj_request->img_request == img_request);
1503         obj_request->img_request = NULL;
1504         obj_request->callback = NULL;
1505         rbd_obj_request_put(obj_request);
1506 }
1507
1508 static bool obj_request_type_valid(enum obj_request_type type)
1509 {
1510         switch (type) {
1511         case OBJ_REQUEST_NODATA:
1512         case OBJ_REQUEST_BIO:
1513         case OBJ_REQUEST_PAGES:
1514                 return true;
1515         default:
1516                 return false;
1517         }
1518 }
1519
1520 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1521                                 struct rbd_obj_request *obj_request)
1522 {
1523         dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1524
1525         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1526 }
1527
1528 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1529 {
1530
1531         dout("%s: img %p\n", __func__, img_request);
1532
1533         /*
1534          * If no error occurred, compute the aggregate transfer
1535          * count for the image request.  We could instead use
1536          * atomic64_cmpxchg() to update it as each object request
1537          * completes; not clear which way is better off hand.
1538          */
1539         if (!img_request->result) {
1540                 struct rbd_obj_request *obj_request;
1541                 u64 xferred = 0;
1542
1543                 for_each_obj_request(img_request, obj_request)
1544                         xferred += obj_request->xferred;
1545                 img_request->xferred = xferred;
1546         }
1547
1548         if (img_request->callback)
1549                 img_request->callback(img_request);
1550         else
1551                 rbd_img_request_put(img_request);
1552 }
1553
1554 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1555
1556 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1557 {
1558         dout("%s: obj %p\n", __func__, obj_request);
1559
1560         return wait_for_completion_interruptible(&obj_request->completion);
1561 }
1562
1563 /*
1564  * The default/initial value for all image request flags is 0.  Each
1565  * is conditionally set to 1 at image request initialization time
1566  * and currently never change thereafter.
1567  */
1568 static void img_request_write_set(struct rbd_img_request *img_request)
1569 {
1570         set_bit(IMG_REQ_WRITE, &img_request->flags);
1571         smp_mb();
1572 }
1573
1574 static bool img_request_write_test(struct rbd_img_request *img_request)
1575 {
1576         smp_mb();
1577         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1578 }
1579
1580 static void img_request_child_set(struct rbd_img_request *img_request)
1581 {
1582         set_bit(IMG_REQ_CHILD, &img_request->flags);
1583         smp_mb();
1584 }
1585
1586 static void img_request_child_clear(struct rbd_img_request *img_request)
1587 {
1588         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1589         smp_mb();
1590 }
1591
1592 static bool img_request_child_test(struct rbd_img_request *img_request)
1593 {
1594         smp_mb();
1595         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1596 }
1597
1598 static void img_request_layered_set(struct rbd_img_request *img_request)
1599 {
1600         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1601         smp_mb();
1602 }
1603
1604 static void img_request_layered_clear(struct rbd_img_request *img_request)
1605 {
1606         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1607         smp_mb();
1608 }
1609
1610 static bool img_request_layered_test(struct rbd_img_request *img_request)
1611 {
1612         smp_mb();
1613         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1614 }
1615
1616 static void
1617 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1618 {
1619         u64 xferred = obj_request->xferred;
1620         u64 length = obj_request->length;
1621
1622         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1623                 obj_request, obj_request->img_request, obj_request->result,
1624                 xferred, length);
1625         /*
1626          * ENOENT means a hole in the image.  We zero-fill the entire
1627          * length of the request.  A short read also implies zero-fill
1628          * to the end of the request.  An error requires the whole
1629          * length of the request to be reported finished with an error
1630          * to the block layer.  In each case we update the xferred
1631          * count to indicate the whole request was satisfied.
1632          */
1633         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1634         if (obj_request->result == -ENOENT) {
1635                 if (obj_request->type == OBJ_REQUEST_BIO)
1636                         zero_bio_chain(obj_request->bio_list, 0);
1637                 else
1638                         zero_pages(obj_request->pages, 0, length);
1639                 obj_request->result = 0;
1640         } else if (xferred < length && !obj_request->result) {
1641                 if (obj_request->type == OBJ_REQUEST_BIO)
1642                         zero_bio_chain(obj_request->bio_list, xferred);
1643                 else
1644                         zero_pages(obj_request->pages, xferred, length);
1645         }
1646         obj_request->xferred = length;
1647         obj_request_done_set(obj_request);
1648 }
1649
1650 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1651 {
1652         dout("%s: obj %p cb %p\n", __func__, obj_request,
1653                 obj_request->callback);
1654         if (obj_request->callback)
1655                 obj_request->callback(obj_request);
1656         else
1657                 complete_all(&obj_request->completion);
1658 }
1659
1660 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1661 {
1662         dout("%s: obj %p\n", __func__, obj_request);
1663         obj_request_done_set(obj_request);
1664 }
1665
1666 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1667 {
1668         struct rbd_img_request *img_request = NULL;
1669         struct rbd_device *rbd_dev = NULL;
1670         bool layered = false;
1671
1672         if (obj_request_img_data_test(obj_request)) {
1673                 img_request = obj_request->img_request;
1674                 layered = img_request && img_request_layered_test(img_request);
1675                 rbd_dev = img_request->rbd_dev;
1676         }
1677
1678         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1679                 obj_request, img_request, obj_request->result,
1680                 obj_request->xferred, obj_request->length);
1681         if (layered && obj_request->result == -ENOENT &&
1682                         obj_request->img_offset < rbd_dev->parent_overlap)
1683                 rbd_img_parent_read(obj_request);
1684         else if (img_request)
1685                 rbd_img_obj_request_read_callback(obj_request);
1686         else
1687                 obj_request_done_set(obj_request);
1688 }
1689
1690 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1691 {
1692         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1693                 obj_request->result, obj_request->length);
1694         /*
1695          * There is no such thing as a successful short write.  Set
1696          * it to our originally-requested length.
1697          */
1698         obj_request->xferred = obj_request->length;
1699         obj_request_done_set(obj_request);
1700 }
1701
1702 /*
1703  * For a simple stat call there's nothing to do.  We'll do more if
1704  * this is part of a write sequence for a layered image.
1705  */
1706 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1707 {
1708         dout("%s: obj %p\n", __func__, obj_request);
1709         obj_request_done_set(obj_request);
1710 }
1711
1712 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1713                                 struct ceph_msg *msg)
1714 {
1715         struct rbd_obj_request *obj_request = osd_req->r_priv;
1716         u16 opcode;
1717
1718         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1719         rbd_assert(osd_req == obj_request->osd_req);
1720         if (obj_request_img_data_test(obj_request)) {
1721                 rbd_assert(obj_request->img_request);
1722                 rbd_assert(obj_request->which != BAD_WHICH);
1723         } else {
1724                 rbd_assert(obj_request->which == BAD_WHICH);
1725         }
1726
1727         if (osd_req->r_result < 0)
1728                 obj_request->result = osd_req->r_result;
1729
1730         rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1731
1732         /*
1733          * We support a 64-bit length, but ultimately it has to be
1734          * passed to blk_end_request(), which takes an unsigned int.
1735          */
1736         obj_request->xferred = osd_req->r_reply_op_len[0];
1737         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1738
1739         opcode = osd_req->r_ops[0].op;
1740         switch (opcode) {
1741         case CEPH_OSD_OP_READ:
1742                 rbd_osd_read_callback(obj_request);
1743                 break;
1744         case CEPH_OSD_OP_SETALLOCHINT:
1745                 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1746                 /* fall through */
1747         case CEPH_OSD_OP_WRITE:
1748                 rbd_osd_write_callback(obj_request);
1749                 break;
1750         case CEPH_OSD_OP_STAT:
1751                 rbd_osd_stat_callback(obj_request);
1752                 break;
1753         case CEPH_OSD_OP_CALL:
1754         case CEPH_OSD_OP_NOTIFY_ACK:
1755         case CEPH_OSD_OP_WATCH:
1756                 rbd_osd_trivial_callback(obj_request);
1757                 break;
1758         default:
1759                 rbd_warn(NULL, "%s: unsupported op %hu\n",
1760                         obj_request->object_name, (unsigned short) opcode);
1761                 break;
1762         }
1763
1764         if (obj_request_done_test(obj_request))
1765                 rbd_obj_request_complete(obj_request);
1766 }
1767
1768 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1769 {
1770         struct rbd_img_request *img_request = obj_request->img_request;
1771         struct ceph_osd_request *osd_req = obj_request->osd_req;
1772         u64 snap_id;
1773
1774         rbd_assert(osd_req != NULL);
1775
1776         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1777         ceph_osdc_build_request(osd_req, obj_request->offset,
1778                         NULL, snap_id, NULL);
1779 }
1780
1781 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1782 {
1783         struct rbd_img_request *img_request = obj_request->img_request;
1784         struct ceph_osd_request *osd_req = obj_request->osd_req;
1785         struct ceph_snap_context *snapc;
1786         struct timespec mtime = CURRENT_TIME;
1787
1788         rbd_assert(osd_req != NULL);
1789
1790         snapc = img_request ? img_request->snapc : NULL;
1791         ceph_osdc_build_request(osd_req, obj_request->offset,
1792                         snapc, CEPH_NOSNAP, &mtime);
1793 }
1794
1795 /*
1796  * Create an osd request.  A read request has one osd op (read).
1797  * A write request has either one (watch) or two (hint+write) osd ops.
1798  * (All rbd data writes are prefixed with an allocation hint op, but
1799  * technically osd watch is a write request, hence this distinction.)
1800  */
1801 static struct ceph_osd_request *rbd_osd_req_create(
1802                                         struct rbd_device *rbd_dev,
1803                                         bool write_request,
1804                                         unsigned int num_ops,
1805                                         struct rbd_obj_request *obj_request)
1806 {
1807         struct ceph_snap_context *snapc = NULL;
1808         struct ceph_osd_client *osdc;
1809         struct ceph_osd_request *osd_req;
1810
1811         if (obj_request_img_data_test(obj_request)) {
1812                 struct rbd_img_request *img_request = obj_request->img_request;
1813
1814                 rbd_assert(write_request ==
1815                                 img_request_write_test(img_request));
1816                 if (write_request)
1817                         snapc = img_request->snapc;
1818         }
1819
1820         rbd_assert(num_ops == 1 || (write_request && num_ops == 2));
1821
1822         /* Allocate and initialize the request, for the num_ops ops */
1823
1824         osdc = &rbd_dev->rbd_client->client->osdc;
1825         osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1826                                           GFP_ATOMIC);
1827         if (!osd_req)
1828                 return NULL;    /* ENOMEM */
1829
1830         if (write_request)
1831                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1832         else
1833                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1834
1835         osd_req->r_callback = rbd_osd_req_callback;
1836         osd_req->r_priv = obj_request;
1837
1838         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1839         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1840
1841         return osd_req;
1842 }
1843
1844 /*
1845  * Create a copyup osd request based on the information in the
1846  * object request supplied.  A copyup request has three osd ops,
1847  * a copyup method call, a hint op, and a write op.
1848  */
1849 static struct ceph_osd_request *
1850 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1851 {
1852         struct rbd_img_request *img_request;
1853         struct ceph_snap_context *snapc;
1854         struct rbd_device *rbd_dev;
1855         struct ceph_osd_client *osdc;
1856         struct ceph_osd_request *osd_req;
1857
1858         rbd_assert(obj_request_img_data_test(obj_request));
1859         img_request = obj_request->img_request;
1860         rbd_assert(img_request);
1861         rbd_assert(img_request_write_test(img_request));
1862
1863         /* Allocate and initialize the request, for the three ops */
1864
1865         snapc = img_request->snapc;
1866         rbd_dev = img_request->rbd_dev;
1867         osdc = &rbd_dev->rbd_client->client->osdc;
1868         osd_req = ceph_osdc_alloc_request(osdc, snapc, 3, false, GFP_ATOMIC);
1869         if (!osd_req)
1870                 return NULL;    /* ENOMEM */
1871
1872         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1873         osd_req->r_callback = rbd_osd_req_callback;
1874         osd_req->r_priv = obj_request;
1875
1876         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1877         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1878
1879         return osd_req;
1880 }
1881
1882
1883 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1884 {
1885         ceph_osdc_put_request(osd_req);
1886 }
1887
1888 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1889
1890 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1891                                                 u64 offset, u64 length,
1892                                                 enum obj_request_type type)
1893 {
1894         struct rbd_obj_request *obj_request;
1895         size_t size;
1896         char *name;
1897
1898         rbd_assert(obj_request_type_valid(type));
1899
1900         size = strlen(object_name) + 1;
1901         name = kmalloc(size, GFP_KERNEL);
1902         if (!name)
1903                 return NULL;
1904
1905         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1906         if (!obj_request) {
1907                 kfree(name);
1908                 return NULL;
1909         }
1910
1911         obj_request->object_name = memcpy(name, object_name, size);
1912         obj_request->offset = offset;
1913         obj_request->length = length;
1914         obj_request->flags = 0;
1915         obj_request->which = BAD_WHICH;
1916         obj_request->type = type;
1917         INIT_LIST_HEAD(&obj_request->links);
1918         init_completion(&obj_request->completion);
1919         kref_init(&obj_request->kref);
1920
1921         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1922                 offset, length, (int)type, obj_request);
1923
1924         return obj_request;
1925 }
1926
1927 static void rbd_obj_request_destroy(struct kref *kref)
1928 {
1929         struct rbd_obj_request *obj_request;
1930
1931         obj_request = container_of(kref, struct rbd_obj_request, kref);
1932
1933         dout("%s: obj %p\n", __func__, obj_request);
1934
1935         rbd_assert(obj_request->img_request == NULL);
1936         rbd_assert(obj_request->which == BAD_WHICH);
1937
1938         if (obj_request->osd_req)
1939                 rbd_osd_req_destroy(obj_request->osd_req);
1940
1941         rbd_assert(obj_request_type_valid(obj_request->type));
1942         switch (obj_request->type) {
1943         case OBJ_REQUEST_NODATA:
1944                 break;          /* Nothing to do */
1945         case OBJ_REQUEST_BIO:
1946                 if (obj_request->bio_list)
1947                         bio_chain_put(obj_request->bio_list);
1948                 break;
1949         case OBJ_REQUEST_PAGES:
1950                 if (obj_request->pages)
1951                         ceph_release_page_vector(obj_request->pages,
1952                                                 obj_request->page_count);
1953                 break;
1954         }
1955
1956         kfree(obj_request->object_name);
1957         obj_request->object_name = NULL;
1958         kmem_cache_free(rbd_obj_request_cache, obj_request);
1959 }
1960
1961 /* It's OK to call this for a device with no parent */
1962
1963 static void rbd_spec_put(struct rbd_spec *spec);
1964 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1965 {
1966         rbd_dev_remove_parent(rbd_dev);
1967         rbd_spec_put(rbd_dev->parent_spec);
1968         rbd_dev->parent_spec = NULL;
1969         rbd_dev->parent_overlap = 0;
1970 }
1971
1972 /*
1973  * Parent image reference counting is used to determine when an
1974  * image's parent fields can be safely torn down--after there are no
1975  * more in-flight requests to the parent image.  When the last
1976  * reference is dropped, cleaning them up is safe.
1977  */
1978 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1979 {
1980         int counter;
1981
1982         if (!rbd_dev->parent_spec)
1983                 return;
1984
1985         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1986         if (counter > 0)
1987                 return;
1988
1989         /* Last reference; clean up parent data structures */
1990
1991         if (!counter)
1992                 rbd_dev_unparent(rbd_dev);
1993         else
1994                 rbd_warn(rbd_dev, "parent reference underflow\n");
1995 }
1996
1997 /*
1998  * If an image has a non-zero parent overlap, get a reference to its
1999  * parent.
2000  *
2001  * We must get the reference before checking for the overlap to
2002  * coordinate properly with zeroing the parent overlap in
2003  * rbd_dev_v2_parent_info() when an image gets flattened.  We
2004  * drop it again if there is no overlap.
2005  *
2006  * Returns true if the rbd device has a parent with a non-zero
2007  * overlap and a reference for it was successfully taken, or
2008  * false otherwise.
2009  */
2010 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2011 {
2012         int counter;
2013
2014         if (!rbd_dev->parent_spec)
2015                 return false;
2016
2017         counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2018         if (counter > 0 && rbd_dev->parent_overlap)
2019                 return true;
2020
2021         /* Image was flattened, but parent is not yet torn down */
2022
2023         if (counter < 0)
2024                 rbd_warn(rbd_dev, "parent reference overflow\n");
2025
2026         return false;
2027 }
2028
2029 /*
2030  * Caller is responsible for filling in the list of object requests
2031  * that comprises the image request, and the Linux request pointer
2032  * (if there is one).
2033  */
2034 static struct rbd_img_request *rbd_img_request_create(
2035                                         struct rbd_device *rbd_dev,
2036                                         u64 offset, u64 length,
2037                                         bool write_request)
2038 {
2039         struct rbd_img_request *img_request;
2040
2041         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
2042         if (!img_request)
2043                 return NULL;
2044
2045         if (write_request) {
2046                 down_read(&rbd_dev->header_rwsem);
2047                 ceph_get_snap_context(rbd_dev->header.snapc);
2048                 up_read(&rbd_dev->header_rwsem);
2049         }
2050
2051         img_request->rq = NULL;
2052         img_request->rbd_dev = rbd_dev;
2053         img_request->offset = offset;
2054         img_request->length = length;
2055         img_request->flags = 0;
2056         if (write_request) {
2057                 img_request_write_set(img_request);
2058                 img_request->snapc = rbd_dev->header.snapc;
2059         } else {
2060                 img_request->snap_id = rbd_dev->spec->snap_id;
2061         }
2062         if (rbd_dev_parent_get(rbd_dev))
2063                 img_request_layered_set(img_request);
2064         spin_lock_init(&img_request->completion_lock);
2065         img_request->next_completion = 0;
2066         img_request->callback = NULL;
2067         img_request->result = 0;
2068         img_request->obj_request_count = 0;
2069         INIT_LIST_HEAD(&img_request->obj_requests);
2070         kref_init(&img_request->kref);
2071
2072         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2073                 write_request ? "write" : "read", offset, length,
2074                 img_request);
2075
2076         return img_request;
2077 }
2078
2079 static void rbd_img_request_destroy(struct kref *kref)
2080 {
2081         struct rbd_img_request *img_request;
2082         struct rbd_obj_request *obj_request;
2083         struct rbd_obj_request *next_obj_request;
2084
2085         img_request = container_of(kref, struct rbd_img_request, kref);
2086
2087         dout("%s: img %p\n", __func__, img_request);
2088
2089         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2090                 rbd_img_obj_request_del(img_request, obj_request);
2091         rbd_assert(img_request->obj_request_count == 0);
2092
2093         if (img_request_layered_test(img_request)) {
2094                 img_request_layered_clear(img_request);
2095                 rbd_dev_parent_put(img_request->rbd_dev);
2096         }
2097
2098         if (img_request_write_test(img_request))
2099                 ceph_put_snap_context(img_request->snapc);
2100
2101         kmem_cache_free(rbd_img_request_cache, img_request);
2102 }
2103
2104 static struct rbd_img_request *rbd_parent_request_create(
2105                                         struct rbd_obj_request *obj_request,
2106                                         u64 img_offset, u64 length)
2107 {
2108         struct rbd_img_request *parent_request;
2109         struct rbd_device *rbd_dev;
2110
2111         rbd_assert(obj_request->img_request);
2112         rbd_dev = obj_request->img_request->rbd_dev;
2113
2114         parent_request = rbd_img_request_create(rbd_dev->parent,
2115                                                 img_offset, length, false);
2116         if (!parent_request)
2117                 return NULL;
2118
2119         img_request_child_set(parent_request);
2120         rbd_obj_request_get(obj_request);
2121         parent_request->obj_request = obj_request;
2122
2123         return parent_request;
2124 }
2125
2126 static void rbd_parent_request_destroy(struct kref *kref)
2127 {
2128         struct rbd_img_request *parent_request;
2129         struct rbd_obj_request *orig_request;
2130
2131         parent_request = container_of(kref, struct rbd_img_request, kref);
2132         orig_request = parent_request->obj_request;
2133
2134         parent_request->obj_request = NULL;
2135         rbd_obj_request_put(orig_request);
2136         img_request_child_clear(parent_request);
2137
2138         rbd_img_request_destroy(kref);
2139 }
2140
2141 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2142 {
2143         struct rbd_img_request *img_request;
2144         unsigned int xferred;
2145         int result;
2146         bool more;
2147
2148         rbd_assert(obj_request_img_data_test(obj_request));
2149         img_request = obj_request->img_request;
2150
2151         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2152         xferred = (unsigned int)obj_request->xferred;
2153         result = obj_request->result;
2154         if (result) {
2155                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2156
2157                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2158                         img_request_write_test(img_request) ? "write" : "read",
2159                         obj_request->length, obj_request->img_offset,
2160                         obj_request->offset);
2161                 rbd_warn(rbd_dev, "  result %d xferred %x\n",
2162                         result, xferred);
2163                 if (!img_request->result)
2164                         img_request->result = result;
2165         }
2166
2167         /* Image object requests don't own their page array */
2168
2169         if (obj_request->type == OBJ_REQUEST_PAGES) {
2170                 obj_request->pages = NULL;
2171                 obj_request->page_count = 0;
2172         }
2173
2174         if (img_request_child_test(img_request)) {
2175                 rbd_assert(img_request->obj_request != NULL);
2176                 more = obj_request->which < img_request->obj_request_count - 1;
2177         } else {
2178                 rbd_assert(img_request->rq != NULL);
2179                 more = blk_end_request(img_request->rq, result, xferred);
2180         }
2181
2182         return more;
2183 }
2184
2185 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2186 {
2187         struct rbd_img_request *img_request;
2188         u32 which = obj_request->which;
2189         bool more = true;
2190
2191         rbd_assert(obj_request_img_data_test(obj_request));
2192         img_request = obj_request->img_request;
2193
2194         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2195         rbd_assert(img_request != NULL);
2196         rbd_assert(img_request->obj_request_count > 0);
2197         rbd_assert(which != BAD_WHICH);
2198         rbd_assert(which < img_request->obj_request_count);
2199
2200         spin_lock_irq(&img_request->completion_lock);
2201         if (which != img_request->next_completion)
2202                 goto out;
2203
2204         for_each_obj_request_from(img_request, obj_request) {
2205                 rbd_assert(more);
2206                 rbd_assert(which < img_request->obj_request_count);
2207
2208                 if (!obj_request_done_test(obj_request))
2209                         break;
2210                 more = rbd_img_obj_end_request(obj_request);
2211                 which++;
2212         }
2213
2214         rbd_assert(more ^ (which == img_request->obj_request_count));
2215         img_request->next_completion = which;
2216 out:
2217         spin_unlock_irq(&img_request->completion_lock);
2218         rbd_img_request_put(img_request);
2219
2220         if (!more)
2221                 rbd_img_request_complete(img_request);
2222 }
2223
2224 /*
2225  * Split up an image request into one or more object requests, each
2226  * to a different object.  The "type" parameter indicates whether
2227  * "data_desc" is the pointer to the head of a list of bio
2228  * structures, or the base of a page array.  In either case this
2229  * function assumes data_desc describes memory sufficient to hold
2230  * all data described by the image request.
2231  */
2232 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2233                                         enum obj_request_type type,
2234                                         void *data_desc)
2235 {
2236         struct rbd_device *rbd_dev = img_request->rbd_dev;
2237         struct rbd_obj_request *obj_request = NULL;
2238         struct rbd_obj_request *next_obj_request;
2239         bool write_request = img_request_write_test(img_request);
2240         struct bio *bio_list = NULL;
2241         unsigned int bio_offset = 0;
2242         struct page **pages = NULL;
2243         u64 img_offset;
2244         u64 resid;
2245         u16 opcode;
2246
2247         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2248                 (int)type, data_desc);
2249
2250         opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2251         img_offset = img_request->offset;
2252         resid = img_request->length;
2253         rbd_assert(resid > 0);
2254
2255         if (type == OBJ_REQUEST_BIO) {
2256                 bio_list = data_desc;
2257                 rbd_assert(img_offset ==
2258                            bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2259         } else {
2260                 rbd_assert(type == OBJ_REQUEST_PAGES);
2261                 pages = data_desc;
2262         }
2263
2264         while (resid) {
2265                 struct ceph_osd_request *osd_req;
2266                 const char *object_name;
2267                 u64 offset;
2268                 u64 length;
2269                 unsigned int which = 0;
2270
2271                 object_name = rbd_segment_name(rbd_dev, img_offset);
2272                 if (!object_name)
2273                         goto out_unwind;
2274                 offset = rbd_segment_offset(rbd_dev, img_offset);
2275                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2276                 obj_request = rbd_obj_request_create(object_name,
2277                                                 offset, length, type);
2278                 /* object request has its own copy of the object name */
2279                 rbd_segment_name_free(object_name);
2280                 if (!obj_request)
2281                         goto out_unwind;
2282
2283                 /*
2284                  * set obj_request->img_request before creating the
2285                  * osd_request so that it gets the right snapc
2286                  */
2287                 rbd_img_obj_request_add(img_request, obj_request);
2288
2289                 if (type == OBJ_REQUEST_BIO) {
2290                         unsigned int clone_size;
2291
2292                         rbd_assert(length <= (u64)UINT_MAX);
2293                         clone_size = (unsigned int)length;
2294                         obj_request->bio_list =
2295                                         bio_chain_clone_range(&bio_list,
2296                                                                 &bio_offset,
2297                                                                 clone_size,
2298                                                                 GFP_ATOMIC);
2299                         if (!obj_request->bio_list)
2300                                 goto out_unwind;
2301                 } else {
2302                         unsigned int page_count;
2303
2304                         obj_request->pages = pages;
2305                         page_count = (u32)calc_pages_for(offset, length);
2306                         obj_request->page_count = page_count;
2307                         if ((offset + length) & ~PAGE_MASK)
2308                                 page_count--;   /* more on last page */
2309                         pages += page_count;
2310                 }
2311
2312                 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2313                                              (write_request ? 2 : 1),
2314                                              obj_request);
2315                 if (!osd_req)
2316                         goto out_unwind;
2317                 obj_request->osd_req = osd_req;
2318                 obj_request->callback = rbd_img_obj_callback;
2319                 rbd_img_request_get(img_request);
2320
2321                 if (write_request) {
2322                         osd_req_op_alloc_hint_init(osd_req, which,
2323                                              rbd_obj_bytes(&rbd_dev->header),
2324                                              rbd_obj_bytes(&rbd_dev->header));
2325                         which++;
2326                 }
2327
2328                 osd_req_op_extent_init(osd_req, which, opcode, offset, length,
2329                                        0, 0);
2330                 if (type == OBJ_REQUEST_BIO)
2331                         osd_req_op_extent_osd_data_bio(osd_req, which,
2332                                         obj_request->bio_list, length);
2333                 else
2334                         osd_req_op_extent_osd_data_pages(osd_req, which,
2335                                         obj_request->pages, length,
2336                                         offset & ~PAGE_MASK, false, false);
2337
2338                 if (write_request)
2339                         rbd_osd_req_format_write(obj_request);
2340                 else
2341                         rbd_osd_req_format_read(obj_request);
2342
2343                 obj_request->img_offset = img_offset;
2344
2345                 img_offset += length;
2346                 resid -= length;
2347         }
2348
2349         return 0;
2350
2351 out_unwind:
2352         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2353                 rbd_img_obj_request_del(img_request, obj_request);
2354
2355         return -ENOMEM;
2356 }
2357
2358 static void
2359 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2360 {
2361         struct rbd_img_request *img_request;
2362         struct rbd_device *rbd_dev;
2363         struct page **pages;
2364         u32 page_count;
2365
2366         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2367         rbd_assert(obj_request_img_data_test(obj_request));
2368         img_request = obj_request->img_request;
2369         rbd_assert(img_request);
2370
2371         rbd_dev = img_request->rbd_dev;
2372         rbd_assert(rbd_dev);
2373
2374         pages = obj_request->copyup_pages;
2375         rbd_assert(pages != NULL);
2376         obj_request->copyup_pages = NULL;
2377         page_count = obj_request->copyup_page_count;
2378         rbd_assert(page_count);
2379         obj_request->copyup_page_count = 0;
2380         ceph_release_page_vector(pages, page_count);
2381
2382         /*
2383          * We want the transfer count to reflect the size of the
2384          * original write request.  There is no such thing as a
2385          * successful short write, so if the request was successful
2386          * we can just set it to the originally-requested length.
2387          */
2388         if (!obj_request->result)
2389                 obj_request->xferred = obj_request->length;
2390
2391         /* Finish up with the normal image object callback */
2392
2393         rbd_img_obj_callback(obj_request);
2394 }
2395
2396 static void
2397 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2398 {
2399         struct rbd_obj_request *orig_request;
2400         struct ceph_osd_request *osd_req;
2401         struct ceph_osd_client *osdc;
2402         struct rbd_device *rbd_dev;
2403         struct page **pages;
2404         u32 page_count;
2405         int img_result;
2406         u64 parent_length;
2407         u64 offset;
2408         u64 length;
2409
2410         rbd_assert(img_request_child_test(img_request));
2411
2412         /* First get what we need from the image request */
2413
2414         pages = img_request->copyup_pages;
2415         rbd_assert(pages != NULL);
2416         img_request->copyup_pages = NULL;
2417         page_count = img_request->copyup_page_count;
2418         rbd_assert(page_count);
2419         img_request->copyup_page_count = 0;
2420
2421         orig_request = img_request->obj_request;
2422         rbd_assert(orig_request != NULL);
2423         rbd_assert(obj_request_type_valid(orig_request->type));
2424         img_result = img_request->result;
2425         parent_length = img_request->length;
2426         rbd_assert(parent_length == img_request->xferred);
2427         rbd_img_request_put(img_request);
2428
2429         rbd_assert(orig_request->img_request);
2430         rbd_dev = orig_request->img_request->rbd_dev;
2431         rbd_assert(rbd_dev);
2432
2433         /*
2434          * If the overlap has become 0 (most likely because the
2435          * image has been flattened) we need to free the pages
2436          * and re-submit the original write request.
2437          */
2438         if (!rbd_dev->parent_overlap) {
2439                 struct ceph_osd_client *osdc;
2440
2441                 ceph_release_page_vector(pages, page_count);
2442                 osdc = &rbd_dev->rbd_client->client->osdc;
2443                 img_result = rbd_obj_request_submit(osdc, orig_request);
2444                 if (!img_result)
2445                         return;
2446         }
2447
2448         if (img_result)
2449                 goto out_err;
2450
2451         /*
2452          * The original osd request is of no use to use any more.
2453          * We need a new one that can hold the three ops in a copyup
2454          * request.  Allocate the new copyup osd request for the
2455          * original request, and release the old one.
2456          */
2457         img_result = -ENOMEM;
2458         osd_req = rbd_osd_req_create_copyup(orig_request);
2459         if (!osd_req)
2460                 goto out_err;
2461         rbd_osd_req_destroy(orig_request->osd_req);
2462         orig_request->osd_req = osd_req;
2463         orig_request->copyup_pages = pages;
2464         orig_request->copyup_page_count = page_count;
2465
2466         /* Initialize the copyup op */
2467
2468         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2469         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2470                                                 false, false);
2471
2472         /* Then the hint op */
2473
2474         osd_req_op_alloc_hint_init(osd_req, 1, rbd_obj_bytes(&rbd_dev->header),
2475                                    rbd_obj_bytes(&rbd_dev->header));
2476
2477         /* And the original write request op */
2478
2479         offset = orig_request->offset;
2480         length = orig_request->length;
2481         osd_req_op_extent_init(osd_req, 2, CEPH_OSD_OP_WRITE,
2482                                         offset, length, 0, 0);
2483         if (orig_request->type == OBJ_REQUEST_BIO)
2484                 osd_req_op_extent_osd_data_bio(osd_req, 2,
2485                                         orig_request->bio_list, length);
2486         else
2487                 osd_req_op_extent_osd_data_pages(osd_req, 2,
2488                                         orig_request->pages, length,
2489                                         offset & ~PAGE_MASK, false, false);
2490
2491         rbd_osd_req_format_write(orig_request);
2492
2493         /* All set, send it off. */
2494
2495         orig_request->callback = rbd_img_obj_copyup_callback;
2496         osdc = &rbd_dev->rbd_client->client->osdc;
2497         img_result = rbd_obj_request_submit(osdc, orig_request);
2498         if (!img_result)
2499                 return;
2500 out_err:
2501         /* Record the error code and complete the request */
2502
2503         orig_request->result = img_result;
2504         orig_request->xferred = 0;
2505         obj_request_done_set(orig_request);
2506         rbd_obj_request_complete(orig_request);
2507 }
2508
2509 /*
2510  * Read from the parent image the range of data that covers the
2511  * entire target of the given object request.  This is used for
2512  * satisfying a layered image write request when the target of an
2513  * object request from the image request does not exist.
2514  *
2515  * A page array big enough to hold the returned data is allocated
2516  * and supplied to rbd_img_request_fill() as the "data descriptor."
2517  * When the read completes, this page array will be transferred to
2518  * the original object request for the copyup operation.
2519  *
2520  * If an error occurs, record it as the result of the original
2521  * object request and mark it done so it gets completed.
2522  */
2523 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2524 {
2525         struct rbd_img_request *img_request = NULL;
2526         struct rbd_img_request *parent_request = NULL;
2527         struct rbd_device *rbd_dev;
2528         u64 img_offset;
2529         u64 length;
2530         struct page **pages = NULL;
2531         u32 page_count;
2532         int result;
2533
2534         rbd_assert(obj_request_img_data_test(obj_request));
2535         rbd_assert(obj_request_type_valid(obj_request->type));
2536
2537         img_request = obj_request->img_request;
2538         rbd_assert(img_request != NULL);
2539         rbd_dev = img_request->rbd_dev;
2540         rbd_assert(rbd_dev->parent != NULL);
2541
2542         /*
2543          * Determine the byte range covered by the object in the
2544          * child image to which the original request was to be sent.
2545          */
2546         img_offset = obj_request->img_offset - obj_request->offset;
2547         length = (u64)1 << rbd_dev->header.obj_order;
2548
2549         /*
2550          * There is no defined parent data beyond the parent
2551          * overlap, so limit what we read at that boundary if
2552          * necessary.
2553          */
2554         if (img_offset + length > rbd_dev->parent_overlap) {
2555                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2556                 length = rbd_dev->parent_overlap - img_offset;
2557         }
2558
2559         /*
2560          * Allocate a page array big enough to receive the data read
2561          * from the parent.
2562          */
2563         page_count = (u32)calc_pages_for(0, length);
2564         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2565         if (IS_ERR(pages)) {
2566                 result = PTR_ERR(pages);
2567                 pages = NULL;
2568                 goto out_err;
2569         }
2570
2571         result = -ENOMEM;
2572         parent_request = rbd_parent_request_create(obj_request,
2573                                                 img_offset, length);
2574         if (!parent_request)
2575                 goto out_err;
2576
2577         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2578         if (result)
2579                 goto out_err;
2580         parent_request->copyup_pages = pages;
2581         parent_request->copyup_page_count = page_count;
2582
2583         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2584         result = rbd_img_request_submit(parent_request);
2585         if (!result)
2586                 return 0;
2587
2588         parent_request->copyup_pages = NULL;
2589         parent_request->copyup_page_count = 0;
2590         parent_request->obj_request = NULL;
2591         rbd_obj_request_put(obj_request);
2592 out_err:
2593         if (pages)
2594                 ceph_release_page_vector(pages, page_count);
2595         if (parent_request)
2596                 rbd_img_request_put(parent_request);
2597         obj_request->result = result;
2598         obj_request->xferred = 0;
2599         obj_request_done_set(obj_request);
2600
2601         return result;
2602 }
2603
2604 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2605 {
2606         struct rbd_obj_request *orig_request;
2607         struct rbd_device *rbd_dev;
2608         int result;
2609
2610         rbd_assert(!obj_request_img_data_test(obj_request));
2611
2612         /*
2613          * All we need from the object request is the original
2614          * request and the result of the STAT op.  Grab those, then
2615          * we're done with the request.
2616          */
2617         orig_request = obj_request->obj_request;
2618         obj_request->obj_request = NULL;
2619         rbd_obj_request_put(orig_request);
2620         rbd_assert(orig_request);
2621         rbd_assert(orig_request->img_request);
2622
2623         result = obj_request->result;
2624         obj_request->result = 0;
2625
2626         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2627                 obj_request, orig_request, result,
2628                 obj_request->xferred, obj_request->length);
2629         rbd_obj_request_put(obj_request);
2630
2631         /*
2632          * If the overlap has become 0 (most likely because the
2633          * image has been flattened) we need to free the pages
2634          * and re-submit the original write request.
2635          */
2636         rbd_dev = orig_request->img_request->rbd_dev;
2637         if (!rbd_dev->parent_overlap) {
2638                 struct ceph_osd_client *osdc;
2639
2640                 osdc = &rbd_dev->rbd_client->client->osdc;
2641                 result = rbd_obj_request_submit(osdc, orig_request);
2642                 if (!result)
2643                         return;
2644         }
2645
2646         /*
2647          * Our only purpose here is to determine whether the object
2648          * exists, and we don't want to treat the non-existence as
2649          * an error.  If something else comes back, transfer the
2650          * error to the original request and complete it now.
2651          */
2652         if (!result) {
2653                 obj_request_existence_set(orig_request, true);
2654         } else if (result == -ENOENT) {
2655                 obj_request_existence_set(orig_request, false);
2656         } else if (result) {
2657                 orig_request->result = result;
2658                 goto out;
2659         }
2660
2661         /*
2662          * Resubmit the original request now that we have recorded
2663          * whether the target object exists.
2664          */
2665         orig_request->result = rbd_img_obj_request_submit(orig_request);
2666 out:
2667         if (orig_request->result)
2668                 rbd_obj_request_complete(orig_request);
2669 }
2670
2671 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2672 {
2673         struct rbd_obj_request *stat_request;
2674         struct rbd_device *rbd_dev;
2675         struct ceph_osd_client *osdc;
2676         struct page **pages = NULL;
2677         u32 page_count;
2678         size_t size;
2679         int ret;
2680
2681         /*
2682          * The response data for a STAT call consists of:
2683          *     le64 length;
2684          *     struct {
2685          *         le32 tv_sec;
2686          *         le32 tv_nsec;
2687          *     } mtime;
2688          */
2689         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2690         page_count = (u32)calc_pages_for(0, size);
2691         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2692         if (IS_ERR(pages))
2693                 return PTR_ERR(pages);
2694
2695         ret = -ENOMEM;
2696         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2697                                                         OBJ_REQUEST_PAGES);
2698         if (!stat_request)
2699                 goto out;
2700
2701         rbd_obj_request_get(obj_request);
2702         stat_request->obj_request = obj_request;
2703         stat_request->pages = pages;
2704         stat_request->page_count = page_count;
2705
2706         rbd_assert(obj_request->img_request);
2707         rbd_dev = obj_request->img_request->rbd_dev;
2708         stat_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
2709                                                    stat_request);
2710         if (!stat_request->osd_req)
2711                 goto out;
2712         stat_request->callback = rbd_img_obj_exists_callback;
2713
2714         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2715         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2716                                         false, false);
2717         rbd_osd_req_format_read(stat_request);
2718
2719         osdc = &rbd_dev->rbd_client->client->osdc;
2720         ret = rbd_obj_request_submit(osdc, stat_request);
2721 out:
2722         if (ret)
2723                 rbd_obj_request_put(obj_request);
2724
2725         return ret;
2726 }
2727
2728 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2729 {
2730         struct rbd_img_request *img_request;
2731         struct rbd_device *rbd_dev;
2732         bool known;
2733
2734         rbd_assert(obj_request_img_data_test(obj_request));
2735
2736         img_request = obj_request->img_request;
2737         rbd_assert(img_request);
2738         rbd_dev = img_request->rbd_dev;
2739
2740         /*
2741          * Only writes to layered images need special handling.
2742          * Reads and non-layered writes are simple object requests.
2743          * Layered writes that start beyond the end of the overlap
2744          * with the parent have no parent data, so they too are
2745          * simple object requests.  Finally, if the target object is
2746          * known to already exist, its parent data has already been
2747          * copied, so a write to the object can also be handled as a
2748          * simple object request.
2749          */
2750         if (!img_request_write_test(img_request) ||
2751                 !img_request_layered_test(img_request) ||
2752                 rbd_dev->parent_overlap <= obj_request->img_offset ||
2753                 ((known = obj_request_known_test(obj_request)) &&
2754                         obj_request_exists_test(obj_request))) {
2755
2756                 struct rbd_device *rbd_dev;
2757                 struct ceph_osd_client *osdc;
2758
2759                 rbd_dev = obj_request->img_request->rbd_dev;
2760                 osdc = &rbd_dev->rbd_client->client->osdc;
2761
2762                 return rbd_obj_request_submit(osdc, obj_request);
2763         }
2764
2765         /*
2766          * It's a layered write.  The target object might exist but
2767          * we may not know that yet.  If we know it doesn't exist,
2768          * start by reading the data for the full target object from
2769          * the parent so we can use it for a copyup to the target.
2770          */
2771         if (known)
2772                 return rbd_img_obj_parent_read_full(obj_request);
2773
2774         /* We don't know whether the target exists.  Go find out. */
2775
2776         return rbd_img_obj_exists_submit(obj_request);
2777 }
2778
2779 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2780 {
2781         struct rbd_obj_request *obj_request;
2782         struct rbd_obj_request *next_obj_request;
2783
2784         dout("%s: img %p\n", __func__, img_request);
2785         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2786                 int ret;
2787
2788                 ret = rbd_img_obj_request_submit(obj_request);
2789                 if (ret)
2790                         return ret;
2791         }
2792
2793         return 0;
2794 }
2795
2796 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2797 {
2798         struct rbd_obj_request *obj_request;
2799         struct rbd_device *rbd_dev;
2800         u64 obj_end;
2801         u64 img_xferred;
2802         int img_result;
2803
2804         rbd_assert(img_request_child_test(img_request));
2805
2806         /* First get what we need from the image request and release it */
2807
2808         obj_request = img_request->obj_request;
2809         img_xferred = img_request->xferred;
2810         img_result = img_request->result;
2811         rbd_img_request_put(img_request);
2812
2813         /*
2814          * If the overlap has become 0 (most likely because the
2815          * image has been flattened) we need to re-submit the
2816          * original request.
2817          */
2818         rbd_assert(obj_request);
2819         rbd_assert(obj_request->img_request);
2820         rbd_dev = obj_request->img_request->rbd_dev;
2821         if (!rbd_dev->parent_overlap) {
2822                 struct ceph_osd_client *osdc;
2823
2824                 osdc = &rbd_dev->rbd_client->client->osdc;
2825                 img_result = rbd_obj_request_submit(osdc, obj_request);
2826                 if (!img_result)
2827                         return;
2828         }
2829
2830         obj_request->result = img_result;
2831         if (obj_request->result)
2832                 goto out;
2833
2834         /*
2835          * We need to zero anything beyond the parent overlap
2836          * boundary.  Since rbd_img_obj_request_read_callback()
2837          * will zero anything beyond the end of a short read, an
2838          * easy way to do this is to pretend the data from the
2839          * parent came up short--ending at the overlap boundary.
2840          */
2841         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2842         obj_end = obj_request->img_offset + obj_request->length;
2843         if (obj_end > rbd_dev->parent_overlap) {
2844                 u64 xferred = 0;
2845
2846                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2847                         xferred = rbd_dev->parent_overlap -
2848                                         obj_request->img_offset;
2849
2850                 obj_request->xferred = min(img_xferred, xferred);
2851         } else {
2852                 obj_request->xferred = img_xferred;
2853         }
2854 out:
2855         rbd_img_obj_request_read_callback(obj_request);
2856         rbd_obj_request_complete(obj_request);
2857 }
2858
2859 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2860 {
2861         struct rbd_img_request *img_request;
2862         int result;
2863
2864         rbd_assert(obj_request_img_data_test(obj_request));
2865         rbd_assert(obj_request->img_request != NULL);
2866         rbd_assert(obj_request->result == (s32) -ENOENT);
2867         rbd_assert(obj_request_type_valid(obj_request->type));
2868
2869         /* rbd_read_finish(obj_request, obj_request->length); */
2870         img_request = rbd_parent_request_create(obj_request,
2871                                                 obj_request->img_offset,
2872                                                 obj_request->length);
2873         result = -ENOMEM;
2874         if (!img_request)
2875                 goto out_err;
2876
2877         if (obj_request->type == OBJ_REQUEST_BIO)
2878                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2879                                                 obj_request->bio_list);
2880         else
2881                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2882                                                 obj_request->pages);
2883         if (result)
2884                 goto out_err;
2885
2886         img_request->callback = rbd_img_parent_read_callback;
2887         result = rbd_img_request_submit(img_request);
2888         if (result)
2889                 goto out_err;
2890
2891         return;
2892 out_err:
2893         if (img_request)
2894                 rbd_img_request_put(img_request);
2895         obj_request->result = result;
2896         obj_request->xferred = 0;
2897         obj_request_done_set(obj_request);
2898 }
2899
2900 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
2901 {
2902         struct rbd_obj_request *obj_request;
2903         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2904         int ret;
2905
2906         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2907                                                         OBJ_REQUEST_NODATA);
2908         if (!obj_request)
2909                 return -ENOMEM;
2910
2911         ret = -ENOMEM;
2912         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
2913                                                   obj_request);
2914         if (!obj_request->osd_req)
2915                 goto out;
2916
2917         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2918                                         notify_id, 0, 0);
2919         rbd_osd_req_format_read(obj_request);
2920
2921         ret = rbd_obj_request_submit(osdc, obj_request);
2922         if (ret)
2923                 goto out;
2924         ret = rbd_obj_request_wait(obj_request);
2925 out:
2926         rbd_obj_request_put(obj_request);
2927
2928         return ret;
2929 }
2930
2931 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2932 {
2933         struct rbd_device *rbd_dev = (struct rbd_device *)data;
2934         int ret;
2935
2936         if (!rbd_dev)
2937                 return;
2938
2939         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2940                 rbd_dev->header_name, (unsigned long long)notify_id,
2941                 (unsigned int)opcode);
2942         ret = rbd_dev_refresh(rbd_dev);
2943         if (ret)
2944                 rbd_warn(rbd_dev, "header refresh error (%d)\n", ret);
2945
2946         rbd_obj_notify_ack_sync(rbd_dev, notify_id);
2947 }
2948
2949 /*
2950  * Initiate a watch request, synchronously.
2951  */
2952 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
2953 {
2954         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2955         struct rbd_obj_request *obj_request;
2956         int ret;
2957
2958         rbd_assert(!rbd_dev->watch_event);
2959         rbd_assert(!rbd_dev->watch_request);
2960
2961         ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2962                                      &rbd_dev->watch_event);
2963         if (ret < 0)
2964                 return ret;
2965
2966         rbd_assert(rbd_dev->watch_event);
2967
2968         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2969                                              OBJ_REQUEST_NODATA);
2970         if (!obj_request) {
2971                 ret = -ENOMEM;
2972                 goto out_cancel;
2973         }
2974
2975         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, 1,
2976                                                   obj_request);
2977         if (!obj_request->osd_req) {
2978                 ret = -ENOMEM;
2979                 goto out_put;
2980         }
2981
2982         ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2983
2984         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2985                               rbd_dev->watch_event->cookie, 0, 1);
2986         rbd_osd_req_format_write(obj_request);
2987
2988         ret = rbd_obj_request_submit(osdc, obj_request);
2989         if (ret)
2990                 goto out_linger;
2991
2992         ret = rbd_obj_request_wait(obj_request);
2993         if (ret)
2994                 goto out_linger;
2995
2996         ret = obj_request->result;
2997         if (ret)
2998                 goto out_linger;
2999
3000         /*
3001          * A watch request is set to linger, so the underlying osd
3002          * request won't go away until we unregister it.  We retain
3003          * a pointer to the object request during that time (in
3004          * rbd_dev->watch_request), so we'll keep a reference to
3005          * it.  We'll drop that reference (below) after we've
3006          * unregistered it.
3007          */
3008         rbd_dev->watch_request = obj_request;
3009
3010         return 0;
3011
3012 out_linger:
3013         ceph_osdc_unregister_linger_request(osdc, obj_request->osd_req);
3014 out_put:
3015         rbd_obj_request_put(obj_request);
3016 out_cancel:
3017         ceph_osdc_cancel_event(rbd_dev->watch_event);
3018         rbd_dev->watch_event = NULL;
3019
3020         return ret;
3021 }
3022
3023 /*
3024  * Tear down a watch request, synchronously.
3025  */
3026 static int __rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3027 {
3028         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3029         struct rbd_obj_request *obj_request;
3030         int ret;
3031
3032         rbd_assert(rbd_dev->watch_event);
3033         rbd_assert(rbd_dev->watch_request);
3034
3035         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3036                                              OBJ_REQUEST_NODATA);
3037         if (!obj_request) {
3038                 ret = -ENOMEM;
3039                 goto out_cancel;
3040         }
3041
3042         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, 1,
3043                                                   obj_request);
3044         if (!obj_request->osd_req) {
3045                 ret = -ENOMEM;
3046                 goto out_put;
3047         }
3048
3049         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3050                               rbd_dev->watch_event->cookie, 0, 0);
3051         rbd_osd_req_format_write(obj_request);
3052
3053         ret = rbd_obj_request_submit(osdc, obj_request);
3054         if (ret)
3055                 goto out_put;
3056
3057         ret = rbd_obj_request_wait(obj_request);
3058         if (ret)
3059                 goto out_put;
3060
3061         ret = obj_request->result;
3062         if (ret)
3063                 goto out_put;
3064
3065         /* We have successfully torn down the watch request */
3066
3067         ceph_osdc_unregister_linger_request(osdc,
3068                                             rbd_dev->watch_request->osd_req);
3069         rbd_obj_request_put(rbd_dev->watch_request);
3070         rbd_dev->watch_request = NULL;
3071
3072 out_put:
3073         rbd_obj_request_put(obj_request);
3074 out_cancel:
3075         ceph_osdc_cancel_event(rbd_dev->watch_event);
3076         rbd_dev->watch_event = NULL;
3077
3078         return ret;
3079 }
3080
3081 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3082 {
3083         int ret;
3084
3085         ret = __rbd_dev_header_unwatch_sync(rbd_dev);
3086         if (ret) {
3087                 rbd_warn(rbd_dev, "unable to tear down watch request: %d\n",
3088                          ret);
3089         }
3090 }
3091
3092 /*
3093  * Synchronous osd object method call.  Returns the number of bytes
3094  * returned in the outbound buffer, or a negative error code.
3095  */
3096 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3097                              const char *object_name,
3098                              const char *class_name,
3099                              const char *method_name,
3100                              const void *outbound,
3101                              size_t outbound_size,
3102                              void *inbound,
3103                              size_t inbound_size)
3104 {
3105         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3106         struct rbd_obj_request *obj_request;
3107         struct page **pages;
3108         u32 page_count;
3109         int ret;
3110
3111         /*
3112          * Method calls are ultimately read operations.  The result
3113          * should placed into the inbound buffer provided.  They
3114          * also supply outbound data--parameters for the object
3115          * method.  Currently if this is present it will be a
3116          * snapshot id.
3117          */
3118         page_count = (u32)calc_pages_for(0, inbound_size);
3119         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3120         if (IS_ERR(pages))
3121                 return PTR_ERR(pages);
3122
3123         ret = -ENOMEM;
3124         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3125                                                         OBJ_REQUEST_PAGES);
3126         if (!obj_request)
3127                 goto out;
3128
3129         obj_request->pages = pages;
3130         obj_request->page_count = page_count;
3131
3132         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
3133                                                   obj_request);
3134         if (!obj_request->osd_req)
3135                 goto out;
3136
3137         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3138                                         class_name, method_name);
3139         if (outbound_size) {
3140                 struct ceph_pagelist *pagelist;
3141
3142                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3143                 if (!pagelist)
3144                         goto out;
3145
3146                 ceph_pagelist_init(pagelist);
3147                 ceph_pagelist_append(pagelist, outbound, outbound_size);
3148                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3149                                                 pagelist);
3150         }
3151         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3152                                         obj_request->pages, inbound_size,
3153                                         0, false, false);
3154         rbd_osd_req_format_read(obj_request);
3155
3156         ret = rbd_obj_request_submit(osdc, obj_request);
3157         if (ret)
3158                 goto out;
3159         ret = rbd_obj_request_wait(obj_request);
3160         if (ret)
3161                 goto out;
3162
3163         ret = obj_request->result;
3164         if (ret < 0)
3165                 goto out;
3166
3167         rbd_assert(obj_request->xferred < (u64)INT_MAX);
3168         ret = (int)obj_request->xferred;
3169         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3170 out:
3171         if (obj_request)
3172                 rbd_obj_request_put(obj_request);
3173         else
3174                 ceph_release_page_vector(pages, page_count);
3175
3176         return ret;
3177 }
3178
3179 static void rbd_request_fn(struct request_queue *q)
3180                 __releases(q->queue_lock) __acquires(q->queue_lock)
3181 {
3182         struct rbd_device *rbd_dev = q->queuedata;
3183         struct request *rq;
3184         int result;
3185
3186         while ((rq = blk_fetch_request(q))) {
3187                 bool write_request = rq_data_dir(rq) == WRITE;
3188                 struct rbd_img_request *img_request;
3189                 u64 offset;
3190                 u64 length;
3191
3192                 /* Ignore any non-FS requests that filter through. */
3193
3194                 if (rq->cmd_type != REQ_TYPE_FS) {
3195                         dout("%s: non-fs request type %d\n", __func__,
3196                                 (int) rq->cmd_type);
3197                         __blk_end_request_all(rq, 0);
3198                         continue;
3199                 }
3200
3201                 /* Ignore/skip any zero-length requests */
3202
3203                 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3204                 length = (u64) blk_rq_bytes(rq);
3205
3206                 if (!length) {
3207                         dout("%s: zero-length request\n", __func__);
3208                         __blk_end_request_all(rq, 0);
3209                         continue;
3210                 }
3211
3212                 spin_unlock_irq(q->queue_lock);
3213
3214                 /* Disallow writes to a read-only device */
3215
3216                 if (write_request) {
3217                         result = -EROFS;
3218                         if (rbd_dev->mapping.read_only)
3219                                 goto end_request;
3220                         rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3221                 }
3222
3223                 /*
3224                  * Quit early if the mapped snapshot no longer
3225                  * exists.  It's still possible the snapshot will
3226                  * have disappeared by the time our request arrives
3227                  * at the osd, but there's no sense in sending it if
3228                  * we already know.
3229                  */
3230                 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3231                         dout("request for non-existent snapshot");
3232                         rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3233                         result = -ENXIO;
3234                         goto end_request;
3235                 }
3236
3237                 result = -EINVAL;
3238                 if (offset && length > U64_MAX - offset + 1) {
3239                         rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3240                                 offset, length);
3241                         goto end_request;       /* Shouldn't happen */
3242                 }
3243
3244                 result = -EIO;
3245                 if (offset + length > rbd_dev->mapping.size) {
3246                         rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3247                                 offset, length, rbd_dev->mapping.size);
3248                         goto end_request;
3249                 }
3250
3251                 result = -ENOMEM;
3252                 img_request = rbd_img_request_create(rbd_dev, offset, length,
3253                                                         write_request);
3254                 if (!img_request)
3255                         goto end_request;
3256
3257                 img_request->rq = rq;
3258
3259                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3260                                                 rq->bio);
3261                 if (!result)
3262                         result = rbd_img_request_submit(img_request);
3263                 if (result)
3264                         rbd_img_request_put(img_request);
3265 end_request:
3266                 spin_lock_irq(q->queue_lock);
3267                 if (result < 0) {
3268                         rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3269                                 write_request ? "write" : "read",
3270                                 length, offset, result);
3271
3272                         __blk_end_request_all(rq, result);
3273                 }
3274         }
3275 }
3276
3277 /*
3278  * a queue callback. Makes sure that we don't create a bio that spans across
3279  * multiple osd objects. One exception would be with a single page bios,
3280  * which we handle later at bio_chain_clone_range()
3281  */
3282 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3283                           struct bio_vec *bvec)
3284 {
3285         struct rbd_device *rbd_dev = q->queuedata;
3286         sector_t sector_offset;
3287         sector_t sectors_per_obj;
3288         sector_t obj_sector_offset;
3289         int ret;
3290
3291         /*
3292          * Find how far into its rbd object the partition-relative
3293          * bio start sector is to offset relative to the enclosing
3294          * device.
3295          */
3296         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3297         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3298         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3299
3300         /*
3301          * Compute the number of bytes from that offset to the end
3302          * of the object.  Account for what's already used by the bio.
3303          */
3304         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3305         if (ret > bmd->bi_size)
3306                 ret -= bmd->bi_size;
3307         else
3308                 ret = 0;
3309
3310         /*
3311          * Don't send back more than was asked for.  And if the bio
3312          * was empty, let the whole thing through because:  "Note
3313          * that a block device *must* allow a single page to be
3314          * added to an empty bio."
3315          */
3316         rbd_assert(bvec->bv_len <= PAGE_SIZE);
3317         if (ret > (int) bvec->bv_len || !bmd->bi_size)
3318                 ret = (int) bvec->bv_len;
3319
3320         return ret;
3321 }
3322
3323 static void rbd_free_disk(struct rbd_device *rbd_dev)
3324 {
3325         struct gendisk *disk = rbd_dev->disk;
3326
3327         if (!disk)
3328                 return;
3329
3330         rbd_dev->disk = NULL;
3331         if (disk->flags & GENHD_FL_UP) {
3332                 del_gendisk(disk);
3333                 if (disk->queue)
3334                         blk_cleanup_queue(disk->queue);
3335         }
3336         put_disk(disk);
3337 }
3338
3339 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3340                                 const char *object_name,
3341                                 u64 offset, u64 length, void *buf)
3342
3343 {
3344         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3345         struct rbd_obj_request *obj_request;
3346         struct page **pages = NULL;
3347         u32 page_count;
3348         size_t size;
3349         int ret;
3350
3351         page_count = (u32) calc_pages_for(offset, length);
3352         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3353         if (IS_ERR(pages))
3354                 ret = PTR_ERR(pages);
3355
3356         ret = -ENOMEM;
3357         obj_request = rbd_obj_request_create(object_name, offset, length,
3358                                                         OBJ_REQUEST_PAGES);
3359         if (!obj_request)
3360                 goto out;
3361
3362         obj_request->pages = pages;
3363         obj_request->page_count = page_count;
3364
3365         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
3366                                                   obj_request);
3367         if (!obj_request->osd_req)
3368                 goto out;
3369
3370         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3371                                         offset, length, 0, 0);
3372         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3373                                         obj_request->pages,
3374                                         obj_request->length,
3375                                         obj_request->offset & ~PAGE_MASK,
3376                                         false, false);
3377         rbd_osd_req_format_read(obj_request);
3378
3379         ret = rbd_obj_request_submit(osdc, obj_request);
3380         if (ret)
3381                 goto out;
3382         ret = rbd_obj_request_wait(obj_request);
3383         if (ret)
3384                 goto out;
3385
3386         ret = obj_request->result;
3387         if (ret < 0)
3388                 goto out;
3389
3390         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3391         size = (size_t) obj_request->xferred;
3392         ceph_copy_from_page_vector(pages, buf, 0, size);
3393         rbd_assert(size <= (size_t)INT_MAX);
3394         ret = (int)size;
3395 out:
3396         if (obj_request)
3397                 rbd_obj_request_put(obj_request);
3398         else
3399                 ceph_release_page_vector(pages, page_count);
3400
3401         return ret;
3402 }
3403
3404 /*
3405  * Read the complete header for the given rbd device.  On successful
3406  * return, the rbd_dev->header field will contain up-to-date
3407  * information about the image.
3408  */
3409 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3410 {
3411         struct rbd_image_header_ondisk *ondisk = NULL;
3412         u32 snap_count = 0;
3413         u64 names_size = 0;
3414         u32 want_count;
3415         int ret;
3416
3417         /*
3418          * The complete header will include an array of its 64-bit
3419          * snapshot ids, followed by the names of those snapshots as
3420          * a contiguous block of NUL-terminated strings.  Note that
3421          * the number of snapshots could change by the time we read
3422          * it in, in which case we re-read it.
3423          */
3424         do {
3425                 size_t size;
3426
3427                 kfree(ondisk);
3428
3429                 size = sizeof (*ondisk);
3430                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3431                 size += names_size;
3432                 ondisk = kmalloc(size, GFP_KERNEL);
3433                 if (!ondisk)
3434                         return -ENOMEM;
3435
3436                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3437                                        0, size, ondisk);
3438                 if (ret < 0)
3439                         goto out;
3440                 if ((size_t)ret < size) {
3441                         ret = -ENXIO;
3442                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3443                                 size, ret);
3444                         goto out;
3445                 }
3446                 if (!rbd_dev_ondisk_valid(ondisk)) {
3447                         ret = -ENXIO;
3448                         rbd_warn(rbd_dev, "invalid header");
3449                         goto out;
3450                 }
3451
3452                 names_size = le64_to_cpu(ondisk->snap_names_len);
3453                 want_count = snap_count;
3454                 snap_count = le32_to_cpu(ondisk->snap_count);
3455         } while (snap_count != want_count);
3456
3457         ret = rbd_header_from_disk(rbd_dev, ondisk);
3458 out:
3459         kfree(ondisk);
3460
3461         return ret;
3462 }
3463
3464 /*
3465  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3466  * has disappeared from the (just updated) snapshot context.
3467  */
3468 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3469 {
3470         u64 snap_id;
3471
3472         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3473                 return;
3474
3475         snap_id = rbd_dev->spec->snap_id;
3476         if (snap_id == CEPH_NOSNAP)
3477                 return;
3478
3479         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3480                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3481 }
3482
3483 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3484 {
3485         sector_t size;
3486         bool removing;
3487
3488         /*
3489          * Don't hold the lock while doing disk operations,
3490          * or lock ordering will conflict with the bdev mutex via:
3491          * rbd_add() -> blkdev_get() -> rbd_open()
3492          */
3493         spin_lock_irq(&rbd_dev->lock);
3494         removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3495         spin_unlock_irq(&rbd_dev->lock);
3496         /*
3497          * If the device is being removed, rbd_dev->disk has
3498          * been destroyed, so don't try to update its size
3499          */
3500         if (!removing) {
3501                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3502                 dout("setting size to %llu sectors", (unsigned long long)size);
3503                 set_capacity(rbd_dev->disk, size);
3504                 revalidate_disk(rbd_dev->disk);
3505         }
3506 }
3507
3508 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3509 {
3510         u64 mapping_size;
3511         int ret;
3512
3513         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3514         down_write(&rbd_dev->header_rwsem);
3515         mapping_size = rbd_dev->mapping.size;
3516         if (rbd_dev->image_format == 1)
3517                 ret = rbd_dev_v1_header_info(rbd_dev);
3518         else
3519                 ret = rbd_dev_v2_header_info(rbd_dev);
3520
3521         /* If it's a mapped snapshot, validate its EXISTS flag */
3522
3523         rbd_exists_validate(rbd_dev);
3524         up_write(&rbd_dev->header_rwsem);
3525
3526         if (mapping_size != rbd_dev->mapping.size) {
3527                 rbd_dev_update_size(rbd_dev);
3528         }
3529
3530         return ret;
3531 }
3532
3533 static int rbd_init_disk(struct rbd_device *rbd_dev)
3534 {
3535         struct gendisk *disk;
3536         struct request_queue *q;
3537         u64 segment_size;
3538
3539         /* create gendisk info */
3540         disk = alloc_disk(single_major ?
3541                           (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3542                           RBD_MINORS_PER_MAJOR);
3543         if (!disk)
3544                 return -ENOMEM;
3545
3546         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3547                  rbd_dev->dev_id);
3548         disk->major = rbd_dev->major;
3549         disk->first_minor = rbd_dev->minor;
3550         if (single_major)
3551                 disk->flags |= GENHD_FL_EXT_DEVT;
3552         disk->fops = &rbd_bd_ops;
3553         disk->private_data = rbd_dev;
3554
3555         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3556         if (!q)
3557                 goto out_disk;
3558
3559         /* We use the default size, but let's be explicit about it. */
3560         blk_queue_physical_block_size(q, SECTOR_SIZE);
3561
3562         /* set io sizes to object size */
3563         segment_size = rbd_obj_bytes(&rbd_dev->header);
3564         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3565         blk_queue_max_segment_size(q, segment_size);
3566         blk_queue_io_min(q, segment_size);
3567         blk_queue_io_opt(q, segment_size);
3568
3569         blk_queue_merge_bvec(q, rbd_merge_bvec);
3570         disk->queue = q;
3571
3572         q->queuedata = rbd_dev;
3573
3574         rbd_dev->disk = disk;
3575
3576         return 0;
3577 out_disk:
3578         put_disk(disk);
3579
3580         return -ENOMEM;
3581 }
3582
3583 /*
3584   sysfs
3585 */
3586
3587 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3588 {
3589         return container_of(dev, struct rbd_device, dev);
3590 }
3591
3592 static ssize_t rbd_size_show(struct device *dev,
3593                              struct device_attribute *attr, char *buf)
3594 {
3595         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3596
3597         return sprintf(buf, "%llu\n",
3598                 (unsigned long long)rbd_dev->mapping.size);
3599 }
3600
3601 /*
3602  * Note this shows the features for whatever's mapped, which is not
3603  * necessarily the base image.
3604  */
3605 static ssize_t rbd_features_show(struct device *dev,
3606                              struct device_attribute *attr, char *buf)
3607 {
3608         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3609
3610         return sprintf(buf, "0x%016llx\n",
3611                         (unsigned long long)rbd_dev->mapping.features);
3612 }
3613
3614 static ssize_t rbd_major_show(struct device *dev,
3615                               struct device_attribute *attr, char *buf)
3616 {
3617         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3618
3619         if (rbd_dev->major)
3620                 return sprintf(buf, "%d\n", rbd_dev->major);
3621
3622         return sprintf(buf, "(none)\n");
3623 }
3624
3625 static ssize_t rbd_minor_show(struct device *dev,
3626                               struct device_attribute *attr, char *buf)
3627 {
3628         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3629
3630         return sprintf(buf, "%d\n", rbd_dev->minor);
3631 }
3632
3633 static ssize_t rbd_client_id_show(struct device *dev,
3634                                   struct device_attribute *attr, char *buf)
3635 {
3636         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3637
3638         return sprintf(buf, "client%lld\n",
3639                         ceph_client_id(rbd_dev->rbd_client->client));
3640 }
3641
3642 static ssize_t rbd_pool_show(struct device *dev,
3643                              struct device_attribute *attr, char *buf)
3644 {
3645         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3646
3647         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3648 }
3649
3650 static ssize_t rbd_pool_id_show(struct device *dev,
3651                              struct device_attribute *attr, char *buf)
3652 {
3653         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3654
3655         return sprintf(buf, "%llu\n",
3656                         (unsigned long long) rbd_dev->spec->pool_id);
3657 }
3658
3659 static ssize_t rbd_name_show(struct device *dev,
3660                              struct device_attribute *attr, char *buf)
3661 {
3662         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3663
3664         if (rbd_dev->spec->image_name)
3665                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3666
3667         return sprintf(buf, "(unknown)\n");
3668 }
3669
3670 static ssize_t rbd_image_id_show(struct device *dev,
3671                              struct device_attribute *attr, char *buf)
3672 {
3673         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3674
3675         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3676 }
3677
3678 /*
3679  * Shows the name of the currently-mapped snapshot (or
3680  * RBD_SNAP_HEAD_NAME for the base image).
3681  */
3682 static ssize_t rbd_snap_show(struct device *dev,
3683                              struct device_attribute *attr,
3684                              char *buf)
3685 {
3686         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3687
3688         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3689 }
3690
3691 /*
3692  * For an rbd v2 image, shows the pool id, image id, and snapshot id
3693  * for the parent image.  If there is no parent, simply shows
3694  * "(no parent image)".
3695  */
3696 static ssize_t rbd_parent_show(struct device *dev,
3697                              struct device_attribute *attr,
3698                              char *buf)
3699 {
3700         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3701         struct rbd_spec *spec = rbd_dev->parent_spec;
3702         int count;
3703         char *bufp = buf;
3704
3705         if (!spec)
3706                 return sprintf(buf, "(no parent image)\n");
3707
3708         count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3709                         (unsigned long long) spec->pool_id, spec->pool_name);
3710         if (count < 0)
3711                 return count;
3712         bufp += count;
3713
3714         count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3715                         spec->image_name ? spec->image_name : "(unknown)");
3716         if (count < 0)
3717                 return count;
3718         bufp += count;
3719
3720         count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3721                         (unsigned long long) spec->snap_id, spec->snap_name);
3722         if (count < 0)
3723                 return count;
3724         bufp += count;
3725
3726         count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3727         if (count < 0)
3728                 return count;
3729         bufp += count;
3730
3731         return (ssize_t) (bufp - buf);
3732 }
3733
3734 static ssize_t rbd_image_refresh(struct device *dev,
3735                                  struct device_attribute *attr,
3736                                  const char *buf,
3737                                  size_t size)
3738 {
3739         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3740         int ret;
3741
3742         ret = rbd_dev_refresh(rbd_dev);
3743         if (ret)
3744                 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3745
3746         return ret < 0 ? ret : size;
3747 }
3748
3749 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3750 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3751 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3752 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3753 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3754 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3755 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3756 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3757 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3758 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3759 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3760 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3761
3762 static struct attribute *rbd_attrs[] = {
3763         &dev_attr_size.attr,
3764         &dev_attr_features.attr,
3765         &dev_attr_major.attr,
3766         &dev_attr_minor.attr,
3767         &dev_attr_client_id.attr,
3768         &dev_attr_pool.attr,
3769         &dev_attr_pool_id.attr,
3770         &dev_attr_name.attr,
3771         &dev_attr_image_id.attr,
3772         &dev_attr_current_snap.attr,
3773         &dev_attr_parent.attr,
3774         &dev_attr_refresh.attr,
3775         NULL
3776 };
3777
3778 static struct attribute_group rbd_attr_group = {
3779         .attrs = rbd_attrs,
3780 };
3781
3782 static const struct attribute_group *rbd_attr_groups[] = {
3783         &rbd_attr_group,
3784         NULL
3785 };
3786
3787 static void rbd_sysfs_dev_release(struct device *dev)
3788 {
3789 }
3790
3791 static struct device_type rbd_device_type = {
3792         .name           = "rbd",
3793         .groups         = rbd_attr_groups,
3794         .release        = rbd_sysfs_dev_release,
3795 };
3796
3797 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3798 {
3799         kref_get(&spec->kref);
3800
3801         return spec;
3802 }
3803
3804 static void rbd_spec_free(struct kref *kref);
3805 static void rbd_spec_put(struct rbd_spec *spec)
3806 {
3807         if (spec)
3808                 kref_put(&spec->kref, rbd_spec_free);
3809 }
3810
3811 static struct rbd_spec *rbd_spec_alloc(void)
3812 {
3813         struct rbd_spec *spec;
3814
3815         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3816         if (!spec)
3817                 return NULL;
3818         kref_init(&spec->kref);
3819
3820         return spec;
3821 }
3822
3823 static void rbd_spec_free(struct kref *kref)
3824 {
3825         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3826
3827         kfree(spec->pool_name);
3828         kfree(spec->image_id);
3829         kfree(spec->image_name);
3830         kfree(spec->snap_name);
3831         kfree(spec);
3832 }
3833
3834 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3835                                 struct rbd_spec *spec)
3836 {
3837         struct rbd_device *rbd_dev;
3838
3839         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3840         if (!rbd_dev)
3841                 return NULL;
3842
3843         spin_lock_init(&rbd_dev->lock);
3844         rbd_dev->flags = 0;
3845         atomic_set(&rbd_dev->parent_ref, 0);
3846         INIT_LIST_HEAD(&rbd_dev->node);
3847         init_rwsem(&rbd_dev->header_rwsem);
3848
3849         rbd_dev->spec = spec;
3850         rbd_dev->rbd_client = rbdc;
3851
3852         /* Initialize the layout used for all rbd requests */
3853
3854         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3855         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3856         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3857         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3858
3859         return rbd_dev;
3860 }
3861
3862 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3863 {
3864         rbd_put_client(rbd_dev->rbd_client);
3865         rbd_spec_put(rbd_dev->spec);
3866         kfree(rbd_dev);
3867 }
3868
3869 /*
3870  * Get the size and object order for an image snapshot, or if
3871  * snap_id is CEPH_NOSNAP, gets this information for the base
3872  * image.
3873  */
3874 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3875                                 u8 *order, u64 *snap_size)
3876 {
3877         __le64 snapid = cpu_to_le64(snap_id);
3878         int ret;
3879         struct {
3880                 u8 order;
3881                 __le64 size;
3882         } __attribute__ ((packed)) size_buf = { 0 };
3883
3884         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3885                                 "rbd", "get_size",
3886                                 &snapid, sizeof (snapid),
3887                                 &size_buf, sizeof (size_buf));
3888         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3889         if (ret < 0)
3890                 return ret;
3891         if (ret < sizeof (size_buf))
3892                 return -ERANGE;
3893
3894         if (order) {
3895                 *order = size_buf.order;
3896                 dout("  order %u", (unsigned int)*order);
3897         }
3898         *snap_size = le64_to_cpu(size_buf.size);
3899
3900         dout("  snap_id 0x%016llx snap_size = %llu\n",
3901                 (unsigned long long)snap_id,
3902                 (unsigned long long)*snap_size);
3903
3904         return 0;
3905 }
3906
3907 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3908 {
3909         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3910                                         &rbd_dev->header.obj_order,
3911                                         &rbd_dev->header.image_size);
3912 }
3913
3914 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3915 {
3916         void *reply_buf;
3917         int ret;
3918         void *p;
3919
3920         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3921         if (!reply_buf)
3922                 return -ENOMEM;
3923
3924         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3925                                 "rbd", "get_object_prefix", NULL, 0,
3926                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3927         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3928         if (ret < 0)
3929                 goto out;
3930
3931         p = reply_buf;
3932         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3933                                                 p + ret, NULL, GFP_NOIO);
3934         ret = 0;
3935
3936         if (IS_ERR(rbd_dev->header.object_prefix)) {
3937                 ret = PTR_ERR(rbd_dev->header.object_prefix);
3938                 rbd_dev->header.object_prefix = NULL;
3939         } else {
3940                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3941         }
3942 out:
3943         kfree(reply_buf);
3944
3945         return ret;
3946 }
3947
3948 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3949                 u64 *snap_features)
3950 {
3951         __le64 snapid = cpu_to_le64(snap_id);
3952         struct {
3953                 __le64 features;
3954                 __le64 incompat;
3955         } __attribute__ ((packed)) features_buf = { 0 };
3956         u64 incompat;
3957         int ret;
3958
3959         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3960                                 "rbd", "get_features",
3961                                 &snapid, sizeof (snapid),
3962                                 &features_buf, sizeof (features_buf));
3963         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3964         if (ret < 0)
3965                 return ret;
3966         if (ret < sizeof (features_buf))
3967                 return -ERANGE;
3968
3969         incompat = le64_to_cpu(features_buf.incompat);
3970         if (incompat & ~RBD_FEATURES_SUPPORTED)
3971                 return -ENXIO;
3972
3973         *snap_features = le64_to_cpu(features_buf.features);
3974
3975         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3976                 (unsigned long long)snap_id,
3977                 (unsigned long long)*snap_features,
3978                 (unsigned long long)le64_to_cpu(features_buf.incompat));
3979
3980         return 0;
3981 }
3982
3983 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3984 {
3985         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3986                                                 &rbd_dev->header.features);
3987 }
3988
3989 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3990 {
3991         struct rbd_spec *parent_spec;
3992         size_t size;
3993         void *reply_buf = NULL;
3994         __le64 snapid;
3995         void *p;
3996         void *end;
3997         u64 pool_id;
3998         char *image_id;
3999         u64 snap_id;
4000         u64 overlap;
4001         int ret;
4002
4003         parent_spec = rbd_spec_alloc();
4004         if (!parent_spec)
4005                 return -ENOMEM;
4006
4007         size = sizeof (__le64) +                                /* pool_id */
4008                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
4009                 sizeof (__le64) +                               /* snap_id */
4010                 sizeof (__le64);                                /* overlap */
4011         reply_buf = kmalloc(size, GFP_KERNEL);
4012         if (!reply_buf) {
4013                 ret = -ENOMEM;
4014                 goto out_err;
4015         }
4016
4017         snapid = cpu_to_le64(CEPH_NOSNAP);
4018         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4019                                 "rbd", "get_parent",
4020                                 &snapid, sizeof (snapid),
4021                                 reply_buf, size);
4022         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4023         if (ret < 0)
4024                 goto out_err;
4025
4026         p = reply_buf;
4027         end = reply_buf + ret;
4028         ret = -ERANGE;
4029         ceph_decode_64_safe(&p, end, pool_id, out_err);
4030         if (pool_id == CEPH_NOPOOL) {
4031                 /*
4032                  * Either the parent never existed, or we have
4033                  * record of it but the image got flattened so it no
4034                  * longer has a parent.  When the parent of a
4035                  * layered image disappears we immediately set the
4036                  * overlap to 0.  The effect of this is that all new
4037                  * requests will be treated as if the image had no
4038                  * parent.
4039                  */
4040                 if (rbd_dev->parent_overlap) {
4041                         rbd_dev->parent_overlap = 0;
4042                         smp_mb();
4043                         rbd_dev_parent_put(rbd_dev);
4044                         pr_info("%s: clone image has been flattened\n",
4045                                 rbd_dev->disk->disk_name);
4046                 }
4047
4048                 goto out;       /* No parent?  No problem. */
4049         }
4050
4051         /* The ceph file layout needs to fit pool id in 32 bits */
4052
4053         ret = -EIO;
4054         if (pool_id > (u64)U32_MAX) {
4055                 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
4056                         (unsigned long long)pool_id, U32_MAX);
4057                 goto out_err;
4058         }
4059
4060         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4061         if (IS_ERR(image_id)) {
4062                 ret = PTR_ERR(image_id);
4063                 goto out_err;
4064         }
4065         ceph_decode_64_safe(&p, end, snap_id, out_err);
4066         ceph_decode_64_safe(&p, end, overlap, out_err);
4067
4068         /*
4069          * The parent won't change (except when the clone is
4070          * flattened, already handled that).  So we only need to
4071          * record the parent spec we have not already done so.
4072          */
4073         if (!rbd_dev->parent_spec) {
4074                 parent_spec->pool_id = pool_id;
4075                 parent_spec->image_id = image_id;
4076                 parent_spec->snap_id = snap_id;
4077                 rbd_dev->parent_spec = parent_spec;
4078                 parent_spec = NULL;     /* rbd_dev now owns this */
4079         }
4080
4081         /*
4082          * We always update the parent overlap.  If it's zero we
4083          * treat it specially.
4084          */
4085         rbd_dev->parent_overlap = overlap;
4086         smp_mb();
4087         if (!overlap) {
4088
4089                 /* A null parent_spec indicates it's the initial probe */
4090
4091                 if (parent_spec) {
4092                         /*
4093                          * The overlap has become zero, so the clone
4094                          * must have been resized down to 0 at some
4095                          * point.  Treat this the same as a flatten.
4096                          */
4097                         rbd_dev_parent_put(rbd_dev);
4098                         pr_info("%s: clone image now standalone\n",
4099                                 rbd_dev->disk->disk_name);
4100                 } else {
4101                         /*
4102                          * For the initial probe, if we find the
4103                          * overlap is zero we just pretend there was
4104                          * no parent image.
4105                          */
4106                         rbd_warn(rbd_dev, "ignoring parent of "
4107                                                 "clone with overlap 0\n");
4108                 }
4109         }
4110 out:
4111         ret = 0;
4112 out_err:
4113         kfree(reply_buf);
4114         rbd_spec_put(parent_spec);
4115
4116         return ret;
4117 }
4118
4119 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4120 {
4121         struct {
4122                 __le64 stripe_unit;
4123                 __le64 stripe_count;
4124         } __attribute__ ((packed)) striping_info_buf = { 0 };
4125         size_t size = sizeof (striping_info_buf);
4126         void *p;
4127         u64 obj_size;
4128         u64 stripe_unit;
4129         u64 stripe_count;
4130         int ret;
4131
4132         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4133                                 "rbd", "get_stripe_unit_count", NULL, 0,
4134                                 (char *)&striping_info_buf, size);
4135         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4136         if (ret < 0)
4137                 return ret;
4138         if (ret < size)
4139                 return -ERANGE;
4140
4141         /*
4142          * We don't actually support the "fancy striping" feature
4143          * (STRIPINGV2) yet, but if the striping sizes are the
4144          * defaults the behavior is the same as before.  So find
4145          * out, and only fail if the image has non-default values.
4146          */
4147         ret = -EINVAL;
4148         obj_size = (u64)1 << rbd_dev->header.obj_order;
4149         p = &striping_info_buf;
4150         stripe_unit = ceph_decode_64(&p);
4151         if (stripe_unit != obj_size) {
4152                 rbd_warn(rbd_dev, "unsupported stripe unit "
4153                                 "(got %llu want %llu)",
4154                                 stripe_unit, obj_size);
4155                 return -EINVAL;
4156         }
4157         stripe_count = ceph_decode_64(&p);
4158         if (stripe_count != 1) {
4159                 rbd_warn(rbd_dev, "unsupported stripe count "
4160                                 "(got %llu want 1)", stripe_count);
4161                 return -EINVAL;
4162         }
4163         rbd_dev->header.stripe_unit = stripe_unit;
4164         rbd_dev->header.stripe_count = stripe_count;
4165
4166         return 0;
4167 }
4168
4169 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4170 {
4171         size_t image_id_size;
4172         char *image_id;
4173         void *p;
4174         void *end;
4175         size_t size;
4176         void *reply_buf = NULL;
4177         size_t len = 0;
4178         char *image_name = NULL;
4179         int ret;
4180
4181         rbd_assert(!rbd_dev->spec->image_name);
4182
4183         len = strlen(rbd_dev->spec->image_id);
4184         image_id_size = sizeof (__le32) + len;
4185         image_id = kmalloc(image_id_size, GFP_KERNEL);
4186         if (!image_id)
4187                 return NULL;
4188
4189         p = image_id;
4190         end = image_id + image_id_size;
4191         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4192
4193         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4194         reply_buf = kmalloc(size, GFP_KERNEL);
4195         if (!reply_buf)
4196                 goto out;
4197
4198         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4199                                 "rbd", "dir_get_name",
4200                                 image_id, image_id_size,
4201                                 reply_buf, size);
4202         if (ret < 0)
4203                 goto out;
4204         p = reply_buf;
4205         end = reply_buf + ret;
4206
4207         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4208         if (IS_ERR(image_name))
4209                 image_name = NULL;
4210         else
4211                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4212 out:
4213         kfree(reply_buf);
4214         kfree(image_id);
4215
4216         return image_name;
4217 }
4218
4219 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4220 {
4221         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4222         const char *snap_name;
4223         u32 which = 0;
4224
4225         /* Skip over names until we find the one we are looking for */
4226
4227         snap_name = rbd_dev->header.snap_names;
4228         while (which < snapc->num_snaps) {
4229                 if (!strcmp(name, snap_name))
4230                         return snapc->snaps[which];
4231                 snap_name += strlen(snap_name) + 1;
4232                 which++;
4233         }
4234         return CEPH_NOSNAP;
4235 }
4236
4237 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4238 {
4239         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4240         u32 which;
4241         bool found = false;
4242         u64 snap_id;
4243
4244         for (which = 0; !found && which < snapc->num_snaps; which++) {
4245                 const char *snap_name;
4246
4247                 snap_id = snapc->snaps[which];
4248                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4249                 if (IS_ERR(snap_name)) {
4250                         /* ignore no-longer existing snapshots */
4251                         if (PTR_ERR(snap_name) == -ENOENT)
4252                                 continue;
4253                         else
4254                                 break;
4255                 }
4256                 found = !strcmp(name, snap_name);
4257                 kfree(snap_name);
4258         }
4259         return found ? snap_id : CEPH_NOSNAP;
4260 }
4261
4262 /*
4263  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4264  * no snapshot by that name is found, or if an error occurs.
4265  */
4266 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4267 {
4268         if (rbd_dev->image_format == 1)
4269                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4270
4271         return rbd_v2_snap_id_by_name(rbd_dev, name);
4272 }
4273
4274 /*
4275  * When an rbd image has a parent image, it is identified by the
4276  * pool, image, and snapshot ids (not names).  This function fills
4277  * in the names for those ids.  (It's OK if we can't figure out the
4278  * name for an image id, but the pool and snapshot ids should always
4279  * exist and have names.)  All names in an rbd spec are dynamically
4280  * allocated.
4281  *
4282  * When an image being mapped (not a parent) is probed, we have the
4283  * pool name and pool id, image name and image id, and the snapshot
4284  * name.  The only thing we're missing is the snapshot id.
4285  */
4286 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4287 {
4288         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4289         struct rbd_spec *spec = rbd_dev->spec;
4290         const char *pool_name;
4291         const char *image_name;
4292         const char *snap_name;
4293         int ret;
4294
4295         /*
4296          * An image being mapped will have the pool name (etc.), but
4297          * we need to look up the snapshot id.
4298          */
4299         if (spec->pool_name) {
4300                 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4301                         u64 snap_id;
4302
4303                         snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4304                         if (snap_id == CEPH_NOSNAP)
4305                                 return -ENOENT;
4306                         spec->snap_id = snap_id;
4307                 } else {
4308                         spec->snap_id = CEPH_NOSNAP;
4309                 }
4310
4311                 return 0;
4312         }
4313
4314         /* Get the pool name; we have to make our own copy of this */
4315
4316         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4317         if (!pool_name) {
4318                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4319                 return -EIO;
4320         }
4321         pool_name = kstrdup(pool_name, GFP_KERNEL);
4322         if (!pool_name)
4323                 return -ENOMEM;
4324
4325         /* Fetch the image name; tolerate failure here */
4326
4327         image_name = rbd_dev_image_name(rbd_dev);
4328         if (!image_name)
4329                 rbd_warn(rbd_dev, "unable to get image name");
4330
4331         /* Look up the snapshot name, and make a copy */
4332
4333         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4334         if (IS_ERR(snap_name)) {
4335                 ret = PTR_ERR(snap_name);
4336                 goto out_err;
4337         }
4338
4339         spec->pool_name = pool_name;
4340         spec->image_name = image_name;
4341         spec->snap_name = snap_name;
4342
4343         return 0;
4344 out_err:
4345         kfree(image_name);
4346         kfree(pool_name);
4347
4348         return ret;
4349 }
4350
4351 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4352 {
4353         size_t size;
4354         int ret;
4355         void *reply_buf;
4356         void *p;
4357         void *end;
4358         u64 seq;
4359         u32 snap_count;
4360         struct ceph_snap_context *snapc;
4361         u32 i;
4362
4363         /*
4364          * We'll need room for the seq value (maximum snapshot id),
4365          * snapshot count, and array of that many snapshot ids.
4366          * For now we have a fixed upper limit on the number we're
4367          * prepared to receive.
4368          */
4369         size = sizeof (__le64) + sizeof (__le32) +
4370                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4371         reply_buf = kzalloc(size, GFP_KERNEL);
4372         if (!reply_buf)
4373                 return -ENOMEM;
4374
4375         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4376                                 "rbd", "get_snapcontext", NULL, 0,
4377                                 reply_buf, size);
4378         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4379         if (ret < 0)
4380                 goto out;
4381
4382         p = reply_buf;
4383         end = reply_buf + ret;
4384         ret = -ERANGE;
4385         ceph_decode_64_safe(&p, end, seq, out);
4386         ceph_decode_32_safe(&p, end, snap_count, out);
4387
4388         /*
4389          * Make sure the reported number of snapshot ids wouldn't go
4390          * beyond the end of our buffer.  But before checking that,
4391          * make sure the computed size of the snapshot context we
4392          * allocate is representable in a size_t.
4393          */
4394         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4395                                  / sizeof (u64)) {
4396                 ret = -EINVAL;
4397                 goto out;
4398         }
4399         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4400                 goto out;
4401         ret = 0;
4402
4403         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4404         if (!snapc) {
4405                 ret = -ENOMEM;
4406                 goto out;
4407         }
4408         snapc->seq = seq;
4409         for (i = 0; i < snap_count; i++)
4410                 snapc->snaps[i] = ceph_decode_64(&p);
4411
4412         ceph_put_snap_context(rbd_dev->header.snapc);
4413         rbd_dev->header.snapc = snapc;
4414
4415         dout("  snap context seq = %llu, snap_count = %u\n",
4416                 (unsigned long long)seq, (unsigned int)snap_count);
4417 out:
4418         kfree(reply_buf);
4419
4420         return ret;
4421 }
4422
4423 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4424                                         u64 snap_id)
4425 {
4426         size_t size;
4427         void *reply_buf;
4428         __le64 snapid;
4429         int ret;
4430         void *p;
4431         void *end;
4432         char *snap_name;
4433
4434         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4435         reply_buf = kmalloc(size, GFP_KERNEL);
4436         if (!reply_buf)
4437                 return ERR_PTR(-ENOMEM);
4438
4439         snapid = cpu_to_le64(snap_id);
4440         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4441                                 "rbd", "get_snapshot_name",
4442                                 &snapid, sizeof (snapid),
4443                                 reply_buf, size);
4444         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4445         if (ret < 0) {
4446                 snap_name = ERR_PTR(ret);
4447                 goto out;
4448         }
4449
4450         p = reply_buf;
4451         end = reply_buf + ret;
4452         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4453         if (IS_ERR(snap_name))
4454                 goto out;
4455
4456         dout("  snap_id 0x%016llx snap_name = %s\n",
4457                 (unsigned long long)snap_id, snap_name);
4458 out:
4459         kfree(reply_buf);
4460
4461         return snap_name;
4462 }
4463
4464 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4465 {
4466         bool first_time = rbd_dev->header.object_prefix == NULL;
4467         int ret;
4468
4469         ret = rbd_dev_v2_image_size(rbd_dev);
4470         if (ret)
4471                 return ret;
4472
4473         if (first_time) {
4474                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4475                 if (ret)
4476                         return ret;
4477         }
4478
4479         /*
4480          * If the image supports layering, get the parent info.  We
4481          * need to probe the first time regardless.  Thereafter we
4482          * only need to if there's a parent, to see if it has
4483          * disappeared due to the mapped image getting flattened.
4484          */
4485         if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4486                         (first_time || rbd_dev->parent_spec)) {
4487                 bool warn;
4488
4489                 ret = rbd_dev_v2_parent_info(rbd_dev);
4490                 if (ret)
4491                         return ret;
4492
4493                 /*
4494                  * Print a warning if this is the initial probe and
4495                  * the image has a parent.  Don't print it if the
4496                  * image now being probed is itself a parent.  We
4497                  * can tell at this point because we won't know its
4498                  * pool name yet (just its pool id).
4499                  */
4500                 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4501                 if (first_time && warn)
4502                         rbd_warn(rbd_dev, "WARNING: kernel layering "
4503                                         "is EXPERIMENTAL!");
4504         }
4505
4506         if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4507                 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4508                         rbd_dev->mapping.size = rbd_dev->header.image_size;
4509
4510         ret = rbd_dev_v2_snap_context(rbd_dev);
4511         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4512
4513         return ret;
4514 }
4515
4516 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4517 {
4518         struct device *dev;
4519         int ret;
4520
4521         dev = &rbd_dev->dev;
4522         dev->bus = &rbd_bus_type;
4523         dev->type = &rbd_device_type;
4524         dev->parent = &rbd_root_dev;
4525         dev->release = rbd_dev_device_release;
4526         dev_set_name(dev, "%d", rbd_dev->dev_id);
4527         ret = device_register(dev);
4528
4529         return ret;
4530 }
4531
4532 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4533 {
4534         device_unregister(&rbd_dev->dev);
4535 }
4536
4537 /*
4538  * Get a unique rbd identifier for the given new rbd_dev, and add
4539  * the rbd_dev to the global list.
4540  */
4541 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4542 {
4543         int new_dev_id;
4544
4545         new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4546                                     0, minor_to_rbd_dev_id(1 << MINORBITS),
4547                                     GFP_KERNEL);
4548         if (new_dev_id < 0)
4549                 return new_dev_id;
4550
4551         rbd_dev->dev_id = new_dev_id;
4552
4553         spin_lock(&rbd_dev_list_lock);
4554         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4555         spin_unlock(&rbd_dev_list_lock);
4556
4557         dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4558
4559         return 0;
4560 }
4561
4562 /*
4563  * Remove an rbd_dev from the global list, and record that its
4564  * identifier is no longer in use.
4565  */
4566 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4567 {
4568         spin_lock(&rbd_dev_list_lock);
4569         list_del_init(&rbd_dev->node);
4570         spin_unlock(&rbd_dev_list_lock);
4571
4572         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4573
4574         dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4575 }
4576
4577 /*
4578  * Skips over white space at *buf, and updates *buf to point to the
4579  * first found non-space character (if any). Returns the length of
4580  * the token (string of non-white space characters) found.  Note
4581  * that *buf must be terminated with '\0'.
4582  */
4583 static inline size_t next_token(const char **buf)
4584 {
4585         /*
4586         * These are the characters that produce nonzero for
4587         * isspace() in the "C" and "POSIX" locales.
4588         */
4589         const char *spaces = " \f\n\r\t\v";
4590
4591         *buf += strspn(*buf, spaces);   /* Find start of token */
4592
4593         return strcspn(*buf, spaces);   /* Return token length */
4594 }
4595
4596 /*
4597  * Finds the next token in *buf, and if the provided token buffer is
4598  * big enough, copies the found token into it.  The result, if
4599  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4600  * must be terminated with '\0' on entry.
4601  *
4602  * Returns the length of the token found (not including the '\0').
4603  * Return value will be 0 if no token is found, and it will be >=
4604  * token_size if the token would not fit.
4605  *
4606  * The *buf pointer will be updated to point beyond the end of the
4607  * found token.  Note that this occurs even if the token buffer is
4608  * too small to hold it.
4609  */
4610 static inline size_t copy_token(const char **buf,
4611                                 char *token,
4612                                 size_t token_size)
4613 {
4614         size_t len;
4615
4616         len = next_token(buf);
4617         if (len < token_size) {
4618                 memcpy(token, *buf, len);
4619                 *(token + len) = '\0';
4620         }
4621         *buf += len;
4622
4623         return len;
4624 }
4625
4626 /*
4627  * Finds the next token in *buf, dynamically allocates a buffer big
4628  * enough to hold a copy of it, and copies the token into the new
4629  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4630  * that a duplicate buffer is created even for a zero-length token.
4631  *
4632  * Returns a pointer to the newly-allocated duplicate, or a null
4633  * pointer if memory for the duplicate was not available.  If
4634  * the lenp argument is a non-null pointer, the length of the token
4635  * (not including the '\0') is returned in *lenp.
4636  *
4637  * If successful, the *buf pointer will be updated to point beyond
4638  * the end of the found token.
4639  *
4640  * Note: uses GFP_KERNEL for allocation.
4641  */
4642 static inline char *dup_token(const char **buf, size_t *lenp)
4643 {
4644         char *dup;
4645         size_t len;
4646
4647         len = next_token(buf);
4648         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4649         if (!dup)
4650                 return NULL;
4651         *(dup + len) = '\0';
4652         *buf += len;
4653
4654         if (lenp)
4655                 *lenp = len;
4656
4657         return dup;
4658 }
4659
4660 /*
4661  * Parse the options provided for an "rbd add" (i.e., rbd image
4662  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4663  * and the data written is passed here via a NUL-terminated buffer.
4664  * Returns 0 if successful or an error code otherwise.
4665  *
4666  * The information extracted from these options is recorded in
4667  * the other parameters which return dynamically-allocated
4668  * structures:
4669  *  ceph_opts
4670  *      The address of a pointer that will refer to a ceph options
4671  *      structure.  Caller must release the returned pointer using
4672  *      ceph_destroy_options() when it is no longer needed.
4673  *  rbd_opts
4674  *      Address of an rbd options pointer.  Fully initialized by
4675  *      this function; caller must release with kfree().
4676  *  spec
4677  *      Address of an rbd image specification pointer.  Fully
4678  *      initialized by this function based on parsed options.
4679  *      Caller must release with rbd_spec_put().
4680  *
4681  * The options passed take this form:
4682  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4683  * where:
4684  *  <mon_addrs>
4685  *      A comma-separated list of one or more monitor addresses.
4686  *      A monitor address is an ip address, optionally followed
4687  *      by a port number (separated by a colon).
4688  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4689  *  <options>
4690  *      A comma-separated list of ceph and/or rbd options.
4691  *  <pool_name>
4692  *      The name of the rados pool containing the rbd image.
4693  *  <image_name>
4694  *      The name of the image in that pool to map.
4695  *  <snap_id>
4696  *      An optional snapshot id.  If provided, the mapping will
4697  *      present data from the image at the time that snapshot was
4698  *      created.  The image head is used if no snapshot id is
4699  *      provided.  Snapshot mappings are always read-only.
4700  */
4701 static int rbd_add_parse_args(const char *buf,
4702                                 struct ceph_options **ceph_opts,
4703                                 struct rbd_options **opts,
4704                                 struct rbd_spec **rbd_spec)
4705 {
4706         size_t len;
4707         char *options;
4708         const char *mon_addrs;
4709         char *snap_name;
4710         size_t mon_addrs_size;
4711         struct rbd_spec *spec = NULL;
4712         struct rbd_options *rbd_opts = NULL;
4713         struct ceph_options *copts;
4714         int ret;
4715
4716         /* The first four tokens are required */
4717
4718         len = next_token(&buf);
4719         if (!len) {
4720                 rbd_warn(NULL, "no monitor address(es) provided");
4721                 return -EINVAL;
4722         }
4723         mon_addrs = buf;
4724         mon_addrs_size = len + 1;
4725         buf += len;
4726
4727         ret = -EINVAL;
4728         options = dup_token(&buf, NULL);
4729         if (!options)
4730                 return -ENOMEM;
4731         if (!*options) {
4732                 rbd_warn(NULL, "no options provided");
4733                 goto out_err;
4734         }
4735
4736         spec = rbd_spec_alloc();
4737         if (!spec)
4738                 goto out_mem;
4739
4740         spec->pool_name = dup_token(&buf, NULL);
4741         if (!spec->pool_name)
4742                 goto out_mem;
4743         if (!*spec->pool_name) {
4744                 rbd_warn(NULL, "no pool name provided");
4745                 goto out_err;
4746         }
4747
4748         spec->image_name = dup_token(&buf, NULL);
4749         if (!spec->image_name)
4750                 goto out_mem;
4751         if (!*spec->image_name) {
4752                 rbd_warn(NULL, "no image name provided");
4753                 goto out_err;
4754         }
4755
4756         /*
4757          * Snapshot name is optional; default is to use "-"
4758          * (indicating the head/no snapshot).
4759          */
4760         len = next_token(&buf);
4761         if (!len) {
4762                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4763                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4764         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4765                 ret = -ENAMETOOLONG;
4766                 goto out_err;
4767         }
4768         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4769         if (!snap_name)
4770                 goto out_mem;
4771         *(snap_name + len) = '\0';
4772         spec->snap_name = snap_name;
4773
4774         /* Initialize all rbd options to the defaults */
4775
4776         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4777         if (!rbd_opts)
4778                 goto out_mem;
4779
4780         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4781
4782         copts = ceph_parse_options(options, mon_addrs,
4783                                         mon_addrs + mon_addrs_size - 1,
4784                                         parse_rbd_opts_token, rbd_opts);
4785         if (IS_ERR(copts)) {
4786                 ret = PTR_ERR(copts);
4787                 goto out_err;
4788         }
4789         kfree(options);
4790
4791         *ceph_opts = copts;
4792         *opts = rbd_opts;
4793         *rbd_spec = spec;
4794
4795         return 0;
4796 out_mem:
4797         ret = -ENOMEM;
4798 out_err:
4799         kfree(rbd_opts);
4800         rbd_spec_put(spec);
4801         kfree(options);
4802
4803         return ret;
4804 }
4805
4806 /*
4807  * Return pool id (>= 0) or a negative error code.
4808  */
4809 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4810 {
4811         u64 newest_epoch;
4812         unsigned long timeout = rbdc->client->options->mount_timeout * HZ;
4813         int tries = 0;
4814         int ret;
4815
4816 again:
4817         ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4818         if (ret == -ENOENT && tries++ < 1) {
4819                 ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
4820                                                &newest_epoch);
4821                 if (ret < 0)
4822                         return ret;
4823
4824                 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
4825                         ceph_monc_request_next_osdmap(&rbdc->client->monc);
4826                         (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
4827                                                      newest_epoch, timeout);
4828                         goto again;
4829                 } else {
4830                         /* the osdmap we have is new enough */
4831                         return -ENOENT;
4832                 }
4833         }
4834
4835         return ret;
4836 }
4837
4838 /*
4839  * An rbd format 2 image has a unique identifier, distinct from the
4840  * name given to it by the user.  Internally, that identifier is
4841  * what's used to specify the names of objects related to the image.
4842  *
4843  * A special "rbd id" object is used to map an rbd image name to its
4844  * id.  If that object doesn't exist, then there is no v2 rbd image
4845  * with the supplied name.
4846  *
4847  * This function will record the given rbd_dev's image_id field if
4848  * it can be determined, and in that case will return 0.  If any
4849  * errors occur a negative errno will be returned and the rbd_dev's
4850  * image_id field will be unchanged (and should be NULL).
4851  */
4852 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4853 {
4854         int ret;
4855         size_t size;
4856         char *object_name;
4857         void *response;
4858         char *image_id;
4859
4860         /*
4861          * When probing a parent image, the image id is already
4862          * known (and the image name likely is not).  There's no
4863          * need to fetch the image id again in this case.  We
4864          * do still need to set the image format though.
4865          */
4866         if (rbd_dev->spec->image_id) {
4867                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4868
4869                 return 0;
4870         }
4871
4872         /*
4873          * First, see if the format 2 image id file exists, and if
4874          * so, get the image's persistent id from it.
4875          */
4876         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4877         object_name = kmalloc(size, GFP_NOIO);
4878         if (!object_name)
4879                 return -ENOMEM;
4880         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4881         dout("rbd id object name is %s\n", object_name);
4882
4883         /* Response will be an encoded string, which includes a length */
4884
4885         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4886         response = kzalloc(size, GFP_NOIO);
4887         if (!response) {
4888                 ret = -ENOMEM;
4889                 goto out;
4890         }
4891
4892         /* If it doesn't exist we'll assume it's a format 1 image */
4893
4894         ret = rbd_obj_method_sync(rbd_dev, object_name,
4895                                 "rbd", "get_id", NULL, 0,
4896                                 response, RBD_IMAGE_ID_LEN_MAX);
4897         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4898         if (ret == -ENOENT) {
4899                 image_id = kstrdup("", GFP_KERNEL);
4900                 ret = image_id ? 0 : -ENOMEM;
4901                 if (!ret)
4902                         rbd_dev->image_format = 1;
4903         } else if (ret > sizeof (__le32)) {
4904                 void *p = response;
4905
4906                 image_id = ceph_extract_encoded_string(&p, p + ret,
4907                                                 NULL, GFP_NOIO);
4908                 ret = PTR_ERR_OR_ZERO(image_id);
4909                 if (!ret)
4910                         rbd_dev->image_format = 2;
4911         } else {
4912                 ret = -EINVAL;
4913         }
4914
4915         if (!ret) {
4916                 rbd_dev->spec->image_id = image_id;
4917                 dout("image_id is %s\n", image_id);
4918         }
4919 out:
4920         kfree(response);
4921         kfree(object_name);
4922
4923         return ret;
4924 }
4925
4926 /*
4927  * Undo whatever state changes are made by v1 or v2 header info
4928  * call.
4929  */
4930 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4931 {
4932         struct rbd_image_header *header;
4933
4934         /* Drop parent reference unless it's already been done (or none) */
4935
4936         if (rbd_dev->parent_overlap)
4937                 rbd_dev_parent_put(rbd_dev);
4938
4939         /* Free dynamic fields from the header, then zero it out */
4940
4941         header = &rbd_dev->header;
4942         ceph_put_snap_context(header->snapc);
4943         kfree(header->snap_sizes);
4944         kfree(header->snap_names);
4945         kfree(header->object_prefix);
4946         memset(header, 0, sizeof (*header));
4947 }
4948
4949 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4950 {
4951         int ret;
4952
4953         ret = rbd_dev_v2_object_prefix(rbd_dev);
4954         if (ret)
4955                 goto out_err;
4956
4957         /*
4958          * Get the and check features for the image.  Currently the
4959          * features are assumed to never change.
4960          */
4961         ret = rbd_dev_v2_features(rbd_dev);
4962         if (ret)
4963                 goto out_err;
4964
4965         /* If the image supports fancy striping, get its parameters */
4966
4967         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4968                 ret = rbd_dev_v2_striping_info(rbd_dev);
4969                 if (ret < 0)
4970                         goto out_err;
4971         }
4972         /* No support for crypto and compression type format 2 images */
4973
4974         return 0;
4975 out_err:
4976         rbd_dev->header.features = 0;
4977         kfree(rbd_dev->header.object_prefix);
4978         rbd_dev->header.object_prefix = NULL;
4979
4980         return ret;
4981 }
4982
4983 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4984 {
4985         struct rbd_device *parent = NULL;
4986         struct rbd_spec *parent_spec;
4987         struct rbd_client *rbdc;
4988         int ret;
4989
4990         if (!rbd_dev->parent_spec)
4991                 return 0;
4992         /*
4993          * We need to pass a reference to the client and the parent
4994          * spec when creating the parent rbd_dev.  Images related by
4995          * parent/child relationships always share both.
4996          */
4997         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4998         rbdc = __rbd_get_client(rbd_dev->rbd_client);
4999
5000         ret = -ENOMEM;
5001         parent = rbd_dev_create(rbdc, parent_spec);
5002         if (!parent)
5003                 goto out_err;
5004
5005         ret = rbd_dev_image_probe(parent, false);
5006         if (ret < 0)
5007                 goto out_err;
5008         rbd_dev->parent = parent;
5009         atomic_set(&rbd_dev->parent_ref, 1);
5010
5011         return 0;
5012 out_err:
5013         if (parent) {
5014                 rbd_dev_unparent(rbd_dev);
5015                 kfree(rbd_dev->header_name);
5016                 rbd_dev_destroy(parent);
5017         } else {
5018                 rbd_put_client(rbdc);
5019                 rbd_spec_put(parent_spec);
5020         }
5021
5022         return ret;
5023 }
5024
5025 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5026 {
5027         int ret;
5028
5029         /* Get an id and fill in device name. */
5030
5031         ret = rbd_dev_id_get(rbd_dev);
5032         if (ret)
5033                 return ret;
5034
5035         BUILD_BUG_ON(DEV_NAME_LEN
5036                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5037         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5038
5039         /* Record our major and minor device numbers. */
5040
5041         if (!single_major) {
5042                 ret = register_blkdev(0, rbd_dev->name);
5043                 if (ret < 0)
5044                         goto err_out_id;
5045
5046                 rbd_dev->major = ret;
5047                 rbd_dev->minor = 0;
5048         } else {
5049                 rbd_dev->major = rbd_major;
5050                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5051         }
5052
5053         /* Set up the blkdev mapping. */
5054
5055         ret = rbd_init_disk(rbd_dev);
5056         if (ret)
5057                 goto err_out_blkdev;
5058
5059         ret = rbd_dev_mapping_set(rbd_dev);
5060         if (ret)
5061                 goto err_out_disk;
5062         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5063
5064         ret = rbd_bus_add_dev(rbd_dev);
5065         if (ret)
5066                 goto err_out_mapping;
5067
5068         /* Everything's ready.  Announce the disk to the world. */
5069
5070         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5071         add_disk(rbd_dev->disk);
5072
5073         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5074                 (unsigned long long) rbd_dev->mapping.size);
5075
5076         return ret;
5077
5078 err_out_mapping:
5079         rbd_dev_mapping_clear(rbd_dev);
5080 err_out_disk:
5081         rbd_free_disk(rbd_dev);
5082 err_out_blkdev:
5083         if (!single_major)
5084                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5085 err_out_id:
5086         rbd_dev_id_put(rbd_dev);
5087         rbd_dev_mapping_clear(rbd_dev);
5088
5089         return ret;
5090 }
5091
5092 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5093 {
5094         struct rbd_spec *spec = rbd_dev->spec;
5095         size_t size;
5096
5097         /* Record the header object name for this rbd image. */
5098
5099         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5100
5101         if (rbd_dev->image_format == 1)
5102                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5103         else
5104                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5105
5106         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5107         if (!rbd_dev->header_name)
5108                 return -ENOMEM;
5109
5110         if (rbd_dev->image_format == 1)
5111                 sprintf(rbd_dev->header_name, "%s%s",
5112                         spec->image_name, RBD_SUFFIX);
5113         else
5114                 sprintf(rbd_dev->header_name, "%s%s",
5115                         RBD_HEADER_PREFIX, spec->image_id);
5116         return 0;
5117 }
5118
5119 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5120 {
5121         rbd_dev_unprobe(rbd_dev);
5122         kfree(rbd_dev->header_name);
5123         rbd_dev->header_name = NULL;
5124         rbd_dev->image_format = 0;
5125         kfree(rbd_dev->spec->image_id);
5126         rbd_dev->spec->image_id = NULL;
5127
5128         rbd_dev_destroy(rbd_dev);
5129 }
5130
5131 /*
5132  * Probe for the existence of the header object for the given rbd
5133  * device.  If this image is the one being mapped (i.e., not a
5134  * parent), initiate a watch on its header object before using that
5135  * object to get detailed information about the rbd image.
5136  */
5137 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
5138 {
5139         int ret;
5140
5141         /*
5142          * Get the id from the image id object.  Unless there's an
5143          * error, rbd_dev->spec->image_id will be filled in with
5144          * a dynamically-allocated string, and rbd_dev->image_format
5145          * will be set to either 1 or 2.
5146          */
5147         ret = rbd_dev_image_id(rbd_dev);
5148         if (ret)
5149                 return ret;
5150         rbd_assert(rbd_dev->spec->image_id);
5151         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5152
5153         ret = rbd_dev_header_name(rbd_dev);
5154         if (ret)
5155                 goto err_out_format;
5156
5157         if (mapping) {
5158                 ret = rbd_dev_header_watch_sync(rbd_dev);
5159                 if (ret)
5160                         goto out_header_name;
5161         }
5162
5163         if (rbd_dev->image_format == 1)
5164                 ret = rbd_dev_v1_header_info(rbd_dev);
5165         else
5166                 ret = rbd_dev_v2_header_info(rbd_dev);
5167         if (ret)
5168                 goto err_out_watch;
5169
5170         ret = rbd_dev_spec_update(rbd_dev);
5171         if (ret)
5172                 goto err_out_probe;
5173
5174         ret = rbd_dev_probe_parent(rbd_dev);
5175         if (ret)
5176                 goto err_out_probe;
5177
5178         dout("discovered format %u image, header name is %s\n",
5179                 rbd_dev->image_format, rbd_dev->header_name);
5180
5181         return 0;
5182 err_out_probe:
5183         rbd_dev_unprobe(rbd_dev);
5184 err_out_watch:
5185         if (mapping)
5186                 rbd_dev_header_unwatch_sync(rbd_dev);
5187 out_header_name:
5188         kfree(rbd_dev->header_name);
5189         rbd_dev->header_name = NULL;
5190 err_out_format:
5191         rbd_dev->image_format = 0;
5192         kfree(rbd_dev->spec->image_id);
5193         rbd_dev->spec->image_id = NULL;
5194
5195         dout("probe failed, returning %d\n", ret);
5196
5197         return ret;
5198 }
5199
5200 static ssize_t do_rbd_add(struct bus_type *bus,
5201                           const char *buf,
5202                           size_t count)
5203 {
5204         struct rbd_device *rbd_dev = NULL;
5205         struct ceph_options *ceph_opts = NULL;
5206         struct rbd_options *rbd_opts = NULL;
5207         struct rbd_spec *spec = NULL;
5208         struct rbd_client *rbdc;
5209         bool read_only;
5210         int rc = -ENOMEM;
5211
5212         if (!try_module_get(THIS_MODULE))
5213                 return -ENODEV;
5214
5215         /* parse add command */
5216         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5217         if (rc < 0)
5218                 goto err_out_module;
5219         read_only = rbd_opts->read_only;
5220         kfree(rbd_opts);
5221         rbd_opts = NULL;        /* done with this */
5222
5223         rbdc = rbd_get_client(ceph_opts);
5224         if (IS_ERR(rbdc)) {
5225                 rc = PTR_ERR(rbdc);
5226                 goto err_out_args;
5227         }
5228
5229         /* pick the pool */
5230         rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5231         if (rc < 0)
5232                 goto err_out_client;
5233         spec->pool_id = (u64)rc;
5234
5235         /* The ceph file layout needs to fit pool id in 32 bits */
5236
5237         if (spec->pool_id > (u64)U32_MAX) {
5238                 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5239                                 (unsigned long long)spec->pool_id, U32_MAX);
5240                 rc = -EIO;
5241                 goto err_out_client;
5242         }
5243
5244         rbd_dev = rbd_dev_create(rbdc, spec);
5245         if (!rbd_dev)
5246                 goto err_out_client;
5247         rbdc = NULL;            /* rbd_dev now owns this */
5248         spec = NULL;            /* rbd_dev now owns this */
5249
5250         rc = rbd_dev_image_probe(rbd_dev, true);
5251         if (rc < 0)
5252                 goto err_out_rbd_dev;
5253
5254         /* If we are mapping a snapshot it must be marked read-only */
5255
5256         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5257                 read_only = true;
5258         rbd_dev->mapping.read_only = read_only;
5259
5260         rc = rbd_dev_device_setup(rbd_dev);
5261         if (rc) {
5262                 /*
5263                  * rbd_dev_header_unwatch_sync() can't be moved into
5264                  * rbd_dev_image_release() without refactoring, see
5265                  * commit 1f3ef78861ac.
5266                  */
5267                 rbd_dev_header_unwatch_sync(rbd_dev);
5268                 rbd_dev_image_release(rbd_dev);
5269                 goto err_out_module;
5270         }
5271
5272         return count;
5273
5274 err_out_rbd_dev:
5275         rbd_dev_destroy(rbd_dev);
5276 err_out_client:
5277         rbd_put_client(rbdc);
5278 err_out_args:
5279         rbd_spec_put(spec);
5280 err_out_module:
5281         module_put(THIS_MODULE);
5282
5283         dout("Error adding device %s\n", buf);
5284
5285         return (ssize_t)rc;
5286 }
5287
5288 static ssize_t rbd_add(struct bus_type *bus,
5289                        const char *buf,
5290                        size_t count)
5291 {
5292         if (single_major)
5293                 return -EINVAL;
5294
5295         return do_rbd_add(bus, buf, count);
5296 }
5297
5298 static ssize_t rbd_add_single_major(struct bus_type *bus,
5299                                     const char *buf,
5300                                     size_t count)
5301 {
5302         return do_rbd_add(bus, buf, count);
5303 }
5304
5305 static void rbd_dev_device_release(struct device *dev)
5306 {
5307         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5308
5309         rbd_free_disk(rbd_dev);
5310         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5311         rbd_dev_mapping_clear(rbd_dev);
5312         if (!single_major)
5313                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5314         rbd_dev_id_put(rbd_dev);
5315         rbd_dev_mapping_clear(rbd_dev);
5316 }
5317
5318 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5319 {
5320         while (rbd_dev->parent) {
5321                 struct rbd_device *first = rbd_dev;
5322                 struct rbd_device *second = first->parent;
5323                 struct rbd_device *third;
5324
5325                 /*
5326                  * Follow to the parent with no grandparent and
5327                  * remove it.
5328                  */
5329                 while (second && (third = second->parent)) {
5330                         first = second;
5331                         second = third;
5332                 }
5333                 rbd_assert(second);
5334                 rbd_dev_image_release(second);
5335                 first->parent = NULL;
5336                 first->parent_overlap = 0;
5337
5338                 rbd_assert(first->parent_spec);
5339                 rbd_spec_put(first->parent_spec);
5340                 first->parent_spec = NULL;
5341         }
5342 }
5343
5344 static ssize_t do_rbd_remove(struct bus_type *bus,
5345                              const char *buf,
5346                              size_t count)
5347 {
5348         struct rbd_device *rbd_dev = NULL;
5349         struct list_head *tmp;
5350         int dev_id;
5351         unsigned long ul;
5352         bool already = false;
5353         int ret;
5354
5355         ret = kstrtoul(buf, 10, &ul);
5356         if (ret)
5357                 return ret;
5358
5359         /* convert to int; abort if we lost anything in the conversion */
5360         dev_id = (int)ul;
5361         if (dev_id != ul)
5362                 return -EINVAL;
5363
5364         ret = -ENOENT;
5365         spin_lock(&rbd_dev_list_lock);
5366         list_for_each(tmp, &rbd_dev_list) {
5367                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5368                 if (rbd_dev->dev_id == dev_id) {
5369                         ret = 0;
5370                         break;
5371                 }
5372         }
5373         if (!ret) {
5374                 spin_lock_irq(&rbd_dev->lock);
5375                 if (rbd_dev->open_count)
5376                         ret = -EBUSY;
5377                 else
5378                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5379                                                         &rbd_dev->flags);
5380                 spin_unlock_irq(&rbd_dev->lock);
5381         }
5382         spin_unlock(&rbd_dev_list_lock);
5383         if (ret < 0 || already)
5384                 return ret;
5385
5386         rbd_dev_header_unwatch_sync(rbd_dev);
5387         /*
5388          * flush remaining watch callbacks - these must be complete
5389          * before the osd_client is shutdown
5390          */
5391         dout("%s: flushing notifies", __func__);
5392         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5393
5394         /*
5395          * Don't free anything from rbd_dev->disk until after all
5396          * notifies are completely processed. Otherwise
5397          * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5398          * in a potential use after free of rbd_dev->disk or rbd_dev.
5399          */
5400         rbd_bus_del_dev(rbd_dev);
5401         rbd_dev_image_release(rbd_dev);
5402         module_put(THIS_MODULE);
5403
5404         return count;
5405 }
5406
5407 static ssize_t rbd_remove(struct bus_type *bus,
5408                           const char *buf,
5409                           size_t count)
5410 {
5411         if (single_major)
5412                 return -EINVAL;
5413
5414         return do_rbd_remove(bus, buf, count);
5415 }
5416
5417 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5418                                        const char *buf,
5419                                        size_t count)
5420 {
5421         return do_rbd_remove(bus, buf, count);
5422 }
5423
5424 /*
5425  * create control files in sysfs
5426  * /sys/bus/rbd/...
5427  */
5428 static int rbd_sysfs_init(void)
5429 {
5430         int ret;
5431
5432         ret = device_register(&rbd_root_dev);
5433         if (ret < 0)
5434                 return ret;
5435
5436         ret = bus_register(&rbd_bus_type);
5437         if (ret < 0)
5438                 device_unregister(&rbd_root_dev);
5439
5440         return ret;
5441 }
5442
5443 static void rbd_sysfs_cleanup(void)
5444 {
5445         bus_unregister(&rbd_bus_type);
5446         device_unregister(&rbd_root_dev);
5447 }
5448
5449 static int rbd_slab_init(void)
5450 {
5451         rbd_assert(!rbd_img_request_cache);
5452         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5453                                         sizeof (struct rbd_img_request),
5454                                         __alignof__(struct rbd_img_request),
5455                                         0, NULL);
5456         if (!rbd_img_request_cache)
5457                 return -ENOMEM;
5458
5459         rbd_assert(!rbd_obj_request_cache);
5460         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5461                                         sizeof (struct rbd_obj_request),
5462                                         __alignof__(struct rbd_obj_request),
5463                                         0, NULL);
5464         if (!rbd_obj_request_cache)
5465                 goto out_err;
5466
5467         rbd_assert(!rbd_segment_name_cache);
5468         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5469                                         CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5470         if (rbd_segment_name_cache)
5471                 return 0;
5472 out_err:
5473         if (rbd_obj_request_cache) {
5474                 kmem_cache_destroy(rbd_obj_request_cache);
5475                 rbd_obj_request_cache = NULL;
5476         }
5477
5478         kmem_cache_destroy(rbd_img_request_cache);
5479         rbd_img_request_cache = NULL;
5480
5481         return -ENOMEM;
5482 }
5483
5484 static void rbd_slab_exit(void)
5485 {
5486         rbd_assert(rbd_segment_name_cache);
5487         kmem_cache_destroy(rbd_segment_name_cache);
5488         rbd_segment_name_cache = NULL;
5489
5490         rbd_assert(rbd_obj_request_cache);
5491         kmem_cache_destroy(rbd_obj_request_cache);
5492         rbd_obj_request_cache = NULL;
5493
5494         rbd_assert(rbd_img_request_cache);
5495         kmem_cache_destroy(rbd_img_request_cache);
5496         rbd_img_request_cache = NULL;
5497 }
5498
5499 static int __init rbd_init(void)
5500 {
5501         int rc;
5502
5503         if (!libceph_compatible(NULL)) {
5504                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5505                 return -EINVAL;
5506         }
5507
5508         rc = rbd_slab_init();
5509         if (rc)
5510                 return rc;
5511
5512         if (single_major) {
5513                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5514                 if (rbd_major < 0) {
5515                         rc = rbd_major;
5516                         goto err_out_slab;
5517                 }
5518         }
5519
5520         rc = rbd_sysfs_init();
5521         if (rc)
5522                 goto err_out_blkdev;
5523
5524         if (single_major)
5525                 pr_info("loaded (major %d)\n", rbd_major);
5526         else
5527                 pr_info("loaded\n");
5528
5529         return 0;
5530
5531 err_out_blkdev:
5532         if (single_major)
5533                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5534 err_out_slab:
5535         rbd_slab_exit();
5536         return rc;
5537 }
5538
5539 static void __exit rbd_exit(void)
5540 {
5541         ida_destroy(&rbd_dev_id_ida);
5542         rbd_sysfs_cleanup();
5543         if (single_major)
5544                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5545         rbd_slab_exit();
5546 }
5547
5548 module_init(rbd_init);
5549 module_exit(rbd_exit);
5550
5551 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5552 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5553 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5554 /* following authorship retained from original osdblk.c */
5555 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5556
5557 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5558 MODULE_LICENSE("GPL");