rbd: use rbd_segment_name_free() instead of kfree()
[firefly-linux-kernel-4.4.55.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44 #include <linux/idr.h>
45
46 #include "rbd_types.h"
47
48 #define RBD_DEBUG       /* Activate rbd_assert() calls */
49
50 /*
51  * The basic unit of block I/O is a sector.  It is interpreted in a
52  * number of contexts in Linux (blk, bio, genhd), but the default is
53  * universally 512 bytes.  These symbols are just slightly more
54  * meaningful than the bare numbers they represent.
55  */
56 #define SECTOR_SHIFT    9
57 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
58
59 /*
60  * Increment the given counter and return its updated value.
61  * If the counter is already 0 it will not be incremented.
62  * If the counter is already at its maximum value returns
63  * -EINVAL without updating it.
64  */
65 static int atomic_inc_return_safe(atomic_t *v)
66 {
67         unsigned int counter;
68
69         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
70         if (counter <= (unsigned int)INT_MAX)
71                 return (int)counter;
72
73         atomic_dec(v);
74
75         return -EINVAL;
76 }
77
78 /* Decrement the counter.  Return the resulting value, or -EINVAL */
79 static int atomic_dec_return_safe(atomic_t *v)
80 {
81         int counter;
82
83         counter = atomic_dec_return(v);
84         if (counter >= 0)
85                 return counter;
86
87         atomic_inc(v);
88
89         return -EINVAL;
90 }
91
92 #define RBD_DRV_NAME "rbd"
93
94 #define RBD_MINORS_PER_MAJOR            256
95 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
96
97 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
98 #define RBD_MAX_SNAP_NAME_LEN   \
99                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
100
101 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
102
103 #define RBD_SNAP_HEAD_NAME      "-"
104
105 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
106
107 /* This allows a single page to hold an image name sent by OSD */
108 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
109 #define RBD_IMAGE_ID_LEN_MAX    64
110
111 #define RBD_OBJ_PREFIX_LEN_MAX  64
112
113 /* Feature bits */
114
115 #define RBD_FEATURE_LAYERING    (1<<0)
116 #define RBD_FEATURE_STRIPINGV2  (1<<1)
117 #define RBD_FEATURES_ALL \
118             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
119
120 /* Features supported by this (client software) implementation. */
121
122 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
123
124 /*
125  * An RBD device name will be "rbd#", where the "rbd" comes from
126  * RBD_DRV_NAME above, and # is a unique integer identifier.
127  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
128  * enough to hold all possible device names.
129  */
130 #define DEV_NAME_LEN            32
131 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
132
133 /*
134  * block device image metadata (in-memory version)
135  */
136 struct rbd_image_header {
137         /* These six fields never change for a given rbd image */
138         char *object_prefix;
139         __u8 obj_order;
140         __u8 crypt_type;
141         __u8 comp_type;
142         u64 stripe_unit;
143         u64 stripe_count;
144         u64 features;           /* Might be changeable someday? */
145
146         /* The remaining fields need to be updated occasionally */
147         u64 image_size;
148         struct ceph_snap_context *snapc;
149         char *snap_names;       /* format 1 only */
150         u64 *snap_sizes;        /* format 1 only */
151 };
152
153 /*
154  * An rbd image specification.
155  *
156  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
157  * identify an image.  Each rbd_dev structure includes a pointer to
158  * an rbd_spec structure that encapsulates this identity.
159  *
160  * Each of the id's in an rbd_spec has an associated name.  For a
161  * user-mapped image, the names are supplied and the id's associated
162  * with them are looked up.  For a layered image, a parent image is
163  * defined by the tuple, and the names are looked up.
164  *
165  * An rbd_dev structure contains a parent_spec pointer which is
166  * non-null if the image it represents is a child in a layered
167  * image.  This pointer will refer to the rbd_spec structure used
168  * by the parent rbd_dev for its own identity (i.e., the structure
169  * is shared between the parent and child).
170  *
171  * Since these structures are populated once, during the discovery
172  * phase of image construction, they are effectively immutable so
173  * we make no effort to synchronize access to them.
174  *
175  * Note that code herein does not assume the image name is known (it
176  * could be a null pointer).
177  */
178 struct rbd_spec {
179         u64             pool_id;
180         const char      *pool_name;
181
182         const char      *image_id;
183         const char      *image_name;
184
185         u64             snap_id;
186         const char      *snap_name;
187
188         struct kref     kref;
189 };
190
191 /*
192  * an instance of the client.  multiple devices may share an rbd client.
193  */
194 struct rbd_client {
195         struct ceph_client      *client;
196         struct kref             kref;
197         struct list_head        node;
198 };
199
200 struct rbd_img_request;
201 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
202
203 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
204
205 struct rbd_obj_request;
206 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
207
208 enum obj_request_type {
209         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
210 };
211
212 enum obj_req_flags {
213         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
214         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
215         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
216         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
217 };
218
219 struct rbd_obj_request {
220         const char              *object_name;
221         u64                     offset;         /* object start byte */
222         u64                     length;         /* bytes from offset */
223         unsigned long           flags;
224
225         /*
226          * An object request associated with an image will have its
227          * img_data flag set; a standalone object request will not.
228          *
229          * A standalone object request will have which == BAD_WHICH
230          * and a null obj_request pointer.
231          *
232          * An object request initiated in support of a layered image
233          * object (to check for its existence before a write) will
234          * have which == BAD_WHICH and a non-null obj_request pointer.
235          *
236          * Finally, an object request for rbd image data will have
237          * which != BAD_WHICH, and will have a non-null img_request
238          * pointer.  The value of which will be in the range
239          * 0..(img_request->obj_request_count-1).
240          */
241         union {
242                 struct rbd_obj_request  *obj_request;   /* STAT op */
243                 struct {
244                         struct rbd_img_request  *img_request;
245                         u64                     img_offset;
246                         /* links for img_request->obj_requests list */
247                         struct list_head        links;
248                 };
249         };
250         u32                     which;          /* posn image request list */
251
252         enum obj_request_type   type;
253         union {
254                 struct bio      *bio_list;
255                 struct {
256                         struct page     **pages;
257                         u32             page_count;
258                 };
259         };
260         struct page             **copyup_pages;
261         u32                     copyup_page_count;
262
263         struct ceph_osd_request *osd_req;
264
265         u64                     xferred;        /* bytes transferred */
266         int                     result;
267
268         rbd_obj_callback_t      callback;
269         struct completion       completion;
270
271         struct kref             kref;
272 };
273
274 enum img_req_flags {
275         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
276         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
277         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
278 };
279
280 struct rbd_img_request {
281         struct rbd_device       *rbd_dev;
282         u64                     offset; /* starting image byte offset */
283         u64                     length; /* byte count from offset */
284         unsigned long           flags;
285         union {
286                 u64                     snap_id;        /* for reads */
287                 struct ceph_snap_context *snapc;        /* for writes */
288         };
289         union {
290                 struct request          *rq;            /* block request */
291                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
292         };
293         struct page             **copyup_pages;
294         u32                     copyup_page_count;
295         spinlock_t              completion_lock;/* protects next_completion */
296         u32                     next_completion;
297         rbd_img_callback_t      callback;
298         u64                     xferred;/* aggregate bytes transferred */
299         int                     result; /* first nonzero obj_request result */
300
301         u32                     obj_request_count;
302         struct list_head        obj_requests;   /* rbd_obj_request structs */
303
304         struct kref             kref;
305 };
306
307 #define for_each_obj_request(ireq, oreq) \
308         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
309 #define for_each_obj_request_from(ireq, oreq) \
310         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
311 #define for_each_obj_request_safe(ireq, oreq, n) \
312         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
313
314 struct rbd_mapping {
315         u64                     size;
316         u64                     features;
317         bool                    read_only;
318 };
319
320 /*
321  * a single device
322  */
323 struct rbd_device {
324         int                     dev_id;         /* blkdev unique id */
325
326         int                     major;          /* blkdev assigned major */
327         int                     minor;
328         struct gendisk          *disk;          /* blkdev's gendisk and rq */
329
330         u32                     image_format;   /* Either 1 or 2 */
331         struct rbd_client       *rbd_client;
332
333         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
334
335         spinlock_t              lock;           /* queue, flags, open_count */
336
337         struct rbd_image_header header;
338         unsigned long           flags;          /* possibly lock protected */
339         struct rbd_spec         *spec;
340
341         char                    *header_name;
342
343         struct ceph_file_layout layout;
344
345         struct ceph_osd_event   *watch_event;
346         struct rbd_obj_request  *watch_request;
347
348         struct rbd_spec         *parent_spec;
349         u64                     parent_overlap;
350         atomic_t                parent_ref;
351         struct rbd_device       *parent;
352
353         /* protects updating the header */
354         struct rw_semaphore     header_rwsem;
355
356         struct rbd_mapping      mapping;
357
358         struct list_head        node;
359
360         /* sysfs related */
361         struct device           dev;
362         unsigned long           open_count;     /* protected by lock */
363 };
364
365 /*
366  * Flag bits for rbd_dev->flags.  If atomicity is required,
367  * rbd_dev->lock is used to protect access.
368  *
369  * Currently, only the "removing" flag (which is coupled with the
370  * "open_count" field) requires atomic access.
371  */
372 enum rbd_dev_flags {
373         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
374         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
375 };
376
377 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
378
379 static LIST_HEAD(rbd_dev_list);    /* devices */
380 static DEFINE_SPINLOCK(rbd_dev_list_lock);
381
382 static LIST_HEAD(rbd_client_list);              /* clients */
383 static DEFINE_SPINLOCK(rbd_client_list_lock);
384
385 /* Slab caches for frequently-allocated structures */
386
387 static struct kmem_cache        *rbd_img_request_cache;
388 static struct kmem_cache        *rbd_obj_request_cache;
389 static struct kmem_cache        *rbd_segment_name_cache;
390
391 static int rbd_major;
392 static DEFINE_IDA(rbd_dev_id_ida);
393
394 /*
395  * Default to false for now, as single-major requires >= 0.75 version of
396  * userspace rbd utility.
397  */
398 static bool single_major = false;
399 module_param(single_major, bool, S_IRUGO);
400 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
401
402 static int rbd_img_request_submit(struct rbd_img_request *img_request);
403
404 static void rbd_dev_device_release(struct device *dev);
405
406 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
407                        size_t count);
408 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
409                           size_t count);
410 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
411                                     size_t count);
412 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
413                                        size_t count);
414 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
415 static void rbd_spec_put(struct rbd_spec *spec);
416
417 static int rbd_dev_id_to_minor(int dev_id)
418 {
419         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
420 }
421
422 static int minor_to_rbd_dev_id(int minor)
423 {
424         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
425 }
426
427 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
428 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
429 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
430 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
431
432 static struct attribute *rbd_bus_attrs[] = {
433         &bus_attr_add.attr,
434         &bus_attr_remove.attr,
435         &bus_attr_add_single_major.attr,
436         &bus_attr_remove_single_major.attr,
437         NULL,
438 };
439
440 static umode_t rbd_bus_is_visible(struct kobject *kobj,
441                                   struct attribute *attr, int index)
442 {
443         if (!single_major &&
444             (attr == &bus_attr_add_single_major.attr ||
445              attr == &bus_attr_remove_single_major.attr))
446                 return 0;
447
448         return attr->mode;
449 }
450
451 static const struct attribute_group rbd_bus_group = {
452         .attrs = rbd_bus_attrs,
453         .is_visible = rbd_bus_is_visible,
454 };
455 __ATTRIBUTE_GROUPS(rbd_bus);
456
457 static struct bus_type rbd_bus_type = {
458         .name           = "rbd",
459         .bus_groups     = rbd_bus_groups,
460 };
461
462 static void rbd_root_dev_release(struct device *dev)
463 {
464 }
465
466 static struct device rbd_root_dev = {
467         .init_name =    "rbd",
468         .release =      rbd_root_dev_release,
469 };
470
471 static __printf(2, 3)
472 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
473 {
474         struct va_format vaf;
475         va_list args;
476
477         va_start(args, fmt);
478         vaf.fmt = fmt;
479         vaf.va = &args;
480
481         if (!rbd_dev)
482                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
483         else if (rbd_dev->disk)
484                 printk(KERN_WARNING "%s: %s: %pV\n",
485                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
486         else if (rbd_dev->spec && rbd_dev->spec->image_name)
487                 printk(KERN_WARNING "%s: image %s: %pV\n",
488                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
489         else if (rbd_dev->spec && rbd_dev->spec->image_id)
490                 printk(KERN_WARNING "%s: id %s: %pV\n",
491                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
492         else    /* punt */
493                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
494                         RBD_DRV_NAME, rbd_dev, &vaf);
495         va_end(args);
496 }
497
498 #ifdef RBD_DEBUG
499 #define rbd_assert(expr)                                                \
500                 if (unlikely(!(expr))) {                                \
501                         printk(KERN_ERR "\nAssertion failure in %s() "  \
502                                                 "at line %d:\n\n"       \
503                                         "\trbd_assert(%s);\n\n",        \
504                                         __func__, __LINE__, #expr);     \
505                         BUG();                                          \
506                 }
507 #else /* !RBD_DEBUG */
508 #  define rbd_assert(expr)      ((void) 0)
509 #endif /* !RBD_DEBUG */
510
511 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
512 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
513 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
514
515 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
516 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
517 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
518 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
519                                         u64 snap_id);
520 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
521                                 u8 *order, u64 *snap_size);
522 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
523                 u64 *snap_features);
524 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
525
526 static int rbd_open(struct block_device *bdev, fmode_t mode)
527 {
528         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
529         bool removing = false;
530
531         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
532                 return -EROFS;
533
534         spin_lock_irq(&rbd_dev->lock);
535         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
536                 removing = true;
537         else
538                 rbd_dev->open_count++;
539         spin_unlock_irq(&rbd_dev->lock);
540         if (removing)
541                 return -ENOENT;
542
543         (void) get_device(&rbd_dev->dev);
544
545         return 0;
546 }
547
548 static void rbd_release(struct gendisk *disk, fmode_t mode)
549 {
550         struct rbd_device *rbd_dev = disk->private_data;
551         unsigned long open_count_before;
552
553         spin_lock_irq(&rbd_dev->lock);
554         open_count_before = rbd_dev->open_count--;
555         spin_unlock_irq(&rbd_dev->lock);
556         rbd_assert(open_count_before > 0);
557
558         put_device(&rbd_dev->dev);
559 }
560
561 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
562 {
563         int ret = 0;
564         int val;
565         bool ro;
566         bool ro_changed = false;
567
568         /* get_user() may sleep, so call it before taking rbd_dev->lock */
569         if (get_user(val, (int __user *)(arg)))
570                 return -EFAULT;
571
572         ro = val ? true : false;
573         /* Snapshot doesn't allow to write*/
574         if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
575                 return -EROFS;
576
577         spin_lock_irq(&rbd_dev->lock);
578         /* prevent others open this device */
579         if (rbd_dev->open_count > 1) {
580                 ret = -EBUSY;
581                 goto out;
582         }
583
584         if (rbd_dev->mapping.read_only != ro) {
585                 rbd_dev->mapping.read_only = ro;
586                 ro_changed = true;
587         }
588
589 out:
590         spin_unlock_irq(&rbd_dev->lock);
591         /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
592         if (ret == 0 && ro_changed)
593                 set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
594
595         return ret;
596 }
597
598 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
599                         unsigned int cmd, unsigned long arg)
600 {
601         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
602         int ret = 0;
603
604         switch (cmd) {
605         case BLKROSET:
606                 ret = rbd_ioctl_set_ro(rbd_dev, arg);
607                 break;
608         default:
609                 ret = -ENOTTY;
610         }
611
612         return ret;
613 }
614
615 #ifdef CONFIG_COMPAT
616 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
617                                 unsigned int cmd, unsigned long arg)
618 {
619         return rbd_ioctl(bdev, mode, cmd, arg);
620 }
621 #endif /* CONFIG_COMPAT */
622
623 static const struct block_device_operations rbd_bd_ops = {
624         .owner                  = THIS_MODULE,
625         .open                   = rbd_open,
626         .release                = rbd_release,
627         .ioctl                  = rbd_ioctl,
628 #ifdef CONFIG_COMPAT
629         .compat_ioctl           = rbd_compat_ioctl,
630 #endif
631 };
632
633 /*
634  * Initialize an rbd client instance.  Success or not, this function
635  * consumes ceph_opts.  Caller holds client_mutex.
636  */
637 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
638 {
639         struct rbd_client *rbdc;
640         int ret = -ENOMEM;
641
642         dout("%s:\n", __func__);
643         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
644         if (!rbdc)
645                 goto out_opt;
646
647         kref_init(&rbdc->kref);
648         INIT_LIST_HEAD(&rbdc->node);
649
650         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
651         if (IS_ERR(rbdc->client))
652                 goto out_rbdc;
653         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
654
655         ret = ceph_open_session(rbdc->client);
656         if (ret < 0)
657                 goto out_client;
658
659         spin_lock(&rbd_client_list_lock);
660         list_add_tail(&rbdc->node, &rbd_client_list);
661         spin_unlock(&rbd_client_list_lock);
662
663         dout("%s: rbdc %p\n", __func__, rbdc);
664
665         return rbdc;
666 out_client:
667         ceph_destroy_client(rbdc->client);
668 out_rbdc:
669         kfree(rbdc);
670 out_opt:
671         if (ceph_opts)
672                 ceph_destroy_options(ceph_opts);
673         dout("%s: error %d\n", __func__, ret);
674
675         return ERR_PTR(ret);
676 }
677
678 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
679 {
680         kref_get(&rbdc->kref);
681
682         return rbdc;
683 }
684
685 /*
686  * Find a ceph client with specific addr and configuration.  If
687  * found, bump its reference count.
688  */
689 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
690 {
691         struct rbd_client *client_node;
692         bool found = false;
693
694         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
695                 return NULL;
696
697         spin_lock(&rbd_client_list_lock);
698         list_for_each_entry(client_node, &rbd_client_list, node) {
699                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
700                         __rbd_get_client(client_node);
701
702                         found = true;
703                         break;
704                 }
705         }
706         spin_unlock(&rbd_client_list_lock);
707
708         return found ? client_node : NULL;
709 }
710
711 /*
712  * mount options
713  */
714 enum {
715         Opt_last_int,
716         /* int args above */
717         Opt_last_string,
718         /* string args above */
719         Opt_read_only,
720         Opt_read_write,
721         /* Boolean args above */
722         Opt_last_bool,
723 };
724
725 static match_table_t rbd_opts_tokens = {
726         /* int args above */
727         /* string args above */
728         {Opt_read_only, "read_only"},
729         {Opt_read_only, "ro"},          /* Alternate spelling */
730         {Opt_read_write, "read_write"},
731         {Opt_read_write, "rw"},         /* Alternate spelling */
732         /* Boolean args above */
733         {-1, NULL}
734 };
735
736 struct rbd_options {
737         bool    read_only;
738 };
739
740 #define RBD_READ_ONLY_DEFAULT   false
741
742 static int parse_rbd_opts_token(char *c, void *private)
743 {
744         struct rbd_options *rbd_opts = private;
745         substring_t argstr[MAX_OPT_ARGS];
746         int token, intval, ret;
747
748         token = match_token(c, rbd_opts_tokens, argstr);
749         if (token < 0)
750                 return -EINVAL;
751
752         if (token < Opt_last_int) {
753                 ret = match_int(&argstr[0], &intval);
754                 if (ret < 0) {
755                         pr_err("bad mount option arg (not int) "
756                                "at '%s'\n", c);
757                         return ret;
758                 }
759                 dout("got int token %d val %d\n", token, intval);
760         } else if (token > Opt_last_int && token < Opt_last_string) {
761                 dout("got string token %d val %s\n", token,
762                      argstr[0].from);
763         } else if (token > Opt_last_string && token < Opt_last_bool) {
764                 dout("got Boolean token %d\n", token);
765         } else {
766                 dout("got token %d\n", token);
767         }
768
769         switch (token) {
770         case Opt_read_only:
771                 rbd_opts->read_only = true;
772                 break;
773         case Opt_read_write:
774                 rbd_opts->read_only = false;
775                 break;
776         default:
777                 rbd_assert(false);
778                 break;
779         }
780         return 0;
781 }
782
783 /*
784  * Get a ceph client with specific addr and configuration, if one does
785  * not exist create it.  Either way, ceph_opts is consumed by this
786  * function.
787  */
788 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
789 {
790         struct rbd_client *rbdc;
791
792         mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
793         rbdc = rbd_client_find(ceph_opts);
794         if (rbdc)       /* using an existing client */
795                 ceph_destroy_options(ceph_opts);
796         else
797                 rbdc = rbd_client_create(ceph_opts);
798         mutex_unlock(&client_mutex);
799
800         return rbdc;
801 }
802
803 /*
804  * Destroy ceph client
805  *
806  * Caller must hold rbd_client_list_lock.
807  */
808 static void rbd_client_release(struct kref *kref)
809 {
810         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
811
812         dout("%s: rbdc %p\n", __func__, rbdc);
813         spin_lock(&rbd_client_list_lock);
814         list_del(&rbdc->node);
815         spin_unlock(&rbd_client_list_lock);
816
817         ceph_destroy_client(rbdc->client);
818         kfree(rbdc);
819 }
820
821 /*
822  * Drop reference to ceph client node. If it's not referenced anymore, release
823  * it.
824  */
825 static void rbd_put_client(struct rbd_client *rbdc)
826 {
827         if (rbdc)
828                 kref_put(&rbdc->kref, rbd_client_release);
829 }
830
831 static bool rbd_image_format_valid(u32 image_format)
832 {
833         return image_format == 1 || image_format == 2;
834 }
835
836 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
837 {
838         size_t size;
839         u32 snap_count;
840
841         /* The header has to start with the magic rbd header text */
842         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
843                 return false;
844
845         /* The bio layer requires at least sector-sized I/O */
846
847         if (ondisk->options.order < SECTOR_SHIFT)
848                 return false;
849
850         /* If we use u64 in a few spots we may be able to loosen this */
851
852         if (ondisk->options.order > 8 * sizeof (int) - 1)
853                 return false;
854
855         /*
856          * The size of a snapshot header has to fit in a size_t, and
857          * that limits the number of snapshots.
858          */
859         snap_count = le32_to_cpu(ondisk->snap_count);
860         size = SIZE_MAX - sizeof (struct ceph_snap_context);
861         if (snap_count > size / sizeof (__le64))
862                 return false;
863
864         /*
865          * Not only that, but the size of the entire the snapshot
866          * header must also be representable in a size_t.
867          */
868         size -= snap_count * sizeof (__le64);
869         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
870                 return false;
871
872         return true;
873 }
874
875 /*
876  * Fill an rbd image header with information from the given format 1
877  * on-disk header.
878  */
879 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
880                                  struct rbd_image_header_ondisk *ondisk)
881 {
882         struct rbd_image_header *header = &rbd_dev->header;
883         bool first_time = header->object_prefix == NULL;
884         struct ceph_snap_context *snapc;
885         char *object_prefix = NULL;
886         char *snap_names = NULL;
887         u64 *snap_sizes = NULL;
888         u32 snap_count;
889         size_t size;
890         int ret = -ENOMEM;
891         u32 i;
892
893         /* Allocate this now to avoid having to handle failure below */
894
895         if (first_time) {
896                 size_t len;
897
898                 len = strnlen(ondisk->object_prefix,
899                                 sizeof (ondisk->object_prefix));
900                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
901                 if (!object_prefix)
902                         return -ENOMEM;
903                 memcpy(object_prefix, ondisk->object_prefix, len);
904                 object_prefix[len] = '\0';
905         }
906
907         /* Allocate the snapshot context and fill it in */
908
909         snap_count = le32_to_cpu(ondisk->snap_count);
910         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
911         if (!snapc)
912                 goto out_err;
913         snapc->seq = le64_to_cpu(ondisk->snap_seq);
914         if (snap_count) {
915                 struct rbd_image_snap_ondisk *snaps;
916                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
917
918                 /* We'll keep a copy of the snapshot names... */
919
920                 if (snap_names_len > (u64)SIZE_MAX)
921                         goto out_2big;
922                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
923                 if (!snap_names)
924                         goto out_err;
925
926                 /* ...as well as the array of their sizes. */
927
928                 size = snap_count * sizeof (*header->snap_sizes);
929                 snap_sizes = kmalloc(size, GFP_KERNEL);
930                 if (!snap_sizes)
931                         goto out_err;
932
933                 /*
934                  * Copy the names, and fill in each snapshot's id
935                  * and size.
936                  *
937                  * Note that rbd_dev_v1_header_info() guarantees the
938                  * ondisk buffer we're working with has
939                  * snap_names_len bytes beyond the end of the
940                  * snapshot id array, this memcpy() is safe.
941                  */
942                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
943                 snaps = ondisk->snaps;
944                 for (i = 0; i < snap_count; i++) {
945                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
946                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
947                 }
948         }
949
950         /* We won't fail any more, fill in the header */
951
952         if (first_time) {
953                 header->object_prefix = object_prefix;
954                 header->obj_order = ondisk->options.order;
955                 header->crypt_type = ondisk->options.crypt_type;
956                 header->comp_type = ondisk->options.comp_type;
957                 /* The rest aren't used for format 1 images */
958                 header->stripe_unit = 0;
959                 header->stripe_count = 0;
960                 header->features = 0;
961         } else {
962                 ceph_put_snap_context(header->snapc);
963                 kfree(header->snap_names);
964                 kfree(header->snap_sizes);
965         }
966
967         /* The remaining fields always get updated (when we refresh) */
968
969         header->image_size = le64_to_cpu(ondisk->image_size);
970         header->snapc = snapc;
971         header->snap_names = snap_names;
972         header->snap_sizes = snap_sizes;
973
974         /* Make sure mapping size is consistent with header info */
975
976         if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
977                 if (rbd_dev->mapping.size != header->image_size)
978                         rbd_dev->mapping.size = header->image_size;
979
980         return 0;
981 out_2big:
982         ret = -EIO;
983 out_err:
984         kfree(snap_sizes);
985         kfree(snap_names);
986         ceph_put_snap_context(snapc);
987         kfree(object_prefix);
988
989         return ret;
990 }
991
992 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
993 {
994         const char *snap_name;
995
996         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
997
998         /* Skip over names until we find the one we are looking for */
999
1000         snap_name = rbd_dev->header.snap_names;
1001         while (which--)
1002                 snap_name += strlen(snap_name) + 1;
1003
1004         return kstrdup(snap_name, GFP_KERNEL);
1005 }
1006
1007 /*
1008  * Snapshot id comparison function for use with qsort()/bsearch().
1009  * Note that result is for snapshots in *descending* order.
1010  */
1011 static int snapid_compare_reverse(const void *s1, const void *s2)
1012 {
1013         u64 snap_id1 = *(u64 *)s1;
1014         u64 snap_id2 = *(u64 *)s2;
1015
1016         if (snap_id1 < snap_id2)
1017                 return 1;
1018         return snap_id1 == snap_id2 ? 0 : -1;
1019 }
1020
1021 /*
1022  * Search a snapshot context to see if the given snapshot id is
1023  * present.
1024  *
1025  * Returns the position of the snapshot id in the array if it's found,
1026  * or BAD_SNAP_INDEX otherwise.
1027  *
1028  * Note: The snapshot array is in kept sorted (by the osd) in
1029  * reverse order, highest snapshot id first.
1030  */
1031 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1032 {
1033         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1034         u64 *found;
1035
1036         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1037                                 sizeof (snap_id), snapid_compare_reverse);
1038
1039         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1040 }
1041
1042 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1043                                         u64 snap_id)
1044 {
1045         u32 which;
1046         const char *snap_name;
1047
1048         which = rbd_dev_snap_index(rbd_dev, snap_id);
1049         if (which == BAD_SNAP_INDEX)
1050                 return ERR_PTR(-ENOENT);
1051
1052         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1053         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1054 }
1055
1056 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1057 {
1058         if (snap_id == CEPH_NOSNAP)
1059                 return RBD_SNAP_HEAD_NAME;
1060
1061         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1062         if (rbd_dev->image_format == 1)
1063                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1064
1065         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1066 }
1067
1068 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1069                                 u64 *snap_size)
1070 {
1071         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1072         if (snap_id == CEPH_NOSNAP) {
1073                 *snap_size = rbd_dev->header.image_size;
1074         } else if (rbd_dev->image_format == 1) {
1075                 u32 which;
1076
1077                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1078                 if (which == BAD_SNAP_INDEX)
1079                         return -ENOENT;
1080
1081                 *snap_size = rbd_dev->header.snap_sizes[which];
1082         } else {
1083                 u64 size = 0;
1084                 int ret;
1085
1086                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1087                 if (ret)
1088                         return ret;
1089
1090                 *snap_size = size;
1091         }
1092         return 0;
1093 }
1094
1095 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1096                         u64 *snap_features)
1097 {
1098         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1099         if (snap_id == CEPH_NOSNAP) {
1100                 *snap_features = rbd_dev->header.features;
1101         } else if (rbd_dev->image_format == 1) {
1102                 *snap_features = 0;     /* No features for format 1 */
1103         } else {
1104                 u64 features = 0;
1105                 int ret;
1106
1107                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1108                 if (ret)
1109                         return ret;
1110
1111                 *snap_features = features;
1112         }
1113         return 0;
1114 }
1115
1116 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1117 {
1118         u64 snap_id = rbd_dev->spec->snap_id;
1119         u64 size = 0;
1120         u64 features = 0;
1121         int ret;
1122
1123         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1124         if (ret)
1125                 return ret;
1126         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1127         if (ret)
1128                 return ret;
1129
1130         rbd_dev->mapping.size = size;
1131         rbd_dev->mapping.features = features;
1132
1133         return 0;
1134 }
1135
1136 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1137 {
1138         rbd_dev->mapping.size = 0;
1139         rbd_dev->mapping.features = 0;
1140 }
1141
1142 static void rbd_segment_name_free(const char *name)
1143 {
1144         /* The explicit cast here is needed to drop the const qualifier */
1145
1146         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1147 }
1148
1149 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1150 {
1151         char *name;
1152         u64 segment;
1153         int ret;
1154         char *name_format;
1155
1156         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1157         if (!name)
1158                 return NULL;
1159         segment = offset >> rbd_dev->header.obj_order;
1160         name_format = "%s.%012llx";
1161         if (rbd_dev->image_format == 2)
1162                 name_format = "%s.%016llx";
1163         ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1164                         rbd_dev->header.object_prefix, segment);
1165         if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1166                 pr_err("error formatting segment name for #%llu (%d)\n",
1167                         segment, ret);
1168                 rbd_segment_name_free(name);
1169                 name = NULL;
1170         }
1171
1172         return name;
1173 }
1174
1175 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1176 {
1177         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1178
1179         return offset & (segment_size - 1);
1180 }
1181
1182 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1183                                 u64 offset, u64 length)
1184 {
1185         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1186
1187         offset &= segment_size - 1;
1188
1189         rbd_assert(length <= U64_MAX - offset);
1190         if (offset + length > segment_size)
1191                 length = segment_size - offset;
1192
1193         return length;
1194 }
1195
1196 /*
1197  * returns the size of an object in the image
1198  */
1199 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1200 {
1201         return 1 << header->obj_order;
1202 }
1203
1204 /*
1205  * bio helpers
1206  */
1207
1208 static void bio_chain_put(struct bio *chain)
1209 {
1210         struct bio *tmp;
1211
1212         while (chain) {
1213                 tmp = chain;
1214                 chain = chain->bi_next;
1215                 bio_put(tmp);
1216         }
1217 }
1218
1219 /*
1220  * zeros a bio chain, starting at specific offset
1221  */
1222 static void zero_bio_chain(struct bio *chain, int start_ofs)
1223 {
1224         struct bio_vec bv;
1225         struct bvec_iter iter;
1226         unsigned long flags;
1227         void *buf;
1228         int pos = 0;
1229
1230         while (chain) {
1231                 bio_for_each_segment(bv, chain, iter) {
1232                         if (pos + bv.bv_len > start_ofs) {
1233                                 int remainder = max(start_ofs - pos, 0);
1234                                 buf = bvec_kmap_irq(&bv, &flags);
1235                                 memset(buf + remainder, 0,
1236                                        bv.bv_len - remainder);
1237                                 flush_dcache_page(bv.bv_page);
1238                                 bvec_kunmap_irq(buf, &flags);
1239                         }
1240                         pos += bv.bv_len;
1241                 }
1242
1243                 chain = chain->bi_next;
1244         }
1245 }
1246
1247 /*
1248  * similar to zero_bio_chain(), zeros data defined by a page array,
1249  * starting at the given byte offset from the start of the array and
1250  * continuing up to the given end offset.  The pages array is
1251  * assumed to be big enough to hold all bytes up to the end.
1252  */
1253 static void zero_pages(struct page **pages, u64 offset, u64 end)
1254 {
1255         struct page **page = &pages[offset >> PAGE_SHIFT];
1256
1257         rbd_assert(end > offset);
1258         rbd_assert(end - offset <= (u64)SIZE_MAX);
1259         while (offset < end) {
1260                 size_t page_offset;
1261                 size_t length;
1262                 unsigned long flags;
1263                 void *kaddr;
1264
1265                 page_offset = offset & ~PAGE_MASK;
1266                 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1267                 local_irq_save(flags);
1268                 kaddr = kmap_atomic(*page);
1269                 memset(kaddr + page_offset, 0, length);
1270                 flush_dcache_page(*page);
1271                 kunmap_atomic(kaddr);
1272                 local_irq_restore(flags);
1273
1274                 offset += length;
1275                 page++;
1276         }
1277 }
1278
1279 /*
1280  * Clone a portion of a bio, starting at the given byte offset
1281  * and continuing for the number of bytes indicated.
1282  */
1283 static struct bio *bio_clone_range(struct bio *bio_src,
1284                                         unsigned int offset,
1285                                         unsigned int len,
1286                                         gfp_t gfpmask)
1287 {
1288         struct bio *bio;
1289
1290         bio = bio_clone(bio_src, gfpmask);
1291         if (!bio)
1292                 return NULL;    /* ENOMEM */
1293
1294         bio_advance(bio, offset);
1295         bio->bi_iter.bi_size = len;
1296
1297         return bio;
1298 }
1299
1300 /*
1301  * Clone a portion of a bio chain, starting at the given byte offset
1302  * into the first bio in the source chain and continuing for the
1303  * number of bytes indicated.  The result is another bio chain of
1304  * exactly the given length, or a null pointer on error.
1305  *
1306  * The bio_src and offset parameters are both in-out.  On entry they
1307  * refer to the first source bio and the offset into that bio where
1308  * the start of data to be cloned is located.
1309  *
1310  * On return, bio_src is updated to refer to the bio in the source
1311  * chain that contains first un-cloned byte, and *offset will
1312  * contain the offset of that byte within that bio.
1313  */
1314 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1315                                         unsigned int *offset,
1316                                         unsigned int len,
1317                                         gfp_t gfpmask)
1318 {
1319         struct bio *bi = *bio_src;
1320         unsigned int off = *offset;
1321         struct bio *chain = NULL;
1322         struct bio **end;
1323
1324         /* Build up a chain of clone bios up to the limit */
1325
1326         if (!bi || off >= bi->bi_iter.bi_size || !len)
1327                 return NULL;            /* Nothing to clone */
1328
1329         end = &chain;
1330         while (len) {
1331                 unsigned int bi_size;
1332                 struct bio *bio;
1333
1334                 if (!bi) {
1335                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1336                         goto out_err;   /* EINVAL; ran out of bio's */
1337                 }
1338                 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1339                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1340                 if (!bio)
1341                         goto out_err;   /* ENOMEM */
1342
1343                 *end = bio;
1344                 end = &bio->bi_next;
1345
1346                 off += bi_size;
1347                 if (off == bi->bi_iter.bi_size) {
1348                         bi = bi->bi_next;
1349                         off = 0;
1350                 }
1351                 len -= bi_size;
1352         }
1353         *bio_src = bi;
1354         *offset = off;
1355
1356         return chain;
1357 out_err:
1358         bio_chain_put(chain);
1359
1360         return NULL;
1361 }
1362
1363 /*
1364  * The default/initial value for all object request flags is 0.  For
1365  * each flag, once its value is set to 1 it is never reset to 0
1366  * again.
1367  */
1368 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1369 {
1370         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1371                 struct rbd_device *rbd_dev;
1372
1373                 rbd_dev = obj_request->img_request->rbd_dev;
1374                 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1375                         obj_request);
1376         }
1377 }
1378
1379 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1380 {
1381         smp_mb();
1382         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1383 }
1384
1385 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1386 {
1387         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1388                 struct rbd_device *rbd_dev = NULL;
1389
1390                 if (obj_request_img_data_test(obj_request))
1391                         rbd_dev = obj_request->img_request->rbd_dev;
1392                 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1393                         obj_request);
1394         }
1395 }
1396
1397 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1398 {
1399         smp_mb();
1400         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1401 }
1402
1403 /*
1404  * This sets the KNOWN flag after (possibly) setting the EXISTS
1405  * flag.  The latter is set based on the "exists" value provided.
1406  *
1407  * Note that for our purposes once an object exists it never goes
1408  * away again.  It's possible that the response from two existence
1409  * checks are separated by the creation of the target object, and
1410  * the first ("doesn't exist") response arrives *after* the second
1411  * ("does exist").  In that case we ignore the second one.
1412  */
1413 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1414                                 bool exists)
1415 {
1416         if (exists)
1417                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1418         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1419         smp_mb();
1420 }
1421
1422 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1423 {
1424         smp_mb();
1425         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1426 }
1427
1428 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1429 {
1430         smp_mb();
1431         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1432 }
1433
1434 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1435 {
1436         struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1437
1438         return obj_request->img_offset <
1439             round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1440 }
1441
1442 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1443 {
1444         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1445                 atomic_read(&obj_request->kref.refcount));
1446         kref_get(&obj_request->kref);
1447 }
1448
1449 static void rbd_obj_request_destroy(struct kref *kref);
1450 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1451 {
1452         rbd_assert(obj_request != NULL);
1453         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1454                 atomic_read(&obj_request->kref.refcount));
1455         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1456 }
1457
1458 static void rbd_img_request_get(struct rbd_img_request *img_request)
1459 {
1460         dout("%s: img %p (was %d)\n", __func__, img_request,
1461              atomic_read(&img_request->kref.refcount));
1462         kref_get(&img_request->kref);
1463 }
1464
1465 static bool img_request_child_test(struct rbd_img_request *img_request);
1466 static void rbd_parent_request_destroy(struct kref *kref);
1467 static void rbd_img_request_destroy(struct kref *kref);
1468 static void rbd_img_request_put(struct rbd_img_request *img_request)
1469 {
1470         rbd_assert(img_request != NULL);
1471         dout("%s: img %p (was %d)\n", __func__, img_request,
1472                 atomic_read(&img_request->kref.refcount));
1473         if (img_request_child_test(img_request))
1474                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1475         else
1476                 kref_put(&img_request->kref, rbd_img_request_destroy);
1477 }
1478
1479 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1480                                         struct rbd_obj_request *obj_request)
1481 {
1482         rbd_assert(obj_request->img_request == NULL);
1483
1484         /* Image request now owns object's original reference */
1485         obj_request->img_request = img_request;
1486         obj_request->which = img_request->obj_request_count;
1487         rbd_assert(!obj_request_img_data_test(obj_request));
1488         obj_request_img_data_set(obj_request);
1489         rbd_assert(obj_request->which != BAD_WHICH);
1490         img_request->obj_request_count++;
1491         list_add_tail(&obj_request->links, &img_request->obj_requests);
1492         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1493                 obj_request->which);
1494 }
1495
1496 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1497                                         struct rbd_obj_request *obj_request)
1498 {
1499         rbd_assert(obj_request->which != BAD_WHICH);
1500
1501         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1502                 obj_request->which);
1503         list_del(&obj_request->links);
1504         rbd_assert(img_request->obj_request_count > 0);
1505         img_request->obj_request_count--;
1506         rbd_assert(obj_request->which == img_request->obj_request_count);
1507         obj_request->which = BAD_WHICH;
1508         rbd_assert(obj_request_img_data_test(obj_request));
1509         rbd_assert(obj_request->img_request == img_request);
1510         obj_request->img_request = NULL;
1511         obj_request->callback = NULL;
1512         rbd_obj_request_put(obj_request);
1513 }
1514
1515 static bool obj_request_type_valid(enum obj_request_type type)
1516 {
1517         switch (type) {
1518         case OBJ_REQUEST_NODATA:
1519         case OBJ_REQUEST_BIO:
1520         case OBJ_REQUEST_PAGES:
1521                 return true;
1522         default:
1523                 return false;
1524         }
1525 }
1526
1527 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1528                                 struct rbd_obj_request *obj_request)
1529 {
1530         dout("%s %p\n", __func__, obj_request);
1531         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1532 }
1533
1534 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1535 {
1536         dout("%s %p\n", __func__, obj_request);
1537         ceph_osdc_cancel_request(obj_request->osd_req);
1538 }
1539
1540 /*
1541  * Wait for an object request to complete.  If interrupted, cancel the
1542  * underlying osd request.
1543  */
1544 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1545 {
1546         int ret;
1547
1548         dout("%s %p\n", __func__, obj_request);
1549
1550         ret = wait_for_completion_interruptible(&obj_request->completion);
1551         if (ret < 0) {
1552                 dout("%s %p interrupted\n", __func__, obj_request);
1553                 rbd_obj_request_end(obj_request);
1554                 return ret;
1555         }
1556
1557         dout("%s %p done\n", __func__, obj_request);
1558         return 0;
1559 }
1560
1561 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1562 {
1563
1564         dout("%s: img %p\n", __func__, img_request);
1565
1566         /*
1567          * If no error occurred, compute the aggregate transfer
1568          * count for the image request.  We could instead use
1569          * atomic64_cmpxchg() to update it as each object request
1570          * completes; not clear which way is better off hand.
1571          */
1572         if (!img_request->result) {
1573                 struct rbd_obj_request *obj_request;
1574                 u64 xferred = 0;
1575
1576                 for_each_obj_request(img_request, obj_request)
1577                         xferred += obj_request->xferred;
1578                 img_request->xferred = xferred;
1579         }
1580
1581         if (img_request->callback)
1582                 img_request->callback(img_request);
1583         else
1584                 rbd_img_request_put(img_request);
1585 }
1586
1587 /*
1588  * The default/initial value for all image request flags is 0.  Each
1589  * is conditionally set to 1 at image request initialization time
1590  * and currently never change thereafter.
1591  */
1592 static void img_request_write_set(struct rbd_img_request *img_request)
1593 {
1594         set_bit(IMG_REQ_WRITE, &img_request->flags);
1595         smp_mb();
1596 }
1597
1598 static bool img_request_write_test(struct rbd_img_request *img_request)
1599 {
1600         smp_mb();
1601         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1602 }
1603
1604 static void img_request_child_set(struct rbd_img_request *img_request)
1605 {
1606         set_bit(IMG_REQ_CHILD, &img_request->flags);
1607         smp_mb();
1608 }
1609
1610 static void img_request_child_clear(struct rbd_img_request *img_request)
1611 {
1612         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1613         smp_mb();
1614 }
1615
1616 static bool img_request_child_test(struct rbd_img_request *img_request)
1617 {
1618         smp_mb();
1619         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1620 }
1621
1622 static void img_request_layered_set(struct rbd_img_request *img_request)
1623 {
1624         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1625         smp_mb();
1626 }
1627
1628 static void img_request_layered_clear(struct rbd_img_request *img_request)
1629 {
1630         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1631         smp_mb();
1632 }
1633
1634 static bool img_request_layered_test(struct rbd_img_request *img_request)
1635 {
1636         smp_mb();
1637         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1638 }
1639
1640 static void
1641 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1642 {
1643         u64 xferred = obj_request->xferred;
1644         u64 length = obj_request->length;
1645
1646         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1647                 obj_request, obj_request->img_request, obj_request->result,
1648                 xferred, length);
1649         /*
1650          * ENOENT means a hole in the image.  We zero-fill the entire
1651          * length of the request.  A short read also implies zero-fill
1652          * to the end of the request.  An error requires the whole
1653          * length of the request to be reported finished with an error
1654          * to the block layer.  In each case we update the xferred
1655          * count to indicate the whole request was satisfied.
1656          */
1657         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1658         if (obj_request->result == -ENOENT) {
1659                 if (obj_request->type == OBJ_REQUEST_BIO)
1660                         zero_bio_chain(obj_request->bio_list, 0);
1661                 else
1662                         zero_pages(obj_request->pages, 0, length);
1663                 obj_request->result = 0;
1664         } else if (xferred < length && !obj_request->result) {
1665                 if (obj_request->type == OBJ_REQUEST_BIO)
1666                         zero_bio_chain(obj_request->bio_list, xferred);
1667                 else
1668                         zero_pages(obj_request->pages, xferred, length);
1669         }
1670         obj_request->xferred = length;
1671         obj_request_done_set(obj_request);
1672 }
1673
1674 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1675 {
1676         dout("%s: obj %p cb %p\n", __func__, obj_request,
1677                 obj_request->callback);
1678         if (obj_request->callback)
1679                 obj_request->callback(obj_request);
1680         else
1681                 complete_all(&obj_request->completion);
1682 }
1683
1684 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1685 {
1686         dout("%s: obj %p\n", __func__, obj_request);
1687         obj_request_done_set(obj_request);
1688 }
1689
1690 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1691 {
1692         struct rbd_img_request *img_request = NULL;
1693         struct rbd_device *rbd_dev = NULL;
1694         bool layered = false;
1695
1696         if (obj_request_img_data_test(obj_request)) {
1697                 img_request = obj_request->img_request;
1698                 layered = img_request && img_request_layered_test(img_request);
1699                 rbd_dev = img_request->rbd_dev;
1700         }
1701
1702         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1703                 obj_request, img_request, obj_request->result,
1704                 obj_request->xferred, obj_request->length);
1705         if (layered && obj_request->result == -ENOENT &&
1706                         obj_request->img_offset < rbd_dev->parent_overlap)
1707                 rbd_img_parent_read(obj_request);
1708         else if (img_request)
1709                 rbd_img_obj_request_read_callback(obj_request);
1710         else
1711                 obj_request_done_set(obj_request);
1712 }
1713
1714 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1715 {
1716         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1717                 obj_request->result, obj_request->length);
1718         /*
1719          * There is no such thing as a successful short write.  Set
1720          * it to our originally-requested length.
1721          */
1722         obj_request->xferred = obj_request->length;
1723         obj_request_done_set(obj_request);
1724 }
1725
1726 /*
1727  * For a simple stat call there's nothing to do.  We'll do more if
1728  * this is part of a write sequence for a layered image.
1729  */
1730 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1731 {
1732         dout("%s: obj %p\n", __func__, obj_request);
1733         obj_request_done_set(obj_request);
1734 }
1735
1736 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1737                                 struct ceph_msg *msg)
1738 {
1739         struct rbd_obj_request *obj_request = osd_req->r_priv;
1740         u16 opcode;
1741
1742         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1743         rbd_assert(osd_req == obj_request->osd_req);
1744         if (obj_request_img_data_test(obj_request)) {
1745                 rbd_assert(obj_request->img_request);
1746                 rbd_assert(obj_request->which != BAD_WHICH);
1747         } else {
1748                 rbd_assert(obj_request->which == BAD_WHICH);
1749         }
1750
1751         if (osd_req->r_result < 0)
1752                 obj_request->result = osd_req->r_result;
1753
1754         rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1755
1756         /*
1757          * We support a 64-bit length, but ultimately it has to be
1758          * passed to blk_end_request(), which takes an unsigned int.
1759          */
1760         obj_request->xferred = osd_req->r_reply_op_len[0];
1761         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1762
1763         opcode = osd_req->r_ops[0].op;
1764         switch (opcode) {
1765         case CEPH_OSD_OP_READ:
1766                 rbd_osd_read_callback(obj_request);
1767                 break;
1768         case CEPH_OSD_OP_SETALLOCHINT:
1769                 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1770                 /* fall through */
1771         case CEPH_OSD_OP_WRITE:
1772                 rbd_osd_write_callback(obj_request);
1773                 break;
1774         case CEPH_OSD_OP_STAT:
1775                 rbd_osd_stat_callback(obj_request);
1776                 break;
1777         case CEPH_OSD_OP_CALL:
1778         case CEPH_OSD_OP_NOTIFY_ACK:
1779         case CEPH_OSD_OP_WATCH:
1780                 rbd_osd_trivial_callback(obj_request);
1781                 break;
1782         default:
1783                 rbd_warn(NULL, "%s: unsupported op %hu\n",
1784                         obj_request->object_name, (unsigned short) opcode);
1785                 break;
1786         }
1787
1788         if (obj_request_done_test(obj_request))
1789                 rbd_obj_request_complete(obj_request);
1790 }
1791
1792 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1793 {
1794         struct rbd_img_request *img_request = obj_request->img_request;
1795         struct ceph_osd_request *osd_req = obj_request->osd_req;
1796         u64 snap_id;
1797
1798         rbd_assert(osd_req != NULL);
1799
1800         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1801         ceph_osdc_build_request(osd_req, obj_request->offset,
1802                         NULL, snap_id, NULL);
1803 }
1804
1805 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1806 {
1807         struct rbd_img_request *img_request = obj_request->img_request;
1808         struct ceph_osd_request *osd_req = obj_request->osd_req;
1809         struct ceph_snap_context *snapc;
1810         struct timespec mtime = CURRENT_TIME;
1811
1812         rbd_assert(osd_req != NULL);
1813
1814         snapc = img_request ? img_request->snapc : NULL;
1815         ceph_osdc_build_request(osd_req, obj_request->offset,
1816                         snapc, CEPH_NOSNAP, &mtime);
1817 }
1818
1819 /*
1820  * Create an osd request.  A read request has one osd op (read).
1821  * A write request has either one (watch) or two (hint+write) osd ops.
1822  * (All rbd data writes are prefixed with an allocation hint op, but
1823  * technically osd watch is a write request, hence this distinction.)
1824  */
1825 static struct ceph_osd_request *rbd_osd_req_create(
1826                                         struct rbd_device *rbd_dev,
1827                                         bool write_request,
1828                                         unsigned int num_ops,
1829                                         struct rbd_obj_request *obj_request)
1830 {
1831         struct ceph_snap_context *snapc = NULL;
1832         struct ceph_osd_client *osdc;
1833         struct ceph_osd_request *osd_req;
1834
1835         if (obj_request_img_data_test(obj_request)) {
1836                 struct rbd_img_request *img_request = obj_request->img_request;
1837
1838                 rbd_assert(write_request ==
1839                                 img_request_write_test(img_request));
1840                 if (write_request)
1841                         snapc = img_request->snapc;
1842         }
1843
1844         rbd_assert(num_ops == 1 || (write_request && num_ops == 2));
1845
1846         /* Allocate and initialize the request, for the num_ops ops */
1847
1848         osdc = &rbd_dev->rbd_client->client->osdc;
1849         osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1850                                           GFP_ATOMIC);
1851         if (!osd_req)
1852                 return NULL;    /* ENOMEM */
1853
1854         if (write_request)
1855                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1856         else
1857                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1858
1859         osd_req->r_callback = rbd_osd_req_callback;
1860         osd_req->r_priv = obj_request;
1861
1862         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1863         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1864
1865         return osd_req;
1866 }
1867
1868 /*
1869  * Create a copyup osd request based on the information in the
1870  * object request supplied.  A copyup request has three osd ops,
1871  * a copyup method call, a hint op, and a write op.
1872  */
1873 static struct ceph_osd_request *
1874 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1875 {
1876         struct rbd_img_request *img_request;
1877         struct ceph_snap_context *snapc;
1878         struct rbd_device *rbd_dev;
1879         struct ceph_osd_client *osdc;
1880         struct ceph_osd_request *osd_req;
1881
1882         rbd_assert(obj_request_img_data_test(obj_request));
1883         img_request = obj_request->img_request;
1884         rbd_assert(img_request);
1885         rbd_assert(img_request_write_test(img_request));
1886
1887         /* Allocate and initialize the request, for the three ops */
1888
1889         snapc = img_request->snapc;
1890         rbd_dev = img_request->rbd_dev;
1891         osdc = &rbd_dev->rbd_client->client->osdc;
1892         osd_req = ceph_osdc_alloc_request(osdc, snapc, 3, false, GFP_ATOMIC);
1893         if (!osd_req)
1894                 return NULL;    /* ENOMEM */
1895
1896         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1897         osd_req->r_callback = rbd_osd_req_callback;
1898         osd_req->r_priv = obj_request;
1899
1900         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1901         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1902
1903         return osd_req;
1904 }
1905
1906
1907 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1908 {
1909         ceph_osdc_put_request(osd_req);
1910 }
1911
1912 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1913
1914 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1915                                                 u64 offset, u64 length,
1916                                                 enum obj_request_type type)
1917 {
1918         struct rbd_obj_request *obj_request;
1919         size_t size;
1920         char *name;
1921
1922         rbd_assert(obj_request_type_valid(type));
1923
1924         size = strlen(object_name) + 1;
1925         name = kmalloc(size, GFP_KERNEL);
1926         if (!name)
1927                 return NULL;
1928
1929         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1930         if (!obj_request) {
1931                 kfree(name);
1932                 return NULL;
1933         }
1934
1935         obj_request->object_name = memcpy(name, object_name, size);
1936         obj_request->offset = offset;
1937         obj_request->length = length;
1938         obj_request->flags = 0;
1939         obj_request->which = BAD_WHICH;
1940         obj_request->type = type;
1941         INIT_LIST_HEAD(&obj_request->links);
1942         init_completion(&obj_request->completion);
1943         kref_init(&obj_request->kref);
1944
1945         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1946                 offset, length, (int)type, obj_request);
1947
1948         return obj_request;
1949 }
1950
1951 static void rbd_obj_request_destroy(struct kref *kref)
1952 {
1953         struct rbd_obj_request *obj_request;
1954
1955         obj_request = container_of(kref, struct rbd_obj_request, kref);
1956
1957         dout("%s: obj %p\n", __func__, obj_request);
1958
1959         rbd_assert(obj_request->img_request == NULL);
1960         rbd_assert(obj_request->which == BAD_WHICH);
1961
1962         if (obj_request->osd_req)
1963                 rbd_osd_req_destroy(obj_request->osd_req);
1964
1965         rbd_assert(obj_request_type_valid(obj_request->type));
1966         switch (obj_request->type) {
1967         case OBJ_REQUEST_NODATA:
1968                 break;          /* Nothing to do */
1969         case OBJ_REQUEST_BIO:
1970                 if (obj_request->bio_list)
1971                         bio_chain_put(obj_request->bio_list);
1972                 break;
1973         case OBJ_REQUEST_PAGES:
1974                 if (obj_request->pages)
1975                         ceph_release_page_vector(obj_request->pages,
1976                                                 obj_request->page_count);
1977                 break;
1978         }
1979
1980         kfree(obj_request->object_name);
1981         obj_request->object_name = NULL;
1982         kmem_cache_free(rbd_obj_request_cache, obj_request);
1983 }
1984
1985 /* It's OK to call this for a device with no parent */
1986
1987 static void rbd_spec_put(struct rbd_spec *spec);
1988 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1989 {
1990         rbd_dev_remove_parent(rbd_dev);
1991         rbd_spec_put(rbd_dev->parent_spec);
1992         rbd_dev->parent_spec = NULL;
1993         rbd_dev->parent_overlap = 0;
1994 }
1995
1996 /*
1997  * Parent image reference counting is used to determine when an
1998  * image's parent fields can be safely torn down--after there are no
1999  * more in-flight requests to the parent image.  When the last
2000  * reference is dropped, cleaning them up is safe.
2001  */
2002 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2003 {
2004         int counter;
2005
2006         if (!rbd_dev->parent_spec)
2007                 return;
2008
2009         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2010         if (counter > 0)
2011                 return;
2012
2013         /* Last reference; clean up parent data structures */
2014
2015         if (!counter)
2016                 rbd_dev_unparent(rbd_dev);
2017         else
2018                 rbd_warn(rbd_dev, "parent reference underflow\n");
2019 }
2020
2021 /*
2022  * If an image has a non-zero parent overlap, get a reference to its
2023  * parent.
2024  *
2025  * We must get the reference before checking for the overlap to
2026  * coordinate properly with zeroing the parent overlap in
2027  * rbd_dev_v2_parent_info() when an image gets flattened.  We
2028  * drop it again if there is no overlap.
2029  *
2030  * Returns true if the rbd device has a parent with a non-zero
2031  * overlap and a reference for it was successfully taken, or
2032  * false otherwise.
2033  */
2034 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2035 {
2036         int counter;
2037
2038         if (!rbd_dev->parent_spec)
2039                 return false;
2040
2041         counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2042         if (counter > 0 && rbd_dev->parent_overlap)
2043                 return true;
2044
2045         /* Image was flattened, but parent is not yet torn down */
2046
2047         if (counter < 0)
2048                 rbd_warn(rbd_dev, "parent reference overflow\n");
2049
2050         return false;
2051 }
2052
2053 /*
2054  * Caller is responsible for filling in the list of object requests
2055  * that comprises the image request, and the Linux request pointer
2056  * (if there is one).
2057  */
2058 static struct rbd_img_request *rbd_img_request_create(
2059                                         struct rbd_device *rbd_dev,
2060                                         u64 offset, u64 length,
2061                                         bool write_request)
2062 {
2063         struct rbd_img_request *img_request;
2064
2065         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
2066         if (!img_request)
2067                 return NULL;
2068
2069         if (write_request) {
2070                 down_read(&rbd_dev->header_rwsem);
2071                 ceph_get_snap_context(rbd_dev->header.snapc);
2072                 up_read(&rbd_dev->header_rwsem);
2073         }
2074
2075         img_request->rq = NULL;
2076         img_request->rbd_dev = rbd_dev;
2077         img_request->offset = offset;
2078         img_request->length = length;
2079         img_request->flags = 0;
2080         if (write_request) {
2081                 img_request_write_set(img_request);
2082                 img_request->snapc = rbd_dev->header.snapc;
2083         } else {
2084                 img_request->snap_id = rbd_dev->spec->snap_id;
2085         }
2086         if (rbd_dev_parent_get(rbd_dev))
2087                 img_request_layered_set(img_request);
2088         spin_lock_init(&img_request->completion_lock);
2089         img_request->next_completion = 0;
2090         img_request->callback = NULL;
2091         img_request->result = 0;
2092         img_request->obj_request_count = 0;
2093         INIT_LIST_HEAD(&img_request->obj_requests);
2094         kref_init(&img_request->kref);
2095
2096         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2097                 write_request ? "write" : "read", offset, length,
2098                 img_request);
2099
2100         return img_request;
2101 }
2102
2103 static void rbd_img_request_destroy(struct kref *kref)
2104 {
2105         struct rbd_img_request *img_request;
2106         struct rbd_obj_request *obj_request;
2107         struct rbd_obj_request *next_obj_request;
2108
2109         img_request = container_of(kref, struct rbd_img_request, kref);
2110
2111         dout("%s: img %p\n", __func__, img_request);
2112
2113         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2114                 rbd_img_obj_request_del(img_request, obj_request);
2115         rbd_assert(img_request->obj_request_count == 0);
2116
2117         if (img_request_layered_test(img_request)) {
2118                 img_request_layered_clear(img_request);
2119                 rbd_dev_parent_put(img_request->rbd_dev);
2120         }
2121
2122         if (img_request_write_test(img_request))
2123                 ceph_put_snap_context(img_request->snapc);
2124
2125         kmem_cache_free(rbd_img_request_cache, img_request);
2126 }
2127
2128 static struct rbd_img_request *rbd_parent_request_create(
2129                                         struct rbd_obj_request *obj_request,
2130                                         u64 img_offset, u64 length)
2131 {
2132         struct rbd_img_request *parent_request;
2133         struct rbd_device *rbd_dev;
2134
2135         rbd_assert(obj_request->img_request);
2136         rbd_dev = obj_request->img_request->rbd_dev;
2137
2138         parent_request = rbd_img_request_create(rbd_dev->parent,
2139                                                 img_offset, length, false);
2140         if (!parent_request)
2141                 return NULL;
2142
2143         img_request_child_set(parent_request);
2144         rbd_obj_request_get(obj_request);
2145         parent_request->obj_request = obj_request;
2146
2147         return parent_request;
2148 }
2149
2150 static void rbd_parent_request_destroy(struct kref *kref)
2151 {
2152         struct rbd_img_request *parent_request;
2153         struct rbd_obj_request *orig_request;
2154
2155         parent_request = container_of(kref, struct rbd_img_request, kref);
2156         orig_request = parent_request->obj_request;
2157
2158         parent_request->obj_request = NULL;
2159         rbd_obj_request_put(orig_request);
2160         img_request_child_clear(parent_request);
2161
2162         rbd_img_request_destroy(kref);
2163 }
2164
2165 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2166 {
2167         struct rbd_img_request *img_request;
2168         unsigned int xferred;
2169         int result;
2170         bool more;
2171
2172         rbd_assert(obj_request_img_data_test(obj_request));
2173         img_request = obj_request->img_request;
2174
2175         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2176         xferred = (unsigned int)obj_request->xferred;
2177         result = obj_request->result;
2178         if (result) {
2179                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2180
2181                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2182                         img_request_write_test(img_request) ? "write" : "read",
2183                         obj_request->length, obj_request->img_offset,
2184                         obj_request->offset);
2185                 rbd_warn(rbd_dev, "  result %d xferred %x\n",
2186                         result, xferred);
2187                 if (!img_request->result)
2188                         img_request->result = result;
2189         }
2190
2191         /* Image object requests don't own their page array */
2192
2193         if (obj_request->type == OBJ_REQUEST_PAGES) {
2194                 obj_request->pages = NULL;
2195                 obj_request->page_count = 0;
2196         }
2197
2198         if (img_request_child_test(img_request)) {
2199                 rbd_assert(img_request->obj_request != NULL);
2200                 more = obj_request->which < img_request->obj_request_count - 1;
2201         } else {
2202                 rbd_assert(img_request->rq != NULL);
2203                 more = blk_end_request(img_request->rq, result, xferred);
2204         }
2205
2206         return more;
2207 }
2208
2209 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2210 {
2211         struct rbd_img_request *img_request;
2212         u32 which = obj_request->which;
2213         bool more = true;
2214
2215         rbd_assert(obj_request_img_data_test(obj_request));
2216         img_request = obj_request->img_request;
2217
2218         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2219         rbd_assert(img_request != NULL);
2220         rbd_assert(img_request->obj_request_count > 0);
2221         rbd_assert(which != BAD_WHICH);
2222         rbd_assert(which < img_request->obj_request_count);
2223
2224         spin_lock_irq(&img_request->completion_lock);
2225         if (which != img_request->next_completion)
2226                 goto out;
2227
2228         for_each_obj_request_from(img_request, obj_request) {
2229                 rbd_assert(more);
2230                 rbd_assert(which < img_request->obj_request_count);
2231
2232                 if (!obj_request_done_test(obj_request))
2233                         break;
2234                 more = rbd_img_obj_end_request(obj_request);
2235                 which++;
2236         }
2237
2238         rbd_assert(more ^ (which == img_request->obj_request_count));
2239         img_request->next_completion = which;
2240 out:
2241         spin_unlock_irq(&img_request->completion_lock);
2242         rbd_img_request_put(img_request);
2243
2244         if (!more)
2245                 rbd_img_request_complete(img_request);
2246 }
2247
2248 /*
2249  * Split up an image request into one or more object requests, each
2250  * to a different object.  The "type" parameter indicates whether
2251  * "data_desc" is the pointer to the head of a list of bio
2252  * structures, or the base of a page array.  In either case this
2253  * function assumes data_desc describes memory sufficient to hold
2254  * all data described by the image request.
2255  */
2256 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2257                                         enum obj_request_type type,
2258                                         void *data_desc)
2259 {
2260         struct rbd_device *rbd_dev = img_request->rbd_dev;
2261         struct rbd_obj_request *obj_request = NULL;
2262         struct rbd_obj_request *next_obj_request;
2263         bool write_request = img_request_write_test(img_request);
2264         struct bio *bio_list = NULL;
2265         unsigned int bio_offset = 0;
2266         struct page **pages = NULL;
2267         u64 img_offset;
2268         u64 resid;
2269         u16 opcode;
2270
2271         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2272                 (int)type, data_desc);
2273
2274         opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2275         img_offset = img_request->offset;
2276         resid = img_request->length;
2277         rbd_assert(resid > 0);
2278
2279         if (type == OBJ_REQUEST_BIO) {
2280                 bio_list = data_desc;
2281                 rbd_assert(img_offset ==
2282                            bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2283         } else {
2284                 rbd_assert(type == OBJ_REQUEST_PAGES);
2285                 pages = data_desc;
2286         }
2287
2288         while (resid) {
2289                 struct ceph_osd_request *osd_req;
2290                 const char *object_name;
2291                 u64 offset;
2292                 u64 length;
2293                 unsigned int which = 0;
2294
2295                 object_name = rbd_segment_name(rbd_dev, img_offset);
2296                 if (!object_name)
2297                         goto out_unwind;
2298                 offset = rbd_segment_offset(rbd_dev, img_offset);
2299                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2300                 obj_request = rbd_obj_request_create(object_name,
2301                                                 offset, length, type);
2302                 /* object request has its own copy of the object name */
2303                 rbd_segment_name_free(object_name);
2304                 if (!obj_request)
2305                         goto out_unwind;
2306
2307                 /*
2308                  * set obj_request->img_request before creating the
2309                  * osd_request so that it gets the right snapc
2310                  */
2311                 rbd_img_obj_request_add(img_request, obj_request);
2312
2313                 if (type == OBJ_REQUEST_BIO) {
2314                         unsigned int clone_size;
2315
2316                         rbd_assert(length <= (u64)UINT_MAX);
2317                         clone_size = (unsigned int)length;
2318                         obj_request->bio_list =
2319                                         bio_chain_clone_range(&bio_list,
2320                                                                 &bio_offset,
2321                                                                 clone_size,
2322                                                                 GFP_ATOMIC);
2323                         if (!obj_request->bio_list)
2324                                 goto out_unwind;
2325                 } else {
2326                         unsigned int page_count;
2327
2328                         obj_request->pages = pages;
2329                         page_count = (u32)calc_pages_for(offset, length);
2330                         obj_request->page_count = page_count;
2331                         if ((offset + length) & ~PAGE_MASK)
2332                                 page_count--;   /* more on last page */
2333                         pages += page_count;
2334                 }
2335
2336                 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2337                                              (write_request ? 2 : 1),
2338                                              obj_request);
2339                 if (!osd_req)
2340                         goto out_unwind;
2341                 obj_request->osd_req = osd_req;
2342                 obj_request->callback = rbd_img_obj_callback;
2343                 rbd_img_request_get(img_request);
2344
2345                 if (write_request) {
2346                         osd_req_op_alloc_hint_init(osd_req, which,
2347                                              rbd_obj_bytes(&rbd_dev->header),
2348                                              rbd_obj_bytes(&rbd_dev->header));
2349                         which++;
2350                 }
2351
2352                 osd_req_op_extent_init(osd_req, which, opcode, offset, length,
2353                                        0, 0);
2354                 if (type == OBJ_REQUEST_BIO)
2355                         osd_req_op_extent_osd_data_bio(osd_req, which,
2356                                         obj_request->bio_list, length);
2357                 else
2358                         osd_req_op_extent_osd_data_pages(osd_req, which,
2359                                         obj_request->pages, length,
2360                                         offset & ~PAGE_MASK, false, false);
2361
2362                 if (write_request)
2363                         rbd_osd_req_format_write(obj_request);
2364                 else
2365                         rbd_osd_req_format_read(obj_request);
2366
2367                 obj_request->img_offset = img_offset;
2368
2369                 img_offset += length;
2370                 resid -= length;
2371         }
2372
2373         return 0;
2374
2375 out_unwind:
2376         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2377                 rbd_img_obj_request_del(img_request, obj_request);
2378
2379         return -ENOMEM;
2380 }
2381
2382 static void
2383 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2384 {
2385         struct rbd_img_request *img_request;
2386         struct rbd_device *rbd_dev;
2387         struct page **pages;
2388         u32 page_count;
2389
2390         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2391         rbd_assert(obj_request_img_data_test(obj_request));
2392         img_request = obj_request->img_request;
2393         rbd_assert(img_request);
2394
2395         rbd_dev = img_request->rbd_dev;
2396         rbd_assert(rbd_dev);
2397
2398         pages = obj_request->copyup_pages;
2399         rbd_assert(pages != NULL);
2400         obj_request->copyup_pages = NULL;
2401         page_count = obj_request->copyup_page_count;
2402         rbd_assert(page_count);
2403         obj_request->copyup_page_count = 0;
2404         ceph_release_page_vector(pages, page_count);
2405
2406         /*
2407          * We want the transfer count to reflect the size of the
2408          * original write request.  There is no such thing as a
2409          * successful short write, so if the request was successful
2410          * we can just set it to the originally-requested length.
2411          */
2412         if (!obj_request->result)
2413                 obj_request->xferred = obj_request->length;
2414
2415         /* Finish up with the normal image object callback */
2416
2417         rbd_img_obj_callback(obj_request);
2418 }
2419
2420 static void
2421 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2422 {
2423         struct rbd_obj_request *orig_request;
2424         struct ceph_osd_request *osd_req;
2425         struct ceph_osd_client *osdc;
2426         struct rbd_device *rbd_dev;
2427         struct page **pages;
2428         u32 page_count;
2429         int img_result;
2430         u64 parent_length;
2431         u64 offset;
2432         u64 length;
2433
2434         rbd_assert(img_request_child_test(img_request));
2435
2436         /* First get what we need from the image request */
2437
2438         pages = img_request->copyup_pages;
2439         rbd_assert(pages != NULL);
2440         img_request->copyup_pages = NULL;
2441         page_count = img_request->copyup_page_count;
2442         rbd_assert(page_count);
2443         img_request->copyup_page_count = 0;
2444
2445         orig_request = img_request->obj_request;
2446         rbd_assert(orig_request != NULL);
2447         rbd_assert(obj_request_type_valid(orig_request->type));
2448         img_result = img_request->result;
2449         parent_length = img_request->length;
2450         rbd_assert(parent_length == img_request->xferred);
2451         rbd_img_request_put(img_request);
2452
2453         rbd_assert(orig_request->img_request);
2454         rbd_dev = orig_request->img_request->rbd_dev;
2455         rbd_assert(rbd_dev);
2456
2457         /*
2458          * If the overlap has become 0 (most likely because the
2459          * image has been flattened) we need to free the pages
2460          * and re-submit the original write request.
2461          */
2462         if (!rbd_dev->parent_overlap) {
2463                 struct ceph_osd_client *osdc;
2464
2465                 ceph_release_page_vector(pages, page_count);
2466                 osdc = &rbd_dev->rbd_client->client->osdc;
2467                 img_result = rbd_obj_request_submit(osdc, orig_request);
2468                 if (!img_result)
2469                         return;
2470         }
2471
2472         if (img_result)
2473                 goto out_err;
2474
2475         /*
2476          * The original osd request is of no use to use any more.
2477          * We need a new one that can hold the three ops in a copyup
2478          * request.  Allocate the new copyup osd request for the
2479          * original request, and release the old one.
2480          */
2481         img_result = -ENOMEM;
2482         osd_req = rbd_osd_req_create_copyup(orig_request);
2483         if (!osd_req)
2484                 goto out_err;
2485         rbd_osd_req_destroy(orig_request->osd_req);
2486         orig_request->osd_req = osd_req;
2487         orig_request->copyup_pages = pages;
2488         orig_request->copyup_page_count = page_count;
2489
2490         /* Initialize the copyup op */
2491
2492         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2493         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2494                                                 false, false);
2495
2496         /* Then the hint op */
2497
2498         osd_req_op_alloc_hint_init(osd_req, 1, rbd_obj_bytes(&rbd_dev->header),
2499                                    rbd_obj_bytes(&rbd_dev->header));
2500
2501         /* And the original write request op */
2502
2503         offset = orig_request->offset;
2504         length = orig_request->length;
2505         osd_req_op_extent_init(osd_req, 2, CEPH_OSD_OP_WRITE,
2506                                         offset, length, 0, 0);
2507         if (orig_request->type == OBJ_REQUEST_BIO)
2508                 osd_req_op_extent_osd_data_bio(osd_req, 2,
2509                                         orig_request->bio_list, length);
2510         else
2511                 osd_req_op_extent_osd_data_pages(osd_req, 2,
2512                                         orig_request->pages, length,
2513                                         offset & ~PAGE_MASK, false, false);
2514
2515         rbd_osd_req_format_write(orig_request);
2516
2517         /* All set, send it off. */
2518
2519         orig_request->callback = rbd_img_obj_copyup_callback;
2520         osdc = &rbd_dev->rbd_client->client->osdc;
2521         img_result = rbd_obj_request_submit(osdc, orig_request);
2522         if (!img_result)
2523                 return;
2524 out_err:
2525         /* Record the error code and complete the request */
2526
2527         orig_request->result = img_result;
2528         orig_request->xferred = 0;
2529         obj_request_done_set(orig_request);
2530         rbd_obj_request_complete(orig_request);
2531 }
2532
2533 /*
2534  * Read from the parent image the range of data that covers the
2535  * entire target of the given object request.  This is used for
2536  * satisfying a layered image write request when the target of an
2537  * object request from the image request does not exist.
2538  *
2539  * A page array big enough to hold the returned data is allocated
2540  * and supplied to rbd_img_request_fill() as the "data descriptor."
2541  * When the read completes, this page array will be transferred to
2542  * the original object request for the copyup operation.
2543  *
2544  * If an error occurs, record it as the result of the original
2545  * object request and mark it done so it gets completed.
2546  */
2547 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2548 {
2549         struct rbd_img_request *img_request = NULL;
2550         struct rbd_img_request *parent_request = NULL;
2551         struct rbd_device *rbd_dev;
2552         u64 img_offset;
2553         u64 length;
2554         struct page **pages = NULL;
2555         u32 page_count;
2556         int result;
2557
2558         rbd_assert(obj_request_img_data_test(obj_request));
2559         rbd_assert(obj_request_type_valid(obj_request->type));
2560
2561         img_request = obj_request->img_request;
2562         rbd_assert(img_request != NULL);
2563         rbd_dev = img_request->rbd_dev;
2564         rbd_assert(rbd_dev->parent != NULL);
2565
2566         /*
2567          * Determine the byte range covered by the object in the
2568          * child image to which the original request was to be sent.
2569          */
2570         img_offset = obj_request->img_offset - obj_request->offset;
2571         length = (u64)1 << rbd_dev->header.obj_order;
2572
2573         /*
2574          * There is no defined parent data beyond the parent
2575          * overlap, so limit what we read at that boundary if
2576          * necessary.
2577          */
2578         if (img_offset + length > rbd_dev->parent_overlap) {
2579                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2580                 length = rbd_dev->parent_overlap - img_offset;
2581         }
2582
2583         /*
2584          * Allocate a page array big enough to receive the data read
2585          * from the parent.
2586          */
2587         page_count = (u32)calc_pages_for(0, length);
2588         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2589         if (IS_ERR(pages)) {
2590                 result = PTR_ERR(pages);
2591                 pages = NULL;
2592                 goto out_err;
2593         }
2594
2595         result = -ENOMEM;
2596         parent_request = rbd_parent_request_create(obj_request,
2597                                                 img_offset, length);
2598         if (!parent_request)
2599                 goto out_err;
2600
2601         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2602         if (result)
2603                 goto out_err;
2604         parent_request->copyup_pages = pages;
2605         parent_request->copyup_page_count = page_count;
2606
2607         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2608         result = rbd_img_request_submit(parent_request);
2609         if (!result)
2610                 return 0;
2611
2612         parent_request->copyup_pages = NULL;
2613         parent_request->copyup_page_count = 0;
2614         parent_request->obj_request = NULL;
2615         rbd_obj_request_put(obj_request);
2616 out_err:
2617         if (pages)
2618                 ceph_release_page_vector(pages, page_count);
2619         if (parent_request)
2620                 rbd_img_request_put(parent_request);
2621         obj_request->result = result;
2622         obj_request->xferred = 0;
2623         obj_request_done_set(obj_request);
2624
2625         return result;
2626 }
2627
2628 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2629 {
2630         struct rbd_obj_request *orig_request;
2631         struct rbd_device *rbd_dev;
2632         int result;
2633
2634         rbd_assert(!obj_request_img_data_test(obj_request));
2635
2636         /*
2637          * All we need from the object request is the original
2638          * request and the result of the STAT op.  Grab those, then
2639          * we're done with the request.
2640          */
2641         orig_request = obj_request->obj_request;
2642         obj_request->obj_request = NULL;
2643         rbd_obj_request_put(orig_request);
2644         rbd_assert(orig_request);
2645         rbd_assert(orig_request->img_request);
2646
2647         result = obj_request->result;
2648         obj_request->result = 0;
2649
2650         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2651                 obj_request, orig_request, result,
2652                 obj_request->xferred, obj_request->length);
2653         rbd_obj_request_put(obj_request);
2654
2655         /*
2656          * If the overlap has become 0 (most likely because the
2657          * image has been flattened) we need to free the pages
2658          * and re-submit the original write request.
2659          */
2660         rbd_dev = orig_request->img_request->rbd_dev;
2661         if (!rbd_dev->parent_overlap) {
2662                 struct ceph_osd_client *osdc;
2663
2664                 osdc = &rbd_dev->rbd_client->client->osdc;
2665                 result = rbd_obj_request_submit(osdc, orig_request);
2666                 if (!result)
2667                         return;
2668         }
2669
2670         /*
2671          * Our only purpose here is to determine whether the object
2672          * exists, and we don't want to treat the non-existence as
2673          * an error.  If something else comes back, transfer the
2674          * error to the original request and complete it now.
2675          */
2676         if (!result) {
2677                 obj_request_existence_set(orig_request, true);
2678         } else if (result == -ENOENT) {
2679                 obj_request_existence_set(orig_request, false);
2680         } else if (result) {
2681                 orig_request->result = result;
2682                 goto out;
2683         }
2684
2685         /*
2686          * Resubmit the original request now that we have recorded
2687          * whether the target object exists.
2688          */
2689         orig_request->result = rbd_img_obj_request_submit(orig_request);
2690 out:
2691         if (orig_request->result)
2692                 rbd_obj_request_complete(orig_request);
2693 }
2694
2695 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2696 {
2697         struct rbd_obj_request *stat_request;
2698         struct rbd_device *rbd_dev;
2699         struct ceph_osd_client *osdc;
2700         struct page **pages = NULL;
2701         u32 page_count;
2702         size_t size;
2703         int ret;
2704
2705         /*
2706          * The response data for a STAT call consists of:
2707          *     le64 length;
2708          *     struct {
2709          *         le32 tv_sec;
2710          *         le32 tv_nsec;
2711          *     } mtime;
2712          */
2713         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2714         page_count = (u32)calc_pages_for(0, size);
2715         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2716         if (IS_ERR(pages))
2717                 return PTR_ERR(pages);
2718
2719         ret = -ENOMEM;
2720         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2721                                                         OBJ_REQUEST_PAGES);
2722         if (!stat_request)
2723                 goto out;
2724
2725         rbd_obj_request_get(obj_request);
2726         stat_request->obj_request = obj_request;
2727         stat_request->pages = pages;
2728         stat_request->page_count = page_count;
2729
2730         rbd_assert(obj_request->img_request);
2731         rbd_dev = obj_request->img_request->rbd_dev;
2732         stat_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
2733                                                    stat_request);
2734         if (!stat_request->osd_req)
2735                 goto out;
2736         stat_request->callback = rbd_img_obj_exists_callback;
2737
2738         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2739         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2740                                         false, false);
2741         rbd_osd_req_format_read(stat_request);
2742
2743         osdc = &rbd_dev->rbd_client->client->osdc;
2744         ret = rbd_obj_request_submit(osdc, stat_request);
2745 out:
2746         if (ret)
2747                 rbd_obj_request_put(obj_request);
2748
2749         return ret;
2750 }
2751
2752 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2753 {
2754         struct rbd_img_request *img_request;
2755         struct rbd_device *rbd_dev;
2756         bool known;
2757
2758         rbd_assert(obj_request_img_data_test(obj_request));
2759
2760         img_request = obj_request->img_request;
2761         rbd_assert(img_request);
2762         rbd_dev = img_request->rbd_dev;
2763
2764         /*
2765          * Only writes to layered images need special handling.
2766          * Reads and non-layered writes are simple object requests.
2767          * Layered writes that start beyond the end of the overlap
2768          * with the parent have no parent data, so they too are
2769          * simple object requests.  Finally, if the target object is
2770          * known to already exist, its parent data has already been
2771          * copied, so a write to the object can also be handled as a
2772          * simple object request.
2773          */
2774         if (!img_request_write_test(img_request) ||
2775                 !img_request_layered_test(img_request) ||
2776                 !obj_request_overlaps_parent(obj_request) ||
2777                 ((known = obj_request_known_test(obj_request)) &&
2778                         obj_request_exists_test(obj_request))) {
2779
2780                 struct rbd_device *rbd_dev;
2781                 struct ceph_osd_client *osdc;
2782
2783                 rbd_dev = obj_request->img_request->rbd_dev;
2784                 osdc = &rbd_dev->rbd_client->client->osdc;
2785
2786                 return rbd_obj_request_submit(osdc, obj_request);
2787         }
2788
2789         /*
2790          * It's a layered write.  The target object might exist but
2791          * we may not know that yet.  If we know it doesn't exist,
2792          * start by reading the data for the full target object from
2793          * the parent so we can use it for a copyup to the target.
2794          */
2795         if (known)
2796                 return rbd_img_obj_parent_read_full(obj_request);
2797
2798         /* We don't know whether the target exists.  Go find out. */
2799
2800         return rbd_img_obj_exists_submit(obj_request);
2801 }
2802
2803 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2804 {
2805         struct rbd_obj_request *obj_request;
2806         struct rbd_obj_request *next_obj_request;
2807
2808         dout("%s: img %p\n", __func__, img_request);
2809         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2810                 int ret;
2811
2812                 ret = rbd_img_obj_request_submit(obj_request);
2813                 if (ret)
2814                         return ret;
2815         }
2816
2817         return 0;
2818 }
2819
2820 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2821 {
2822         struct rbd_obj_request *obj_request;
2823         struct rbd_device *rbd_dev;
2824         u64 obj_end;
2825         u64 img_xferred;
2826         int img_result;
2827
2828         rbd_assert(img_request_child_test(img_request));
2829
2830         /* First get what we need from the image request and release it */
2831
2832         obj_request = img_request->obj_request;
2833         img_xferred = img_request->xferred;
2834         img_result = img_request->result;
2835         rbd_img_request_put(img_request);
2836
2837         /*
2838          * If the overlap has become 0 (most likely because the
2839          * image has been flattened) we need to re-submit the
2840          * original request.
2841          */
2842         rbd_assert(obj_request);
2843         rbd_assert(obj_request->img_request);
2844         rbd_dev = obj_request->img_request->rbd_dev;
2845         if (!rbd_dev->parent_overlap) {
2846                 struct ceph_osd_client *osdc;
2847
2848                 osdc = &rbd_dev->rbd_client->client->osdc;
2849                 img_result = rbd_obj_request_submit(osdc, obj_request);
2850                 if (!img_result)
2851                         return;
2852         }
2853
2854         obj_request->result = img_result;
2855         if (obj_request->result)
2856                 goto out;
2857
2858         /*
2859          * We need to zero anything beyond the parent overlap
2860          * boundary.  Since rbd_img_obj_request_read_callback()
2861          * will zero anything beyond the end of a short read, an
2862          * easy way to do this is to pretend the data from the
2863          * parent came up short--ending at the overlap boundary.
2864          */
2865         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2866         obj_end = obj_request->img_offset + obj_request->length;
2867         if (obj_end > rbd_dev->parent_overlap) {
2868                 u64 xferred = 0;
2869
2870                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2871                         xferred = rbd_dev->parent_overlap -
2872                                         obj_request->img_offset;
2873
2874                 obj_request->xferred = min(img_xferred, xferred);
2875         } else {
2876                 obj_request->xferred = img_xferred;
2877         }
2878 out:
2879         rbd_img_obj_request_read_callback(obj_request);
2880         rbd_obj_request_complete(obj_request);
2881 }
2882
2883 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2884 {
2885         struct rbd_img_request *img_request;
2886         int result;
2887
2888         rbd_assert(obj_request_img_data_test(obj_request));
2889         rbd_assert(obj_request->img_request != NULL);
2890         rbd_assert(obj_request->result == (s32) -ENOENT);
2891         rbd_assert(obj_request_type_valid(obj_request->type));
2892
2893         /* rbd_read_finish(obj_request, obj_request->length); */
2894         img_request = rbd_parent_request_create(obj_request,
2895                                                 obj_request->img_offset,
2896                                                 obj_request->length);
2897         result = -ENOMEM;
2898         if (!img_request)
2899                 goto out_err;
2900
2901         if (obj_request->type == OBJ_REQUEST_BIO)
2902                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2903                                                 obj_request->bio_list);
2904         else
2905                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2906                                                 obj_request->pages);
2907         if (result)
2908                 goto out_err;
2909
2910         img_request->callback = rbd_img_parent_read_callback;
2911         result = rbd_img_request_submit(img_request);
2912         if (result)
2913                 goto out_err;
2914
2915         return;
2916 out_err:
2917         if (img_request)
2918                 rbd_img_request_put(img_request);
2919         obj_request->result = result;
2920         obj_request->xferred = 0;
2921         obj_request_done_set(obj_request);
2922 }
2923
2924 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
2925 {
2926         struct rbd_obj_request *obj_request;
2927         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2928         int ret;
2929
2930         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2931                                                         OBJ_REQUEST_NODATA);
2932         if (!obj_request)
2933                 return -ENOMEM;
2934
2935         ret = -ENOMEM;
2936         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
2937                                                   obj_request);
2938         if (!obj_request->osd_req)
2939                 goto out;
2940
2941         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2942                                         notify_id, 0, 0);
2943         rbd_osd_req_format_read(obj_request);
2944
2945         ret = rbd_obj_request_submit(osdc, obj_request);
2946         if (ret)
2947                 goto out;
2948         ret = rbd_obj_request_wait(obj_request);
2949 out:
2950         rbd_obj_request_put(obj_request);
2951
2952         return ret;
2953 }
2954
2955 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2956 {
2957         struct rbd_device *rbd_dev = (struct rbd_device *)data;
2958         int ret;
2959
2960         if (!rbd_dev)
2961                 return;
2962
2963         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2964                 rbd_dev->header_name, (unsigned long long)notify_id,
2965                 (unsigned int)opcode);
2966         ret = rbd_dev_refresh(rbd_dev);
2967         if (ret)
2968                 rbd_warn(rbd_dev, "header refresh error (%d)\n", ret);
2969
2970         rbd_obj_notify_ack_sync(rbd_dev, notify_id);
2971 }
2972
2973 /*
2974  * Send a (un)watch request and wait for the ack.  Return a request
2975  * with a ref held on success or error.
2976  */
2977 static struct rbd_obj_request *rbd_obj_watch_request_helper(
2978                                                 struct rbd_device *rbd_dev,
2979                                                 bool watch)
2980 {
2981         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2982         struct rbd_obj_request *obj_request;
2983         int ret;
2984
2985         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2986                                              OBJ_REQUEST_NODATA);
2987         if (!obj_request)
2988                 return ERR_PTR(-ENOMEM);
2989
2990         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, 1,
2991                                                   obj_request);
2992         if (!obj_request->osd_req) {
2993                 ret = -ENOMEM;
2994                 goto out;
2995         }
2996
2997         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2998                               rbd_dev->watch_event->cookie, 0, watch);
2999         rbd_osd_req_format_write(obj_request);
3000
3001         if (watch)
3002                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3003
3004         ret = rbd_obj_request_submit(osdc, obj_request);
3005         if (ret)
3006                 goto out;
3007
3008         ret = rbd_obj_request_wait(obj_request);
3009         if (ret)
3010                 goto out;
3011
3012         ret = obj_request->result;
3013         if (ret) {
3014                 if (watch)
3015                         rbd_obj_request_end(obj_request);
3016                 goto out;
3017         }
3018
3019         return obj_request;
3020
3021 out:
3022         rbd_obj_request_put(obj_request);
3023         return ERR_PTR(ret);
3024 }
3025
3026 /*
3027  * Initiate a watch request, synchronously.
3028  */
3029 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3030 {
3031         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3032         struct rbd_obj_request *obj_request;
3033         int ret;
3034
3035         rbd_assert(!rbd_dev->watch_event);
3036         rbd_assert(!rbd_dev->watch_request);
3037
3038         ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3039                                      &rbd_dev->watch_event);
3040         if (ret < 0)
3041                 return ret;
3042
3043         obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3044         if (IS_ERR(obj_request)) {
3045                 ceph_osdc_cancel_event(rbd_dev->watch_event);
3046                 rbd_dev->watch_event = NULL;
3047                 return PTR_ERR(obj_request);
3048         }
3049
3050         /*
3051          * A watch request is set to linger, so the underlying osd
3052          * request won't go away until we unregister it.  We retain
3053          * a pointer to the object request during that time (in
3054          * rbd_dev->watch_request), so we'll keep a reference to it.
3055          * We'll drop that reference after we've unregistered it in
3056          * rbd_dev_header_unwatch_sync().
3057          */
3058         rbd_dev->watch_request = obj_request;
3059
3060         return 0;
3061 }
3062
3063 /*
3064  * Tear down a watch request, synchronously.
3065  */
3066 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3067 {
3068         struct rbd_obj_request *obj_request;
3069
3070         rbd_assert(rbd_dev->watch_event);
3071         rbd_assert(rbd_dev->watch_request);
3072
3073         rbd_obj_request_end(rbd_dev->watch_request);
3074         rbd_obj_request_put(rbd_dev->watch_request);
3075         rbd_dev->watch_request = NULL;
3076
3077         obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3078         if (!IS_ERR(obj_request))
3079                 rbd_obj_request_put(obj_request);
3080         else
3081                 rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3082                          PTR_ERR(obj_request));
3083
3084         ceph_osdc_cancel_event(rbd_dev->watch_event);
3085         rbd_dev->watch_event = NULL;
3086 }
3087
3088 /*
3089  * Synchronous osd object method call.  Returns the number of bytes
3090  * returned in the outbound buffer, or a negative error code.
3091  */
3092 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3093                              const char *object_name,
3094                              const char *class_name,
3095                              const char *method_name,
3096                              const void *outbound,
3097                              size_t outbound_size,
3098                              void *inbound,
3099                              size_t inbound_size)
3100 {
3101         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3102         struct rbd_obj_request *obj_request;
3103         struct page **pages;
3104         u32 page_count;
3105         int ret;
3106
3107         /*
3108          * Method calls are ultimately read operations.  The result
3109          * should placed into the inbound buffer provided.  They
3110          * also supply outbound data--parameters for the object
3111          * method.  Currently if this is present it will be a
3112          * snapshot id.
3113          */
3114         page_count = (u32)calc_pages_for(0, inbound_size);
3115         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3116         if (IS_ERR(pages))
3117                 return PTR_ERR(pages);
3118
3119         ret = -ENOMEM;
3120         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3121                                                         OBJ_REQUEST_PAGES);
3122         if (!obj_request)
3123                 goto out;
3124
3125         obj_request->pages = pages;
3126         obj_request->page_count = page_count;
3127
3128         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
3129                                                   obj_request);
3130         if (!obj_request->osd_req)
3131                 goto out;
3132
3133         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3134                                         class_name, method_name);
3135         if (outbound_size) {
3136                 struct ceph_pagelist *pagelist;
3137
3138                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3139                 if (!pagelist)
3140                         goto out;
3141
3142                 ceph_pagelist_init(pagelist);
3143                 ceph_pagelist_append(pagelist, outbound, outbound_size);
3144                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3145                                                 pagelist);
3146         }
3147         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3148                                         obj_request->pages, inbound_size,
3149                                         0, false, false);
3150         rbd_osd_req_format_read(obj_request);
3151
3152         ret = rbd_obj_request_submit(osdc, obj_request);
3153         if (ret)
3154                 goto out;
3155         ret = rbd_obj_request_wait(obj_request);
3156         if (ret)
3157                 goto out;
3158
3159         ret = obj_request->result;
3160         if (ret < 0)
3161                 goto out;
3162
3163         rbd_assert(obj_request->xferred < (u64)INT_MAX);
3164         ret = (int)obj_request->xferred;
3165         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3166 out:
3167         if (obj_request)
3168                 rbd_obj_request_put(obj_request);
3169         else
3170                 ceph_release_page_vector(pages, page_count);
3171
3172         return ret;
3173 }
3174
3175 static void rbd_request_fn(struct request_queue *q)
3176                 __releases(q->queue_lock) __acquires(q->queue_lock)
3177 {
3178         struct rbd_device *rbd_dev = q->queuedata;
3179         struct request *rq;
3180         int result;
3181
3182         while ((rq = blk_fetch_request(q))) {
3183                 bool write_request = rq_data_dir(rq) == WRITE;
3184                 struct rbd_img_request *img_request;
3185                 u64 offset;
3186                 u64 length;
3187
3188                 /* Ignore any non-FS requests that filter through. */
3189
3190                 if (rq->cmd_type != REQ_TYPE_FS) {
3191                         dout("%s: non-fs request type %d\n", __func__,
3192                                 (int) rq->cmd_type);
3193                         __blk_end_request_all(rq, 0);
3194                         continue;
3195                 }
3196
3197                 /* Ignore/skip any zero-length requests */
3198
3199                 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3200                 length = (u64) blk_rq_bytes(rq);
3201
3202                 if (!length) {
3203                         dout("%s: zero-length request\n", __func__);
3204                         __blk_end_request_all(rq, 0);
3205                         continue;
3206                 }
3207
3208                 spin_unlock_irq(q->queue_lock);
3209
3210                 /* Disallow writes to a read-only device */
3211
3212                 if (write_request) {
3213                         result = -EROFS;
3214                         if (rbd_dev->mapping.read_only)
3215                                 goto end_request;
3216                         rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3217                 }
3218
3219                 /*
3220                  * Quit early if the mapped snapshot no longer
3221                  * exists.  It's still possible the snapshot will
3222                  * have disappeared by the time our request arrives
3223                  * at the osd, but there's no sense in sending it if
3224                  * we already know.
3225                  */
3226                 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3227                         dout("request for non-existent snapshot");
3228                         rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3229                         result = -ENXIO;
3230                         goto end_request;
3231                 }
3232
3233                 result = -EINVAL;
3234                 if (offset && length > U64_MAX - offset + 1) {
3235                         rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3236                                 offset, length);
3237                         goto end_request;       /* Shouldn't happen */
3238                 }
3239
3240                 result = -EIO;
3241                 if (offset + length > rbd_dev->mapping.size) {
3242                         rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3243                                 offset, length, rbd_dev->mapping.size);
3244                         goto end_request;
3245                 }
3246
3247                 result = -ENOMEM;
3248                 img_request = rbd_img_request_create(rbd_dev, offset, length,
3249                                                         write_request);
3250                 if (!img_request)
3251                         goto end_request;
3252
3253                 img_request->rq = rq;
3254
3255                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3256                                                 rq->bio);
3257                 if (!result)
3258                         result = rbd_img_request_submit(img_request);
3259                 if (result)
3260                         rbd_img_request_put(img_request);
3261 end_request:
3262                 spin_lock_irq(q->queue_lock);
3263                 if (result < 0) {
3264                         rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3265                                 write_request ? "write" : "read",
3266                                 length, offset, result);
3267
3268                         __blk_end_request_all(rq, result);
3269                 }
3270         }
3271 }
3272
3273 /*
3274  * a queue callback. Makes sure that we don't create a bio that spans across
3275  * multiple osd objects. One exception would be with a single page bios,
3276  * which we handle later at bio_chain_clone_range()
3277  */
3278 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3279                           struct bio_vec *bvec)
3280 {
3281         struct rbd_device *rbd_dev = q->queuedata;
3282         sector_t sector_offset;
3283         sector_t sectors_per_obj;
3284         sector_t obj_sector_offset;
3285         int ret;
3286
3287         /*
3288          * Find how far into its rbd object the partition-relative
3289          * bio start sector is to offset relative to the enclosing
3290          * device.
3291          */
3292         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3293         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3294         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3295
3296         /*
3297          * Compute the number of bytes from that offset to the end
3298          * of the object.  Account for what's already used by the bio.
3299          */
3300         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3301         if (ret > bmd->bi_size)
3302                 ret -= bmd->bi_size;
3303         else
3304                 ret = 0;
3305
3306         /*
3307          * Don't send back more than was asked for.  And if the bio
3308          * was empty, let the whole thing through because:  "Note
3309          * that a block device *must* allow a single page to be
3310          * added to an empty bio."
3311          */
3312         rbd_assert(bvec->bv_len <= PAGE_SIZE);
3313         if (ret > (int) bvec->bv_len || !bmd->bi_size)
3314                 ret = (int) bvec->bv_len;
3315
3316         return ret;
3317 }
3318
3319 static void rbd_free_disk(struct rbd_device *rbd_dev)
3320 {
3321         struct gendisk *disk = rbd_dev->disk;
3322
3323         if (!disk)
3324                 return;
3325
3326         rbd_dev->disk = NULL;
3327         if (disk->flags & GENHD_FL_UP) {
3328                 del_gendisk(disk);
3329                 if (disk->queue)
3330                         blk_cleanup_queue(disk->queue);
3331         }
3332         put_disk(disk);
3333 }
3334
3335 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3336                                 const char *object_name,
3337                                 u64 offset, u64 length, void *buf)
3338
3339 {
3340         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3341         struct rbd_obj_request *obj_request;
3342         struct page **pages = NULL;
3343         u32 page_count;
3344         size_t size;
3345         int ret;
3346
3347         page_count = (u32) calc_pages_for(offset, length);
3348         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3349         if (IS_ERR(pages))
3350                 ret = PTR_ERR(pages);
3351
3352         ret = -ENOMEM;
3353         obj_request = rbd_obj_request_create(object_name, offset, length,
3354                                                         OBJ_REQUEST_PAGES);
3355         if (!obj_request)
3356                 goto out;
3357
3358         obj_request->pages = pages;
3359         obj_request->page_count = page_count;
3360
3361         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
3362                                                   obj_request);
3363         if (!obj_request->osd_req)
3364                 goto out;
3365
3366         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3367                                         offset, length, 0, 0);
3368         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3369                                         obj_request->pages,
3370                                         obj_request->length,
3371                                         obj_request->offset & ~PAGE_MASK,
3372                                         false, false);
3373         rbd_osd_req_format_read(obj_request);
3374
3375         ret = rbd_obj_request_submit(osdc, obj_request);
3376         if (ret)
3377                 goto out;
3378         ret = rbd_obj_request_wait(obj_request);
3379         if (ret)
3380                 goto out;
3381
3382         ret = obj_request->result;
3383         if (ret < 0)
3384                 goto out;
3385
3386         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3387         size = (size_t) obj_request->xferred;
3388         ceph_copy_from_page_vector(pages, buf, 0, size);
3389         rbd_assert(size <= (size_t)INT_MAX);
3390         ret = (int)size;
3391 out:
3392         if (obj_request)
3393                 rbd_obj_request_put(obj_request);
3394         else
3395                 ceph_release_page_vector(pages, page_count);
3396
3397         return ret;
3398 }
3399
3400 /*
3401  * Read the complete header for the given rbd device.  On successful
3402  * return, the rbd_dev->header field will contain up-to-date
3403  * information about the image.
3404  */
3405 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3406 {
3407         struct rbd_image_header_ondisk *ondisk = NULL;
3408         u32 snap_count = 0;
3409         u64 names_size = 0;
3410         u32 want_count;
3411         int ret;
3412
3413         /*
3414          * The complete header will include an array of its 64-bit
3415          * snapshot ids, followed by the names of those snapshots as
3416          * a contiguous block of NUL-terminated strings.  Note that
3417          * the number of snapshots could change by the time we read
3418          * it in, in which case we re-read it.
3419          */
3420         do {
3421                 size_t size;
3422
3423                 kfree(ondisk);
3424
3425                 size = sizeof (*ondisk);
3426                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3427                 size += names_size;
3428                 ondisk = kmalloc(size, GFP_KERNEL);
3429                 if (!ondisk)
3430                         return -ENOMEM;
3431
3432                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3433                                        0, size, ondisk);
3434                 if (ret < 0)
3435                         goto out;
3436                 if ((size_t)ret < size) {
3437                         ret = -ENXIO;
3438                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3439                                 size, ret);
3440                         goto out;
3441                 }
3442                 if (!rbd_dev_ondisk_valid(ondisk)) {
3443                         ret = -ENXIO;
3444                         rbd_warn(rbd_dev, "invalid header");
3445                         goto out;
3446                 }
3447
3448                 names_size = le64_to_cpu(ondisk->snap_names_len);
3449                 want_count = snap_count;
3450                 snap_count = le32_to_cpu(ondisk->snap_count);
3451         } while (snap_count != want_count);
3452
3453         ret = rbd_header_from_disk(rbd_dev, ondisk);
3454 out:
3455         kfree(ondisk);
3456
3457         return ret;
3458 }
3459
3460 /*
3461  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3462  * has disappeared from the (just updated) snapshot context.
3463  */
3464 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3465 {
3466         u64 snap_id;
3467
3468         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3469                 return;
3470
3471         snap_id = rbd_dev->spec->snap_id;
3472         if (snap_id == CEPH_NOSNAP)
3473                 return;
3474
3475         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3476                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3477 }
3478
3479 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3480 {
3481         sector_t size;
3482         bool removing;
3483
3484         /*
3485          * Don't hold the lock while doing disk operations,
3486          * or lock ordering will conflict with the bdev mutex via:
3487          * rbd_add() -> blkdev_get() -> rbd_open()
3488          */
3489         spin_lock_irq(&rbd_dev->lock);
3490         removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3491         spin_unlock_irq(&rbd_dev->lock);
3492         /*
3493          * If the device is being removed, rbd_dev->disk has
3494          * been destroyed, so don't try to update its size
3495          */
3496         if (!removing) {
3497                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3498                 dout("setting size to %llu sectors", (unsigned long long)size);
3499                 set_capacity(rbd_dev->disk, size);
3500                 revalidate_disk(rbd_dev->disk);
3501         }
3502 }
3503
3504 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3505 {
3506         u64 mapping_size;
3507         int ret;
3508
3509         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3510         down_write(&rbd_dev->header_rwsem);
3511         mapping_size = rbd_dev->mapping.size;
3512         if (rbd_dev->image_format == 1)
3513                 ret = rbd_dev_v1_header_info(rbd_dev);
3514         else
3515                 ret = rbd_dev_v2_header_info(rbd_dev);
3516
3517         /* If it's a mapped snapshot, validate its EXISTS flag */
3518
3519         rbd_exists_validate(rbd_dev);
3520         up_write(&rbd_dev->header_rwsem);
3521
3522         if (mapping_size != rbd_dev->mapping.size) {
3523                 rbd_dev_update_size(rbd_dev);
3524         }
3525
3526         return ret;
3527 }
3528
3529 static int rbd_init_disk(struct rbd_device *rbd_dev)
3530 {
3531         struct gendisk *disk;
3532         struct request_queue *q;
3533         u64 segment_size;
3534
3535         /* create gendisk info */
3536         disk = alloc_disk(single_major ?
3537                           (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3538                           RBD_MINORS_PER_MAJOR);
3539         if (!disk)
3540                 return -ENOMEM;
3541
3542         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3543                  rbd_dev->dev_id);
3544         disk->major = rbd_dev->major;
3545         disk->first_minor = rbd_dev->minor;
3546         if (single_major)
3547                 disk->flags |= GENHD_FL_EXT_DEVT;
3548         disk->fops = &rbd_bd_ops;
3549         disk->private_data = rbd_dev;
3550
3551         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3552         if (!q)
3553                 goto out_disk;
3554
3555         /* We use the default size, but let's be explicit about it. */
3556         blk_queue_physical_block_size(q, SECTOR_SIZE);
3557
3558         /* set io sizes to object size */
3559         segment_size = rbd_obj_bytes(&rbd_dev->header);
3560         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3561         blk_queue_max_segment_size(q, segment_size);
3562         blk_queue_io_min(q, segment_size);
3563         blk_queue_io_opt(q, segment_size);
3564
3565         blk_queue_merge_bvec(q, rbd_merge_bvec);
3566         disk->queue = q;
3567
3568         q->queuedata = rbd_dev;
3569
3570         rbd_dev->disk = disk;
3571
3572         return 0;
3573 out_disk:
3574         put_disk(disk);
3575
3576         return -ENOMEM;
3577 }
3578
3579 /*
3580   sysfs
3581 */
3582
3583 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3584 {
3585         return container_of(dev, struct rbd_device, dev);
3586 }
3587
3588 static ssize_t rbd_size_show(struct device *dev,
3589                              struct device_attribute *attr, char *buf)
3590 {
3591         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3592
3593         return sprintf(buf, "%llu\n",
3594                 (unsigned long long)rbd_dev->mapping.size);
3595 }
3596
3597 /*
3598  * Note this shows the features for whatever's mapped, which is not
3599  * necessarily the base image.
3600  */
3601 static ssize_t rbd_features_show(struct device *dev,
3602                              struct device_attribute *attr, char *buf)
3603 {
3604         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3605
3606         return sprintf(buf, "0x%016llx\n",
3607                         (unsigned long long)rbd_dev->mapping.features);
3608 }
3609
3610 static ssize_t rbd_major_show(struct device *dev,
3611                               struct device_attribute *attr, char *buf)
3612 {
3613         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3614
3615         if (rbd_dev->major)
3616                 return sprintf(buf, "%d\n", rbd_dev->major);
3617
3618         return sprintf(buf, "(none)\n");
3619 }
3620
3621 static ssize_t rbd_minor_show(struct device *dev,
3622                               struct device_attribute *attr, char *buf)
3623 {
3624         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3625
3626         return sprintf(buf, "%d\n", rbd_dev->minor);
3627 }
3628
3629 static ssize_t rbd_client_id_show(struct device *dev,
3630                                   struct device_attribute *attr, char *buf)
3631 {
3632         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3633
3634         return sprintf(buf, "client%lld\n",
3635                         ceph_client_id(rbd_dev->rbd_client->client));
3636 }
3637
3638 static ssize_t rbd_pool_show(struct device *dev,
3639                              struct device_attribute *attr, char *buf)
3640 {
3641         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3642
3643         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3644 }
3645
3646 static ssize_t rbd_pool_id_show(struct device *dev,
3647                              struct device_attribute *attr, char *buf)
3648 {
3649         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3650
3651         return sprintf(buf, "%llu\n",
3652                         (unsigned long long) rbd_dev->spec->pool_id);
3653 }
3654
3655 static ssize_t rbd_name_show(struct device *dev,
3656                              struct device_attribute *attr, char *buf)
3657 {
3658         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3659
3660         if (rbd_dev->spec->image_name)
3661                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3662
3663         return sprintf(buf, "(unknown)\n");
3664 }
3665
3666 static ssize_t rbd_image_id_show(struct device *dev,
3667                              struct device_attribute *attr, char *buf)
3668 {
3669         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3670
3671         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3672 }
3673
3674 /*
3675  * Shows the name of the currently-mapped snapshot (or
3676  * RBD_SNAP_HEAD_NAME for the base image).
3677  */
3678 static ssize_t rbd_snap_show(struct device *dev,
3679                              struct device_attribute *attr,
3680                              char *buf)
3681 {
3682         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3683
3684         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3685 }
3686
3687 /*
3688  * For an rbd v2 image, shows the pool id, image id, and snapshot id
3689  * for the parent image.  If there is no parent, simply shows
3690  * "(no parent image)".
3691  */
3692 static ssize_t rbd_parent_show(struct device *dev,
3693                              struct device_attribute *attr,
3694                              char *buf)
3695 {
3696         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3697         struct rbd_spec *spec = rbd_dev->parent_spec;
3698         int count;
3699         char *bufp = buf;
3700
3701         if (!spec)
3702                 return sprintf(buf, "(no parent image)\n");
3703
3704         count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3705                         (unsigned long long) spec->pool_id, spec->pool_name);
3706         if (count < 0)
3707                 return count;
3708         bufp += count;
3709
3710         count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3711                         spec->image_name ? spec->image_name : "(unknown)");
3712         if (count < 0)
3713                 return count;
3714         bufp += count;
3715
3716         count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3717                         (unsigned long long) spec->snap_id, spec->snap_name);
3718         if (count < 0)
3719                 return count;
3720         bufp += count;
3721
3722         count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3723         if (count < 0)
3724                 return count;
3725         bufp += count;
3726
3727         return (ssize_t) (bufp - buf);
3728 }
3729
3730 static ssize_t rbd_image_refresh(struct device *dev,
3731                                  struct device_attribute *attr,
3732                                  const char *buf,
3733                                  size_t size)
3734 {
3735         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3736         int ret;
3737
3738         ret = rbd_dev_refresh(rbd_dev);
3739         if (ret)
3740                 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3741
3742         return ret < 0 ? ret : size;
3743 }
3744
3745 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3746 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3747 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3748 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3749 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3750 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3751 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3752 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3753 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3754 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3755 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3756 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3757
3758 static struct attribute *rbd_attrs[] = {
3759         &dev_attr_size.attr,
3760         &dev_attr_features.attr,
3761         &dev_attr_major.attr,
3762         &dev_attr_minor.attr,
3763         &dev_attr_client_id.attr,
3764         &dev_attr_pool.attr,
3765         &dev_attr_pool_id.attr,
3766         &dev_attr_name.attr,
3767         &dev_attr_image_id.attr,
3768         &dev_attr_current_snap.attr,
3769         &dev_attr_parent.attr,
3770         &dev_attr_refresh.attr,
3771         NULL
3772 };
3773
3774 static struct attribute_group rbd_attr_group = {
3775         .attrs = rbd_attrs,
3776 };
3777
3778 static const struct attribute_group *rbd_attr_groups[] = {
3779         &rbd_attr_group,
3780         NULL
3781 };
3782
3783 static void rbd_sysfs_dev_release(struct device *dev)
3784 {
3785 }
3786
3787 static struct device_type rbd_device_type = {
3788         .name           = "rbd",
3789         .groups         = rbd_attr_groups,
3790         .release        = rbd_sysfs_dev_release,
3791 };
3792
3793 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3794 {
3795         kref_get(&spec->kref);
3796
3797         return spec;
3798 }
3799
3800 static void rbd_spec_free(struct kref *kref);
3801 static void rbd_spec_put(struct rbd_spec *spec)
3802 {
3803         if (spec)
3804                 kref_put(&spec->kref, rbd_spec_free);
3805 }
3806
3807 static struct rbd_spec *rbd_spec_alloc(void)
3808 {
3809         struct rbd_spec *spec;
3810
3811         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3812         if (!spec)
3813                 return NULL;
3814         kref_init(&spec->kref);
3815
3816         return spec;
3817 }
3818
3819 static void rbd_spec_free(struct kref *kref)
3820 {
3821         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3822
3823         kfree(spec->pool_name);
3824         kfree(spec->image_id);
3825         kfree(spec->image_name);
3826         kfree(spec->snap_name);
3827         kfree(spec);
3828 }
3829
3830 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3831                                 struct rbd_spec *spec)
3832 {
3833         struct rbd_device *rbd_dev;
3834
3835         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3836         if (!rbd_dev)
3837                 return NULL;
3838
3839         spin_lock_init(&rbd_dev->lock);
3840         rbd_dev->flags = 0;
3841         atomic_set(&rbd_dev->parent_ref, 0);
3842         INIT_LIST_HEAD(&rbd_dev->node);
3843         init_rwsem(&rbd_dev->header_rwsem);
3844
3845         rbd_dev->spec = spec;
3846         rbd_dev->rbd_client = rbdc;
3847
3848         /* Initialize the layout used for all rbd requests */
3849
3850         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3851         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3852         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3853         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3854
3855         return rbd_dev;
3856 }
3857
3858 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3859 {
3860         rbd_put_client(rbd_dev->rbd_client);
3861         rbd_spec_put(rbd_dev->spec);
3862         kfree(rbd_dev);
3863 }
3864
3865 /*
3866  * Get the size and object order for an image snapshot, or if
3867  * snap_id is CEPH_NOSNAP, gets this information for the base
3868  * image.
3869  */
3870 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3871                                 u8 *order, u64 *snap_size)
3872 {
3873         __le64 snapid = cpu_to_le64(snap_id);
3874         int ret;
3875         struct {
3876                 u8 order;
3877                 __le64 size;
3878         } __attribute__ ((packed)) size_buf = { 0 };
3879
3880         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3881                                 "rbd", "get_size",
3882                                 &snapid, sizeof (snapid),
3883                                 &size_buf, sizeof (size_buf));
3884         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3885         if (ret < 0)
3886                 return ret;
3887         if (ret < sizeof (size_buf))
3888                 return -ERANGE;
3889
3890         if (order) {
3891                 *order = size_buf.order;
3892                 dout("  order %u", (unsigned int)*order);
3893         }
3894         *snap_size = le64_to_cpu(size_buf.size);
3895
3896         dout("  snap_id 0x%016llx snap_size = %llu\n",
3897                 (unsigned long long)snap_id,
3898                 (unsigned long long)*snap_size);
3899
3900         return 0;
3901 }
3902
3903 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3904 {
3905         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3906                                         &rbd_dev->header.obj_order,
3907                                         &rbd_dev->header.image_size);
3908 }
3909
3910 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3911 {
3912         void *reply_buf;
3913         int ret;
3914         void *p;
3915
3916         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3917         if (!reply_buf)
3918                 return -ENOMEM;
3919
3920         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3921                                 "rbd", "get_object_prefix", NULL, 0,
3922                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3923         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3924         if (ret < 0)
3925                 goto out;
3926
3927         p = reply_buf;
3928         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3929                                                 p + ret, NULL, GFP_NOIO);
3930         ret = 0;
3931
3932         if (IS_ERR(rbd_dev->header.object_prefix)) {
3933                 ret = PTR_ERR(rbd_dev->header.object_prefix);
3934                 rbd_dev->header.object_prefix = NULL;
3935         } else {
3936                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3937         }
3938 out:
3939         kfree(reply_buf);
3940
3941         return ret;
3942 }
3943
3944 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3945                 u64 *snap_features)
3946 {
3947         __le64 snapid = cpu_to_le64(snap_id);
3948         struct {
3949                 __le64 features;
3950                 __le64 incompat;
3951         } __attribute__ ((packed)) features_buf = { 0 };
3952         u64 incompat;
3953         int ret;
3954
3955         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3956                                 "rbd", "get_features",
3957                                 &snapid, sizeof (snapid),
3958                                 &features_buf, sizeof (features_buf));
3959         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3960         if (ret < 0)
3961                 return ret;
3962         if (ret < sizeof (features_buf))
3963                 return -ERANGE;
3964
3965         incompat = le64_to_cpu(features_buf.incompat);
3966         if (incompat & ~RBD_FEATURES_SUPPORTED)
3967                 return -ENXIO;
3968
3969         *snap_features = le64_to_cpu(features_buf.features);
3970
3971         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3972                 (unsigned long long)snap_id,
3973                 (unsigned long long)*snap_features,
3974                 (unsigned long long)le64_to_cpu(features_buf.incompat));
3975
3976         return 0;
3977 }
3978
3979 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3980 {
3981         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3982                                                 &rbd_dev->header.features);
3983 }
3984
3985 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3986 {
3987         struct rbd_spec *parent_spec;
3988         size_t size;
3989         void *reply_buf = NULL;
3990         __le64 snapid;
3991         void *p;
3992         void *end;
3993         u64 pool_id;
3994         char *image_id;
3995         u64 snap_id;
3996         u64 overlap;
3997         int ret;
3998
3999         parent_spec = rbd_spec_alloc();
4000         if (!parent_spec)
4001                 return -ENOMEM;
4002
4003         size = sizeof (__le64) +                                /* pool_id */
4004                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
4005                 sizeof (__le64) +                               /* snap_id */
4006                 sizeof (__le64);                                /* overlap */
4007         reply_buf = kmalloc(size, GFP_KERNEL);
4008         if (!reply_buf) {
4009                 ret = -ENOMEM;
4010                 goto out_err;
4011         }
4012
4013         snapid = cpu_to_le64(CEPH_NOSNAP);
4014         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4015                                 "rbd", "get_parent",
4016                                 &snapid, sizeof (snapid),
4017                                 reply_buf, size);
4018         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4019         if (ret < 0)
4020                 goto out_err;
4021
4022         p = reply_buf;
4023         end = reply_buf + ret;
4024         ret = -ERANGE;
4025         ceph_decode_64_safe(&p, end, pool_id, out_err);
4026         if (pool_id == CEPH_NOPOOL) {
4027                 /*
4028                  * Either the parent never existed, or we have
4029                  * record of it but the image got flattened so it no
4030                  * longer has a parent.  When the parent of a
4031                  * layered image disappears we immediately set the
4032                  * overlap to 0.  The effect of this is that all new
4033                  * requests will be treated as if the image had no
4034                  * parent.
4035                  */
4036                 if (rbd_dev->parent_overlap) {
4037                         rbd_dev->parent_overlap = 0;
4038                         smp_mb();
4039                         rbd_dev_parent_put(rbd_dev);
4040                         pr_info("%s: clone image has been flattened\n",
4041                                 rbd_dev->disk->disk_name);
4042                 }
4043
4044                 goto out;       /* No parent?  No problem. */
4045         }
4046
4047         /* The ceph file layout needs to fit pool id in 32 bits */
4048
4049         ret = -EIO;
4050         if (pool_id > (u64)U32_MAX) {
4051                 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
4052                         (unsigned long long)pool_id, U32_MAX);
4053                 goto out_err;
4054         }
4055
4056         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4057         if (IS_ERR(image_id)) {
4058                 ret = PTR_ERR(image_id);
4059                 goto out_err;
4060         }
4061         ceph_decode_64_safe(&p, end, snap_id, out_err);
4062         ceph_decode_64_safe(&p, end, overlap, out_err);
4063
4064         /*
4065          * The parent won't change (except when the clone is
4066          * flattened, already handled that).  So we only need to
4067          * record the parent spec we have not already done so.
4068          */
4069         if (!rbd_dev->parent_spec) {
4070                 parent_spec->pool_id = pool_id;
4071                 parent_spec->image_id = image_id;
4072                 parent_spec->snap_id = snap_id;
4073                 rbd_dev->parent_spec = parent_spec;
4074                 parent_spec = NULL;     /* rbd_dev now owns this */
4075         } else {
4076                 kfree(image_id);
4077         }
4078
4079         /*
4080          * We always update the parent overlap.  If it's zero we
4081          * treat it specially.
4082          */
4083         rbd_dev->parent_overlap = overlap;
4084         smp_mb();
4085         if (!overlap) {
4086
4087                 /* A null parent_spec indicates it's the initial probe */
4088
4089                 if (parent_spec) {
4090                         /*
4091                          * The overlap has become zero, so the clone
4092                          * must have been resized down to 0 at some
4093                          * point.  Treat this the same as a flatten.
4094                          */
4095                         rbd_dev_parent_put(rbd_dev);
4096                         pr_info("%s: clone image now standalone\n",
4097                                 rbd_dev->disk->disk_name);
4098                 } else {
4099                         /*
4100                          * For the initial probe, if we find the
4101                          * overlap is zero we just pretend there was
4102                          * no parent image.
4103                          */
4104                         rbd_warn(rbd_dev, "ignoring parent of "
4105                                                 "clone with overlap 0\n");
4106                 }
4107         }
4108 out:
4109         ret = 0;
4110 out_err:
4111         kfree(reply_buf);
4112         rbd_spec_put(parent_spec);
4113
4114         return ret;
4115 }
4116
4117 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4118 {
4119         struct {
4120                 __le64 stripe_unit;
4121                 __le64 stripe_count;
4122         } __attribute__ ((packed)) striping_info_buf = { 0 };
4123         size_t size = sizeof (striping_info_buf);
4124         void *p;
4125         u64 obj_size;
4126         u64 stripe_unit;
4127         u64 stripe_count;
4128         int ret;
4129
4130         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4131                                 "rbd", "get_stripe_unit_count", NULL, 0,
4132                                 (char *)&striping_info_buf, size);
4133         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4134         if (ret < 0)
4135                 return ret;
4136         if (ret < size)
4137                 return -ERANGE;
4138
4139         /*
4140          * We don't actually support the "fancy striping" feature
4141          * (STRIPINGV2) yet, but if the striping sizes are the
4142          * defaults the behavior is the same as before.  So find
4143          * out, and only fail if the image has non-default values.
4144          */
4145         ret = -EINVAL;
4146         obj_size = (u64)1 << rbd_dev->header.obj_order;
4147         p = &striping_info_buf;
4148         stripe_unit = ceph_decode_64(&p);
4149         if (stripe_unit != obj_size) {
4150                 rbd_warn(rbd_dev, "unsupported stripe unit "
4151                                 "(got %llu want %llu)",
4152                                 stripe_unit, obj_size);
4153                 return -EINVAL;
4154         }
4155         stripe_count = ceph_decode_64(&p);
4156         if (stripe_count != 1) {
4157                 rbd_warn(rbd_dev, "unsupported stripe count "
4158                                 "(got %llu want 1)", stripe_count);
4159                 return -EINVAL;
4160         }
4161         rbd_dev->header.stripe_unit = stripe_unit;
4162         rbd_dev->header.stripe_count = stripe_count;
4163
4164         return 0;
4165 }
4166
4167 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4168 {
4169         size_t image_id_size;
4170         char *image_id;
4171         void *p;
4172         void *end;
4173         size_t size;
4174         void *reply_buf = NULL;
4175         size_t len = 0;
4176         char *image_name = NULL;
4177         int ret;
4178
4179         rbd_assert(!rbd_dev->spec->image_name);
4180
4181         len = strlen(rbd_dev->spec->image_id);
4182         image_id_size = sizeof (__le32) + len;
4183         image_id = kmalloc(image_id_size, GFP_KERNEL);
4184         if (!image_id)
4185                 return NULL;
4186
4187         p = image_id;
4188         end = image_id + image_id_size;
4189         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4190
4191         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4192         reply_buf = kmalloc(size, GFP_KERNEL);
4193         if (!reply_buf)
4194                 goto out;
4195
4196         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4197                                 "rbd", "dir_get_name",
4198                                 image_id, image_id_size,
4199                                 reply_buf, size);
4200         if (ret < 0)
4201                 goto out;
4202         p = reply_buf;
4203         end = reply_buf + ret;
4204
4205         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4206         if (IS_ERR(image_name))
4207                 image_name = NULL;
4208         else
4209                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4210 out:
4211         kfree(reply_buf);
4212         kfree(image_id);
4213
4214         return image_name;
4215 }
4216
4217 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4218 {
4219         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4220         const char *snap_name;
4221         u32 which = 0;
4222
4223         /* Skip over names until we find the one we are looking for */
4224
4225         snap_name = rbd_dev->header.snap_names;
4226         while (which < snapc->num_snaps) {
4227                 if (!strcmp(name, snap_name))
4228                         return snapc->snaps[which];
4229                 snap_name += strlen(snap_name) + 1;
4230                 which++;
4231         }
4232         return CEPH_NOSNAP;
4233 }
4234
4235 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4236 {
4237         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4238         u32 which;
4239         bool found = false;
4240         u64 snap_id;
4241
4242         for (which = 0; !found && which < snapc->num_snaps; which++) {
4243                 const char *snap_name;
4244
4245                 snap_id = snapc->snaps[which];
4246                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4247                 if (IS_ERR(snap_name)) {
4248                         /* ignore no-longer existing snapshots */
4249                         if (PTR_ERR(snap_name) == -ENOENT)
4250                                 continue;
4251                         else
4252                                 break;
4253                 }
4254                 found = !strcmp(name, snap_name);
4255                 kfree(snap_name);
4256         }
4257         return found ? snap_id : CEPH_NOSNAP;
4258 }
4259
4260 /*
4261  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4262  * no snapshot by that name is found, or if an error occurs.
4263  */
4264 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4265 {
4266         if (rbd_dev->image_format == 1)
4267                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4268
4269         return rbd_v2_snap_id_by_name(rbd_dev, name);
4270 }
4271
4272 /*
4273  * When an rbd image has a parent image, it is identified by the
4274  * pool, image, and snapshot ids (not names).  This function fills
4275  * in the names for those ids.  (It's OK if we can't figure out the
4276  * name for an image id, but the pool and snapshot ids should always
4277  * exist and have names.)  All names in an rbd spec are dynamically
4278  * allocated.
4279  *
4280  * When an image being mapped (not a parent) is probed, we have the
4281  * pool name and pool id, image name and image id, and the snapshot
4282  * name.  The only thing we're missing is the snapshot id.
4283  */
4284 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4285 {
4286         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4287         struct rbd_spec *spec = rbd_dev->spec;
4288         const char *pool_name;
4289         const char *image_name;
4290         const char *snap_name;
4291         int ret;
4292
4293         /*
4294          * An image being mapped will have the pool name (etc.), but
4295          * we need to look up the snapshot id.
4296          */
4297         if (spec->pool_name) {
4298                 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4299                         u64 snap_id;
4300
4301                         snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4302                         if (snap_id == CEPH_NOSNAP)
4303                                 return -ENOENT;
4304                         spec->snap_id = snap_id;
4305                 } else {
4306                         spec->snap_id = CEPH_NOSNAP;
4307                 }
4308
4309                 return 0;
4310         }
4311
4312         /* Get the pool name; we have to make our own copy of this */
4313
4314         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4315         if (!pool_name) {
4316                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4317                 return -EIO;
4318         }
4319         pool_name = kstrdup(pool_name, GFP_KERNEL);
4320         if (!pool_name)
4321                 return -ENOMEM;
4322
4323         /* Fetch the image name; tolerate failure here */
4324
4325         image_name = rbd_dev_image_name(rbd_dev);
4326         if (!image_name)
4327                 rbd_warn(rbd_dev, "unable to get image name");
4328
4329         /* Look up the snapshot name, and make a copy */
4330
4331         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4332         if (IS_ERR(snap_name)) {
4333                 ret = PTR_ERR(snap_name);
4334                 goto out_err;
4335         }
4336
4337         spec->pool_name = pool_name;
4338         spec->image_name = image_name;
4339         spec->snap_name = snap_name;
4340
4341         return 0;
4342 out_err:
4343         kfree(image_name);
4344         kfree(pool_name);
4345
4346         return ret;
4347 }
4348
4349 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4350 {
4351         size_t size;
4352         int ret;
4353         void *reply_buf;
4354         void *p;
4355         void *end;
4356         u64 seq;
4357         u32 snap_count;
4358         struct ceph_snap_context *snapc;
4359         u32 i;
4360
4361         /*
4362          * We'll need room for the seq value (maximum snapshot id),
4363          * snapshot count, and array of that many snapshot ids.
4364          * For now we have a fixed upper limit on the number we're
4365          * prepared to receive.
4366          */
4367         size = sizeof (__le64) + sizeof (__le32) +
4368                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4369         reply_buf = kzalloc(size, GFP_KERNEL);
4370         if (!reply_buf)
4371                 return -ENOMEM;
4372
4373         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4374                                 "rbd", "get_snapcontext", NULL, 0,
4375                                 reply_buf, size);
4376         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4377         if (ret < 0)
4378                 goto out;
4379
4380         p = reply_buf;
4381         end = reply_buf + ret;
4382         ret = -ERANGE;
4383         ceph_decode_64_safe(&p, end, seq, out);
4384         ceph_decode_32_safe(&p, end, snap_count, out);
4385
4386         /*
4387          * Make sure the reported number of snapshot ids wouldn't go
4388          * beyond the end of our buffer.  But before checking that,
4389          * make sure the computed size of the snapshot context we
4390          * allocate is representable in a size_t.
4391          */
4392         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4393                                  / sizeof (u64)) {
4394                 ret = -EINVAL;
4395                 goto out;
4396         }
4397         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4398                 goto out;
4399         ret = 0;
4400
4401         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4402         if (!snapc) {
4403                 ret = -ENOMEM;
4404                 goto out;
4405         }
4406         snapc->seq = seq;
4407         for (i = 0; i < snap_count; i++)
4408                 snapc->snaps[i] = ceph_decode_64(&p);
4409
4410         ceph_put_snap_context(rbd_dev->header.snapc);
4411         rbd_dev->header.snapc = snapc;
4412
4413         dout("  snap context seq = %llu, snap_count = %u\n",
4414                 (unsigned long long)seq, (unsigned int)snap_count);
4415 out:
4416         kfree(reply_buf);
4417
4418         return ret;
4419 }
4420
4421 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4422                                         u64 snap_id)
4423 {
4424         size_t size;
4425         void *reply_buf;
4426         __le64 snapid;
4427         int ret;
4428         void *p;
4429         void *end;
4430         char *snap_name;
4431
4432         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4433         reply_buf = kmalloc(size, GFP_KERNEL);
4434         if (!reply_buf)
4435                 return ERR_PTR(-ENOMEM);
4436
4437         snapid = cpu_to_le64(snap_id);
4438         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4439                                 "rbd", "get_snapshot_name",
4440                                 &snapid, sizeof (snapid),
4441                                 reply_buf, size);
4442         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4443         if (ret < 0) {
4444                 snap_name = ERR_PTR(ret);
4445                 goto out;
4446         }
4447
4448         p = reply_buf;
4449         end = reply_buf + ret;
4450         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4451         if (IS_ERR(snap_name))
4452                 goto out;
4453
4454         dout("  snap_id 0x%016llx snap_name = %s\n",
4455                 (unsigned long long)snap_id, snap_name);
4456 out:
4457         kfree(reply_buf);
4458
4459         return snap_name;
4460 }
4461
4462 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4463 {
4464         bool first_time = rbd_dev->header.object_prefix == NULL;
4465         int ret;
4466
4467         ret = rbd_dev_v2_image_size(rbd_dev);
4468         if (ret)
4469                 return ret;
4470
4471         if (first_time) {
4472                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4473                 if (ret)
4474                         return ret;
4475         }
4476
4477         /*
4478          * If the image supports layering, get the parent info.  We
4479          * need to probe the first time regardless.  Thereafter we
4480          * only need to if there's a parent, to see if it has
4481          * disappeared due to the mapped image getting flattened.
4482          */
4483         if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4484                         (first_time || rbd_dev->parent_spec)) {
4485                 bool warn;
4486
4487                 ret = rbd_dev_v2_parent_info(rbd_dev);
4488                 if (ret)
4489                         return ret;
4490
4491                 /*
4492                  * Print a warning if this is the initial probe and
4493                  * the image has a parent.  Don't print it if the
4494                  * image now being probed is itself a parent.  We
4495                  * can tell at this point because we won't know its
4496                  * pool name yet (just its pool id).
4497                  */
4498                 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4499                 if (first_time && warn)
4500                         rbd_warn(rbd_dev, "WARNING: kernel layering "
4501                                         "is EXPERIMENTAL!");
4502         }
4503
4504         if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4505                 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4506                         rbd_dev->mapping.size = rbd_dev->header.image_size;
4507
4508         ret = rbd_dev_v2_snap_context(rbd_dev);
4509         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4510
4511         return ret;
4512 }
4513
4514 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4515 {
4516         struct device *dev;
4517         int ret;
4518
4519         dev = &rbd_dev->dev;
4520         dev->bus = &rbd_bus_type;
4521         dev->type = &rbd_device_type;
4522         dev->parent = &rbd_root_dev;
4523         dev->release = rbd_dev_device_release;
4524         dev_set_name(dev, "%d", rbd_dev->dev_id);
4525         ret = device_register(dev);
4526
4527         return ret;
4528 }
4529
4530 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4531 {
4532         device_unregister(&rbd_dev->dev);
4533 }
4534
4535 /*
4536  * Get a unique rbd identifier for the given new rbd_dev, and add
4537  * the rbd_dev to the global list.
4538  */
4539 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4540 {
4541         int new_dev_id;
4542
4543         new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4544                                     0, minor_to_rbd_dev_id(1 << MINORBITS),
4545                                     GFP_KERNEL);
4546         if (new_dev_id < 0)
4547                 return new_dev_id;
4548
4549         rbd_dev->dev_id = new_dev_id;
4550
4551         spin_lock(&rbd_dev_list_lock);
4552         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4553         spin_unlock(&rbd_dev_list_lock);
4554
4555         dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4556
4557         return 0;
4558 }
4559
4560 /*
4561  * Remove an rbd_dev from the global list, and record that its
4562  * identifier is no longer in use.
4563  */
4564 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4565 {
4566         spin_lock(&rbd_dev_list_lock);
4567         list_del_init(&rbd_dev->node);
4568         spin_unlock(&rbd_dev_list_lock);
4569
4570         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4571
4572         dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4573 }
4574
4575 /*
4576  * Skips over white space at *buf, and updates *buf to point to the
4577  * first found non-space character (if any). Returns the length of
4578  * the token (string of non-white space characters) found.  Note
4579  * that *buf must be terminated with '\0'.
4580  */
4581 static inline size_t next_token(const char **buf)
4582 {
4583         /*
4584         * These are the characters that produce nonzero for
4585         * isspace() in the "C" and "POSIX" locales.
4586         */
4587         const char *spaces = " \f\n\r\t\v";
4588
4589         *buf += strspn(*buf, spaces);   /* Find start of token */
4590
4591         return strcspn(*buf, spaces);   /* Return token length */
4592 }
4593
4594 /*
4595  * Finds the next token in *buf, and if the provided token buffer is
4596  * big enough, copies the found token into it.  The result, if
4597  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4598  * must be terminated with '\0' on entry.
4599  *
4600  * Returns the length of the token found (not including the '\0').
4601  * Return value will be 0 if no token is found, and it will be >=
4602  * token_size if the token would not fit.
4603  *
4604  * The *buf pointer will be updated to point beyond the end of the
4605  * found token.  Note that this occurs even if the token buffer is
4606  * too small to hold it.
4607  */
4608 static inline size_t copy_token(const char **buf,
4609                                 char *token,
4610                                 size_t token_size)
4611 {
4612         size_t len;
4613
4614         len = next_token(buf);
4615         if (len < token_size) {
4616                 memcpy(token, *buf, len);
4617                 *(token + len) = '\0';
4618         }
4619         *buf += len;
4620
4621         return len;
4622 }
4623
4624 /*
4625  * Finds the next token in *buf, dynamically allocates a buffer big
4626  * enough to hold a copy of it, and copies the token into the new
4627  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4628  * that a duplicate buffer is created even for a zero-length token.
4629  *
4630  * Returns a pointer to the newly-allocated duplicate, or a null
4631  * pointer if memory for the duplicate was not available.  If
4632  * the lenp argument is a non-null pointer, the length of the token
4633  * (not including the '\0') is returned in *lenp.
4634  *
4635  * If successful, the *buf pointer will be updated to point beyond
4636  * the end of the found token.
4637  *
4638  * Note: uses GFP_KERNEL for allocation.
4639  */
4640 static inline char *dup_token(const char **buf, size_t *lenp)
4641 {
4642         char *dup;
4643         size_t len;
4644
4645         len = next_token(buf);
4646         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4647         if (!dup)
4648                 return NULL;
4649         *(dup + len) = '\0';
4650         *buf += len;
4651
4652         if (lenp)
4653                 *lenp = len;
4654
4655         return dup;
4656 }
4657
4658 /*
4659  * Parse the options provided for an "rbd add" (i.e., rbd image
4660  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4661  * and the data written is passed here via a NUL-terminated buffer.
4662  * Returns 0 if successful or an error code otherwise.
4663  *
4664  * The information extracted from these options is recorded in
4665  * the other parameters which return dynamically-allocated
4666  * structures:
4667  *  ceph_opts
4668  *      The address of a pointer that will refer to a ceph options
4669  *      structure.  Caller must release the returned pointer using
4670  *      ceph_destroy_options() when it is no longer needed.
4671  *  rbd_opts
4672  *      Address of an rbd options pointer.  Fully initialized by
4673  *      this function; caller must release with kfree().
4674  *  spec
4675  *      Address of an rbd image specification pointer.  Fully
4676  *      initialized by this function based on parsed options.
4677  *      Caller must release with rbd_spec_put().
4678  *
4679  * The options passed take this form:
4680  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4681  * where:
4682  *  <mon_addrs>
4683  *      A comma-separated list of one or more monitor addresses.
4684  *      A monitor address is an ip address, optionally followed
4685  *      by a port number (separated by a colon).
4686  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4687  *  <options>
4688  *      A comma-separated list of ceph and/or rbd options.
4689  *  <pool_name>
4690  *      The name of the rados pool containing the rbd image.
4691  *  <image_name>
4692  *      The name of the image in that pool to map.
4693  *  <snap_id>
4694  *      An optional snapshot id.  If provided, the mapping will
4695  *      present data from the image at the time that snapshot was
4696  *      created.  The image head is used if no snapshot id is
4697  *      provided.  Snapshot mappings are always read-only.
4698  */
4699 static int rbd_add_parse_args(const char *buf,
4700                                 struct ceph_options **ceph_opts,
4701                                 struct rbd_options **opts,
4702                                 struct rbd_spec **rbd_spec)
4703 {
4704         size_t len;
4705         char *options;
4706         const char *mon_addrs;
4707         char *snap_name;
4708         size_t mon_addrs_size;
4709         struct rbd_spec *spec = NULL;
4710         struct rbd_options *rbd_opts = NULL;
4711         struct ceph_options *copts;
4712         int ret;
4713
4714         /* The first four tokens are required */
4715
4716         len = next_token(&buf);
4717         if (!len) {
4718                 rbd_warn(NULL, "no monitor address(es) provided");
4719                 return -EINVAL;
4720         }
4721         mon_addrs = buf;
4722         mon_addrs_size = len + 1;
4723         buf += len;
4724
4725         ret = -EINVAL;
4726         options = dup_token(&buf, NULL);
4727         if (!options)
4728                 return -ENOMEM;
4729         if (!*options) {
4730                 rbd_warn(NULL, "no options provided");
4731                 goto out_err;
4732         }
4733
4734         spec = rbd_spec_alloc();
4735         if (!spec)
4736                 goto out_mem;
4737
4738         spec->pool_name = dup_token(&buf, NULL);
4739         if (!spec->pool_name)
4740                 goto out_mem;
4741         if (!*spec->pool_name) {
4742                 rbd_warn(NULL, "no pool name provided");
4743                 goto out_err;
4744         }
4745
4746         spec->image_name = dup_token(&buf, NULL);
4747         if (!spec->image_name)
4748                 goto out_mem;
4749         if (!*spec->image_name) {
4750                 rbd_warn(NULL, "no image name provided");
4751                 goto out_err;
4752         }
4753
4754         /*
4755          * Snapshot name is optional; default is to use "-"
4756          * (indicating the head/no snapshot).
4757          */
4758         len = next_token(&buf);
4759         if (!len) {
4760                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4761                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4762         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4763                 ret = -ENAMETOOLONG;
4764                 goto out_err;
4765         }
4766         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4767         if (!snap_name)
4768                 goto out_mem;
4769         *(snap_name + len) = '\0';
4770         spec->snap_name = snap_name;
4771
4772         /* Initialize all rbd options to the defaults */
4773
4774         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4775         if (!rbd_opts)
4776                 goto out_mem;
4777
4778         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4779
4780         copts = ceph_parse_options(options, mon_addrs,
4781                                         mon_addrs + mon_addrs_size - 1,
4782                                         parse_rbd_opts_token, rbd_opts);
4783         if (IS_ERR(copts)) {
4784                 ret = PTR_ERR(copts);
4785                 goto out_err;
4786         }
4787         kfree(options);
4788
4789         *ceph_opts = copts;
4790         *opts = rbd_opts;
4791         *rbd_spec = spec;
4792
4793         return 0;
4794 out_mem:
4795         ret = -ENOMEM;
4796 out_err:
4797         kfree(rbd_opts);
4798         rbd_spec_put(spec);
4799         kfree(options);
4800
4801         return ret;
4802 }
4803
4804 /*
4805  * Return pool id (>= 0) or a negative error code.
4806  */
4807 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4808 {
4809         u64 newest_epoch;
4810         unsigned long timeout = rbdc->client->options->mount_timeout * HZ;
4811         int tries = 0;
4812         int ret;
4813
4814 again:
4815         ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4816         if (ret == -ENOENT && tries++ < 1) {
4817                 ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
4818                                                &newest_epoch);
4819                 if (ret < 0)
4820                         return ret;
4821
4822                 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
4823                         ceph_monc_request_next_osdmap(&rbdc->client->monc);
4824                         (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
4825                                                      newest_epoch, timeout);
4826                         goto again;
4827                 } else {
4828                         /* the osdmap we have is new enough */
4829                         return -ENOENT;
4830                 }
4831         }
4832
4833         return ret;
4834 }
4835
4836 /*
4837  * An rbd format 2 image has a unique identifier, distinct from the
4838  * name given to it by the user.  Internally, that identifier is
4839  * what's used to specify the names of objects related to the image.
4840  *
4841  * A special "rbd id" object is used to map an rbd image name to its
4842  * id.  If that object doesn't exist, then there is no v2 rbd image
4843  * with the supplied name.
4844  *
4845  * This function will record the given rbd_dev's image_id field if
4846  * it can be determined, and in that case will return 0.  If any
4847  * errors occur a negative errno will be returned and the rbd_dev's
4848  * image_id field will be unchanged (and should be NULL).
4849  */
4850 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4851 {
4852         int ret;
4853         size_t size;
4854         char *object_name;
4855         void *response;
4856         char *image_id;
4857
4858         /*
4859          * When probing a parent image, the image id is already
4860          * known (and the image name likely is not).  There's no
4861          * need to fetch the image id again in this case.  We
4862          * do still need to set the image format though.
4863          */
4864         if (rbd_dev->spec->image_id) {
4865                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4866
4867                 return 0;
4868         }
4869
4870         /*
4871          * First, see if the format 2 image id file exists, and if
4872          * so, get the image's persistent id from it.
4873          */
4874         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4875         object_name = kmalloc(size, GFP_NOIO);
4876         if (!object_name)
4877                 return -ENOMEM;
4878         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4879         dout("rbd id object name is %s\n", object_name);
4880
4881         /* Response will be an encoded string, which includes a length */
4882
4883         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4884         response = kzalloc(size, GFP_NOIO);
4885         if (!response) {
4886                 ret = -ENOMEM;
4887                 goto out;
4888         }
4889
4890         /* If it doesn't exist we'll assume it's a format 1 image */
4891
4892         ret = rbd_obj_method_sync(rbd_dev, object_name,
4893                                 "rbd", "get_id", NULL, 0,
4894                                 response, RBD_IMAGE_ID_LEN_MAX);
4895         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4896         if (ret == -ENOENT) {
4897                 image_id = kstrdup("", GFP_KERNEL);
4898                 ret = image_id ? 0 : -ENOMEM;
4899                 if (!ret)
4900                         rbd_dev->image_format = 1;
4901         } else if (ret > sizeof (__le32)) {
4902                 void *p = response;
4903
4904                 image_id = ceph_extract_encoded_string(&p, p + ret,
4905                                                 NULL, GFP_NOIO);
4906                 ret = PTR_ERR_OR_ZERO(image_id);
4907                 if (!ret)
4908                         rbd_dev->image_format = 2;
4909         } else {
4910                 ret = -EINVAL;
4911         }
4912
4913         if (!ret) {
4914                 rbd_dev->spec->image_id = image_id;
4915                 dout("image_id is %s\n", image_id);
4916         }
4917 out:
4918         kfree(response);
4919         kfree(object_name);
4920
4921         return ret;
4922 }
4923
4924 /*
4925  * Undo whatever state changes are made by v1 or v2 header info
4926  * call.
4927  */
4928 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4929 {
4930         struct rbd_image_header *header;
4931
4932         /* Drop parent reference unless it's already been done (or none) */
4933
4934         if (rbd_dev->parent_overlap)
4935                 rbd_dev_parent_put(rbd_dev);
4936
4937         /* Free dynamic fields from the header, then zero it out */
4938
4939         header = &rbd_dev->header;
4940         ceph_put_snap_context(header->snapc);
4941         kfree(header->snap_sizes);
4942         kfree(header->snap_names);
4943         kfree(header->object_prefix);
4944         memset(header, 0, sizeof (*header));
4945 }
4946
4947 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4948 {
4949         int ret;
4950
4951         ret = rbd_dev_v2_object_prefix(rbd_dev);
4952         if (ret)
4953                 goto out_err;
4954
4955         /*
4956          * Get the and check features for the image.  Currently the
4957          * features are assumed to never change.
4958          */
4959         ret = rbd_dev_v2_features(rbd_dev);
4960         if (ret)
4961                 goto out_err;
4962
4963         /* If the image supports fancy striping, get its parameters */
4964
4965         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4966                 ret = rbd_dev_v2_striping_info(rbd_dev);
4967                 if (ret < 0)
4968                         goto out_err;
4969         }
4970         /* No support for crypto and compression type format 2 images */
4971
4972         return 0;
4973 out_err:
4974         rbd_dev->header.features = 0;
4975         kfree(rbd_dev->header.object_prefix);
4976         rbd_dev->header.object_prefix = NULL;
4977
4978         return ret;
4979 }
4980
4981 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4982 {
4983         struct rbd_device *parent = NULL;
4984         struct rbd_spec *parent_spec;
4985         struct rbd_client *rbdc;
4986         int ret;
4987
4988         if (!rbd_dev->parent_spec)
4989                 return 0;
4990         /*
4991          * We need to pass a reference to the client and the parent
4992          * spec when creating the parent rbd_dev.  Images related by
4993          * parent/child relationships always share both.
4994          */
4995         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4996         rbdc = __rbd_get_client(rbd_dev->rbd_client);
4997
4998         ret = -ENOMEM;
4999         parent = rbd_dev_create(rbdc, parent_spec);
5000         if (!parent)
5001                 goto out_err;
5002
5003         ret = rbd_dev_image_probe(parent, false);
5004         if (ret < 0)
5005                 goto out_err;
5006         rbd_dev->parent = parent;
5007         atomic_set(&rbd_dev->parent_ref, 1);
5008
5009         return 0;
5010 out_err:
5011         if (parent) {
5012                 rbd_dev_unparent(rbd_dev);
5013                 kfree(rbd_dev->header_name);
5014                 rbd_dev_destroy(parent);
5015         } else {
5016                 rbd_put_client(rbdc);
5017                 rbd_spec_put(parent_spec);
5018         }
5019
5020         return ret;
5021 }
5022
5023 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5024 {
5025         int ret;
5026
5027         /* Get an id and fill in device name. */
5028
5029         ret = rbd_dev_id_get(rbd_dev);
5030         if (ret)
5031                 return ret;
5032
5033         BUILD_BUG_ON(DEV_NAME_LEN
5034                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5035         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5036
5037         /* Record our major and minor device numbers. */
5038
5039         if (!single_major) {
5040                 ret = register_blkdev(0, rbd_dev->name);
5041                 if (ret < 0)
5042                         goto err_out_id;
5043
5044                 rbd_dev->major = ret;
5045                 rbd_dev->minor = 0;
5046         } else {
5047                 rbd_dev->major = rbd_major;
5048                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5049         }
5050
5051         /* Set up the blkdev mapping. */
5052
5053         ret = rbd_init_disk(rbd_dev);
5054         if (ret)
5055                 goto err_out_blkdev;
5056
5057         ret = rbd_dev_mapping_set(rbd_dev);
5058         if (ret)
5059                 goto err_out_disk;
5060         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5061         set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5062
5063         ret = rbd_bus_add_dev(rbd_dev);
5064         if (ret)
5065                 goto err_out_mapping;
5066
5067         /* Everything's ready.  Announce the disk to the world. */
5068
5069         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5070         add_disk(rbd_dev->disk);
5071
5072         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5073                 (unsigned long long) rbd_dev->mapping.size);
5074
5075         return ret;
5076
5077 err_out_mapping:
5078         rbd_dev_mapping_clear(rbd_dev);
5079 err_out_disk:
5080         rbd_free_disk(rbd_dev);
5081 err_out_blkdev:
5082         if (!single_major)
5083                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5084 err_out_id:
5085         rbd_dev_id_put(rbd_dev);
5086         rbd_dev_mapping_clear(rbd_dev);
5087
5088         return ret;
5089 }
5090
5091 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5092 {
5093         struct rbd_spec *spec = rbd_dev->spec;
5094         size_t size;
5095
5096         /* Record the header object name for this rbd image. */
5097
5098         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5099
5100         if (rbd_dev->image_format == 1)
5101                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5102         else
5103                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5104
5105         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5106         if (!rbd_dev->header_name)
5107                 return -ENOMEM;
5108
5109         if (rbd_dev->image_format == 1)
5110                 sprintf(rbd_dev->header_name, "%s%s",
5111                         spec->image_name, RBD_SUFFIX);
5112         else
5113                 sprintf(rbd_dev->header_name, "%s%s",
5114                         RBD_HEADER_PREFIX, spec->image_id);
5115         return 0;
5116 }
5117
5118 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5119 {
5120         rbd_dev_unprobe(rbd_dev);
5121         kfree(rbd_dev->header_name);
5122         rbd_dev->header_name = NULL;
5123         rbd_dev->image_format = 0;
5124         kfree(rbd_dev->spec->image_id);
5125         rbd_dev->spec->image_id = NULL;
5126
5127         rbd_dev_destroy(rbd_dev);
5128 }
5129
5130 /*
5131  * Probe for the existence of the header object for the given rbd
5132  * device.  If this image is the one being mapped (i.e., not a
5133  * parent), initiate a watch on its header object before using that
5134  * object to get detailed information about the rbd image.
5135  */
5136 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
5137 {
5138         int ret;
5139
5140         /*
5141          * Get the id from the image id object.  Unless there's an
5142          * error, rbd_dev->spec->image_id will be filled in with
5143          * a dynamically-allocated string, and rbd_dev->image_format
5144          * will be set to either 1 or 2.
5145          */
5146         ret = rbd_dev_image_id(rbd_dev);
5147         if (ret)
5148                 return ret;
5149         rbd_assert(rbd_dev->spec->image_id);
5150         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5151
5152         ret = rbd_dev_header_name(rbd_dev);
5153         if (ret)
5154                 goto err_out_format;
5155
5156         if (mapping) {
5157                 ret = rbd_dev_header_watch_sync(rbd_dev);
5158                 if (ret)
5159                         goto out_header_name;
5160         }
5161
5162         if (rbd_dev->image_format == 1)
5163                 ret = rbd_dev_v1_header_info(rbd_dev);
5164         else
5165                 ret = rbd_dev_v2_header_info(rbd_dev);
5166         if (ret)
5167                 goto err_out_watch;
5168
5169         ret = rbd_dev_spec_update(rbd_dev);
5170         if (ret)
5171                 goto err_out_probe;
5172
5173         ret = rbd_dev_probe_parent(rbd_dev);
5174         if (ret)
5175                 goto err_out_probe;
5176
5177         dout("discovered format %u image, header name is %s\n",
5178                 rbd_dev->image_format, rbd_dev->header_name);
5179
5180         return 0;
5181 err_out_probe:
5182         rbd_dev_unprobe(rbd_dev);
5183 err_out_watch:
5184         if (mapping)
5185                 rbd_dev_header_unwatch_sync(rbd_dev);
5186 out_header_name:
5187         kfree(rbd_dev->header_name);
5188         rbd_dev->header_name = NULL;
5189 err_out_format:
5190         rbd_dev->image_format = 0;
5191         kfree(rbd_dev->spec->image_id);
5192         rbd_dev->spec->image_id = NULL;
5193
5194         dout("probe failed, returning %d\n", ret);
5195
5196         return ret;
5197 }
5198
5199 static ssize_t do_rbd_add(struct bus_type *bus,
5200                           const char *buf,
5201                           size_t count)
5202 {
5203         struct rbd_device *rbd_dev = NULL;
5204         struct ceph_options *ceph_opts = NULL;
5205         struct rbd_options *rbd_opts = NULL;
5206         struct rbd_spec *spec = NULL;
5207         struct rbd_client *rbdc;
5208         bool read_only;
5209         int rc = -ENOMEM;
5210
5211         if (!try_module_get(THIS_MODULE))
5212                 return -ENODEV;
5213
5214         /* parse add command */
5215         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5216         if (rc < 0)
5217                 goto err_out_module;
5218         read_only = rbd_opts->read_only;
5219         kfree(rbd_opts);
5220         rbd_opts = NULL;        /* done with this */
5221
5222         rbdc = rbd_get_client(ceph_opts);
5223         if (IS_ERR(rbdc)) {
5224                 rc = PTR_ERR(rbdc);
5225                 goto err_out_args;
5226         }
5227
5228         /* pick the pool */
5229         rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5230         if (rc < 0)
5231                 goto err_out_client;
5232         spec->pool_id = (u64)rc;
5233
5234         /* The ceph file layout needs to fit pool id in 32 bits */
5235
5236         if (spec->pool_id > (u64)U32_MAX) {
5237                 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5238                                 (unsigned long long)spec->pool_id, U32_MAX);
5239                 rc = -EIO;
5240                 goto err_out_client;
5241         }
5242
5243         rbd_dev = rbd_dev_create(rbdc, spec);
5244         if (!rbd_dev)
5245                 goto err_out_client;
5246         rbdc = NULL;            /* rbd_dev now owns this */
5247         spec = NULL;            /* rbd_dev now owns this */
5248
5249         rc = rbd_dev_image_probe(rbd_dev, true);
5250         if (rc < 0)
5251                 goto err_out_rbd_dev;
5252
5253         /* If we are mapping a snapshot it must be marked read-only */
5254
5255         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5256                 read_only = true;
5257         rbd_dev->mapping.read_only = read_only;
5258
5259         rc = rbd_dev_device_setup(rbd_dev);
5260         if (rc) {
5261                 /*
5262                  * rbd_dev_header_unwatch_sync() can't be moved into
5263                  * rbd_dev_image_release() without refactoring, see
5264                  * commit 1f3ef78861ac.
5265                  */
5266                 rbd_dev_header_unwatch_sync(rbd_dev);
5267                 rbd_dev_image_release(rbd_dev);
5268                 goto err_out_module;
5269         }
5270
5271         return count;
5272
5273 err_out_rbd_dev:
5274         rbd_dev_destroy(rbd_dev);
5275 err_out_client:
5276         rbd_put_client(rbdc);
5277 err_out_args:
5278         rbd_spec_put(spec);
5279 err_out_module:
5280         module_put(THIS_MODULE);
5281
5282         dout("Error adding device %s\n", buf);
5283
5284         return (ssize_t)rc;
5285 }
5286
5287 static ssize_t rbd_add(struct bus_type *bus,
5288                        const char *buf,
5289                        size_t count)
5290 {
5291         if (single_major)
5292                 return -EINVAL;
5293
5294         return do_rbd_add(bus, buf, count);
5295 }
5296
5297 static ssize_t rbd_add_single_major(struct bus_type *bus,
5298                                     const char *buf,
5299                                     size_t count)
5300 {
5301         return do_rbd_add(bus, buf, count);
5302 }
5303
5304 static void rbd_dev_device_release(struct device *dev)
5305 {
5306         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5307
5308         rbd_free_disk(rbd_dev);
5309         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5310         rbd_dev_mapping_clear(rbd_dev);
5311         if (!single_major)
5312                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5313         rbd_dev_id_put(rbd_dev);
5314         rbd_dev_mapping_clear(rbd_dev);
5315 }
5316
5317 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5318 {
5319         while (rbd_dev->parent) {
5320                 struct rbd_device *first = rbd_dev;
5321                 struct rbd_device *second = first->parent;
5322                 struct rbd_device *third;
5323
5324                 /*
5325                  * Follow to the parent with no grandparent and
5326                  * remove it.
5327                  */
5328                 while (second && (third = second->parent)) {
5329                         first = second;
5330                         second = third;
5331                 }
5332                 rbd_assert(second);
5333                 rbd_dev_image_release(second);
5334                 first->parent = NULL;
5335                 first->parent_overlap = 0;
5336
5337                 rbd_assert(first->parent_spec);
5338                 rbd_spec_put(first->parent_spec);
5339                 first->parent_spec = NULL;
5340         }
5341 }
5342
5343 static ssize_t do_rbd_remove(struct bus_type *bus,
5344                              const char *buf,
5345                              size_t count)
5346 {
5347         struct rbd_device *rbd_dev = NULL;
5348         struct list_head *tmp;
5349         int dev_id;
5350         unsigned long ul;
5351         bool already = false;
5352         int ret;
5353
5354         ret = kstrtoul(buf, 10, &ul);
5355         if (ret)
5356                 return ret;
5357
5358         /* convert to int; abort if we lost anything in the conversion */
5359         dev_id = (int)ul;
5360         if (dev_id != ul)
5361                 return -EINVAL;
5362
5363         ret = -ENOENT;
5364         spin_lock(&rbd_dev_list_lock);
5365         list_for_each(tmp, &rbd_dev_list) {
5366                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5367                 if (rbd_dev->dev_id == dev_id) {
5368                         ret = 0;
5369                         break;
5370                 }
5371         }
5372         if (!ret) {
5373                 spin_lock_irq(&rbd_dev->lock);
5374                 if (rbd_dev->open_count)
5375                         ret = -EBUSY;
5376                 else
5377                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5378                                                         &rbd_dev->flags);
5379                 spin_unlock_irq(&rbd_dev->lock);
5380         }
5381         spin_unlock(&rbd_dev_list_lock);
5382         if (ret < 0 || already)
5383                 return ret;
5384
5385         rbd_dev_header_unwatch_sync(rbd_dev);
5386         /*
5387          * flush remaining watch callbacks - these must be complete
5388          * before the osd_client is shutdown
5389          */
5390         dout("%s: flushing notifies", __func__);
5391         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5392
5393         /*
5394          * Don't free anything from rbd_dev->disk until after all
5395          * notifies are completely processed. Otherwise
5396          * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5397          * in a potential use after free of rbd_dev->disk or rbd_dev.
5398          */
5399         rbd_bus_del_dev(rbd_dev);
5400         rbd_dev_image_release(rbd_dev);
5401         module_put(THIS_MODULE);
5402
5403         return count;
5404 }
5405
5406 static ssize_t rbd_remove(struct bus_type *bus,
5407                           const char *buf,
5408                           size_t count)
5409 {
5410         if (single_major)
5411                 return -EINVAL;
5412
5413         return do_rbd_remove(bus, buf, count);
5414 }
5415
5416 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5417                                        const char *buf,
5418                                        size_t count)
5419 {
5420         return do_rbd_remove(bus, buf, count);
5421 }
5422
5423 /*
5424  * create control files in sysfs
5425  * /sys/bus/rbd/...
5426  */
5427 static int rbd_sysfs_init(void)
5428 {
5429         int ret;
5430
5431         ret = device_register(&rbd_root_dev);
5432         if (ret < 0)
5433                 return ret;
5434
5435         ret = bus_register(&rbd_bus_type);
5436         if (ret < 0)
5437                 device_unregister(&rbd_root_dev);
5438
5439         return ret;
5440 }
5441
5442 static void rbd_sysfs_cleanup(void)
5443 {
5444         bus_unregister(&rbd_bus_type);
5445         device_unregister(&rbd_root_dev);
5446 }
5447
5448 static int rbd_slab_init(void)
5449 {
5450         rbd_assert(!rbd_img_request_cache);
5451         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5452                                         sizeof (struct rbd_img_request),
5453                                         __alignof__(struct rbd_img_request),
5454                                         0, NULL);
5455         if (!rbd_img_request_cache)
5456                 return -ENOMEM;
5457
5458         rbd_assert(!rbd_obj_request_cache);
5459         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5460                                         sizeof (struct rbd_obj_request),
5461                                         __alignof__(struct rbd_obj_request),
5462                                         0, NULL);
5463         if (!rbd_obj_request_cache)
5464                 goto out_err;
5465
5466         rbd_assert(!rbd_segment_name_cache);
5467         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5468                                         CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5469         if (rbd_segment_name_cache)
5470                 return 0;
5471 out_err:
5472         if (rbd_obj_request_cache) {
5473                 kmem_cache_destroy(rbd_obj_request_cache);
5474                 rbd_obj_request_cache = NULL;
5475         }
5476
5477         kmem_cache_destroy(rbd_img_request_cache);
5478         rbd_img_request_cache = NULL;
5479
5480         return -ENOMEM;
5481 }
5482
5483 static void rbd_slab_exit(void)
5484 {
5485         rbd_assert(rbd_segment_name_cache);
5486         kmem_cache_destroy(rbd_segment_name_cache);
5487         rbd_segment_name_cache = NULL;
5488
5489         rbd_assert(rbd_obj_request_cache);
5490         kmem_cache_destroy(rbd_obj_request_cache);
5491         rbd_obj_request_cache = NULL;
5492
5493         rbd_assert(rbd_img_request_cache);
5494         kmem_cache_destroy(rbd_img_request_cache);
5495         rbd_img_request_cache = NULL;
5496 }
5497
5498 static int __init rbd_init(void)
5499 {
5500         int rc;
5501
5502         if (!libceph_compatible(NULL)) {
5503                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5504                 return -EINVAL;
5505         }
5506
5507         rc = rbd_slab_init();
5508         if (rc)
5509                 return rc;
5510
5511         if (single_major) {
5512                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5513                 if (rbd_major < 0) {
5514                         rc = rbd_major;
5515                         goto err_out_slab;
5516                 }
5517         }
5518
5519         rc = rbd_sysfs_init();
5520         if (rc)
5521                 goto err_out_blkdev;
5522
5523         if (single_major)
5524                 pr_info("loaded (major %d)\n", rbd_major);
5525         else
5526                 pr_info("loaded\n");
5527
5528         return 0;
5529
5530 err_out_blkdev:
5531         if (single_major)
5532                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5533 err_out_slab:
5534         rbd_slab_exit();
5535         return rc;
5536 }
5537
5538 static void __exit rbd_exit(void)
5539 {
5540         ida_destroy(&rbd_dev_id_ida);
5541         rbd_sysfs_cleanup();
5542         if (single_major)
5543                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5544         rbd_slab_exit();
5545 }
5546
5547 module_init(rbd_init);
5548 module_exit(rbd_exit);
5549
5550 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5551 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5552 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5553 /* following authorship retained from original osdblk.c */
5554 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5555
5556 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5557 MODULE_LICENSE("GPL");