rbd: only update values on snap_info success
[firefly-linux-kernel-4.4.55.git] / drivers / block / rbd.c
1 /*
2    rbd.c -- Export ceph rados objects as a Linux block device
3
4
5    based on drivers/block/osdblk.c:
6
7    Copyright 2009 Red Hat, Inc.
8
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation.
12
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17
18    You should have received a copy of the GNU General Public License
19    along with this program; see the file COPYING.  If not, write to
20    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
21
22
23
24    For usage instructions, please refer to:
25
26                  Documentation/ABI/testing/sysfs-bus-rbd
27
28  */
29
30 #include <linux/ceph/libceph.h>
31 #include <linux/ceph/osd_client.h>
32 #include <linux/ceph/mon_client.h>
33 #include <linux/ceph/decode.h>
34 #include <linux/parser.h>
35
36 #include <linux/kernel.h>
37 #include <linux/device.h>
38 #include <linux/module.h>
39 #include <linux/fs.h>
40 #include <linux/blkdev.h>
41
42 #include "rbd_types.h"
43
44 #define RBD_DEBUG       /* Activate rbd_assert() calls */
45
46 /*
47  * The basic unit of block I/O is a sector.  It is interpreted in a
48  * number of contexts in Linux (blk, bio, genhd), but the default is
49  * universally 512 bytes.  These symbols are just slightly more
50  * meaningful than the bare numbers they represent.
51  */
52 #define SECTOR_SHIFT    9
53 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
54
55 #define RBD_DRV_NAME "rbd"
56 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
57
58 #define RBD_MINORS_PER_MAJOR    256             /* max minors per blkdev */
59
60 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
61 #define RBD_MAX_SNAP_NAME_LEN   \
62                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
63
64 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
65
66 #define RBD_SNAP_HEAD_NAME      "-"
67
68 /* This allows a single page to hold an image name sent by OSD */
69 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
70 #define RBD_IMAGE_ID_LEN_MAX    64
71
72 #define RBD_OBJ_PREFIX_LEN_MAX  64
73
74 /* Feature bits */
75
76 #define RBD_FEATURE_LAYERING    (1<<0)
77 #define RBD_FEATURE_STRIPINGV2  (1<<1)
78 #define RBD_FEATURES_ALL \
79             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
80
81 /* Features supported by this (client software) implementation. */
82
83 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
84
85 /*
86  * An RBD device name will be "rbd#", where the "rbd" comes from
87  * RBD_DRV_NAME above, and # is a unique integer identifier.
88  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
89  * enough to hold all possible device names.
90  */
91 #define DEV_NAME_LEN            32
92 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
93
94 /*
95  * block device image metadata (in-memory version)
96  */
97 struct rbd_image_header {
98         /* These four fields never change for a given rbd image */
99         char *object_prefix;
100         u64 features;
101         __u8 obj_order;
102         __u8 crypt_type;
103         __u8 comp_type;
104
105         /* The remaining fields need to be updated occasionally */
106         u64 image_size;
107         struct ceph_snap_context *snapc;
108         char *snap_names;
109         u64 *snap_sizes;
110
111         u64 obj_version;
112 };
113
114 /*
115  * An rbd image specification.
116  *
117  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
118  * identify an image.  Each rbd_dev structure includes a pointer to
119  * an rbd_spec structure that encapsulates this identity.
120  *
121  * Each of the id's in an rbd_spec has an associated name.  For a
122  * user-mapped image, the names are supplied and the id's associated
123  * with them are looked up.  For a layered image, a parent image is
124  * defined by the tuple, and the names are looked up.
125  *
126  * An rbd_dev structure contains a parent_spec pointer which is
127  * non-null if the image it represents is a child in a layered
128  * image.  This pointer will refer to the rbd_spec structure used
129  * by the parent rbd_dev for its own identity (i.e., the structure
130  * is shared between the parent and child).
131  *
132  * Since these structures are populated once, during the discovery
133  * phase of image construction, they are effectively immutable so
134  * we make no effort to synchronize access to them.
135  *
136  * Note that code herein does not assume the image name is known (it
137  * could be a null pointer).
138  */
139 struct rbd_spec {
140         u64             pool_id;
141         char            *pool_name;
142
143         char            *image_id;
144         char            *image_name;
145
146         u64             snap_id;
147         char            *snap_name;
148
149         struct kref     kref;
150 };
151
152 /*
153  * an instance of the client.  multiple devices may share an rbd client.
154  */
155 struct rbd_client {
156         struct ceph_client      *client;
157         struct kref             kref;
158         struct list_head        node;
159 };
160
161 struct rbd_img_request;
162 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
163
164 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
165
166 struct rbd_obj_request;
167 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
168
169 enum obj_request_type {
170         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
171 };
172
173 enum obj_req_flags {
174         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
175         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
176         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
177         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
178 };
179
180 struct rbd_obj_request {
181         const char              *object_name;
182         u64                     offset;         /* object start byte */
183         u64                     length;         /* bytes from offset */
184         unsigned long           flags;
185
186         /*
187          * An object request associated with an image will have its
188          * img_data flag set; a standalone object request will not.
189          *
190          * A standalone object request will have which == BAD_WHICH
191          * and a null obj_request pointer.
192          *
193          * An object request initiated in support of a layered image
194          * object (to check for its existence before a write) will
195          * have which == BAD_WHICH and a non-null obj_request pointer.
196          *
197          * Finally, an object request for rbd image data will have
198          * which != BAD_WHICH, and will have a non-null img_request
199          * pointer.  The value of which will be in the range
200          * 0..(img_request->obj_request_count-1).
201          */
202         union {
203                 struct rbd_obj_request  *obj_request;   /* STAT op */
204                 struct {
205                         struct rbd_img_request  *img_request;
206                         u64                     img_offset;
207                         /* links for img_request->obj_requests list */
208                         struct list_head        links;
209                 };
210         };
211         u32                     which;          /* posn image request list */
212
213         enum obj_request_type   type;
214         union {
215                 struct bio      *bio_list;
216                 struct {
217                         struct page     **pages;
218                         u32             page_count;
219                 };
220         };
221         struct page             **copyup_pages;
222
223         struct ceph_osd_request *osd_req;
224
225         u64                     xferred;        /* bytes transferred */
226         u64                     version;
227         int                     result;
228
229         rbd_obj_callback_t      callback;
230         struct completion       completion;
231
232         struct kref             kref;
233 };
234
235 enum img_req_flags {
236         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
237         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
238         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
239 };
240
241 struct rbd_img_request {
242         struct rbd_device       *rbd_dev;
243         u64                     offset; /* starting image byte offset */
244         u64                     length; /* byte count from offset */
245         unsigned long           flags;
246         union {
247                 u64                     snap_id;        /* for reads */
248                 struct ceph_snap_context *snapc;        /* for writes */
249         };
250         union {
251                 struct request          *rq;            /* block request */
252                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
253         };
254         struct page             **copyup_pages;
255         spinlock_t              completion_lock;/* protects next_completion */
256         u32                     next_completion;
257         rbd_img_callback_t      callback;
258         u64                     xferred;/* aggregate bytes transferred */
259         int                     result; /* first nonzero obj_request result */
260
261         u32                     obj_request_count;
262         struct list_head        obj_requests;   /* rbd_obj_request structs */
263
264         struct kref             kref;
265 };
266
267 #define for_each_obj_request(ireq, oreq) \
268         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
269 #define for_each_obj_request_from(ireq, oreq) \
270         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
271 #define for_each_obj_request_safe(ireq, oreq, n) \
272         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
273
274 struct rbd_snap {
275         const char              *name;
276         u64                     size;
277         struct list_head        node;
278         u64                     id;
279         u64                     features;
280 };
281
282 struct rbd_mapping {
283         u64                     size;
284         u64                     features;
285         bool                    read_only;
286 };
287
288 /*
289  * a single device
290  */
291 struct rbd_device {
292         int                     dev_id;         /* blkdev unique id */
293
294         int                     major;          /* blkdev assigned major */
295         struct gendisk          *disk;          /* blkdev's gendisk and rq */
296
297         u32                     image_format;   /* Either 1 or 2 */
298         struct rbd_client       *rbd_client;
299
300         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
301
302         spinlock_t              lock;           /* queue, flags, open_count */
303
304         struct rbd_image_header header;
305         unsigned long           flags;          /* possibly lock protected */
306         struct rbd_spec         *spec;
307
308         char                    *header_name;
309
310         struct ceph_file_layout layout;
311
312         struct ceph_osd_event   *watch_event;
313         struct rbd_obj_request  *watch_request;
314
315         struct rbd_spec         *parent_spec;
316         u64                     parent_overlap;
317         struct rbd_device       *parent;
318
319         u64                     stripe_unit;
320         u64                     stripe_count;
321
322         /* protects updating the header */
323         struct rw_semaphore     header_rwsem;
324
325         struct rbd_mapping      mapping;
326
327         struct list_head        node;
328
329         /* list of snapshots */
330         struct list_head        snaps;
331
332         /* sysfs related */
333         struct device           dev;
334         unsigned long           open_count;     /* protected by lock */
335 };
336
337 /*
338  * Flag bits for rbd_dev->flags.  If atomicity is required,
339  * rbd_dev->lock is used to protect access.
340  *
341  * Currently, only the "removing" flag (which is coupled with the
342  * "open_count" field) requires atomic access.
343  */
344 enum rbd_dev_flags {
345         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
346         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
347 };
348
349 static DEFINE_MUTEX(ctl_mutex);   /* Serialize open/close/setup/teardown */
350
351 static LIST_HEAD(rbd_dev_list);    /* devices */
352 static DEFINE_SPINLOCK(rbd_dev_list_lock);
353
354 static LIST_HEAD(rbd_client_list);              /* clients */
355 static DEFINE_SPINLOCK(rbd_client_list_lock);
356
357 static int rbd_img_request_submit(struct rbd_img_request *img_request);
358
359 static int rbd_dev_snaps_update(struct rbd_device *rbd_dev);
360
361 static void rbd_dev_release(struct device *dev);
362 static void rbd_remove_snap_dev(struct rbd_snap *snap);
363
364 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
365                        size_t count);
366 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
367                           size_t count);
368 static int rbd_dev_probe(struct rbd_device *rbd_dev);
369
370 static struct bus_attribute rbd_bus_attrs[] = {
371         __ATTR(add, S_IWUSR, NULL, rbd_add),
372         __ATTR(remove, S_IWUSR, NULL, rbd_remove),
373         __ATTR_NULL
374 };
375
376 static struct bus_type rbd_bus_type = {
377         .name           = "rbd",
378         .bus_attrs      = rbd_bus_attrs,
379 };
380
381 static void rbd_root_dev_release(struct device *dev)
382 {
383 }
384
385 static struct device rbd_root_dev = {
386         .init_name =    "rbd",
387         .release =      rbd_root_dev_release,
388 };
389
390 static __printf(2, 3)
391 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
392 {
393         struct va_format vaf;
394         va_list args;
395
396         va_start(args, fmt);
397         vaf.fmt = fmt;
398         vaf.va = &args;
399
400         if (!rbd_dev)
401                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
402         else if (rbd_dev->disk)
403                 printk(KERN_WARNING "%s: %s: %pV\n",
404                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
405         else if (rbd_dev->spec && rbd_dev->spec->image_name)
406                 printk(KERN_WARNING "%s: image %s: %pV\n",
407                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
408         else if (rbd_dev->spec && rbd_dev->spec->image_id)
409                 printk(KERN_WARNING "%s: id %s: %pV\n",
410                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
411         else    /* punt */
412                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
413                         RBD_DRV_NAME, rbd_dev, &vaf);
414         va_end(args);
415 }
416
417 #ifdef RBD_DEBUG
418 #define rbd_assert(expr)                                                \
419                 if (unlikely(!(expr))) {                                \
420                         printk(KERN_ERR "\nAssertion failure in %s() "  \
421                                                 "at line %d:\n\n"       \
422                                         "\trbd_assert(%s);\n\n",        \
423                                         __func__, __LINE__, #expr);     \
424                         BUG();                                          \
425                 }
426 #else /* !RBD_DEBUG */
427 #  define rbd_assert(expr)      ((void) 0)
428 #endif /* !RBD_DEBUG */
429
430 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
431 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
432
433 static int rbd_dev_refresh(struct rbd_device *rbd_dev, u64 *hver);
434 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev, u64 *hver);
435
436 static int rbd_open(struct block_device *bdev, fmode_t mode)
437 {
438         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
439         bool removing = false;
440
441         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
442                 return -EROFS;
443
444         spin_lock_irq(&rbd_dev->lock);
445         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
446                 removing = true;
447         else
448                 rbd_dev->open_count++;
449         spin_unlock_irq(&rbd_dev->lock);
450         if (removing)
451                 return -ENOENT;
452
453         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
454         (void) get_device(&rbd_dev->dev);
455         set_device_ro(bdev, rbd_dev->mapping.read_only);
456         mutex_unlock(&ctl_mutex);
457
458         return 0;
459 }
460
461 static int rbd_release(struct gendisk *disk, fmode_t mode)
462 {
463         struct rbd_device *rbd_dev = disk->private_data;
464         unsigned long open_count_before;
465
466         spin_lock_irq(&rbd_dev->lock);
467         open_count_before = rbd_dev->open_count--;
468         spin_unlock_irq(&rbd_dev->lock);
469         rbd_assert(open_count_before > 0);
470
471         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
472         put_device(&rbd_dev->dev);
473         mutex_unlock(&ctl_mutex);
474
475         return 0;
476 }
477
478 static const struct block_device_operations rbd_bd_ops = {
479         .owner                  = THIS_MODULE,
480         .open                   = rbd_open,
481         .release                = rbd_release,
482 };
483
484 /*
485  * Initialize an rbd client instance.
486  * We own *ceph_opts.
487  */
488 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
489 {
490         struct rbd_client *rbdc;
491         int ret = -ENOMEM;
492
493         dout("%s:\n", __func__);
494         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
495         if (!rbdc)
496                 goto out_opt;
497
498         kref_init(&rbdc->kref);
499         INIT_LIST_HEAD(&rbdc->node);
500
501         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
502
503         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
504         if (IS_ERR(rbdc->client))
505                 goto out_mutex;
506         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
507
508         ret = ceph_open_session(rbdc->client);
509         if (ret < 0)
510                 goto out_err;
511
512         spin_lock(&rbd_client_list_lock);
513         list_add_tail(&rbdc->node, &rbd_client_list);
514         spin_unlock(&rbd_client_list_lock);
515
516         mutex_unlock(&ctl_mutex);
517         dout("%s: rbdc %p\n", __func__, rbdc);
518
519         return rbdc;
520
521 out_err:
522         ceph_destroy_client(rbdc->client);
523 out_mutex:
524         mutex_unlock(&ctl_mutex);
525         kfree(rbdc);
526 out_opt:
527         if (ceph_opts)
528                 ceph_destroy_options(ceph_opts);
529         dout("%s: error %d\n", __func__, ret);
530
531         return ERR_PTR(ret);
532 }
533
534 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
535 {
536         kref_get(&rbdc->kref);
537
538         return rbdc;
539 }
540
541 /*
542  * Find a ceph client with specific addr and configuration.  If
543  * found, bump its reference count.
544  */
545 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
546 {
547         struct rbd_client *client_node;
548         bool found = false;
549
550         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
551                 return NULL;
552
553         spin_lock(&rbd_client_list_lock);
554         list_for_each_entry(client_node, &rbd_client_list, node) {
555                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
556                         __rbd_get_client(client_node);
557
558                         found = true;
559                         break;
560                 }
561         }
562         spin_unlock(&rbd_client_list_lock);
563
564         return found ? client_node : NULL;
565 }
566
567 /*
568  * mount options
569  */
570 enum {
571         Opt_last_int,
572         /* int args above */
573         Opt_last_string,
574         /* string args above */
575         Opt_read_only,
576         Opt_read_write,
577         /* Boolean args above */
578         Opt_last_bool,
579 };
580
581 static match_table_t rbd_opts_tokens = {
582         /* int args above */
583         /* string args above */
584         {Opt_read_only, "read_only"},
585         {Opt_read_only, "ro"},          /* Alternate spelling */
586         {Opt_read_write, "read_write"},
587         {Opt_read_write, "rw"},         /* Alternate spelling */
588         /* Boolean args above */
589         {-1, NULL}
590 };
591
592 struct rbd_options {
593         bool    read_only;
594 };
595
596 #define RBD_READ_ONLY_DEFAULT   false
597
598 static int parse_rbd_opts_token(char *c, void *private)
599 {
600         struct rbd_options *rbd_opts = private;
601         substring_t argstr[MAX_OPT_ARGS];
602         int token, intval, ret;
603
604         token = match_token(c, rbd_opts_tokens, argstr);
605         if (token < 0)
606                 return -EINVAL;
607
608         if (token < Opt_last_int) {
609                 ret = match_int(&argstr[0], &intval);
610                 if (ret < 0) {
611                         pr_err("bad mount option arg (not int) "
612                                "at '%s'\n", c);
613                         return ret;
614                 }
615                 dout("got int token %d val %d\n", token, intval);
616         } else if (token > Opt_last_int && token < Opt_last_string) {
617                 dout("got string token %d val %s\n", token,
618                      argstr[0].from);
619         } else if (token > Opt_last_string && token < Opt_last_bool) {
620                 dout("got Boolean token %d\n", token);
621         } else {
622                 dout("got token %d\n", token);
623         }
624
625         switch (token) {
626         case Opt_read_only:
627                 rbd_opts->read_only = true;
628                 break;
629         case Opt_read_write:
630                 rbd_opts->read_only = false;
631                 break;
632         default:
633                 rbd_assert(false);
634                 break;
635         }
636         return 0;
637 }
638
639 /*
640  * Get a ceph client with specific addr and configuration, if one does
641  * not exist create it.
642  */
643 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
644 {
645         struct rbd_client *rbdc;
646
647         rbdc = rbd_client_find(ceph_opts);
648         if (rbdc)       /* using an existing client */
649                 ceph_destroy_options(ceph_opts);
650         else
651                 rbdc = rbd_client_create(ceph_opts);
652
653         return rbdc;
654 }
655
656 /*
657  * Destroy ceph client
658  *
659  * Caller must hold rbd_client_list_lock.
660  */
661 static void rbd_client_release(struct kref *kref)
662 {
663         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
664
665         dout("%s: rbdc %p\n", __func__, rbdc);
666         spin_lock(&rbd_client_list_lock);
667         list_del(&rbdc->node);
668         spin_unlock(&rbd_client_list_lock);
669
670         ceph_destroy_client(rbdc->client);
671         kfree(rbdc);
672 }
673
674 /*
675  * Drop reference to ceph client node. If it's not referenced anymore, release
676  * it.
677  */
678 static void rbd_put_client(struct rbd_client *rbdc)
679 {
680         if (rbdc)
681                 kref_put(&rbdc->kref, rbd_client_release);
682 }
683
684 static bool rbd_image_format_valid(u32 image_format)
685 {
686         return image_format == 1 || image_format == 2;
687 }
688
689 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
690 {
691         size_t size;
692         u32 snap_count;
693
694         /* The header has to start with the magic rbd header text */
695         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
696                 return false;
697
698         /* The bio layer requires at least sector-sized I/O */
699
700         if (ondisk->options.order < SECTOR_SHIFT)
701                 return false;
702
703         /* If we use u64 in a few spots we may be able to loosen this */
704
705         if (ondisk->options.order > 8 * sizeof (int) - 1)
706                 return false;
707
708         /*
709          * The size of a snapshot header has to fit in a size_t, and
710          * that limits the number of snapshots.
711          */
712         snap_count = le32_to_cpu(ondisk->snap_count);
713         size = SIZE_MAX - sizeof (struct ceph_snap_context);
714         if (snap_count > size / sizeof (__le64))
715                 return false;
716
717         /*
718          * Not only that, but the size of the entire the snapshot
719          * header must also be representable in a size_t.
720          */
721         size -= snap_count * sizeof (__le64);
722         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
723                 return false;
724
725         return true;
726 }
727
728 /*
729  * Create a new header structure, translate header format from the on-disk
730  * header.
731  */
732 static int rbd_header_from_disk(struct rbd_image_header *header,
733                                  struct rbd_image_header_ondisk *ondisk)
734 {
735         u32 snap_count;
736         size_t len;
737         size_t size;
738         u32 i;
739
740         memset(header, 0, sizeof (*header));
741
742         snap_count = le32_to_cpu(ondisk->snap_count);
743
744         len = strnlen(ondisk->object_prefix, sizeof (ondisk->object_prefix));
745         header->object_prefix = kmalloc(len + 1, GFP_KERNEL);
746         if (!header->object_prefix)
747                 return -ENOMEM;
748         memcpy(header->object_prefix, ondisk->object_prefix, len);
749         header->object_prefix[len] = '\0';
750
751         if (snap_count) {
752                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
753
754                 /* Save a copy of the snapshot names */
755
756                 if (snap_names_len > (u64) SIZE_MAX)
757                         return -EIO;
758                 header->snap_names = kmalloc(snap_names_len, GFP_KERNEL);
759                 if (!header->snap_names)
760                         goto out_err;
761                 /*
762                  * Note that rbd_dev_v1_header_read() guarantees
763                  * the ondisk buffer we're working with has
764                  * snap_names_len bytes beyond the end of the
765                  * snapshot id array, this memcpy() is safe.
766                  */
767                 memcpy(header->snap_names, &ondisk->snaps[snap_count],
768                         snap_names_len);
769
770                 /* Record each snapshot's size */
771
772                 size = snap_count * sizeof (*header->snap_sizes);
773                 header->snap_sizes = kmalloc(size, GFP_KERNEL);
774                 if (!header->snap_sizes)
775                         goto out_err;
776                 for (i = 0; i < snap_count; i++)
777                         header->snap_sizes[i] =
778                                 le64_to_cpu(ondisk->snaps[i].image_size);
779         } else {
780                 WARN_ON(ondisk->snap_names_len);
781                 header->snap_names = NULL;
782                 header->snap_sizes = NULL;
783         }
784
785         header->features = 0;   /* No features support in v1 images */
786         header->obj_order = ondisk->options.order;
787         header->crypt_type = ondisk->options.crypt_type;
788         header->comp_type = ondisk->options.comp_type;
789
790         /* Allocate and fill in the snapshot context */
791
792         header->image_size = le64_to_cpu(ondisk->image_size);
793         size = sizeof (struct ceph_snap_context);
794         size += snap_count * sizeof (header->snapc->snaps[0]);
795         header->snapc = kzalloc(size, GFP_KERNEL);
796         if (!header->snapc)
797                 goto out_err;
798
799         atomic_set(&header->snapc->nref, 1);
800         header->snapc->seq = le64_to_cpu(ondisk->snap_seq);
801         header->snapc->num_snaps = snap_count;
802         for (i = 0; i < snap_count; i++)
803                 header->snapc->snaps[i] =
804                         le64_to_cpu(ondisk->snaps[i].id);
805
806         return 0;
807
808 out_err:
809         kfree(header->snap_sizes);
810         header->snap_sizes = NULL;
811         kfree(header->snap_names);
812         header->snap_names = NULL;
813         kfree(header->object_prefix);
814         header->object_prefix = NULL;
815
816         return -ENOMEM;
817 }
818
819 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
820 {
821         struct rbd_snap *snap;
822
823         if (snap_id == CEPH_NOSNAP)
824                 return RBD_SNAP_HEAD_NAME;
825
826         list_for_each_entry(snap, &rbd_dev->snaps, node)
827                 if (snap_id == snap->id)
828                         return snap->name;
829
830         return NULL;
831 }
832
833 static int snap_by_name(struct rbd_device *rbd_dev, const char *snap_name)
834 {
835
836         struct rbd_snap *snap;
837
838         list_for_each_entry(snap, &rbd_dev->snaps, node) {
839                 if (!strcmp(snap_name, snap->name)) {
840                         rbd_dev->spec->snap_id = snap->id;
841                         rbd_dev->mapping.size = snap->size;
842                         rbd_dev->mapping.features = snap->features;
843
844                         return 0;
845                 }
846         }
847
848         return -ENOENT;
849 }
850
851 static int rbd_dev_set_mapping(struct rbd_device *rbd_dev)
852 {
853         int ret;
854
855         if (!memcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME,
856                     sizeof (RBD_SNAP_HEAD_NAME))) {
857                 rbd_dev->spec->snap_id = CEPH_NOSNAP;
858                 rbd_dev->mapping.size = rbd_dev->header.image_size;
859                 rbd_dev->mapping.features = rbd_dev->header.features;
860                 ret = 0;
861         } else {
862                 ret = snap_by_name(rbd_dev, rbd_dev->spec->snap_name);
863                 if (ret < 0)
864                         goto done;
865                 rbd_dev->mapping.read_only = true;
866         }
867         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
868
869 done:
870         return ret;
871 }
872
873 static void rbd_header_free(struct rbd_image_header *header)
874 {
875         kfree(header->object_prefix);
876         header->object_prefix = NULL;
877         kfree(header->snap_sizes);
878         header->snap_sizes = NULL;
879         kfree(header->snap_names);
880         header->snap_names = NULL;
881         ceph_put_snap_context(header->snapc);
882         header->snapc = NULL;
883 }
884
885 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
886 {
887         char *name;
888         u64 segment;
889         int ret;
890
891         name = kmalloc(MAX_OBJ_NAME_SIZE + 1, GFP_NOIO);
892         if (!name)
893                 return NULL;
894         segment = offset >> rbd_dev->header.obj_order;
895         ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, "%s.%012llx",
896                         rbd_dev->header.object_prefix, segment);
897         if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
898                 pr_err("error formatting segment name for #%llu (%d)\n",
899                         segment, ret);
900                 kfree(name);
901                 name = NULL;
902         }
903
904         return name;
905 }
906
907 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
908 {
909         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
910
911         return offset & (segment_size - 1);
912 }
913
914 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
915                                 u64 offset, u64 length)
916 {
917         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
918
919         offset &= segment_size - 1;
920
921         rbd_assert(length <= U64_MAX - offset);
922         if (offset + length > segment_size)
923                 length = segment_size - offset;
924
925         return length;
926 }
927
928 /*
929  * returns the size of an object in the image
930  */
931 static u64 rbd_obj_bytes(struct rbd_image_header *header)
932 {
933         return 1 << header->obj_order;
934 }
935
936 /*
937  * bio helpers
938  */
939
940 static void bio_chain_put(struct bio *chain)
941 {
942         struct bio *tmp;
943
944         while (chain) {
945                 tmp = chain;
946                 chain = chain->bi_next;
947                 bio_put(tmp);
948         }
949 }
950
951 /*
952  * zeros a bio chain, starting at specific offset
953  */
954 static void zero_bio_chain(struct bio *chain, int start_ofs)
955 {
956         struct bio_vec *bv;
957         unsigned long flags;
958         void *buf;
959         int i;
960         int pos = 0;
961
962         while (chain) {
963                 bio_for_each_segment(bv, chain, i) {
964                         if (pos + bv->bv_len > start_ofs) {
965                                 int remainder = max(start_ofs - pos, 0);
966                                 buf = bvec_kmap_irq(bv, &flags);
967                                 memset(buf + remainder, 0,
968                                        bv->bv_len - remainder);
969                                 bvec_kunmap_irq(buf, &flags);
970                         }
971                         pos += bv->bv_len;
972                 }
973
974                 chain = chain->bi_next;
975         }
976 }
977
978 /*
979  * similar to zero_bio_chain(), zeros data defined by a page array,
980  * starting at the given byte offset from the start of the array and
981  * continuing up to the given end offset.  The pages array is
982  * assumed to be big enough to hold all bytes up to the end.
983  */
984 static void zero_pages(struct page **pages, u64 offset, u64 end)
985 {
986         struct page **page = &pages[offset >> PAGE_SHIFT];
987
988         rbd_assert(end > offset);
989         rbd_assert(end - offset <= (u64)SIZE_MAX);
990         while (offset < end) {
991                 size_t page_offset;
992                 size_t length;
993                 unsigned long flags;
994                 void *kaddr;
995
996                 page_offset = (size_t)(offset & ~PAGE_MASK);
997                 length = min(PAGE_SIZE - page_offset, (size_t)(end - offset));
998                 local_irq_save(flags);
999                 kaddr = kmap_atomic(*page);
1000                 memset(kaddr + page_offset, 0, length);
1001                 kunmap_atomic(kaddr);
1002                 local_irq_restore(flags);
1003
1004                 offset += length;
1005                 page++;
1006         }
1007 }
1008
1009 /*
1010  * Clone a portion of a bio, starting at the given byte offset
1011  * and continuing for the number of bytes indicated.
1012  */
1013 static struct bio *bio_clone_range(struct bio *bio_src,
1014                                         unsigned int offset,
1015                                         unsigned int len,
1016                                         gfp_t gfpmask)
1017 {
1018         struct bio_vec *bv;
1019         unsigned int resid;
1020         unsigned short idx;
1021         unsigned int voff;
1022         unsigned short end_idx;
1023         unsigned short vcnt;
1024         struct bio *bio;
1025
1026         /* Handle the easy case for the caller */
1027
1028         if (!offset && len == bio_src->bi_size)
1029                 return bio_clone(bio_src, gfpmask);
1030
1031         if (WARN_ON_ONCE(!len))
1032                 return NULL;
1033         if (WARN_ON_ONCE(len > bio_src->bi_size))
1034                 return NULL;
1035         if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
1036                 return NULL;
1037
1038         /* Find first affected segment... */
1039
1040         resid = offset;
1041         __bio_for_each_segment(bv, bio_src, idx, 0) {
1042                 if (resid < bv->bv_len)
1043                         break;
1044                 resid -= bv->bv_len;
1045         }
1046         voff = resid;
1047
1048         /* ...and the last affected segment */
1049
1050         resid += len;
1051         __bio_for_each_segment(bv, bio_src, end_idx, idx) {
1052                 if (resid <= bv->bv_len)
1053                         break;
1054                 resid -= bv->bv_len;
1055         }
1056         vcnt = end_idx - idx + 1;
1057
1058         /* Build the clone */
1059
1060         bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1061         if (!bio)
1062                 return NULL;    /* ENOMEM */
1063
1064         bio->bi_bdev = bio_src->bi_bdev;
1065         bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1066         bio->bi_rw = bio_src->bi_rw;
1067         bio->bi_flags |= 1 << BIO_CLONED;
1068
1069         /*
1070          * Copy over our part of the bio_vec, then update the first
1071          * and last (or only) entries.
1072          */
1073         memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1074                         vcnt * sizeof (struct bio_vec));
1075         bio->bi_io_vec[0].bv_offset += voff;
1076         if (vcnt > 1) {
1077                 bio->bi_io_vec[0].bv_len -= voff;
1078                 bio->bi_io_vec[vcnt - 1].bv_len = resid;
1079         } else {
1080                 bio->bi_io_vec[0].bv_len = len;
1081         }
1082
1083         bio->bi_vcnt = vcnt;
1084         bio->bi_size = len;
1085         bio->bi_idx = 0;
1086
1087         return bio;
1088 }
1089
1090 /*
1091  * Clone a portion of a bio chain, starting at the given byte offset
1092  * into the first bio in the source chain and continuing for the
1093  * number of bytes indicated.  The result is another bio chain of
1094  * exactly the given length, or a null pointer on error.
1095  *
1096  * The bio_src and offset parameters are both in-out.  On entry they
1097  * refer to the first source bio and the offset into that bio where
1098  * the start of data to be cloned is located.
1099  *
1100  * On return, bio_src is updated to refer to the bio in the source
1101  * chain that contains first un-cloned byte, and *offset will
1102  * contain the offset of that byte within that bio.
1103  */
1104 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1105                                         unsigned int *offset,
1106                                         unsigned int len,
1107                                         gfp_t gfpmask)
1108 {
1109         struct bio *bi = *bio_src;
1110         unsigned int off = *offset;
1111         struct bio *chain = NULL;
1112         struct bio **end;
1113
1114         /* Build up a chain of clone bios up to the limit */
1115
1116         if (!bi || off >= bi->bi_size || !len)
1117                 return NULL;            /* Nothing to clone */
1118
1119         end = &chain;
1120         while (len) {
1121                 unsigned int bi_size;
1122                 struct bio *bio;
1123
1124                 if (!bi) {
1125                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1126                         goto out_err;   /* EINVAL; ran out of bio's */
1127                 }
1128                 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1129                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1130                 if (!bio)
1131                         goto out_err;   /* ENOMEM */
1132
1133                 *end = bio;
1134                 end = &bio->bi_next;
1135
1136                 off += bi_size;
1137                 if (off == bi->bi_size) {
1138                         bi = bi->bi_next;
1139                         off = 0;
1140                 }
1141                 len -= bi_size;
1142         }
1143         *bio_src = bi;
1144         *offset = off;
1145
1146         return chain;
1147 out_err:
1148         bio_chain_put(chain);
1149
1150         return NULL;
1151 }
1152
1153 /*
1154  * The default/initial value for all object request flags is 0.  For
1155  * each flag, once its value is set to 1 it is never reset to 0
1156  * again.
1157  */
1158 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1159 {
1160         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1161                 struct rbd_device *rbd_dev;
1162
1163                 rbd_dev = obj_request->img_request->rbd_dev;
1164                 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1165                         obj_request);
1166         }
1167 }
1168
1169 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1170 {
1171         smp_mb();
1172         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1173 }
1174
1175 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1176 {
1177         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1178                 struct rbd_device *rbd_dev = NULL;
1179
1180                 if (obj_request_img_data_test(obj_request))
1181                         rbd_dev = obj_request->img_request->rbd_dev;
1182                 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1183                         obj_request);
1184         }
1185 }
1186
1187 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1188 {
1189         smp_mb();
1190         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1191 }
1192
1193 /*
1194  * This sets the KNOWN flag after (possibly) setting the EXISTS
1195  * flag.  The latter is set based on the "exists" value provided.
1196  *
1197  * Note that for our purposes once an object exists it never goes
1198  * away again.  It's possible that the response from two existence
1199  * checks are separated by the creation of the target object, and
1200  * the first ("doesn't exist") response arrives *after* the second
1201  * ("does exist").  In that case we ignore the second one.
1202  */
1203 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1204                                 bool exists)
1205 {
1206         if (exists)
1207                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1208         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1209         smp_mb();
1210 }
1211
1212 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1213 {
1214         smp_mb();
1215         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1216 }
1217
1218 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1219 {
1220         smp_mb();
1221         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1222 }
1223
1224 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1225 {
1226         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1227                 atomic_read(&obj_request->kref.refcount));
1228         kref_get(&obj_request->kref);
1229 }
1230
1231 static void rbd_obj_request_destroy(struct kref *kref);
1232 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1233 {
1234         rbd_assert(obj_request != NULL);
1235         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1236                 atomic_read(&obj_request->kref.refcount));
1237         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1238 }
1239
1240 static void rbd_img_request_get(struct rbd_img_request *img_request)
1241 {
1242         dout("%s: img %p (was %d)\n", __func__, img_request,
1243                 atomic_read(&img_request->kref.refcount));
1244         kref_get(&img_request->kref);
1245 }
1246
1247 static void rbd_img_request_destroy(struct kref *kref);
1248 static void rbd_img_request_put(struct rbd_img_request *img_request)
1249 {
1250         rbd_assert(img_request != NULL);
1251         dout("%s: img %p (was %d)\n", __func__, img_request,
1252                 atomic_read(&img_request->kref.refcount));
1253         kref_put(&img_request->kref, rbd_img_request_destroy);
1254 }
1255
1256 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1257                                         struct rbd_obj_request *obj_request)
1258 {
1259         rbd_assert(obj_request->img_request == NULL);
1260
1261         /* Image request now owns object's original reference */
1262         obj_request->img_request = img_request;
1263         obj_request->which = img_request->obj_request_count;
1264         rbd_assert(!obj_request_img_data_test(obj_request));
1265         obj_request_img_data_set(obj_request);
1266         rbd_assert(obj_request->which != BAD_WHICH);
1267         img_request->obj_request_count++;
1268         list_add_tail(&obj_request->links, &img_request->obj_requests);
1269         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1270                 obj_request->which);
1271 }
1272
1273 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1274                                         struct rbd_obj_request *obj_request)
1275 {
1276         rbd_assert(obj_request->which != BAD_WHICH);
1277
1278         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1279                 obj_request->which);
1280         list_del(&obj_request->links);
1281         rbd_assert(img_request->obj_request_count > 0);
1282         img_request->obj_request_count--;
1283         rbd_assert(obj_request->which == img_request->obj_request_count);
1284         obj_request->which = BAD_WHICH;
1285         rbd_assert(obj_request_img_data_test(obj_request));
1286         rbd_assert(obj_request->img_request == img_request);
1287         obj_request->img_request = NULL;
1288         obj_request->callback = NULL;
1289         rbd_obj_request_put(obj_request);
1290 }
1291
1292 static bool obj_request_type_valid(enum obj_request_type type)
1293 {
1294         switch (type) {
1295         case OBJ_REQUEST_NODATA:
1296         case OBJ_REQUEST_BIO:
1297         case OBJ_REQUEST_PAGES:
1298                 return true;
1299         default:
1300                 return false;
1301         }
1302 }
1303
1304 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1305                                 struct rbd_obj_request *obj_request)
1306 {
1307         dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1308
1309         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1310 }
1311
1312 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1313 {
1314
1315         dout("%s: img %p\n", __func__, img_request);
1316
1317         /*
1318          * If no error occurred, compute the aggregate transfer
1319          * count for the image request.  We could instead use
1320          * atomic64_cmpxchg() to update it as each object request
1321          * completes; not clear which way is better off hand.
1322          */
1323         if (!img_request->result) {
1324                 struct rbd_obj_request *obj_request;
1325                 u64 xferred = 0;
1326
1327                 for_each_obj_request(img_request, obj_request)
1328                         xferred += obj_request->xferred;
1329                 img_request->xferred = xferred;
1330         }
1331
1332         if (img_request->callback)
1333                 img_request->callback(img_request);
1334         else
1335                 rbd_img_request_put(img_request);
1336 }
1337
1338 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1339
1340 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1341 {
1342         dout("%s: obj %p\n", __func__, obj_request);
1343
1344         return wait_for_completion_interruptible(&obj_request->completion);
1345 }
1346
1347 /*
1348  * The default/initial value for all image request flags is 0.  Each
1349  * is conditionally set to 1 at image request initialization time
1350  * and currently never change thereafter.
1351  */
1352 static void img_request_write_set(struct rbd_img_request *img_request)
1353 {
1354         set_bit(IMG_REQ_WRITE, &img_request->flags);
1355         smp_mb();
1356 }
1357
1358 static bool img_request_write_test(struct rbd_img_request *img_request)
1359 {
1360         smp_mb();
1361         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1362 }
1363
1364 static void img_request_child_set(struct rbd_img_request *img_request)
1365 {
1366         set_bit(IMG_REQ_CHILD, &img_request->flags);
1367         smp_mb();
1368 }
1369
1370 static bool img_request_child_test(struct rbd_img_request *img_request)
1371 {
1372         smp_mb();
1373         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1374 }
1375
1376 static void img_request_layered_set(struct rbd_img_request *img_request)
1377 {
1378         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1379         smp_mb();
1380 }
1381
1382 static bool img_request_layered_test(struct rbd_img_request *img_request)
1383 {
1384         smp_mb();
1385         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1386 }
1387
1388 static void
1389 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1390 {
1391         u64 xferred = obj_request->xferred;
1392         u64 length = obj_request->length;
1393
1394         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1395                 obj_request, obj_request->img_request, obj_request->result,
1396                 xferred, length);
1397         /*
1398          * ENOENT means a hole in the image.  We zero-fill the
1399          * entire length of the request.  A short read also implies
1400          * zero-fill to the end of the request.  Either way we
1401          * update the xferred count to indicate the whole request
1402          * was satisfied.
1403          */
1404         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1405         if (obj_request->result == -ENOENT) {
1406                 if (obj_request->type == OBJ_REQUEST_BIO)
1407                         zero_bio_chain(obj_request->bio_list, 0);
1408                 else
1409                         zero_pages(obj_request->pages, 0, length);
1410                 obj_request->result = 0;
1411                 obj_request->xferred = length;
1412         } else if (xferred < length && !obj_request->result) {
1413                 if (obj_request->type == OBJ_REQUEST_BIO)
1414                         zero_bio_chain(obj_request->bio_list, xferred);
1415                 else
1416                         zero_pages(obj_request->pages, xferred, length);
1417                 obj_request->xferred = length;
1418         }
1419         obj_request_done_set(obj_request);
1420 }
1421
1422 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1423 {
1424         dout("%s: obj %p cb %p\n", __func__, obj_request,
1425                 obj_request->callback);
1426         if (obj_request->callback)
1427                 obj_request->callback(obj_request);
1428         else
1429                 complete_all(&obj_request->completion);
1430 }
1431
1432 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1433 {
1434         dout("%s: obj %p\n", __func__, obj_request);
1435         obj_request_done_set(obj_request);
1436 }
1437
1438 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1439 {
1440         struct rbd_img_request *img_request = NULL;
1441         struct rbd_device *rbd_dev = NULL;
1442         bool layered = false;
1443
1444         if (obj_request_img_data_test(obj_request)) {
1445                 img_request = obj_request->img_request;
1446                 layered = img_request && img_request_layered_test(img_request);
1447                 rbd_dev = img_request->rbd_dev;
1448         }
1449
1450         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1451                 obj_request, img_request, obj_request->result,
1452                 obj_request->xferred, obj_request->length);
1453         if (layered && obj_request->result == -ENOENT &&
1454                         obj_request->img_offset < rbd_dev->parent_overlap)
1455                 rbd_img_parent_read(obj_request);
1456         else if (img_request)
1457                 rbd_img_obj_request_read_callback(obj_request);
1458         else
1459                 obj_request_done_set(obj_request);
1460 }
1461
1462 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1463 {
1464         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1465                 obj_request->result, obj_request->length);
1466         /*
1467          * There is no such thing as a successful short write.  Set
1468          * it to our originally-requested length.
1469          */
1470         obj_request->xferred = obj_request->length;
1471         obj_request_done_set(obj_request);
1472 }
1473
1474 /*
1475  * For a simple stat call there's nothing to do.  We'll do more if
1476  * this is part of a write sequence for a layered image.
1477  */
1478 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1479 {
1480         dout("%s: obj %p\n", __func__, obj_request);
1481         obj_request_done_set(obj_request);
1482 }
1483
1484 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1485                                 struct ceph_msg *msg)
1486 {
1487         struct rbd_obj_request *obj_request = osd_req->r_priv;
1488         u16 opcode;
1489
1490         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1491         rbd_assert(osd_req == obj_request->osd_req);
1492         if (obj_request_img_data_test(obj_request)) {
1493                 rbd_assert(obj_request->img_request);
1494                 rbd_assert(obj_request->which != BAD_WHICH);
1495         } else {
1496                 rbd_assert(obj_request->which == BAD_WHICH);
1497         }
1498
1499         if (osd_req->r_result < 0)
1500                 obj_request->result = osd_req->r_result;
1501         obj_request->version = le64_to_cpu(osd_req->r_reassert_version.version);
1502
1503         BUG_ON(osd_req->r_num_ops > 2);
1504
1505         /*
1506          * We support a 64-bit length, but ultimately it has to be
1507          * passed to blk_end_request(), which takes an unsigned int.
1508          */
1509         obj_request->xferred = osd_req->r_reply_op_len[0];
1510         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1511         opcode = osd_req->r_ops[0].op;
1512         switch (opcode) {
1513         case CEPH_OSD_OP_READ:
1514                 rbd_osd_read_callback(obj_request);
1515                 break;
1516         case CEPH_OSD_OP_WRITE:
1517                 rbd_osd_write_callback(obj_request);
1518                 break;
1519         case CEPH_OSD_OP_STAT:
1520                 rbd_osd_stat_callback(obj_request);
1521                 break;
1522         case CEPH_OSD_OP_CALL:
1523         case CEPH_OSD_OP_NOTIFY_ACK:
1524         case CEPH_OSD_OP_WATCH:
1525                 rbd_osd_trivial_callback(obj_request);
1526                 break;
1527         default:
1528                 rbd_warn(NULL, "%s: unsupported op %hu\n",
1529                         obj_request->object_name, (unsigned short) opcode);
1530                 break;
1531         }
1532
1533         if (obj_request_done_test(obj_request))
1534                 rbd_obj_request_complete(obj_request);
1535 }
1536
1537 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1538 {
1539         struct rbd_img_request *img_request = obj_request->img_request;
1540         struct ceph_osd_request *osd_req = obj_request->osd_req;
1541         u64 snap_id;
1542
1543         rbd_assert(osd_req != NULL);
1544
1545         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1546         ceph_osdc_build_request(osd_req, obj_request->offset,
1547                         NULL, snap_id, NULL);
1548 }
1549
1550 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1551 {
1552         struct rbd_img_request *img_request = obj_request->img_request;
1553         struct ceph_osd_request *osd_req = obj_request->osd_req;
1554         struct ceph_snap_context *snapc;
1555         struct timespec mtime = CURRENT_TIME;
1556
1557         rbd_assert(osd_req != NULL);
1558
1559         snapc = img_request ? img_request->snapc : NULL;
1560         ceph_osdc_build_request(osd_req, obj_request->offset,
1561                         snapc, CEPH_NOSNAP, &mtime);
1562 }
1563
1564 static struct ceph_osd_request *rbd_osd_req_create(
1565                                         struct rbd_device *rbd_dev,
1566                                         bool write_request,
1567                                         struct rbd_obj_request *obj_request)
1568 {
1569         struct ceph_snap_context *snapc = NULL;
1570         struct ceph_osd_client *osdc;
1571         struct ceph_osd_request *osd_req;
1572
1573         if (obj_request_img_data_test(obj_request)) {
1574                 struct rbd_img_request *img_request = obj_request->img_request;
1575
1576                 rbd_assert(write_request ==
1577                                 img_request_write_test(img_request));
1578                 if (write_request)
1579                         snapc = img_request->snapc;
1580         }
1581
1582         /* Allocate and initialize the request, for the single op */
1583
1584         osdc = &rbd_dev->rbd_client->client->osdc;
1585         osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1586         if (!osd_req)
1587                 return NULL;    /* ENOMEM */
1588
1589         if (write_request)
1590                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1591         else
1592                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1593
1594         osd_req->r_callback = rbd_osd_req_callback;
1595         osd_req->r_priv = obj_request;
1596
1597         osd_req->r_oid_len = strlen(obj_request->object_name);
1598         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1599         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1600
1601         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1602
1603         return osd_req;
1604 }
1605
1606 /*
1607  * Create a copyup osd request based on the information in the
1608  * object request supplied.  A copyup request has two osd ops,
1609  * a copyup method call, and a "normal" write request.
1610  */
1611 static struct ceph_osd_request *
1612 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1613 {
1614         struct rbd_img_request *img_request;
1615         struct ceph_snap_context *snapc;
1616         struct rbd_device *rbd_dev;
1617         struct ceph_osd_client *osdc;
1618         struct ceph_osd_request *osd_req;
1619
1620         rbd_assert(obj_request_img_data_test(obj_request));
1621         img_request = obj_request->img_request;
1622         rbd_assert(img_request);
1623         rbd_assert(img_request_write_test(img_request));
1624
1625         /* Allocate and initialize the request, for the two ops */
1626
1627         snapc = img_request->snapc;
1628         rbd_dev = img_request->rbd_dev;
1629         osdc = &rbd_dev->rbd_client->client->osdc;
1630         osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1631         if (!osd_req)
1632                 return NULL;    /* ENOMEM */
1633
1634         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1635         osd_req->r_callback = rbd_osd_req_callback;
1636         osd_req->r_priv = obj_request;
1637
1638         osd_req->r_oid_len = strlen(obj_request->object_name);
1639         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1640         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1641
1642         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1643
1644         return osd_req;
1645 }
1646
1647
1648 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1649 {
1650         ceph_osdc_put_request(osd_req);
1651 }
1652
1653 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1654
1655 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1656                                                 u64 offset, u64 length,
1657                                                 enum obj_request_type type)
1658 {
1659         struct rbd_obj_request *obj_request;
1660         size_t size;
1661         char *name;
1662
1663         rbd_assert(obj_request_type_valid(type));
1664
1665         size = strlen(object_name) + 1;
1666         obj_request = kzalloc(sizeof (*obj_request) + size, GFP_KERNEL);
1667         if (!obj_request)
1668                 return NULL;
1669
1670         name = (char *)(obj_request + 1);
1671         obj_request->object_name = memcpy(name, object_name, size);
1672         obj_request->offset = offset;
1673         obj_request->length = length;
1674         obj_request->flags = 0;
1675         obj_request->which = BAD_WHICH;
1676         obj_request->type = type;
1677         INIT_LIST_HEAD(&obj_request->links);
1678         init_completion(&obj_request->completion);
1679         kref_init(&obj_request->kref);
1680
1681         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1682                 offset, length, (int)type, obj_request);
1683
1684         return obj_request;
1685 }
1686
1687 static void rbd_obj_request_destroy(struct kref *kref)
1688 {
1689         struct rbd_obj_request *obj_request;
1690
1691         obj_request = container_of(kref, struct rbd_obj_request, kref);
1692
1693         dout("%s: obj %p\n", __func__, obj_request);
1694
1695         rbd_assert(obj_request->img_request == NULL);
1696         rbd_assert(obj_request->which == BAD_WHICH);
1697
1698         if (obj_request->osd_req)
1699                 rbd_osd_req_destroy(obj_request->osd_req);
1700
1701         rbd_assert(obj_request_type_valid(obj_request->type));
1702         switch (obj_request->type) {
1703         case OBJ_REQUEST_NODATA:
1704                 break;          /* Nothing to do */
1705         case OBJ_REQUEST_BIO:
1706                 if (obj_request->bio_list)
1707                         bio_chain_put(obj_request->bio_list);
1708                 break;
1709         case OBJ_REQUEST_PAGES:
1710                 if (obj_request->pages)
1711                         ceph_release_page_vector(obj_request->pages,
1712                                                 obj_request->page_count);
1713                 break;
1714         }
1715
1716         kfree(obj_request);
1717 }
1718
1719 /*
1720  * Caller is responsible for filling in the list of object requests
1721  * that comprises the image request, and the Linux request pointer
1722  * (if there is one).
1723  */
1724 static struct rbd_img_request *rbd_img_request_create(
1725                                         struct rbd_device *rbd_dev,
1726                                         u64 offset, u64 length,
1727                                         bool write_request,
1728                                         bool child_request)
1729 {
1730         struct rbd_img_request *img_request;
1731         struct ceph_snap_context *snapc = NULL;
1732
1733         img_request = kmalloc(sizeof (*img_request), GFP_ATOMIC);
1734         if (!img_request)
1735                 return NULL;
1736
1737         if (write_request) {
1738                 down_read(&rbd_dev->header_rwsem);
1739                 snapc = ceph_get_snap_context(rbd_dev->header.snapc);
1740                 up_read(&rbd_dev->header_rwsem);
1741                 if (WARN_ON(!snapc)) {
1742                         kfree(img_request);
1743                         return NULL;    /* Shouldn't happen */
1744                 }
1745
1746         }
1747
1748         img_request->rq = NULL;
1749         img_request->rbd_dev = rbd_dev;
1750         img_request->offset = offset;
1751         img_request->length = length;
1752         img_request->flags = 0;
1753         if (write_request) {
1754                 img_request_write_set(img_request);
1755                 img_request->snapc = snapc;
1756         } else {
1757                 img_request->snap_id = rbd_dev->spec->snap_id;
1758         }
1759         if (child_request)
1760                 img_request_child_set(img_request);
1761         if (rbd_dev->parent_spec)
1762                 img_request_layered_set(img_request);
1763         spin_lock_init(&img_request->completion_lock);
1764         img_request->next_completion = 0;
1765         img_request->callback = NULL;
1766         img_request->result = 0;
1767         img_request->obj_request_count = 0;
1768         INIT_LIST_HEAD(&img_request->obj_requests);
1769         kref_init(&img_request->kref);
1770
1771         rbd_img_request_get(img_request);       /* Avoid a warning */
1772         rbd_img_request_put(img_request);       /* TEMPORARY */
1773
1774         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
1775                 write_request ? "write" : "read", offset, length,
1776                 img_request);
1777
1778         return img_request;
1779 }
1780
1781 static void rbd_img_request_destroy(struct kref *kref)
1782 {
1783         struct rbd_img_request *img_request;
1784         struct rbd_obj_request *obj_request;
1785         struct rbd_obj_request *next_obj_request;
1786
1787         img_request = container_of(kref, struct rbd_img_request, kref);
1788
1789         dout("%s: img %p\n", __func__, img_request);
1790
1791         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1792                 rbd_img_obj_request_del(img_request, obj_request);
1793         rbd_assert(img_request->obj_request_count == 0);
1794
1795         if (img_request_write_test(img_request))
1796                 ceph_put_snap_context(img_request->snapc);
1797
1798         if (img_request_child_test(img_request))
1799                 rbd_obj_request_put(img_request->obj_request);
1800
1801         kfree(img_request);
1802 }
1803
1804 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
1805 {
1806         struct rbd_img_request *img_request;
1807         unsigned int xferred;
1808         int result;
1809         bool more;
1810
1811         rbd_assert(obj_request_img_data_test(obj_request));
1812         img_request = obj_request->img_request;
1813
1814         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
1815         xferred = (unsigned int)obj_request->xferred;
1816         result = obj_request->result;
1817         if (result) {
1818                 struct rbd_device *rbd_dev = img_request->rbd_dev;
1819
1820                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
1821                         img_request_write_test(img_request) ? "write" : "read",
1822                         obj_request->length, obj_request->img_offset,
1823                         obj_request->offset);
1824                 rbd_warn(rbd_dev, "  result %d xferred %x\n",
1825                         result, xferred);
1826                 if (!img_request->result)
1827                         img_request->result = result;
1828         }
1829
1830         /* Image object requests don't own their page array */
1831
1832         if (obj_request->type == OBJ_REQUEST_PAGES) {
1833                 obj_request->pages = NULL;
1834                 obj_request->page_count = 0;
1835         }
1836
1837         if (img_request_child_test(img_request)) {
1838                 rbd_assert(img_request->obj_request != NULL);
1839                 more = obj_request->which < img_request->obj_request_count - 1;
1840         } else {
1841                 rbd_assert(img_request->rq != NULL);
1842                 more = blk_end_request(img_request->rq, result, xferred);
1843         }
1844
1845         return more;
1846 }
1847
1848 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
1849 {
1850         struct rbd_img_request *img_request;
1851         u32 which = obj_request->which;
1852         bool more = true;
1853
1854         rbd_assert(obj_request_img_data_test(obj_request));
1855         img_request = obj_request->img_request;
1856
1857         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1858         rbd_assert(img_request != NULL);
1859         rbd_assert(img_request->obj_request_count > 0);
1860         rbd_assert(which != BAD_WHICH);
1861         rbd_assert(which < img_request->obj_request_count);
1862         rbd_assert(which >= img_request->next_completion);
1863
1864         spin_lock_irq(&img_request->completion_lock);
1865         if (which != img_request->next_completion)
1866                 goto out;
1867
1868         for_each_obj_request_from(img_request, obj_request) {
1869                 rbd_assert(more);
1870                 rbd_assert(which < img_request->obj_request_count);
1871
1872                 if (!obj_request_done_test(obj_request))
1873                         break;
1874                 more = rbd_img_obj_end_request(obj_request);
1875                 which++;
1876         }
1877
1878         rbd_assert(more ^ (which == img_request->obj_request_count));
1879         img_request->next_completion = which;
1880 out:
1881         spin_unlock_irq(&img_request->completion_lock);
1882
1883         if (!more)
1884                 rbd_img_request_complete(img_request);
1885 }
1886
1887 /*
1888  * Split up an image request into one or more object requests, each
1889  * to a different object.  The "type" parameter indicates whether
1890  * "data_desc" is the pointer to the head of a list of bio
1891  * structures, or the base of a page array.  In either case this
1892  * function assumes data_desc describes memory sufficient to hold
1893  * all data described by the image request.
1894  */
1895 static int rbd_img_request_fill(struct rbd_img_request *img_request,
1896                                         enum obj_request_type type,
1897                                         void *data_desc)
1898 {
1899         struct rbd_device *rbd_dev = img_request->rbd_dev;
1900         struct rbd_obj_request *obj_request = NULL;
1901         struct rbd_obj_request *next_obj_request;
1902         bool write_request = img_request_write_test(img_request);
1903         struct bio *bio_list;
1904         unsigned int bio_offset = 0;
1905         struct page **pages;
1906         u64 img_offset;
1907         u64 resid;
1908         u16 opcode;
1909
1910         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
1911                 (int)type, data_desc);
1912
1913         opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
1914         img_offset = img_request->offset;
1915         resid = img_request->length;
1916         rbd_assert(resid > 0);
1917
1918         if (type == OBJ_REQUEST_BIO) {
1919                 bio_list = data_desc;
1920                 rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
1921         } else {
1922                 rbd_assert(type == OBJ_REQUEST_PAGES);
1923                 pages = data_desc;
1924         }
1925
1926         while (resid) {
1927                 struct ceph_osd_request *osd_req;
1928                 const char *object_name;
1929                 u64 offset;
1930                 u64 length;
1931
1932                 object_name = rbd_segment_name(rbd_dev, img_offset);
1933                 if (!object_name)
1934                         goto out_unwind;
1935                 offset = rbd_segment_offset(rbd_dev, img_offset);
1936                 length = rbd_segment_length(rbd_dev, img_offset, resid);
1937                 obj_request = rbd_obj_request_create(object_name,
1938                                                 offset, length, type);
1939                 kfree(object_name);     /* object request has its own copy */
1940                 if (!obj_request)
1941                         goto out_unwind;
1942
1943                 if (type == OBJ_REQUEST_BIO) {
1944                         unsigned int clone_size;
1945
1946                         rbd_assert(length <= (u64)UINT_MAX);
1947                         clone_size = (unsigned int)length;
1948                         obj_request->bio_list =
1949                                         bio_chain_clone_range(&bio_list,
1950                                                                 &bio_offset,
1951                                                                 clone_size,
1952                                                                 GFP_ATOMIC);
1953                         if (!obj_request->bio_list)
1954                                 goto out_partial;
1955                 } else {
1956                         unsigned int page_count;
1957
1958                         obj_request->pages = pages;
1959                         page_count = (u32)calc_pages_for(offset, length);
1960                         obj_request->page_count = page_count;
1961                         if ((offset + length) & ~PAGE_MASK)
1962                                 page_count--;   /* more on last page */
1963                         pages += page_count;
1964                 }
1965
1966                 osd_req = rbd_osd_req_create(rbd_dev, write_request,
1967                                                 obj_request);
1968                 if (!osd_req)
1969                         goto out_partial;
1970                 obj_request->osd_req = osd_req;
1971                 obj_request->callback = rbd_img_obj_callback;
1972
1973                 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
1974                                                 0, 0);
1975                 if (type == OBJ_REQUEST_BIO)
1976                         osd_req_op_extent_osd_data_bio(osd_req, 0,
1977                                         obj_request->bio_list, length);
1978                 else
1979                         osd_req_op_extent_osd_data_pages(osd_req, 0,
1980                                         obj_request->pages, length,
1981                                         offset & ~PAGE_MASK, false, false);
1982
1983                 if (write_request)
1984                         rbd_osd_req_format_write(obj_request);
1985                 else
1986                         rbd_osd_req_format_read(obj_request);
1987
1988                 obj_request->img_offset = img_offset;
1989                 rbd_img_obj_request_add(img_request, obj_request);
1990
1991                 img_offset += length;
1992                 resid -= length;
1993         }
1994
1995         return 0;
1996
1997 out_partial:
1998         rbd_obj_request_put(obj_request);
1999 out_unwind:
2000         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2001                 rbd_obj_request_put(obj_request);
2002
2003         return -ENOMEM;
2004 }
2005
2006 static void
2007 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2008 {
2009         struct rbd_img_request *img_request;
2010         struct rbd_device *rbd_dev;
2011         u64 length;
2012         u32 page_count;
2013
2014         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2015         rbd_assert(obj_request_img_data_test(obj_request));
2016         img_request = obj_request->img_request;
2017         rbd_assert(img_request);
2018
2019         rbd_dev = img_request->rbd_dev;
2020         rbd_assert(rbd_dev);
2021         length = (u64)1 << rbd_dev->header.obj_order;
2022         page_count = (u32)calc_pages_for(0, length);
2023
2024         rbd_assert(obj_request->copyup_pages);
2025         ceph_release_page_vector(obj_request->copyup_pages, page_count);
2026         obj_request->copyup_pages = NULL;
2027
2028         /*
2029          * We want the transfer count to reflect the size of the
2030          * original write request.  There is no such thing as a
2031          * successful short write, so if the request was successful
2032          * we can just set it to the originally-requested length.
2033          */
2034         if (!obj_request->result)
2035                 obj_request->xferred = obj_request->length;
2036
2037         /* Finish up with the normal image object callback */
2038
2039         rbd_img_obj_callback(obj_request);
2040 }
2041
2042 static void
2043 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2044 {
2045         struct rbd_obj_request *orig_request;
2046         struct ceph_osd_request *osd_req;
2047         struct ceph_osd_client *osdc;
2048         struct rbd_device *rbd_dev;
2049         struct page **pages;
2050         int result;
2051         u64 obj_size;
2052         u64 xferred;
2053
2054         rbd_assert(img_request_child_test(img_request));
2055
2056         /* First get what we need from the image request */
2057
2058         pages = img_request->copyup_pages;
2059         rbd_assert(pages != NULL);
2060         img_request->copyup_pages = NULL;
2061
2062         orig_request = img_request->obj_request;
2063         rbd_assert(orig_request != NULL);
2064         rbd_assert(orig_request->type == OBJ_REQUEST_BIO);
2065         result = img_request->result;
2066         obj_size = img_request->length;
2067         xferred = img_request->xferred;
2068
2069         rbd_dev = img_request->rbd_dev;
2070         rbd_assert(rbd_dev);
2071         rbd_assert(obj_size == (u64)1 << rbd_dev->header.obj_order);
2072
2073         rbd_img_request_put(img_request);
2074
2075         if (result)
2076                 goto out_err;
2077
2078         /* Allocate the new copyup osd request for the original request */
2079
2080         result = -ENOMEM;
2081         rbd_assert(!orig_request->osd_req);
2082         osd_req = rbd_osd_req_create_copyup(orig_request);
2083         if (!osd_req)
2084                 goto out_err;
2085         orig_request->osd_req = osd_req;
2086         orig_request->copyup_pages = pages;
2087
2088         /* Initialize the copyup op */
2089
2090         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2091         osd_req_op_cls_request_data_pages(osd_req, 0, pages, obj_size, 0,
2092                                                 false, false);
2093
2094         /* Then the original write request op */
2095
2096         osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2097                                         orig_request->offset,
2098                                         orig_request->length, 0, 0);
2099         osd_req_op_extent_osd_data_bio(osd_req, 1, orig_request->bio_list,
2100                                         orig_request->length);
2101
2102         rbd_osd_req_format_write(orig_request);
2103
2104         /* All set, send it off. */
2105
2106         orig_request->callback = rbd_img_obj_copyup_callback;
2107         osdc = &rbd_dev->rbd_client->client->osdc;
2108         result = rbd_obj_request_submit(osdc, orig_request);
2109         if (!result)
2110                 return;
2111 out_err:
2112         /* Record the error code and complete the request */
2113
2114         orig_request->result = result;
2115         orig_request->xferred = 0;
2116         obj_request_done_set(orig_request);
2117         rbd_obj_request_complete(orig_request);
2118 }
2119
2120 /*
2121  * Read from the parent image the range of data that covers the
2122  * entire target of the given object request.  This is used for
2123  * satisfying a layered image write request when the target of an
2124  * object request from the image request does not exist.
2125  *
2126  * A page array big enough to hold the returned data is allocated
2127  * and supplied to rbd_img_request_fill() as the "data descriptor."
2128  * When the read completes, this page array will be transferred to
2129  * the original object request for the copyup operation.
2130  *
2131  * If an error occurs, record it as the result of the original
2132  * object request and mark it done so it gets completed.
2133  */
2134 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2135 {
2136         struct rbd_img_request *img_request = NULL;
2137         struct rbd_img_request *parent_request = NULL;
2138         struct rbd_device *rbd_dev;
2139         u64 img_offset;
2140         u64 length;
2141         struct page **pages = NULL;
2142         u32 page_count;
2143         int result;
2144
2145         rbd_assert(obj_request_img_data_test(obj_request));
2146         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2147
2148         img_request = obj_request->img_request;
2149         rbd_assert(img_request != NULL);
2150         rbd_dev = img_request->rbd_dev;
2151         rbd_assert(rbd_dev->parent != NULL);
2152
2153         /*
2154          * First things first.  The original osd request is of no
2155          * use to use any more, we'll need a new one that can hold
2156          * the two ops in a copyup request.  We'll get that later,
2157          * but for now we can release the old one.
2158          */
2159         rbd_osd_req_destroy(obj_request->osd_req);
2160         obj_request->osd_req = NULL;
2161
2162         /*
2163          * Determine the byte range covered by the object in the
2164          * child image to which the original request was to be sent.
2165          */
2166         img_offset = obj_request->img_offset - obj_request->offset;
2167         length = (u64)1 << rbd_dev->header.obj_order;
2168
2169         /*
2170          * There is no defined parent data beyond the parent
2171          * overlap, so limit what we read at that boundary if
2172          * necessary.
2173          */
2174         if (img_offset + length > rbd_dev->parent_overlap) {
2175                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2176                 length = rbd_dev->parent_overlap - img_offset;
2177         }
2178
2179         /*
2180          * Allocate a page array big enough to receive the data read
2181          * from the parent.
2182          */
2183         page_count = (u32)calc_pages_for(0, length);
2184         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2185         if (IS_ERR(pages)) {
2186                 result = PTR_ERR(pages);
2187                 pages = NULL;
2188                 goto out_err;
2189         }
2190
2191         result = -ENOMEM;
2192         parent_request = rbd_img_request_create(rbd_dev->parent,
2193                                                 img_offset, length,
2194                                                 false, true);
2195         if (!parent_request)
2196                 goto out_err;
2197         rbd_obj_request_get(obj_request);
2198         parent_request->obj_request = obj_request;
2199
2200         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2201         if (result)
2202                 goto out_err;
2203         parent_request->copyup_pages = pages;
2204
2205         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2206         result = rbd_img_request_submit(parent_request);
2207         if (!result)
2208                 return 0;
2209
2210         parent_request->copyup_pages = NULL;
2211         parent_request->obj_request = NULL;
2212         rbd_obj_request_put(obj_request);
2213 out_err:
2214         if (pages)
2215                 ceph_release_page_vector(pages, page_count);
2216         if (parent_request)
2217                 rbd_img_request_put(parent_request);
2218         obj_request->result = result;
2219         obj_request->xferred = 0;
2220         obj_request_done_set(obj_request);
2221
2222         return result;
2223 }
2224
2225 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2226 {
2227         struct rbd_obj_request *orig_request;
2228         int result;
2229
2230         rbd_assert(!obj_request_img_data_test(obj_request));
2231
2232         /*
2233          * All we need from the object request is the original
2234          * request and the result of the STAT op.  Grab those, then
2235          * we're done with the request.
2236          */
2237         orig_request = obj_request->obj_request;
2238         obj_request->obj_request = NULL;
2239         rbd_assert(orig_request);
2240         rbd_assert(orig_request->img_request);
2241
2242         result = obj_request->result;
2243         obj_request->result = 0;
2244
2245         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2246                 obj_request, orig_request, result,
2247                 obj_request->xferred, obj_request->length);
2248         rbd_obj_request_put(obj_request);
2249
2250         rbd_assert(orig_request);
2251         rbd_assert(orig_request->img_request);
2252
2253         /*
2254          * Our only purpose here is to determine whether the object
2255          * exists, and we don't want to treat the non-existence as
2256          * an error.  If something else comes back, transfer the
2257          * error to the original request and complete it now.
2258          */
2259         if (!result) {
2260                 obj_request_existence_set(orig_request, true);
2261         } else if (result == -ENOENT) {
2262                 obj_request_existence_set(orig_request, false);
2263         } else if (result) {
2264                 orig_request->result = result;
2265                 goto out;
2266         }
2267
2268         /*
2269          * Resubmit the original request now that we have recorded
2270          * whether the target object exists.
2271          */
2272         orig_request->result = rbd_img_obj_request_submit(orig_request);
2273 out:
2274         if (orig_request->result)
2275                 rbd_obj_request_complete(orig_request);
2276         rbd_obj_request_put(orig_request);
2277 }
2278
2279 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2280 {
2281         struct rbd_obj_request *stat_request;
2282         struct rbd_device *rbd_dev;
2283         struct ceph_osd_client *osdc;
2284         struct page **pages = NULL;
2285         u32 page_count;
2286         size_t size;
2287         int ret;
2288
2289         /*
2290          * The response data for a STAT call consists of:
2291          *     le64 length;
2292          *     struct {
2293          *         le32 tv_sec;
2294          *         le32 tv_nsec;
2295          *     } mtime;
2296          */
2297         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2298         page_count = (u32)calc_pages_for(0, size);
2299         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2300         if (IS_ERR(pages))
2301                 return PTR_ERR(pages);
2302
2303         ret = -ENOMEM;
2304         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2305                                                         OBJ_REQUEST_PAGES);
2306         if (!stat_request)
2307                 goto out;
2308
2309         rbd_obj_request_get(obj_request);
2310         stat_request->obj_request = obj_request;
2311         stat_request->pages = pages;
2312         stat_request->page_count = page_count;
2313
2314         rbd_assert(obj_request->img_request);
2315         rbd_dev = obj_request->img_request->rbd_dev;
2316         stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2317                                                 stat_request);
2318         if (!stat_request->osd_req)
2319                 goto out;
2320         stat_request->callback = rbd_img_obj_exists_callback;
2321
2322         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2323         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2324                                         false, false);
2325         rbd_osd_req_format_read(stat_request);
2326
2327         osdc = &rbd_dev->rbd_client->client->osdc;
2328         ret = rbd_obj_request_submit(osdc, stat_request);
2329 out:
2330         if (ret)
2331                 rbd_obj_request_put(obj_request);
2332
2333         return ret;
2334 }
2335
2336 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2337 {
2338         struct rbd_img_request *img_request;
2339         struct rbd_device *rbd_dev;
2340         bool known;
2341
2342         rbd_assert(obj_request_img_data_test(obj_request));
2343
2344         img_request = obj_request->img_request;
2345         rbd_assert(img_request);
2346         rbd_dev = img_request->rbd_dev;
2347
2348         /*
2349          * Only writes to layered images need special handling.
2350          * Reads and non-layered writes are simple object requests.
2351          * Layered writes that start beyond the end of the overlap
2352          * with the parent have no parent data, so they too are
2353          * simple object requests.  Finally, if the target object is
2354          * known to already exist, its parent data has already been
2355          * copied, so a write to the object can also be handled as a
2356          * simple object request.
2357          */
2358         if (!img_request_write_test(img_request) ||
2359                 !img_request_layered_test(img_request) ||
2360                 rbd_dev->parent_overlap <= obj_request->img_offset ||
2361                 ((known = obj_request_known_test(obj_request)) &&
2362                         obj_request_exists_test(obj_request))) {
2363
2364                 struct rbd_device *rbd_dev;
2365                 struct ceph_osd_client *osdc;
2366
2367                 rbd_dev = obj_request->img_request->rbd_dev;
2368                 osdc = &rbd_dev->rbd_client->client->osdc;
2369
2370                 return rbd_obj_request_submit(osdc, obj_request);
2371         }
2372
2373         /*
2374          * It's a layered write.  The target object might exist but
2375          * we may not know that yet.  If we know it doesn't exist,
2376          * start by reading the data for the full target object from
2377          * the parent so we can use it for a copyup to the target.
2378          */
2379         if (known)
2380                 return rbd_img_obj_parent_read_full(obj_request);
2381
2382         /* We don't know whether the target exists.  Go find out. */
2383
2384         return rbd_img_obj_exists_submit(obj_request);
2385 }
2386
2387 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2388 {
2389         struct rbd_obj_request *obj_request;
2390         struct rbd_obj_request *next_obj_request;
2391
2392         dout("%s: img %p\n", __func__, img_request);
2393         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2394                 int ret;
2395
2396                 ret = rbd_img_obj_request_submit(obj_request);
2397                 if (ret)
2398                         return ret;
2399         }
2400
2401         return 0;
2402 }
2403
2404 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2405 {
2406         struct rbd_obj_request *obj_request;
2407         struct rbd_device *rbd_dev;
2408         u64 obj_end;
2409
2410         rbd_assert(img_request_child_test(img_request));
2411
2412         obj_request = img_request->obj_request;
2413         rbd_assert(obj_request);
2414         rbd_assert(obj_request->img_request);
2415
2416         obj_request->result = img_request->result;
2417         if (obj_request->result)
2418                 goto out;
2419
2420         /*
2421          * We need to zero anything beyond the parent overlap
2422          * boundary.  Since rbd_img_obj_request_read_callback()
2423          * will zero anything beyond the end of a short read, an
2424          * easy way to do this is to pretend the data from the
2425          * parent came up short--ending at the overlap boundary.
2426          */
2427         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2428         obj_end = obj_request->img_offset + obj_request->length;
2429         rbd_dev = obj_request->img_request->rbd_dev;
2430         if (obj_end > rbd_dev->parent_overlap) {
2431                 u64 xferred = 0;
2432
2433                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2434                         xferred = rbd_dev->parent_overlap -
2435                                         obj_request->img_offset;
2436
2437                 obj_request->xferred = min(img_request->xferred, xferred);
2438         } else {
2439                 obj_request->xferred = img_request->xferred;
2440         }
2441 out:
2442         rbd_img_obj_request_read_callback(obj_request);
2443         rbd_obj_request_complete(obj_request);
2444 }
2445
2446 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2447 {
2448         struct rbd_device *rbd_dev;
2449         struct rbd_img_request *img_request;
2450         int result;
2451
2452         rbd_assert(obj_request_img_data_test(obj_request));
2453         rbd_assert(obj_request->img_request != NULL);
2454         rbd_assert(obj_request->result == (s32) -ENOENT);
2455         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2456
2457         rbd_dev = obj_request->img_request->rbd_dev;
2458         rbd_assert(rbd_dev->parent != NULL);
2459         /* rbd_read_finish(obj_request, obj_request->length); */
2460         img_request = rbd_img_request_create(rbd_dev->parent,
2461                                                 obj_request->img_offset,
2462                                                 obj_request->length,
2463                                                 false, true);
2464         result = -ENOMEM;
2465         if (!img_request)
2466                 goto out_err;
2467
2468         rbd_obj_request_get(obj_request);
2469         img_request->obj_request = obj_request;
2470
2471         result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2472                                         obj_request->bio_list);
2473         if (result)
2474                 goto out_err;
2475
2476         img_request->callback = rbd_img_parent_read_callback;
2477         result = rbd_img_request_submit(img_request);
2478         if (result)
2479                 goto out_err;
2480
2481         return;
2482 out_err:
2483         if (img_request)
2484                 rbd_img_request_put(img_request);
2485         obj_request->result = result;
2486         obj_request->xferred = 0;
2487         obj_request_done_set(obj_request);
2488 }
2489
2490 static int rbd_obj_notify_ack(struct rbd_device *rbd_dev,
2491                                    u64 ver, u64 notify_id)
2492 {
2493         struct rbd_obj_request *obj_request;
2494         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2495         int ret;
2496
2497         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2498                                                         OBJ_REQUEST_NODATA);
2499         if (!obj_request)
2500                 return -ENOMEM;
2501
2502         ret = -ENOMEM;
2503         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2504         if (!obj_request->osd_req)
2505                 goto out;
2506         obj_request->callback = rbd_obj_request_put;
2507
2508         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2509                                         notify_id, ver, 0);
2510         rbd_osd_req_format_read(obj_request);
2511
2512         ret = rbd_obj_request_submit(osdc, obj_request);
2513 out:
2514         if (ret)
2515                 rbd_obj_request_put(obj_request);
2516
2517         return ret;
2518 }
2519
2520 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2521 {
2522         struct rbd_device *rbd_dev = (struct rbd_device *)data;
2523         u64 hver;
2524
2525         if (!rbd_dev)
2526                 return;
2527
2528         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2529                 rbd_dev->header_name, (unsigned long long) notify_id,
2530                 (unsigned int) opcode);
2531         (void)rbd_dev_refresh(rbd_dev, &hver);
2532
2533         rbd_obj_notify_ack(rbd_dev, hver, notify_id);
2534 }
2535
2536 /*
2537  * Request sync osd watch/unwatch.  The value of "start" determines
2538  * whether a watch request is being initiated or torn down.
2539  */
2540 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, int start)
2541 {
2542         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2543         struct rbd_obj_request *obj_request;
2544         int ret;
2545
2546         rbd_assert(start ^ !!rbd_dev->watch_event);
2547         rbd_assert(start ^ !!rbd_dev->watch_request);
2548
2549         if (start) {
2550                 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2551                                                 &rbd_dev->watch_event);
2552                 if (ret < 0)
2553                         return ret;
2554                 rbd_assert(rbd_dev->watch_event != NULL);
2555         }
2556
2557         ret = -ENOMEM;
2558         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2559                                                         OBJ_REQUEST_NODATA);
2560         if (!obj_request)
2561                 goto out_cancel;
2562
2563         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2564         if (!obj_request->osd_req)
2565                 goto out_cancel;
2566
2567         if (start)
2568                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2569         else
2570                 ceph_osdc_unregister_linger_request(osdc,
2571                                         rbd_dev->watch_request->osd_req);
2572
2573         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2574                                 rbd_dev->watch_event->cookie,
2575                                 rbd_dev->header.obj_version, start);
2576         rbd_osd_req_format_write(obj_request);
2577
2578         ret = rbd_obj_request_submit(osdc, obj_request);
2579         if (ret)
2580                 goto out_cancel;
2581         ret = rbd_obj_request_wait(obj_request);
2582         if (ret)
2583                 goto out_cancel;
2584         ret = obj_request->result;
2585         if (ret)
2586                 goto out_cancel;
2587
2588         /*
2589          * A watch request is set to linger, so the underlying osd
2590          * request won't go away until we unregister it.  We retain
2591          * a pointer to the object request during that time (in
2592          * rbd_dev->watch_request), so we'll keep a reference to
2593          * it.  We'll drop that reference (below) after we've
2594          * unregistered it.
2595          */
2596         if (start) {
2597                 rbd_dev->watch_request = obj_request;
2598
2599                 return 0;
2600         }
2601
2602         /* We have successfully torn down the watch request */
2603
2604         rbd_obj_request_put(rbd_dev->watch_request);
2605         rbd_dev->watch_request = NULL;
2606 out_cancel:
2607         /* Cancel the event if we're tearing down, or on error */
2608         ceph_osdc_cancel_event(rbd_dev->watch_event);
2609         rbd_dev->watch_event = NULL;
2610         if (obj_request)
2611                 rbd_obj_request_put(obj_request);
2612
2613         return ret;
2614 }
2615
2616 /*
2617  * Synchronous osd object method call
2618  */
2619 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2620                              const char *object_name,
2621                              const char *class_name,
2622                              const char *method_name,
2623                              const void *outbound,
2624                              size_t outbound_size,
2625                              void *inbound,
2626                              size_t inbound_size,
2627                              u64 *version)
2628 {
2629         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2630         struct rbd_obj_request *obj_request;
2631         struct page **pages;
2632         u32 page_count;
2633         int ret;
2634
2635         /*
2636          * Method calls are ultimately read operations.  The result
2637          * should placed into the inbound buffer provided.  They
2638          * also supply outbound data--parameters for the object
2639          * method.  Currently if this is present it will be a
2640          * snapshot id.
2641          */
2642         page_count = (u32)calc_pages_for(0, inbound_size);
2643         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2644         if (IS_ERR(pages))
2645                 return PTR_ERR(pages);
2646
2647         ret = -ENOMEM;
2648         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2649                                                         OBJ_REQUEST_PAGES);
2650         if (!obj_request)
2651                 goto out;
2652
2653         obj_request->pages = pages;
2654         obj_request->page_count = page_count;
2655
2656         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2657         if (!obj_request->osd_req)
2658                 goto out;
2659
2660         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
2661                                         class_name, method_name);
2662         if (outbound_size) {
2663                 struct ceph_pagelist *pagelist;
2664
2665                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
2666                 if (!pagelist)
2667                         goto out;
2668
2669                 ceph_pagelist_init(pagelist);
2670                 ceph_pagelist_append(pagelist, outbound, outbound_size);
2671                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
2672                                                 pagelist);
2673         }
2674         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
2675                                         obj_request->pages, inbound_size,
2676                                         0, false, false);
2677         rbd_osd_req_format_read(obj_request);
2678
2679         ret = rbd_obj_request_submit(osdc, obj_request);
2680         if (ret)
2681                 goto out;
2682         ret = rbd_obj_request_wait(obj_request);
2683         if (ret)
2684                 goto out;
2685
2686         ret = obj_request->result;
2687         if (ret < 0)
2688                 goto out;
2689
2690         rbd_assert(obj_request->xferred < (u64)INT_MAX);
2691         ret = (int)obj_request->xferred;
2692         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
2693         if (version)
2694                 *version = obj_request->version;
2695 out:
2696         if (obj_request)
2697                 rbd_obj_request_put(obj_request);
2698         else
2699                 ceph_release_page_vector(pages, page_count);
2700
2701         return ret;
2702 }
2703
2704 static void rbd_request_fn(struct request_queue *q)
2705                 __releases(q->queue_lock) __acquires(q->queue_lock)
2706 {
2707         struct rbd_device *rbd_dev = q->queuedata;
2708         bool read_only = rbd_dev->mapping.read_only;
2709         struct request *rq;
2710         int result;
2711
2712         while ((rq = blk_fetch_request(q))) {
2713                 bool write_request = rq_data_dir(rq) == WRITE;
2714                 struct rbd_img_request *img_request;
2715                 u64 offset;
2716                 u64 length;
2717
2718                 /* Ignore any non-FS requests that filter through. */
2719
2720                 if (rq->cmd_type != REQ_TYPE_FS) {
2721                         dout("%s: non-fs request type %d\n", __func__,
2722                                 (int) rq->cmd_type);
2723                         __blk_end_request_all(rq, 0);
2724                         continue;
2725                 }
2726
2727                 /* Ignore/skip any zero-length requests */
2728
2729                 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
2730                 length = (u64) blk_rq_bytes(rq);
2731
2732                 if (!length) {
2733                         dout("%s: zero-length request\n", __func__);
2734                         __blk_end_request_all(rq, 0);
2735                         continue;
2736                 }
2737
2738                 spin_unlock_irq(q->queue_lock);
2739
2740                 /* Disallow writes to a read-only device */
2741
2742                 if (write_request) {
2743                         result = -EROFS;
2744                         if (read_only)
2745                                 goto end_request;
2746                         rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
2747                 }
2748
2749                 /*
2750                  * Quit early if the mapped snapshot no longer
2751                  * exists.  It's still possible the snapshot will
2752                  * have disappeared by the time our request arrives
2753                  * at the osd, but there's no sense in sending it if
2754                  * we already know.
2755                  */
2756                 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
2757                         dout("request for non-existent snapshot");
2758                         rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
2759                         result = -ENXIO;
2760                         goto end_request;
2761                 }
2762
2763                 result = -EINVAL;
2764                 if (WARN_ON(offset && length > U64_MAX - offset + 1))
2765                         goto end_request;       /* Shouldn't happen */
2766
2767                 result = -ENOMEM;
2768                 img_request = rbd_img_request_create(rbd_dev, offset, length,
2769                                                         write_request, false);
2770                 if (!img_request)
2771                         goto end_request;
2772
2773                 img_request->rq = rq;
2774
2775                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2776                                                 rq->bio);
2777                 if (!result)
2778                         result = rbd_img_request_submit(img_request);
2779                 if (result)
2780                         rbd_img_request_put(img_request);
2781 end_request:
2782                 spin_lock_irq(q->queue_lock);
2783                 if (result < 0) {
2784                         rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
2785                                 write_request ? "write" : "read",
2786                                 length, offset, result);
2787
2788                         __blk_end_request_all(rq, result);
2789                 }
2790         }
2791 }
2792
2793 /*
2794  * a queue callback. Makes sure that we don't create a bio that spans across
2795  * multiple osd objects. One exception would be with a single page bios,
2796  * which we handle later at bio_chain_clone_range()
2797  */
2798 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2799                           struct bio_vec *bvec)
2800 {
2801         struct rbd_device *rbd_dev = q->queuedata;
2802         sector_t sector_offset;
2803         sector_t sectors_per_obj;
2804         sector_t obj_sector_offset;
2805         int ret;
2806
2807         /*
2808          * Find how far into its rbd object the partition-relative
2809          * bio start sector is to offset relative to the enclosing
2810          * device.
2811          */
2812         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
2813         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
2814         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
2815
2816         /*
2817          * Compute the number of bytes from that offset to the end
2818          * of the object.  Account for what's already used by the bio.
2819          */
2820         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
2821         if (ret > bmd->bi_size)
2822                 ret -= bmd->bi_size;
2823         else
2824                 ret = 0;
2825
2826         /*
2827          * Don't send back more than was asked for.  And if the bio
2828          * was empty, let the whole thing through because:  "Note
2829          * that a block device *must* allow a single page to be
2830          * added to an empty bio."
2831          */
2832         rbd_assert(bvec->bv_len <= PAGE_SIZE);
2833         if (ret > (int) bvec->bv_len || !bmd->bi_size)
2834                 ret = (int) bvec->bv_len;
2835
2836         return ret;
2837 }
2838
2839 static void rbd_free_disk(struct rbd_device *rbd_dev)
2840 {
2841         struct gendisk *disk = rbd_dev->disk;
2842
2843         if (!disk)
2844                 return;
2845
2846         if (disk->flags & GENHD_FL_UP)
2847                 del_gendisk(disk);
2848         if (disk->queue)
2849                 blk_cleanup_queue(disk->queue);
2850         put_disk(disk);
2851 }
2852
2853 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
2854                                 const char *object_name,
2855                                 u64 offset, u64 length,
2856                                 void *buf, u64 *version)
2857
2858 {
2859         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2860         struct rbd_obj_request *obj_request;
2861         struct page **pages = NULL;
2862         u32 page_count;
2863         size_t size;
2864         int ret;
2865
2866         page_count = (u32) calc_pages_for(offset, length);
2867         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2868         if (IS_ERR(pages))
2869                 ret = PTR_ERR(pages);
2870
2871         ret = -ENOMEM;
2872         obj_request = rbd_obj_request_create(object_name, offset, length,
2873                                                         OBJ_REQUEST_PAGES);
2874         if (!obj_request)
2875                 goto out;
2876
2877         obj_request->pages = pages;
2878         obj_request->page_count = page_count;
2879
2880         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2881         if (!obj_request->osd_req)
2882                 goto out;
2883
2884         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
2885                                         offset, length, 0, 0);
2886         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
2887                                         obj_request->pages,
2888                                         obj_request->length,
2889                                         obj_request->offset & ~PAGE_MASK,
2890                                         false, false);
2891         rbd_osd_req_format_read(obj_request);
2892
2893         ret = rbd_obj_request_submit(osdc, obj_request);
2894         if (ret)
2895                 goto out;
2896         ret = rbd_obj_request_wait(obj_request);
2897         if (ret)
2898                 goto out;
2899
2900         ret = obj_request->result;
2901         if (ret < 0)
2902                 goto out;
2903
2904         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
2905         size = (size_t) obj_request->xferred;
2906         ceph_copy_from_page_vector(pages, buf, 0, size);
2907         rbd_assert(size <= (size_t) INT_MAX);
2908         ret = (int) size;
2909         if (version)
2910                 *version = obj_request->version;
2911 out:
2912         if (obj_request)
2913                 rbd_obj_request_put(obj_request);
2914         else
2915                 ceph_release_page_vector(pages, page_count);
2916
2917         return ret;
2918 }
2919
2920 /*
2921  * Read the complete header for the given rbd device.
2922  *
2923  * Returns a pointer to a dynamically-allocated buffer containing
2924  * the complete and validated header.  Caller can pass the address
2925  * of a variable that will be filled in with the version of the
2926  * header object at the time it was read.
2927  *
2928  * Returns a pointer-coded errno if a failure occurs.
2929  */
2930 static struct rbd_image_header_ondisk *
2931 rbd_dev_v1_header_read(struct rbd_device *rbd_dev, u64 *version)
2932 {
2933         struct rbd_image_header_ondisk *ondisk = NULL;
2934         u32 snap_count = 0;
2935         u64 names_size = 0;
2936         u32 want_count;
2937         int ret;
2938
2939         /*
2940          * The complete header will include an array of its 64-bit
2941          * snapshot ids, followed by the names of those snapshots as
2942          * a contiguous block of NUL-terminated strings.  Note that
2943          * the number of snapshots could change by the time we read
2944          * it in, in which case we re-read it.
2945          */
2946         do {
2947                 size_t size;
2948
2949                 kfree(ondisk);
2950
2951                 size = sizeof (*ondisk);
2952                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
2953                 size += names_size;
2954                 ondisk = kmalloc(size, GFP_KERNEL);
2955                 if (!ondisk)
2956                         return ERR_PTR(-ENOMEM);
2957
2958                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
2959                                        0, size, ondisk, version);
2960                 if (ret < 0)
2961                         goto out_err;
2962                 if (WARN_ON((size_t) ret < size)) {
2963                         ret = -ENXIO;
2964                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
2965                                 size, ret);
2966                         goto out_err;
2967                 }
2968                 if (!rbd_dev_ondisk_valid(ondisk)) {
2969                         ret = -ENXIO;
2970                         rbd_warn(rbd_dev, "invalid header");
2971                         goto out_err;
2972                 }
2973
2974                 names_size = le64_to_cpu(ondisk->snap_names_len);
2975                 want_count = snap_count;
2976                 snap_count = le32_to_cpu(ondisk->snap_count);
2977         } while (snap_count != want_count);
2978
2979         return ondisk;
2980
2981 out_err:
2982         kfree(ondisk);
2983
2984         return ERR_PTR(ret);
2985 }
2986
2987 /*
2988  * reload the ondisk the header
2989  */
2990 static int rbd_read_header(struct rbd_device *rbd_dev,
2991                            struct rbd_image_header *header)
2992 {
2993         struct rbd_image_header_ondisk *ondisk;
2994         u64 ver = 0;
2995         int ret;
2996
2997         ondisk = rbd_dev_v1_header_read(rbd_dev, &ver);
2998         if (IS_ERR(ondisk))
2999                 return PTR_ERR(ondisk);
3000         ret = rbd_header_from_disk(header, ondisk);
3001         if (ret >= 0)
3002                 header->obj_version = ver;
3003         kfree(ondisk);
3004
3005         return ret;
3006 }
3007
3008 static void rbd_remove_all_snaps(struct rbd_device *rbd_dev)
3009 {
3010         struct rbd_snap *snap;
3011         struct rbd_snap *next;
3012
3013         list_for_each_entry_safe(snap, next, &rbd_dev->snaps, node)
3014                 rbd_remove_snap_dev(snap);
3015 }
3016
3017 static void rbd_update_mapping_size(struct rbd_device *rbd_dev)
3018 {
3019         sector_t size;
3020
3021         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
3022                 return;
3023
3024         size = (sector_t) rbd_dev->header.image_size / SECTOR_SIZE;
3025         dout("setting size to %llu sectors", (unsigned long long) size);
3026         rbd_dev->mapping.size = (u64) size;
3027         set_capacity(rbd_dev->disk, size);
3028 }
3029
3030 /*
3031  * only read the first part of the ondisk header, without the snaps info
3032  */
3033 static int rbd_dev_v1_refresh(struct rbd_device *rbd_dev, u64 *hver)
3034 {
3035         int ret;
3036         struct rbd_image_header h;
3037
3038         ret = rbd_read_header(rbd_dev, &h);
3039         if (ret < 0)
3040                 return ret;
3041
3042         down_write(&rbd_dev->header_rwsem);
3043
3044         /* Update image size, and check for resize of mapped image */
3045         rbd_dev->header.image_size = h.image_size;
3046         rbd_update_mapping_size(rbd_dev);
3047
3048         /* rbd_dev->header.object_prefix shouldn't change */
3049         kfree(rbd_dev->header.snap_sizes);
3050         kfree(rbd_dev->header.snap_names);
3051         /* osd requests may still refer to snapc */
3052         ceph_put_snap_context(rbd_dev->header.snapc);
3053
3054         if (hver)
3055                 *hver = h.obj_version;
3056         rbd_dev->header.obj_version = h.obj_version;
3057         rbd_dev->header.image_size = h.image_size;
3058         rbd_dev->header.snapc = h.snapc;
3059         rbd_dev->header.snap_names = h.snap_names;
3060         rbd_dev->header.snap_sizes = h.snap_sizes;
3061         /* Free the extra copy of the object prefix */
3062         WARN_ON(strcmp(rbd_dev->header.object_prefix, h.object_prefix));
3063         kfree(h.object_prefix);
3064
3065         ret = rbd_dev_snaps_update(rbd_dev);
3066
3067         up_write(&rbd_dev->header_rwsem);
3068
3069         return ret;
3070 }
3071
3072 static int rbd_dev_refresh(struct rbd_device *rbd_dev, u64 *hver)
3073 {
3074         int ret;
3075
3076         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3077         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3078         if (rbd_dev->image_format == 1)
3079                 ret = rbd_dev_v1_refresh(rbd_dev, hver);
3080         else
3081                 ret = rbd_dev_v2_refresh(rbd_dev, hver);
3082         mutex_unlock(&ctl_mutex);
3083         revalidate_disk(rbd_dev->disk);
3084         if (ret)
3085                 rbd_warn(rbd_dev, "got notification but failed to "
3086                            " update snaps: %d\n", ret);
3087
3088         return ret;
3089 }
3090
3091 static int rbd_init_disk(struct rbd_device *rbd_dev)
3092 {
3093         struct gendisk *disk;
3094         struct request_queue *q;
3095         u64 segment_size;
3096
3097         /* create gendisk info */
3098         disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3099         if (!disk)
3100                 return -ENOMEM;
3101
3102         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3103                  rbd_dev->dev_id);
3104         disk->major = rbd_dev->major;
3105         disk->first_minor = 0;
3106         disk->fops = &rbd_bd_ops;
3107         disk->private_data = rbd_dev;
3108
3109         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3110         if (!q)
3111                 goto out_disk;
3112
3113         /* We use the default size, but let's be explicit about it. */
3114         blk_queue_physical_block_size(q, SECTOR_SIZE);
3115
3116         /* set io sizes to object size */
3117         segment_size = rbd_obj_bytes(&rbd_dev->header);
3118         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3119         blk_queue_max_segment_size(q, segment_size);
3120         blk_queue_io_min(q, segment_size);
3121         blk_queue_io_opt(q, segment_size);
3122
3123         blk_queue_merge_bvec(q, rbd_merge_bvec);
3124         disk->queue = q;
3125
3126         q->queuedata = rbd_dev;
3127
3128         rbd_dev->disk = disk;
3129
3130         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
3131
3132         return 0;
3133 out_disk:
3134         put_disk(disk);
3135
3136         return -ENOMEM;
3137 }
3138
3139 /*
3140   sysfs
3141 */
3142
3143 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3144 {
3145         return container_of(dev, struct rbd_device, dev);
3146 }
3147
3148 static ssize_t rbd_size_show(struct device *dev,
3149                              struct device_attribute *attr, char *buf)
3150 {
3151         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3152         sector_t size;
3153
3154         down_read(&rbd_dev->header_rwsem);
3155         size = get_capacity(rbd_dev->disk);
3156         up_read(&rbd_dev->header_rwsem);
3157
3158         return sprintf(buf, "%llu\n", (unsigned long long) size * SECTOR_SIZE);
3159 }
3160
3161 /*
3162  * Note this shows the features for whatever's mapped, which is not
3163  * necessarily the base image.
3164  */
3165 static ssize_t rbd_features_show(struct device *dev,
3166                              struct device_attribute *attr, char *buf)
3167 {
3168         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3169
3170         return sprintf(buf, "0x%016llx\n",
3171                         (unsigned long long) rbd_dev->mapping.features);
3172 }
3173
3174 static ssize_t rbd_major_show(struct device *dev,
3175                               struct device_attribute *attr, char *buf)
3176 {
3177         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3178
3179         return sprintf(buf, "%d\n", rbd_dev->major);
3180 }
3181
3182 static ssize_t rbd_client_id_show(struct device *dev,
3183                                   struct device_attribute *attr, char *buf)
3184 {
3185         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3186
3187         return sprintf(buf, "client%lld\n",
3188                         ceph_client_id(rbd_dev->rbd_client->client));
3189 }
3190
3191 static ssize_t rbd_pool_show(struct device *dev,
3192                              struct device_attribute *attr, char *buf)
3193 {
3194         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3195
3196         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3197 }
3198
3199 static ssize_t rbd_pool_id_show(struct device *dev,
3200                              struct device_attribute *attr, char *buf)
3201 {
3202         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3203
3204         return sprintf(buf, "%llu\n",
3205                 (unsigned long long) rbd_dev->spec->pool_id);
3206 }
3207
3208 static ssize_t rbd_name_show(struct device *dev,
3209                              struct device_attribute *attr, char *buf)
3210 {
3211         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3212
3213         if (rbd_dev->spec->image_name)
3214                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3215
3216         return sprintf(buf, "(unknown)\n");
3217 }
3218
3219 static ssize_t rbd_image_id_show(struct device *dev,
3220                              struct device_attribute *attr, char *buf)
3221 {
3222         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3223
3224         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3225 }
3226
3227 /*
3228  * Shows the name of the currently-mapped snapshot (or
3229  * RBD_SNAP_HEAD_NAME for the base image).
3230  */
3231 static ssize_t rbd_snap_show(struct device *dev,
3232                              struct device_attribute *attr,
3233                              char *buf)
3234 {
3235         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3236
3237         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3238 }
3239
3240 /*
3241  * For an rbd v2 image, shows the pool id, image id, and snapshot id
3242  * for the parent image.  If there is no parent, simply shows
3243  * "(no parent image)".
3244  */
3245 static ssize_t rbd_parent_show(struct device *dev,
3246                              struct device_attribute *attr,
3247                              char *buf)
3248 {
3249         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3250         struct rbd_spec *spec = rbd_dev->parent_spec;
3251         int count;
3252         char *bufp = buf;
3253
3254         if (!spec)
3255                 return sprintf(buf, "(no parent image)\n");
3256
3257         count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3258                         (unsigned long long) spec->pool_id, spec->pool_name);
3259         if (count < 0)
3260                 return count;
3261         bufp += count;
3262
3263         count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3264                         spec->image_name ? spec->image_name : "(unknown)");
3265         if (count < 0)
3266                 return count;
3267         bufp += count;
3268
3269         count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3270                         (unsigned long long) spec->snap_id, spec->snap_name);
3271         if (count < 0)
3272                 return count;
3273         bufp += count;
3274
3275         count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3276         if (count < 0)
3277                 return count;
3278         bufp += count;
3279
3280         return (ssize_t) (bufp - buf);
3281 }
3282
3283 static ssize_t rbd_image_refresh(struct device *dev,
3284                                  struct device_attribute *attr,
3285                                  const char *buf,
3286                                  size_t size)
3287 {
3288         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3289         int ret;
3290
3291         ret = rbd_dev_refresh(rbd_dev, NULL);
3292
3293         return ret < 0 ? ret : size;
3294 }
3295
3296 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3297 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3298 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3299 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3300 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3301 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3302 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3303 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3304 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3305 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3306 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3307
3308 static struct attribute *rbd_attrs[] = {
3309         &dev_attr_size.attr,
3310         &dev_attr_features.attr,
3311         &dev_attr_major.attr,
3312         &dev_attr_client_id.attr,
3313         &dev_attr_pool.attr,
3314         &dev_attr_pool_id.attr,
3315         &dev_attr_name.attr,
3316         &dev_attr_image_id.attr,
3317         &dev_attr_current_snap.attr,
3318         &dev_attr_parent.attr,
3319         &dev_attr_refresh.attr,
3320         NULL
3321 };
3322
3323 static struct attribute_group rbd_attr_group = {
3324         .attrs = rbd_attrs,
3325 };
3326
3327 static const struct attribute_group *rbd_attr_groups[] = {
3328         &rbd_attr_group,
3329         NULL
3330 };
3331
3332 static void rbd_sysfs_dev_release(struct device *dev)
3333 {
3334 }
3335
3336 static struct device_type rbd_device_type = {
3337         .name           = "rbd",
3338         .groups         = rbd_attr_groups,
3339         .release        = rbd_sysfs_dev_release,
3340 };
3341
3342 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3343 {
3344         kref_get(&spec->kref);
3345
3346         return spec;
3347 }
3348
3349 static void rbd_spec_free(struct kref *kref);
3350 static void rbd_spec_put(struct rbd_spec *spec)
3351 {
3352         if (spec)
3353                 kref_put(&spec->kref, rbd_spec_free);
3354 }
3355
3356 static struct rbd_spec *rbd_spec_alloc(void)
3357 {
3358         struct rbd_spec *spec;
3359
3360         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3361         if (!spec)
3362                 return NULL;
3363         kref_init(&spec->kref);
3364
3365         return spec;
3366 }
3367
3368 static void rbd_spec_free(struct kref *kref)
3369 {
3370         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3371
3372         kfree(spec->pool_name);
3373         kfree(spec->image_id);
3374         kfree(spec->image_name);
3375         kfree(spec->snap_name);
3376         kfree(spec);
3377 }
3378
3379 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3380                                 struct rbd_spec *spec)
3381 {
3382         struct rbd_device *rbd_dev;
3383
3384         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3385         if (!rbd_dev)
3386                 return NULL;
3387
3388         spin_lock_init(&rbd_dev->lock);
3389         rbd_dev->flags = 0;
3390         INIT_LIST_HEAD(&rbd_dev->node);
3391         INIT_LIST_HEAD(&rbd_dev->snaps);
3392         init_rwsem(&rbd_dev->header_rwsem);
3393
3394         rbd_dev->spec = spec;
3395         rbd_dev->rbd_client = rbdc;
3396
3397         /* Initialize the layout used for all rbd requests */
3398
3399         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3400         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3401         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3402         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3403
3404         return rbd_dev;
3405 }
3406
3407 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3408 {
3409         rbd_spec_put(rbd_dev->parent_spec);
3410         kfree(rbd_dev->header_name);
3411         rbd_put_client(rbd_dev->rbd_client);
3412         rbd_spec_put(rbd_dev->spec);
3413         kfree(rbd_dev);
3414 }
3415
3416 static void rbd_remove_snap_dev(struct rbd_snap *snap)
3417 {
3418         list_del(&snap->node);
3419         kfree(snap->name);
3420         kfree(snap);
3421 }
3422
3423 static struct rbd_snap *__rbd_add_snap_dev(struct rbd_device *rbd_dev,
3424                                                 const char *snap_name,
3425                                                 u64 snap_id, u64 snap_size,
3426                                                 u64 snap_features)
3427 {
3428         struct rbd_snap *snap;
3429         int ret;
3430
3431         snap = kzalloc(sizeof (*snap), GFP_KERNEL);
3432         if (!snap)
3433                 return ERR_PTR(-ENOMEM);
3434
3435         ret = -ENOMEM;
3436         snap->name = kstrdup(snap_name, GFP_KERNEL);
3437         if (!snap->name)
3438                 goto err;
3439
3440         snap->id = snap_id;
3441         snap->size = snap_size;
3442         snap->features = snap_features;
3443
3444         return snap;
3445
3446 err:
3447         kfree(snap->name);
3448         kfree(snap);
3449
3450         return ERR_PTR(ret);
3451 }
3452
3453 static char *rbd_dev_v1_snap_info(struct rbd_device *rbd_dev, u32 which,
3454                 u64 *snap_size, u64 *snap_features)
3455 {
3456         char *snap_name;
3457
3458         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
3459
3460         *snap_size = rbd_dev->header.snap_sizes[which];
3461         *snap_features = 0;     /* No features for v1 */
3462
3463         /* Skip over names until we find the one we are looking for */
3464
3465         snap_name = rbd_dev->header.snap_names;
3466         while (which--)
3467                 snap_name += strlen(snap_name) + 1;
3468
3469         return snap_name;
3470 }
3471
3472 /*
3473  * Get the size and object order for an image snapshot, or if
3474  * snap_id is CEPH_NOSNAP, gets this information for the base
3475  * image.
3476  */
3477 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3478                                 u8 *order, u64 *snap_size)
3479 {
3480         __le64 snapid = cpu_to_le64(snap_id);
3481         int ret;
3482         struct {
3483                 u8 order;
3484                 __le64 size;
3485         } __attribute__ ((packed)) size_buf = { 0 };
3486
3487         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3488                                 "rbd", "get_size",
3489                                 &snapid, sizeof (snapid),
3490                                 &size_buf, sizeof (size_buf), NULL);
3491         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3492         if (ret < 0)
3493                 return ret;
3494         if (ret < sizeof (size_buf))
3495                 return -ERANGE;
3496
3497         if (order)
3498                 *order = size_buf.order;
3499         *snap_size = le64_to_cpu(size_buf.size);
3500
3501         dout("  snap_id 0x%016llx order = %u, snap_size = %llu\n",
3502                 (unsigned long long)snap_id, (unsigned int)*order,
3503                 (unsigned long long)*snap_size);
3504
3505         return 0;
3506 }
3507
3508 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3509 {
3510         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3511                                         &rbd_dev->header.obj_order,
3512                                         &rbd_dev->header.image_size);
3513 }
3514
3515 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3516 {
3517         void *reply_buf;
3518         int ret;
3519         void *p;
3520
3521         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3522         if (!reply_buf)
3523                 return -ENOMEM;
3524
3525         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3526                                 "rbd", "get_object_prefix", NULL, 0,
3527                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX, NULL);
3528         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3529         if (ret < 0)
3530                 goto out;
3531
3532         p = reply_buf;
3533         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3534                                                 p + ret, NULL, GFP_NOIO);
3535         ret = 0;
3536
3537         if (IS_ERR(rbd_dev->header.object_prefix)) {
3538                 ret = PTR_ERR(rbd_dev->header.object_prefix);
3539                 rbd_dev->header.object_prefix = NULL;
3540         } else {
3541                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3542         }
3543 out:
3544         kfree(reply_buf);
3545
3546         return ret;
3547 }
3548
3549 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3550                 u64 *snap_features)
3551 {
3552         __le64 snapid = cpu_to_le64(snap_id);
3553         struct {
3554                 __le64 features;
3555                 __le64 incompat;
3556         } __attribute__ ((packed)) features_buf = { 0 };
3557         u64 incompat;
3558         int ret;
3559
3560         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3561                                 "rbd", "get_features",
3562                                 &snapid, sizeof (snapid),
3563                                 &features_buf, sizeof (features_buf), NULL);
3564         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3565         if (ret < 0)
3566                 return ret;
3567         if (ret < sizeof (features_buf))
3568                 return -ERANGE;
3569
3570         incompat = le64_to_cpu(features_buf.incompat);
3571         if (incompat & ~RBD_FEATURES_SUPPORTED)
3572                 return -ENXIO;
3573
3574         *snap_features = le64_to_cpu(features_buf.features);
3575
3576         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3577                 (unsigned long long)snap_id,
3578                 (unsigned long long)*snap_features,
3579                 (unsigned long long)le64_to_cpu(features_buf.incompat));
3580
3581         return 0;
3582 }
3583
3584 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3585 {
3586         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3587                                                 &rbd_dev->header.features);
3588 }
3589
3590 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3591 {
3592         struct rbd_spec *parent_spec;
3593         size_t size;
3594         void *reply_buf = NULL;
3595         __le64 snapid;
3596         void *p;
3597         void *end;
3598         char *image_id;
3599         u64 overlap;
3600         int ret;
3601
3602         parent_spec = rbd_spec_alloc();
3603         if (!parent_spec)
3604                 return -ENOMEM;
3605
3606         size = sizeof (__le64) +                                /* pool_id */
3607                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
3608                 sizeof (__le64) +                               /* snap_id */
3609                 sizeof (__le64);                                /* overlap */
3610         reply_buf = kmalloc(size, GFP_KERNEL);
3611         if (!reply_buf) {
3612                 ret = -ENOMEM;
3613                 goto out_err;
3614         }
3615
3616         snapid = cpu_to_le64(CEPH_NOSNAP);
3617         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3618                                 "rbd", "get_parent",
3619                                 &snapid, sizeof (snapid),
3620                                 reply_buf, size, NULL);
3621         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3622         if (ret < 0)
3623                 goto out_err;
3624
3625         p = reply_buf;
3626         end = reply_buf + ret;
3627         ret = -ERANGE;
3628         ceph_decode_64_safe(&p, end, parent_spec->pool_id, out_err);
3629         if (parent_spec->pool_id == CEPH_NOPOOL)
3630                 goto out;       /* No parent?  No problem. */
3631
3632         /* The ceph file layout needs to fit pool id in 32 bits */
3633
3634         ret = -EIO;
3635         if (WARN_ON(parent_spec->pool_id > (u64)U32_MAX))
3636                 goto out_err;
3637
3638         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3639         if (IS_ERR(image_id)) {
3640                 ret = PTR_ERR(image_id);
3641                 goto out_err;
3642         }
3643         parent_spec->image_id = image_id;
3644         ceph_decode_64_safe(&p, end, parent_spec->snap_id, out_err);
3645         ceph_decode_64_safe(&p, end, overlap, out_err);
3646
3647         rbd_dev->parent_overlap = overlap;
3648         rbd_dev->parent_spec = parent_spec;
3649         parent_spec = NULL;     /* rbd_dev now owns this */
3650 out:
3651         ret = 0;
3652 out_err:
3653         kfree(reply_buf);
3654         rbd_spec_put(parent_spec);
3655
3656         return ret;
3657 }
3658
3659 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3660 {
3661         struct {
3662                 __le64 stripe_unit;
3663                 __le64 stripe_count;
3664         } __attribute__ ((packed)) striping_info_buf = { 0 };
3665         size_t size = sizeof (striping_info_buf);
3666         void *p;
3667         u64 obj_size;
3668         u64 stripe_unit;
3669         u64 stripe_count;
3670         int ret;
3671
3672         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3673                                 "rbd", "get_stripe_unit_count", NULL, 0,
3674                                 (char *)&striping_info_buf, size, NULL);
3675         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3676         if (ret < 0)
3677                 return ret;
3678         if (ret < size)
3679                 return -ERANGE;
3680
3681         /*
3682          * We don't actually support the "fancy striping" feature
3683          * (STRIPINGV2) yet, but if the striping sizes are the
3684          * defaults the behavior is the same as before.  So find
3685          * out, and only fail if the image has non-default values.
3686          */
3687         ret = -EINVAL;
3688         obj_size = (u64)1 << rbd_dev->header.obj_order;
3689         p = &striping_info_buf;
3690         stripe_unit = ceph_decode_64(&p);
3691         if (stripe_unit != obj_size) {
3692                 rbd_warn(rbd_dev, "unsupported stripe unit "
3693                                 "(got %llu want %llu)",
3694                                 stripe_unit, obj_size);
3695                 return -EINVAL;
3696         }
3697         stripe_count = ceph_decode_64(&p);
3698         if (stripe_count != 1) {
3699                 rbd_warn(rbd_dev, "unsupported stripe count "
3700                                 "(got %llu want 1)", stripe_count);
3701                 return -EINVAL;
3702         }
3703         rbd_dev->stripe_unit = stripe_unit;
3704         rbd_dev->stripe_count = stripe_count;
3705
3706         return 0;
3707 }
3708
3709 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
3710 {
3711         size_t image_id_size;
3712         char *image_id;
3713         void *p;
3714         void *end;
3715         size_t size;
3716         void *reply_buf = NULL;
3717         size_t len = 0;
3718         char *image_name = NULL;
3719         int ret;
3720
3721         rbd_assert(!rbd_dev->spec->image_name);
3722
3723         len = strlen(rbd_dev->spec->image_id);
3724         image_id_size = sizeof (__le32) + len;
3725         image_id = kmalloc(image_id_size, GFP_KERNEL);
3726         if (!image_id)
3727                 return NULL;
3728
3729         p = image_id;
3730         end = image_id + image_id_size;
3731         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
3732
3733         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
3734         reply_buf = kmalloc(size, GFP_KERNEL);
3735         if (!reply_buf)
3736                 goto out;
3737
3738         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
3739                                 "rbd", "dir_get_name",
3740                                 image_id, image_id_size,
3741                                 reply_buf, size, NULL);
3742         if (ret < 0)
3743                 goto out;
3744         p = reply_buf;
3745         end = reply_buf + size;
3746         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
3747         if (IS_ERR(image_name))
3748                 image_name = NULL;
3749         else
3750                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
3751 out:
3752         kfree(reply_buf);
3753         kfree(image_id);
3754
3755         return image_name;
3756 }
3757
3758 /*
3759  * When a parent image gets probed, we only have the pool, image,
3760  * and snapshot ids but not the names of any of them.  This call
3761  * is made later to fill in those names.  It has to be done after
3762  * rbd_dev_snaps_update() has completed because some of the
3763  * information (in particular, snapshot name) is not available
3764  * until then.
3765  */
3766 static int rbd_dev_probe_update_spec(struct rbd_device *rbd_dev)
3767 {
3768         struct ceph_osd_client *osdc;
3769         const char *name;
3770         void *reply_buf = NULL;
3771         int ret;
3772
3773         if (rbd_dev->spec->pool_name)
3774                 return 0;       /* Already have the names */
3775
3776         /* Look up the pool name */
3777
3778         osdc = &rbd_dev->rbd_client->client->osdc;
3779         name = ceph_pg_pool_name_by_id(osdc->osdmap, rbd_dev->spec->pool_id);
3780         if (!name) {
3781                 rbd_warn(rbd_dev, "there is no pool with id %llu",
3782                         rbd_dev->spec->pool_id);        /* Really a BUG() */
3783                 return -EIO;
3784         }
3785
3786         rbd_dev->spec->pool_name = kstrdup(name, GFP_KERNEL);
3787         if (!rbd_dev->spec->pool_name)
3788                 return -ENOMEM;
3789
3790         /* Fetch the image name; tolerate failure here */
3791
3792         name = rbd_dev_image_name(rbd_dev);
3793         if (name)
3794                 rbd_dev->spec->image_name = (char *)name;
3795         else
3796                 rbd_warn(rbd_dev, "unable to get image name");
3797
3798         /* Look up the snapshot name. */
3799
3800         name = rbd_snap_name(rbd_dev, rbd_dev->spec->snap_id);
3801         if (!name) {
3802                 rbd_warn(rbd_dev, "no snapshot with id %llu",
3803                         rbd_dev->spec->snap_id);        /* Really a BUG() */
3804                 ret = -EIO;
3805                 goto out_err;
3806         }
3807         rbd_dev->spec->snap_name = kstrdup(name, GFP_KERNEL);
3808         if(!rbd_dev->spec->snap_name)
3809                 goto out_err;
3810
3811         return 0;
3812 out_err:
3813         kfree(reply_buf);
3814         kfree(rbd_dev->spec->pool_name);
3815         rbd_dev->spec->pool_name = NULL;
3816
3817         return ret;
3818 }
3819
3820 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev, u64 *ver)
3821 {
3822         size_t size;
3823         int ret;
3824         void *reply_buf;
3825         void *p;
3826         void *end;
3827         u64 seq;
3828         u32 snap_count;
3829         struct ceph_snap_context *snapc;
3830         u32 i;
3831
3832         /*
3833          * We'll need room for the seq value (maximum snapshot id),
3834          * snapshot count, and array of that many snapshot ids.
3835          * For now we have a fixed upper limit on the number we're
3836          * prepared to receive.
3837          */
3838         size = sizeof (__le64) + sizeof (__le32) +
3839                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
3840         reply_buf = kzalloc(size, GFP_KERNEL);
3841         if (!reply_buf)
3842                 return -ENOMEM;
3843
3844         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3845                                 "rbd", "get_snapcontext", NULL, 0,
3846                                 reply_buf, size, ver);
3847         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3848         if (ret < 0)
3849                 goto out;
3850
3851         p = reply_buf;
3852         end = reply_buf + ret;
3853         ret = -ERANGE;
3854         ceph_decode_64_safe(&p, end, seq, out);
3855         ceph_decode_32_safe(&p, end, snap_count, out);
3856
3857         /*
3858          * Make sure the reported number of snapshot ids wouldn't go
3859          * beyond the end of our buffer.  But before checking that,
3860          * make sure the computed size of the snapshot context we
3861          * allocate is representable in a size_t.
3862          */
3863         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
3864                                  / sizeof (u64)) {
3865                 ret = -EINVAL;
3866                 goto out;
3867         }
3868         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
3869                 goto out;
3870
3871         size = sizeof (struct ceph_snap_context) +
3872                                 snap_count * sizeof (snapc->snaps[0]);
3873         snapc = kmalloc(size, GFP_KERNEL);
3874         if (!snapc) {
3875                 ret = -ENOMEM;
3876                 goto out;
3877         }
3878         ret = 0;
3879
3880         atomic_set(&snapc->nref, 1);
3881         snapc->seq = seq;
3882         snapc->num_snaps = snap_count;
3883         for (i = 0; i < snap_count; i++)
3884                 snapc->snaps[i] = ceph_decode_64(&p);
3885
3886         rbd_dev->header.snapc = snapc;
3887
3888         dout("  snap context seq = %llu, snap_count = %u\n",
3889                 (unsigned long long)seq, (unsigned int)snap_count);
3890 out:
3891         kfree(reply_buf);
3892
3893         return ret;
3894 }
3895
3896 static char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, u32 which)
3897 {
3898         size_t size;
3899         void *reply_buf;
3900         __le64 snap_id;
3901         int ret;
3902         void *p;
3903         void *end;
3904         char *snap_name;
3905
3906         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
3907         reply_buf = kmalloc(size, GFP_KERNEL);
3908         if (!reply_buf)
3909                 return ERR_PTR(-ENOMEM);
3910
3911         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
3912         snap_id = cpu_to_le64(rbd_dev->header.snapc->snaps[which]);
3913         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3914                                 "rbd", "get_snapshot_name",
3915                                 &snap_id, sizeof (snap_id),
3916                                 reply_buf, size, NULL);
3917         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3918         if (ret < 0)
3919                 goto out;
3920
3921         p = reply_buf;
3922         end = reply_buf + size;
3923         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3924         if (IS_ERR(snap_name)) {
3925                 ret = PTR_ERR(snap_name);
3926                 goto out;
3927         } else {
3928                 dout("  snap_id 0x%016llx snap_name = %s\n",
3929                         (unsigned long long)le64_to_cpu(snap_id), snap_name);
3930         }
3931         kfree(reply_buf);
3932
3933         return snap_name;
3934 out:
3935         kfree(reply_buf);
3936
3937         return ERR_PTR(ret);
3938 }
3939
3940 static char *rbd_dev_v2_snap_info(struct rbd_device *rbd_dev, u32 which,
3941                 u64 *snap_size, u64 *snap_features)
3942 {
3943         u64 snap_id;
3944         u64 size;
3945         u64 features;
3946         char *snap_name;
3947         int ret;
3948
3949         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
3950         snap_id = rbd_dev->header.snapc->snaps[which];
3951         ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
3952         if (ret)
3953                 goto out_err;
3954
3955         ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
3956         if (ret)
3957                 goto out_err;
3958
3959         snap_name = rbd_dev_v2_snap_name(rbd_dev, which);
3960         if (!IS_ERR(snap_name)) {
3961                 *snap_size = size;
3962                 *snap_features = features;
3963         }
3964
3965         return snap_name;
3966 out_err:
3967         return ERR_PTR(ret);
3968 }
3969
3970 static char *rbd_dev_snap_info(struct rbd_device *rbd_dev, u32 which,
3971                 u64 *snap_size, u64 *snap_features)
3972 {
3973         if (rbd_dev->image_format == 1)
3974                 return rbd_dev_v1_snap_info(rbd_dev, which,
3975                                         snap_size, snap_features);
3976         if (rbd_dev->image_format == 2)
3977                 return rbd_dev_v2_snap_info(rbd_dev, which,
3978                                         snap_size, snap_features);
3979         return ERR_PTR(-EINVAL);
3980 }
3981
3982 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev, u64 *hver)
3983 {
3984         int ret;
3985         __u8 obj_order;
3986
3987         down_write(&rbd_dev->header_rwsem);
3988
3989         /* Grab old order first, to see if it changes */
3990
3991         obj_order = rbd_dev->header.obj_order,
3992         ret = rbd_dev_v2_image_size(rbd_dev);
3993         if (ret)
3994                 goto out;
3995         if (rbd_dev->header.obj_order != obj_order) {
3996                 ret = -EIO;
3997                 goto out;
3998         }
3999         rbd_update_mapping_size(rbd_dev);
4000
4001         ret = rbd_dev_v2_snap_context(rbd_dev, hver);
4002         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4003         if (ret)
4004                 goto out;
4005         ret = rbd_dev_snaps_update(rbd_dev);
4006         dout("rbd_dev_snaps_update returned %d\n", ret);
4007         if (ret)
4008                 goto out;
4009 out:
4010         up_write(&rbd_dev->header_rwsem);
4011
4012         return ret;
4013 }
4014
4015 /*
4016  * Scan the rbd device's current snapshot list and compare it to the
4017  * newly-received snapshot context.  Remove any existing snapshots
4018  * not present in the new snapshot context.  Add a new snapshot for
4019  * any snaphots in the snapshot context not in the current list.
4020  * And verify there are no changes to snapshots we already know
4021  * about.
4022  *
4023  * Assumes the snapshots in the snapshot context are sorted by
4024  * snapshot id, highest id first.  (Snapshots in the rbd_dev's list
4025  * are also maintained in that order.)
4026  *
4027  * Note that any error occurs while updating the snapshot list
4028  * aborts the update, and the entire list is cleared.  The snapshot
4029  * list becomes inconsistent at that point anyway, so it might as
4030  * well be empty.
4031  */
4032 static int rbd_dev_snaps_update(struct rbd_device *rbd_dev)
4033 {
4034         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4035         const u32 snap_count = snapc->num_snaps;
4036         struct list_head *head = &rbd_dev->snaps;
4037         struct list_head *links = head->next;
4038         u32 index = 0;
4039         int ret = 0;
4040
4041         dout("%s: snap count is %u\n", __func__, (unsigned int)snap_count);
4042         while (index < snap_count || links != head) {
4043                 u64 snap_id;
4044                 struct rbd_snap *snap;
4045                 char *snap_name;
4046                 u64 snap_size = 0;
4047                 u64 snap_features = 0;
4048
4049                 snap_id = index < snap_count ? snapc->snaps[index]
4050                                              : CEPH_NOSNAP;
4051                 snap = links != head ? list_entry(links, struct rbd_snap, node)
4052                                      : NULL;
4053                 rbd_assert(!snap || snap->id != CEPH_NOSNAP);
4054
4055                 if (snap_id == CEPH_NOSNAP || (snap && snap->id > snap_id)) {
4056                         struct list_head *next = links->next;
4057
4058                         /*
4059                          * A previously-existing snapshot is not in
4060                          * the new snap context.
4061                          *
4062                          * If the now-missing snapshot is the one
4063                          * the image represents, clear its existence
4064                          * flag so we can avoid sending any more
4065                          * requests to it.
4066                          */
4067                         if (rbd_dev->spec->snap_id == snap->id)
4068                                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4069                         dout("removing %ssnap id %llu\n",
4070                                 rbd_dev->spec->snap_id == snap->id ?
4071                                                         "mapped " : "",
4072                                 (unsigned long long)snap->id);
4073                         rbd_remove_snap_dev(snap);
4074
4075                         /* Done with this list entry; advance */
4076
4077                         links = next;
4078                         continue;
4079                 }
4080
4081                 snap_name = rbd_dev_snap_info(rbd_dev, index,
4082                                         &snap_size, &snap_features);
4083                 if (IS_ERR(snap_name)) {
4084                         ret = PTR_ERR(snap_name);
4085                         dout("failed to get snap info, error %d\n", ret);
4086                         goto out_err;
4087                 }
4088
4089                 dout("entry %u: snap_id = %llu\n", (unsigned int)snap_count,
4090                         (unsigned long long)snap_id);
4091                 if (!snap || (snap_id != CEPH_NOSNAP && snap->id < snap_id)) {
4092                         struct rbd_snap *new_snap;
4093
4094                         /* We haven't seen this snapshot before */
4095
4096                         new_snap = __rbd_add_snap_dev(rbd_dev, snap_name,
4097                                         snap_id, snap_size, snap_features);
4098                         if (IS_ERR(new_snap)) {
4099                                 ret = PTR_ERR(new_snap);
4100                                 dout("  failed to add dev, error %d\n", ret);
4101                                 goto out_err;
4102                         }
4103
4104                         /* New goes before existing, or at end of list */
4105
4106                         dout("  added dev%s\n", snap ? "" : " at end\n");
4107                         if (snap)
4108                                 list_add_tail(&new_snap->node, &snap->node);
4109                         else
4110                                 list_add_tail(&new_snap->node, head);
4111                 } else {
4112                         /* Already have this one */
4113
4114                         dout("  already present\n");
4115
4116                         rbd_assert(snap->size == snap_size);
4117                         rbd_assert(!strcmp(snap->name, snap_name));
4118                         rbd_assert(snap->features == snap_features);
4119
4120                         /* Done with this list entry; advance */
4121
4122                         links = links->next;
4123                 }
4124
4125                 /* Advance to the next entry in the snapshot context */
4126
4127                 index++;
4128         }
4129         dout("%s: done\n", __func__);
4130
4131         return 0;
4132 out_err:
4133         rbd_remove_all_snaps(rbd_dev);
4134
4135         return ret;
4136 }
4137
4138 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4139 {
4140         struct device *dev;
4141         int ret;
4142
4143         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4144
4145         dev = &rbd_dev->dev;
4146         dev->bus = &rbd_bus_type;
4147         dev->type = &rbd_device_type;
4148         dev->parent = &rbd_root_dev;
4149         dev->release = rbd_dev_release;
4150         dev_set_name(dev, "%d", rbd_dev->dev_id);
4151         ret = device_register(dev);
4152
4153         mutex_unlock(&ctl_mutex);
4154
4155         return ret;
4156 }
4157
4158 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4159 {
4160         device_unregister(&rbd_dev->dev);
4161 }
4162
4163 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4164
4165 /*
4166  * Get a unique rbd identifier for the given new rbd_dev, and add
4167  * the rbd_dev to the global list.  The minimum rbd id is 1.
4168  */
4169 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4170 {
4171         rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4172
4173         spin_lock(&rbd_dev_list_lock);
4174         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4175         spin_unlock(&rbd_dev_list_lock);
4176         dout("rbd_dev %p given dev id %llu\n", rbd_dev,
4177                 (unsigned long long) rbd_dev->dev_id);
4178 }
4179
4180 /*
4181  * Remove an rbd_dev from the global list, and record that its
4182  * identifier is no longer in use.
4183  */
4184 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4185 {
4186         struct list_head *tmp;
4187         int rbd_id = rbd_dev->dev_id;
4188         int max_id;
4189
4190         rbd_assert(rbd_id > 0);
4191
4192         dout("rbd_dev %p released dev id %llu\n", rbd_dev,
4193                 (unsigned long long) rbd_dev->dev_id);
4194         spin_lock(&rbd_dev_list_lock);
4195         list_del_init(&rbd_dev->node);
4196
4197         /*
4198          * If the id being "put" is not the current maximum, there
4199          * is nothing special we need to do.
4200          */
4201         if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4202                 spin_unlock(&rbd_dev_list_lock);
4203                 return;
4204         }
4205
4206         /*
4207          * We need to update the current maximum id.  Search the
4208          * list to find out what it is.  We're more likely to find
4209          * the maximum at the end, so search the list backward.
4210          */
4211         max_id = 0;
4212         list_for_each_prev(tmp, &rbd_dev_list) {
4213                 struct rbd_device *rbd_dev;
4214
4215                 rbd_dev = list_entry(tmp, struct rbd_device, node);
4216                 if (rbd_dev->dev_id > max_id)
4217                         max_id = rbd_dev->dev_id;
4218         }
4219         spin_unlock(&rbd_dev_list_lock);
4220
4221         /*
4222          * The max id could have been updated by rbd_dev_id_get(), in
4223          * which case it now accurately reflects the new maximum.
4224          * Be careful not to overwrite the maximum value in that
4225          * case.
4226          */
4227         atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4228         dout("  max dev id has been reset\n");
4229 }
4230
4231 /*
4232  * Skips over white space at *buf, and updates *buf to point to the
4233  * first found non-space character (if any). Returns the length of
4234  * the token (string of non-white space characters) found.  Note
4235  * that *buf must be terminated with '\0'.
4236  */
4237 static inline size_t next_token(const char **buf)
4238 {
4239         /*
4240         * These are the characters that produce nonzero for
4241         * isspace() in the "C" and "POSIX" locales.
4242         */
4243         const char *spaces = " \f\n\r\t\v";
4244
4245         *buf += strspn(*buf, spaces);   /* Find start of token */
4246
4247         return strcspn(*buf, spaces);   /* Return token length */
4248 }
4249
4250 /*
4251  * Finds the next token in *buf, and if the provided token buffer is
4252  * big enough, copies the found token into it.  The result, if
4253  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4254  * must be terminated with '\0' on entry.
4255  *
4256  * Returns the length of the token found (not including the '\0').
4257  * Return value will be 0 if no token is found, and it will be >=
4258  * token_size if the token would not fit.
4259  *
4260  * The *buf pointer will be updated to point beyond the end of the
4261  * found token.  Note that this occurs even if the token buffer is
4262  * too small to hold it.
4263  */
4264 static inline size_t copy_token(const char **buf,
4265                                 char *token,
4266                                 size_t token_size)
4267 {
4268         size_t len;
4269
4270         len = next_token(buf);
4271         if (len < token_size) {
4272                 memcpy(token, *buf, len);
4273                 *(token + len) = '\0';
4274         }
4275         *buf += len;
4276
4277         return len;
4278 }
4279
4280 /*
4281  * Finds the next token in *buf, dynamically allocates a buffer big
4282  * enough to hold a copy of it, and copies the token into the new
4283  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4284  * that a duplicate buffer is created even for a zero-length token.
4285  *
4286  * Returns a pointer to the newly-allocated duplicate, or a null
4287  * pointer if memory for the duplicate was not available.  If
4288  * the lenp argument is a non-null pointer, the length of the token
4289  * (not including the '\0') is returned in *lenp.
4290  *
4291  * If successful, the *buf pointer will be updated to point beyond
4292  * the end of the found token.
4293  *
4294  * Note: uses GFP_KERNEL for allocation.
4295  */
4296 static inline char *dup_token(const char **buf, size_t *lenp)
4297 {
4298         char *dup;
4299         size_t len;
4300
4301         len = next_token(buf);
4302         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4303         if (!dup)
4304                 return NULL;
4305         *(dup + len) = '\0';
4306         *buf += len;
4307
4308         if (lenp)
4309                 *lenp = len;
4310
4311         return dup;
4312 }
4313
4314 /*
4315  * Parse the options provided for an "rbd add" (i.e., rbd image
4316  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4317  * and the data written is passed here via a NUL-terminated buffer.
4318  * Returns 0 if successful or an error code otherwise.
4319  *
4320  * The information extracted from these options is recorded in
4321  * the other parameters which return dynamically-allocated
4322  * structures:
4323  *  ceph_opts
4324  *      The address of a pointer that will refer to a ceph options
4325  *      structure.  Caller must release the returned pointer using
4326  *      ceph_destroy_options() when it is no longer needed.
4327  *  rbd_opts
4328  *      Address of an rbd options pointer.  Fully initialized by
4329  *      this function; caller must release with kfree().
4330  *  spec
4331  *      Address of an rbd image specification pointer.  Fully
4332  *      initialized by this function based on parsed options.
4333  *      Caller must release with rbd_spec_put().
4334  *
4335  * The options passed take this form:
4336  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4337  * where:
4338  *  <mon_addrs>
4339  *      A comma-separated list of one or more monitor addresses.
4340  *      A monitor address is an ip address, optionally followed
4341  *      by a port number (separated by a colon).
4342  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4343  *  <options>
4344  *      A comma-separated list of ceph and/or rbd options.
4345  *  <pool_name>
4346  *      The name of the rados pool containing the rbd image.
4347  *  <image_name>
4348  *      The name of the image in that pool to map.
4349  *  <snap_id>
4350  *      An optional snapshot id.  If provided, the mapping will
4351  *      present data from the image at the time that snapshot was
4352  *      created.  The image head is used if no snapshot id is
4353  *      provided.  Snapshot mappings are always read-only.
4354  */
4355 static int rbd_add_parse_args(const char *buf,
4356                                 struct ceph_options **ceph_opts,
4357                                 struct rbd_options **opts,
4358                                 struct rbd_spec **rbd_spec)
4359 {
4360         size_t len;
4361         char *options;
4362         const char *mon_addrs;
4363         size_t mon_addrs_size;
4364         struct rbd_spec *spec = NULL;
4365         struct rbd_options *rbd_opts = NULL;
4366         struct ceph_options *copts;
4367         int ret;
4368
4369         /* The first four tokens are required */
4370
4371         len = next_token(&buf);
4372         if (!len) {
4373                 rbd_warn(NULL, "no monitor address(es) provided");
4374                 return -EINVAL;
4375         }
4376         mon_addrs = buf;
4377         mon_addrs_size = len + 1;
4378         buf += len;
4379
4380         ret = -EINVAL;
4381         options = dup_token(&buf, NULL);
4382         if (!options)
4383                 return -ENOMEM;
4384         if (!*options) {
4385                 rbd_warn(NULL, "no options provided");
4386                 goto out_err;
4387         }
4388
4389         spec = rbd_spec_alloc();
4390         if (!spec)
4391                 goto out_mem;
4392
4393         spec->pool_name = dup_token(&buf, NULL);
4394         if (!spec->pool_name)
4395                 goto out_mem;
4396         if (!*spec->pool_name) {
4397                 rbd_warn(NULL, "no pool name provided");
4398                 goto out_err;
4399         }
4400
4401         spec->image_name = dup_token(&buf, NULL);
4402         if (!spec->image_name)
4403                 goto out_mem;
4404         if (!*spec->image_name) {
4405                 rbd_warn(NULL, "no image name provided");
4406                 goto out_err;
4407         }
4408
4409         /*
4410          * Snapshot name is optional; default is to use "-"
4411          * (indicating the head/no snapshot).
4412          */
4413         len = next_token(&buf);
4414         if (!len) {
4415                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4416                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4417         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4418                 ret = -ENAMETOOLONG;
4419                 goto out_err;
4420         }
4421         spec->snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4422         if (!spec->snap_name)
4423                 goto out_mem;
4424         *(spec->snap_name + len) = '\0';
4425
4426         /* Initialize all rbd options to the defaults */
4427
4428         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4429         if (!rbd_opts)
4430                 goto out_mem;
4431
4432         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4433
4434         copts = ceph_parse_options(options, mon_addrs,
4435                                         mon_addrs + mon_addrs_size - 1,
4436                                         parse_rbd_opts_token, rbd_opts);
4437         if (IS_ERR(copts)) {
4438                 ret = PTR_ERR(copts);
4439                 goto out_err;
4440         }
4441         kfree(options);
4442
4443         *ceph_opts = copts;
4444         *opts = rbd_opts;
4445         *rbd_spec = spec;
4446
4447         return 0;
4448 out_mem:
4449         ret = -ENOMEM;
4450 out_err:
4451         kfree(rbd_opts);
4452         rbd_spec_put(spec);
4453         kfree(options);
4454
4455         return ret;
4456 }
4457
4458 /*
4459  * An rbd format 2 image has a unique identifier, distinct from the
4460  * name given to it by the user.  Internally, that identifier is
4461  * what's used to specify the names of objects related to the image.
4462  *
4463  * A special "rbd id" object is used to map an rbd image name to its
4464  * id.  If that object doesn't exist, then there is no v2 rbd image
4465  * with the supplied name.
4466  *
4467  * This function will record the given rbd_dev's image_id field if
4468  * it can be determined, and in that case will return 0.  If any
4469  * errors occur a negative errno will be returned and the rbd_dev's
4470  * image_id field will be unchanged (and should be NULL).
4471  */
4472 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4473 {
4474         int ret;
4475         size_t size;
4476         char *object_name;
4477         void *response;
4478         void *p;
4479
4480         /* If we already have it we don't need to look it up */
4481
4482         if (rbd_dev->spec->image_id)
4483                 return 0;
4484
4485         /*
4486          * When probing a parent image, the image id is already
4487          * known (and the image name likely is not).  There's no
4488          * need to fetch the image id again in this case.
4489          */
4490         if (rbd_dev->spec->image_id)
4491                 return 0;
4492
4493         /*
4494          * First, see if the format 2 image id file exists, and if
4495          * so, get the image's persistent id from it.
4496          */
4497         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4498         object_name = kmalloc(size, GFP_NOIO);
4499         if (!object_name)
4500                 return -ENOMEM;
4501         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4502         dout("rbd id object name is %s\n", object_name);
4503
4504         /* Response will be an encoded string, which includes a length */
4505
4506         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4507         response = kzalloc(size, GFP_NOIO);
4508         if (!response) {
4509                 ret = -ENOMEM;
4510                 goto out;
4511         }
4512
4513         ret = rbd_obj_method_sync(rbd_dev, object_name,
4514                                 "rbd", "get_id", NULL, 0,
4515                                 response, RBD_IMAGE_ID_LEN_MAX, NULL);
4516         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4517         if (ret < 0)
4518                 goto out;
4519
4520         p = response;
4521         rbd_dev->spec->image_id = ceph_extract_encoded_string(&p,
4522                                                 p + ret,
4523                                                 NULL, GFP_NOIO);
4524         ret = 0;
4525
4526         if (IS_ERR(rbd_dev->spec->image_id)) {
4527                 ret = PTR_ERR(rbd_dev->spec->image_id);
4528                 rbd_dev->spec->image_id = NULL;
4529         } else {
4530                 dout("image_id is %s\n", rbd_dev->spec->image_id);
4531         }
4532 out:
4533         kfree(response);
4534         kfree(object_name);
4535
4536         return ret;
4537 }
4538
4539 static int rbd_dev_v1_probe(struct rbd_device *rbd_dev)
4540 {
4541         int ret;
4542         size_t size;
4543
4544         /* Version 1 images have no id; empty string is used */
4545
4546         rbd_dev->spec->image_id = kstrdup("", GFP_KERNEL);
4547         if (!rbd_dev->spec->image_id)
4548                 return -ENOMEM;
4549
4550         /* Record the header object name for this rbd image. */
4551
4552         size = strlen(rbd_dev->spec->image_name) + sizeof (RBD_SUFFIX);
4553         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4554         if (!rbd_dev->header_name) {
4555                 ret = -ENOMEM;
4556                 goto out_err;
4557         }
4558         sprintf(rbd_dev->header_name, "%s%s",
4559                 rbd_dev->spec->image_name, RBD_SUFFIX);
4560
4561         /* Populate rbd image metadata */
4562
4563         ret = rbd_read_header(rbd_dev, &rbd_dev->header);
4564         if (ret < 0)
4565                 goto out_err;
4566
4567         /* Version 1 images have no parent (no layering) */
4568
4569         rbd_dev->parent_spec = NULL;
4570         rbd_dev->parent_overlap = 0;
4571
4572         rbd_dev->image_format = 1;
4573
4574         dout("discovered version 1 image, header name is %s\n",
4575                 rbd_dev->header_name);
4576
4577         return 0;
4578
4579 out_err:
4580         kfree(rbd_dev->header_name);
4581         rbd_dev->header_name = NULL;
4582         kfree(rbd_dev->spec->image_id);
4583         rbd_dev->spec->image_id = NULL;
4584
4585         return ret;
4586 }
4587
4588 static int rbd_dev_v2_probe(struct rbd_device *rbd_dev)
4589 {
4590         size_t size;
4591         int ret;
4592         u64 ver = 0;
4593
4594         /*
4595          * Image id was filled in by the caller.  Record the header
4596          * object name for this rbd image.
4597          */
4598         size = sizeof (RBD_HEADER_PREFIX) + strlen(rbd_dev->spec->image_id);
4599         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4600         if (!rbd_dev->header_name)
4601                 return -ENOMEM;
4602         sprintf(rbd_dev->header_name, "%s%s",
4603                         RBD_HEADER_PREFIX, rbd_dev->spec->image_id);
4604
4605         /* Get the size and object order for the image */
4606         ret = rbd_dev_v2_image_size(rbd_dev);
4607         if (ret)
4608                 goto out_err;
4609
4610         /* Get the object prefix (a.k.a. block_name) for the image */
4611
4612         ret = rbd_dev_v2_object_prefix(rbd_dev);
4613         if (ret)
4614                 goto out_err;
4615
4616         /* Get the and check features for the image */
4617
4618         ret = rbd_dev_v2_features(rbd_dev);
4619         if (ret)
4620                 goto out_err;
4621
4622         /* If the image supports layering, get the parent info */
4623
4624         if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
4625                 ret = rbd_dev_v2_parent_info(rbd_dev);
4626                 if (ret)
4627                         goto out_err;
4628                 rbd_warn(rbd_dev, "WARNING: kernel support for "
4629                                         "layered rbd images is EXPERIMENTAL!");
4630         }
4631
4632         /* If the image supports fancy striping, get its parameters */
4633
4634         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4635                 ret = rbd_dev_v2_striping_info(rbd_dev);
4636                 if (ret < 0)
4637                         goto out_err;
4638         }
4639
4640         /* crypto and compression type aren't (yet) supported for v2 images */
4641
4642         rbd_dev->header.crypt_type = 0;
4643         rbd_dev->header.comp_type = 0;
4644
4645         /* Get the snapshot context, plus the header version */
4646
4647         ret = rbd_dev_v2_snap_context(rbd_dev, &ver);
4648         if (ret)
4649                 goto out_err;
4650         rbd_dev->header.obj_version = ver;
4651
4652         rbd_dev->image_format = 2;
4653
4654         dout("discovered version 2 image, header name is %s\n",
4655                 rbd_dev->header_name);
4656
4657         return 0;
4658 out_err:
4659         rbd_dev->parent_overlap = 0;
4660         rbd_spec_put(rbd_dev->parent_spec);
4661         rbd_dev->parent_spec = NULL;
4662         kfree(rbd_dev->header_name);
4663         rbd_dev->header_name = NULL;
4664         kfree(rbd_dev->header.object_prefix);
4665         rbd_dev->header.object_prefix = NULL;
4666
4667         return ret;
4668 }
4669
4670 static int rbd_dev_probe_finish(struct rbd_device *rbd_dev)
4671 {
4672         struct rbd_device *parent = NULL;
4673         struct rbd_spec *parent_spec = NULL;
4674         struct rbd_client *rbdc = NULL;
4675         int ret;
4676
4677         /* no need to lock here, as rbd_dev is not registered yet */
4678         ret = rbd_dev_snaps_update(rbd_dev);
4679         if (ret)
4680                 return ret;
4681
4682         ret = rbd_dev_probe_update_spec(rbd_dev);
4683         if (ret)
4684                 goto err_out_snaps;
4685
4686         ret = rbd_dev_set_mapping(rbd_dev);
4687         if (ret)
4688                 goto err_out_snaps;
4689
4690         /* generate unique id: find highest unique id, add one */
4691         rbd_dev_id_get(rbd_dev);
4692
4693         /* Fill in the device name, now that we have its id. */
4694         BUILD_BUG_ON(DEV_NAME_LEN
4695                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4696         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4697
4698         /* Get our block major device number. */
4699
4700         ret = register_blkdev(0, rbd_dev->name);
4701         if (ret < 0)
4702                 goto err_out_id;
4703         rbd_dev->major = ret;
4704
4705         /* Set up the blkdev mapping. */
4706
4707         ret = rbd_init_disk(rbd_dev);
4708         if (ret)
4709                 goto err_out_blkdev;
4710
4711         ret = rbd_bus_add_dev(rbd_dev);
4712         if (ret)
4713                 goto err_out_disk;
4714
4715         /*
4716          * At this point cleanup in the event of an error is the job
4717          * of the sysfs code (initiated by rbd_bus_del_dev()).
4718          */
4719         /* Probe the parent if there is one */
4720
4721         if (rbd_dev->parent_spec) {
4722                 /*
4723                  * We need to pass a reference to the client and the
4724                  * parent spec when creating the parent rbd_dev.
4725                  * Images related by parent/child relationships
4726                  * always share both.
4727                  */
4728                 parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4729                 rbdc = __rbd_get_client(rbd_dev->rbd_client);
4730
4731                 parent = rbd_dev_create(rbdc, parent_spec);
4732                 if (!parent) {
4733                         ret = -ENOMEM;
4734                         goto err_out_spec;
4735                 }
4736                 rbdc = NULL;            /* parent now owns reference */
4737                 parent_spec = NULL;     /* parent now owns reference */
4738                 ret = rbd_dev_probe(parent);
4739                 if (ret < 0)
4740                         goto err_out_parent;
4741                 rbd_dev->parent = parent;
4742         }
4743
4744         ret = rbd_dev_header_watch_sync(rbd_dev, 1);
4745         if (ret)
4746                 goto err_out_bus;
4747
4748         /* Everything's ready.  Announce the disk to the world. */
4749
4750         add_disk(rbd_dev->disk);
4751
4752         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4753                 (unsigned long long) rbd_dev->mapping.size);
4754
4755         return ret;
4756
4757 err_out_parent:
4758         rbd_dev_destroy(parent);
4759 err_out_spec:
4760         rbd_spec_put(parent_spec);
4761         rbd_put_client(rbdc);
4762 err_out_bus:
4763         /* this will also clean up rest of rbd_dev stuff */
4764
4765         rbd_bus_del_dev(rbd_dev);
4766
4767         return ret;
4768 err_out_disk:
4769         rbd_free_disk(rbd_dev);
4770 err_out_blkdev:
4771         unregister_blkdev(rbd_dev->major, rbd_dev->name);
4772 err_out_id:
4773         rbd_dev_id_put(rbd_dev);
4774 err_out_snaps:
4775         rbd_remove_all_snaps(rbd_dev);
4776
4777         return ret;
4778 }
4779
4780 /*
4781  * Probe for the existence of the header object for the given rbd
4782  * device.  For format 2 images this includes determining the image
4783  * id.
4784  */
4785 static int rbd_dev_probe(struct rbd_device *rbd_dev)
4786 {
4787         int ret;
4788
4789         /*
4790          * Get the id from the image id object.  If it's not a
4791          * format 2 image, we'll get ENOENT back, and we'll assume
4792          * it's a format 1 image.
4793          */
4794         ret = rbd_dev_image_id(rbd_dev);
4795         if (ret)
4796                 ret = rbd_dev_v1_probe(rbd_dev);
4797         else
4798                 ret = rbd_dev_v2_probe(rbd_dev);
4799         if (ret) {
4800                 dout("probe failed, returning %d\n", ret);
4801
4802                 return ret;
4803         }
4804
4805         ret = rbd_dev_probe_finish(rbd_dev);
4806         if (ret)
4807                 rbd_header_free(&rbd_dev->header);
4808
4809         return ret;
4810 }
4811
4812 static ssize_t rbd_add(struct bus_type *bus,
4813                        const char *buf,
4814                        size_t count)
4815 {
4816         struct rbd_device *rbd_dev = NULL;
4817         struct ceph_options *ceph_opts = NULL;
4818         struct rbd_options *rbd_opts = NULL;
4819         struct rbd_spec *spec = NULL;
4820         struct rbd_client *rbdc;
4821         struct ceph_osd_client *osdc;
4822         int rc = -ENOMEM;
4823
4824         if (!try_module_get(THIS_MODULE))
4825                 return -ENODEV;
4826
4827         /* parse add command */
4828         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
4829         if (rc < 0)
4830                 goto err_out_module;
4831
4832         rbdc = rbd_get_client(ceph_opts);
4833         if (IS_ERR(rbdc)) {
4834                 rc = PTR_ERR(rbdc);
4835                 goto err_out_args;
4836         }
4837         ceph_opts = NULL;       /* rbd_dev client now owns this */
4838
4839         /* pick the pool */
4840         osdc = &rbdc->client->osdc;
4841         rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
4842         if (rc < 0)
4843                 goto err_out_client;
4844         spec->pool_id = (u64) rc;
4845
4846         /* The ceph file layout needs to fit pool id in 32 bits */
4847
4848         if (WARN_ON(spec->pool_id > (u64) U32_MAX)) {
4849                 rc = -EIO;
4850                 goto err_out_client;
4851         }
4852
4853         rbd_dev = rbd_dev_create(rbdc, spec);
4854         if (!rbd_dev)
4855                 goto err_out_client;
4856         rbdc = NULL;            /* rbd_dev now owns this */
4857         spec = NULL;            /* rbd_dev now owns this */
4858
4859         rbd_dev->mapping.read_only = rbd_opts->read_only;
4860         kfree(rbd_opts);
4861         rbd_opts = NULL;        /* done with this */
4862
4863         rc = rbd_dev_probe(rbd_dev);
4864         if (rc < 0)
4865                 goto err_out_rbd_dev;
4866
4867         return count;
4868 err_out_rbd_dev:
4869         rbd_dev_destroy(rbd_dev);
4870 err_out_client:
4871         rbd_put_client(rbdc);
4872 err_out_args:
4873         if (ceph_opts)
4874                 ceph_destroy_options(ceph_opts);
4875         kfree(rbd_opts);
4876         rbd_spec_put(spec);
4877 err_out_module:
4878         module_put(THIS_MODULE);
4879
4880         dout("Error adding device %s\n", buf);
4881
4882         return (ssize_t) rc;
4883 }
4884
4885 static struct rbd_device *__rbd_get_dev(unsigned long dev_id)
4886 {
4887         struct list_head *tmp;
4888         struct rbd_device *rbd_dev;
4889
4890         spin_lock(&rbd_dev_list_lock);
4891         list_for_each(tmp, &rbd_dev_list) {
4892                 rbd_dev = list_entry(tmp, struct rbd_device, node);
4893                 if (rbd_dev->dev_id == dev_id) {
4894                         spin_unlock(&rbd_dev_list_lock);
4895                         return rbd_dev;
4896                 }
4897         }
4898         spin_unlock(&rbd_dev_list_lock);
4899         return NULL;
4900 }
4901
4902 static void rbd_dev_release(struct device *dev)
4903 {
4904         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4905
4906         if (rbd_dev->watch_event)
4907                 rbd_dev_header_watch_sync(rbd_dev, 0);
4908
4909         /* clean up and free blkdev */
4910         rbd_free_disk(rbd_dev);
4911         unregister_blkdev(rbd_dev->major, rbd_dev->name);
4912
4913         /* release allocated disk header fields */
4914         rbd_header_free(&rbd_dev->header);
4915
4916         /* done with the id, and with the rbd_dev */
4917         rbd_dev_id_put(rbd_dev);
4918         rbd_assert(rbd_dev->rbd_client != NULL);
4919         rbd_dev_destroy(rbd_dev);
4920
4921         /* release module ref */
4922         module_put(THIS_MODULE);
4923 }
4924
4925 static void __rbd_remove(struct rbd_device *rbd_dev)
4926 {
4927         rbd_remove_all_snaps(rbd_dev);
4928         rbd_bus_del_dev(rbd_dev);
4929 }
4930
4931 static ssize_t rbd_remove(struct bus_type *bus,
4932                           const char *buf,
4933                           size_t count)
4934 {
4935         struct rbd_device *rbd_dev = NULL;
4936         int target_id, rc;
4937         unsigned long ul;
4938         int ret = count;
4939
4940         rc = strict_strtoul(buf, 10, &ul);
4941         if (rc)
4942                 return rc;
4943
4944         /* convert to int; abort if we lost anything in the conversion */
4945         target_id = (int) ul;
4946         if (target_id != ul)
4947                 return -EINVAL;
4948
4949         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4950
4951         rbd_dev = __rbd_get_dev(target_id);
4952         if (!rbd_dev) {
4953                 ret = -ENOENT;
4954                 goto done;
4955         }
4956
4957         spin_lock_irq(&rbd_dev->lock);
4958         if (rbd_dev->open_count)
4959                 ret = -EBUSY;
4960         else
4961                 set_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
4962         spin_unlock_irq(&rbd_dev->lock);
4963         if (ret < 0)
4964                 goto done;
4965
4966         while (rbd_dev->parent_spec) {
4967                 struct rbd_device *first = rbd_dev;
4968                 struct rbd_device *second = first->parent;
4969                 struct rbd_device *third;
4970
4971                 /*
4972                  * Follow to the parent with no grandparent and
4973                  * remove it.
4974                  */
4975                 while (second && (third = second->parent)) {
4976                         first = second;
4977                         second = third;
4978                 }
4979                 __rbd_remove(second);
4980                 rbd_spec_put(first->parent_spec);
4981                 first->parent_spec = NULL;
4982                 first->parent_overlap = 0;
4983                 first->parent = NULL;
4984         }
4985         __rbd_remove(rbd_dev);
4986
4987 done:
4988         mutex_unlock(&ctl_mutex);
4989
4990         return ret;
4991 }
4992
4993 /*
4994  * create control files in sysfs
4995  * /sys/bus/rbd/...
4996  */
4997 static int rbd_sysfs_init(void)
4998 {
4999         int ret;
5000
5001         ret = device_register(&rbd_root_dev);
5002         if (ret < 0)
5003                 return ret;
5004
5005         ret = bus_register(&rbd_bus_type);
5006         if (ret < 0)
5007                 device_unregister(&rbd_root_dev);
5008
5009         return ret;
5010 }
5011
5012 static void rbd_sysfs_cleanup(void)
5013 {
5014         bus_unregister(&rbd_bus_type);
5015         device_unregister(&rbd_root_dev);
5016 }
5017
5018 static int __init rbd_init(void)
5019 {
5020         int rc;
5021
5022         if (!libceph_compatible(NULL)) {
5023                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5024
5025                 return -EINVAL;
5026         }
5027         rc = rbd_sysfs_init();
5028         if (rc)
5029                 return rc;
5030         pr_info("loaded " RBD_DRV_NAME_LONG "\n");
5031         return 0;
5032 }
5033
5034 static void __exit rbd_exit(void)
5035 {
5036         rbd_sysfs_cleanup();
5037 }
5038
5039 module_init(rbd_init);
5040 module_exit(rbd_exit);
5041
5042 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5043 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5044 MODULE_DESCRIPTION("rados block device");
5045
5046 /* following authorship retained from original osdblk.c */
5047 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5048
5049 MODULE_LICENSE("GPL");