rbd: use reference counts for image requests
[firefly-linux-kernel-4.4.55.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44
45 #include "rbd_types.h"
46
47 #define RBD_DEBUG       /* Activate rbd_assert() calls */
48
49 /*
50  * The basic unit of block I/O is a sector.  It is interpreted in a
51  * number of contexts in Linux (blk, bio, genhd), but the default is
52  * universally 512 bytes.  These symbols are just slightly more
53  * meaningful than the bare numbers they represent.
54  */
55 #define SECTOR_SHIFT    9
56 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
57
58 /*
59  * Increment the given counter and return its updated value.
60  * If the counter is already 0 it will not be incremented.
61  * If the counter is already at its maximum value returns
62  * -EINVAL without updating it.
63  */
64 static int atomic_inc_return_safe(atomic_t *v)
65 {
66         unsigned int counter;
67
68         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
69         if (counter <= (unsigned int)INT_MAX)
70                 return (int)counter;
71
72         atomic_dec(v);
73
74         return -EINVAL;
75 }
76
77 /* Decrement the counter.  Return the resulting value, or -EINVAL */
78 static int atomic_dec_return_safe(atomic_t *v)
79 {
80         int counter;
81
82         counter = atomic_dec_return(v);
83         if (counter >= 0)
84                 return counter;
85
86         atomic_inc(v);
87
88         return -EINVAL;
89 }
90
91 #define RBD_DRV_NAME "rbd"
92 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
93
94 #define RBD_MINORS_PER_MAJOR    256             /* max minors per blkdev */
95
96 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
97 #define RBD_MAX_SNAP_NAME_LEN   \
98                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
99
100 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
101
102 #define RBD_SNAP_HEAD_NAME      "-"
103
104 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
105
106 /* This allows a single page to hold an image name sent by OSD */
107 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
108 #define RBD_IMAGE_ID_LEN_MAX    64
109
110 #define RBD_OBJ_PREFIX_LEN_MAX  64
111
112 /* Feature bits */
113
114 #define RBD_FEATURE_LAYERING    (1<<0)
115 #define RBD_FEATURE_STRIPINGV2  (1<<1)
116 #define RBD_FEATURES_ALL \
117             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
118
119 /* Features supported by this (client software) implementation. */
120
121 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
122
123 /*
124  * An RBD device name will be "rbd#", where the "rbd" comes from
125  * RBD_DRV_NAME above, and # is a unique integer identifier.
126  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
127  * enough to hold all possible device names.
128  */
129 #define DEV_NAME_LEN            32
130 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
131
132 /*
133  * block device image metadata (in-memory version)
134  */
135 struct rbd_image_header {
136         /* These six fields never change for a given rbd image */
137         char *object_prefix;
138         __u8 obj_order;
139         __u8 crypt_type;
140         __u8 comp_type;
141         u64 stripe_unit;
142         u64 stripe_count;
143         u64 features;           /* Might be changeable someday? */
144
145         /* The remaining fields need to be updated occasionally */
146         u64 image_size;
147         struct ceph_snap_context *snapc;
148         char *snap_names;       /* format 1 only */
149         u64 *snap_sizes;        /* format 1 only */
150 };
151
152 /*
153  * An rbd image specification.
154  *
155  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
156  * identify an image.  Each rbd_dev structure includes a pointer to
157  * an rbd_spec structure that encapsulates this identity.
158  *
159  * Each of the id's in an rbd_spec has an associated name.  For a
160  * user-mapped image, the names are supplied and the id's associated
161  * with them are looked up.  For a layered image, a parent image is
162  * defined by the tuple, and the names are looked up.
163  *
164  * An rbd_dev structure contains a parent_spec pointer which is
165  * non-null if the image it represents is a child in a layered
166  * image.  This pointer will refer to the rbd_spec structure used
167  * by the parent rbd_dev for its own identity (i.e., the structure
168  * is shared between the parent and child).
169  *
170  * Since these structures are populated once, during the discovery
171  * phase of image construction, they are effectively immutable so
172  * we make no effort to synchronize access to them.
173  *
174  * Note that code herein does not assume the image name is known (it
175  * could be a null pointer).
176  */
177 struct rbd_spec {
178         u64             pool_id;
179         const char      *pool_name;
180
181         const char      *image_id;
182         const char      *image_name;
183
184         u64             snap_id;
185         const char      *snap_name;
186
187         struct kref     kref;
188 };
189
190 /*
191  * an instance of the client.  multiple devices may share an rbd client.
192  */
193 struct rbd_client {
194         struct ceph_client      *client;
195         struct kref             kref;
196         struct list_head        node;
197 };
198
199 struct rbd_img_request;
200 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
201
202 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
203
204 struct rbd_obj_request;
205 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
206
207 enum obj_request_type {
208         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
209 };
210
211 enum obj_req_flags {
212         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
213         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
214         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
215         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
216 };
217
218 struct rbd_obj_request {
219         const char              *object_name;
220         u64                     offset;         /* object start byte */
221         u64                     length;         /* bytes from offset */
222         unsigned long           flags;
223
224         /*
225          * An object request associated with an image will have its
226          * img_data flag set; a standalone object request will not.
227          *
228          * A standalone object request will have which == BAD_WHICH
229          * and a null obj_request pointer.
230          *
231          * An object request initiated in support of a layered image
232          * object (to check for its existence before a write) will
233          * have which == BAD_WHICH and a non-null obj_request pointer.
234          *
235          * Finally, an object request for rbd image data will have
236          * which != BAD_WHICH, and will have a non-null img_request
237          * pointer.  The value of which will be in the range
238          * 0..(img_request->obj_request_count-1).
239          */
240         union {
241                 struct rbd_obj_request  *obj_request;   /* STAT op */
242                 struct {
243                         struct rbd_img_request  *img_request;
244                         u64                     img_offset;
245                         /* links for img_request->obj_requests list */
246                         struct list_head        links;
247                 };
248         };
249         u32                     which;          /* posn image request list */
250
251         enum obj_request_type   type;
252         union {
253                 struct bio      *bio_list;
254                 struct {
255                         struct page     **pages;
256                         u32             page_count;
257                 };
258         };
259         struct page             **copyup_pages;
260         u32                     copyup_page_count;
261
262         struct ceph_osd_request *osd_req;
263
264         u64                     xferred;        /* bytes transferred */
265         int                     result;
266
267         rbd_obj_callback_t      callback;
268         struct completion       completion;
269
270         struct kref             kref;
271 };
272
273 enum img_req_flags {
274         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
275         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
276         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
277 };
278
279 struct rbd_img_request {
280         struct rbd_device       *rbd_dev;
281         u64                     offset; /* starting image byte offset */
282         u64                     length; /* byte count from offset */
283         unsigned long           flags;
284         union {
285                 u64                     snap_id;        /* for reads */
286                 struct ceph_snap_context *snapc;        /* for writes */
287         };
288         union {
289                 struct request          *rq;            /* block request */
290                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
291         };
292         struct page             **copyup_pages;
293         u32                     copyup_page_count;
294         spinlock_t              completion_lock;/* protects next_completion */
295         u32                     next_completion;
296         rbd_img_callback_t      callback;
297         u64                     xferred;/* aggregate bytes transferred */
298         int                     result; /* first nonzero obj_request result */
299
300         u32                     obj_request_count;
301         struct list_head        obj_requests;   /* rbd_obj_request structs */
302
303         struct kref             kref;
304 };
305
306 #define for_each_obj_request(ireq, oreq) \
307         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
308 #define for_each_obj_request_from(ireq, oreq) \
309         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
310 #define for_each_obj_request_safe(ireq, oreq, n) \
311         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
312
313 struct rbd_mapping {
314         u64                     size;
315         u64                     features;
316         bool                    read_only;
317 };
318
319 /*
320  * a single device
321  */
322 struct rbd_device {
323         int                     dev_id;         /* blkdev unique id */
324
325         int                     major;          /* blkdev assigned major */
326         struct gendisk          *disk;          /* blkdev's gendisk and rq */
327
328         u32                     image_format;   /* Either 1 or 2 */
329         struct rbd_client       *rbd_client;
330
331         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
332
333         spinlock_t              lock;           /* queue, flags, open_count */
334
335         struct rbd_image_header header;
336         unsigned long           flags;          /* possibly lock protected */
337         struct rbd_spec         *spec;
338
339         char                    *header_name;
340
341         struct ceph_file_layout layout;
342
343         struct ceph_osd_event   *watch_event;
344         struct rbd_obj_request  *watch_request;
345
346         struct rbd_spec         *parent_spec;
347         u64                     parent_overlap;
348         atomic_t                parent_ref;
349         struct rbd_device       *parent;
350
351         /* protects updating the header */
352         struct rw_semaphore     header_rwsem;
353
354         struct rbd_mapping      mapping;
355
356         struct list_head        node;
357
358         /* sysfs related */
359         struct device           dev;
360         unsigned long           open_count;     /* protected by lock */
361 };
362
363 /*
364  * Flag bits for rbd_dev->flags.  If atomicity is required,
365  * rbd_dev->lock is used to protect access.
366  *
367  * Currently, only the "removing" flag (which is coupled with the
368  * "open_count" field) requires atomic access.
369  */
370 enum rbd_dev_flags {
371         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
372         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
373 };
374
375 static DEFINE_MUTEX(ctl_mutex);   /* Serialize open/close/setup/teardown */
376
377 static LIST_HEAD(rbd_dev_list);    /* devices */
378 static DEFINE_SPINLOCK(rbd_dev_list_lock);
379
380 static LIST_HEAD(rbd_client_list);              /* clients */
381 static DEFINE_SPINLOCK(rbd_client_list_lock);
382
383 /* Slab caches for frequently-allocated structures */
384
385 static struct kmem_cache        *rbd_img_request_cache;
386 static struct kmem_cache        *rbd_obj_request_cache;
387 static struct kmem_cache        *rbd_segment_name_cache;
388
389 static int rbd_img_request_submit(struct rbd_img_request *img_request);
390
391 static void rbd_dev_device_release(struct device *dev);
392
393 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
394                        size_t count);
395 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
396                           size_t count);
397 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
398 static void rbd_spec_put(struct rbd_spec *spec);
399
400 static struct bus_attribute rbd_bus_attrs[] = {
401         __ATTR(add, S_IWUSR, NULL, rbd_add),
402         __ATTR(remove, S_IWUSR, NULL, rbd_remove),
403         __ATTR_NULL
404 };
405
406 static struct bus_type rbd_bus_type = {
407         .name           = "rbd",
408         .bus_attrs      = rbd_bus_attrs,
409 };
410
411 static void rbd_root_dev_release(struct device *dev)
412 {
413 }
414
415 static struct device rbd_root_dev = {
416         .init_name =    "rbd",
417         .release =      rbd_root_dev_release,
418 };
419
420 static __printf(2, 3)
421 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
422 {
423         struct va_format vaf;
424         va_list args;
425
426         va_start(args, fmt);
427         vaf.fmt = fmt;
428         vaf.va = &args;
429
430         if (!rbd_dev)
431                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
432         else if (rbd_dev->disk)
433                 printk(KERN_WARNING "%s: %s: %pV\n",
434                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
435         else if (rbd_dev->spec && rbd_dev->spec->image_name)
436                 printk(KERN_WARNING "%s: image %s: %pV\n",
437                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
438         else if (rbd_dev->spec && rbd_dev->spec->image_id)
439                 printk(KERN_WARNING "%s: id %s: %pV\n",
440                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
441         else    /* punt */
442                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
443                         RBD_DRV_NAME, rbd_dev, &vaf);
444         va_end(args);
445 }
446
447 #ifdef RBD_DEBUG
448 #define rbd_assert(expr)                                                \
449                 if (unlikely(!(expr))) {                                \
450                         printk(KERN_ERR "\nAssertion failure in %s() "  \
451                                                 "at line %d:\n\n"       \
452                                         "\trbd_assert(%s);\n\n",        \
453                                         __func__, __LINE__, #expr);     \
454                         BUG();                                          \
455                 }
456 #else /* !RBD_DEBUG */
457 #  define rbd_assert(expr)      ((void) 0)
458 #endif /* !RBD_DEBUG */
459
460 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
461 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
462 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
463
464 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
465 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
466 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
467 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
468                                         u64 snap_id);
469 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
470                                 u8 *order, u64 *snap_size);
471 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
472                 u64 *snap_features);
473 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
474
475 static int rbd_open(struct block_device *bdev, fmode_t mode)
476 {
477         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
478         bool removing = false;
479
480         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
481                 return -EROFS;
482
483         spin_lock_irq(&rbd_dev->lock);
484         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
485                 removing = true;
486         else
487                 rbd_dev->open_count++;
488         spin_unlock_irq(&rbd_dev->lock);
489         if (removing)
490                 return -ENOENT;
491
492         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
493         (void) get_device(&rbd_dev->dev);
494         set_device_ro(bdev, rbd_dev->mapping.read_only);
495         mutex_unlock(&ctl_mutex);
496
497         return 0;
498 }
499
500 static void rbd_release(struct gendisk *disk, fmode_t mode)
501 {
502         struct rbd_device *rbd_dev = disk->private_data;
503         unsigned long open_count_before;
504
505         spin_lock_irq(&rbd_dev->lock);
506         open_count_before = rbd_dev->open_count--;
507         spin_unlock_irq(&rbd_dev->lock);
508         rbd_assert(open_count_before > 0);
509
510         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
511         put_device(&rbd_dev->dev);
512         mutex_unlock(&ctl_mutex);
513 }
514
515 static const struct block_device_operations rbd_bd_ops = {
516         .owner                  = THIS_MODULE,
517         .open                   = rbd_open,
518         .release                = rbd_release,
519 };
520
521 /*
522  * Initialize an rbd client instance.  Success or not, this function
523  * consumes ceph_opts.
524  */
525 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
526 {
527         struct rbd_client *rbdc;
528         int ret = -ENOMEM;
529
530         dout("%s:\n", __func__);
531         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
532         if (!rbdc)
533                 goto out_opt;
534
535         kref_init(&rbdc->kref);
536         INIT_LIST_HEAD(&rbdc->node);
537
538         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
539
540         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
541         if (IS_ERR(rbdc->client))
542                 goto out_mutex;
543         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
544
545         ret = ceph_open_session(rbdc->client);
546         if (ret < 0)
547                 goto out_err;
548
549         spin_lock(&rbd_client_list_lock);
550         list_add_tail(&rbdc->node, &rbd_client_list);
551         spin_unlock(&rbd_client_list_lock);
552
553         mutex_unlock(&ctl_mutex);
554         dout("%s: rbdc %p\n", __func__, rbdc);
555
556         return rbdc;
557
558 out_err:
559         ceph_destroy_client(rbdc->client);
560 out_mutex:
561         mutex_unlock(&ctl_mutex);
562         kfree(rbdc);
563 out_opt:
564         if (ceph_opts)
565                 ceph_destroy_options(ceph_opts);
566         dout("%s: error %d\n", __func__, ret);
567
568         return ERR_PTR(ret);
569 }
570
571 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
572 {
573         kref_get(&rbdc->kref);
574
575         return rbdc;
576 }
577
578 /*
579  * Find a ceph client with specific addr and configuration.  If
580  * found, bump its reference count.
581  */
582 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
583 {
584         struct rbd_client *client_node;
585         bool found = false;
586
587         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
588                 return NULL;
589
590         spin_lock(&rbd_client_list_lock);
591         list_for_each_entry(client_node, &rbd_client_list, node) {
592                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
593                         __rbd_get_client(client_node);
594
595                         found = true;
596                         break;
597                 }
598         }
599         spin_unlock(&rbd_client_list_lock);
600
601         return found ? client_node : NULL;
602 }
603
604 /*
605  * mount options
606  */
607 enum {
608         Opt_last_int,
609         /* int args above */
610         Opt_last_string,
611         /* string args above */
612         Opt_read_only,
613         Opt_read_write,
614         /* Boolean args above */
615         Opt_last_bool,
616 };
617
618 static match_table_t rbd_opts_tokens = {
619         /* int args above */
620         /* string args above */
621         {Opt_read_only, "read_only"},
622         {Opt_read_only, "ro"},          /* Alternate spelling */
623         {Opt_read_write, "read_write"},
624         {Opt_read_write, "rw"},         /* Alternate spelling */
625         /* Boolean args above */
626         {-1, NULL}
627 };
628
629 struct rbd_options {
630         bool    read_only;
631 };
632
633 #define RBD_READ_ONLY_DEFAULT   false
634
635 static int parse_rbd_opts_token(char *c, void *private)
636 {
637         struct rbd_options *rbd_opts = private;
638         substring_t argstr[MAX_OPT_ARGS];
639         int token, intval, ret;
640
641         token = match_token(c, rbd_opts_tokens, argstr);
642         if (token < 0)
643                 return -EINVAL;
644
645         if (token < Opt_last_int) {
646                 ret = match_int(&argstr[0], &intval);
647                 if (ret < 0) {
648                         pr_err("bad mount option arg (not int) "
649                                "at '%s'\n", c);
650                         return ret;
651                 }
652                 dout("got int token %d val %d\n", token, intval);
653         } else if (token > Opt_last_int && token < Opt_last_string) {
654                 dout("got string token %d val %s\n", token,
655                      argstr[0].from);
656         } else if (token > Opt_last_string && token < Opt_last_bool) {
657                 dout("got Boolean token %d\n", token);
658         } else {
659                 dout("got token %d\n", token);
660         }
661
662         switch (token) {
663         case Opt_read_only:
664                 rbd_opts->read_only = true;
665                 break;
666         case Opt_read_write:
667                 rbd_opts->read_only = false;
668                 break;
669         default:
670                 rbd_assert(false);
671                 break;
672         }
673         return 0;
674 }
675
676 /*
677  * Get a ceph client with specific addr and configuration, if one does
678  * not exist create it.  Either way, ceph_opts is consumed by this
679  * function.
680  */
681 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
682 {
683         struct rbd_client *rbdc;
684
685         rbdc = rbd_client_find(ceph_opts);
686         if (rbdc)       /* using an existing client */
687                 ceph_destroy_options(ceph_opts);
688         else
689                 rbdc = rbd_client_create(ceph_opts);
690
691         return rbdc;
692 }
693
694 /*
695  * Destroy ceph client
696  *
697  * Caller must hold rbd_client_list_lock.
698  */
699 static void rbd_client_release(struct kref *kref)
700 {
701         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
702
703         dout("%s: rbdc %p\n", __func__, rbdc);
704         spin_lock(&rbd_client_list_lock);
705         list_del(&rbdc->node);
706         spin_unlock(&rbd_client_list_lock);
707
708         ceph_destroy_client(rbdc->client);
709         kfree(rbdc);
710 }
711
712 /*
713  * Drop reference to ceph client node. If it's not referenced anymore, release
714  * it.
715  */
716 static void rbd_put_client(struct rbd_client *rbdc)
717 {
718         if (rbdc)
719                 kref_put(&rbdc->kref, rbd_client_release);
720 }
721
722 static bool rbd_image_format_valid(u32 image_format)
723 {
724         return image_format == 1 || image_format == 2;
725 }
726
727 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
728 {
729         size_t size;
730         u32 snap_count;
731
732         /* The header has to start with the magic rbd header text */
733         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
734                 return false;
735
736         /* The bio layer requires at least sector-sized I/O */
737
738         if (ondisk->options.order < SECTOR_SHIFT)
739                 return false;
740
741         /* If we use u64 in a few spots we may be able to loosen this */
742
743         if (ondisk->options.order > 8 * sizeof (int) - 1)
744                 return false;
745
746         /*
747          * The size of a snapshot header has to fit in a size_t, and
748          * that limits the number of snapshots.
749          */
750         snap_count = le32_to_cpu(ondisk->snap_count);
751         size = SIZE_MAX - sizeof (struct ceph_snap_context);
752         if (snap_count > size / sizeof (__le64))
753                 return false;
754
755         /*
756          * Not only that, but the size of the entire the snapshot
757          * header must also be representable in a size_t.
758          */
759         size -= snap_count * sizeof (__le64);
760         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
761                 return false;
762
763         return true;
764 }
765
766 /*
767  * Fill an rbd image header with information from the given format 1
768  * on-disk header.
769  */
770 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
771                                  struct rbd_image_header_ondisk *ondisk)
772 {
773         struct rbd_image_header *header = &rbd_dev->header;
774         bool first_time = header->object_prefix == NULL;
775         struct ceph_snap_context *snapc;
776         char *object_prefix = NULL;
777         char *snap_names = NULL;
778         u64 *snap_sizes = NULL;
779         u32 snap_count;
780         size_t size;
781         int ret = -ENOMEM;
782         u32 i;
783
784         /* Allocate this now to avoid having to handle failure below */
785
786         if (first_time) {
787                 size_t len;
788
789                 len = strnlen(ondisk->object_prefix,
790                                 sizeof (ondisk->object_prefix));
791                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
792                 if (!object_prefix)
793                         return -ENOMEM;
794                 memcpy(object_prefix, ondisk->object_prefix, len);
795                 object_prefix[len] = '\0';
796         }
797
798         /* Allocate the snapshot context and fill it in */
799
800         snap_count = le32_to_cpu(ondisk->snap_count);
801         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
802         if (!snapc)
803                 goto out_err;
804         snapc->seq = le64_to_cpu(ondisk->snap_seq);
805         if (snap_count) {
806                 struct rbd_image_snap_ondisk *snaps;
807                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
808
809                 /* We'll keep a copy of the snapshot names... */
810
811                 if (snap_names_len > (u64)SIZE_MAX)
812                         goto out_2big;
813                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
814                 if (!snap_names)
815                         goto out_err;
816
817                 /* ...as well as the array of their sizes. */
818
819                 size = snap_count * sizeof (*header->snap_sizes);
820                 snap_sizes = kmalloc(size, GFP_KERNEL);
821                 if (!snap_sizes)
822                         goto out_err;
823
824                 /*
825                  * Copy the names, and fill in each snapshot's id
826                  * and size.
827                  *
828                  * Note that rbd_dev_v1_header_info() guarantees the
829                  * ondisk buffer we're working with has
830                  * snap_names_len bytes beyond the end of the
831                  * snapshot id array, this memcpy() is safe.
832                  */
833                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
834                 snaps = ondisk->snaps;
835                 for (i = 0; i < snap_count; i++) {
836                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
837                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
838                 }
839         }
840
841         /* We won't fail any more, fill in the header */
842
843         down_write(&rbd_dev->header_rwsem);
844         if (first_time) {
845                 header->object_prefix = object_prefix;
846                 header->obj_order = ondisk->options.order;
847                 header->crypt_type = ondisk->options.crypt_type;
848                 header->comp_type = ondisk->options.comp_type;
849                 /* The rest aren't used for format 1 images */
850                 header->stripe_unit = 0;
851                 header->stripe_count = 0;
852                 header->features = 0;
853         } else {
854                 ceph_put_snap_context(header->snapc);
855                 kfree(header->snap_names);
856                 kfree(header->snap_sizes);
857         }
858
859         /* The remaining fields always get updated (when we refresh) */
860
861         header->image_size = le64_to_cpu(ondisk->image_size);
862         header->snapc = snapc;
863         header->snap_names = snap_names;
864         header->snap_sizes = snap_sizes;
865
866         /* Make sure mapping size is consistent with header info */
867
868         if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
869                 if (rbd_dev->mapping.size != header->image_size)
870                         rbd_dev->mapping.size = header->image_size;
871
872         up_write(&rbd_dev->header_rwsem);
873
874         return 0;
875 out_2big:
876         ret = -EIO;
877 out_err:
878         kfree(snap_sizes);
879         kfree(snap_names);
880         ceph_put_snap_context(snapc);
881         kfree(object_prefix);
882
883         return ret;
884 }
885
886 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
887 {
888         const char *snap_name;
889
890         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
891
892         /* Skip over names until we find the one we are looking for */
893
894         snap_name = rbd_dev->header.snap_names;
895         while (which--)
896                 snap_name += strlen(snap_name) + 1;
897
898         return kstrdup(snap_name, GFP_KERNEL);
899 }
900
901 /*
902  * Snapshot id comparison function for use with qsort()/bsearch().
903  * Note that result is for snapshots in *descending* order.
904  */
905 static int snapid_compare_reverse(const void *s1, const void *s2)
906 {
907         u64 snap_id1 = *(u64 *)s1;
908         u64 snap_id2 = *(u64 *)s2;
909
910         if (snap_id1 < snap_id2)
911                 return 1;
912         return snap_id1 == snap_id2 ? 0 : -1;
913 }
914
915 /*
916  * Search a snapshot context to see if the given snapshot id is
917  * present.
918  *
919  * Returns the position of the snapshot id in the array if it's found,
920  * or BAD_SNAP_INDEX otherwise.
921  *
922  * Note: The snapshot array is in kept sorted (by the osd) in
923  * reverse order, highest snapshot id first.
924  */
925 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
926 {
927         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
928         u64 *found;
929
930         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
931                                 sizeof (snap_id), snapid_compare_reverse);
932
933         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
934 }
935
936 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
937                                         u64 snap_id)
938 {
939         u32 which;
940         const char *snap_name;
941
942         which = rbd_dev_snap_index(rbd_dev, snap_id);
943         if (which == BAD_SNAP_INDEX)
944                 return ERR_PTR(-ENOENT);
945
946         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
947         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
948 }
949
950 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
951 {
952         if (snap_id == CEPH_NOSNAP)
953                 return RBD_SNAP_HEAD_NAME;
954
955         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
956         if (rbd_dev->image_format == 1)
957                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
958
959         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
960 }
961
962 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
963                                 u64 *snap_size)
964 {
965         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
966         if (snap_id == CEPH_NOSNAP) {
967                 *snap_size = rbd_dev->header.image_size;
968         } else if (rbd_dev->image_format == 1) {
969                 u32 which;
970
971                 which = rbd_dev_snap_index(rbd_dev, snap_id);
972                 if (which == BAD_SNAP_INDEX)
973                         return -ENOENT;
974
975                 *snap_size = rbd_dev->header.snap_sizes[which];
976         } else {
977                 u64 size = 0;
978                 int ret;
979
980                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
981                 if (ret)
982                         return ret;
983
984                 *snap_size = size;
985         }
986         return 0;
987 }
988
989 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
990                         u64 *snap_features)
991 {
992         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
993         if (snap_id == CEPH_NOSNAP) {
994                 *snap_features = rbd_dev->header.features;
995         } else if (rbd_dev->image_format == 1) {
996                 *snap_features = 0;     /* No features for format 1 */
997         } else {
998                 u64 features = 0;
999                 int ret;
1000
1001                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1002                 if (ret)
1003                         return ret;
1004
1005                 *snap_features = features;
1006         }
1007         return 0;
1008 }
1009
1010 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1011 {
1012         u64 snap_id = rbd_dev->spec->snap_id;
1013         u64 size = 0;
1014         u64 features = 0;
1015         int ret;
1016
1017         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1018         if (ret)
1019                 return ret;
1020         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1021         if (ret)
1022                 return ret;
1023
1024         rbd_dev->mapping.size = size;
1025         rbd_dev->mapping.features = features;
1026
1027         return 0;
1028 }
1029
1030 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1031 {
1032         rbd_dev->mapping.size = 0;
1033         rbd_dev->mapping.features = 0;
1034 }
1035
1036 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1037 {
1038         char *name;
1039         u64 segment;
1040         int ret;
1041         char *name_format;
1042
1043         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1044         if (!name)
1045                 return NULL;
1046         segment = offset >> rbd_dev->header.obj_order;
1047         name_format = "%s.%012llx";
1048         if (rbd_dev->image_format == 2)
1049                 name_format = "%s.%016llx";
1050         ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, name_format,
1051                         rbd_dev->header.object_prefix, segment);
1052         if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
1053                 pr_err("error formatting segment name for #%llu (%d)\n",
1054                         segment, ret);
1055                 kfree(name);
1056                 name = NULL;
1057         }
1058
1059         return name;
1060 }
1061
1062 static void rbd_segment_name_free(const char *name)
1063 {
1064         /* The explicit cast here is needed to drop the const qualifier */
1065
1066         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1067 }
1068
1069 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1070 {
1071         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1072
1073         return offset & (segment_size - 1);
1074 }
1075
1076 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1077                                 u64 offset, u64 length)
1078 {
1079         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1080
1081         offset &= segment_size - 1;
1082
1083         rbd_assert(length <= U64_MAX - offset);
1084         if (offset + length > segment_size)
1085                 length = segment_size - offset;
1086
1087         return length;
1088 }
1089
1090 /*
1091  * returns the size of an object in the image
1092  */
1093 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1094 {
1095         return 1 << header->obj_order;
1096 }
1097
1098 /*
1099  * bio helpers
1100  */
1101
1102 static void bio_chain_put(struct bio *chain)
1103 {
1104         struct bio *tmp;
1105
1106         while (chain) {
1107                 tmp = chain;
1108                 chain = chain->bi_next;
1109                 bio_put(tmp);
1110         }
1111 }
1112
1113 /*
1114  * zeros a bio chain, starting at specific offset
1115  */
1116 static void zero_bio_chain(struct bio *chain, int start_ofs)
1117 {
1118         struct bio_vec *bv;
1119         unsigned long flags;
1120         void *buf;
1121         int i;
1122         int pos = 0;
1123
1124         while (chain) {
1125                 bio_for_each_segment(bv, chain, i) {
1126                         if (pos + bv->bv_len > start_ofs) {
1127                                 int remainder = max(start_ofs - pos, 0);
1128                                 buf = bvec_kmap_irq(bv, &flags);
1129                                 memset(buf + remainder, 0,
1130                                        bv->bv_len - remainder);
1131                                 flush_dcache_page(bv->bv_page);
1132                                 bvec_kunmap_irq(buf, &flags);
1133                         }
1134                         pos += bv->bv_len;
1135                 }
1136
1137                 chain = chain->bi_next;
1138         }
1139 }
1140
1141 /*
1142  * similar to zero_bio_chain(), zeros data defined by a page array,
1143  * starting at the given byte offset from the start of the array and
1144  * continuing up to the given end offset.  The pages array is
1145  * assumed to be big enough to hold all bytes up to the end.
1146  */
1147 static void zero_pages(struct page **pages, u64 offset, u64 end)
1148 {
1149         struct page **page = &pages[offset >> PAGE_SHIFT];
1150
1151         rbd_assert(end > offset);
1152         rbd_assert(end - offset <= (u64)SIZE_MAX);
1153         while (offset < end) {
1154                 size_t page_offset;
1155                 size_t length;
1156                 unsigned long flags;
1157                 void *kaddr;
1158
1159                 page_offset = (size_t)(offset & ~PAGE_MASK);
1160                 length = min(PAGE_SIZE - page_offset, (size_t)(end - offset));
1161                 local_irq_save(flags);
1162                 kaddr = kmap_atomic(*page);
1163                 memset(kaddr + page_offset, 0, length);
1164                 flush_dcache_page(*page);
1165                 kunmap_atomic(kaddr);
1166                 local_irq_restore(flags);
1167
1168                 offset += length;
1169                 page++;
1170         }
1171 }
1172
1173 /*
1174  * Clone a portion of a bio, starting at the given byte offset
1175  * and continuing for the number of bytes indicated.
1176  */
1177 static struct bio *bio_clone_range(struct bio *bio_src,
1178                                         unsigned int offset,
1179                                         unsigned int len,
1180                                         gfp_t gfpmask)
1181 {
1182         struct bio_vec *bv;
1183         unsigned int resid;
1184         unsigned short idx;
1185         unsigned int voff;
1186         unsigned short end_idx;
1187         unsigned short vcnt;
1188         struct bio *bio;
1189
1190         /* Handle the easy case for the caller */
1191
1192         if (!offset && len == bio_src->bi_size)
1193                 return bio_clone(bio_src, gfpmask);
1194
1195         if (WARN_ON_ONCE(!len))
1196                 return NULL;
1197         if (WARN_ON_ONCE(len > bio_src->bi_size))
1198                 return NULL;
1199         if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
1200                 return NULL;
1201
1202         /* Find first affected segment... */
1203
1204         resid = offset;
1205         bio_for_each_segment(bv, bio_src, idx) {
1206                 if (resid < bv->bv_len)
1207                         break;
1208                 resid -= bv->bv_len;
1209         }
1210         voff = resid;
1211
1212         /* ...and the last affected segment */
1213
1214         resid += len;
1215         __bio_for_each_segment(bv, bio_src, end_idx, idx) {
1216                 if (resid <= bv->bv_len)
1217                         break;
1218                 resid -= bv->bv_len;
1219         }
1220         vcnt = end_idx - idx + 1;
1221
1222         /* Build the clone */
1223
1224         bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1225         if (!bio)
1226                 return NULL;    /* ENOMEM */
1227
1228         bio->bi_bdev = bio_src->bi_bdev;
1229         bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1230         bio->bi_rw = bio_src->bi_rw;
1231         bio->bi_flags |= 1 << BIO_CLONED;
1232
1233         /*
1234          * Copy over our part of the bio_vec, then update the first
1235          * and last (or only) entries.
1236          */
1237         memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1238                         vcnt * sizeof (struct bio_vec));
1239         bio->bi_io_vec[0].bv_offset += voff;
1240         if (vcnt > 1) {
1241                 bio->bi_io_vec[0].bv_len -= voff;
1242                 bio->bi_io_vec[vcnt - 1].bv_len = resid;
1243         } else {
1244                 bio->bi_io_vec[0].bv_len = len;
1245         }
1246
1247         bio->bi_vcnt = vcnt;
1248         bio->bi_size = len;
1249         bio->bi_idx = 0;
1250
1251         return bio;
1252 }
1253
1254 /*
1255  * Clone a portion of a bio chain, starting at the given byte offset
1256  * into the first bio in the source chain and continuing for the
1257  * number of bytes indicated.  The result is another bio chain of
1258  * exactly the given length, or a null pointer on error.
1259  *
1260  * The bio_src and offset parameters are both in-out.  On entry they
1261  * refer to the first source bio and the offset into that bio where
1262  * the start of data to be cloned is located.
1263  *
1264  * On return, bio_src is updated to refer to the bio in the source
1265  * chain that contains first un-cloned byte, and *offset will
1266  * contain the offset of that byte within that bio.
1267  */
1268 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1269                                         unsigned int *offset,
1270                                         unsigned int len,
1271                                         gfp_t gfpmask)
1272 {
1273         struct bio *bi = *bio_src;
1274         unsigned int off = *offset;
1275         struct bio *chain = NULL;
1276         struct bio **end;
1277
1278         /* Build up a chain of clone bios up to the limit */
1279
1280         if (!bi || off >= bi->bi_size || !len)
1281                 return NULL;            /* Nothing to clone */
1282
1283         end = &chain;
1284         while (len) {
1285                 unsigned int bi_size;
1286                 struct bio *bio;
1287
1288                 if (!bi) {
1289                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1290                         goto out_err;   /* EINVAL; ran out of bio's */
1291                 }
1292                 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1293                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1294                 if (!bio)
1295                         goto out_err;   /* ENOMEM */
1296
1297                 *end = bio;
1298                 end = &bio->bi_next;
1299
1300                 off += bi_size;
1301                 if (off == bi->bi_size) {
1302                         bi = bi->bi_next;
1303                         off = 0;
1304                 }
1305                 len -= bi_size;
1306         }
1307         *bio_src = bi;
1308         *offset = off;
1309
1310         return chain;
1311 out_err:
1312         bio_chain_put(chain);
1313
1314         return NULL;
1315 }
1316
1317 /*
1318  * The default/initial value for all object request flags is 0.  For
1319  * each flag, once its value is set to 1 it is never reset to 0
1320  * again.
1321  */
1322 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1323 {
1324         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1325                 struct rbd_device *rbd_dev;
1326
1327                 rbd_dev = obj_request->img_request->rbd_dev;
1328                 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1329                         obj_request);
1330         }
1331 }
1332
1333 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1334 {
1335         smp_mb();
1336         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1337 }
1338
1339 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1340 {
1341         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1342                 struct rbd_device *rbd_dev = NULL;
1343
1344                 if (obj_request_img_data_test(obj_request))
1345                         rbd_dev = obj_request->img_request->rbd_dev;
1346                 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1347                         obj_request);
1348         }
1349 }
1350
1351 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1352 {
1353         smp_mb();
1354         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1355 }
1356
1357 /*
1358  * This sets the KNOWN flag after (possibly) setting the EXISTS
1359  * flag.  The latter is set based on the "exists" value provided.
1360  *
1361  * Note that for our purposes once an object exists it never goes
1362  * away again.  It's possible that the response from two existence
1363  * checks are separated by the creation of the target object, and
1364  * the first ("doesn't exist") response arrives *after* the second
1365  * ("does exist").  In that case we ignore the second one.
1366  */
1367 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1368                                 bool exists)
1369 {
1370         if (exists)
1371                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1372         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1373         smp_mb();
1374 }
1375
1376 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1377 {
1378         smp_mb();
1379         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1380 }
1381
1382 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1383 {
1384         smp_mb();
1385         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1386 }
1387
1388 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1389 {
1390         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1391                 atomic_read(&obj_request->kref.refcount));
1392         kref_get(&obj_request->kref);
1393 }
1394
1395 static void rbd_obj_request_destroy(struct kref *kref);
1396 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1397 {
1398         rbd_assert(obj_request != NULL);
1399         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1400                 atomic_read(&obj_request->kref.refcount));
1401         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1402 }
1403
1404 static void rbd_img_request_get(struct rbd_img_request *img_request)
1405 {
1406         dout("%s: img %p (was %d)\n", __func__, img_request,
1407              atomic_read(&img_request->kref.refcount));
1408         kref_get(&img_request->kref);
1409 }
1410
1411 static bool img_request_child_test(struct rbd_img_request *img_request);
1412 static void rbd_parent_request_destroy(struct kref *kref);
1413 static void rbd_img_request_destroy(struct kref *kref);
1414 static void rbd_img_request_put(struct rbd_img_request *img_request)
1415 {
1416         rbd_assert(img_request != NULL);
1417         dout("%s: img %p (was %d)\n", __func__, img_request,
1418                 atomic_read(&img_request->kref.refcount));
1419         if (img_request_child_test(img_request))
1420                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1421         else
1422                 kref_put(&img_request->kref, rbd_img_request_destroy);
1423 }
1424
1425 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1426                                         struct rbd_obj_request *obj_request)
1427 {
1428         rbd_assert(obj_request->img_request == NULL);
1429
1430         /* Image request now owns object's original reference */
1431         obj_request->img_request = img_request;
1432         obj_request->which = img_request->obj_request_count;
1433         rbd_assert(!obj_request_img_data_test(obj_request));
1434         obj_request_img_data_set(obj_request);
1435         rbd_assert(obj_request->which != BAD_WHICH);
1436         img_request->obj_request_count++;
1437         list_add_tail(&obj_request->links, &img_request->obj_requests);
1438         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1439                 obj_request->which);
1440 }
1441
1442 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1443                                         struct rbd_obj_request *obj_request)
1444 {
1445         rbd_assert(obj_request->which != BAD_WHICH);
1446
1447         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1448                 obj_request->which);
1449         list_del(&obj_request->links);
1450         rbd_assert(img_request->obj_request_count > 0);
1451         img_request->obj_request_count--;
1452         rbd_assert(obj_request->which == img_request->obj_request_count);
1453         obj_request->which = BAD_WHICH;
1454         rbd_assert(obj_request_img_data_test(obj_request));
1455         rbd_assert(obj_request->img_request == img_request);
1456         obj_request->img_request = NULL;
1457         obj_request->callback = NULL;
1458         rbd_obj_request_put(obj_request);
1459 }
1460
1461 static bool obj_request_type_valid(enum obj_request_type type)
1462 {
1463         switch (type) {
1464         case OBJ_REQUEST_NODATA:
1465         case OBJ_REQUEST_BIO:
1466         case OBJ_REQUEST_PAGES:
1467                 return true;
1468         default:
1469                 return false;
1470         }
1471 }
1472
1473 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1474                                 struct rbd_obj_request *obj_request)
1475 {
1476         dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1477
1478         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1479 }
1480
1481 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1482 {
1483
1484         dout("%s: img %p\n", __func__, img_request);
1485
1486         /*
1487          * If no error occurred, compute the aggregate transfer
1488          * count for the image request.  We could instead use
1489          * atomic64_cmpxchg() to update it as each object request
1490          * completes; not clear which way is better off hand.
1491          */
1492         if (!img_request->result) {
1493                 struct rbd_obj_request *obj_request;
1494                 u64 xferred = 0;
1495
1496                 for_each_obj_request(img_request, obj_request)
1497                         xferred += obj_request->xferred;
1498                 img_request->xferred = xferred;
1499         }
1500
1501         if (img_request->callback)
1502                 img_request->callback(img_request);
1503         else
1504                 rbd_img_request_put(img_request);
1505 }
1506
1507 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1508
1509 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1510 {
1511         dout("%s: obj %p\n", __func__, obj_request);
1512
1513         return wait_for_completion_interruptible(&obj_request->completion);
1514 }
1515
1516 /*
1517  * The default/initial value for all image request flags is 0.  Each
1518  * is conditionally set to 1 at image request initialization time
1519  * and currently never change thereafter.
1520  */
1521 static void img_request_write_set(struct rbd_img_request *img_request)
1522 {
1523         set_bit(IMG_REQ_WRITE, &img_request->flags);
1524         smp_mb();
1525 }
1526
1527 static bool img_request_write_test(struct rbd_img_request *img_request)
1528 {
1529         smp_mb();
1530         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1531 }
1532
1533 static void img_request_child_set(struct rbd_img_request *img_request)
1534 {
1535         set_bit(IMG_REQ_CHILD, &img_request->flags);
1536         smp_mb();
1537 }
1538
1539 static void img_request_child_clear(struct rbd_img_request *img_request)
1540 {
1541         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1542         smp_mb();
1543 }
1544
1545 static bool img_request_child_test(struct rbd_img_request *img_request)
1546 {
1547         smp_mb();
1548         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1549 }
1550
1551 static void img_request_layered_set(struct rbd_img_request *img_request)
1552 {
1553         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1554         smp_mb();
1555 }
1556
1557 static void img_request_layered_clear(struct rbd_img_request *img_request)
1558 {
1559         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1560         smp_mb();
1561 }
1562
1563 static bool img_request_layered_test(struct rbd_img_request *img_request)
1564 {
1565         smp_mb();
1566         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1567 }
1568
1569 static void
1570 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1571 {
1572         u64 xferred = obj_request->xferred;
1573         u64 length = obj_request->length;
1574
1575         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1576                 obj_request, obj_request->img_request, obj_request->result,
1577                 xferred, length);
1578         /*
1579          * ENOENT means a hole in the image.  We zero-fill the entire
1580          * length of the request.  A short read also implies zero-fill
1581          * to the end of the request.  An error requires the whole
1582          * length of the request to be reported finished with an error
1583          * to the block layer.  In each case we update the xferred
1584          * count to indicate the whole request was satisfied.
1585          */
1586         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1587         if (obj_request->result == -ENOENT) {
1588                 if (obj_request->type == OBJ_REQUEST_BIO)
1589                         zero_bio_chain(obj_request->bio_list, 0);
1590                 else
1591                         zero_pages(obj_request->pages, 0, length);
1592                 obj_request->result = 0;
1593         } else if (xferred < length && !obj_request->result) {
1594                 if (obj_request->type == OBJ_REQUEST_BIO)
1595                         zero_bio_chain(obj_request->bio_list, xferred);
1596                 else
1597                         zero_pages(obj_request->pages, xferred, length);
1598         }
1599         obj_request->xferred = length;
1600         obj_request_done_set(obj_request);
1601 }
1602
1603 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1604 {
1605         dout("%s: obj %p cb %p\n", __func__, obj_request,
1606                 obj_request->callback);
1607         if (obj_request->callback)
1608                 obj_request->callback(obj_request);
1609         else
1610                 complete_all(&obj_request->completion);
1611 }
1612
1613 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1614 {
1615         dout("%s: obj %p\n", __func__, obj_request);
1616         obj_request_done_set(obj_request);
1617 }
1618
1619 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1620 {
1621         struct rbd_img_request *img_request = NULL;
1622         struct rbd_device *rbd_dev = NULL;
1623         bool layered = false;
1624
1625         if (obj_request_img_data_test(obj_request)) {
1626                 img_request = obj_request->img_request;
1627                 layered = img_request && img_request_layered_test(img_request);
1628                 rbd_dev = img_request->rbd_dev;
1629         }
1630
1631         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1632                 obj_request, img_request, obj_request->result,
1633                 obj_request->xferred, obj_request->length);
1634         if (layered && obj_request->result == -ENOENT &&
1635                         obj_request->img_offset < rbd_dev->parent_overlap)
1636                 rbd_img_parent_read(obj_request);
1637         else if (img_request)
1638                 rbd_img_obj_request_read_callback(obj_request);
1639         else
1640                 obj_request_done_set(obj_request);
1641 }
1642
1643 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1644 {
1645         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1646                 obj_request->result, obj_request->length);
1647         /*
1648          * There is no such thing as a successful short write.  Set
1649          * it to our originally-requested length.
1650          */
1651         obj_request->xferred = obj_request->length;
1652         obj_request_done_set(obj_request);
1653 }
1654
1655 /*
1656  * For a simple stat call there's nothing to do.  We'll do more if
1657  * this is part of a write sequence for a layered image.
1658  */
1659 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1660 {
1661         dout("%s: obj %p\n", __func__, obj_request);
1662         obj_request_done_set(obj_request);
1663 }
1664
1665 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1666                                 struct ceph_msg *msg)
1667 {
1668         struct rbd_obj_request *obj_request = osd_req->r_priv;
1669         u16 opcode;
1670
1671         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1672         rbd_assert(osd_req == obj_request->osd_req);
1673         if (obj_request_img_data_test(obj_request)) {
1674                 rbd_assert(obj_request->img_request);
1675                 rbd_assert(obj_request->which != BAD_WHICH);
1676         } else {
1677                 rbd_assert(obj_request->which == BAD_WHICH);
1678         }
1679
1680         if (osd_req->r_result < 0)
1681                 obj_request->result = osd_req->r_result;
1682
1683         BUG_ON(osd_req->r_num_ops > 2);
1684
1685         /*
1686          * We support a 64-bit length, but ultimately it has to be
1687          * passed to blk_end_request(), which takes an unsigned int.
1688          */
1689         obj_request->xferred = osd_req->r_reply_op_len[0];
1690         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1691         opcode = osd_req->r_ops[0].op;
1692         switch (opcode) {
1693         case CEPH_OSD_OP_READ:
1694                 rbd_osd_read_callback(obj_request);
1695                 break;
1696         case CEPH_OSD_OP_WRITE:
1697                 rbd_osd_write_callback(obj_request);
1698                 break;
1699         case CEPH_OSD_OP_STAT:
1700                 rbd_osd_stat_callback(obj_request);
1701                 break;
1702         case CEPH_OSD_OP_CALL:
1703         case CEPH_OSD_OP_NOTIFY_ACK:
1704         case CEPH_OSD_OP_WATCH:
1705                 rbd_osd_trivial_callback(obj_request);
1706                 break;
1707         default:
1708                 rbd_warn(NULL, "%s: unsupported op %hu\n",
1709                         obj_request->object_name, (unsigned short) opcode);
1710                 break;
1711         }
1712
1713         if (obj_request_done_test(obj_request))
1714                 rbd_obj_request_complete(obj_request);
1715 }
1716
1717 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1718 {
1719         struct rbd_img_request *img_request = obj_request->img_request;
1720         struct ceph_osd_request *osd_req = obj_request->osd_req;
1721         u64 snap_id;
1722
1723         rbd_assert(osd_req != NULL);
1724
1725         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1726         ceph_osdc_build_request(osd_req, obj_request->offset,
1727                         NULL, snap_id, NULL);
1728 }
1729
1730 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1731 {
1732         struct rbd_img_request *img_request = obj_request->img_request;
1733         struct ceph_osd_request *osd_req = obj_request->osd_req;
1734         struct ceph_snap_context *snapc;
1735         struct timespec mtime = CURRENT_TIME;
1736
1737         rbd_assert(osd_req != NULL);
1738
1739         snapc = img_request ? img_request->snapc : NULL;
1740         ceph_osdc_build_request(osd_req, obj_request->offset,
1741                         snapc, CEPH_NOSNAP, &mtime);
1742 }
1743
1744 static struct ceph_osd_request *rbd_osd_req_create(
1745                                         struct rbd_device *rbd_dev,
1746                                         bool write_request,
1747                                         struct rbd_obj_request *obj_request)
1748 {
1749         struct ceph_snap_context *snapc = NULL;
1750         struct ceph_osd_client *osdc;
1751         struct ceph_osd_request *osd_req;
1752
1753         if (obj_request_img_data_test(obj_request)) {
1754                 struct rbd_img_request *img_request = obj_request->img_request;
1755
1756                 rbd_assert(write_request ==
1757                                 img_request_write_test(img_request));
1758                 if (write_request)
1759                         snapc = img_request->snapc;
1760         }
1761
1762         /* Allocate and initialize the request, for the single op */
1763
1764         osdc = &rbd_dev->rbd_client->client->osdc;
1765         osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1766         if (!osd_req)
1767                 return NULL;    /* ENOMEM */
1768
1769         if (write_request)
1770                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1771         else
1772                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1773
1774         osd_req->r_callback = rbd_osd_req_callback;
1775         osd_req->r_priv = obj_request;
1776
1777         osd_req->r_oid_len = strlen(obj_request->object_name);
1778         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1779         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1780
1781         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1782
1783         return osd_req;
1784 }
1785
1786 /*
1787  * Create a copyup osd request based on the information in the
1788  * object request supplied.  A copyup request has two osd ops,
1789  * a copyup method call, and a "normal" write request.
1790  */
1791 static struct ceph_osd_request *
1792 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1793 {
1794         struct rbd_img_request *img_request;
1795         struct ceph_snap_context *snapc;
1796         struct rbd_device *rbd_dev;
1797         struct ceph_osd_client *osdc;
1798         struct ceph_osd_request *osd_req;
1799
1800         rbd_assert(obj_request_img_data_test(obj_request));
1801         img_request = obj_request->img_request;
1802         rbd_assert(img_request);
1803         rbd_assert(img_request_write_test(img_request));
1804
1805         /* Allocate and initialize the request, for the two ops */
1806
1807         snapc = img_request->snapc;
1808         rbd_dev = img_request->rbd_dev;
1809         osdc = &rbd_dev->rbd_client->client->osdc;
1810         osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1811         if (!osd_req)
1812                 return NULL;    /* ENOMEM */
1813
1814         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1815         osd_req->r_callback = rbd_osd_req_callback;
1816         osd_req->r_priv = obj_request;
1817
1818         osd_req->r_oid_len = strlen(obj_request->object_name);
1819         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1820         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1821
1822         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1823
1824         return osd_req;
1825 }
1826
1827
1828 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1829 {
1830         ceph_osdc_put_request(osd_req);
1831 }
1832
1833 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1834
1835 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1836                                                 u64 offset, u64 length,
1837                                                 enum obj_request_type type)
1838 {
1839         struct rbd_obj_request *obj_request;
1840         size_t size;
1841         char *name;
1842
1843         rbd_assert(obj_request_type_valid(type));
1844
1845         size = strlen(object_name) + 1;
1846         name = kmalloc(size, GFP_KERNEL);
1847         if (!name)
1848                 return NULL;
1849
1850         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1851         if (!obj_request) {
1852                 kfree(name);
1853                 return NULL;
1854         }
1855
1856         obj_request->object_name = memcpy(name, object_name, size);
1857         obj_request->offset = offset;
1858         obj_request->length = length;
1859         obj_request->flags = 0;
1860         obj_request->which = BAD_WHICH;
1861         obj_request->type = type;
1862         INIT_LIST_HEAD(&obj_request->links);
1863         init_completion(&obj_request->completion);
1864         kref_init(&obj_request->kref);
1865
1866         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1867                 offset, length, (int)type, obj_request);
1868
1869         return obj_request;
1870 }
1871
1872 static void rbd_obj_request_destroy(struct kref *kref)
1873 {
1874         struct rbd_obj_request *obj_request;
1875
1876         obj_request = container_of(kref, struct rbd_obj_request, kref);
1877
1878         dout("%s: obj %p\n", __func__, obj_request);
1879
1880         rbd_assert(obj_request->img_request == NULL);
1881         rbd_assert(obj_request->which == BAD_WHICH);
1882
1883         if (obj_request->osd_req)
1884                 rbd_osd_req_destroy(obj_request->osd_req);
1885
1886         rbd_assert(obj_request_type_valid(obj_request->type));
1887         switch (obj_request->type) {
1888         case OBJ_REQUEST_NODATA:
1889                 break;          /* Nothing to do */
1890         case OBJ_REQUEST_BIO:
1891                 if (obj_request->bio_list)
1892                         bio_chain_put(obj_request->bio_list);
1893                 break;
1894         case OBJ_REQUEST_PAGES:
1895                 if (obj_request->pages)
1896                         ceph_release_page_vector(obj_request->pages,
1897                                                 obj_request->page_count);
1898                 break;
1899         }
1900
1901         kfree(obj_request->object_name);
1902         obj_request->object_name = NULL;
1903         kmem_cache_free(rbd_obj_request_cache, obj_request);
1904 }
1905
1906 /* It's OK to call this for a device with no parent */
1907
1908 static void rbd_spec_put(struct rbd_spec *spec);
1909 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1910 {
1911         rbd_dev_remove_parent(rbd_dev);
1912         rbd_spec_put(rbd_dev->parent_spec);
1913         rbd_dev->parent_spec = NULL;
1914         rbd_dev->parent_overlap = 0;
1915 }
1916
1917 /*
1918  * Parent image reference counting is used to determine when an
1919  * image's parent fields can be safely torn down--after there are no
1920  * more in-flight requests to the parent image.  When the last
1921  * reference is dropped, cleaning them up is safe.
1922  */
1923 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1924 {
1925         int counter;
1926
1927         if (!rbd_dev->parent_spec)
1928                 return;
1929
1930         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1931         if (counter > 0)
1932                 return;
1933
1934         /* Last reference; clean up parent data structures */
1935
1936         if (!counter)
1937                 rbd_dev_unparent(rbd_dev);
1938         else
1939                 rbd_warn(rbd_dev, "parent reference underflow\n");
1940 }
1941
1942 /*
1943  * If an image has a non-zero parent overlap, get a reference to its
1944  * parent.
1945  *
1946  * We must get the reference before checking for the overlap to
1947  * coordinate properly with zeroing the parent overlap in
1948  * rbd_dev_v2_parent_info() when an image gets flattened.  We
1949  * drop it again if there is no overlap.
1950  *
1951  * Returns true if the rbd device has a parent with a non-zero
1952  * overlap and a reference for it was successfully taken, or
1953  * false otherwise.
1954  */
1955 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1956 {
1957         int counter;
1958
1959         if (!rbd_dev->parent_spec)
1960                 return false;
1961
1962         counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1963         if (counter > 0 && rbd_dev->parent_overlap)
1964                 return true;
1965
1966         /* Image was flattened, but parent is not yet torn down */
1967
1968         if (counter < 0)
1969                 rbd_warn(rbd_dev, "parent reference overflow\n");
1970
1971         return false;
1972 }
1973
1974 /*
1975  * Caller is responsible for filling in the list of object requests
1976  * that comprises the image request, and the Linux request pointer
1977  * (if there is one).
1978  */
1979 static struct rbd_img_request *rbd_img_request_create(
1980                                         struct rbd_device *rbd_dev,
1981                                         u64 offset, u64 length,
1982                                         bool write_request)
1983 {
1984         struct rbd_img_request *img_request;
1985
1986         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1987         if (!img_request)
1988                 return NULL;
1989
1990         if (write_request) {
1991                 down_read(&rbd_dev->header_rwsem);
1992                 ceph_get_snap_context(rbd_dev->header.snapc);
1993                 up_read(&rbd_dev->header_rwsem);
1994         }
1995
1996         img_request->rq = NULL;
1997         img_request->rbd_dev = rbd_dev;
1998         img_request->offset = offset;
1999         img_request->length = length;
2000         img_request->flags = 0;
2001         if (write_request) {
2002                 img_request_write_set(img_request);
2003                 img_request->snapc = rbd_dev->header.snapc;
2004         } else {
2005                 img_request->snap_id = rbd_dev->spec->snap_id;
2006         }
2007         if (rbd_dev_parent_get(rbd_dev))
2008                 img_request_layered_set(img_request);
2009         spin_lock_init(&img_request->completion_lock);
2010         img_request->next_completion = 0;
2011         img_request->callback = NULL;
2012         img_request->result = 0;
2013         img_request->obj_request_count = 0;
2014         INIT_LIST_HEAD(&img_request->obj_requests);
2015         kref_init(&img_request->kref);
2016
2017         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2018                 write_request ? "write" : "read", offset, length,
2019                 img_request);
2020
2021         return img_request;
2022 }
2023
2024 static void rbd_img_request_destroy(struct kref *kref)
2025 {
2026         struct rbd_img_request *img_request;
2027         struct rbd_obj_request *obj_request;
2028         struct rbd_obj_request *next_obj_request;
2029
2030         img_request = container_of(kref, struct rbd_img_request, kref);
2031
2032         dout("%s: img %p\n", __func__, img_request);
2033
2034         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2035                 rbd_img_obj_request_del(img_request, obj_request);
2036         rbd_assert(img_request->obj_request_count == 0);
2037
2038         if (img_request_layered_test(img_request)) {
2039                 img_request_layered_clear(img_request);
2040                 rbd_dev_parent_put(img_request->rbd_dev);
2041         }
2042
2043         if (img_request_write_test(img_request))
2044                 ceph_put_snap_context(img_request->snapc);
2045
2046         kmem_cache_free(rbd_img_request_cache, img_request);
2047 }
2048
2049 static struct rbd_img_request *rbd_parent_request_create(
2050                                         struct rbd_obj_request *obj_request,
2051                                         u64 img_offset, u64 length)
2052 {
2053         struct rbd_img_request *parent_request;
2054         struct rbd_device *rbd_dev;
2055
2056         rbd_assert(obj_request->img_request);
2057         rbd_dev = obj_request->img_request->rbd_dev;
2058
2059         parent_request = rbd_img_request_create(rbd_dev->parent,
2060                                                 img_offset, length, false);
2061         if (!parent_request)
2062                 return NULL;
2063
2064         img_request_child_set(parent_request);
2065         rbd_obj_request_get(obj_request);
2066         parent_request->obj_request = obj_request;
2067
2068         return parent_request;
2069 }
2070
2071 static void rbd_parent_request_destroy(struct kref *kref)
2072 {
2073         struct rbd_img_request *parent_request;
2074         struct rbd_obj_request *orig_request;
2075
2076         parent_request = container_of(kref, struct rbd_img_request, kref);
2077         orig_request = parent_request->obj_request;
2078
2079         parent_request->obj_request = NULL;
2080         rbd_obj_request_put(orig_request);
2081         img_request_child_clear(parent_request);
2082
2083         rbd_img_request_destroy(kref);
2084 }
2085
2086 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2087 {
2088         struct rbd_img_request *img_request;
2089         unsigned int xferred;
2090         int result;
2091         bool more;
2092
2093         rbd_assert(obj_request_img_data_test(obj_request));
2094         img_request = obj_request->img_request;
2095
2096         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2097         xferred = (unsigned int)obj_request->xferred;
2098         result = obj_request->result;
2099         if (result) {
2100                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2101
2102                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2103                         img_request_write_test(img_request) ? "write" : "read",
2104                         obj_request->length, obj_request->img_offset,
2105                         obj_request->offset);
2106                 rbd_warn(rbd_dev, "  result %d xferred %x\n",
2107                         result, xferred);
2108                 if (!img_request->result)
2109                         img_request->result = result;
2110         }
2111
2112         /* Image object requests don't own their page array */
2113
2114         if (obj_request->type == OBJ_REQUEST_PAGES) {
2115                 obj_request->pages = NULL;
2116                 obj_request->page_count = 0;
2117         }
2118
2119         if (img_request_child_test(img_request)) {
2120                 rbd_assert(img_request->obj_request != NULL);
2121                 more = obj_request->which < img_request->obj_request_count - 1;
2122         } else {
2123                 rbd_assert(img_request->rq != NULL);
2124                 more = blk_end_request(img_request->rq, result, xferred);
2125         }
2126
2127         return more;
2128 }
2129
2130 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2131 {
2132         struct rbd_img_request *img_request;
2133         u32 which = obj_request->which;
2134         bool more = true;
2135
2136         rbd_assert(obj_request_img_data_test(obj_request));
2137         img_request = obj_request->img_request;
2138
2139         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2140         rbd_assert(img_request != NULL);
2141         rbd_assert(img_request->obj_request_count > 0);
2142         rbd_assert(which != BAD_WHICH);
2143         rbd_assert(which < img_request->obj_request_count);
2144         rbd_assert(which >= img_request->next_completion);
2145
2146         spin_lock_irq(&img_request->completion_lock);
2147         if (which != img_request->next_completion)
2148                 goto out;
2149
2150         for_each_obj_request_from(img_request, obj_request) {
2151                 rbd_assert(more);
2152                 rbd_assert(which < img_request->obj_request_count);
2153
2154                 if (!obj_request_done_test(obj_request))
2155                         break;
2156                 more = rbd_img_obj_end_request(obj_request);
2157                 which++;
2158         }
2159
2160         rbd_assert(more ^ (which == img_request->obj_request_count));
2161         img_request->next_completion = which;
2162 out:
2163         spin_unlock_irq(&img_request->completion_lock);
2164         rbd_img_request_put(img_request);
2165
2166         if (!more)
2167                 rbd_img_request_complete(img_request);
2168 }
2169
2170 /*
2171  * Split up an image request into one or more object requests, each
2172  * to a different object.  The "type" parameter indicates whether
2173  * "data_desc" is the pointer to the head of a list of bio
2174  * structures, or the base of a page array.  In either case this
2175  * function assumes data_desc describes memory sufficient to hold
2176  * all data described by the image request.
2177  */
2178 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2179                                         enum obj_request_type type,
2180                                         void *data_desc)
2181 {
2182         struct rbd_device *rbd_dev = img_request->rbd_dev;
2183         struct rbd_obj_request *obj_request = NULL;
2184         struct rbd_obj_request *next_obj_request;
2185         bool write_request = img_request_write_test(img_request);
2186         struct bio *bio_list = 0;
2187         unsigned int bio_offset = 0;
2188         struct page **pages = 0;
2189         u64 img_offset;
2190         u64 resid;
2191         u16 opcode;
2192
2193         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2194                 (int)type, data_desc);
2195
2196         opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2197         img_offset = img_request->offset;
2198         resid = img_request->length;
2199         rbd_assert(resid > 0);
2200
2201         if (type == OBJ_REQUEST_BIO) {
2202                 bio_list = data_desc;
2203                 rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
2204         } else {
2205                 rbd_assert(type == OBJ_REQUEST_PAGES);
2206                 pages = data_desc;
2207         }
2208
2209         while (resid) {
2210                 struct ceph_osd_request *osd_req;
2211                 const char *object_name;
2212                 u64 offset;
2213                 u64 length;
2214
2215                 object_name = rbd_segment_name(rbd_dev, img_offset);
2216                 if (!object_name)
2217                         goto out_unwind;
2218                 offset = rbd_segment_offset(rbd_dev, img_offset);
2219                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2220                 obj_request = rbd_obj_request_create(object_name,
2221                                                 offset, length, type);
2222                 /* object request has its own copy of the object name */
2223                 rbd_segment_name_free(object_name);
2224                 if (!obj_request)
2225                         goto out_unwind;
2226                 /*
2227                  * set obj_request->img_request before creating the
2228                  * osd_request so that it gets the right snapc
2229                  */
2230                 rbd_img_obj_request_add(img_request, obj_request);
2231
2232                 if (type == OBJ_REQUEST_BIO) {
2233                         unsigned int clone_size;
2234
2235                         rbd_assert(length <= (u64)UINT_MAX);
2236                         clone_size = (unsigned int)length;
2237                         obj_request->bio_list =
2238                                         bio_chain_clone_range(&bio_list,
2239                                                                 &bio_offset,
2240                                                                 clone_size,
2241                                                                 GFP_ATOMIC);
2242                         if (!obj_request->bio_list)
2243                                 goto out_partial;
2244                 } else {
2245                         unsigned int page_count;
2246
2247                         obj_request->pages = pages;
2248                         page_count = (u32)calc_pages_for(offset, length);
2249                         obj_request->page_count = page_count;
2250                         if ((offset + length) & ~PAGE_MASK)
2251                                 page_count--;   /* more on last page */
2252                         pages += page_count;
2253                 }
2254
2255                 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2256                                                 obj_request);
2257                 if (!osd_req)
2258                         goto out_partial;
2259                 obj_request->osd_req = osd_req;
2260                 obj_request->callback = rbd_img_obj_callback;
2261                 rbd_img_request_get(img_request);
2262
2263                 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2264                                                 0, 0);
2265                 if (type == OBJ_REQUEST_BIO)
2266                         osd_req_op_extent_osd_data_bio(osd_req, 0,
2267                                         obj_request->bio_list, length);
2268                 else
2269                         osd_req_op_extent_osd_data_pages(osd_req, 0,
2270                                         obj_request->pages, length,
2271                                         offset & ~PAGE_MASK, false, false);
2272
2273                 if (write_request)
2274                         rbd_osd_req_format_write(obj_request);
2275                 else
2276                         rbd_osd_req_format_read(obj_request);
2277
2278                 obj_request->img_offset = img_offset;
2279
2280                 img_offset += length;
2281                 resid -= length;
2282         }
2283
2284         return 0;
2285
2286 out_partial:
2287         rbd_obj_request_put(obj_request);
2288 out_unwind:
2289         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2290                 rbd_img_obj_request_del(img_request, obj_request);
2291
2292         return -ENOMEM;
2293 }
2294
2295 static void
2296 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2297 {
2298         struct rbd_img_request *img_request;
2299         struct rbd_device *rbd_dev;
2300         struct page **pages;
2301         u32 page_count;
2302
2303         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2304         rbd_assert(obj_request_img_data_test(obj_request));
2305         img_request = obj_request->img_request;
2306         rbd_assert(img_request);
2307
2308         rbd_dev = img_request->rbd_dev;
2309         rbd_assert(rbd_dev);
2310
2311         pages = obj_request->copyup_pages;
2312         rbd_assert(pages != NULL);
2313         obj_request->copyup_pages = NULL;
2314         page_count = obj_request->copyup_page_count;
2315         rbd_assert(page_count);
2316         obj_request->copyup_page_count = 0;
2317         ceph_release_page_vector(pages, page_count);
2318
2319         /*
2320          * We want the transfer count to reflect the size of the
2321          * original write request.  There is no such thing as a
2322          * successful short write, so if the request was successful
2323          * we can just set it to the originally-requested length.
2324          */
2325         if (!obj_request->result)
2326                 obj_request->xferred = obj_request->length;
2327
2328         /* Finish up with the normal image object callback */
2329
2330         rbd_img_obj_callback(obj_request);
2331 }
2332
2333 static void
2334 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2335 {
2336         struct rbd_obj_request *orig_request;
2337         struct ceph_osd_request *osd_req;
2338         struct ceph_osd_client *osdc;
2339         struct rbd_device *rbd_dev;
2340         struct page **pages;
2341         u32 page_count;
2342         int img_result;
2343         u64 parent_length;
2344         u64 offset;
2345         u64 length;
2346
2347         rbd_assert(img_request_child_test(img_request));
2348
2349         /* First get what we need from the image request */
2350
2351         pages = img_request->copyup_pages;
2352         rbd_assert(pages != NULL);
2353         img_request->copyup_pages = NULL;
2354         page_count = img_request->copyup_page_count;
2355         rbd_assert(page_count);
2356         img_request->copyup_page_count = 0;
2357
2358         orig_request = img_request->obj_request;
2359         rbd_assert(orig_request != NULL);
2360         rbd_assert(obj_request_type_valid(orig_request->type));
2361         img_result = img_request->result;
2362         parent_length = img_request->length;
2363         rbd_assert(parent_length == img_request->xferred);
2364         rbd_img_request_put(img_request);
2365
2366         rbd_assert(orig_request->img_request);
2367         rbd_dev = orig_request->img_request->rbd_dev;
2368         rbd_assert(rbd_dev);
2369
2370         /*
2371          * If the overlap has become 0 (most likely because the
2372          * image has been flattened) we need to free the pages
2373          * and re-submit the original write request.
2374          */
2375         if (!rbd_dev->parent_overlap) {
2376                 struct ceph_osd_client *osdc;
2377
2378                 ceph_release_page_vector(pages, page_count);
2379                 osdc = &rbd_dev->rbd_client->client->osdc;
2380                 img_result = rbd_obj_request_submit(osdc, orig_request);
2381                 if (!img_result)
2382                         return;
2383         }
2384
2385         if (img_result)
2386                 goto out_err;
2387
2388         /*
2389          * The original osd request is of no use to use any more.
2390          * We need a new one that can hold the two ops in a copyup
2391          * request.  Allocate the new copyup osd request for the
2392          * original request, and release the old one.
2393          */
2394         img_result = -ENOMEM;
2395         osd_req = rbd_osd_req_create_copyup(orig_request);
2396         if (!osd_req)
2397                 goto out_err;
2398         rbd_osd_req_destroy(orig_request->osd_req);
2399         orig_request->osd_req = osd_req;
2400         orig_request->copyup_pages = pages;
2401         orig_request->copyup_page_count = page_count;
2402
2403         /* Initialize the copyup op */
2404
2405         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2406         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2407                                                 false, false);
2408
2409         /* Then the original write request op */
2410
2411         offset = orig_request->offset;
2412         length = orig_request->length;
2413         osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2414                                         offset, length, 0, 0);
2415         if (orig_request->type == OBJ_REQUEST_BIO)
2416                 osd_req_op_extent_osd_data_bio(osd_req, 1,
2417                                         orig_request->bio_list, length);
2418         else
2419                 osd_req_op_extent_osd_data_pages(osd_req, 1,
2420                                         orig_request->pages, length,
2421                                         offset & ~PAGE_MASK, false, false);
2422
2423         rbd_osd_req_format_write(orig_request);
2424
2425         /* All set, send it off. */
2426
2427         orig_request->callback = rbd_img_obj_copyup_callback;
2428         osdc = &rbd_dev->rbd_client->client->osdc;
2429         img_result = rbd_obj_request_submit(osdc, orig_request);
2430         if (!img_result)
2431                 return;
2432 out_err:
2433         /* Record the error code and complete the request */
2434
2435         orig_request->result = img_result;
2436         orig_request->xferred = 0;
2437         obj_request_done_set(orig_request);
2438         rbd_obj_request_complete(orig_request);
2439 }
2440
2441 /*
2442  * Read from the parent image the range of data that covers the
2443  * entire target of the given object request.  This is used for
2444  * satisfying a layered image write request when the target of an
2445  * object request from the image request does not exist.
2446  *
2447  * A page array big enough to hold the returned data is allocated
2448  * and supplied to rbd_img_request_fill() as the "data descriptor."
2449  * When the read completes, this page array will be transferred to
2450  * the original object request for the copyup operation.
2451  *
2452  * If an error occurs, record it as the result of the original
2453  * object request and mark it done so it gets completed.
2454  */
2455 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2456 {
2457         struct rbd_img_request *img_request = NULL;
2458         struct rbd_img_request *parent_request = NULL;
2459         struct rbd_device *rbd_dev;
2460         u64 img_offset;
2461         u64 length;
2462         struct page **pages = NULL;
2463         u32 page_count;
2464         int result;
2465
2466         rbd_assert(obj_request_img_data_test(obj_request));
2467         rbd_assert(obj_request_type_valid(obj_request->type));
2468
2469         img_request = obj_request->img_request;
2470         rbd_assert(img_request != NULL);
2471         rbd_dev = img_request->rbd_dev;
2472         rbd_assert(rbd_dev->parent != NULL);
2473
2474         /*
2475          * Determine the byte range covered by the object in the
2476          * child image to which the original request was to be sent.
2477          */
2478         img_offset = obj_request->img_offset - obj_request->offset;
2479         length = (u64)1 << rbd_dev->header.obj_order;
2480
2481         /*
2482          * There is no defined parent data beyond the parent
2483          * overlap, so limit what we read at that boundary if
2484          * necessary.
2485          */
2486         if (img_offset + length > rbd_dev->parent_overlap) {
2487                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2488                 length = rbd_dev->parent_overlap - img_offset;
2489         }
2490
2491         /*
2492          * Allocate a page array big enough to receive the data read
2493          * from the parent.
2494          */
2495         page_count = (u32)calc_pages_for(0, length);
2496         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2497         if (IS_ERR(pages)) {
2498                 result = PTR_ERR(pages);
2499                 pages = NULL;
2500                 goto out_err;
2501         }
2502
2503         result = -ENOMEM;
2504         parent_request = rbd_parent_request_create(obj_request,
2505                                                 img_offset, length);
2506         if (!parent_request)
2507                 goto out_err;
2508
2509         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2510         if (result)
2511                 goto out_err;
2512         parent_request->copyup_pages = pages;
2513         parent_request->copyup_page_count = page_count;
2514
2515         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2516         result = rbd_img_request_submit(parent_request);
2517         if (!result)
2518                 return 0;
2519
2520         parent_request->copyup_pages = NULL;
2521         parent_request->copyup_page_count = 0;
2522         parent_request->obj_request = NULL;
2523         rbd_obj_request_put(obj_request);
2524 out_err:
2525         if (pages)
2526                 ceph_release_page_vector(pages, page_count);
2527         if (parent_request)
2528                 rbd_img_request_put(parent_request);
2529         obj_request->result = result;
2530         obj_request->xferred = 0;
2531         obj_request_done_set(obj_request);
2532
2533         return result;
2534 }
2535
2536 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2537 {
2538         struct rbd_obj_request *orig_request;
2539         struct rbd_device *rbd_dev;
2540         int result;
2541
2542         rbd_assert(!obj_request_img_data_test(obj_request));
2543
2544         /*
2545          * All we need from the object request is the original
2546          * request and the result of the STAT op.  Grab those, then
2547          * we're done with the request.
2548          */
2549         orig_request = obj_request->obj_request;
2550         obj_request->obj_request = NULL;
2551         rbd_assert(orig_request);
2552         rbd_assert(orig_request->img_request);
2553
2554         result = obj_request->result;
2555         obj_request->result = 0;
2556
2557         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2558                 obj_request, orig_request, result,
2559                 obj_request->xferred, obj_request->length);
2560         rbd_obj_request_put(obj_request);
2561
2562         /*
2563          * If the overlap has become 0 (most likely because the
2564          * image has been flattened) we need to free the pages
2565          * and re-submit the original write request.
2566          */
2567         rbd_dev = orig_request->img_request->rbd_dev;
2568         if (!rbd_dev->parent_overlap) {
2569                 struct ceph_osd_client *osdc;
2570
2571                 rbd_obj_request_put(orig_request);
2572                 osdc = &rbd_dev->rbd_client->client->osdc;
2573                 result = rbd_obj_request_submit(osdc, orig_request);
2574                 if (!result)
2575                         return;
2576         }
2577
2578         /*
2579          * Our only purpose here is to determine whether the object
2580          * exists, and we don't want to treat the non-existence as
2581          * an error.  If something else comes back, transfer the
2582          * error to the original request and complete it now.
2583          */
2584         if (!result) {
2585                 obj_request_existence_set(orig_request, true);
2586         } else if (result == -ENOENT) {
2587                 obj_request_existence_set(orig_request, false);
2588         } else if (result) {
2589                 orig_request->result = result;
2590                 goto out;
2591         }
2592
2593         /*
2594          * Resubmit the original request now that we have recorded
2595          * whether the target object exists.
2596          */
2597         orig_request->result = rbd_img_obj_request_submit(orig_request);
2598 out:
2599         if (orig_request->result)
2600                 rbd_obj_request_complete(orig_request);
2601         rbd_obj_request_put(orig_request);
2602 }
2603
2604 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2605 {
2606         struct rbd_obj_request *stat_request;
2607         struct rbd_device *rbd_dev;
2608         struct ceph_osd_client *osdc;
2609         struct page **pages = NULL;
2610         u32 page_count;
2611         size_t size;
2612         int ret;
2613
2614         /*
2615          * The response data for a STAT call consists of:
2616          *     le64 length;
2617          *     struct {
2618          *         le32 tv_sec;
2619          *         le32 tv_nsec;
2620          *     } mtime;
2621          */
2622         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2623         page_count = (u32)calc_pages_for(0, size);
2624         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2625         if (IS_ERR(pages))
2626                 return PTR_ERR(pages);
2627
2628         ret = -ENOMEM;
2629         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2630                                                         OBJ_REQUEST_PAGES);
2631         if (!stat_request)
2632                 goto out;
2633
2634         rbd_obj_request_get(obj_request);
2635         stat_request->obj_request = obj_request;
2636         stat_request->pages = pages;
2637         stat_request->page_count = page_count;
2638
2639         rbd_assert(obj_request->img_request);
2640         rbd_dev = obj_request->img_request->rbd_dev;
2641         stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2642                                                 stat_request);
2643         if (!stat_request->osd_req)
2644                 goto out;
2645         stat_request->callback = rbd_img_obj_exists_callback;
2646
2647         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2648         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2649                                         false, false);
2650         rbd_osd_req_format_read(stat_request);
2651
2652         osdc = &rbd_dev->rbd_client->client->osdc;
2653         ret = rbd_obj_request_submit(osdc, stat_request);
2654 out:
2655         if (ret)
2656                 rbd_obj_request_put(obj_request);
2657
2658         return ret;
2659 }
2660
2661 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2662 {
2663         struct rbd_img_request *img_request;
2664         struct rbd_device *rbd_dev;
2665         bool known;
2666
2667         rbd_assert(obj_request_img_data_test(obj_request));
2668
2669         img_request = obj_request->img_request;
2670         rbd_assert(img_request);
2671         rbd_dev = img_request->rbd_dev;
2672
2673         /*
2674          * Only writes to layered images need special handling.
2675          * Reads and non-layered writes are simple object requests.
2676          * Layered writes that start beyond the end of the overlap
2677          * with the parent have no parent data, so they too are
2678          * simple object requests.  Finally, if the target object is
2679          * known to already exist, its parent data has already been
2680          * copied, so a write to the object can also be handled as a
2681          * simple object request.
2682          */
2683         if (!img_request_write_test(img_request) ||
2684                 !img_request_layered_test(img_request) ||
2685                 rbd_dev->parent_overlap <= obj_request->img_offset ||
2686                 ((known = obj_request_known_test(obj_request)) &&
2687                         obj_request_exists_test(obj_request))) {
2688
2689                 struct rbd_device *rbd_dev;
2690                 struct ceph_osd_client *osdc;
2691
2692                 rbd_dev = obj_request->img_request->rbd_dev;
2693                 osdc = &rbd_dev->rbd_client->client->osdc;
2694
2695                 return rbd_obj_request_submit(osdc, obj_request);
2696         }
2697
2698         /*
2699          * It's a layered write.  The target object might exist but
2700          * we may not know that yet.  If we know it doesn't exist,
2701          * start by reading the data for the full target object from
2702          * the parent so we can use it for a copyup to the target.
2703          */
2704         if (known)
2705                 return rbd_img_obj_parent_read_full(obj_request);
2706
2707         /* We don't know whether the target exists.  Go find out. */
2708
2709         return rbd_img_obj_exists_submit(obj_request);
2710 }
2711
2712 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2713 {
2714         struct rbd_obj_request *obj_request;
2715         struct rbd_obj_request *next_obj_request;
2716
2717         dout("%s: img %p\n", __func__, img_request);
2718         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2719                 int ret;
2720
2721                 ret = rbd_img_obj_request_submit(obj_request);
2722                 if (ret)
2723                         return ret;
2724         }
2725
2726         return 0;
2727 }
2728
2729 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2730 {
2731         struct rbd_obj_request *obj_request;
2732         struct rbd_device *rbd_dev;
2733         u64 obj_end;
2734         u64 img_xferred;
2735         int img_result;
2736
2737         rbd_assert(img_request_child_test(img_request));
2738
2739         /* First get what we need from the image request and release it */
2740
2741         obj_request = img_request->obj_request;
2742         img_xferred = img_request->xferred;
2743         img_result = img_request->result;
2744         rbd_img_request_put(img_request);
2745
2746         /*
2747          * If the overlap has become 0 (most likely because the
2748          * image has been flattened) we need to re-submit the
2749          * original request.
2750          */
2751         rbd_assert(obj_request);
2752         rbd_assert(obj_request->img_request);
2753         rbd_dev = obj_request->img_request->rbd_dev;
2754         if (!rbd_dev->parent_overlap) {
2755                 struct ceph_osd_client *osdc;
2756
2757                 osdc = &rbd_dev->rbd_client->client->osdc;
2758                 img_result = rbd_obj_request_submit(osdc, obj_request);
2759                 if (!img_result)
2760                         return;
2761         }
2762
2763         obj_request->result = img_result;
2764         if (obj_request->result)
2765                 goto out;
2766
2767         /*
2768          * We need to zero anything beyond the parent overlap
2769          * boundary.  Since rbd_img_obj_request_read_callback()
2770          * will zero anything beyond the end of a short read, an
2771          * easy way to do this is to pretend the data from the
2772          * parent came up short--ending at the overlap boundary.
2773          */
2774         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2775         obj_end = obj_request->img_offset + obj_request->length;
2776         if (obj_end > rbd_dev->parent_overlap) {
2777                 u64 xferred = 0;
2778
2779                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2780                         xferred = rbd_dev->parent_overlap -
2781                                         obj_request->img_offset;
2782
2783                 obj_request->xferred = min(img_xferred, xferred);
2784         } else {
2785                 obj_request->xferred = img_xferred;
2786         }
2787 out:
2788         rbd_img_obj_request_read_callback(obj_request);
2789         rbd_obj_request_complete(obj_request);
2790 }
2791
2792 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2793 {
2794         struct rbd_img_request *img_request;
2795         int result;
2796
2797         rbd_assert(obj_request_img_data_test(obj_request));
2798         rbd_assert(obj_request->img_request != NULL);
2799         rbd_assert(obj_request->result == (s32) -ENOENT);
2800         rbd_assert(obj_request_type_valid(obj_request->type));
2801
2802         /* rbd_read_finish(obj_request, obj_request->length); */
2803         img_request = rbd_parent_request_create(obj_request,
2804                                                 obj_request->img_offset,
2805                                                 obj_request->length);
2806         result = -ENOMEM;
2807         if (!img_request)
2808                 goto out_err;
2809
2810         if (obj_request->type == OBJ_REQUEST_BIO)
2811                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2812                                                 obj_request->bio_list);
2813         else
2814                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2815                                                 obj_request->pages);
2816         if (result)
2817                 goto out_err;
2818
2819         img_request->callback = rbd_img_parent_read_callback;
2820         result = rbd_img_request_submit(img_request);
2821         if (result)
2822                 goto out_err;
2823
2824         return;
2825 out_err:
2826         if (img_request)
2827                 rbd_img_request_put(img_request);
2828         obj_request->result = result;
2829         obj_request->xferred = 0;
2830         obj_request_done_set(obj_request);
2831 }
2832
2833 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
2834 {
2835         struct rbd_obj_request *obj_request;
2836         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2837         int ret;
2838
2839         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2840                                                         OBJ_REQUEST_NODATA);
2841         if (!obj_request)
2842                 return -ENOMEM;
2843
2844         ret = -ENOMEM;
2845         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2846         if (!obj_request->osd_req)
2847                 goto out;
2848
2849         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2850                                         notify_id, 0, 0);
2851         rbd_osd_req_format_read(obj_request);
2852
2853         ret = rbd_obj_request_submit(osdc, obj_request);
2854         if (ret)
2855                 goto out;
2856         ret = rbd_obj_request_wait(obj_request);
2857 out:
2858         rbd_obj_request_put(obj_request);
2859
2860         return ret;
2861 }
2862
2863 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2864 {
2865         struct rbd_device *rbd_dev = (struct rbd_device *)data;
2866         int ret;
2867
2868         if (!rbd_dev)
2869                 return;
2870
2871         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2872                 rbd_dev->header_name, (unsigned long long)notify_id,
2873                 (unsigned int)opcode);
2874         ret = rbd_dev_refresh(rbd_dev);
2875         if (ret)
2876                 rbd_warn(rbd_dev, ": header refresh error (%d)\n", ret);
2877
2878         rbd_obj_notify_ack_sync(rbd_dev, notify_id);
2879 }
2880
2881 /*
2882  * Request sync osd watch/unwatch.  The value of "start" determines
2883  * whether a watch request is being initiated or torn down.
2884  */
2885 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start)
2886 {
2887         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2888         struct rbd_obj_request *obj_request;
2889         int ret;
2890
2891         rbd_assert(start ^ !!rbd_dev->watch_event);
2892         rbd_assert(start ^ !!rbd_dev->watch_request);
2893
2894         if (start) {
2895                 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2896                                                 &rbd_dev->watch_event);
2897                 if (ret < 0)
2898                         return ret;
2899                 rbd_assert(rbd_dev->watch_event != NULL);
2900         }
2901
2902         ret = -ENOMEM;
2903         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2904                                                         OBJ_REQUEST_NODATA);
2905         if (!obj_request)
2906                 goto out_cancel;
2907
2908         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2909         if (!obj_request->osd_req)
2910                 goto out_cancel;
2911
2912         if (start)
2913                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2914         else
2915                 ceph_osdc_unregister_linger_request(osdc,
2916                                         rbd_dev->watch_request->osd_req);
2917
2918         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2919                                 rbd_dev->watch_event->cookie, 0, start ? 1 : 0);
2920         rbd_osd_req_format_write(obj_request);
2921
2922         ret = rbd_obj_request_submit(osdc, obj_request);
2923         if (ret)
2924                 goto out_cancel;
2925         ret = rbd_obj_request_wait(obj_request);
2926         if (ret)
2927                 goto out_cancel;
2928         ret = obj_request->result;
2929         if (ret)
2930                 goto out_cancel;
2931
2932         /*
2933          * A watch request is set to linger, so the underlying osd
2934          * request won't go away until we unregister it.  We retain
2935          * a pointer to the object request during that time (in
2936          * rbd_dev->watch_request), so we'll keep a reference to
2937          * it.  We'll drop that reference (below) after we've
2938          * unregistered it.
2939          */
2940         if (start) {
2941                 rbd_dev->watch_request = obj_request;
2942
2943                 return 0;
2944         }
2945
2946         /* We have successfully torn down the watch request */
2947
2948         rbd_obj_request_put(rbd_dev->watch_request);
2949         rbd_dev->watch_request = NULL;
2950 out_cancel:
2951         /* Cancel the event if we're tearing down, or on error */
2952         ceph_osdc_cancel_event(rbd_dev->watch_event);
2953         rbd_dev->watch_event = NULL;
2954         if (obj_request)
2955                 rbd_obj_request_put(obj_request);
2956
2957         return ret;
2958 }
2959
2960 /*
2961  * Synchronous osd object method call.  Returns the number of bytes
2962  * returned in the outbound buffer, or a negative error code.
2963  */
2964 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2965                              const char *object_name,
2966                              const char *class_name,
2967                              const char *method_name,
2968                              const void *outbound,
2969                              size_t outbound_size,
2970                              void *inbound,
2971                              size_t inbound_size)
2972 {
2973         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2974         struct rbd_obj_request *obj_request;
2975         struct page **pages;
2976         u32 page_count;
2977         int ret;
2978
2979         /*
2980          * Method calls are ultimately read operations.  The result
2981          * should placed into the inbound buffer provided.  They
2982          * also supply outbound data--parameters for the object
2983          * method.  Currently if this is present it will be a
2984          * snapshot id.
2985          */
2986         page_count = (u32)calc_pages_for(0, inbound_size);
2987         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2988         if (IS_ERR(pages))
2989                 return PTR_ERR(pages);
2990
2991         ret = -ENOMEM;
2992         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2993                                                         OBJ_REQUEST_PAGES);
2994         if (!obj_request)
2995                 goto out;
2996
2997         obj_request->pages = pages;
2998         obj_request->page_count = page_count;
2999
3000         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3001         if (!obj_request->osd_req)
3002                 goto out;
3003
3004         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3005                                         class_name, method_name);
3006         if (outbound_size) {
3007                 struct ceph_pagelist *pagelist;
3008
3009                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3010                 if (!pagelist)
3011                         goto out;
3012
3013                 ceph_pagelist_init(pagelist);
3014                 ceph_pagelist_append(pagelist, outbound, outbound_size);
3015                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3016                                                 pagelist);
3017         }
3018         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3019                                         obj_request->pages, inbound_size,
3020                                         0, false, false);
3021         rbd_osd_req_format_read(obj_request);
3022
3023         ret = rbd_obj_request_submit(osdc, obj_request);
3024         if (ret)
3025                 goto out;
3026         ret = rbd_obj_request_wait(obj_request);
3027         if (ret)
3028                 goto out;
3029
3030         ret = obj_request->result;
3031         if (ret < 0)
3032                 goto out;
3033
3034         rbd_assert(obj_request->xferred < (u64)INT_MAX);
3035         ret = (int)obj_request->xferred;
3036         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3037 out:
3038         if (obj_request)
3039                 rbd_obj_request_put(obj_request);
3040         else
3041                 ceph_release_page_vector(pages, page_count);
3042
3043         return ret;
3044 }
3045
3046 static void rbd_request_fn(struct request_queue *q)
3047                 __releases(q->queue_lock) __acquires(q->queue_lock)
3048 {
3049         struct rbd_device *rbd_dev = q->queuedata;
3050         bool read_only = rbd_dev->mapping.read_only;
3051         struct request *rq;
3052         int result;
3053
3054         while ((rq = blk_fetch_request(q))) {
3055                 bool write_request = rq_data_dir(rq) == WRITE;
3056                 struct rbd_img_request *img_request;
3057                 u64 offset;
3058                 u64 length;
3059
3060                 /* Ignore any non-FS requests that filter through. */
3061
3062                 if (rq->cmd_type != REQ_TYPE_FS) {
3063                         dout("%s: non-fs request type %d\n", __func__,
3064                                 (int) rq->cmd_type);
3065                         __blk_end_request_all(rq, 0);
3066                         continue;
3067                 }
3068
3069                 /* Ignore/skip any zero-length requests */
3070
3071                 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3072                 length = (u64) blk_rq_bytes(rq);
3073
3074                 if (!length) {
3075                         dout("%s: zero-length request\n", __func__);
3076                         __blk_end_request_all(rq, 0);
3077                         continue;
3078                 }
3079
3080                 spin_unlock_irq(q->queue_lock);
3081
3082                 /* Disallow writes to a read-only device */
3083
3084                 if (write_request) {
3085                         result = -EROFS;
3086                         if (read_only)
3087                                 goto end_request;
3088                         rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3089                 }
3090
3091                 /*
3092                  * Quit early if the mapped snapshot no longer
3093                  * exists.  It's still possible the snapshot will
3094                  * have disappeared by the time our request arrives
3095                  * at the osd, but there's no sense in sending it if
3096                  * we already know.
3097                  */
3098                 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3099                         dout("request for non-existent snapshot");
3100                         rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3101                         result = -ENXIO;
3102                         goto end_request;
3103                 }
3104
3105                 result = -EINVAL;
3106                 if (offset && length > U64_MAX - offset + 1) {
3107                         rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3108                                 offset, length);
3109                         goto end_request;       /* Shouldn't happen */
3110                 }
3111
3112                 result = -EIO;
3113                 if (offset + length > rbd_dev->mapping.size) {
3114                         rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3115                                 offset, length, rbd_dev->mapping.size);
3116                         goto end_request;
3117                 }
3118
3119                 result = -ENOMEM;
3120                 img_request = rbd_img_request_create(rbd_dev, offset, length,
3121                                                         write_request);
3122                 if (!img_request)
3123                         goto end_request;
3124
3125                 img_request->rq = rq;
3126
3127                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3128                                                 rq->bio);
3129                 if (!result)
3130                         result = rbd_img_request_submit(img_request);
3131                 if (result)
3132                         rbd_img_request_put(img_request);
3133 end_request:
3134                 spin_lock_irq(q->queue_lock);
3135                 if (result < 0) {
3136                         rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3137                                 write_request ? "write" : "read",
3138                                 length, offset, result);
3139
3140                         __blk_end_request_all(rq, result);
3141                 }
3142         }
3143 }
3144
3145 /*
3146  * a queue callback. Makes sure that we don't create a bio that spans across
3147  * multiple osd objects. One exception would be with a single page bios,
3148  * which we handle later at bio_chain_clone_range()
3149  */
3150 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3151                           struct bio_vec *bvec)
3152 {
3153         struct rbd_device *rbd_dev = q->queuedata;
3154         sector_t sector_offset;
3155         sector_t sectors_per_obj;
3156         sector_t obj_sector_offset;
3157         int ret;
3158
3159         /*
3160          * Find how far into its rbd object the partition-relative
3161          * bio start sector is to offset relative to the enclosing
3162          * device.
3163          */
3164         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3165         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3166         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3167
3168         /*
3169          * Compute the number of bytes from that offset to the end
3170          * of the object.  Account for what's already used by the bio.
3171          */
3172         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3173         if (ret > bmd->bi_size)
3174                 ret -= bmd->bi_size;
3175         else
3176                 ret = 0;
3177
3178         /*
3179          * Don't send back more than was asked for.  And if the bio
3180          * was empty, let the whole thing through because:  "Note
3181          * that a block device *must* allow a single page to be
3182          * added to an empty bio."
3183          */
3184         rbd_assert(bvec->bv_len <= PAGE_SIZE);
3185         if (ret > (int) bvec->bv_len || !bmd->bi_size)
3186                 ret = (int) bvec->bv_len;
3187
3188         return ret;
3189 }
3190
3191 static void rbd_free_disk(struct rbd_device *rbd_dev)
3192 {
3193         struct gendisk *disk = rbd_dev->disk;
3194
3195         if (!disk)
3196                 return;
3197
3198         rbd_dev->disk = NULL;
3199         if (disk->flags & GENHD_FL_UP) {
3200                 del_gendisk(disk);
3201                 if (disk->queue)
3202                         blk_cleanup_queue(disk->queue);
3203         }
3204         put_disk(disk);
3205 }
3206
3207 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3208                                 const char *object_name,
3209                                 u64 offset, u64 length, void *buf)
3210
3211 {
3212         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3213         struct rbd_obj_request *obj_request;
3214         struct page **pages = NULL;
3215         u32 page_count;
3216         size_t size;
3217         int ret;
3218
3219         page_count = (u32) calc_pages_for(offset, length);
3220         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3221         if (IS_ERR(pages))
3222                 ret = PTR_ERR(pages);
3223
3224         ret = -ENOMEM;
3225         obj_request = rbd_obj_request_create(object_name, offset, length,
3226                                                         OBJ_REQUEST_PAGES);
3227         if (!obj_request)
3228                 goto out;
3229
3230         obj_request->pages = pages;
3231         obj_request->page_count = page_count;
3232
3233         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3234         if (!obj_request->osd_req)
3235                 goto out;
3236
3237         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3238                                         offset, length, 0, 0);
3239         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3240                                         obj_request->pages,
3241                                         obj_request->length,
3242                                         obj_request->offset & ~PAGE_MASK,
3243                                         false, false);
3244         rbd_osd_req_format_read(obj_request);
3245
3246         ret = rbd_obj_request_submit(osdc, obj_request);
3247         if (ret)
3248                 goto out;
3249         ret = rbd_obj_request_wait(obj_request);
3250         if (ret)
3251                 goto out;
3252
3253         ret = obj_request->result;
3254         if (ret < 0)
3255                 goto out;
3256
3257         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3258         size = (size_t) obj_request->xferred;
3259         ceph_copy_from_page_vector(pages, buf, 0, size);
3260         rbd_assert(size <= (size_t)INT_MAX);
3261         ret = (int)size;
3262 out:
3263         if (obj_request)
3264                 rbd_obj_request_put(obj_request);
3265         else
3266                 ceph_release_page_vector(pages, page_count);
3267
3268         return ret;
3269 }
3270
3271 /*
3272  * Read the complete header for the given rbd device.  On successful
3273  * return, the rbd_dev->header field will contain up-to-date
3274  * information about the image.
3275  */
3276 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3277 {
3278         struct rbd_image_header_ondisk *ondisk = NULL;
3279         u32 snap_count = 0;
3280         u64 names_size = 0;
3281         u32 want_count;
3282         int ret;
3283
3284         /*
3285          * The complete header will include an array of its 64-bit
3286          * snapshot ids, followed by the names of those snapshots as
3287          * a contiguous block of NUL-terminated strings.  Note that
3288          * the number of snapshots could change by the time we read
3289          * it in, in which case we re-read it.
3290          */
3291         do {
3292                 size_t size;
3293
3294                 kfree(ondisk);
3295
3296                 size = sizeof (*ondisk);
3297                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3298                 size += names_size;
3299                 ondisk = kmalloc(size, GFP_KERNEL);
3300                 if (!ondisk)
3301                         return -ENOMEM;
3302
3303                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3304                                        0, size, ondisk);
3305                 if (ret < 0)
3306                         goto out;
3307                 if ((size_t)ret < size) {
3308                         ret = -ENXIO;
3309                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3310                                 size, ret);
3311                         goto out;
3312                 }
3313                 if (!rbd_dev_ondisk_valid(ondisk)) {
3314                         ret = -ENXIO;
3315                         rbd_warn(rbd_dev, "invalid header");
3316                         goto out;
3317                 }
3318
3319                 names_size = le64_to_cpu(ondisk->snap_names_len);
3320                 want_count = snap_count;
3321                 snap_count = le32_to_cpu(ondisk->snap_count);
3322         } while (snap_count != want_count);
3323
3324         ret = rbd_header_from_disk(rbd_dev, ondisk);
3325 out:
3326         kfree(ondisk);
3327
3328         return ret;
3329 }
3330
3331 /*
3332  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3333  * has disappeared from the (just updated) snapshot context.
3334  */
3335 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3336 {
3337         u64 snap_id;
3338
3339         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3340                 return;
3341
3342         snap_id = rbd_dev->spec->snap_id;
3343         if (snap_id == CEPH_NOSNAP)
3344                 return;
3345
3346         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3347                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3348 }
3349
3350 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3351 {
3352         sector_t size;
3353         bool removing;
3354
3355         /*
3356          * Don't hold the lock while doing disk operations,
3357          * or lock ordering will conflict with the bdev mutex via:
3358          * rbd_add() -> blkdev_get() -> rbd_open()
3359          */
3360         spin_lock_irq(&rbd_dev->lock);
3361         removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3362         spin_unlock_irq(&rbd_dev->lock);
3363         /*
3364          * If the device is being removed, rbd_dev->disk has
3365          * been destroyed, so don't try to update its size
3366          */
3367         if (!removing) {
3368                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3369                 dout("setting size to %llu sectors", (unsigned long long)size);
3370                 set_capacity(rbd_dev->disk, size);
3371                 revalidate_disk(rbd_dev->disk);
3372         }
3373 }
3374
3375 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3376 {
3377         u64 mapping_size;
3378         int ret;
3379
3380         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3381         mapping_size = rbd_dev->mapping.size;
3382         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3383         if (rbd_dev->image_format == 1)
3384                 ret = rbd_dev_v1_header_info(rbd_dev);
3385         else
3386                 ret = rbd_dev_v2_header_info(rbd_dev);
3387
3388         /* If it's a mapped snapshot, validate its EXISTS flag */
3389
3390         rbd_exists_validate(rbd_dev);
3391         mutex_unlock(&ctl_mutex);
3392         if (mapping_size != rbd_dev->mapping.size) {
3393                 rbd_dev_update_size(rbd_dev);
3394         }
3395
3396         return ret;
3397 }
3398
3399 static int rbd_init_disk(struct rbd_device *rbd_dev)
3400 {
3401         struct gendisk *disk;
3402         struct request_queue *q;
3403         u64 segment_size;
3404
3405         /* create gendisk info */
3406         disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3407         if (!disk)
3408                 return -ENOMEM;
3409
3410         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3411                  rbd_dev->dev_id);
3412         disk->major = rbd_dev->major;
3413         disk->first_minor = 0;
3414         disk->fops = &rbd_bd_ops;
3415         disk->private_data = rbd_dev;
3416
3417         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3418         if (!q)
3419                 goto out_disk;
3420
3421         /* We use the default size, but let's be explicit about it. */
3422         blk_queue_physical_block_size(q, SECTOR_SIZE);
3423
3424         /* set io sizes to object size */
3425         segment_size = rbd_obj_bytes(&rbd_dev->header);
3426         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3427         blk_queue_max_segment_size(q, segment_size);
3428         blk_queue_io_min(q, segment_size);
3429         blk_queue_io_opt(q, segment_size);
3430
3431         blk_queue_merge_bvec(q, rbd_merge_bvec);
3432         disk->queue = q;
3433
3434         q->queuedata = rbd_dev;
3435
3436         rbd_dev->disk = disk;
3437
3438         return 0;
3439 out_disk:
3440         put_disk(disk);
3441
3442         return -ENOMEM;
3443 }
3444
3445 /*
3446   sysfs
3447 */
3448
3449 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3450 {
3451         return container_of(dev, struct rbd_device, dev);
3452 }
3453
3454 static ssize_t rbd_size_show(struct device *dev,
3455                              struct device_attribute *attr, char *buf)
3456 {
3457         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3458
3459         return sprintf(buf, "%llu\n",
3460                 (unsigned long long)rbd_dev->mapping.size);
3461 }
3462
3463 /*
3464  * Note this shows the features for whatever's mapped, which is not
3465  * necessarily the base image.
3466  */
3467 static ssize_t rbd_features_show(struct device *dev,
3468                              struct device_attribute *attr, char *buf)
3469 {
3470         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3471
3472         return sprintf(buf, "0x%016llx\n",
3473                         (unsigned long long)rbd_dev->mapping.features);
3474 }
3475
3476 static ssize_t rbd_major_show(struct device *dev,
3477                               struct device_attribute *attr, char *buf)
3478 {
3479         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3480
3481         if (rbd_dev->major)
3482                 return sprintf(buf, "%d\n", rbd_dev->major);
3483
3484         return sprintf(buf, "(none)\n");
3485
3486 }
3487
3488 static ssize_t rbd_client_id_show(struct device *dev,
3489                                   struct device_attribute *attr, char *buf)
3490 {
3491         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3492
3493         return sprintf(buf, "client%lld\n",
3494                         ceph_client_id(rbd_dev->rbd_client->client));
3495 }
3496
3497 static ssize_t rbd_pool_show(struct device *dev,
3498                              struct device_attribute *attr, char *buf)
3499 {
3500         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3501
3502         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3503 }
3504
3505 static ssize_t rbd_pool_id_show(struct device *dev,
3506                              struct device_attribute *attr, char *buf)
3507 {
3508         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3509
3510         return sprintf(buf, "%llu\n",
3511                         (unsigned long long) rbd_dev->spec->pool_id);
3512 }
3513
3514 static ssize_t rbd_name_show(struct device *dev,
3515                              struct device_attribute *attr, char *buf)
3516 {
3517         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3518
3519         if (rbd_dev->spec->image_name)
3520                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3521
3522         return sprintf(buf, "(unknown)\n");
3523 }
3524
3525 static ssize_t rbd_image_id_show(struct device *dev,
3526                              struct device_attribute *attr, char *buf)
3527 {
3528         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3529
3530         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3531 }
3532
3533 /*
3534  * Shows the name of the currently-mapped snapshot (or
3535  * RBD_SNAP_HEAD_NAME for the base image).
3536  */
3537 static ssize_t rbd_snap_show(struct device *dev,
3538                              struct device_attribute *attr,
3539                              char *buf)
3540 {
3541         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3542
3543         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3544 }
3545
3546 /*
3547  * For an rbd v2 image, shows the pool id, image id, and snapshot id
3548  * for the parent image.  If there is no parent, simply shows
3549  * "(no parent image)".
3550  */
3551 static ssize_t rbd_parent_show(struct device *dev,
3552                              struct device_attribute *attr,
3553                              char *buf)
3554 {
3555         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3556         struct rbd_spec *spec = rbd_dev->parent_spec;
3557         int count;
3558         char *bufp = buf;
3559
3560         if (!spec)
3561                 return sprintf(buf, "(no parent image)\n");
3562
3563         count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3564                         (unsigned long long) spec->pool_id, spec->pool_name);
3565         if (count < 0)
3566                 return count;
3567         bufp += count;
3568
3569         count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3570                         spec->image_name ? spec->image_name : "(unknown)");
3571         if (count < 0)
3572                 return count;
3573         bufp += count;
3574
3575         count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3576                         (unsigned long long) spec->snap_id, spec->snap_name);
3577         if (count < 0)
3578                 return count;
3579         bufp += count;
3580
3581         count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3582         if (count < 0)
3583                 return count;
3584         bufp += count;
3585
3586         return (ssize_t) (bufp - buf);
3587 }
3588
3589 static ssize_t rbd_image_refresh(struct device *dev,
3590                                  struct device_attribute *attr,
3591                                  const char *buf,
3592                                  size_t size)
3593 {
3594         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3595         int ret;
3596
3597         ret = rbd_dev_refresh(rbd_dev);
3598         if (ret)
3599                 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3600
3601         return ret < 0 ? ret : size;
3602 }
3603
3604 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3605 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3606 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3607 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3608 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3609 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3610 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3611 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3612 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3613 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3614 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3615
3616 static struct attribute *rbd_attrs[] = {
3617         &dev_attr_size.attr,
3618         &dev_attr_features.attr,
3619         &dev_attr_major.attr,
3620         &dev_attr_client_id.attr,
3621         &dev_attr_pool.attr,
3622         &dev_attr_pool_id.attr,
3623         &dev_attr_name.attr,
3624         &dev_attr_image_id.attr,
3625         &dev_attr_current_snap.attr,
3626         &dev_attr_parent.attr,
3627         &dev_attr_refresh.attr,
3628         NULL
3629 };
3630
3631 static struct attribute_group rbd_attr_group = {
3632         .attrs = rbd_attrs,
3633 };
3634
3635 static const struct attribute_group *rbd_attr_groups[] = {
3636         &rbd_attr_group,
3637         NULL
3638 };
3639
3640 static void rbd_sysfs_dev_release(struct device *dev)
3641 {
3642 }
3643
3644 static struct device_type rbd_device_type = {
3645         .name           = "rbd",
3646         .groups         = rbd_attr_groups,
3647         .release        = rbd_sysfs_dev_release,
3648 };
3649
3650 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3651 {
3652         kref_get(&spec->kref);
3653
3654         return spec;
3655 }
3656
3657 static void rbd_spec_free(struct kref *kref);
3658 static void rbd_spec_put(struct rbd_spec *spec)
3659 {
3660         if (spec)
3661                 kref_put(&spec->kref, rbd_spec_free);
3662 }
3663
3664 static struct rbd_spec *rbd_spec_alloc(void)
3665 {
3666         struct rbd_spec *spec;
3667
3668         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3669         if (!spec)
3670                 return NULL;
3671         kref_init(&spec->kref);
3672
3673         return spec;
3674 }
3675
3676 static void rbd_spec_free(struct kref *kref)
3677 {
3678         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3679
3680         kfree(spec->pool_name);
3681         kfree(spec->image_id);
3682         kfree(spec->image_name);
3683         kfree(spec->snap_name);
3684         kfree(spec);
3685 }
3686
3687 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3688                                 struct rbd_spec *spec)
3689 {
3690         struct rbd_device *rbd_dev;
3691
3692         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3693         if (!rbd_dev)
3694                 return NULL;
3695
3696         spin_lock_init(&rbd_dev->lock);
3697         rbd_dev->flags = 0;
3698         atomic_set(&rbd_dev->parent_ref, 0);
3699         INIT_LIST_HEAD(&rbd_dev->node);
3700         init_rwsem(&rbd_dev->header_rwsem);
3701
3702         rbd_dev->spec = spec;
3703         rbd_dev->rbd_client = rbdc;
3704
3705         /* Initialize the layout used for all rbd requests */
3706
3707         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3708         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3709         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3710         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3711
3712         return rbd_dev;
3713 }
3714
3715 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3716 {
3717         rbd_put_client(rbd_dev->rbd_client);
3718         rbd_spec_put(rbd_dev->spec);
3719         kfree(rbd_dev);
3720 }
3721
3722 /*
3723  * Get the size and object order for an image snapshot, or if
3724  * snap_id is CEPH_NOSNAP, gets this information for the base
3725  * image.
3726  */
3727 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3728                                 u8 *order, u64 *snap_size)
3729 {
3730         __le64 snapid = cpu_to_le64(snap_id);
3731         int ret;
3732         struct {
3733                 u8 order;
3734                 __le64 size;
3735         } __attribute__ ((packed)) size_buf = { 0 };
3736
3737         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3738                                 "rbd", "get_size",
3739                                 &snapid, sizeof (snapid),
3740                                 &size_buf, sizeof (size_buf));
3741         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3742         if (ret < 0)
3743                 return ret;
3744         if (ret < sizeof (size_buf))
3745                 return -ERANGE;
3746
3747         if (order) {
3748                 *order = size_buf.order;
3749                 dout("  order %u", (unsigned int)*order);
3750         }
3751         *snap_size = le64_to_cpu(size_buf.size);
3752
3753         dout("  snap_id 0x%016llx snap_size = %llu\n",
3754                 (unsigned long long)snap_id,
3755                 (unsigned long long)*snap_size);
3756
3757         return 0;
3758 }
3759
3760 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3761 {
3762         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3763                                         &rbd_dev->header.obj_order,
3764                                         &rbd_dev->header.image_size);
3765 }
3766
3767 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3768 {
3769         void *reply_buf;
3770         int ret;
3771         void *p;
3772
3773         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3774         if (!reply_buf)
3775                 return -ENOMEM;
3776
3777         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3778                                 "rbd", "get_object_prefix", NULL, 0,
3779                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3780         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3781         if (ret < 0)
3782                 goto out;
3783
3784         p = reply_buf;
3785         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3786                                                 p + ret, NULL, GFP_NOIO);
3787         ret = 0;
3788
3789         if (IS_ERR(rbd_dev->header.object_prefix)) {
3790                 ret = PTR_ERR(rbd_dev->header.object_prefix);
3791                 rbd_dev->header.object_prefix = NULL;
3792         } else {
3793                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3794         }
3795 out:
3796         kfree(reply_buf);
3797
3798         return ret;
3799 }
3800
3801 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3802                 u64 *snap_features)
3803 {
3804         __le64 snapid = cpu_to_le64(snap_id);
3805         struct {
3806                 __le64 features;
3807                 __le64 incompat;
3808         } __attribute__ ((packed)) features_buf = { 0 };
3809         u64 incompat;
3810         int ret;
3811
3812         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3813                                 "rbd", "get_features",
3814                                 &snapid, sizeof (snapid),
3815                                 &features_buf, sizeof (features_buf));
3816         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3817         if (ret < 0)
3818                 return ret;
3819         if (ret < sizeof (features_buf))
3820                 return -ERANGE;
3821
3822         incompat = le64_to_cpu(features_buf.incompat);
3823         if (incompat & ~RBD_FEATURES_SUPPORTED)
3824                 return -ENXIO;
3825
3826         *snap_features = le64_to_cpu(features_buf.features);
3827
3828         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3829                 (unsigned long long)snap_id,
3830                 (unsigned long long)*snap_features,
3831                 (unsigned long long)le64_to_cpu(features_buf.incompat));
3832
3833         return 0;
3834 }
3835
3836 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3837 {
3838         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3839                                                 &rbd_dev->header.features);
3840 }
3841
3842 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3843 {
3844         struct rbd_spec *parent_spec;
3845         size_t size;
3846         void *reply_buf = NULL;
3847         __le64 snapid;
3848         void *p;
3849         void *end;
3850         u64 pool_id;
3851         char *image_id;
3852         u64 overlap;
3853         int ret;
3854
3855         parent_spec = rbd_spec_alloc();
3856         if (!parent_spec)
3857                 return -ENOMEM;
3858
3859         size = sizeof (__le64) +                                /* pool_id */
3860                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
3861                 sizeof (__le64) +                               /* snap_id */
3862                 sizeof (__le64);                                /* overlap */
3863         reply_buf = kmalloc(size, GFP_KERNEL);
3864         if (!reply_buf) {
3865                 ret = -ENOMEM;
3866                 goto out_err;
3867         }
3868
3869         snapid = cpu_to_le64(CEPH_NOSNAP);
3870         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3871                                 "rbd", "get_parent",
3872                                 &snapid, sizeof (snapid),
3873                                 reply_buf, size);
3874         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3875         if (ret < 0)
3876                 goto out_err;
3877
3878         p = reply_buf;
3879         end = reply_buf + ret;
3880         ret = -ERANGE;
3881         ceph_decode_64_safe(&p, end, pool_id, out_err);
3882         if (pool_id == CEPH_NOPOOL) {
3883                 /*
3884                  * Either the parent never existed, or we have
3885                  * record of it but the image got flattened so it no
3886                  * longer has a parent.  When the parent of a
3887                  * layered image disappears we immediately set the
3888                  * overlap to 0.  The effect of this is that all new
3889                  * requests will be treated as if the image had no
3890                  * parent.
3891                  */
3892                 if (rbd_dev->parent_overlap) {
3893                         rbd_dev->parent_overlap = 0;
3894                         smp_mb();
3895                         rbd_dev_parent_put(rbd_dev);
3896                         pr_info("%s: clone image has been flattened\n",
3897                                 rbd_dev->disk->disk_name);
3898                 }
3899
3900                 goto out;       /* No parent?  No problem. */
3901         }
3902
3903         /* The ceph file layout needs to fit pool id in 32 bits */
3904
3905         ret = -EIO;
3906         if (pool_id > (u64)U32_MAX) {
3907                 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3908                         (unsigned long long)pool_id, U32_MAX);
3909                 goto out_err;
3910         }
3911         parent_spec->pool_id = pool_id;
3912
3913         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3914         if (IS_ERR(image_id)) {
3915                 ret = PTR_ERR(image_id);
3916                 goto out_err;
3917         }
3918         parent_spec->image_id = image_id;
3919         ceph_decode_64_safe(&p, end, parent_spec->snap_id, out_err);
3920         ceph_decode_64_safe(&p, end, overlap, out_err);
3921
3922         if (overlap) {
3923                 rbd_spec_put(rbd_dev->parent_spec);
3924                 rbd_dev->parent_spec = parent_spec;
3925                 parent_spec = NULL;     /* rbd_dev now owns this */
3926                 rbd_dev->parent_overlap = overlap;
3927         } else {
3928                 rbd_warn(rbd_dev, "ignoring parent of clone with overlap 0\n");
3929         }
3930 out:
3931         ret = 0;
3932 out_err:
3933         kfree(reply_buf);
3934         rbd_spec_put(parent_spec);
3935
3936         return ret;
3937 }
3938
3939 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3940 {
3941         struct {
3942                 __le64 stripe_unit;
3943                 __le64 stripe_count;
3944         } __attribute__ ((packed)) striping_info_buf = { 0 };
3945         size_t size = sizeof (striping_info_buf);
3946         void *p;
3947         u64 obj_size;
3948         u64 stripe_unit;
3949         u64 stripe_count;
3950         int ret;
3951
3952         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3953                                 "rbd", "get_stripe_unit_count", NULL, 0,
3954                                 (char *)&striping_info_buf, size);
3955         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3956         if (ret < 0)
3957                 return ret;
3958         if (ret < size)
3959                 return -ERANGE;
3960
3961         /*
3962          * We don't actually support the "fancy striping" feature
3963          * (STRIPINGV2) yet, but if the striping sizes are the
3964          * defaults the behavior is the same as before.  So find
3965          * out, and only fail if the image has non-default values.
3966          */
3967         ret = -EINVAL;
3968         obj_size = (u64)1 << rbd_dev->header.obj_order;
3969         p = &striping_info_buf;
3970         stripe_unit = ceph_decode_64(&p);
3971         if (stripe_unit != obj_size) {
3972                 rbd_warn(rbd_dev, "unsupported stripe unit "
3973                                 "(got %llu want %llu)",
3974                                 stripe_unit, obj_size);
3975                 return -EINVAL;
3976         }
3977         stripe_count = ceph_decode_64(&p);
3978         if (stripe_count != 1) {
3979                 rbd_warn(rbd_dev, "unsupported stripe count "
3980                                 "(got %llu want 1)", stripe_count);
3981                 return -EINVAL;
3982         }
3983         rbd_dev->header.stripe_unit = stripe_unit;
3984         rbd_dev->header.stripe_count = stripe_count;
3985
3986         return 0;
3987 }
3988
3989 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
3990 {
3991         size_t image_id_size;
3992         char *image_id;
3993         void *p;
3994         void *end;
3995         size_t size;
3996         void *reply_buf = NULL;
3997         size_t len = 0;
3998         char *image_name = NULL;
3999         int ret;
4000
4001         rbd_assert(!rbd_dev->spec->image_name);
4002
4003         len = strlen(rbd_dev->spec->image_id);
4004         image_id_size = sizeof (__le32) + len;
4005         image_id = kmalloc(image_id_size, GFP_KERNEL);
4006         if (!image_id)
4007                 return NULL;
4008
4009         p = image_id;
4010         end = image_id + image_id_size;
4011         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4012
4013         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4014         reply_buf = kmalloc(size, GFP_KERNEL);
4015         if (!reply_buf)
4016                 goto out;
4017
4018         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4019                                 "rbd", "dir_get_name",
4020                                 image_id, image_id_size,
4021                                 reply_buf, size);
4022         if (ret < 0)
4023                 goto out;
4024         p = reply_buf;
4025         end = reply_buf + ret;
4026
4027         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4028         if (IS_ERR(image_name))
4029                 image_name = NULL;
4030         else
4031                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4032 out:
4033         kfree(reply_buf);
4034         kfree(image_id);
4035
4036         return image_name;
4037 }
4038
4039 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4040 {
4041         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4042         const char *snap_name;
4043         u32 which = 0;
4044
4045         /* Skip over names until we find the one we are looking for */
4046
4047         snap_name = rbd_dev->header.snap_names;
4048         while (which < snapc->num_snaps) {
4049                 if (!strcmp(name, snap_name))
4050                         return snapc->snaps[which];
4051                 snap_name += strlen(snap_name) + 1;
4052                 which++;
4053         }
4054         return CEPH_NOSNAP;
4055 }
4056
4057 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4058 {
4059         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4060         u32 which;
4061         bool found = false;
4062         u64 snap_id;
4063
4064         for (which = 0; !found && which < snapc->num_snaps; which++) {
4065                 const char *snap_name;
4066
4067                 snap_id = snapc->snaps[which];
4068                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4069                 if (IS_ERR(snap_name)) {
4070                         /* ignore no-longer existing snapshots */
4071                         if (PTR_ERR(snap_name) == -ENOENT)
4072                                 continue;
4073                         else
4074                                 break;
4075                 }
4076                 found = !strcmp(name, snap_name);
4077                 kfree(snap_name);
4078         }
4079         return found ? snap_id : CEPH_NOSNAP;
4080 }
4081
4082 /*
4083  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4084  * no snapshot by that name is found, or if an error occurs.
4085  */
4086 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4087 {
4088         if (rbd_dev->image_format == 1)
4089                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4090
4091         return rbd_v2_snap_id_by_name(rbd_dev, name);
4092 }
4093
4094 /*
4095  * When an rbd image has a parent image, it is identified by the
4096  * pool, image, and snapshot ids (not names).  This function fills
4097  * in the names for those ids.  (It's OK if we can't figure out the
4098  * name for an image id, but the pool and snapshot ids should always
4099  * exist and have names.)  All names in an rbd spec are dynamically
4100  * allocated.
4101  *
4102  * When an image being mapped (not a parent) is probed, we have the
4103  * pool name and pool id, image name and image id, and the snapshot
4104  * name.  The only thing we're missing is the snapshot id.
4105  */
4106 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4107 {
4108         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4109         struct rbd_spec *spec = rbd_dev->spec;
4110         const char *pool_name;
4111         const char *image_name;
4112         const char *snap_name;
4113         int ret;
4114
4115         /*
4116          * An image being mapped will have the pool name (etc.), but
4117          * we need to look up the snapshot id.
4118          */
4119         if (spec->pool_name) {
4120                 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4121                         u64 snap_id;
4122
4123                         snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4124                         if (snap_id == CEPH_NOSNAP)
4125                                 return -ENOENT;
4126                         spec->snap_id = snap_id;
4127                 } else {
4128                         spec->snap_id = CEPH_NOSNAP;
4129                 }
4130
4131                 return 0;
4132         }
4133
4134         /* Get the pool name; we have to make our own copy of this */
4135
4136         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4137         if (!pool_name) {
4138                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4139                 return -EIO;
4140         }
4141         pool_name = kstrdup(pool_name, GFP_KERNEL);
4142         if (!pool_name)
4143                 return -ENOMEM;
4144
4145         /* Fetch the image name; tolerate failure here */
4146
4147         image_name = rbd_dev_image_name(rbd_dev);
4148         if (!image_name)
4149                 rbd_warn(rbd_dev, "unable to get image name");
4150
4151         /* Look up the snapshot name, and make a copy */
4152
4153         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4154         if (IS_ERR(snap_name)) {
4155                 ret = PTR_ERR(snap_name);
4156                 goto out_err;
4157         }
4158
4159         spec->pool_name = pool_name;
4160         spec->image_name = image_name;
4161         spec->snap_name = snap_name;
4162
4163         return 0;
4164 out_err:
4165         kfree(image_name);
4166         kfree(pool_name);
4167
4168         return ret;
4169 }
4170
4171 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4172 {
4173         size_t size;
4174         int ret;
4175         void *reply_buf;
4176         void *p;
4177         void *end;
4178         u64 seq;
4179         u32 snap_count;
4180         struct ceph_snap_context *snapc;
4181         u32 i;
4182
4183         /*
4184          * We'll need room for the seq value (maximum snapshot id),
4185          * snapshot count, and array of that many snapshot ids.
4186          * For now we have a fixed upper limit on the number we're
4187          * prepared to receive.
4188          */
4189         size = sizeof (__le64) + sizeof (__le32) +
4190                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4191         reply_buf = kzalloc(size, GFP_KERNEL);
4192         if (!reply_buf)
4193                 return -ENOMEM;
4194
4195         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4196                                 "rbd", "get_snapcontext", NULL, 0,
4197                                 reply_buf, size);
4198         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4199         if (ret < 0)
4200                 goto out;
4201
4202         p = reply_buf;
4203         end = reply_buf + ret;
4204         ret = -ERANGE;
4205         ceph_decode_64_safe(&p, end, seq, out);
4206         ceph_decode_32_safe(&p, end, snap_count, out);
4207
4208         /*
4209          * Make sure the reported number of snapshot ids wouldn't go
4210          * beyond the end of our buffer.  But before checking that,
4211          * make sure the computed size of the snapshot context we
4212          * allocate is representable in a size_t.
4213          */
4214         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4215                                  / sizeof (u64)) {
4216                 ret = -EINVAL;
4217                 goto out;
4218         }
4219         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4220                 goto out;
4221         ret = 0;
4222
4223         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4224         if (!snapc) {
4225                 ret = -ENOMEM;
4226                 goto out;
4227         }
4228         snapc->seq = seq;
4229         for (i = 0; i < snap_count; i++)
4230                 snapc->snaps[i] = ceph_decode_64(&p);
4231
4232         ceph_put_snap_context(rbd_dev->header.snapc);
4233         rbd_dev->header.snapc = snapc;
4234
4235         dout("  snap context seq = %llu, snap_count = %u\n",
4236                 (unsigned long long)seq, (unsigned int)snap_count);
4237 out:
4238         kfree(reply_buf);
4239
4240         return ret;
4241 }
4242
4243 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4244                                         u64 snap_id)
4245 {
4246         size_t size;
4247         void *reply_buf;
4248         __le64 snapid;
4249         int ret;
4250         void *p;
4251         void *end;
4252         char *snap_name;
4253
4254         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4255         reply_buf = kmalloc(size, GFP_KERNEL);
4256         if (!reply_buf)
4257                 return ERR_PTR(-ENOMEM);
4258
4259         snapid = cpu_to_le64(snap_id);
4260         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4261                                 "rbd", "get_snapshot_name",
4262                                 &snapid, sizeof (snapid),
4263                                 reply_buf, size);
4264         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4265         if (ret < 0) {
4266                 snap_name = ERR_PTR(ret);
4267                 goto out;
4268         }
4269
4270         p = reply_buf;
4271         end = reply_buf + ret;
4272         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4273         if (IS_ERR(snap_name))
4274                 goto out;
4275
4276         dout("  snap_id 0x%016llx snap_name = %s\n",
4277                 (unsigned long long)snap_id, snap_name);
4278 out:
4279         kfree(reply_buf);
4280
4281         return snap_name;
4282 }
4283
4284 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4285 {
4286         bool first_time = rbd_dev->header.object_prefix == NULL;
4287         int ret;
4288
4289         down_write(&rbd_dev->header_rwsem);
4290
4291         ret = rbd_dev_v2_image_size(rbd_dev);
4292         if (ret)
4293                 goto out;
4294
4295         if (first_time) {
4296                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4297                 if (ret)
4298                         goto out;
4299         }
4300
4301         /*
4302          * If the image supports layering, get the parent info.  We
4303          * need to probe the first time regardless.  Thereafter we
4304          * only need to if there's a parent, to see if it has
4305          * disappeared due to the mapped image getting flattened.
4306          */
4307         if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4308                         (first_time || rbd_dev->parent_spec)) {
4309                 bool warn;
4310
4311                 ret = rbd_dev_v2_parent_info(rbd_dev);
4312                 if (ret)
4313                         goto out;
4314
4315                 /*
4316                  * Print a warning if this is the initial probe and
4317                  * the image has a parent.  Don't print it if the
4318                  * image now being probed is itself a parent.  We
4319                  * can tell at this point because we won't know its
4320                  * pool name yet (just its pool id).
4321                  */
4322                 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4323                 if (first_time && warn)
4324                         rbd_warn(rbd_dev, "WARNING: kernel layering "
4325                                         "is EXPERIMENTAL!");
4326         }
4327
4328         if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4329                 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4330                         rbd_dev->mapping.size = rbd_dev->header.image_size;
4331
4332         ret = rbd_dev_v2_snap_context(rbd_dev);
4333         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4334 out:
4335         up_write(&rbd_dev->header_rwsem);
4336
4337         return ret;
4338 }
4339
4340 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4341 {
4342         struct device *dev;
4343         int ret;
4344
4345         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4346
4347         dev = &rbd_dev->dev;
4348         dev->bus = &rbd_bus_type;
4349         dev->type = &rbd_device_type;
4350         dev->parent = &rbd_root_dev;
4351         dev->release = rbd_dev_device_release;
4352         dev_set_name(dev, "%d", rbd_dev->dev_id);
4353         ret = device_register(dev);
4354
4355         mutex_unlock(&ctl_mutex);
4356
4357         return ret;
4358 }
4359
4360 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4361 {
4362         device_unregister(&rbd_dev->dev);
4363 }
4364
4365 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4366
4367 /*
4368  * Get a unique rbd identifier for the given new rbd_dev, and add
4369  * the rbd_dev to the global list.  The minimum rbd id is 1.
4370  */
4371 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4372 {
4373         rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4374
4375         spin_lock(&rbd_dev_list_lock);
4376         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4377         spin_unlock(&rbd_dev_list_lock);
4378         dout("rbd_dev %p given dev id %llu\n", rbd_dev,
4379                 (unsigned long long) rbd_dev->dev_id);
4380 }
4381
4382 /*
4383  * Remove an rbd_dev from the global list, and record that its
4384  * identifier is no longer in use.
4385  */
4386 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4387 {
4388         struct list_head *tmp;
4389         int rbd_id = rbd_dev->dev_id;
4390         int max_id;
4391
4392         rbd_assert(rbd_id > 0);
4393
4394         dout("rbd_dev %p released dev id %llu\n", rbd_dev,
4395                 (unsigned long long) rbd_dev->dev_id);
4396         spin_lock(&rbd_dev_list_lock);
4397         list_del_init(&rbd_dev->node);
4398
4399         /*
4400          * If the id being "put" is not the current maximum, there
4401          * is nothing special we need to do.
4402          */
4403         if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4404                 spin_unlock(&rbd_dev_list_lock);
4405                 return;
4406         }
4407
4408         /*
4409          * We need to update the current maximum id.  Search the
4410          * list to find out what it is.  We're more likely to find
4411          * the maximum at the end, so search the list backward.
4412          */
4413         max_id = 0;
4414         list_for_each_prev(tmp, &rbd_dev_list) {
4415                 struct rbd_device *rbd_dev;
4416
4417                 rbd_dev = list_entry(tmp, struct rbd_device, node);
4418                 if (rbd_dev->dev_id > max_id)
4419                         max_id = rbd_dev->dev_id;
4420         }
4421         spin_unlock(&rbd_dev_list_lock);
4422
4423         /*
4424          * The max id could have been updated by rbd_dev_id_get(), in
4425          * which case it now accurately reflects the new maximum.
4426          * Be careful not to overwrite the maximum value in that
4427          * case.
4428          */
4429         atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4430         dout("  max dev id has been reset\n");
4431 }
4432
4433 /*
4434  * Skips over white space at *buf, and updates *buf to point to the
4435  * first found non-space character (if any). Returns the length of
4436  * the token (string of non-white space characters) found.  Note
4437  * that *buf must be terminated with '\0'.
4438  */
4439 static inline size_t next_token(const char **buf)
4440 {
4441         /*
4442         * These are the characters that produce nonzero for
4443         * isspace() in the "C" and "POSIX" locales.
4444         */
4445         const char *spaces = " \f\n\r\t\v";
4446
4447         *buf += strspn(*buf, spaces);   /* Find start of token */
4448
4449         return strcspn(*buf, spaces);   /* Return token length */
4450 }
4451
4452 /*
4453  * Finds the next token in *buf, and if the provided token buffer is
4454  * big enough, copies the found token into it.  The result, if
4455  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4456  * must be terminated with '\0' on entry.
4457  *
4458  * Returns the length of the token found (not including the '\0').
4459  * Return value will be 0 if no token is found, and it will be >=
4460  * token_size if the token would not fit.
4461  *
4462  * The *buf pointer will be updated to point beyond the end of the
4463  * found token.  Note that this occurs even if the token buffer is
4464  * too small to hold it.
4465  */
4466 static inline size_t copy_token(const char **buf,
4467                                 char *token,
4468                                 size_t token_size)
4469 {
4470         size_t len;
4471
4472         len = next_token(buf);
4473         if (len < token_size) {
4474                 memcpy(token, *buf, len);
4475                 *(token + len) = '\0';
4476         }
4477         *buf += len;
4478
4479         return len;
4480 }
4481
4482 /*
4483  * Finds the next token in *buf, dynamically allocates a buffer big
4484  * enough to hold a copy of it, and copies the token into the new
4485  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4486  * that a duplicate buffer is created even for a zero-length token.
4487  *
4488  * Returns a pointer to the newly-allocated duplicate, or a null
4489  * pointer if memory for the duplicate was not available.  If
4490  * the lenp argument is a non-null pointer, the length of the token
4491  * (not including the '\0') is returned in *lenp.
4492  *
4493  * If successful, the *buf pointer will be updated to point beyond
4494  * the end of the found token.
4495  *
4496  * Note: uses GFP_KERNEL for allocation.
4497  */
4498 static inline char *dup_token(const char **buf, size_t *lenp)
4499 {
4500         char *dup;
4501         size_t len;
4502
4503         len = next_token(buf);
4504         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4505         if (!dup)
4506                 return NULL;
4507         *(dup + len) = '\0';
4508         *buf += len;
4509
4510         if (lenp)
4511                 *lenp = len;
4512
4513         return dup;
4514 }
4515
4516 /*
4517  * Parse the options provided for an "rbd add" (i.e., rbd image
4518  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4519  * and the data written is passed here via a NUL-terminated buffer.
4520  * Returns 0 if successful or an error code otherwise.
4521  *
4522  * The information extracted from these options is recorded in
4523  * the other parameters which return dynamically-allocated
4524  * structures:
4525  *  ceph_opts
4526  *      The address of a pointer that will refer to a ceph options
4527  *      structure.  Caller must release the returned pointer using
4528  *      ceph_destroy_options() when it is no longer needed.
4529  *  rbd_opts
4530  *      Address of an rbd options pointer.  Fully initialized by
4531  *      this function; caller must release with kfree().
4532  *  spec
4533  *      Address of an rbd image specification pointer.  Fully
4534  *      initialized by this function based on parsed options.
4535  *      Caller must release with rbd_spec_put().
4536  *
4537  * The options passed take this form:
4538  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4539  * where:
4540  *  <mon_addrs>
4541  *      A comma-separated list of one or more monitor addresses.
4542  *      A monitor address is an ip address, optionally followed
4543  *      by a port number (separated by a colon).
4544  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4545  *  <options>
4546  *      A comma-separated list of ceph and/or rbd options.
4547  *  <pool_name>
4548  *      The name of the rados pool containing the rbd image.
4549  *  <image_name>
4550  *      The name of the image in that pool to map.
4551  *  <snap_id>
4552  *      An optional snapshot id.  If provided, the mapping will
4553  *      present data from the image at the time that snapshot was
4554  *      created.  The image head is used if no snapshot id is
4555  *      provided.  Snapshot mappings are always read-only.
4556  */
4557 static int rbd_add_parse_args(const char *buf,
4558                                 struct ceph_options **ceph_opts,
4559                                 struct rbd_options **opts,
4560                                 struct rbd_spec **rbd_spec)
4561 {
4562         size_t len;
4563         char *options;
4564         const char *mon_addrs;
4565         char *snap_name;
4566         size_t mon_addrs_size;
4567         struct rbd_spec *spec = NULL;
4568         struct rbd_options *rbd_opts = NULL;
4569         struct ceph_options *copts;
4570         int ret;
4571
4572         /* The first four tokens are required */
4573
4574         len = next_token(&buf);
4575         if (!len) {
4576                 rbd_warn(NULL, "no monitor address(es) provided");
4577                 return -EINVAL;
4578         }
4579         mon_addrs = buf;
4580         mon_addrs_size = len + 1;
4581         buf += len;
4582
4583         ret = -EINVAL;
4584         options = dup_token(&buf, NULL);
4585         if (!options)
4586                 return -ENOMEM;
4587         if (!*options) {
4588                 rbd_warn(NULL, "no options provided");
4589                 goto out_err;
4590         }
4591
4592         spec = rbd_spec_alloc();
4593         if (!spec)
4594                 goto out_mem;
4595
4596         spec->pool_name = dup_token(&buf, NULL);
4597         if (!spec->pool_name)
4598                 goto out_mem;
4599         if (!*spec->pool_name) {
4600                 rbd_warn(NULL, "no pool name provided");
4601                 goto out_err;
4602         }
4603
4604         spec->image_name = dup_token(&buf, NULL);
4605         if (!spec->image_name)
4606                 goto out_mem;
4607         if (!*spec->image_name) {
4608                 rbd_warn(NULL, "no image name provided");
4609                 goto out_err;
4610         }
4611
4612         /*
4613          * Snapshot name is optional; default is to use "-"
4614          * (indicating the head/no snapshot).
4615          */
4616         len = next_token(&buf);
4617         if (!len) {
4618                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4619                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4620         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4621                 ret = -ENAMETOOLONG;
4622                 goto out_err;
4623         }
4624         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4625         if (!snap_name)
4626                 goto out_mem;
4627         *(snap_name + len) = '\0';
4628         spec->snap_name = snap_name;
4629
4630         /* Initialize all rbd options to the defaults */
4631
4632         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4633         if (!rbd_opts)
4634                 goto out_mem;
4635
4636         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4637
4638         copts = ceph_parse_options(options, mon_addrs,
4639                                         mon_addrs + mon_addrs_size - 1,
4640                                         parse_rbd_opts_token, rbd_opts);
4641         if (IS_ERR(copts)) {
4642                 ret = PTR_ERR(copts);
4643                 goto out_err;
4644         }
4645         kfree(options);
4646
4647         *ceph_opts = copts;
4648         *opts = rbd_opts;
4649         *rbd_spec = spec;
4650
4651         return 0;
4652 out_mem:
4653         ret = -ENOMEM;
4654 out_err:
4655         kfree(rbd_opts);
4656         rbd_spec_put(spec);
4657         kfree(options);
4658
4659         return ret;
4660 }
4661
4662 /*
4663  * An rbd format 2 image has a unique identifier, distinct from the
4664  * name given to it by the user.  Internally, that identifier is
4665  * what's used to specify the names of objects related to the image.
4666  *
4667  * A special "rbd id" object is used to map an rbd image name to its
4668  * id.  If that object doesn't exist, then there is no v2 rbd image
4669  * with the supplied name.
4670  *
4671  * This function will record the given rbd_dev's image_id field if
4672  * it can be determined, and in that case will return 0.  If any
4673  * errors occur a negative errno will be returned and the rbd_dev's
4674  * image_id field will be unchanged (and should be NULL).
4675  */
4676 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4677 {
4678         int ret;
4679         size_t size;
4680         char *object_name;
4681         void *response;
4682         char *image_id;
4683
4684         /*
4685          * When probing a parent image, the image id is already
4686          * known (and the image name likely is not).  There's no
4687          * need to fetch the image id again in this case.  We
4688          * do still need to set the image format though.
4689          */
4690         if (rbd_dev->spec->image_id) {
4691                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4692
4693                 return 0;
4694         }
4695
4696         /*
4697          * First, see if the format 2 image id file exists, and if
4698          * so, get the image's persistent id from it.
4699          */
4700         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4701         object_name = kmalloc(size, GFP_NOIO);
4702         if (!object_name)
4703                 return -ENOMEM;
4704         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4705         dout("rbd id object name is %s\n", object_name);
4706
4707         /* Response will be an encoded string, which includes a length */
4708
4709         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4710         response = kzalloc(size, GFP_NOIO);
4711         if (!response) {
4712                 ret = -ENOMEM;
4713                 goto out;
4714         }
4715
4716         /* If it doesn't exist we'll assume it's a format 1 image */
4717
4718         ret = rbd_obj_method_sync(rbd_dev, object_name,
4719                                 "rbd", "get_id", NULL, 0,
4720                                 response, RBD_IMAGE_ID_LEN_MAX);
4721         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4722         if (ret == -ENOENT) {
4723                 image_id = kstrdup("", GFP_KERNEL);
4724                 ret = image_id ? 0 : -ENOMEM;
4725                 if (!ret)
4726                         rbd_dev->image_format = 1;
4727         } else if (ret > sizeof (__le32)) {
4728                 void *p = response;
4729
4730                 image_id = ceph_extract_encoded_string(&p, p + ret,
4731                                                 NULL, GFP_NOIO);
4732                 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4733                 if (!ret)
4734                         rbd_dev->image_format = 2;
4735         } else {
4736                 ret = -EINVAL;
4737         }
4738
4739         if (!ret) {
4740                 rbd_dev->spec->image_id = image_id;
4741                 dout("image_id is %s\n", image_id);
4742         }
4743 out:
4744         kfree(response);
4745         kfree(object_name);
4746
4747         return ret;
4748 }
4749
4750 /*
4751  * Undo whatever state changes are made by v1 or v2 header info
4752  * call.
4753  */
4754 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4755 {
4756         struct rbd_image_header *header;
4757
4758         /* Drop parent reference unless it's already been done (or none) */
4759
4760         if (rbd_dev->parent_overlap)
4761                 rbd_dev_parent_put(rbd_dev);
4762
4763         /* Free dynamic fields from the header, then zero it out */
4764
4765         header = &rbd_dev->header;
4766         ceph_put_snap_context(header->snapc);
4767         kfree(header->snap_sizes);
4768         kfree(header->snap_names);
4769         kfree(header->object_prefix);
4770         memset(header, 0, sizeof (*header));
4771 }
4772
4773 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4774 {
4775         int ret;
4776
4777         ret = rbd_dev_v2_object_prefix(rbd_dev);
4778         if (ret)
4779                 goto out_err;
4780
4781         /*
4782          * Get the and check features for the image.  Currently the
4783          * features are assumed to never change.
4784          */
4785         ret = rbd_dev_v2_features(rbd_dev);
4786         if (ret)
4787                 goto out_err;
4788
4789         /* If the image supports fancy striping, get its parameters */
4790
4791         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4792                 ret = rbd_dev_v2_striping_info(rbd_dev);
4793                 if (ret < 0)
4794                         goto out_err;
4795         }
4796         /* No support for crypto and compression type format 2 images */
4797
4798         return 0;
4799 out_err:
4800         rbd_dev->header.features = 0;
4801         kfree(rbd_dev->header.object_prefix);
4802         rbd_dev->header.object_prefix = NULL;
4803
4804         return ret;
4805 }
4806
4807 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4808 {
4809         struct rbd_device *parent = NULL;
4810         struct rbd_spec *parent_spec;
4811         struct rbd_client *rbdc;
4812         int ret;
4813
4814         if (!rbd_dev->parent_spec)
4815                 return 0;
4816         /*
4817          * We need to pass a reference to the client and the parent
4818          * spec when creating the parent rbd_dev.  Images related by
4819          * parent/child relationships always share both.
4820          */
4821         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4822         rbdc = __rbd_get_client(rbd_dev->rbd_client);
4823
4824         ret = -ENOMEM;
4825         parent = rbd_dev_create(rbdc, parent_spec);
4826         if (!parent)
4827                 goto out_err;
4828
4829         ret = rbd_dev_image_probe(parent, false);
4830         if (ret < 0)
4831                 goto out_err;
4832         rbd_dev->parent = parent;
4833         atomic_set(&rbd_dev->parent_ref, 1);
4834
4835         return 0;
4836 out_err:
4837         if (parent) {
4838                 rbd_dev_unparent(rbd_dev);
4839                 kfree(rbd_dev->header_name);
4840                 rbd_dev_destroy(parent);
4841         } else {
4842                 rbd_put_client(rbdc);
4843                 rbd_spec_put(parent_spec);
4844         }
4845
4846         return ret;
4847 }
4848
4849 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4850 {
4851         int ret;
4852
4853         /* generate unique id: find highest unique id, add one */
4854         rbd_dev_id_get(rbd_dev);
4855
4856         /* Fill in the device name, now that we have its id. */
4857         BUILD_BUG_ON(DEV_NAME_LEN
4858                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4859         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4860
4861         /* Get our block major device number. */
4862
4863         ret = register_blkdev(0, rbd_dev->name);
4864         if (ret < 0)
4865                 goto err_out_id;
4866         rbd_dev->major = ret;
4867
4868         /* Set up the blkdev mapping. */
4869
4870         ret = rbd_init_disk(rbd_dev);
4871         if (ret)
4872                 goto err_out_blkdev;
4873
4874         ret = rbd_dev_mapping_set(rbd_dev);
4875         if (ret)
4876                 goto err_out_disk;
4877         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4878
4879         ret = rbd_bus_add_dev(rbd_dev);
4880         if (ret)
4881                 goto err_out_mapping;
4882
4883         /* Everything's ready.  Announce the disk to the world. */
4884
4885         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4886         add_disk(rbd_dev->disk);
4887
4888         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4889                 (unsigned long long) rbd_dev->mapping.size);
4890
4891         return ret;
4892
4893 err_out_mapping:
4894         rbd_dev_mapping_clear(rbd_dev);
4895 err_out_disk:
4896         rbd_free_disk(rbd_dev);
4897 err_out_blkdev:
4898         unregister_blkdev(rbd_dev->major, rbd_dev->name);
4899 err_out_id:
4900         rbd_dev_id_put(rbd_dev);
4901         rbd_dev_mapping_clear(rbd_dev);
4902
4903         return ret;
4904 }
4905
4906 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4907 {
4908         struct rbd_spec *spec = rbd_dev->spec;
4909         size_t size;
4910
4911         /* Record the header object name for this rbd image. */
4912
4913         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4914
4915         if (rbd_dev->image_format == 1)
4916                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4917         else
4918                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4919
4920         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4921         if (!rbd_dev->header_name)
4922                 return -ENOMEM;
4923
4924         if (rbd_dev->image_format == 1)
4925                 sprintf(rbd_dev->header_name, "%s%s",
4926                         spec->image_name, RBD_SUFFIX);
4927         else
4928                 sprintf(rbd_dev->header_name, "%s%s",
4929                         RBD_HEADER_PREFIX, spec->image_id);
4930         return 0;
4931 }
4932
4933 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4934 {
4935         rbd_dev_unprobe(rbd_dev);
4936         kfree(rbd_dev->header_name);
4937         rbd_dev->header_name = NULL;
4938         rbd_dev->image_format = 0;
4939         kfree(rbd_dev->spec->image_id);
4940         rbd_dev->spec->image_id = NULL;
4941
4942         rbd_dev_destroy(rbd_dev);
4943 }
4944
4945 /*
4946  * Probe for the existence of the header object for the given rbd
4947  * device.  If this image is the one being mapped (i.e., not a
4948  * parent), initiate a watch on its header object before using that
4949  * object to get detailed information about the rbd image.
4950  */
4951 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
4952 {
4953         int ret;
4954         int tmp;
4955
4956         /*
4957          * Get the id from the image id object.  Unless there's an
4958          * error, rbd_dev->spec->image_id will be filled in with
4959          * a dynamically-allocated string, and rbd_dev->image_format
4960          * will be set to either 1 or 2.
4961          */
4962         ret = rbd_dev_image_id(rbd_dev);
4963         if (ret)
4964                 return ret;
4965         rbd_assert(rbd_dev->spec->image_id);
4966         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4967
4968         ret = rbd_dev_header_name(rbd_dev);
4969         if (ret)
4970                 goto err_out_format;
4971
4972         if (mapping) {
4973                 ret = rbd_dev_header_watch_sync(rbd_dev, true);
4974                 if (ret)
4975                         goto out_header_name;
4976         }
4977
4978         if (rbd_dev->image_format == 1)
4979                 ret = rbd_dev_v1_header_info(rbd_dev);
4980         else
4981                 ret = rbd_dev_v2_header_info(rbd_dev);
4982         if (ret)
4983                 goto err_out_watch;
4984
4985         ret = rbd_dev_spec_update(rbd_dev);
4986         if (ret)
4987                 goto err_out_probe;
4988
4989         ret = rbd_dev_probe_parent(rbd_dev);
4990         if (ret)
4991                 goto err_out_probe;
4992
4993         dout("discovered format %u image, header name is %s\n",
4994                 rbd_dev->image_format, rbd_dev->header_name);
4995
4996         return 0;
4997 err_out_probe:
4998         rbd_dev_unprobe(rbd_dev);
4999 err_out_watch:
5000         if (mapping) {
5001                 tmp = rbd_dev_header_watch_sync(rbd_dev, false);
5002                 if (tmp)
5003                         rbd_warn(rbd_dev, "unable to tear down "
5004                                         "watch request (%d)\n", tmp);
5005         }
5006 out_header_name:
5007         kfree(rbd_dev->header_name);
5008         rbd_dev->header_name = NULL;
5009 err_out_format:
5010         rbd_dev->image_format = 0;
5011         kfree(rbd_dev->spec->image_id);
5012         rbd_dev->spec->image_id = NULL;
5013
5014         dout("probe failed, returning %d\n", ret);
5015
5016         return ret;
5017 }
5018
5019 static ssize_t rbd_add(struct bus_type *bus,
5020                        const char *buf,
5021                        size_t count)
5022 {
5023         struct rbd_device *rbd_dev = NULL;
5024         struct ceph_options *ceph_opts = NULL;
5025         struct rbd_options *rbd_opts = NULL;
5026         struct rbd_spec *spec = NULL;
5027         struct rbd_client *rbdc;
5028         struct ceph_osd_client *osdc;
5029         bool read_only;
5030         int rc = -ENOMEM;
5031
5032         if (!try_module_get(THIS_MODULE))
5033                 return -ENODEV;
5034
5035         /* parse add command */
5036         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5037         if (rc < 0)
5038                 goto err_out_module;
5039         read_only = rbd_opts->read_only;
5040         kfree(rbd_opts);
5041         rbd_opts = NULL;        /* done with this */
5042
5043         rbdc = rbd_get_client(ceph_opts);
5044         if (IS_ERR(rbdc)) {
5045                 rc = PTR_ERR(rbdc);
5046                 goto err_out_args;
5047         }
5048
5049         /* pick the pool */
5050         osdc = &rbdc->client->osdc;
5051         rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
5052         if (rc < 0)
5053                 goto err_out_client;
5054         spec->pool_id = (u64)rc;
5055
5056         /* The ceph file layout needs to fit pool id in 32 bits */
5057
5058         if (spec->pool_id > (u64)U32_MAX) {
5059                 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5060                                 (unsigned long long)spec->pool_id, U32_MAX);
5061                 rc = -EIO;
5062                 goto err_out_client;
5063         }
5064
5065         rbd_dev = rbd_dev_create(rbdc, spec);
5066         if (!rbd_dev)
5067                 goto err_out_client;
5068         rbdc = NULL;            /* rbd_dev now owns this */
5069         spec = NULL;            /* rbd_dev now owns this */
5070
5071         rc = rbd_dev_image_probe(rbd_dev, true);
5072         if (rc < 0)
5073                 goto err_out_rbd_dev;
5074
5075         /* If we are mapping a snapshot it must be marked read-only */
5076
5077         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5078                 read_only = true;
5079         rbd_dev->mapping.read_only = read_only;
5080
5081         rc = rbd_dev_device_setup(rbd_dev);
5082         if (rc) {
5083                 rbd_dev_image_release(rbd_dev);
5084                 goto err_out_module;
5085         }
5086
5087         return count;
5088
5089 err_out_rbd_dev:
5090         rbd_dev_destroy(rbd_dev);
5091 err_out_client:
5092         rbd_put_client(rbdc);
5093 err_out_args:
5094         rbd_spec_put(spec);
5095 err_out_module:
5096         module_put(THIS_MODULE);
5097
5098         dout("Error adding device %s\n", buf);
5099
5100         return (ssize_t)rc;
5101 }
5102
5103 static void rbd_dev_device_release(struct device *dev)
5104 {
5105         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5106
5107         rbd_free_disk(rbd_dev);
5108         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5109         rbd_dev_mapping_clear(rbd_dev);
5110         unregister_blkdev(rbd_dev->major, rbd_dev->name);
5111         rbd_dev->major = 0;
5112         rbd_dev_id_put(rbd_dev);
5113         rbd_dev_mapping_clear(rbd_dev);
5114 }
5115
5116 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5117 {
5118         while (rbd_dev->parent) {
5119                 struct rbd_device *first = rbd_dev;
5120                 struct rbd_device *second = first->parent;
5121                 struct rbd_device *third;
5122
5123                 /*
5124                  * Follow to the parent with no grandparent and
5125                  * remove it.
5126                  */
5127                 while (second && (third = second->parent)) {
5128                         first = second;
5129                         second = third;
5130                 }
5131                 rbd_assert(second);
5132                 rbd_dev_image_release(second);
5133                 first->parent = NULL;
5134                 first->parent_overlap = 0;
5135
5136                 rbd_assert(first->parent_spec);
5137                 rbd_spec_put(first->parent_spec);
5138                 first->parent_spec = NULL;
5139         }
5140 }
5141
5142 static ssize_t rbd_remove(struct bus_type *bus,
5143                           const char *buf,
5144                           size_t count)
5145 {
5146         struct rbd_device *rbd_dev = NULL;
5147         struct list_head *tmp;
5148         int dev_id;
5149         unsigned long ul;
5150         bool already = false;
5151         int ret;
5152
5153         ret = strict_strtoul(buf, 10, &ul);
5154         if (ret)
5155                 return ret;
5156
5157         /* convert to int; abort if we lost anything in the conversion */
5158         dev_id = (int)ul;
5159         if (dev_id != ul)
5160                 return -EINVAL;
5161
5162         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
5163
5164         ret = -ENOENT;
5165         spin_lock(&rbd_dev_list_lock);
5166         list_for_each(tmp, &rbd_dev_list) {
5167                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5168                 if (rbd_dev->dev_id == dev_id) {
5169                         ret = 0;
5170                         break;
5171                 }
5172         }
5173         if (!ret) {
5174                 spin_lock_irq(&rbd_dev->lock);
5175                 if (rbd_dev->open_count)
5176                         ret = -EBUSY;
5177                 else
5178                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5179                                                         &rbd_dev->flags);
5180                 spin_unlock_irq(&rbd_dev->lock);
5181         }
5182         spin_unlock(&rbd_dev_list_lock);
5183         if (ret < 0 || already)
5184                 goto done;
5185
5186         ret = rbd_dev_header_watch_sync(rbd_dev, false);
5187         if (ret)
5188                 rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret);
5189
5190         /*
5191          * flush remaining watch callbacks - these must be complete
5192          * before the osd_client is shutdown
5193          */
5194         dout("%s: flushing notifies", __func__);
5195         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5196         /*
5197          * Don't free anything from rbd_dev->disk until after all
5198          * notifies are completely processed. Otherwise
5199          * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5200          * in a potential use after free of rbd_dev->disk or rbd_dev.
5201          */
5202         rbd_bus_del_dev(rbd_dev);
5203         rbd_dev_image_release(rbd_dev);
5204         module_put(THIS_MODULE);
5205         ret = count;
5206 done:
5207         mutex_unlock(&ctl_mutex);
5208
5209         return ret;
5210 }
5211
5212 /*
5213  * create control files in sysfs
5214  * /sys/bus/rbd/...
5215  */
5216 static int rbd_sysfs_init(void)
5217 {
5218         int ret;
5219
5220         ret = device_register(&rbd_root_dev);
5221         if (ret < 0)
5222                 return ret;
5223
5224         ret = bus_register(&rbd_bus_type);
5225         if (ret < 0)
5226                 device_unregister(&rbd_root_dev);
5227
5228         return ret;
5229 }
5230
5231 static void rbd_sysfs_cleanup(void)
5232 {
5233         bus_unregister(&rbd_bus_type);
5234         device_unregister(&rbd_root_dev);
5235 }
5236
5237 static int rbd_slab_init(void)
5238 {
5239         rbd_assert(!rbd_img_request_cache);
5240         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5241                                         sizeof (struct rbd_img_request),
5242                                         __alignof__(struct rbd_img_request),
5243                                         0, NULL);
5244         if (!rbd_img_request_cache)
5245                 return -ENOMEM;
5246
5247         rbd_assert(!rbd_obj_request_cache);
5248         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5249                                         sizeof (struct rbd_obj_request),
5250                                         __alignof__(struct rbd_obj_request),
5251                                         0, NULL);
5252         if (!rbd_obj_request_cache)
5253                 goto out_err;
5254
5255         rbd_assert(!rbd_segment_name_cache);
5256         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5257                                         MAX_OBJ_NAME_SIZE + 1, 1, 0, NULL);
5258         if (rbd_segment_name_cache)
5259                 return 0;
5260 out_err:
5261         if (rbd_obj_request_cache) {
5262                 kmem_cache_destroy(rbd_obj_request_cache);
5263                 rbd_obj_request_cache = NULL;
5264         }
5265
5266         kmem_cache_destroy(rbd_img_request_cache);
5267         rbd_img_request_cache = NULL;
5268
5269         return -ENOMEM;
5270 }
5271
5272 static void rbd_slab_exit(void)
5273 {
5274         rbd_assert(rbd_segment_name_cache);
5275         kmem_cache_destroy(rbd_segment_name_cache);
5276         rbd_segment_name_cache = NULL;
5277
5278         rbd_assert(rbd_obj_request_cache);
5279         kmem_cache_destroy(rbd_obj_request_cache);
5280         rbd_obj_request_cache = NULL;
5281
5282         rbd_assert(rbd_img_request_cache);
5283         kmem_cache_destroy(rbd_img_request_cache);
5284         rbd_img_request_cache = NULL;
5285 }
5286
5287 static int __init rbd_init(void)
5288 {
5289         int rc;
5290
5291         if (!libceph_compatible(NULL)) {
5292                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5293
5294                 return -EINVAL;
5295         }
5296         rc = rbd_slab_init();
5297         if (rc)
5298                 return rc;
5299         rc = rbd_sysfs_init();
5300         if (rc)
5301                 rbd_slab_exit();
5302         else
5303                 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
5304
5305         return rc;
5306 }
5307
5308 static void __exit rbd_exit(void)
5309 {
5310         rbd_sysfs_cleanup();
5311         rbd_slab_exit();
5312 }
5313
5314 module_init(rbd_init);
5315 module_exit(rbd_exit);
5316
5317 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5318 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5319 MODULE_DESCRIPTION("rados block device");
5320
5321 /* following authorship retained from original osdblk.c */
5322 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5323
5324 MODULE_LICENSE("GPL");