rbd: add rbd_obj_watch_request_helper() helper
[firefly-linux-kernel-4.4.55.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44 #include <linux/idr.h>
45
46 #include "rbd_types.h"
47
48 #define RBD_DEBUG       /* Activate rbd_assert() calls */
49
50 /*
51  * The basic unit of block I/O is a sector.  It is interpreted in a
52  * number of contexts in Linux (blk, bio, genhd), but the default is
53  * universally 512 bytes.  These symbols are just slightly more
54  * meaningful than the bare numbers they represent.
55  */
56 #define SECTOR_SHIFT    9
57 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
58
59 /*
60  * Increment the given counter and return its updated value.
61  * If the counter is already 0 it will not be incremented.
62  * If the counter is already at its maximum value returns
63  * -EINVAL without updating it.
64  */
65 static int atomic_inc_return_safe(atomic_t *v)
66 {
67         unsigned int counter;
68
69         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
70         if (counter <= (unsigned int)INT_MAX)
71                 return (int)counter;
72
73         atomic_dec(v);
74
75         return -EINVAL;
76 }
77
78 /* Decrement the counter.  Return the resulting value, or -EINVAL */
79 static int atomic_dec_return_safe(atomic_t *v)
80 {
81         int counter;
82
83         counter = atomic_dec_return(v);
84         if (counter >= 0)
85                 return counter;
86
87         atomic_inc(v);
88
89         return -EINVAL;
90 }
91
92 #define RBD_DRV_NAME "rbd"
93
94 #define RBD_MINORS_PER_MAJOR            256
95 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
96
97 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
98 #define RBD_MAX_SNAP_NAME_LEN   \
99                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
100
101 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
102
103 #define RBD_SNAP_HEAD_NAME      "-"
104
105 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
106
107 /* This allows a single page to hold an image name sent by OSD */
108 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
109 #define RBD_IMAGE_ID_LEN_MAX    64
110
111 #define RBD_OBJ_PREFIX_LEN_MAX  64
112
113 /* Feature bits */
114
115 #define RBD_FEATURE_LAYERING    (1<<0)
116 #define RBD_FEATURE_STRIPINGV2  (1<<1)
117 #define RBD_FEATURES_ALL \
118             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
119
120 /* Features supported by this (client software) implementation. */
121
122 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
123
124 /*
125  * An RBD device name will be "rbd#", where the "rbd" comes from
126  * RBD_DRV_NAME above, and # is a unique integer identifier.
127  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
128  * enough to hold all possible device names.
129  */
130 #define DEV_NAME_LEN            32
131 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
132
133 /*
134  * block device image metadata (in-memory version)
135  */
136 struct rbd_image_header {
137         /* These six fields never change for a given rbd image */
138         char *object_prefix;
139         __u8 obj_order;
140         __u8 crypt_type;
141         __u8 comp_type;
142         u64 stripe_unit;
143         u64 stripe_count;
144         u64 features;           /* Might be changeable someday? */
145
146         /* The remaining fields need to be updated occasionally */
147         u64 image_size;
148         struct ceph_snap_context *snapc;
149         char *snap_names;       /* format 1 only */
150         u64 *snap_sizes;        /* format 1 only */
151 };
152
153 /*
154  * An rbd image specification.
155  *
156  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
157  * identify an image.  Each rbd_dev structure includes a pointer to
158  * an rbd_spec structure that encapsulates this identity.
159  *
160  * Each of the id's in an rbd_spec has an associated name.  For a
161  * user-mapped image, the names are supplied and the id's associated
162  * with them are looked up.  For a layered image, a parent image is
163  * defined by the tuple, and the names are looked up.
164  *
165  * An rbd_dev structure contains a parent_spec pointer which is
166  * non-null if the image it represents is a child in a layered
167  * image.  This pointer will refer to the rbd_spec structure used
168  * by the parent rbd_dev for its own identity (i.e., the structure
169  * is shared between the parent and child).
170  *
171  * Since these structures are populated once, during the discovery
172  * phase of image construction, they are effectively immutable so
173  * we make no effort to synchronize access to them.
174  *
175  * Note that code herein does not assume the image name is known (it
176  * could be a null pointer).
177  */
178 struct rbd_spec {
179         u64             pool_id;
180         const char      *pool_name;
181
182         const char      *image_id;
183         const char      *image_name;
184
185         u64             snap_id;
186         const char      *snap_name;
187
188         struct kref     kref;
189 };
190
191 /*
192  * an instance of the client.  multiple devices may share an rbd client.
193  */
194 struct rbd_client {
195         struct ceph_client      *client;
196         struct kref             kref;
197         struct list_head        node;
198 };
199
200 struct rbd_img_request;
201 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
202
203 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
204
205 struct rbd_obj_request;
206 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
207
208 enum obj_request_type {
209         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
210 };
211
212 enum obj_req_flags {
213         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
214         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
215         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
216         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
217 };
218
219 struct rbd_obj_request {
220         const char              *object_name;
221         u64                     offset;         /* object start byte */
222         u64                     length;         /* bytes from offset */
223         unsigned long           flags;
224
225         /*
226          * An object request associated with an image will have its
227          * img_data flag set; a standalone object request will not.
228          *
229          * A standalone object request will have which == BAD_WHICH
230          * and a null obj_request pointer.
231          *
232          * An object request initiated in support of a layered image
233          * object (to check for its existence before a write) will
234          * have which == BAD_WHICH and a non-null obj_request pointer.
235          *
236          * Finally, an object request for rbd image data will have
237          * which != BAD_WHICH, and will have a non-null img_request
238          * pointer.  The value of which will be in the range
239          * 0..(img_request->obj_request_count-1).
240          */
241         union {
242                 struct rbd_obj_request  *obj_request;   /* STAT op */
243                 struct {
244                         struct rbd_img_request  *img_request;
245                         u64                     img_offset;
246                         /* links for img_request->obj_requests list */
247                         struct list_head        links;
248                 };
249         };
250         u32                     which;          /* posn image request list */
251
252         enum obj_request_type   type;
253         union {
254                 struct bio      *bio_list;
255                 struct {
256                         struct page     **pages;
257                         u32             page_count;
258                 };
259         };
260         struct page             **copyup_pages;
261         u32                     copyup_page_count;
262
263         struct ceph_osd_request *osd_req;
264
265         u64                     xferred;        /* bytes transferred */
266         int                     result;
267
268         rbd_obj_callback_t      callback;
269         struct completion       completion;
270
271         struct kref             kref;
272 };
273
274 enum img_req_flags {
275         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
276         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
277         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
278 };
279
280 struct rbd_img_request {
281         struct rbd_device       *rbd_dev;
282         u64                     offset; /* starting image byte offset */
283         u64                     length; /* byte count from offset */
284         unsigned long           flags;
285         union {
286                 u64                     snap_id;        /* for reads */
287                 struct ceph_snap_context *snapc;        /* for writes */
288         };
289         union {
290                 struct request          *rq;            /* block request */
291                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
292         };
293         struct page             **copyup_pages;
294         u32                     copyup_page_count;
295         spinlock_t              completion_lock;/* protects next_completion */
296         u32                     next_completion;
297         rbd_img_callback_t      callback;
298         u64                     xferred;/* aggregate bytes transferred */
299         int                     result; /* first nonzero obj_request result */
300
301         u32                     obj_request_count;
302         struct list_head        obj_requests;   /* rbd_obj_request structs */
303
304         struct kref             kref;
305 };
306
307 #define for_each_obj_request(ireq, oreq) \
308         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
309 #define for_each_obj_request_from(ireq, oreq) \
310         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
311 #define for_each_obj_request_safe(ireq, oreq, n) \
312         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
313
314 struct rbd_mapping {
315         u64                     size;
316         u64                     features;
317         bool                    read_only;
318 };
319
320 /*
321  * a single device
322  */
323 struct rbd_device {
324         int                     dev_id;         /* blkdev unique id */
325
326         int                     major;          /* blkdev assigned major */
327         int                     minor;
328         struct gendisk          *disk;          /* blkdev's gendisk and rq */
329
330         u32                     image_format;   /* Either 1 or 2 */
331         struct rbd_client       *rbd_client;
332
333         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
334
335         spinlock_t              lock;           /* queue, flags, open_count */
336
337         struct rbd_image_header header;
338         unsigned long           flags;          /* possibly lock protected */
339         struct rbd_spec         *spec;
340
341         char                    *header_name;
342
343         struct ceph_file_layout layout;
344
345         struct ceph_osd_event   *watch_event;
346         struct rbd_obj_request  *watch_request;
347
348         struct rbd_spec         *parent_spec;
349         u64                     parent_overlap;
350         atomic_t                parent_ref;
351         struct rbd_device       *parent;
352
353         /* protects updating the header */
354         struct rw_semaphore     header_rwsem;
355
356         struct rbd_mapping      mapping;
357
358         struct list_head        node;
359
360         /* sysfs related */
361         struct device           dev;
362         unsigned long           open_count;     /* protected by lock */
363 };
364
365 /*
366  * Flag bits for rbd_dev->flags.  If atomicity is required,
367  * rbd_dev->lock is used to protect access.
368  *
369  * Currently, only the "removing" flag (which is coupled with the
370  * "open_count" field) requires atomic access.
371  */
372 enum rbd_dev_flags {
373         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
374         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
375 };
376
377 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
378
379 static LIST_HEAD(rbd_dev_list);    /* devices */
380 static DEFINE_SPINLOCK(rbd_dev_list_lock);
381
382 static LIST_HEAD(rbd_client_list);              /* clients */
383 static DEFINE_SPINLOCK(rbd_client_list_lock);
384
385 /* Slab caches for frequently-allocated structures */
386
387 static struct kmem_cache        *rbd_img_request_cache;
388 static struct kmem_cache        *rbd_obj_request_cache;
389 static struct kmem_cache        *rbd_segment_name_cache;
390
391 static int rbd_major;
392 static DEFINE_IDA(rbd_dev_id_ida);
393
394 /*
395  * Default to false for now, as single-major requires >= 0.75 version of
396  * userspace rbd utility.
397  */
398 static bool single_major = false;
399 module_param(single_major, bool, S_IRUGO);
400 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
401
402 static int rbd_img_request_submit(struct rbd_img_request *img_request);
403
404 static void rbd_dev_device_release(struct device *dev);
405
406 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
407                        size_t count);
408 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
409                           size_t count);
410 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
411                                     size_t count);
412 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
413                                        size_t count);
414 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
415 static void rbd_spec_put(struct rbd_spec *spec);
416
417 static int rbd_dev_id_to_minor(int dev_id)
418 {
419         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
420 }
421
422 static int minor_to_rbd_dev_id(int minor)
423 {
424         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
425 }
426
427 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
428 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
429 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
430 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
431
432 static struct attribute *rbd_bus_attrs[] = {
433         &bus_attr_add.attr,
434         &bus_attr_remove.attr,
435         &bus_attr_add_single_major.attr,
436         &bus_attr_remove_single_major.attr,
437         NULL,
438 };
439
440 static umode_t rbd_bus_is_visible(struct kobject *kobj,
441                                   struct attribute *attr, int index)
442 {
443         if (!single_major &&
444             (attr == &bus_attr_add_single_major.attr ||
445              attr == &bus_attr_remove_single_major.attr))
446                 return 0;
447
448         return attr->mode;
449 }
450
451 static const struct attribute_group rbd_bus_group = {
452         .attrs = rbd_bus_attrs,
453         .is_visible = rbd_bus_is_visible,
454 };
455 __ATTRIBUTE_GROUPS(rbd_bus);
456
457 static struct bus_type rbd_bus_type = {
458         .name           = "rbd",
459         .bus_groups     = rbd_bus_groups,
460 };
461
462 static void rbd_root_dev_release(struct device *dev)
463 {
464 }
465
466 static struct device rbd_root_dev = {
467         .init_name =    "rbd",
468         .release =      rbd_root_dev_release,
469 };
470
471 static __printf(2, 3)
472 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
473 {
474         struct va_format vaf;
475         va_list args;
476
477         va_start(args, fmt);
478         vaf.fmt = fmt;
479         vaf.va = &args;
480
481         if (!rbd_dev)
482                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
483         else if (rbd_dev->disk)
484                 printk(KERN_WARNING "%s: %s: %pV\n",
485                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
486         else if (rbd_dev->spec && rbd_dev->spec->image_name)
487                 printk(KERN_WARNING "%s: image %s: %pV\n",
488                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
489         else if (rbd_dev->spec && rbd_dev->spec->image_id)
490                 printk(KERN_WARNING "%s: id %s: %pV\n",
491                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
492         else    /* punt */
493                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
494                         RBD_DRV_NAME, rbd_dev, &vaf);
495         va_end(args);
496 }
497
498 #ifdef RBD_DEBUG
499 #define rbd_assert(expr)                                                \
500                 if (unlikely(!(expr))) {                                \
501                         printk(KERN_ERR "\nAssertion failure in %s() "  \
502                                                 "at line %d:\n\n"       \
503                                         "\trbd_assert(%s);\n\n",        \
504                                         __func__, __LINE__, #expr);     \
505                         BUG();                                          \
506                 }
507 #else /* !RBD_DEBUG */
508 #  define rbd_assert(expr)      ((void) 0)
509 #endif /* !RBD_DEBUG */
510
511 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
512 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
513 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
514
515 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
516 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
517 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
518 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
519                                         u64 snap_id);
520 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
521                                 u8 *order, u64 *snap_size);
522 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
523                 u64 *snap_features);
524 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
525
526 static int rbd_open(struct block_device *bdev, fmode_t mode)
527 {
528         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
529         bool removing = false;
530
531         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
532                 return -EROFS;
533
534         spin_lock_irq(&rbd_dev->lock);
535         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
536                 removing = true;
537         else
538                 rbd_dev->open_count++;
539         spin_unlock_irq(&rbd_dev->lock);
540         if (removing)
541                 return -ENOENT;
542
543         (void) get_device(&rbd_dev->dev);
544
545         return 0;
546 }
547
548 static void rbd_release(struct gendisk *disk, fmode_t mode)
549 {
550         struct rbd_device *rbd_dev = disk->private_data;
551         unsigned long open_count_before;
552
553         spin_lock_irq(&rbd_dev->lock);
554         open_count_before = rbd_dev->open_count--;
555         spin_unlock_irq(&rbd_dev->lock);
556         rbd_assert(open_count_before > 0);
557
558         put_device(&rbd_dev->dev);
559 }
560
561 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
562 {
563         int ret = 0;
564         int val;
565         bool ro;
566         bool ro_changed = false;
567
568         /* get_user() may sleep, so call it before taking rbd_dev->lock */
569         if (get_user(val, (int __user *)(arg)))
570                 return -EFAULT;
571
572         ro = val ? true : false;
573         /* Snapshot doesn't allow to write*/
574         if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
575                 return -EROFS;
576
577         spin_lock_irq(&rbd_dev->lock);
578         /* prevent others open this device */
579         if (rbd_dev->open_count > 1) {
580                 ret = -EBUSY;
581                 goto out;
582         }
583
584         if (rbd_dev->mapping.read_only != ro) {
585                 rbd_dev->mapping.read_only = ro;
586                 ro_changed = true;
587         }
588
589 out:
590         spin_unlock_irq(&rbd_dev->lock);
591         /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
592         if (ret == 0 && ro_changed)
593                 set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
594
595         return ret;
596 }
597
598 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
599                         unsigned int cmd, unsigned long arg)
600 {
601         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
602         int ret = 0;
603
604         switch (cmd) {
605         case BLKROSET:
606                 ret = rbd_ioctl_set_ro(rbd_dev, arg);
607                 break;
608         default:
609                 ret = -ENOTTY;
610         }
611
612         return ret;
613 }
614
615 #ifdef CONFIG_COMPAT
616 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
617                                 unsigned int cmd, unsigned long arg)
618 {
619         return rbd_ioctl(bdev, mode, cmd, arg);
620 }
621 #endif /* CONFIG_COMPAT */
622
623 static const struct block_device_operations rbd_bd_ops = {
624         .owner                  = THIS_MODULE,
625         .open                   = rbd_open,
626         .release                = rbd_release,
627         .ioctl                  = rbd_ioctl,
628 #ifdef CONFIG_COMPAT
629         .compat_ioctl           = rbd_compat_ioctl,
630 #endif
631 };
632
633 /*
634  * Initialize an rbd client instance.  Success or not, this function
635  * consumes ceph_opts.  Caller holds client_mutex.
636  */
637 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
638 {
639         struct rbd_client *rbdc;
640         int ret = -ENOMEM;
641
642         dout("%s:\n", __func__);
643         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
644         if (!rbdc)
645                 goto out_opt;
646
647         kref_init(&rbdc->kref);
648         INIT_LIST_HEAD(&rbdc->node);
649
650         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
651         if (IS_ERR(rbdc->client))
652                 goto out_rbdc;
653         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
654
655         ret = ceph_open_session(rbdc->client);
656         if (ret < 0)
657                 goto out_client;
658
659         spin_lock(&rbd_client_list_lock);
660         list_add_tail(&rbdc->node, &rbd_client_list);
661         spin_unlock(&rbd_client_list_lock);
662
663         dout("%s: rbdc %p\n", __func__, rbdc);
664
665         return rbdc;
666 out_client:
667         ceph_destroy_client(rbdc->client);
668 out_rbdc:
669         kfree(rbdc);
670 out_opt:
671         if (ceph_opts)
672                 ceph_destroy_options(ceph_opts);
673         dout("%s: error %d\n", __func__, ret);
674
675         return ERR_PTR(ret);
676 }
677
678 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
679 {
680         kref_get(&rbdc->kref);
681
682         return rbdc;
683 }
684
685 /*
686  * Find a ceph client with specific addr and configuration.  If
687  * found, bump its reference count.
688  */
689 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
690 {
691         struct rbd_client *client_node;
692         bool found = false;
693
694         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
695                 return NULL;
696
697         spin_lock(&rbd_client_list_lock);
698         list_for_each_entry(client_node, &rbd_client_list, node) {
699                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
700                         __rbd_get_client(client_node);
701
702                         found = true;
703                         break;
704                 }
705         }
706         spin_unlock(&rbd_client_list_lock);
707
708         return found ? client_node : NULL;
709 }
710
711 /*
712  * mount options
713  */
714 enum {
715         Opt_last_int,
716         /* int args above */
717         Opt_last_string,
718         /* string args above */
719         Opt_read_only,
720         Opt_read_write,
721         /* Boolean args above */
722         Opt_last_bool,
723 };
724
725 static match_table_t rbd_opts_tokens = {
726         /* int args above */
727         /* string args above */
728         {Opt_read_only, "read_only"},
729         {Opt_read_only, "ro"},          /* Alternate spelling */
730         {Opt_read_write, "read_write"},
731         {Opt_read_write, "rw"},         /* Alternate spelling */
732         /* Boolean args above */
733         {-1, NULL}
734 };
735
736 struct rbd_options {
737         bool    read_only;
738 };
739
740 #define RBD_READ_ONLY_DEFAULT   false
741
742 static int parse_rbd_opts_token(char *c, void *private)
743 {
744         struct rbd_options *rbd_opts = private;
745         substring_t argstr[MAX_OPT_ARGS];
746         int token, intval, ret;
747
748         token = match_token(c, rbd_opts_tokens, argstr);
749         if (token < 0)
750                 return -EINVAL;
751
752         if (token < Opt_last_int) {
753                 ret = match_int(&argstr[0], &intval);
754                 if (ret < 0) {
755                         pr_err("bad mount option arg (not int) "
756                                "at '%s'\n", c);
757                         return ret;
758                 }
759                 dout("got int token %d val %d\n", token, intval);
760         } else if (token > Opt_last_int && token < Opt_last_string) {
761                 dout("got string token %d val %s\n", token,
762                      argstr[0].from);
763         } else if (token > Opt_last_string && token < Opt_last_bool) {
764                 dout("got Boolean token %d\n", token);
765         } else {
766                 dout("got token %d\n", token);
767         }
768
769         switch (token) {
770         case Opt_read_only:
771                 rbd_opts->read_only = true;
772                 break;
773         case Opt_read_write:
774                 rbd_opts->read_only = false;
775                 break;
776         default:
777                 rbd_assert(false);
778                 break;
779         }
780         return 0;
781 }
782
783 /*
784  * Get a ceph client with specific addr and configuration, if one does
785  * not exist create it.  Either way, ceph_opts is consumed by this
786  * function.
787  */
788 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
789 {
790         struct rbd_client *rbdc;
791
792         mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
793         rbdc = rbd_client_find(ceph_opts);
794         if (rbdc)       /* using an existing client */
795                 ceph_destroy_options(ceph_opts);
796         else
797                 rbdc = rbd_client_create(ceph_opts);
798         mutex_unlock(&client_mutex);
799
800         return rbdc;
801 }
802
803 /*
804  * Destroy ceph client
805  *
806  * Caller must hold rbd_client_list_lock.
807  */
808 static void rbd_client_release(struct kref *kref)
809 {
810         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
811
812         dout("%s: rbdc %p\n", __func__, rbdc);
813         spin_lock(&rbd_client_list_lock);
814         list_del(&rbdc->node);
815         spin_unlock(&rbd_client_list_lock);
816
817         ceph_destroy_client(rbdc->client);
818         kfree(rbdc);
819 }
820
821 /*
822  * Drop reference to ceph client node. If it's not referenced anymore, release
823  * it.
824  */
825 static void rbd_put_client(struct rbd_client *rbdc)
826 {
827         if (rbdc)
828                 kref_put(&rbdc->kref, rbd_client_release);
829 }
830
831 static bool rbd_image_format_valid(u32 image_format)
832 {
833         return image_format == 1 || image_format == 2;
834 }
835
836 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
837 {
838         size_t size;
839         u32 snap_count;
840
841         /* The header has to start with the magic rbd header text */
842         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
843                 return false;
844
845         /* The bio layer requires at least sector-sized I/O */
846
847         if (ondisk->options.order < SECTOR_SHIFT)
848                 return false;
849
850         /* If we use u64 in a few spots we may be able to loosen this */
851
852         if (ondisk->options.order > 8 * sizeof (int) - 1)
853                 return false;
854
855         /*
856          * The size of a snapshot header has to fit in a size_t, and
857          * that limits the number of snapshots.
858          */
859         snap_count = le32_to_cpu(ondisk->snap_count);
860         size = SIZE_MAX - sizeof (struct ceph_snap_context);
861         if (snap_count > size / sizeof (__le64))
862                 return false;
863
864         /*
865          * Not only that, but the size of the entire the snapshot
866          * header must also be representable in a size_t.
867          */
868         size -= snap_count * sizeof (__le64);
869         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
870                 return false;
871
872         return true;
873 }
874
875 /*
876  * Fill an rbd image header with information from the given format 1
877  * on-disk header.
878  */
879 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
880                                  struct rbd_image_header_ondisk *ondisk)
881 {
882         struct rbd_image_header *header = &rbd_dev->header;
883         bool first_time = header->object_prefix == NULL;
884         struct ceph_snap_context *snapc;
885         char *object_prefix = NULL;
886         char *snap_names = NULL;
887         u64 *snap_sizes = NULL;
888         u32 snap_count;
889         size_t size;
890         int ret = -ENOMEM;
891         u32 i;
892
893         /* Allocate this now to avoid having to handle failure below */
894
895         if (first_time) {
896                 size_t len;
897
898                 len = strnlen(ondisk->object_prefix,
899                                 sizeof (ondisk->object_prefix));
900                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
901                 if (!object_prefix)
902                         return -ENOMEM;
903                 memcpy(object_prefix, ondisk->object_prefix, len);
904                 object_prefix[len] = '\0';
905         }
906
907         /* Allocate the snapshot context and fill it in */
908
909         snap_count = le32_to_cpu(ondisk->snap_count);
910         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
911         if (!snapc)
912                 goto out_err;
913         snapc->seq = le64_to_cpu(ondisk->snap_seq);
914         if (snap_count) {
915                 struct rbd_image_snap_ondisk *snaps;
916                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
917
918                 /* We'll keep a copy of the snapshot names... */
919
920                 if (snap_names_len > (u64)SIZE_MAX)
921                         goto out_2big;
922                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
923                 if (!snap_names)
924                         goto out_err;
925
926                 /* ...as well as the array of their sizes. */
927
928                 size = snap_count * sizeof (*header->snap_sizes);
929                 snap_sizes = kmalloc(size, GFP_KERNEL);
930                 if (!snap_sizes)
931                         goto out_err;
932
933                 /*
934                  * Copy the names, and fill in each snapshot's id
935                  * and size.
936                  *
937                  * Note that rbd_dev_v1_header_info() guarantees the
938                  * ondisk buffer we're working with has
939                  * snap_names_len bytes beyond the end of the
940                  * snapshot id array, this memcpy() is safe.
941                  */
942                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
943                 snaps = ondisk->snaps;
944                 for (i = 0; i < snap_count; i++) {
945                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
946                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
947                 }
948         }
949
950         /* We won't fail any more, fill in the header */
951
952         if (first_time) {
953                 header->object_prefix = object_prefix;
954                 header->obj_order = ondisk->options.order;
955                 header->crypt_type = ondisk->options.crypt_type;
956                 header->comp_type = ondisk->options.comp_type;
957                 /* The rest aren't used for format 1 images */
958                 header->stripe_unit = 0;
959                 header->stripe_count = 0;
960                 header->features = 0;
961         } else {
962                 ceph_put_snap_context(header->snapc);
963                 kfree(header->snap_names);
964                 kfree(header->snap_sizes);
965         }
966
967         /* The remaining fields always get updated (when we refresh) */
968
969         header->image_size = le64_to_cpu(ondisk->image_size);
970         header->snapc = snapc;
971         header->snap_names = snap_names;
972         header->snap_sizes = snap_sizes;
973
974         /* Make sure mapping size is consistent with header info */
975
976         if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
977                 if (rbd_dev->mapping.size != header->image_size)
978                         rbd_dev->mapping.size = header->image_size;
979
980         return 0;
981 out_2big:
982         ret = -EIO;
983 out_err:
984         kfree(snap_sizes);
985         kfree(snap_names);
986         ceph_put_snap_context(snapc);
987         kfree(object_prefix);
988
989         return ret;
990 }
991
992 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
993 {
994         const char *snap_name;
995
996         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
997
998         /* Skip over names until we find the one we are looking for */
999
1000         snap_name = rbd_dev->header.snap_names;
1001         while (which--)
1002                 snap_name += strlen(snap_name) + 1;
1003
1004         return kstrdup(snap_name, GFP_KERNEL);
1005 }
1006
1007 /*
1008  * Snapshot id comparison function for use with qsort()/bsearch().
1009  * Note that result is for snapshots in *descending* order.
1010  */
1011 static int snapid_compare_reverse(const void *s1, const void *s2)
1012 {
1013         u64 snap_id1 = *(u64 *)s1;
1014         u64 snap_id2 = *(u64 *)s2;
1015
1016         if (snap_id1 < snap_id2)
1017                 return 1;
1018         return snap_id1 == snap_id2 ? 0 : -1;
1019 }
1020
1021 /*
1022  * Search a snapshot context to see if the given snapshot id is
1023  * present.
1024  *
1025  * Returns the position of the snapshot id in the array if it's found,
1026  * or BAD_SNAP_INDEX otherwise.
1027  *
1028  * Note: The snapshot array is in kept sorted (by the osd) in
1029  * reverse order, highest snapshot id first.
1030  */
1031 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1032 {
1033         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1034         u64 *found;
1035
1036         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1037                                 sizeof (snap_id), snapid_compare_reverse);
1038
1039         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1040 }
1041
1042 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1043                                         u64 snap_id)
1044 {
1045         u32 which;
1046         const char *snap_name;
1047
1048         which = rbd_dev_snap_index(rbd_dev, snap_id);
1049         if (which == BAD_SNAP_INDEX)
1050                 return ERR_PTR(-ENOENT);
1051
1052         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1053         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1054 }
1055
1056 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1057 {
1058         if (snap_id == CEPH_NOSNAP)
1059                 return RBD_SNAP_HEAD_NAME;
1060
1061         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1062         if (rbd_dev->image_format == 1)
1063                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1064
1065         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1066 }
1067
1068 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1069                                 u64 *snap_size)
1070 {
1071         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1072         if (snap_id == CEPH_NOSNAP) {
1073                 *snap_size = rbd_dev->header.image_size;
1074         } else if (rbd_dev->image_format == 1) {
1075                 u32 which;
1076
1077                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1078                 if (which == BAD_SNAP_INDEX)
1079                         return -ENOENT;
1080
1081                 *snap_size = rbd_dev->header.snap_sizes[which];
1082         } else {
1083                 u64 size = 0;
1084                 int ret;
1085
1086                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1087                 if (ret)
1088                         return ret;
1089
1090                 *snap_size = size;
1091         }
1092         return 0;
1093 }
1094
1095 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1096                         u64 *snap_features)
1097 {
1098         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1099         if (snap_id == CEPH_NOSNAP) {
1100                 *snap_features = rbd_dev->header.features;
1101         } else if (rbd_dev->image_format == 1) {
1102                 *snap_features = 0;     /* No features for format 1 */
1103         } else {
1104                 u64 features = 0;
1105                 int ret;
1106
1107                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1108                 if (ret)
1109                         return ret;
1110
1111                 *snap_features = features;
1112         }
1113         return 0;
1114 }
1115
1116 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1117 {
1118         u64 snap_id = rbd_dev->spec->snap_id;
1119         u64 size = 0;
1120         u64 features = 0;
1121         int ret;
1122
1123         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1124         if (ret)
1125                 return ret;
1126         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1127         if (ret)
1128                 return ret;
1129
1130         rbd_dev->mapping.size = size;
1131         rbd_dev->mapping.features = features;
1132
1133         return 0;
1134 }
1135
1136 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1137 {
1138         rbd_dev->mapping.size = 0;
1139         rbd_dev->mapping.features = 0;
1140 }
1141
1142 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1143 {
1144         char *name;
1145         u64 segment;
1146         int ret;
1147         char *name_format;
1148
1149         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1150         if (!name)
1151                 return NULL;
1152         segment = offset >> rbd_dev->header.obj_order;
1153         name_format = "%s.%012llx";
1154         if (rbd_dev->image_format == 2)
1155                 name_format = "%s.%016llx";
1156         ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1157                         rbd_dev->header.object_prefix, segment);
1158         if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1159                 pr_err("error formatting segment name for #%llu (%d)\n",
1160                         segment, ret);
1161                 kfree(name);
1162                 name = NULL;
1163         }
1164
1165         return name;
1166 }
1167
1168 static void rbd_segment_name_free(const char *name)
1169 {
1170         /* The explicit cast here is needed to drop the const qualifier */
1171
1172         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1173 }
1174
1175 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1176 {
1177         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1178
1179         return offset & (segment_size - 1);
1180 }
1181
1182 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1183                                 u64 offset, u64 length)
1184 {
1185         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1186
1187         offset &= segment_size - 1;
1188
1189         rbd_assert(length <= U64_MAX - offset);
1190         if (offset + length > segment_size)
1191                 length = segment_size - offset;
1192
1193         return length;
1194 }
1195
1196 /*
1197  * returns the size of an object in the image
1198  */
1199 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1200 {
1201         return 1 << header->obj_order;
1202 }
1203
1204 /*
1205  * bio helpers
1206  */
1207
1208 static void bio_chain_put(struct bio *chain)
1209 {
1210         struct bio *tmp;
1211
1212         while (chain) {
1213                 tmp = chain;
1214                 chain = chain->bi_next;
1215                 bio_put(tmp);
1216         }
1217 }
1218
1219 /*
1220  * zeros a bio chain, starting at specific offset
1221  */
1222 static void zero_bio_chain(struct bio *chain, int start_ofs)
1223 {
1224         struct bio_vec bv;
1225         struct bvec_iter iter;
1226         unsigned long flags;
1227         void *buf;
1228         int pos = 0;
1229
1230         while (chain) {
1231                 bio_for_each_segment(bv, chain, iter) {
1232                         if (pos + bv.bv_len > start_ofs) {
1233                                 int remainder = max(start_ofs - pos, 0);
1234                                 buf = bvec_kmap_irq(&bv, &flags);
1235                                 memset(buf + remainder, 0,
1236                                        bv.bv_len - remainder);
1237                                 flush_dcache_page(bv.bv_page);
1238                                 bvec_kunmap_irq(buf, &flags);
1239                         }
1240                         pos += bv.bv_len;
1241                 }
1242
1243                 chain = chain->bi_next;
1244         }
1245 }
1246
1247 /*
1248  * similar to zero_bio_chain(), zeros data defined by a page array,
1249  * starting at the given byte offset from the start of the array and
1250  * continuing up to the given end offset.  The pages array is
1251  * assumed to be big enough to hold all bytes up to the end.
1252  */
1253 static void zero_pages(struct page **pages, u64 offset, u64 end)
1254 {
1255         struct page **page = &pages[offset >> PAGE_SHIFT];
1256
1257         rbd_assert(end > offset);
1258         rbd_assert(end - offset <= (u64)SIZE_MAX);
1259         while (offset < end) {
1260                 size_t page_offset;
1261                 size_t length;
1262                 unsigned long flags;
1263                 void *kaddr;
1264
1265                 page_offset = offset & ~PAGE_MASK;
1266                 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1267                 local_irq_save(flags);
1268                 kaddr = kmap_atomic(*page);
1269                 memset(kaddr + page_offset, 0, length);
1270                 flush_dcache_page(*page);
1271                 kunmap_atomic(kaddr);
1272                 local_irq_restore(flags);
1273
1274                 offset += length;
1275                 page++;
1276         }
1277 }
1278
1279 /*
1280  * Clone a portion of a bio, starting at the given byte offset
1281  * and continuing for the number of bytes indicated.
1282  */
1283 static struct bio *bio_clone_range(struct bio *bio_src,
1284                                         unsigned int offset,
1285                                         unsigned int len,
1286                                         gfp_t gfpmask)
1287 {
1288         struct bio *bio;
1289
1290         bio = bio_clone(bio_src, gfpmask);
1291         if (!bio)
1292                 return NULL;    /* ENOMEM */
1293
1294         bio_advance(bio, offset);
1295         bio->bi_iter.bi_size = len;
1296
1297         return bio;
1298 }
1299
1300 /*
1301  * Clone a portion of a bio chain, starting at the given byte offset
1302  * into the first bio in the source chain and continuing for the
1303  * number of bytes indicated.  The result is another bio chain of
1304  * exactly the given length, or a null pointer on error.
1305  *
1306  * The bio_src and offset parameters are both in-out.  On entry they
1307  * refer to the first source bio and the offset into that bio where
1308  * the start of data to be cloned is located.
1309  *
1310  * On return, bio_src is updated to refer to the bio in the source
1311  * chain that contains first un-cloned byte, and *offset will
1312  * contain the offset of that byte within that bio.
1313  */
1314 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1315                                         unsigned int *offset,
1316                                         unsigned int len,
1317                                         gfp_t gfpmask)
1318 {
1319         struct bio *bi = *bio_src;
1320         unsigned int off = *offset;
1321         struct bio *chain = NULL;
1322         struct bio **end;
1323
1324         /* Build up a chain of clone bios up to the limit */
1325
1326         if (!bi || off >= bi->bi_iter.bi_size || !len)
1327                 return NULL;            /* Nothing to clone */
1328
1329         end = &chain;
1330         while (len) {
1331                 unsigned int bi_size;
1332                 struct bio *bio;
1333
1334                 if (!bi) {
1335                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1336                         goto out_err;   /* EINVAL; ran out of bio's */
1337                 }
1338                 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1339                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1340                 if (!bio)
1341                         goto out_err;   /* ENOMEM */
1342
1343                 *end = bio;
1344                 end = &bio->bi_next;
1345
1346                 off += bi_size;
1347                 if (off == bi->bi_iter.bi_size) {
1348                         bi = bi->bi_next;
1349                         off = 0;
1350                 }
1351                 len -= bi_size;
1352         }
1353         *bio_src = bi;
1354         *offset = off;
1355
1356         return chain;
1357 out_err:
1358         bio_chain_put(chain);
1359
1360         return NULL;
1361 }
1362
1363 /*
1364  * The default/initial value for all object request flags is 0.  For
1365  * each flag, once its value is set to 1 it is never reset to 0
1366  * again.
1367  */
1368 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1369 {
1370         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1371                 struct rbd_device *rbd_dev;
1372
1373                 rbd_dev = obj_request->img_request->rbd_dev;
1374                 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1375                         obj_request);
1376         }
1377 }
1378
1379 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1380 {
1381         smp_mb();
1382         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1383 }
1384
1385 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1386 {
1387         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1388                 struct rbd_device *rbd_dev = NULL;
1389
1390                 if (obj_request_img_data_test(obj_request))
1391                         rbd_dev = obj_request->img_request->rbd_dev;
1392                 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1393                         obj_request);
1394         }
1395 }
1396
1397 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1398 {
1399         smp_mb();
1400         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1401 }
1402
1403 /*
1404  * This sets the KNOWN flag after (possibly) setting the EXISTS
1405  * flag.  The latter is set based on the "exists" value provided.
1406  *
1407  * Note that for our purposes once an object exists it never goes
1408  * away again.  It's possible that the response from two existence
1409  * checks are separated by the creation of the target object, and
1410  * the first ("doesn't exist") response arrives *after* the second
1411  * ("does exist").  In that case we ignore the second one.
1412  */
1413 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1414                                 bool exists)
1415 {
1416         if (exists)
1417                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1418         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1419         smp_mb();
1420 }
1421
1422 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1423 {
1424         smp_mb();
1425         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1426 }
1427
1428 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1429 {
1430         smp_mb();
1431         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1432 }
1433
1434 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1435 {
1436         struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1437
1438         return obj_request->img_offset <
1439             round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1440 }
1441
1442 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1443 {
1444         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1445                 atomic_read(&obj_request->kref.refcount));
1446         kref_get(&obj_request->kref);
1447 }
1448
1449 static void rbd_obj_request_destroy(struct kref *kref);
1450 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1451 {
1452         rbd_assert(obj_request != NULL);
1453         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1454                 atomic_read(&obj_request->kref.refcount));
1455         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1456 }
1457
1458 static void rbd_img_request_get(struct rbd_img_request *img_request)
1459 {
1460         dout("%s: img %p (was %d)\n", __func__, img_request,
1461              atomic_read(&img_request->kref.refcount));
1462         kref_get(&img_request->kref);
1463 }
1464
1465 static bool img_request_child_test(struct rbd_img_request *img_request);
1466 static void rbd_parent_request_destroy(struct kref *kref);
1467 static void rbd_img_request_destroy(struct kref *kref);
1468 static void rbd_img_request_put(struct rbd_img_request *img_request)
1469 {
1470         rbd_assert(img_request != NULL);
1471         dout("%s: img %p (was %d)\n", __func__, img_request,
1472                 atomic_read(&img_request->kref.refcount));
1473         if (img_request_child_test(img_request))
1474                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1475         else
1476                 kref_put(&img_request->kref, rbd_img_request_destroy);
1477 }
1478
1479 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1480                                         struct rbd_obj_request *obj_request)
1481 {
1482         rbd_assert(obj_request->img_request == NULL);
1483
1484         /* Image request now owns object's original reference */
1485         obj_request->img_request = img_request;
1486         obj_request->which = img_request->obj_request_count;
1487         rbd_assert(!obj_request_img_data_test(obj_request));
1488         obj_request_img_data_set(obj_request);
1489         rbd_assert(obj_request->which != BAD_WHICH);
1490         img_request->obj_request_count++;
1491         list_add_tail(&obj_request->links, &img_request->obj_requests);
1492         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1493                 obj_request->which);
1494 }
1495
1496 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1497                                         struct rbd_obj_request *obj_request)
1498 {
1499         rbd_assert(obj_request->which != BAD_WHICH);
1500
1501         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1502                 obj_request->which);
1503         list_del(&obj_request->links);
1504         rbd_assert(img_request->obj_request_count > 0);
1505         img_request->obj_request_count--;
1506         rbd_assert(obj_request->which == img_request->obj_request_count);
1507         obj_request->which = BAD_WHICH;
1508         rbd_assert(obj_request_img_data_test(obj_request));
1509         rbd_assert(obj_request->img_request == img_request);
1510         obj_request->img_request = NULL;
1511         obj_request->callback = NULL;
1512         rbd_obj_request_put(obj_request);
1513 }
1514
1515 static bool obj_request_type_valid(enum obj_request_type type)
1516 {
1517         switch (type) {
1518         case OBJ_REQUEST_NODATA:
1519         case OBJ_REQUEST_BIO:
1520         case OBJ_REQUEST_PAGES:
1521                 return true;
1522         default:
1523                 return false;
1524         }
1525 }
1526
1527 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1528                                 struct rbd_obj_request *obj_request)
1529 {
1530         dout("%s %p\n", __func__, obj_request);
1531         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1532 }
1533
1534 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1535 {
1536         dout("%s %p\n", __func__, obj_request);
1537         ceph_osdc_cancel_request(obj_request->osd_req);
1538 }
1539
1540 /*
1541  * Wait for an object request to complete.  If interrupted, cancel the
1542  * underlying osd request.
1543  */
1544 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1545 {
1546         int ret;
1547
1548         dout("%s %p\n", __func__, obj_request);
1549
1550         ret = wait_for_completion_interruptible(&obj_request->completion);
1551         if (ret < 0) {
1552                 dout("%s %p interrupted\n", __func__, obj_request);
1553                 rbd_obj_request_end(obj_request);
1554                 return ret;
1555         }
1556
1557         dout("%s %p done\n", __func__, obj_request);
1558         return 0;
1559 }
1560
1561 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1562 {
1563
1564         dout("%s: img %p\n", __func__, img_request);
1565
1566         /*
1567          * If no error occurred, compute the aggregate transfer
1568          * count for the image request.  We could instead use
1569          * atomic64_cmpxchg() to update it as each object request
1570          * completes; not clear which way is better off hand.
1571          */
1572         if (!img_request->result) {
1573                 struct rbd_obj_request *obj_request;
1574                 u64 xferred = 0;
1575
1576                 for_each_obj_request(img_request, obj_request)
1577                         xferred += obj_request->xferred;
1578                 img_request->xferred = xferred;
1579         }
1580
1581         if (img_request->callback)
1582                 img_request->callback(img_request);
1583         else
1584                 rbd_img_request_put(img_request);
1585 }
1586
1587 /*
1588  * The default/initial value for all image request flags is 0.  Each
1589  * is conditionally set to 1 at image request initialization time
1590  * and currently never change thereafter.
1591  */
1592 static void img_request_write_set(struct rbd_img_request *img_request)
1593 {
1594         set_bit(IMG_REQ_WRITE, &img_request->flags);
1595         smp_mb();
1596 }
1597
1598 static bool img_request_write_test(struct rbd_img_request *img_request)
1599 {
1600         smp_mb();
1601         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1602 }
1603
1604 static void img_request_child_set(struct rbd_img_request *img_request)
1605 {
1606         set_bit(IMG_REQ_CHILD, &img_request->flags);
1607         smp_mb();
1608 }
1609
1610 static void img_request_child_clear(struct rbd_img_request *img_request)
1611 {
1612         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1613         smp_mb();
1614 }
1615
1616 static bool img_request_child_test(struct rbd_img_request *img_request)
1617 {
1618         smp_mb();
1619         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1620 }
1621
1622 static void img_request_layered_set(struct rbd_img_request *img_request)
1623 {
1624         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1625         smp_mb();
1626 }
1627
1628 static void img_request_layered_clear(struct rbd_img_request *img_request)
1629 {
1630         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1631         smp_mb();
1632 }
1633
1634 static bool img_request_layered_test(struct rbd_img_request *img_request)
1635 {
1636         smp_mb();
1637         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1638 }
1639
1640 static void
1641 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1642 {
1643         u64 xferred = obj_request->xferred;
1644         u64 length = obj_request->length;
1645
1646         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1647                 obj_request, obj_request->img_request, obj_request->result,
1648                 xferred, length);
1649         /*
1650          * ENOENT means a hole in the image.  We zero-fill the entire
1651          * length of the request.  A short read also implies zero-fill
1652          * to the end of the request.  An error requires the whole
1653          * length of the request to be reported finished with an error
1654          * to the block layer.  In each case we update the xferred
1655          * count to indicate the whole request was satisfied.
1656          */
1657         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1658         if (obj_request->result == -ENOENT) {
1659                 if (obj_request->type == OBJ_REQUEST_BIO)
1660                         zero_bio_chain(obj_request->bio_list, 0);
1661                 else
1662                         zero_pages(obj_request->pages, 0, length);
1663                 obj_request->result = 0;
1664         } else if (xferred < length && !obj_request->result) {
1665                 if (obj_request->type == OBJ_REQUEST_BIO)
1666                         zero_bio_chain(obj_request->bio_list, xferred);
1667                 else
1668                         zero_pages(obj_request->pages, xferred, length);
1669         }
1670         obj_request->xferred = length;
1671         obj_request_done_set(obj_request);
1672 }
1673
1674 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1675 {
1676         dout("%s: obj %p cb %p\n", __func__, obj_request,
1677                 obj_request->callback);
1678         if (obj_request->callback)
1679                 obj_request->callback(obj_request);
1680         else
1681                 complete_all(&obj_request->completion);
1682 }
1683
1684 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1685 {
1686         dout("%s: obj %p\n", __func__, obj_request);
1687         obj_request_done_set(obj_request);
1688 }
1689
1690 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1691 {
1692         struct rbd_img_request *img_request = NULL;
1693         struct rbd_device *rbd_dev = NULL;
1694         bool layered = false;
1695
1696         if (obj_request_img_data_test(obj_request)) {
1697                 img_request = obj_request->img_request;
1698                 layered = img_request && img_request_layered_test(img_request);
1699                 rbd_dev = img_request->rbd_dev;
1700         }
1701
1702         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1703                 obj_request, img_request, obj_request->result,
1704                 obj_request->xferred, obj_request->length);
1705         if (layered && obj_request->result == -ENOENT &&
1706                         obj_request->img_offset < rbd_dev->parent_overlap)
1707                 rbd_img_parent_read(obj_request);
1708         else if (img_request)
1709                 rbd_img_obj_request_read_callback(obj_request);
1710         else
1711                 obj_request_done_set(obj_request);
1712 }
1713
1714 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1715 {
1716         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1717                 obj_request->result, obj_request->length);
1718         /*
1719          * There is no such thing as a successful short write.  Set
1720          * it to our originally-requested length.
1721          */
1722         obj_request->xferred = obj_request->length;
1723         obj_request_done_set(obj_request);
1724 }
1725
1726 /*
1727  * For a simple stat call there's nothing to do.  We'll do more if
1728  * this is part of a write sequence for a layered image.
1729  */
1730 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1731 {
1732         dout("%s: obj %p\n", __func__, obj_request);
1733         obj_request_done_set(obj_request);
1734 }
1735
1736 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1737                                 struct ceph_msg *msg)
1738 {
1739         struct rbd_obj_request *obj_request = osd_req->r_priv;
1740         u16 opcode;
1741
1742         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1743         rbd_assert(osd_req == obj_request->osd_req);
1744         if (obj_request_img_data_test(obj_request)) {
1745                 rbd_assert(obj_request->img_request);
1746                 rbd_assert(obj_request->which != BAD_WHICH);
1747         } else {
1748                 rbd_assert(obj_request->which == BAD_WHICH);
1749         }
1750
1751         if (osd_req->r_result < 0)
1752                 obj_request->result = osd_req->r_result;
1753
1754         rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1755
1756         /*
1757          * We support a 64-bit length, but ultimately it has to be
1758          * passed to blk_end_request(), which takes an unsigned int.
1759          */
1760         obj_request->xferred = osd_req->r_reply_op_len[0];
1761         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1762
1763         opcode = osd_req->r_ops[0].op;
1764         switch (opcode) {
1765         case CEPH_OSD_OP_READ:
1766                 rbd_osd_read_callback(obj_request);
1767                 break;
1768         case CEPH_OSD_OP_SETALLOCHINT:
1769                 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1770                 /* fall through */
1771         case CEPH_OSD_OP_WRITE:
1772                 rbd_osd_write_callback(obj_request);
1773                 break;
1774         case CEPH_OSD_OP_STAT:
1775                 rbd_osd_stat_callback(obj_request);
1776                 break;
1777         case CEPH_OSD_OP_CALL:
1778         case CEPH_OSD_OP_NOTIFY_ACK:
1779         case CEPH_OSD_OP_WATCH:
1780                 rbd_osd_trivial_callback(obj_request);
1781                 break;
1782         default:
1783                 rbd_warn(NULL, "%s: unsupported op %hu\n",
1784                         obj_request->object_name, (unsigned short) opcode);
1785                 break;
1786         }
1787
1788         if (obj_request_done_test(obj_request))
1789                 rbd_obj_request_complete(obj_request);
1790 }
1791
1792 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1793 {
1794         struct rbd_img_request *img_request = obj_request->img_request;
1795         struct ceph_osd_request *osd_req = obj_request->osd_req;
1796         u64 snap_id;
1797
1798         rbd_assert(osd_req != NULL);
1799
1800         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1801         ceph_osdc_build_request(osd_req, obj_request->offset,
1802                         NULL, snap_id, NULL);
1803 }
1804
1805 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1806 {
1807         struct rbd_img_request *img_request = obj_request->img_request;
1808         struct ceph_osd_request *osd_req = obj_request->osd_req;
1809         struct ceph_snap_context *snapc;
1810         struct timespec mtime = CURRENT_TIME;
1811
1812         rbd_assert(osd_req != NULL);
1813
1814         snapc = img_request ? img_request->snapc : NULL;
1815         ceph_osdc_build_request(osd_req, obj_request->offset,
1816                         snapc, CEPH_NOSNAP, &mtime);
1817 }
1818
1819 /*
1820  * Create an osd request.  A read request has one osd op (read).
1821  * A write request has either one (watch) or two (hint+write) osd ops.
1822  * (All rbd data writes are prefixed with an allocation hint op, but
1823  * technically osd watch is a write request, hence this distinction.)
1824  */
1825 static struct ceph_osd_request *rbd_osd_req_create(
1826                                         struct rbd_device *rbd_dev,
1827                                         bool write_request,
1828                                         unsigned int num_ops,
1829                                         struct rbd_obj_request *obj_request)
1830 {
1831         struct ceph_snap_context *snapc = NULL;
1832         struct ceph_osd_client *osdc;
1833         struct ceph_osd_request *osd_req;
1834
1835         if (obj_request_img_data_test(obj_request)) {
1836                 struct rbd_img_request *img_request = obj_request->img_request;
1837
1838                 rbd_assert(write_request ==
1839                                 img_request_write_test(img_request));
1840                 if (write_request)
1841                         snapc = img_request->snapc;
1842         }
1843
1844         rbd_assert(num_ops == 1 || (write_request && num_ops == 2));
1845
1846         /* Allocate and initialize the request, for the num_ops ops */
1847
1848         osdc = &rbd_dev->rbd_client->client->osdc;
1849         osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1850                                           GFP_ATOMIC);
1851         if (!osd_req)
1852                 return NULL;    /* ENOMEM */
1853
1854         if (write_request)
1855                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1856         else
1857                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1858
1859         osd_req->r_callback = rbd_osd_req_callback;
1860         osd_req->r_priv = obj_request;
1861
1862         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1863         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1864
1865         return osd_req;
1866 }
1867
1868 /*
1869  * Create a copyup osd request based on the information in the
1870  * object request supplied.  A copyup request has three osd ops,
1871  * a copyup method call, a hint op, and a write op.
1872  */
1873 static struct ceph_osd_request *
1874 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1875 {
1876         struct rbd_img_request *img_request;
1877         struct ceph_snap_context *snapc;
1878         struct rbd_device *rbd_dev;
1879         struct ceph_osd_client *osdc;
1880         struct ceph_osd_request *osd_req;
1881
1882         rbd_assert(obj_request_img_data_test(obj_request));
1883         img_request = obj_request->img_request;
1884         rbd_assert(img_request);
1885         rbd_assert(img_request_write_test(img_request));
1886
1887         /* Allocate and initialize the request, for the three ops */
1888
1889         snapc = img_request->snapc;
1890         rbd_dev = img_request->rbd_dev;
1891         osdc = &rbd_dev->rbd_client->client->osdc;
1892         osd_req = ceph_osdc_alloc_request(osdc, snapc, 3, false, GFP_ATOMIC);
1893         if (!osd_req)
1894                 return NULL;    /* ENOMEM */
1895
1896         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1897         osd_req->r_callback = rbd_osd_req_callback;
1898         osd_req->r_priv = obj_request;
1899
1900         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1901         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1902
1903         return osd_req;
1904 }
1905
1906
1907 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1908 {
1909         ceph_osdc_put_request(osd_req);
1910 }
1911
1912 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1913
1914 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1915                                                 u64 offset, u64 length,
1916                                                 enum obj_request_type type)
1917 {
1918         struct rbd_obj_request *obj_request;
1919         size_t size;
1920         char *name;
1921
1922         rbd_assert(obj_request_type_valid(type));
1923
1924         size = strlen(object_name) + 1;
1925         name = kmalloc(size, GFP_KERNEL);
1926         if (!name)
1927                 return NULL;
1928
1929         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1930         if (!obj_request) {
1931                 kfree(name);
1932                 return NULL;
1933         }
1934
1935         obj_request->object_name = memcpy(name, object_name, size);
1936         obj_request->offset = offset;
1937         obj_request->length = length;
1938         obj_request->flags = 0;
1939         obj_request->which = BAD_WHICH;
1940         obj_request->type = type;
1941         INIT_LIST_HEAD(&obj_request->links);
1942         init_completion(&obj_request->completion);
1943         kref_init(&obj_request->kref);
1944
1945         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1946                 offset, length, (int)type, obj_request);
1947
1948         return obj_request;
1949 }
1950
1951 static void rbd_obj_request_destroy(struct kref *kref)
1952 {
1953         struct rbd_obj_request *obj_request;
1954
1955         obj_request = container_of(kref, struct rbd_obj_request, kref);
1956
1957         dout("%s: obj %p\n", __func__, obj_request);
1958
1959         rbd_assert(obj_request->img_request == NULL);
1960         rbd_assert(obj_request->which == BAD_WHICH);
1961
1962         if (obj_request->osd_req)
1963                 rbd_osd_req_destroy(obj_request->osd_req);
1964
1965         rbd_assert(obj_request_type_valid(obj_request->type));
1966         switch (obj_request->type) {
1967         case OBJ_REQUEST_NODATA:
1968                 break;          /* Nothing to do */
1969         case OBJ_REQUEST_BIO:
1970                 if (obj_request->bio_list)
1971                         bio_chain_put(obj_request->bio_list);
1972                 break;
1973         case OBJ_REQUEST_PAGES:
1974                 if (obj_request->pages)
1975                         ceph_release_page_vector(obj_request->pages,
1976                                                 obj_request->page_count);
1977                 break;
1978         }
1979
1980         kfree(obj_request->object_name);
1981         obj_request->object_name = NULL;
1982         kmem_cache_free(rbd_obj_request_cache, obj_request);
1983 }
1984
1985 /* It's OK to call this for a device with no parent */
1986
1987 static void rbd_spec_put(struct rbd_spec *spec);
1988 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1989 {
1990         rbd_dev_remove_parent(rbd_dev);
1991         rbd_spec_put(rbd_dev->parent_spec);
1992         rbd_dev->parent_spec = NULL;
1993         rbd_dev->parent_overlap = 0;
1994 }
1995
1996 /*
1997  * Parent image reference counting is used to determine when an
1998  * image's parent fields can be safely torn down--after there are no
1999  * more in-flight requests to the parent image.  When the last
2000  * reference is dropped, cleaning them up is safe.
2001  */
2002 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2003 {
2004         int counter;
2005
2006         if (!rbd_dev->parent_spec)
2007                 return;
2008
2009         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2010         if (counter > 0)
2011                 return;
2012
2013         /* Last reference; clean up parent data structures */
2014
2015         if (!counter)
2016                 rbd_dev_unparent(rbd_dev);
2017         else
2018                 rbd_warn(rbd_dev, "parent reference underflow\n");
2019 }
2020
2021 /*
2022  * If an image has a non-zero parent overlap, get a reference to its
2023  * parent.
2024  *
2025  * We must get the reference before checking for the overlap to
2026  * coordinate properly with zeroing the parent overlap in
2027  * rbd_dev_v2_parent_info() when an image gets flattened.  We
2028  * drop it again if there is no overlap.
2029  *
2030  * Returns true if the rbd device has a parent with a non-zero
2031  * overlap and a reference for it was successfully taken, or
2032  * false otherwise.
2033  */
2034 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2035 {
2036         int counter;
2037
2038         if (!rbd_dev->parent_spec)
2039                 return false;
2040
2041         counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2042         if (counter > 0 && rbd_dev->parent_overlap)
2043                 return true;
2044
2045         /* Image was flattened, but parent is not yet torn down */
2046
2047         if (counter < 0)
2048                 rbd_warn(rbd_dev, "parent reference overflow\n");
2049
2050         return false;
2051 }
2052
2053 /*
2054  * Caller is responsible for filling in the list of object requests
2055  * that comprises the image request, and the Linux request pointer
2056  * (if there is one).
2057  */
2058 static struct rbd_img_request *rbd_img_request_create(
2059                                         struct rbd_device *rbd_dev,
2060                                         u64 offset, u64 length,
2061                                         bool write_request)
2062 {
2063         struct rbd_img_request *img_request;
2064
2065         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
2066         if (!img_request)
2067                 return NULL;
2068
2069         if (write_request) {
2070                 down_read(&rbd_dev->header_rwsem);
2071                 ceph_get_snap_context(rbd_dev->header.snapc);
2072                 up_read(&rbd_dev->header_rwsem);
2073         }
2074
2075         img_request->rq = NULL;
2076         img_request->rbd_dev = rbd_dev;
2077         img_request->offset = offset;
2078         img_request->length = length;
2079         img_request->flags = 0;
2080         if (write_request) {
2081                 img_request_write_set(img_request);
2082                 img_request->snapc = rbd_dev->header.snapc;
2083         } else {
2084                 img_request->snap_id = rbd_dev->spec->snap_id;
2085         }
2086         if (rbd_dev_parent_get(rbd_dev))
2087                 img_request_layered_set(img_request);
2088         spin_lock_init(&img_request->completion_lock);
2089         img_request->next_completion = 0;
2090         img_request->callback = NULL;
2091         img_request->result = 0;
2092         img_request->obj_request_count = 0;
2093         INIT_LIST_HEAD(&img_request->obj_requests);
2094         kref_init(&img_request->kref);
2095
2096         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2097                 write_request ? "write" : "read", offset, length,
2098                 img_request);
2099
2100         return img_request;
2101 }
2102
2103 static void rbd_img_request_destroy(struct kref *kref)
2104 {
2105         struct rbd_img_request *img_request;
2106         struct rbd_obj_request *obj_request;
2107         struct rbd_obj_request *next_obj_request;
2108
2109         img_request = container_of(kref, struct rbd_img_request, kref);
2110
2111         dout("%s: img %p\n", __func__, img_request);
2112
2113         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2114                 rbd_img_obj_request_del(img_request, obj_request);
2115         rbd_assert(img_request->obj_request_count == 0);
2116
2117         if (img_request_layered_test(img_request)) {
2118                 img_request_layered_clear(img_request);
2119                 rbd_dev_parent_put(img_request->rbd_dev);
2120         }
2121
2122         if (img_request_write_test(img_request))
2123                 ceph_put_snap_context(img_request->snapc);
2124
2125         kmem_cache_free(rbd_img_request_cache, img_request);
2126 }
2127
2128 static struct rbd_img_request *rbd_parent_request_create(
2129                                         struct rbd_obj_request *obj_request,
2130                                         u64 img_offset, u64 length)
2131 {
2132         struct rbd_img_request *parent_request;
2133         struct rbd_device *rbd_dev;
2134
2135         rbd_assert(obj_request->img_request);
2136         rbd_dev = obj_request->img_request->rbd_dev;
2137
2138         parent_request = rbd_img_request_create(rbd_dev->parent,
2139                                                 img_offset, length, false);
2140         if (!parent_request)
2141                 return NULL;
2142
2143         img_request_child_set(parent_request);
2144         rbd_obj_request_get(obj_request);
2145         parent_request->obj_request = obj_request;
2146
2147         return parent_request;
2148 }
2149
2150 static void rbd_parent_request_destroy(struct kref *kref)
2151 {
2152         struct rbd_img_request *parent_request;
2153         struct rbd_obj_request *orig_request;
2154
2155         parent_request = container_of(kref, struct rbd_img_request, kref);
2156         orig_request = parent_request->obj_request;
2157
2158         parent_request->obj_request = NULL;
2159         rbd_obj_request_put(orig_request);
2160         img_request_child_clear(parent_request);
2161
2162         rbd_img_request_destroy(kref);
2163 }
2164
2165 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2166 {
2167         struct rbd_img_request *img_request;
2168         unsigned int xferred;
2169         int result;
2170         bool more;
2171
2172         rbd_assert(obj_request_img_data_test(obj_request));
2173         img_request = obj_request->img_request;
2174
2175         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2176         xferred = (unsigned int)obj_request->xferred;
2177         result = obj_request->result;
2178         if (result) {
2179                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2180
2181                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2182                         img_request_write_test(img_request) ? "write" : "read",
2183                         obj_request->length, obj_request->img_offset,
2184                         obj_request->offset);
2185                 rbd_warn(rbd_dev, "  result %d xferred %x\n",
2186                         result, xferred);
2187                 if (!img_request->result)
2188                         img_request->result = result;
2189         }
2190
2191         /* Image object requests don't own their page array */
2192
2193         if (obj_request->type == OBJ_REQUEST_PAGES) {
2194                 obj_request->pages = NULL;
2195                 obj_request->page_count = 0;
2196         }
2197
2198         if (img_request_child_test(img_request)) {
2199                 rbd_assert(img_request->obj_request != NULL);
2200                 more = obj_request->which < img_request->obj_request_count - 1;
2201         } else {
2202                 rbd_assert(img_request->rq != NULL);
2203                 more = blk_end_request(img_request->rq, result, xferred);
2204         }
2205
2206         return more;
2207 }
2208
2209 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2210 {
2211         struct rbd_img_request *img_request;
2212         u32 which = obj_request->which;
2213         bool more = true;
2214
2215         rbd_assert(obj_request_img_data_test(obj_request));
2216         img_request = obj_request->img_request;
2217
2218         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2219         rbd_assert(img_request != NULL);
2220         rbd_assert(img_request->obj_request_count > 0);
2221         rbd_assert(which != BAD_WHICH);
2222         rbd_assert(which < img_request->obj_request_count);
2223
2224         spin_lock_irq(&img_request->completion_lock);
2225         if (which != img_request->next_completion)
2226                 goto out;
2227
2228         for_each_obj_request_from(img_request, obj_request) {
2229                 rbd_assert(more);
2230                 rbd_assert(which < img_request->obj_request_count);
2231
2232                 if (!obj_request_done_test(obj_request))
2233                         break;
2234                 more = rbd_img_obj_end_request(obj_request);
2235                 which++;
2236         }
2237
2238         rbd_assert(more ^ (which == img_request->obj_request_count));
2239         img_request->next_completion = which;
2240 out:
2241         spin_unlock_irq(&img_request->completion_lock);
2242         rbd_img_request_put(img_request);
2243
2244         if (!more)
2245                 rbd_img_request_complete(img_request);
2246 }
2247
2248 /*
2249  * Split up an image request into one or more object requests, each
2250  * to a different object.  The "type" parameter indicates whether
2251  * "data_desc" is the pointer to the head of a list of bio
2252  * structures, or the base of a page array.  In either case this
2253  * function assumes data_desc describes memory sufficient to hold
2254  * all data described by the image request.
2255  */
2256 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2257                                         enum obj_request_type type,
2258                                         void *data_desc)
2259 {
2260         struct rbd_device *rbd_dev = img_request->rbd_dev;
2261         struct rbd_obj_request *obj_request = NULL;
2262         struct rbd_obj_request *next_obj_request;
2263         bool write_request = img_request_write_test(img_request);
2264         struct bio *bio_list = NULL;
2265         unsigned int bio_offset = 0;
2266         struct page **pages = NULL;
2267         u64 img_offset;
2268         u64 resid;
2269         u16 opcode;
2270
2271         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2272                 (int)type, data_desc);
2273
2274         opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2275         img_offset = img_request->offset;
2276         resid = img_request->length;
2277         rbd_assert(resid > 0);
2278
2279         if (type == OBJ_REQUEST_BIO) {
2280                 bio_list = data_desc;
2281                 rbd_assert(img_offset ==
2282                            bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2283         } else {
2284                 rbd_assert(type == OBJ_REQUEST_PAGES);
2285                 pages = data_desc;
2286         }
2287
2288         while (resid) {
2289                 struct ceph_osd_request *osd_req;
2290                 const char *object_name;
2291                 u64 offset;
2292                 u64 length;
2293                 unsigned int which = 0;
2294
2295                 object_name = rbd_segment_name(rbd_dev, img_offset);
2296                 if (!object_name)
2297                         goto out_unwind;
2298                 offset = rbd_segment_offset(rbd_dev, img_offset);
2299                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2300                 obj_request = rbd_obj_request_create(object_name,
2301                                                 offset, length, type);
2302                 /* object request has its own copy of the object name */
2303                 rbd_segment_name_free(object_name);
2304                 if (!obj_request)
2305                         goto out_unwind;
2306
2307                 /*
2308                  * set obj_request->img_request before creating the
2309                  * osd_request so that it gets the right snapc
2310                  */
2311                 rbd_img_obj_request_add(img_request, obj_request);
2312
2313                 if (type == OBJ_REQUEST_BIO) {
2314                         unsigned int clone_size;
2315
2316                         rbd_assert(length <= (u64)UINT_MAX);
2317                         clone_size = (unsigned int)length;
2318                         obj_request->bio_list =
2319                                         bio_chain_clone_range(&bio_list,
2320                                                                 &bio_offset,
2321                                                                 clone_size,
2322                                                                 GFP_ATOMIC);
2323                         if (!obj_request->bio_list)
2324                                 goto out_unwind;
2325                 } else {
2326                         unsigned int page_count;
2327
2328                         obj_request->pages = pages;
2329                         page_count = (u32)calc_pages_for(offset, length);
2330                         obj_request->page_count = page_count;
2331                         if ((offset + length) & ~PAGE_MASK)
2332                                 page_count--;   /* more on last page */
2333                         pages += page_count;
2334                 }
2335
2336                 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2337                                              (write_request ? 2 : 1),
2338                                              obj_request);
2339                 if (!osd_req)
2340                         goto out_unwind;
2341                 obj_request->osd_req = osd_req;
2342                 obj_request->callback = rbd_img_obj_callback;
2343                 rbd_img_request_get(img_request);
2344
2345                 if (write_request) {
2346                         osd_req_op_alloc_hint_init(osd_req, which,
2347                                              rbd_obj_bytes(&rbd_dev->header),
2348                                              rbd_obj_bytes(&rbd_dev->header));
2349                         which++;
2350                 }
2351
2352                 osd_req_op_extent_init(osd_req, which, opcode, offset, length,
2353                                        0, 0);
2354                 if (type == OBJ_REQUEST_BIO)
2355                         osd_req_op_extent_osd_data_bio(osd_req, which,
2356                                         obj_request->bio_list, length);
2357                 else
2358                         osd_req_op_extent_osd_data_pages(osd_req, which,
2359                                         obj_request->pages, length,
2360                                         offset & ~PAGE_MASK, false, false);
2361
2362                 if (write_request)
2363                         rbd_osd_req_format_write(obj_request);
2364                 else
2365                         rbd_osd_req_format_read(obj_request);
2366
2367                 obj_request->img_offset = img_offset;
2368
2369                 img_offset += length;
2370                 resid -= length;
2371         }
2372
2373         return 0;
2374
2375 out_unwind:
2376         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2377                 rbd_img_obj_request_del(img_request, obj_request);
2378
2379         return -ENOMEM;
2380 }
2381
2382 static void
2383 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2384 {
2385         struct rbd_img_request *img_request;
2386         struct rbd_device *rbd_dev;
2387         struct page **pages;
2388         u32 page_count;
2389
2390         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2391         rbd_assert(obj_request_img_data_test(obj_request));
2392         img_request = obj_request->img_request;
2393         rbd_assert(img_request);
2394
2395         rbd_dev = img_request->rbd_dev;
2396         rbd_assert(rbd_dev);
2397
2398         pages = obj_request->copyup_pages;
2399         rbd_assert(pages != NULL);
2400         obj_request->copyup_pages = NULL;
2401         page_count = obj_request->copyup_page_count;
2402         rbd_assert(page_count);
2403         obj_request->copyup_page_count = 0;
2404         ceph_release_page_vector(pages, page_count);
2405
2406         /*
2407          * We want the transfer count to reflect the size of the
2408          * original write request.  There is no such thing as a
2409          * successful short write, so if the request was successful
2410          * we can just set it to the originally-requested length.
2411          */
2412         if (!obj_request->result)
2413                 obj_request->xferred = obj_request->length;
2414
2415         /* Finish up with the normal image object callback */
2416
2417         rbd_img_obj_callback(obj_request);
2418 }
2419
2420 static void
2421 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2422 {
2423         struct rbd_obj_request *orig_request;
2424         struct ceph_osd_request *osd_req;
2425         struct ceph_osd_client *osdc;
2426         struct rbd_device *rbd_dev;
2427         struct page **pages;
2428         u32 page_count;
2429         int img_result;
2430         u64 parent_length;
2431         u64 offset;
2432         u64 length;
2433
2434         rbd_assert(img_request_child_test(img_request));
2435
2436         /* First get what we need from the image request */
2437
2438         pages = img_request->copyup_pages;
2439         rbd_assert(pages != NULL);
2440         img_request->copyup_pages = NULL;
2441         page_count = img_request->copyup_page_count;
2442         rbd_assert(page_count);
2443         img_request->copyup_page_count = 0;
2444
2445         orig_request = img_request->obj_request;
2446         rbd_assert(orig_request != NULL);
2447         rbd_assert(obj_request_type_valid(orig_request->type));
2448         img_result = img_request->result;
2449         parent_length = img_request->length;
2450         rbd_assert(parent_length == img_request->xferred);
2451         rbd_img_request_put(img_request);
2452
2453         rbd_assert(orig_request->img_request);
2454         rbd_dev = orig_request->img_request->rbd_dev;
2455         rbd_assert(rbd_dev);
2456
2457         /*
2458          * If the overlap has become 0 (most likely because the
2459          * image has been flattened) we need to free the pages
2460          * and re-submit the original write request.
2461          */
2462         if (!rbd_dev->parent_overlap) {
2463                 struct ceph_osd_client *osdc;
2464
2465                 ceph_release_page_vector(pages, page_count);
2466                 osdc = &rbd_dev->rbd_client->client->osdc;
2467                 img_result = rbd_obj_request_submit(osdc, orig_request);
2468                 if (!img_result)
2469                         return;
2470         }
2471
2472         if (img_result)
2473                 goto out_err;
2474
2475         /*
2476          * The original osd request is of no use to use any more.
2477          * We need a new one that can hold the three ops in a copyup
2478          * request.  Allocate the new copyup osd request for the
2479          * original request, and release the old one.
2480          */
2481         img_result = -ENOMEM;
2482         osd_req = rbd_osd_req_create_copyup(orig_request);
2483         if (!osd_req)
2484                 goto out_err;
2485         rbd_osd_req_destroy(orig_request->osd_req);
2486         orig_request->osd_req = osd_req;
2487         orig_request->copyup_pages = pages;
2488         orig_request->copyup_page_count = page_count;
2489
2490         /* Initialize the copyup op */
2491
2492         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2493         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2494                                                 false, false);
2495
2496         /* Then the hint op */
2497
2498         osd_req_op_alloc_hint_init(osd_req, 1, rbd_obj_bytes(&rbd_dev->header),
2499                                    rbd_obj_bytes(&rbd_dev->header));
2500
2501         /* And the original write request op */
2502
2503         offset = orig_request->offset;
2504         length = orig_request->length;
2505         osd_req_op_extent_init(osd_req, 2, CEPH_OSD_OP_WRITE,
2506                                         offset, length, 0, 0);
2507         if (orig_request->type == OBJ_REQUEST_BIO)
2508                 osd_req_op_extent_osd_data_bio(osd_req, 2,
2509                                         orig_request->bio_list, length);
2510         else
2511                 osd_req_op_extent_osd_data_pages(osd_req, 2,
2512                                         orig_request->pages, length,
2513                                         offset & ~PAGE_MASK, false, false);
2514
2515         rbd_osd_req_format_write(orig_request);
2516
2517         /* All set, send it off. */
2518
2519         orig_request->callback = rbd_img_obj_copyup_callback;
2520         osdc = &rbd_dev->rbd_client->client->osdc;
2521         img_result = rbd_obj_request_submit(osdc, orig_request);
2522         if (!img_result)
2523                 return;
2524 out_err:
2525         /* Record the error code and complete the request */
2526
2527         orig_request->result = img_result;
2528         orig_request->xferred = 0;
2529         obj_request_done_set(orig_request);
2530         rbd_obj_request_complete(orig_request);
2531 }
2532
2533 /*
2534  * Read from the parent image the range of data that covers the
2535  * entire target of the given object request.  This is used for
2536  * satisfying a layered image write request when the target of an
2537  * object request from the image request does not exist.
2538  *
2539  * A page array big enough to hold the returned data is allocated
2540  * and supplied to rbd_img_request_fill() as the "data descriptor."
2541  * When the read completes, this page array will be transferred to
2542  * the original object request for the copyup operation.
2543  *
2544  * If an error occurs, record it as the result of the original
2545  * object request and mark it done so it gets completed.
2546  */
2547 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2548 {
2549         struct rbd_img_request *img_request = NULL;
2550         struct rbd_img_request *parent_request = NULL;
2551         struct rbd_device *rbd_dev;
2552         u64 img_offset;
2553         u64 length;
2554         struct page **pages = NULL;
2555         u32 page_count;
2556         int result;
2557
2558         rbd_assert(obj_request_img_data_test(obj_request));
2559         rbd_assert(obj_request_type_valid(obj_request->type));
2560
2561         img_request = obj_request->img_request;
2562         rbd_assert(img_request != NULL);
2563         rbd_dev = img_request->rbd_dev;
2564         rbd_assert(rbd_dev->parent != NULL);
2565
2566         /*
2567          * Determine the byte range covered by the object in the
2568          * child image to which the original request was to be sent.
2569          */
2570         img_offset = obj_request->img_offset - obj_request->offset;
2571         length = (u64)1 << rbd_dev->header.obj_order;
2572
2573         /*
2574          * There is no defined parent data beyond the parent
2575          * overlap, so limit what we read at that boundary if
2576          * necessary.
2577          */
2578         if (img_offset + length > rbd_dev->parent_overlap) {
2579                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2580                 length = rbd_dev->parent_overlap - img_offset;
2581         }
2582
2583         /*
2584          * Allocate a page array big enough to receive the data read
2585          * from the parent.
2586          */
2587         page_count = (u32)calc_pages_for(0, length);
2588         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2589         if (IS_ERR(pages)) {
2590                 result = PTR_ERR(pages);
2591                 pages = NULL;
2592                 goto out_err;
2593         }
2594
2595         result = -ENOMEM;
2596         parent_request = rbd_parent_request_create(obj_request,
2597                                                 img_offset, length);
2598         if (!parent_request)
2599                 goto out_err;
2600
2601         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2602         if (result)
2603                 goto out_err;
2604         parent_request->copyup_pages = pages;
2605         parent_request->copyup_page_count = page_count;
2606
2607         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2608         result = rbd_img_request_submit(parent_request);
2609         if (!result)
2610                 return 0;
2611
2612         parent_request->copyup_pages = NULL;
2613         parent_request->copyup_page_count = 0;
2614         parent_request->obj_request = NULL;
2615         rbd_obj_request_put(obj_request);
2616 out_err:
2617         if (pages)
2618                 ceph_release_page_vector(pages, page_count);
2619         if (parent_request)
2620                 rbd_img_request_put(parent_request);
2621         obj_request->result = result;
2622         obj_request->xferred = 0;
2623         obj_request_done_set(obj_request);
2624
2625         return result;
2626 }
2627
2628 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2629 {
2630         struct rbd_obj_request *orig_request;
2631         struct rbd_device *rbd_dev;
2632         int result;
2633
2634         rbd_assert(!obj_request_img_data_test(obj_request));
2635
2636         /*
2637          * All we need from the object request is the original
2638          * request and the result of the STAT op.  Grab those, then
2639          * we're done with the request.
2640          */
2641         orig_request = obj_request->obj_request;
2642         obj_request->obj_request = NULL;
2643         rbd_obj_request_put(orig_request);
2644         rbd_assert(orig_request);
2645         rbd_assert(orig_request->img_request);
2646
2647         result = obj_request->result;
2648         obj_request->result = 0;
2649
2650         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2651                 obj_request, orig_request, result,
2652                 obj_request->xferred, obj_request->length);
2653         rbd_obj_request_put(obj_request);
2654
2655         /*
2656          * If the overlap has become 0 (most likely because the
2657          * image has been flattened) we need to free the pages
2658          * and re-submit the original write request.
2659          */
2660         rbd_dev = orig_request->img_request->rbd_dev;
2661         if (!rbd_dev->parent_overlap) {
2662                 struct ceph_osd_client *osdc;
2663
2664                 osdc = &rbd_dev->rbd_client->client->osdc;
2665                 result = rbd_obj_request_submit(osdc, orig_request);
2666                 if (!result)
2667                         return;
2668         }
2669
2670         /*
2671          * Our only purpose here is to determine whether the object
2672          * exists, and we don't want to treat the non-existence as
2673          * an error.  If something else comes back, transfer the
2674          * error to the original request and complete it now.
2675          */
2676         if (!result) {
2677                 obj_request_existence_set(orig_request, true);
2678         } else if (result == -ENOENT) {
2679                 obj_request_existence_set(orig_request, false);
2680         } else if (result) {
2681                 orig_request->result = result;
2682                 goto out;
2683         }
2684
2685         /*
2686          * Resubmit the original request now that we have recorded
2687          * whether the target object exists.
2688          */
2689         orig_request->result = rbd_img_obj_request_submit(orig_request);
2690 out:
2691         if (orig_request->result)
2692                 rbd_obj_request_complete(orig_request);
2693 }
2694
2695 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2696 {
2697         struct rbd_obj_request *stat_request;
2698         struct rbd_device *rbd_dev;
2699         struct ceph_osd_client *osdc;
2700         struct page **pages = NULL;
2701         u32 page_count;
2702         size_t size;
2703         int ret;
2704
2705         /*
2706          * The response data for a STAT call consists of:
2707          *     le64 length;
2708          *     struct {
2709          *         le32 tv_sec;
2710          *         le32 tv_nsec;
2711          *     } mtime;
2712          */
2713         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2714         page_count = (u32)calc_pages_for(0, size);
2715         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2716         if (IS_ERR(pages))
2717                 return PTR_ERR(pages);
2718
2719         ret = -ENOMEM;
2720         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2721                                                         OBJ_REQUEST_PAGES);
2722         if (!stat_request)
2723                 goto out;
2724
2725         rbd_obj_request_get(obj_request);
2726         stat_request->obj_request = obj_request;
2727         stat_request->pages = pages;
2728         stat_request->page_count = page_count;
2729
2730         rbd_assert(obj_request->img_request);
2731         rbd_dev = obj_request->img_request->rbd_dev;
2732         stat_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
2733                                                    stat_request);
2734         if (!stat_request->osd_req)
2735                 goto out;
2736         stat_request->callback = rbd_img_obj_exists_callback;
2737
2738         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2739         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2740                                         false, false);
2741         rbd_osd_req_format_read(stat_request);
2742
2743         osdc = &rbd_dev->rbd_client->client->osdc;
2744         ret = rbd_obj_request_submit(osdc, stat_request);
2745 out:
2746         if (ret)
2747                 rbd_obj_request_put(obj_request);
2748
2749         return ret;
2750 }
2751
2752 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2753 {
2754         struct rbd_img_request *img_request;
2755         struct rbd_device *rbd_dev;
2756         bool known;
2757
2758         rbd_assert(obj_request_img_data_test(obj_request));
2759
2760         img_request = obj_request->img_request;
2761         rbd_assert(img_request);
2762         rbd_dev = img_request->rbd_dev;
2763
2764         /*
2765          * Only writes to layered images need special handling.
2766          * Reads and non-layered writes are simple object requests.
2767          * Layered writes that start beyond the end of the overlap
2768          * with the parent have no parent data, so they too are
2769          * simple object requests.  Finally, if the target object is
2770          * known to already exist, its parent data has already been
2771          * copied, so a write to the object can also be handled as a
2772          * simple object request.
2773          */
2774         if (!img_request_write_test(img_request) ||
2775                 !img_request_layered_test(img_request) ||
2776                 !obj_request_overlaps_parent(obj_request) ||
2777                 ((known = obj_request_known_test(obj_request)) &&
2778                         obj_request_exists_test(obj_request))) {
2779
2780                 struct rbd_device *rbd_dev;
2781                 struct ceph_osd_client *osdc;
2782
2783                 rbd_dev = obj_request->img_request->rbd_dev;
2784                 osdc = &rbd_dev->rbd_client->client->osdc;
2785
2786                 return rbd_obj_request_submit(osdc, obj_request);
2787         }
2788
2789         /*
2790          * It's a layered write.  The target object might exist but
2791          * we may not know that yet.  If we know it doesn't exist,
2792          * start by reading the data for the full target object from
2793          * the parent so we can use it for a copyup to the target.
2794          */
2795         if (known)
2796                 return rbd_img_obj_parent_read_full(obj_request);
2797
2798         /* We don't know whether the target exists.  Go find out. */
2799
2800         return rbd_img_obj_exists_submit(obj_request);
2801 }
2802
2803 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2804 {
2805         struct rbd_obj_request *obj_request;
2806         struct rbd_obj_request *next_obj_request;
2807
2808         dout("%s: img %p\n", __func__, img_request);
2809         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2810                 int ret;
2811
2812                 ret = rbd_img_obj_request_submit(obj_request);
2813                 if (ret)
2814                         return ret;
2815         }
2816
2817         return 0;
2818 }
2819
2820 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2821 {
2822         struct rbd_obj_request *obj_request;
2823         struct rbd_device *rbd_dev;
2824         u64 obj_end;
2825         u64 img_xferred;
2826         int img_result;
2827
2828         rbd_assert(img_request_child_test(img_request));
2829
2830         /* First get what we need from the image request and release it */
2831
2832         obj_request = img_request->obj_request;
2833         img_xferred = img_request->xferred;
2834         img_result = img_request->result;
2835         rbd_img_request_put(img_request);
2836
2837         /*
2838          * If the overlap has become 0 (most likely because the
2839          * image has been flattened) we need to re-submit the
2840          * original request.
2841          */
2842         rbd_assert(obj_request);
2843         rbd_assert(obj_request->img_request);
2844         rbd_dev = obj_request->img_request->rbd_dev;
2845         if (!rbd_dev->parent_overlap) {
2846                 struct ceph_osd_client *osdc;
2847
2848                 osdc = &rbd_dev->rbd_client->client->osdc;
2849                 img_result = rbd_obj_request_submit(osdc, obj_request);
2850                 if (!img_result)
2851                         return;
2852         }
2853
2854         obj_request->result = img_result;
2855         if (obj_request->result)
2856                 goto out;
2857
2858         /*
2859          * We need to zero anything beyond the parent overlap
2860          * boundary.  Since rbd_img_obj_request_read_callback()
2861          * will zero anything beyond the end of a short read, an
2862          * easy way to do this is to pretend the data from the
2863          * parent came up short--ending at the overlap boundary.
2864          */
2865         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2866         obj_end = obj_request->img_offset + obj_request->length;
2867         if (obj_end > rbd_dev->parent_overlap) {
2868                 u64 xferred = 0;
2869
2870                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2871                         xferred = rbd_dev->parent_overlap -
2872                                         obj_request->img_offset;
2873
2874                 obj_request->xferred = min(img_xferred, xferred);
2875         } else {
2876                 obj_request->xferred = img_xferred;
2877         }
2878 out:
2879         rbd_img_obj_request_read_callback(obj_request);
2880         rbd_obj_request_complete(obj_request);
2881 }
2882
2883 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2884 {
2885         struct rbd_img_request *img_request;
2886         int result;
2887
2888         rbd_assert(obj_request_img_data_test(obj_request));
2889         rbd_assert(obj_request->img_request != NULL);
2890         rbd_assert(obj_request->result == (s32) -ENOENT);
2891         rbd_assert(obj_request_type_valid(obj_request->type));
2892
2893         /* rbd_read_finish(obj_request, obj_request->length); */
2894         img_request = rbd_parent_request_create(obj_request,
2895                                                 obj_request->img_offset,
2896                                                 obj_request->length);
2897         result = -ENOMEM;
2898         if (!img_request)
2899                 goto out_err;
2900
2901         if (obj_request->type == OBJ_REQUEST_BIO)
2902                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2903                                                 obj_request->bio_list);
2904         else
2905                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2906                                                 obj_request->pages);
2907         if (result)
2908                 goto out_err;
2909
2910         img_request->callback = rbd_img_parent_read_callback;
2911         result = rbd_img_request_submit(img_request);
2912         if (result)
2913                 goto out_err;
2914
2915         return;
2916 out_err:
2917         if (img_request)
2918                 rbd_img_request_put(img_request);
2919         obj_request->result = result;
2920         obj_request->xferred = 0;
2921         obj_request_done_set(obj_request);
2922 }
2923
2924 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
2925 {
2926         struct rbd_obj_request *obj_request;
2927         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2928         int ret;
2929
2930         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2931                                                         OBJ_REQUEST_NODATA);
2932         if (!obj_request)
2933                 return -ENOMEM;
2934
2935         ret = -ENOMEM;
2936         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
2937                                                   obj_request);
2938         if (!obj_request->osd_req)
2939                 goto out;
2940
2941         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2942                                         notify_id, 0, 0);
2943         rbd_osd_req_format_read(obj_request);
2944
2945         ret = rbd_obj_request_submit(osdc, obj_request);
2946         if (ret)
2947                 goto out;
2948         ret = rbd_obj_request_wait(obj_request);
2949 out:
2950         rbd_obj_request_put(obj_request);
2951
2952         return ret;
2953 }
2954
2955 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2956 {
2957         struct rbd_device *rbd_dev = (struct rbd_device *)data;
2958         int ret;
2959
2960         if (!rbd_dev)
2961                 return;
2962
2963         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2964                 rbd_dev->header_name, (unsigned long long)notify_id,
2965                 (unsigned int)opcode);
2966         ret = rbd_dev_refresh(rbd_dev);
2967         if (ret)
2968                 rbd_warn(rbd_dev, "header refresh error (%d)\n", ret);
2969
2970         rbd_obj_notify_ack_sync(rbd_dev, notify_id);
2971 }
2972
2973 /*
2974  * Send a (un)watch request and wait for the ack.  Return a request
2975  * with a ref held on success or error.
2976  */
2977 static struct rbd_obj_request *rbd_obj_watch_request_helper(
2978                                                 struct rbd_device *rbd_dev,
2979                                                 bool watch)
2980 {
2981         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2982         struct rbd_obj_request *obj_request;
2983         int ret;
2984
2985         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2986                                              OBJ_REQUEST_NODATA);
2987         if (!obj_request)
2988                 return ERR_PTR(-ENOMEM);
2989
2990         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, 1,
2991                                                   obj_request);
2992         if (!obj_request->osd_req) {
2993                 ret = -ENOMEM;
2994                 goto out;
2995         }
2996
2997         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2998                               rbd_dev->watch_event->cookie, 0, watch);
2999         rbd_osd_req_format_write(obj_request);
3000
3001         if (watch)
3002                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3003
3004         ret = rbd_obj_request_submit(osdc, obj_request);
3005         if (ret)
3006                 goto out;
3007
3008         ret = rbd_obj_request_wait(obj_request);
3009         if (ret)
3010                 goto out;
3011
3012         ret = obj_request->result;
3013         if (ret) {
3014                 if (watch)
3015                         rbd_obj_request_end(obj_request);
3016                 goto out;
3017         }
3018
3019         return obj_request;
3020
3021 out:
3022         rbd_obj_request_put(obj_request);
3023         return ERR_PTR(ret);
3024 }
3025
3026 /*
3027  * Initiate a watch request, synchronously.
3028  */
3029 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3030 {
3031         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3032         struct rbd_obj_request *obj_request;
3033         int ret;
3034
3035         rbd_assert(!rbd_dev->watch_event);
3036         rbd_assert(!rbd_dev->watch_request);
3037
3038         ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3039                                      &rbd_dev->watch_event);
3040         if (ret < 0)
3041                 return ret;
3042
3043         rbd_assert(rbd_dev->watch_event);
3044
3045         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3046                                              OBJ_REQUEST_NODATA);
3047         if (!obj_request) {
3048                 ret = -ENOMEM;
3049                 goto out_cancel;
3050         }
3051
3052         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, 1,
3053                                                   obj_request);
3054         if (!obj_request->osd_req) {
3055                 ret = -ENOMEM;
3056                 goto out_put;
3057         }
3058
3059         ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3060
3061         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3062                               rbd_dev->watch_event->cookie, 0, 1);
3063         rbd_osd_req_format_write(obj_request);
3064
3065         ret = rbd_obj_request_submit(osdc, obj_request);
3066         if (ret)
3067                 goto out_linger;
3068
3069         ret = rbd_obj_request_wait(obj_request);
3070         if (ret)
3071                 goto out_linger;
3072
3073         ret = obj_request->result;
3074         if (ret)
3075                 goto out_linger;
3076
3077         /*
3078          * A watch request is set to linger, so the underlying osd
3079          * request won't go away until we unregister it.  We retain
3080          * a pointer to the object request during that time (in
3081          * rbd_dev->watch_request), so we'll keep a reference to
3082          * it.  We'll drop that reference (below) after we've
3083          * unregistered it.
3084          */
3085         rbd_dev->watch_request = obj_request;
3086
3087         return 0;
3088
3089 out_linger:
3090         ceph_osdc_unregister_linger_request(osdc, obj_request->osd_req);
3091 out_put:
3092         rbd_obj_request_put(obj_request);
3093 out_cancel:
3094         ceph_osdc_cancel_event(rbd_dev->watch_event);
3095         rbd_dev->watch_event = NULL;
3096
3097         return ret;
3098 }
3099
3100 /*
3101  * Tear down a watch request, synchronously.
3102  */
3103 static int __rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3104 {
3105         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3106         struct rbd_obj_request *obj_request;
3107         int ret;
3108
3109         rbd_assert(rbd_dev->watch_event);
3110         rbd_assert(rbd_dev->watch_request);
3111
3112         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3113                                              OBJ_REQUEST_NODATA);
3114         if (!obj_request) {
3115                 ret = -ENOMEM;
3116                 goto out_cancel;
3117         }
3118
3119         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, 1,
3120                                                   obj_request);
3121         if (!obj_request->osd_req) {
3122                 ret = -ENOMEM;
3123                 goto out_put;
3124         }
3125
3126         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3127                               rbd_dev->watch_event->cookie, 0, 0);
3128         rbd_osd_req_format_write(obj_request);
3129
3130         ret = rbd_obj_request_submit(osdc, obj_request);
3131         if (ret)
3132                 goto out_put;
3133
3134         ret = rbd_obj_request_wait(obj_request);
3135         if (ret)
3136                 goto out_put;
3137
3138         ret = obj_request->result;
3139         if (ret)
3140                 goto out_put;
3141
3142         /* We have successfully torn down the watch request */
3143
3144         ceph_osdc_unregister_linger_request(osdc,
3145                                             rbd_dev->watch_request->osd_req);
3146         rbd_obj_request_put(rbd_dev->watch_request);
3147         rbd_dev->watch_request = NULL;
3148
3149 out_put:
3150         rbd_obj_request_put(obj_request);
3151 out_cancel:
3152         ceph_osdc_cancel_event(rbd_dev->watch_event);
3153         rbd_dev->watch_event = NULL;
3154
3155         return ret;
3156 }
3157
3158 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3159 {
3160         int ret;
3161
3162         ret = __rbd_dev_header_unwatch_sync(rbd_dev);
3163         if (ret) {
3164                 rbd_warn(rbd_dev, "unable to tear down watch request: %d\n",
3165                          ret);
3166         }
3167 }
3168
3169 /*
3170  * Synchronous osd object method call.  Returns the number of bytes
3171  * returned in the outbound buffer, or a negative error code.
3172  */
3173 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3174                              const char *object_name,
3175                              const char *class_name,
3176                              const char *method_name,
3177                              const void *outbound,
3178                              size_t outbound_size,
3179                              void *inbound,
3180                              size_t inbound_size)
3181 {
3182         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3183         struct rbd_obj_request *obj_request;
3184         struct page **pages;
3185         u32 page_count;
3186         int ret;
3187
3188         /*
3189          * Method calls are ultimately read operations.  The result
3190          * should placed into the inbound buffer provided.  They
3191          * also supply outbound data--parameters for the object
3192          * method.  Currently if this is present it will be a
3193          * snapshot id.
3194          */
3195         page_count = (u32)calc_pages_for(0, inbound_size);
3196         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3197         if (IS_ERR(pages))
3198                 return PTR_ERR(pages);
3199
3200         ret = -ENOMEM;
3201         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3202                                                         OBJ_REQUEST_PAGES);
3203         if (!obj_request)
3204                 goto out;
3205
3206         obj_request->pages = pages;
3207         obj_request->page_count = page_count;
3208
3209         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
3210                                                   obj_request);
3211         if (!obj_request->osd_req)
3212                 goto out;
3213
3214         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3215                                         class_name, method_name);
3216         if (outbound_size) {
3217                 struct ceph_pagelist *pagelist;
3218
3219                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3220                 if (!pagelist)
3221                         goto out;
3222
3223                 ceph_pagelist_init(pagelist);
3224                 ceph_pagelist_append(pagelist, outbound, outbound_size);
3225                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3226                                                 pagelist);
3227         }
3228         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3229                                         obj_request->pages, inbound_size,
3230                                         0, false, false);
3231         rbd_osd_req_format_read(obj_request);
3232
3233         ret = rbd_obj_request_submit(osdc, obj_request);
3234         if (ret)
3235                 goto out;
3236         ret = rbd_obj_request_wait(obj_request);
3237         if (ret)
3238                 goto out;
3239
3240         ret = obj_request->result;
3241         if (ret < 0)
3242                 goto out;
3243
3244         rbd_assert(obj_request->xferred < (u64)INT_MAX);
3245         ret = (int)obj_request->xferred;
3246         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3247 out:
3248         if (obj_request)
3249                 rbd_obj_request_put(obj_request);
3250         else
3251                 ceph_release_page_vector(pages, page_count);
3252
3253         return ret;
3254 }
3255
3256 static void rbd_request_fn(struct request_queue *q)
3257                 __releases(q->queue_lock) __acquires(q->queue_lock)
3258 {
3259         struct rbd_device *rbd_dev = q->queuedata;
3260         struct request *rq;
3261         int result;
3262
3263         while ((rq = blk_fetch_request(q))) {
3264                 bool write_request = rq_data_dir(rq) == WRITE;
3265                 struct rbd_img_request *img_request;
3266                 u64 offset;
3267                 u64 length;
3268
3269                 /* Ignore any non-FS requests that filter through. */
3270
3271                 if (rq->cmd_type != REQ_TYPE_FS) {
3272                         dout("%s: non-fs request type %d\n", __func__,
3273                                 (int) rq->cmd_type);
3274                         __blk_end_request_all(rq, 0);
3275                         continue;
3276                 }
3277
3278                 /* Ignore/skip any zero-length requests */
3279
3280                 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3281                 length = (u64) blk_rq_bytes(rq);
3282
3283                 if (!length) {
3284                         dout("%s: zero-length request\n", __func__);
3285                         __blk_end_request_all(rq, 0);
3286                         continue;
3287                 }
3288
3289                 spin_unlock_irq(q->queue_lock);
3290
3291                 /* Disallow writes to a read-only device */
3292
3293                 if (write_request) {
3294                         result = -EROFS;
3295                         if (rbd_dev->mapping.read_only)
3296                                 goto end_request;
3297                         rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3298                 }
3299
3300                 /*
3301                  * Quit early if the mapped snapshot no longer
3302                  * exists.  It's still possible the snapshot will
3303                  * have disappeared by the time our request arrives
3304                  * at the osd, but there's no sense in sending it if
3305                  * we already know.
3306                  */
3307                 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3308                         dout("request for non-existent snapshot");
3309                         rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3310                         result = -ENXIO;
3311                         goto end_request;
3312                 }
3313
3314                 result = -EINVAL;
3315                 if (offset && length > U64_MAX - offset + 1) {
3316                         rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3317                                 offset, length);
3318                         goto end_request;       /* Shouldn't happen */
3319                 }
3320
3321                 result = -EIO;
3322                 if (offset + length > rbd_dev->mapping.size) {
3323                         rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3324                                 offset, length, rbd_dev->mapping.size);
3325                         goto end_request;
3326                 }
3327
3328                 result = -ENOMEM;
3329                 img_request = rbd_img_request_create(rbd_dev, offset, length,
3330                                                         write_request);
3331                 if (!img_request)
3332                         goto end_request;
3333
3334                 img_request->rq = rq;
3335
3336                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3337                                                 rq->bio);
3338                 if (!result)
3339                         result = rbd_img_request_submit(img_request);
3340                 if (result)
3341                         rbd_img_request_put(img_request);
3342 end_request:
3343                 spin_lock_irq(q->queue_lock);
3344                 if (result < 0) {
3345                         rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3346                                 write_request ? "write" : "read",
3347                                 length, offset, result);
3348
3349                         __blk_end_request_all(rq, result);
3350                 }
3351         }
3352 }
3353
3354 /*
3355  * a queue callback. Makes sure that we don't create a bio that spans across
3356  * multiple osd objects. One exception would be with a single page bios,
3357  * which we handle later at bio_chain_clone_range()
3358  */
3359 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3360                           struct bio_vec *bvec)
3361 {
3362         struct rbd_device *rbd_dev = q->queuedata;
3363         sector_t sector_offset;
3364         sector_t sectors_per_obj;
3365         sector_t obj_sector_offset;
3366         int ret;
3367
3368         /*
3369          * Find how far into its rbd object the partition-relative
3370          * bio start sector is to offset relative to the enclosing
3371          * device.
3372          */
3373         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3374         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3375         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3376
3377         /*
3378          * Compute the number of bytes from that offset to the end
3379          * of the object.  Account for what's already used by the bio.
3380          */
3381         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3382         if (ret > bmd->bi_size)
3383                 ret -= bmd->bi_size;
3384         else
3385                 ret = 0;
3386
3387         /*
3388          * Don't send back more than was asked for.  And if the bio
3389          * was empty, let the whole thing through because:  "Note
3390          * that a block device *must* allow a single page to be
3391          * added to an empty bio."
3392          */
3393         rbd_assert(bvec->bv_len <= PAGE_SIZE);
3394         if (ret > (int) bvec->bv_len || !bmd->bi_size)
3395                 ret = (int) bvec->bv_len;
3396
3397         return ret;
3398 }
3399
3400 static void rbd_free_disk(struct rbd_device *rbd_dev)
3401 {
3402         struct gendisk *disk = rbd_dev->disk;
3403
3404         if (!disk)
3405                 return;
3406
3407         rbd_dev->disk = NULL;
3408         if (disk->flags & GENHD_FL_UP) {
3409                 del_gendisk(disk);
3410                 if (disk->queue)
3411                         blk_cleanup_queue(disk->queue);
3412         }
3413         put_disk(disk);
3414 }
3415
3416 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3417                                 const char *object_name,
3418                                 u64 offset, u64 length, void *buf)
3419
3420 {
3421         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3422         struct rbd_obj_request *obj_request;
3423         struct page **pages = NULL;
3424         u32 page_count;
3425         size_t size;
3426         int ret;
3427
3428         page_count = (u32) calc_pages_for(offset, length);
3429         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3430         if (IS_ERR(pages))
3431                 ret = PTR_ERR(pages);
3432
3433         ret = -ENOMEM;
3434         obj_request = rbd_obj_request_create(object_name, offset, length,
3435                                                         OBJ_REQUEST_PAGES);
3436         if (!obj_request)
3437                 goto out;
3438
3439         obj_request->pages = pages;
3440         obj_request->page_count = page_count;
3441
3442         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
3443                                                   obj_request);
3444         if (!obj_request->osd_req)
3445                 goto out;
3446
3447         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3448                                         offset, length, 0, 0);
3449         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3450                                         obj_request->pages,
3451                                         obj_request->length,
3452                                         obj_request->offset & ~PAGE_MASK,
3453                                         false, false);
3454         rbd_osd_req_format_read(obj_request);
3455
3456         ret = rbd_obj_request_submit(osdc, obj_request);
3457         if (ret)
3458                 goto out;
3459         ret = rbd_obj_request_wait(obj_request);
3460         if (ret)
3461                 goto out;
3462
3463         ret = obj_request->result;
3464         if (ret < 0)
3465                 goto out;
3466
3467         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3468         size = (size_t) obj_request->xferred;
3469         ceph_copy_from_page_vector(pages, buf, 0, size);
3470         rbd_assert(size <= (size_t)INT_MAX);
3471         ret = (int)size;
3472 out:
3473         if (obj_request)
3474                 rbd_obj_request_put(obj_request);
3475         else
3476                 ceph_release_page_vector(pages, page_count);
3477
3478         return ret;
3479 }
3480
3481 /*
3482  * Read the complete header for the given rbd device.  On successful
3483  * return, the rbd_dev->header field will contain up-to-date
3484  * information about the image.
3485  */
3486 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3487 {
3488         struct rbd_image_header_ondisk *ondisk = NULL;
3489         u32 snap_count = 0;
3490         u64 names_size = 0;
3491         u32 want_count;
3492         int ret;
3493
3494         /*
3495          * The complete header will include an array of its 64-bit
3496          * snapshot ids, followed by the names of those snapshots as
3497          * a contiguous block of NUL-terminated strings.  Note that
3498          * the number of snapshots could change by the time we read
3499          * it in, in which case we re-read it.
3500          */
3501         do {
3502                 size_t size;
3503
3504                 kfree(ondisk);
3505
3506                 size = sizeof (*ondisk);
3507                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3508                 size += names_size;
3509                 ondisk = kmalloc(size, GFP_KERNEL);
3510                 if (!ondisk)
3511                         return -ENOMEM;
3512
3513                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3514                                        0, size, ondisk);
3515                 if (ret < 0)
3516                         goto out;
3517                 if ((size_t)ret < size) {
3518                         ret = -ENXIO;
3519                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3520                                 size, ret);
3521                         goto out;
3522                 }
3523                 if (!rbd_dev_ondisk_valid(ondisk)) {
3524                         ret = -ENXIO;
3525                         rbd_warn(rbd_dev, "invalid header");
3526                         goto out;
3527                 }
3528
3529                 names_size = le64_to_cpu(ondisk->snap_names_len);
3530                 want_count = snap_count;
3531                 snap_count = le32_to_cpu(ondisk->snap_count);
3532         } while (snap_count != want_count);
3533
3534         ret = rbd_header_from_disk(rbd_dev, ondisk);
3535 out:
3536         kfree(ondisk);
3537
3538         return ret;
3539 }
3540
3541 /*
3542  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3543  * has disappeared from the (just updated) snapshot context.
3544  */
3545 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3546 {
3547         u64 snap_id;
3548
3549         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3550                 return;
3551
3552         snap_id = rbd_dev->spec->snap_id;
3553         if (snap_id == CEPH_NOSNAP)
3554                 return;
3555
3556         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3557                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3558 }
3559
3560 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3561 {
3562         sector_t size;
3563         bool removing;
3564
3565         /*
3566          * Don't hold the lock while doing disk operations,
3567          * or lock ordering will conflict with the bdev mutex via:
3568          * rbd_add() -> blkdev_get() -> rbd_open()
3569          */
3570         spin_lock_irq(&rbd_dev->lock);
3571         removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3572         spin_unlock_irq(&rbd_dev->lock);
3573         /*
3574          * If the device is being removed, rbd_dev->disk has
3575          * been destroyed, so don't try to update its size
3576          */
3577         if (!removing) {
3578                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3579                 dout("setting size to %llu sectors", (unsigned long long)size);
3580                 set_capacity(rbd_dev->disk, size);
3581                 revalidate_disk(rbd_dev->disk);
3582         }
3583 }
3584
3585 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3586 {
3587         u64 mapping_size;
3588         int ret;
3589
3590         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3591         down_write(&rbd_dev->header_rwsem);
3592         mapping_size = rbd_dev->mapping.size;
3593         if (rbd_dev->image_format == 1)
3594                 ret = rbd_dev_v1_header_info(rbd_dev);
3595         else
3596                 ret = rbd_dev_v2_header_info(rbd_dev);
3597
3598         /* If it's a mapped snapshot, validate its EXISTS flag */
3599
3600         rbd_exists_validate(rbd_dev);
3601         up_write(&rbd_dev->header_rwsem);
3602
3603         if (mapping_size != rbd_dev->mapping.size) {
3604                 rbd_dev_update_size(rbd_dev);
3605         }
3606
3607         return ret;
3608 }
3609
3610 static int rbd_init_disk(struct rbd_device *rbd_dev)
3611 {
3612         struct gendisk *disk;
3613         struct request_queue *q;
3614         u64 segment_size;
3615
3616         /* create gendisk info */
3617         disk = alloc_disk(single_major ?
3618                           (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3619                           RBD_MINORS_PER_MAJOR);
3620         if (!disk)
3621                 return -ENOMEM;
3622
3623         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3624                  rbd_dev->dev_id);
3625         disk->major = rbd_dev->major;
3626         disk->first_minor = rbd_dev->minor;
3627         if (single_major)
3628                 disk->flags |= GENHD_FL_EXT_DEVT;
3629         disk->fops = &rbd_bd_ops;
3630         disk->private_data = rbd_dev;
3631
3632         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3633         if (!q)
3634                 goto out_disk;
3635
3636         /* We use the default size, but let's be explicit about it. */
3637         blk_queue_physical_block_size(q, SECTOR_SIZE);
3638
3639         /* set io sizes to object size */
3640         segment_size = rbd_obj_bytes(&rbd_dev->header);
3641         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3642         blk_queue_max_segment_size(q, segment_size);
3643         blk_queue_io_min(q, segment_size);
3644         blk_queue_io_opt(q, segment_size);
3645
3646         blk_queue_merge_bvec(q, rbd_merge_bvec);
3647         disk->queue = q;
3648
3649         q->queuedata = rbd_dev;
3650
3651         rbd_dev->disk = disk;
3652
3653         return 0;
3654 out_disk:
3655         put_disk(disk);
3656
3657         return -ENOMEM;
3658 }
3659
3660 /*
3661   sysfs
3662 */
3663
3664 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3665 {
3666         return container_of(dev, struct rbd_device, dev);
3667 }
3668
3669 static ssize_t rbd_size_show(struct device *dev,
3670                              struct device_attribute *attr, char *buf)
3671 {
3672         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3673
3674         return sprintf(buf, "%llu\n",
3675                 (unsigned long long)rbd_dev->mapping.size);
3676 }
3677
3678 /*
3679  * Note this shows the features for whatever's mapped, which is not
3680  * necessarily the base image.
3681  */
3682 static ssize_t rbd_features_show(struct device *dev,
3683                              struct device_attribute *attr, char *buf)
3684 {
3685         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3686
3687         return sprintf(buf, "0x%016llx\n",
3688                         (unsigned long long)rbd_dev->mapping.features);
3689 }
3690
3691 static ssize_t rbd_major_show(struct device *dev,
3692                               struct device_attribute *attr, char *buf)
3693 {
3694         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3695
3696         if (rbd_dev->major)
3697                 return sprintf(buf, "%d\n", rbd_dev->major);
3698
3699         return sprintf(buf, "(none)\n");
3700 }
3701
3702 static ssize_t rbd_minor_show(struct device *dev,
3703                               struct device_attribute *attr, char *buf)
3704 {
3705         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3706
3707         return sprintf(buf, "%d\n", rbd_dev->minor);
3708 }
3709
3710 static ssize_t rbd_client_id_show(struct device *dev,
3711                                   struct device_attribute *attr, char *buf)
3712 {
3713         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3714
3715         return sprintf(buf, "client%lld\n",
3716                         ceph_client_id(rbd_dev->rbd_client->client));
3717 }
3718
3719 static ssize_t rbd_pool_show(struct device *dev,
3720                              struct device_attribute *attr, char *buf)
3721 {
3722         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3723
3724         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3725 }
3726
3727 static ssize_t rbd_pool_id_show(struct device *dev,
3728                              struct device_attribute *attr, char *buf)
3729 {
3730         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3731
3732         return sprintf(buf, "%llu\n",
3733                         (unsigned long long) rbd_dev->spec->pool_id);
3734 }
3735
3736 static ssize_t rbd_name_show(struct device *dev,
3737                              struct device_attribute *attr, char *buf)
3738 {
3739         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3740
3741         if (rbd_dev->spec->image_name)
3742                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3743
3744         return sprintf(buf, "(unknown)\n");
3745 }
3746
3747 static ssize_t rbd_image_id_show(struct device *dev,
3748                              struct device_attribute *attr, char *buf)
3749 {
3750         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3751
3752         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3753 }
3754
3755 /*
3756  * Shows the name of the currently-mapped snapshot (or
3757  * RBD_SNAP_HEAD_NAME for the base image).
3758  */
3759 static ssize_t rbd_snap_show(struct device *dev,
3760                              struct device_attribute *attr,
3761                              char *buf)
3762 {
3763         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3764
3765         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3766 }
3767
3768 /*
3769  * For an rbd v2 image, shows the pool id, image id, and snapshot id
3770  * for the parent image.  If there is no parent, simply shows
3771  * "(no parent image)".
3772  */
3773 static ssize_t rbd_parent_show(struct device *dev,
3774                              struct device_attribute *attr,
3775                              char *buf)
3776 {
3777         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3778         struct rbd_spec *spec = rbd_dev->parent_spec;
3779         int count;
3780         char *bufp = buf;
3781
3782         if (!spec)
3783                 return sprintf(buf, "(no parent image)\n");
3784
3785         count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3786                         (unsigned long long) spec->pool_id, spec->pool_name);
3787         if (count < 0)
3788                 return count;
3789         bufp += count;
3790
3791         count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3792                         spec->image_name ? spec->image_name : "(unknown)");
3793         if (count < 0)
3794                 return count;
3795         bufp += count;
3796
3797         count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3798                         (unsigned long long) spec->snap_id, spec->snap_name);
3799         if (count < 0)
3800                 return count;
3801         bufp += count;
3802
3803         count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3804         if (count < 0)
3805                 return count;
3806         bufp += count;
3807
3808         return (ssize_t) (bufp - buf);
3809 }
3810
3811 static ssize_t rbd_image_refresh(struct device *dev,
3812                                  struct device_attribute *attr,
3813                                  const char *buf,
3814                                  size_t size)
3815 {
3816         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3817         int ret;
3818
3819         ret = rbd_dev_refresh(rbd_dev);
3820         if (ret)
3821                 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3822
3823         return ret < 0 ? ret : size;
3824 }
3825
3826 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3827 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3828 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3829 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3830 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3831 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3832 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3833 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3834 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3835 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3836 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3837 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3838
3839 static struct attribute *rbd_attrs[] = {
3840         &dev_attr_size.attr,
3841         &dev_attr_features.attr,
3842         &dev_attr_major.attr,
3843         &dev_attr_minor.attr,
3844         &dev_attr_client_id.attr,
3845         &dev_attr_pool.attr,
3846         &dev_attr_pool_id.attr,
3847         &dev_attr_name.attr,
3848         &dev_attr_image_id.attr,
3849         &dev_attr_current_snap.attr,
3850         &dev_attr_parent.attr,
3851         &dev_attr_refresh.attr,
3852         NULL
3853 };
3854
3855 static struct attribute_group rbd_attr_group = {
3856         .attrs = rbd_attrs,
3857 };
3858
3859 static const struct attribute_group *rbd_attr_groups[] = {
3860         &rbd_attr_group,
3861         NULL
3862 };
3863
3864 static void rbd_sysfs_dev_release(struct device *dev)
3865 {
3866 }
3867
3868 static struct device_type rbd_device_type = {
3869         .name           = "rbd",
3870         .groups         = rbd_attr_groups,
3871         .release        = rbd_sysfs_dev_release,
3872 };
3873
3874 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3875 {
3876         kref_get(&spec->kref);
3877
3878         return spec;
3879 }
3880
3881 static void rbd_spec_free(struct kref *kref);
3882 static void rbd_spec_put(struct rbd_spec *spec)
3883 {
3884         if (spec)
3885                 kref_put(&spec->kref, rbd_spec_free);
3886 }
3887
3888 static struct rbd_spec *rbd_spec_alloc(void)
3889 {
3890         struct rbd_spec *spec;
3891
3892         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3893         if (!spec)
3894                 return NULL;
3895         kref_init(&spec->kref);
3896
3897         return spec;
3898 }
3899
3900 static void rbd_spec_free(struct kref *kref)
3901 {
3902         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3903
3904         kfree(spec->pool_name);
3905         kfree(spec->image_id);
3906         kfree(spec->image_name);
3907         kfree(spec->snap_name);
3908         kfree(spec);
3909 }
3910
3911 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3912                                 struct rbd_spec *spec)
3913 {
3914         struct rbd_device *rbd_dev;
3915
3916         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3917         if (!rbd_dev)
3918                 return NULL;
3919
3920         spin_lock_init(&rbd_dev->lock);
3921         rbd_dev->flags = 0;
3922         atomic_set(&rbd_dev->parent_ref, 0);
3923         INIT_LIST_HEAD(&rbd_dev->node);
3924         init_rwsem(&rbd_dev->header_rwsem);
3925
3926         rbd_dev->spec = spec;
3927         rbd_dev->rbd_client = rbdc;
3928
3929         /* Initialize the layout used for all rbd requests */
3930
3931         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3932         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3933         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3934         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3935
3936         return rbd_dev;
3937 }
3938
3939 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3940 {
3941         rbd_put_client(rbd_dev->rbd_client);
3942         rbd_spec_put(rbd_dev->spec);
3943         kfree(rbd_dev);
3944 }
3945
3946 /*
3947  * Get the size and object order for an image snapshot, or if
3948  * snap_id is CEPH_NOSNAP, gets this information for the base
3949  * image.
3950  */
3951 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3952                                 u8 *order, u64 *snap_size)
3953 {
3954         __le64 snapid = cpu_to_le64(snap_id);
3955         int ret;
3956         struct {
3957                 u8 order;
3958                 __le64 size;
3959         } __attribute__ ((packed)) size_buf = { 0 };
3960
3961         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3962                                 "rbd", "get_size",
3963                                 &snapid, sizeof (snapid),
3964                                 &size_buf, sizeof (size_buf));
3965         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3966         if (ret < 0)
3967                 return ret;
3968         if (ret < sizeof (size_buf))
3969                 return -ERANGE;
3970
3971         if (order) {
3972                 *order = size_buf.order;
3973                 dout("  order %u", (unsigned int)*order);
3974         }
3975         *snap_size = le64_to_cpu(size_buf.size);
3976
3977         dout("  snap_id 0x%016llx snap_size = %llu\n",
3978                 (unsigned long long)snap_id,
3979                 (unsigned long long)*snap_size);
3980
3981         return 0;
3982 }
3983
3984 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3985 {
3986         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3987                                         &rbd_dev->header.obj_order,
3988                                         &rbd_dev->header.image_size);
3989 }
3990
3991 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3992 {
3993         void *reply_buf;
3994         int ret;
3995         void *p;
3996
3997         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3998         if (!reply_buf)
3999                 return -ENOMEM;
4000
4001         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4002                                 "rbd", "get_object_prefix", NULL, 0,
4003                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4004         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4005         if (ret < 0)
4006                 goto out;
4007
4008         p = reply_buf;
4009         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4010                                                 p + ret, NULL, GFP_NOIO);
4011         ret = 0;
4012
4013         if (IS_ERR(rbd_dev->header.object_prefix)) {
4014                 ret = PTR_ERR(rbd_dev->header.object_prefix);
4015                 rbd_dev->header.object_prefix = NULL;
4016         } else {
4017                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
4018         }
4019 out:
4020         kfree(reply_buf);
4021
4022         return ret;
4023 }
4024
4025 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4026                 u64 *snap_features)
4027 {
4028         __le64 snapid = cpu_to_le64(snap_id);
4029         struct {
4030                 __le64 features;
4031                 __le64 incompat;
4032         } __attribute__ ((packed)) features_buf = { 0 };
4033         u64 incompat;
4034         int ret;
4035
4036         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4037                                 "rbd", "get_features",
4038                                 &snapid, sizeof (snapid),
4039                                 &features_buf, sizeof (features_buf));
4040         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4041         if (ret < 0)
4042                 return ret;
4043         if (ret < sizeof (features_buf))
4044                 return -ERANGE;
4045
4046         incompat = le64_to_cpu(features_buf.incompat);
4047         if (incompat & ~RBD_FEATURES_SUPPORTED)
4048                 return -ENXIO;
4049
4050         *snap_features = le64_to_cpu(features_buf.features);
4051
4052         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4053                 (unsigned long long)snap_id,
4054                 (unsigned long long)*snap_features,
4055                 (unsigned long long)le64_to_cpu(features_buf.incompat));
4056
4057         return 0;
4058 }
4059
4060 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4061 {
4062         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4063                                                 &rbd_dev->header.features);
4064 }
4065
4066 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4067 {
4068         struct rbd_spec *parent_spec;
4069         size_t size;
4070         void *reply_buf = NULL;
4071         __le64 snapid;
4072         void *p;
4073         void *end;
4074         u64 pool_id;
4075         char *image_id;
4076         u64 snap_id;
4077         u64 overlap;
4078         int ret;
4079
4080         parent_spec = rbd_spec_alloc();
4081         if (!parent_spec)
4082                 return -ENOMEM;
4083
4084         size = sizeof (__le64) +                                /* pool_id */
4085                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
4086                 sizeof (__le64) +                               /* snap_id */
4087                 sizeof (__le64);                                /* overlap */
4088         reply_buf = kmalloc(size, GFP_KERNEL);
4089         if (!reply_buf) {
4090                 ret = -ENOMEM;
4091                 goto out_err;
4092         }
4093
4094         snapid = cpu_to_le64(CEPH_NOSNAP);
4095         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4096                                 "rbd", "get_parent",
4097                                 &snapid, sizeof (snapid),
4098                                 reply_buf, size);
4099         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4100         if (ret < 0)
4101                 goto out_err;
4102
4103         p = reply_buf;
4104         end = reply_buf + ret;
4105         ret = -ERANGE;
4106         ceph_decode_64_safe(&p, end, pool_id, out_err);
4107         if (pool_id == CEPH_NOPOOL) {
4108                 /*
4109                  * Either the parent never existed, or we have
4110                  * record of it but the image got flattened so it no
4111                  * longer has a parent.  When the parent of a
4112                  * layered image disappears we immediately set the
4113                  * overlap to 0.  The effect of this is that all new
4114                  * requests will be treated as if the image had no
4115                  * parent.
4116                  */
4117                 if (rbd_dev->parent_overlap) {
4118                         rbd_dev->parent_overlap = 0;
4119                         smp_mb();
4120                         rbd_dev_parent_put(rbd_dev);
4121                         pr_info("%s: clone image has been flattened\n",
4122                                 rbd_dev->disk->disk_name);
4123                 }
4124
4125                 goto out;       /* No parent?  No problem. */
4126         }
4127
4128         /* The ceph file layout needs to fit pool id in 32 bits */
4129
4130         ret = -EIO;
4131         if (pool_id > (u64)U32_MAX) {
4132                 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
4133                         (unsigned long long)pool_id, U32_MAX);
4134                 goto out_err;
4135         }
4136
4137         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4138         if (IS_ERR(image_id)) {
4139                 ret = PTR_ERR(image_id);
4140                 goto out_err;
4141         }
4142         ceph_decode_64_safe(&p, end, snap_id, out_err);
4143         ceph_decode_64_safe(&p, end, overlap, out_err);
4144
4145         /*
4146          * The parent won't change (except when the clone is
4147          * flattened, already handled that).  So we only need to
4148          * record the parent spec we have not already done so.
4149          */
4150         if (!rbd_dev->parent_spec) {
4151                 parent_spec->pool_id = pool_id;
4152                 parent_spec->image_id = image_id;
4153                 parent_spec->snap_id = snap_id;
4154                 rbd_dev->parent_spec = parent_spec;
4155                 parent_spec = NULL;     /* rbd_dev now owns this */
4156         }
4157
4158         /*
4159          * We always update the parent overlap.  If it's zero we
4160          * treat it specially.
4161          */
4162         rbd_dev->parent_overlap = overlap;
4163         smp_mb();
4164         if (!overlap) {
4165
4166                 /* A null parent_spec indicates it's the initial probe */
4167
4168                 if (parent_spec) {
4169                         /*
4170                          * The overlap has become zero, so the clone
4171                          * must have been resized down to 0 at some
4172                          * point.  Treat this the same as a flatten.
4173                          */
4174                         rbd_dev_parent_put(rbd_dev);
4175                         pr_info("%s: clone image now standalone\n",
4176                                 rbd_dev->disk->disk_name);
4177                 } else {
4178                         /*
4179                          * For the initial probe, if we find the
4180                          * overlap is zero we just pretend there was
4181                          * no parent image.
4182                          */
4183                         rbd_warn(rbd_dev, "ignoring parent of "
4184                                                 "clone with overlap 0\n");
4185                 }
4186         }
4187 out:
4188         ret = 0;
4189 out_err:
4190         kfree(reply_buf);
4191         rbd_spec_put(parent_spec);
4192
4193         return ret;
4194 }
4195
4196 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4197 {
4198         struct {
4199                 __le64 stripe_unit;
4200                 __le64 stripe_count;
4201         } __attribute__ ((packed)) striping_info_buf = { 0 };
4202         size_t size = sizeof (striping_info_buf);
4203         void *p;
4204         u64 obj_size;
4205         u64 stripe_unit;
4206         u64 stripe_count;
4207         int ret;
4208
4209         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4210                                 "rbd", "get_stripe_unit_count", NULL, 0,
4211                                 (char *)&striping_info_buf, size);
4212         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4213         if (ret < 0)
4214                 return ret;
4215         if (ret < size)
4216                 return -ERANGE;
4217
4218         /*
4219          * We don't actually support the "fancy striping" feature
4220          * (STRIPINGV2) yet, but if the striping sizes are the
4221          * defaults the behavior is the same as before.  So find
4222          * out, and only fail if the image has non-default values.
4223          */
4224         ret = -EINVAL;
4225         obj_size = (u64)1 << rbd_dev->header.obj_order;
4226         p = &striping_info_buf;
4227         stripe_unit = ceph_decode_64(&p);
4228         if (stripe_unit != obj_size) {
4229                 rbd_warn(rbd_dev, "unsupported stripe unit "
4230                                 "(got %llu want %llu)",
4231                                 stripe_unit, obj_size);
4232                 return -EINVAL;
4233         }
4234         stripe_count = ceph_decode_64(&p);
4235         if (stripe_count != 1) {
4236                 rbd_warn(rbd_dev, "unsupported stripe count "
4237                                 "(got %llu want 1)", stripe_count);
4238                 return -EINVAL;
4239         }
4240         rbd_dev->header.stripe_unit = stripe_unit;
4241         rbd_dev->header.stripe_count = stripe_count;
4242
4243         return 0;
4244 }
4245
4246 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4247 {
4248         size_t image_id_size;
4249         char *image_id;
4250         void *p;
4251         void *end;
4252         size_t size;
4253         void *reply_buf = NULL;
4254         size_t len = 0;
4255         char *image_name = NULL;
4256         int ret;
4257
4258         rbd_assert(!rbd_dev->spec->image_name);
4259
4260         len = strlen(rbd_dev->spec->image_id);
4261         image_id_size = sizeof (__le32) + len;
4262         image_id = kmalloc(image_id_size, GFP_KERNEL);
4263         if (!image_id)
4264                 return NULL;
4265
4266         p = image_id;
4267         end = image_id + image_id_size;
4268         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4269
4270         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4271         reply_buf = kmalloc(size, GFP_KERNEL);
4272         if (!reply_buf)
4273                 goto out;
4274
4275         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4276                                 "rbd", "dir_get_name",
4277                                 image_id, image_id_size,
4278                                 reply_buf, size);
4279         if (ret < 0)
4280                 goto out;
4281         p = reply_buf;
4282         end = reply_buf + ret;
4283
4284         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4285         if (IS_ERR(image_name))
4286                 image_name = NULL;
4287         else
4288                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4289 out:
4290         kfree(reply_buf);
4291         kfree(image_id);
4292
4293         return image_name;
4294 }
4295
4296 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4297 {
4298         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4299         const char *snap_name;
4300         u32 which = 0;
4301
4302         /* Skip over names until we find the one we are looking for */
4303
4304         snap_name = rbd_dev->header.snap_names;
4305         while (which < snapc->num_snaps) {
4306                 if (!strcmp(name, snap_name))
4307                         return snapc->snaps[which];
4308                 snap_name += strlen(snap_name) + 1;
4309                 which++;
4310         }
4311         return CEPH_NOSNAP;
4312 }
4313
4314 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4315 {
4316         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4317         u32 which;
4318         bool found = false;
4319         u64 snap_id;
4320
4321         for (which = 0; !found && which < snapc->num_snaps; which++) {
4322                 const char *snap_name;
4323
4324                 snap_id = snapc->snaps[which];
4325                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4326                 if (IS_ERR(snap_name)) {
4327                         /* ignore no-longer existing snapshots */
4328                         if (PTR_ERR(snap_name) == -ENOENT)
4329                                 continue;
4330                         else
4331                                 break;
4332                 }
4333                 found = !strcmp(name, snap_name);
4334                 kfree(snap_name);
4335         }
4336         return found ? snap_id : CEPH_NOSNAP;
4337 }
4338
4339 /*
4340  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4341  * no snapshot by that name is found, or if an error occurs.
4342  */
4343 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4344 {
4345         if (rbd_dev->image_format == 1)
4346                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4347
4348         return rbd_v2_snap_id_by_name(rbd_dev, name);
4349 }
4350
4351 /*
4352  * When an rbd image has a parent image, it is identified by the
4353  * pool, image, and snapshot ids (not names).  This function fills
4354  * in the names for those ids.  (It's OK if we can't figure out the
4355  * name for an image id, but the pool and snapshot ids should always
4356  * exist and have names.)  All names in an rbd spec are dynamically
4357  * allocated.
4358  *
4359  * When an image being mapped (not a parent) is probed, we have the
4360  * pool name and pool id, image name and image id, and the snapshot
4361  * name.  The only thing we're missing is the snapshot id.
4362  */
4363 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4364 {
4365         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4366         struct rbd_spec *spec = rbd_dev->spec;
4367         const char *pool_name;
4368         const char *image_name;
4369         const char *snap_name;
4370         int ret;
4371
4372         /*
4373          * An image being mapped will have the pool name (etc.), but
4374          * we need to look up the snapshot id.
4375          */
4376         if (spec->pool_name) {
4377                 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4378                         u64 snap_id;
4379
4380                         snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4381                         if (snap_id == CEPH_NOSNAP)
4382                                 return -ENOENT;
4383                         spec->snap_id = snap_id;
4384                 } else {
4385                         spec->snap_id = CEPH_NOSNAP;
4386                 }
4387
4388                 return 0;
4389         }
4390
4391         /* Get the pool name; we have to make our own copy of this */
4392
4393         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4394         if (!pool_name) {
4395                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4396                 return -EIO;
4397         }
4398         pool_name = kstrdup(pool_name, GFP_KERNEL);
4399         if (!pool_name)
4400                 return -ENOMEM;
4401
4402         /* Fetch the image name; tolerate failure here */
4403
4404         image_name = rbd_dev_image_name(rbd_dev);
4405         if (!image_name)
4406                 rbd_warn(rbd_dev, "unable to get image name");
4407
4408         /* Look up the snapshot name, and make a copy */
4409
4410         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4411         if (IS_ERR(snap_name)) {
4412                 ret = PTR_ERR(snap_name);
4413                 goto out_err;
4414         }
4415
4416         spec->pool_name = pool_name;
4417         spec->image_name = image_name;
4418         spec->snap_name = snap_name;
4419
4420         return 0;
4421 out_err:
4422         kfree(image_name);
4423         kfree(pool_name);
4424
4425         return ret;
4426 }
4427
4428 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4429 {
4430         size_t size;
4431         int ret;
4432         void *reply_buf;
4433         void *p;
4434         void *end;
4435         u64 seq;
4436         u32 snap_count;
4437         struct ceph_snap_context *snapc;
4438         u32 i;
4439
4440         /*
4441          * We'll need room for the seq value (maximum snapshot id),
4442          * snapshot count, and array of that many snapshot ids.
4443          * For now we have a fixed upper limit on the number we're
4444          * prepared to receive.
4445          */
4446         size = sizeof (__le64) + sizeof (__le32) +
4447                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4448         reply_buf = kzalloc(size, GFP_KERNEL);
4449         if (!reply_buf)
4450                 return -ENOMEM;
4451
4452         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4453                                 "rbd", "get_snapcontext", NULL, 0,
4454                                 reply_buf, size);
4455         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4456         if (ret < 0)
4457                 goto out;
4458
4459         p = reply_buf;
4460         end = reply_buf + ret;
4461         ret = -ERANGE;
4462         ceph_decode_64_safe(&p, end, seq, out);
4463         ceph_decode_32_safe(&p, end, snap_count, out);
4464
4465         /*
4466          * Make sure the reported number of snapshot ids wouldn't go
4467          * beyond the end of our buffer.  But before checking that,
4468          * make sure the computed size of the snapshot context we
4469          * allocate is representable in a size_t.
4470          */
4471         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4472                                  / sizeof (u64)) {
4473                 ret = -EINVAL;
4474                 goto out;
4475         }
4476         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4477                 goto out;
4478         ret = 0;
4479
4480         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4481         if (!snapc) {
4482                 ret = -ENOMEM;
4483                 goto out;
4484         }
4485         snapc->seq = seq;
4486         for (i = 0; i < snap_count; i++)
4487                 snapc->snaps[i] = ceph_decode_64(&p);
4488
4489         ceph_put_snap_context(rbd_dev->header.snapc);
4490         rbd_dev->header.snapc = snapc;
4491
4492         dout("  snap context seq = %llu, snap_count = %u\n",
4493                 (unsigned long long)seq, (unsigned int)snap_count);
4494 out:
4495         kfree(reply_buf);
4496
4497         return ret;
4498 }
4499
4500 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4501                                         u64 snap_id)
4502 {
4503         size_t size;
4504         void *reply_buf;
4505         __le64 snapid;
4506         int ret;
4507         void *p;
4508         void *end;
4509         char *snap_name;
4510
4511         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4512         reply_buf = kmalloc(size, GFP_KERNEL);
4513         if (!reply_buf)
4514                 return ERR_PTR(-ENOMEM);
4515
4516         snapid = cpu_to_le64(snap_id);
4517         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4518                                 "rbd", "get_snapshot_name",
4519                                 &snapid, sizeof (snapid),
4520                                 reply_buf, size);
4521         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4522         if (ret < 0) {
4523                 snap_name = ERR_PTR(ret);
4524                 goto out;
4525         }
4526
4527         p = reply_buf;
4528         end = reply_buf + ret;
4529         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4530         if (IS_ERR(snap_name))
4531                 goto out;
4532
4533         dout("  snap_id 0x%016llx snap_name = %s\n",
4534                 (unsigned long long)snap_id, snap_name);
4535 out:
4536         kfree(reply_buf);
4537
4538         return snap_name;
4539 }
4540
4541 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4542 {
4543         bool first_time = rbd_dev->header.object_prefix == NULL;
4544         int ret;
4545
4546         ret = rbd_dev_v2_image_size(rbd_dev);
4547         if (ret)
4548                 return ret;
4549
4550         if (first_time) {
4551                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4552                 if (ret)
4553                         return ret;
4554         }
4555
4556         /*
4557          * If the image supports layering, get the parent info.  We
4558          * need to probe the first time regardless.  Thereafter we
4559          * only need to if there's a parent, to see if it has
4560          * disappeared due to the mapped image getting flattened.
4561          */
4562         if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4563                         (first_time || rbd_dev->parent_spec)) {
4564                 bool warn;
4565
4566                 ret = rbd_dev_v2_parent_info(rbd_dev);
4567                 if (ret)
4568                         return ret;
4569
4570                 /*
4571                  * Print a warning if this is the initial probe and
4572                  * the image has a parent.  Don't print it if the
4573                  * image now being probed is itself a parent.  We
4574                  * can tell at this point because we won't know its
4575                  * pool name yet (just its pool id).
4576                  */
4577                 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4578                 if (first_time && warn)
4579                         rbd_warn(rbd_dev, "WARNING: kernel layering "
4580                                         "is EXPERIMENTAL!");
4581         }
4582
4583         if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4584                 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4585                         rbd_dev->mapping.size = rbd_dev->header.image_size;
4586
4587         ret = rbd_dev_v2_snap_context(rbd_dev);
4588         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4589
4590         return ret;
4591 }
4592
4593 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4594 {
4595         struct device *dev;
4596         int ret;
4597
4598         dev = &rbd_dev->dev;
4599         dev->bus = &rbd_bus_type;
4600         dev->type = &rbd_device_type;
4601         dev->parent = &rbd_root_dev;
4602         dev->release = rbd_dev_device_release;
4603         dev_set_name(dev, "%d", rbd_dev->dev_id);
4604         ret = device_register(dev);
4605
4606         return ret;
4607 }
4608
4609 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4610 {
4611         device_unregister(&rbd_dev->dev);
4612 }
4613
4614 /*
4615  * Get a unique rbd identifier for the given new rbd_dev, and add
4616  * the rbd_dev to the global list.
4617  */
4618 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4619 {
4620         int new_dev_id;
4621
4622         new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4623                                     0, minor_to_rbd_dev_id(1 << MINORBITS),
4624                                     GFP_KERNEL);
4625         if (new_dev_id < 0)
4626                 return new_dev_id;
4627
4628         rbd_dev->dev_id = new_dev_id;
4629
4630         spin_lock(&rbd_dev_list_lock);
4631         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4632         spin_unlock(&rbd_dev_list_lock);
4633
4634         dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4635
4636         return 0;
4637 }
4638
4639 /*
4640  * Remove an rbd_dev from the global list, and record that its
4641  * identifier is no longer in use.
4642  */
4643 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4644 {
4645         spin_lock(&rbd_dev_list_lock);
4646         list_del_init(&rbd_dev->node);
4647         spin_unlock(&rbd_dev_list_lock);
4648
4649         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4650
4651         dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4652 }
4653
4654 /*
4655  * Skips over white space at *buf, and updates *buf to point to the
4656  * first found non-space character (if any). Returns the length of
4657  * the token (string of non-white space characters) found.  Note
4658  * that *buf must be terminated with '\0'.
4659  */
4660 static inline size_t next_token(const char **buf)
4661 {
4662         /*
4663         * These are the characters that produce nonzero for
4664         * isspace() in the "C" and "POSIX" locales.
4665         */
4666         const char *spaces = " \f\n\r\t\v";
4667
4668         *buf += strspn(*buf, spaces);   /* Find start of token */
4669
4670         return strcspn(*buf, spaces);   /* Return token length */
4671 }
4672
4673 /*
4674  * Finds the next token in *buf, and if the provided token buffer is
4675  * big enough, copies the found token into it.  The result, if
4676  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4677  * must be terminated with '\0' on entry.
4678  *
4679  * Returns the length of the token found (not including the '\0').
4680  * Return value will be 0 if no token is found, and it will be >=
4681  * token_size if the token would not fit.
4682  *
4683  * The *buf pointer will be updated to point beyond the end of the
4684  * found token.  Note that this occurs even if the token buffer is
4685  * too small to hold it.
4686  */
4687 static inline size_t copy_token(const char **buf,
4688                                 char *token,
4689                                 size_t token_size)
4690 {
4691         size_t len;
4692
4693         len = next_token(buf);
4694         if (len < token_size) {
4695                 memcpy(token, *buf, len);
4696                 *(token + len) = '\0';
4697         }
4698         *buf += len;
4699
4700         return len;
4701 }
4702
4703 /*
4704  * Finds the next token in *buf, dynamically allocates a buffer big
4705  * enough to hold a copy of it, and copies the token into the new
4706  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4707  * that a duplicate buffer is created even for a zero-length token.
4708  *
4709  * Returns a pointer to the newly-allocated duplicate, or a null
4710  * pointer if memory for the duplicate was not available.  If
4711  * the lenp argument is a non-null pointer, the length of the token
4712  * (not including the '\0') is returned in *lenp.
4713  *
4714  * If successful, the *buf pointer will be updated to point beyond
4715  * the end of the found token.
4716  *
4717  * Note: uses GFP_KERNEL for allocation.
4718  */
4719 static inline char *dup_token(const char **buf, size_t *lenp)
4720 {
4721         char *dup;
4722         size_t len;
4723
4724         len = next_token(buf);
4725         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4726         if (!dup)
4727                 return NULL;
4728         *(dup + len) = '\0';
4729         *buf += len;
4730
4731         if (lenp)
4732                 *lenp = len;
4733
4734         return dup;
4735 }
4736
4737 /*
4738  * Parse the options provided for an "rbd add" (i.e., rbd image
4739  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4740  * and the data written is passed here via a NUL-terminated buffer.
4741  * Returns 0 if successful or an error code otherwise.
4742  *
4743  * The information extracted from these options is recorded in
4744  * the other parameters which return dynamically-allocated
4745  * structures:
4746  *  ceph_opts
4747  *      The address of a pointer that will refer to a ceph options
4748  *      structure.  Caller must release the returned pointer using
4749  *      ceph_destroy_options() when it is no longer needed.
4750  *  rbd_opts
4751  *      Address of an rbd options pointer.  Fully initialized by
4752  *      this function; caller must release with kfree().
4753  *  spec
4754  *      Address of an rbd image specification pointer.  Fully
4755  *      initialized by this function based on parsed options.
4756  *      Caller must release with rbd_spec_put().
4757  *
4758  * The options passed take this form:
4759  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4760  * where:
4761  *  <mon_addrs>
4762  *      A comma-separated list of one or more monitor addresses.
4763  *      A monitor address is an ip address, optionally followed
4764  *      by a port number (separated by a colon).
4765  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4766  *  <options>
4767  *      A comma-separated list of ceph and/or rbd options.
4768  *  <pool_name>
4769  *      The name of the rados pool containing the rbd image.
4770  *  <image_name>
4771  *      The name of the image in that pool to map.
4772  *  <snap_id>
4773  *      An optional snapshot id.  If provided, the mapping will
4774  *      present data from the image at the time that snapshot was
4775  *      created.  The image head is used if no snapshot id is
4776  *      provided.  Snapshot mappings are always read-only.
4777  */
4778 static int rbd_add_parse_args(const char *buf,
4779                                 struct ceph_options **ceph_opts,
4780                                 struct rbd_options **opts,
4781                                 struct rbd_spec **rbd_spec)
4782 {
4783         size_t len;
4784         char *options;
4785         const char *mon_addrs;
4786         char *snap_name;
4787         size_t mon_addrs_size;
4788         struct rbd_spec *spec = NULL;
4789         struct rbd_options *rbd_opts = NULL;
4790         struct ceph_options *copts;
4791         int ret;
4792
4793         /* The first four tokens are required */
4794
4795         len = next_token(&buf);
4796         if (!len) {
4797                 rbd_warn(NULL, "no monitor address(es) provided");
4798                 return -EINVAL;
4799         }
4800         mon_addrs = buf;
4801         mon_addrs_size = len + 1;
4802         buf += len;
4803
4804         ret = -EINVAL;
4805         options = dup_token(&buf, NULL);
4806         if (!options)
4807                 return -ENOMEM;
4808         if (!*options) {
4809                 rbd_warn(NULL, "no options provided");
4810                 goto out_err;
4811         }
4812
4813         spec = rbd_spec_alloc();
4814         if (!spec)
4815                 goto out_mem;
4816
4817         spec->pool_name = dup_token(&buf, NULL);
4818         if (!spec->pool_name)
4819                 goto out_mem;
4820         if (!*spec->pool_name) {
4821                 rbd_warn(NULL, "no pool name provided");
4822                 goto out_err;
4823         }
4824
4825         spec->image_name = dup_token(&buf, NULL);
4826         if (!spec->image_name)
4827                 goto out_mem;
4828         if (!*spec->image_name) {
4829                 rbd_warn(NULL, "no image name provided");
4830                 goto out_err;
4831         }
4832
4833         /*
4834          * Snapshot name is optional; default is to use "-"
4835          * (indicating the head/no snapshot).
4836          */
4837         len = next_token(&buf);
4838         if (!len) {
4839                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4840                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4841         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4842                 ret = -ENAMETOOLONG;
4843                 goto out_err;
4844         }
4845         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4846         if (!snap_name)
4847                 goto out_mem;
4848         *(snap_name + len) = '\0';
4849         spec->snap_name = snap_name;
4850
4851         /* Initialize all rbd options to the defaults */
4852
4853         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4854         if (!rbd_opts)
4855                 goto out_mem;
4856
4857         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4858
4859         copts = ceph_parse_options(options, mon_addrs,
4860                                         mon_addrs + mon_addrs_size - 1,
4861                                         parse_rbd_opts_token, rbd_opts);
4862         if (IS_ERR(copts)) {
4863                 ret = PTR_ERR(copts);
4864                 goto out_err;
4865         }
4866         kfree(options);
4867
4868         *ceph_opts = copts;
4869         *opts = rbd_opts;
4870         *rbd_spec = spec;
4871
4872         return 0;
4873 out_mem:
4874         ret = -ENOMEM;
4875 out_err:
4876         kfree(rbd_opts);
4877         rbd_spec_put(spec);
4878         kfree(options);
4879
4880         return ret;
4881 }
4882
4883 /*
4884  * Return pool id (>= 0) or a negative error code.
4885  */
4886 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4887 {
4888         u64 newest_epoch;
4889         unsigned long timeout = rbdc->client->options->mount_timeout * HZ;
4890         int tries = 0;
4891         int ret;
4892
4893 again:
4894         ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4895         if (ret == -ENOENT && tries++ < 1) {
4896                 ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
4897                                                &newest_epoch);
4898                 if (ret < 0)
4899                         return ret;
4900
4901                 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
4902                         ceph_monc_request_next_osdmap(&rbdc->client->monc);
4903                         (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
4904                                                      newest_epoch, timeout);
4905                         goto again;
4906                 } else {
4907                         /* the osdmap we have is new enough */
4908                         return -ENOENT;
4909                 }
4910         }
4911
4912         return ret;
4913 }
4914
4915 /*
4916  * An rbd format 2 image has a unique identifier, distinct from the
4917  * name given to it by the user.  Internally, that identifier is
4918  * what's used to specify the names of objects related to the image.
4919  *
4920  * A special "rbd id" object is used to map an rbd image name to its
4921  * id.  If that object doesn't exist, then there is no v2 rbd image
4922  * with the supplied name.
4923  *
4924  * This function will record the given rbd_dev's image_id field if
4925  * it can be determined, and in that case will return 0.  If any
4926  * errors occur a negative errno will be returned and the rbd_dev's
4927  * image_id field will be unchanged (and should be NULL).
4928  */
4929 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4930 {
4931         int ret;
4932         size_t size;
4933         char *object_name;
4934         void *response;
4935         char *image_id;
4936
4937         /*
4938          * When probing a parent image, the image id is already
4939          * known (and the image name likely is not).  There's no
4940          * need to fetch the image id again in this case.  We
4941          * do still need to set the image format though.
4942          */
4943         if (rbd_dev->spec->image_id) {
4944                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4945
4946                 return 0;
4947         }
4948
4949         /*
4950          * First, see if the format 2 image id file exists, and if
4951          * so, get the image's persistent id from it.
4952          */
4953         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4954         object_name = kmalloc(size, GFP_NOIO);
4955         if (!object_name)
4956                 return -ENOMEM;
4957         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4958         dout("rbd id object name is %s\n", object_name);
4959
4960         /* Response will be an encoded string, which includes a length */
4961
4962         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4963         response = kzalloc(size, GFP_NOIO);
4964         if (!response) {
4965                 ret = -ENOMEM;
4966                 goto out;
4967         }
4968
4969         /* If it doesn't exist we'll assume it's a format 1 image */
4970
4971         ret = rbd_obj_method_sync(rbd_dev, object_name,
4972                                 "rbd", "get_id", NULL, 0,
4973                                 response, RBD_IMAGE_ID_LEN_MAX);
4974         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4975         if (ret == -ENOENT) {
4976                 image_id = kstrdup("", GFP_KERNEL);
4977                 ret = image_id ? 0 : -ENOMEM;
4978                 if (!ret)
4979                         rbd_dev->image_format = 1;
4980         } else if (ret > sizeof (__le32)) {
4981                 void *p = response;
4982
4983                 image_id = ceph_extract_encoded_string(&p, p + ret,
4984                                                 NULL, GFP_NOIO);
4985                 ret = PTR_ERR_OR_ZERO(image_id);
4986                 if (!ret)
4987                         rbd_dev->image_format = 2;
4988         } else {
4989                 ret = -EINVAL;
4990         }
4991
4992         if (!ret) {
4993                 rbd_dev->spec->image_id = image_id;
4994                 dout("image_id is %s\n", image_id);
4995         }
4996 out:
4997         kfree(response);
4998         kfree(object_name);
4999
5000         return ret;
5001 }
5002
5003 /*
5004  * Undo whatever state changes are made by v1 or v2 header info
5005  * call.
5006  */
5007 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5008 {
5009         struct rbd_image_header *header;
5010
5011         /* Drop parent reference unless it's already been done (or none) */
5012
5013         if (rbd_dev->parent_overlap)
5014                 rbd_dev_parent_put(rbd_dev);
5015
5016         /* Free dynamic fields from the header, then zero it out */
5017
5018         header = &rbd_dev->header;
5019         ceph_put_snap_context(header->snapc);
5020         kfree(header->snap_sizes);
5021         kfree(header->snap_names);
5022         kfree(header->object_prefix);
5023         memset(header, 0, sizeof (*header));
5024 }
5025
5026 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5027 {
5028         int ret;
5029
5030         ret = rbd_dev_v2_object_prefix(rbd_dev);
5031         if (ret)
5032                 goto out_err;
5033
5034         /*
5035          * Get the and check features for the image.  Currently the
5036          * features are assumed to never change.
5037          */
5038         ret = rbd_dev_v2_features(rbd_dev);
5039         if (ret)
5040                 goto out_err;
5041
5042         /* If the image supports fancy striping, get its parameters */
5043
5044         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5045                 ret = rbd_dev_v2_striping_info(rbd_dev);
5046                 if (ret < 0)
5047                         goto out_err;
5048         }
5049         /* No support for crypto and compression type format 2 images */
5050
5051         return 0;
5052 out_err:
5053         rbd_dev->header.features = 0;
5054         kfree(rbd_dev->header.object_prefix);
5055         rbd_dev->header.object_prefix = NULL;
5056
5057         return ret;
5058 }
5059
5060 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
5061 {
5062         struct rbd_device *parent = NULL;
5063         struct rbd_spec *parent_spec;
5064         struct rbd_client *rbdc;
5065         int ret;
5066
5067         if (!rbd_dev->parent_spec)
5068                 return 0;
5069         /*
5070          * We need to pass a reference to the client and the parent
5071          * spec when creating the parent rbd_dev.  Images related by
5072          * parent/child relationships always share both.
5073          */
5074         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
5075         rbdc = __rbd_get_client(rbd_dev->rbd_client);
5076
5077         ret = -ENOMEM;
5078         parent = rbd_dev_create(rbdc, parent_spec);
5079         if (!parent)
5080                 goto out_err;
5081
5082         ret = rbd_dev_image_probe(parent, false);
5083         if (ret < 0)
5084                 goto out_err;
5085         rbd_dev->parent = parent;
5086         atomic_set(&rbd_dev->parent_ref, 1);
5087
5088         return 0;
5089 out_err:
5090         if (parent) {
5091                 rbd_dev_unparent(rbd_dev);
5092                 kfree(rbd_dev->header_name);
5093                 rbd_dev_destroy(parent);
5094         } else {
5095                 rbd_put_client(rbdc);
5096                 rbd_spec_put(parent_spec);
5097         }
5098
5099         return ret;
5100 }
5101
5102 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5103 {
5104         int ret;
5105
5106         /* Get an id and fill in device name. */
5107
5108         ret = rbd_dev_id_get(rbd_dev);
5109         if (ret)
5110                 return ret;
5111
5112         BUILD_BUG_ON(DEV_NAME_LEN
5113                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5114         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5115
5116         /* Record our major and minor device numbers. */
5117
5118         if (!single_major) {
5119                 ret = register_blkdev(0, rbd_dev->name);
5120                 if (ret < 0)
5121                         goto err_out_id;
5122
5123                 rbd_dev->major = ret;
5124                 rbd_dev->minor = 0;
5125         } else {
5126                 rbd_dev->major = rbd_major;
5127                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5128         }
5129
5130         /* Set up the blkdev mapping. */
5131
5132         ret = rbd_init_disk(rbd_dev);
5133         if (ret)
5134                 goto err_out_blkdev;
5135
5136         ret = rbd_dev_mapping_set(rbd_dev);
5137         if (ret)
5138                 goto err_out_disk;
5139         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5140         set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5141
5142         ret = rbd_bus_add_dev(rbd_dev);
5143         if (ret)
5144                 goto err_out_mapping;
5145
5146         /* Everything's ready.  Announce the disk to the world. */
5147
5148         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5149         add_disk(rbd_dev->disk);
5150
5151         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5152                 (unsigned long long) rbd_dev->mapping.size);
5153
5154         return ret;
5155
5156 err_out_mapping:
5157         rbd_dev_mapping_clear(rbd_dev);
5158 err_out_disk:
5159         rbd_free_disk(rbd_dev);
5160 err_out_blkdev:
5161         if (!single_major)
5162                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5163 err_out_id:
5164         rbd_dev_id_put(rbd_dev);
5165         rbd_dev_mapping_clear(rbd_dev);
5166
5167         return ret;
5168 }
5169
5170 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5171 {
5172         struct rbd_spec *spec = rbd_dev->spec;
5173         size_t size;
5174
5175         /* Record the header object name for this rbd image. */
5176
5177         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5178
5179         if (rbd_dev->image_format == 1)
5180                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5181         else
5182                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5183
5184         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5185         if (!rbd_dev->header_name)
5186                 return -ENOMEM;
5187
5188         if (rbd_dev->image_format == 1)
5189                 sprintf(rbd_dev->header_name, "%s%s",
5190                         spec->image_name, RBD_SUFFIX);
5191         else
5192                 sprintf(rbd_dev->header_name, "%s%s",
5193                         RBD_HEADER_PREFIX, spec->image_id);
5194         return 0;
5195 }
5196
5197 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5198 {
5199         rbd_dev_unprobe(rbd_dev);
5200         kfree(rbd_dev->header_name);
5201         rbd_dev->header_name = NULL;
5202         rbd_dev->image_format = 0;
5203         kfree(rbd_dev->spec->image_id);
5204         rbd_dev->spec->image_id = NULL;
5205
5206         rbd_dev_destroy(rbd_dev);
5207 }
5208
5209 /*
5210  * Probe for the existence of the header object for the given rbd
5211  * device.  If this image is the one being mapped (i.e., not a
5212  * parent), initiate a watch on its header object before using that
5213  * object to get detailed information about the rbd image.
5214  */
5215 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
5216 {
5217         int ret;
5218
5219         /*
5220          * Get the id from the image id object.  Unless there's an
5221          * error, rbd_dev->spec->image_id will be filled in with
5222          * a dynamically-allocated string, and rbd_dev->image_format
5223          * will be set to either 1 or 2.
5224          */
5225         ret = rbd_dev_image_id(rbd_dev);
5226         if (ret)
5227                 return ret;
5228         rbd_assert(rbd_dev->spec->image_id);
5229         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5230
5231         ret = rbd_dev_header_name(rbd_dev);
5232         if (ret)
5233                 goto err_out_format;
5234
5235         if (mapping) {
5236                 ret = rbd_dev_header_watch_sync(rbd_dev);
5237                 if (ret)
5238                         goto out_header_name;
5239         }
5240
5241         if (rbd_dev->image_format == 1)
5242                 ret = rbd_dev_v1_header_info(rbd_dev);
5243         else
5244                 ret = rbd_dev_v2_header_info(rbd_dev);
5245         if (ret)
5246                 goto err_out_watch;
5247
5248         ret = rbd_dev_spec_update(rbd_dev);
5249         if (ret)
5250                 goto err_out_probe;
5251
5252         ret = rbd_dev_probe_parent(rbd_dev);
5253         if (ret)
5254                 goto err_out_probe;
5255
5256         dout("discovered format %u image, header name is %s\n",
5257                 rbd_dev->image_format, rbd_dev->header_name);
5258
5259         return 0;
5260 err_out_probe:
5261         rbd_dev_unprobe(rbd_dev);
5262 err_out_watch:
5263         if (mapping)
5264                 rbd_dev_header_unwatch_sync(rbd_dev);
5265 out_header_name:
5266         kfree(rbd_dev->header_name);
5267         rbd_dev->header_name = NULL;
5268 err_out_format:
5269         rbd_dev->image_format = 0;
5270         kfree(rbd_dev->spec->image_id);
5271         rbd_dev->spec->image_id = NULL;
5272
5273         dout("probe failed, returning %d\n", ret);
5274
5275         return ret;
5276 }
5277
5278 static ssize_t do_rbd_add(struct bus_type *bus,
5279                           const char *buf,
5280                           size_t count)
5281 {
5282         struct rbd_device *rbd_dev = NULL;
5283         struct ceph_options *ceph_opts = NULL;
5284         struct rbd_options *rbd_opts = NULL;
5285         struct rbd_spec *spec = NULL;
5286         struct rbd_client *rbdc;
5287         bool read_only;
5288         int rc = -ENOMEM;
5289
5290         if (!try_module_get(THIS_MODULE))
5291                 return -ENODEV;
5292
5293         /* parse add command */
5294         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5295         if (rc < 0)
5296                 goto err_out_module;
5297         read_only = rbd_opts->read_only;
5298         kfree(rbd_opts);
5299         rbd_opts = NULL;        /* done with this */
5300
5301         rbdc = rbd_get_client(ceph_opts);
5302         if (IS_ERR(rbdc)) {
5303                 rc = PTR_ERR(rbdc);
5304                 goto err_out_args;
5305         }
5306
5307         /* pick the pool */
5308         rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5309         if (rc < 0)
5310                 goto err_out_client;
5311         spec->pool_id = (u64)rc;
5312
5313         /* The ceph file layout needs to fit pool id in 32 bits */
5314
5315         if (spec->pool_id > (u64)U32_MAX) {
5316                 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5317                                 (unsigned long long)spec->pool_id, U32_MAX);
5318                 rc = -EIO;
5319                 goto err_out_client;
5320         }
5321
5322         rbd_dev = rbd_dev_create(rbdc, spec);
5323         if (!rbd_dev)
5324                 goto err_out_client;
5325         rbdc = NULL;            /* rbd_dev now owns this */
5326         spec = NULL;            /* rbd_dev now owns this */
5327
5328         rc = rbd_dev_image_probe(rbd_dev, true);
5329         if (rc < 0)
5330                 goto err_out_rbd_dev;
5331
5332         /* If we are mapping a snapshot it must be marked read-only */
5333
5334         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5335                 read_only = true;
5336         rbd_dev->mapping.read_only = read_only;
5337
5338         rc = rbd_dev_device_setup(rbd_dev);
5339         if (rc) {
5340                 /*
5341                  * rbd_dev_header_unwatch_sync() can't be moved into
5342                  * rbd_dev_image_release() without refactoring, see
5343                  * commit 1f3ef78861ac.
5344                  */
5345                 rbd_dev_header_unwatch_sync(rbd_dev);
5346                 rbd_dev_image_release(rbd_dev);
5347                 goto err_out_module;
5348         }
5349
5350         return count;
5351
5352 err_out_rbd_dev:
5353         rbd_dev_destroy(rbd_dev);
5354 err_out_client:
5355         rbd_put_client(rbdc);
5356 err_out_args:
5357         rbd_spec_put(spec);
5358 err_out_module:
5359         module_put(THIS_MODULE);
5360
5361         dout("Error adding device %s\n", buf);
5362
5363         return (ssize_t)rc;
5364 }
5365
5366 static ssize_t rbd_add(struct bus_type *bus,
5367                        const char *buf,
5368                        size_t count)
5369 {
5370         if (single_major)
5371                 return -EINVAL;
5372
5373         return do_rbd_add(bus, buf, count);
5374 }
5375
5376 static ssize_t rbd_add_single_major(struct bus_type *bus,
5377                                     const char *buf,
5378                                     size_t count)
5379 {
5380         return do_rbd_add(bus, buf, count);
5381 }
5382
5383 static void rbd_dev_device_release(struct device *dev)
5384 {
5385         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5386
5387         rbd_free_disk(rbd_dev);
5388         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5389         rbd_dev_mapping_clear(rbd_dev);
5390         if (!single_major)
5391                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5392         rbd_dev_id_put(rbd_dev);
5393         rbd_dev_mapping_clear(rbd_dev);
5394 }
5395
5396 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5397 {
5398         while (rbd_dev->parent) {
5399                 struct rbd_device *first = rbd_dev;
5400                 struct rbd_device *second = first->parent;
5401                 struct rbd_device *third;
5402
5403                 /*
5404                  * Follow to the parent with no grandparent and
5405                  * remove it.
5406                  */
5407                 while (second && (third = second->parent)) {
5408                         first = second;
5409                         second = third;
5410                 }
5411                 rbd_assert(second);
5412                 rbd_dev_image_release(second);
5413                 first->parent = NULL;
5414                 first->parent_overlap = 0;
5415
5416                 rbd_assert(first->parent_spec);
5417                 rbd_spec_put(first->parent_spec);
5418                 first->parent_spec = NULL;
5419         }
5420 }
5421
5422 static ssize_t do_rbd_remove(struct bus_type *bus,
5423                              const char *buf,
5424                              size_t count)
5425 {
5426         struct rbd_device *rbd_dev = NULL;
5427         struct list_head *tmp;
5428         int dev_id;
5429         unsigned long ul;
5430         bool already = false;
5431         int ret;
5432
5433         ret = kstrtoul(buf, 10, &ul);
5434         if (ret)
5435                 return ret;
5436
5437         /* convert to int; abort if we lost anything in the conversion */
5438         dev_id = (int)ul;
5439         if (dev_id != ul)
5440                 return -EINVAL;
5441
5442         ret = -ENOENT;
5443         spin_lock(&rbd_dev_list_lock);
5444         list_for_each(tmp, &rbd_dev_list) {
5445                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5446                 if (rbd_dev->dev_id == dev_id) {
5447                         ret = 0;
5448                         break;
5449                 }
5450         }
5451         if (!ret) {
5452                 spin_lock_irq(&rbd_dev->lock);
5453                 if (rbd_dev->open_count)
5454                         ret = -EBUSY;
5455                 else
5456                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5457                                                         &rbd_dev->flags);
5458                 spin_unlock_irq(&rbd_dev->lock);
5459         }
5460         spin_unlock(&rbd_dev_list_lock);
5461         if (ret < 0 || already)
5462                 return ret;
5463
5464         rbd_dev_header_unwatch_sync(rbd_dev);
5465         /*
5466          * flush remaining watch callbacks - these must be complete
5467          * before the osd_client is shutdown
5468          */
5469         dout("%s: flushing notifies", __func__);
5470         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5471
5472         /*
5473          * Don't free anything from rbd_dev->disk until after all
5474          * notifies are completely processed. Otherwise
5475          * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5476          * in a potential use after free of rbd_dev->disk or rbd_dev.
5477          */
5478         rbd_bus_del_dev(rbd_dev);
5479         rbd_dev_image_release(rbd_dev);
5480         module_put(THIS_MODULE);
5481
5482         return count;
5483 }
5484
5485 static ssize_t rbd_remove(struct bus_type *bus,
5486                           const char *buf,
5487                           size_t count)
5488 {
5489         if (single_major)
5490                 return -EINVAL;
5491
5492         return do_rbd_remove(bus, buf, count);
5493 }
5494
5495 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5496                                        const char *buf,
5497                                        size_t count)
5498 {
5499         return do_rbd_remove(bus, buf, count);
5500 }
5501
5502 /*
5503  * create control files in sysfs
5504  * /sys/bus/rbd/...
5505  */
5506 static int rbd_sysfs_init(void)
5507 {
5508         int ret;
5509
5510         ret = device_register(&rbd_root_dev);
5511         if (ret < 0)
5512                 return ret;
5513
5514         ret = bus_register(&rbd_bus_type);
5515         if (ret < 0)
5516                 device_unregister(&rbd_root_dev);
5517
5518         return ret;
5519 }
5520
5521 static void rbd_sysfs_cleanup(void)
5522 {
5523         bus_unregister(&rbd_bus_type);
5524         device_unregister(&rbd_root_dev);
5525 }
5526
5527 static int rbd_slab_init(void)
5528 {
5529         rbd_assert(!rbd_img_request_cache);
5530         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5531                                         sizeof (struct rbd_img_request),
5532                                         __alignof__(struct rbd_img_request),
5533                                         0, NULL);
5534         if (!rbd_img_request_cache)
5535                 return -ENOMEM;
5536
5537         rbd_assert(!rbd_obj_request_cache);
5538         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5539                                         sizeof (struct rbd_obj_request),
5540                                         __alignof__(struct rbd_obj_request),
5541                                         0, NULL);
5542         if (!rbd_obj_request_cache)
5543                 goto out_err;
5544
5545         rbd_assert(!rbd_segment_name_cache);
5546         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5547                                         CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5548         if (rbd_segment_name_cache)
5549                 return 0;
5550 out_err:
5551         if (rbd_obj_request_cache) {
5552                 kmem_cache_destroy(rbd_obj_request_cache);
5553                 rbd_obj_request_cache = NULL;
5554         }
5555
5556         kmem_cache_destroy(rbd_img_request_cache);
5557         rbd_img_request_cache = NULL;
5558
5559         return -ENOMEM;
5560 }
5561
5562 static void rbd_slab_exit(void)
5563 {
5564         rbd_assert(rbd_segment_name_cache);
5565         kmem_cache_destroy(rbd_segment_name_cache);
5566         rbd_segment_name_cache = NULL;
5567
5568         rbd_assert(rbd_obj_request_cache);
5569         kmem_cache_destroy(rbd_obj_request_cache);
5570         rbd_obj_request_cache = NULL;
5571
5572         rbd_assert(rbd_img_request_cache);
5573         kmem_cache_destroy(rbd_img_request_cache);
5574         rbd_img_request_cache = NULL;
5575 }
5576
5577 static int __init rbd_init(void)
5578 {
5579         int rc;
5580
5581         if (!libceph_compatible(NULL)) {
5582                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5583                 return -EINVAL;
5584         }
5585
5586         rc = rbd_slab_init();
5587         if (rc)
5588                 return rc;
5589
5590         if (single_major) {
5591                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5592                 if (rbd_major < 0) {
5593                         rc = rbd_major;
5594                         goto err_out_slab;
5595                 }
5596         }
5597
5598         rc = rbd_sysfs_init();
5599         if (rc)
5600                 goto err_out_blkdev;
5601
5602         if (single_major)
5603                 pr_info("loaded (major %d)\n", rbd_major);
5604         else
5605                 pr_info("loaded\n");
5606
5607         return 0;
5608
5609 err_out_blkdev:
5610         if (single_major)
5611                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5612 err_out_slab:
5613         rbd_slab_exit();
5614         return rc;
5615 }
5616
5617 static void __exit rbd_exit(void)
5618 {
5619         ida_destroy(&rbd_dev_id_ida);
5620         rbd_sysfs_cleanup();
5621         if (single_major)
5622                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5623         rbd_slab_exit();
5624 }
5625
5626 module_init(rbd_init);
5627 module_exit(rbd_exit);
5628
5629 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5630 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5631 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5632 /* following authorship retained from original osdblk.c */
5633 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5634
5635 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5636 MODULE_LICENSE("GPL");