rbd: show the entire chain of parent images
[firefly-linux-kernel-4.4.55.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44 #include <linux/idr.h>
45
46 #include "rbd_types.h"
47
48 #define RBD_DEBUG       /* Activate rbd_assert() calls */
49
50 /*
51  * The basic unit of block I/O is a sector.  It is interpreted in a
52  * number of contexts in Linux (blk, bio, genhd), but the default is
53  * universally 512 bytes.  These symbols are just slightly more
54  * meaningful than the bare numbers they represent.
55  */
56 #define SECTOR_SHIFT    9
57 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
58
59 /*
60  * Increment the given counter and return its updated value.
61  * If the counter is already 0 it will not be incremented.
62  * If the counter is already at its maximum value returns
63  * -EINVAL without updating it.
64  */
65 static int atomic_inc_return_safe(atomic_t *v)
66 {
67         unsigned int counter;
68
69         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
70         if (counter <= (unsigned int)INT_MAX)
71                 return (int)counter;
72
73         atomic_dec(v);
74
75         return -EINVAL;
76 }
77
78 /* Decrement the counter.  Return the resulting value, or -EINVAL */
79 static int atomic_dec_return_safe(atomic_t *v)
80 {
81         int counter;
82
83         counter = atomic_dec_return(v);
84         if (counter >= 0)
85                 return counter;
86
87         atomic_inc(v);
88
89         return -EINVAL;
90 }
91
92 #define RBD_DRV_NAME "rbd"
93
94 #define RBD_MINORS_PER_MAJOR            256
95 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
96
97 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
98 #define RBD_MAX_SNAP_NAME_LEN   \
99                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
100
101 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
102
103 #define RBD_SNAP_HEAD_NAME      "-"
104
105 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
106
107 /* This allows a single page to hold an image name sent by OSD */
108 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
109 #define RBD_IMAGE_ID_LEN_MAX    64
110
111 #define RBD_OBJ_PREFIX_LEN_MAX  64
112
113 /* Feature bits */
114
115 #define RBD_FEATURE_LAYERING    (1<<0)
116 #define RBD_FEATURE_STRIPINGV2  (1<<1)
117 #define RBD_FEATURES_ALL \
118             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
119
120 /* Features supported by this (client software) implementation. */
121
122 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
123
124 /*
125  * An RBD device name will be "rbd#", where the "rbd" comes from
126  * RBD_DRV_NAME above, and # is a unique integer identifier.
127  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
128  * enough to hold all possible device names.
129  */
130 #define DEV_NAME_LEN            32
131 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
132
133 /*
134  * block device image metadata (in-memory version)
135  */
136 struct rbd_image_header {
137         /* These six fields never change for a given rbd image */
138         char *object_prefix;
139         __u8 obj_order;
140         __u8 crypt_type;
141         __u8 comp_type;
142         u64 stripe_unit;
143         u64 stripe_count;
144         u64 features;           /* Might be changeable someday? */
145
146         /* The remaining fields need to be updated occasionally */
147         u64 image_size;
148         struct ceph_snap_context *snapc;
149         char *snap_names;       /* format 1 only */
150         u64 *snap_sizes;        /* format 1 only */
151 };
152
153 /*
154  * An rbd image specification.
155  *
156  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
157  * identify an image.  Each rbd_dev structure includes a pointer to
158  * an rbd_spec structure that encapsulates this identity.
159  *
160  * Each of the id's in an rbd_spec has an associated name.  For a
161  * user-mapped image, the names are supplied and the id's associated
162  * with them are looked up.  For a layered image, a parent image is
163  * defined by the tuple, and the names are looked up.
164  *
165  * An rbd_dev structure contains a parent_spec pointer which is
166  * non-null if the image it represents is a child in a layered
167  * image.  This pointer will refer to the rbd_spec structure used
168  * by the parent rbd_dev for its own identity (i.e., the structure
169  * is shared between the parent and child).
170  *
171  * Since these structures are populated once, during the discovery
172  * phase of image construction, they are effectively immutable so
173  * we make no effort to synchronize access to them.
174  *
175  * Note that code herein does not assume the image name is known (it
176  * could be a null pointer).
177  */
178 struct rbd_spec {
179         u64             pool_id;
180         const char      *pool_name;
181
182         const char      *image_id;
183         const char      *image_name;
184
185         u64             snap_id;
186         const char      *snap_name;
187
188         struct kref     kref;
189 };
190
191 /*
192  * an instance of the client.  multiple devices may share an rbd client.
193  */
194 struct rbd_client {
195         struct ceph_client      *client;
196         struct kref             kref;
197         struct list_head        node;
198 };
199
200 struct rbd_img_request;
201 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
202
203 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
204
205 struct rbd_obj_request;
206 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
207
208 enum obj_request_type {
209         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
210 };
211
212 enum obj_req_flags {
213         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
214         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
215         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
216         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
217 };
218
219 struct rbd_obj_request {
220         const char              *object_name;
221         u64                     offset;         /* object start byte */
222         u64                     length;         /* bytes from offset */
223         unsigned long           flags;
224
225         /*
226          * An object request associated with an image will have its
227          * img_data flag set; a standalone object request will not.
228          *
229          * A standalone object request will have which == BAD_WHICH
230          * and a null obj_request pointer.
231          *
232          * An object request initiated in support of a layered image
233          * object (to check for its existence before a write) will
234          * have which == BAD_WHICH and a non-null obj_request pointer.
235          *
236          * Finally, an object request for rbd image data will have
237          * which != BAD_WHICH, and will have a non-null img_request
238          * pointer.  The value of which will be in the range
239          * 0..(img_request->obj_request_count-1).
240          */
241         union {
242                 struct rbd_obj_request  *obj_request;   /* STAT op */
243                 struct {
244                         struct rbd_img_request  *img_request;
245                         u64                     img_offset;
246                         /* links for img_request->obj_requests list */
247                         struct list_head        links;
248                 };
249         };
250         u32                     which;          /* posn image request list */
251
252         enum obj_request_type   type;
253         union {
254                 struct bio      *bio_list;
255                 struct {
256                         struct page     **pages;
257                         u32             page_count;
258                 };
259         };
260         struct page             **copyup_pages;
261         u32                     copyup_page_count;
262
263         struct ceph_osd_request *osd_req;
264
265         u64                     xferred;        /* bytes transferred */
266         int                     result;
267
268         rbd_obj_callback_t      callback;
269         struct completion       completion;
270
271         struct kref             kref;
272 };
273
274 enum img_req_flags {
275         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
276         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
277         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
278 };
279
280 struct rbd_img_request {
281         struct rbd_device       *rbd_dev;
282         u64                     offset; /* starting image byte offset */
283         u64                     length; /* byte count from offset */
284         unsigned long           flags;
285         union {
286                 u64                     snap_id;        /* for reads */
287                 struct ceph_snap_context *snapc;        /* for writes */
288         };
289         union {
290                 struct request          *rq;            /* block request */
291                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
292         };
293         struct page             **copyup_pages;
294         u32                     copyup_page_count;
295         spinlock_t              completion_lock;/* protects next_completion */
296         u32                     next_completion;
297         rbd_img_callback_t      callback;
298         u64                     xferred;/* aggregate bytes transferred */
299         int                     result; /* first nonzero obj_request result */
300
301         u32                     obj_request_count;
302         struct list_head        obj_requests;   /* rbd_obj_request structs */
303
304         struct kref             kref;
305 };
306
307 #define for_each_obj_request(ireq, oreq) \
308         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
309 #define for_each_obj_request_from(ireq, oreq) \
310         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
311 #define for_each_obj_request_safe(ireq, oreq, n) \
312         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
313
314 struct rbd_mapping {
315         u64                     size;
316         u64                     features;
317         bool                    read_only;
318 };
319
320 /*
321  * a single device
322  */
323 struct rbd_device {
324         int                     dev_id;         /* blkdev unique id */
325
326         int                     major;          /* blkdev assigned major */
327         int                     minor;
328         struct gendisk          *disk;          /* blkdev's gendisk and rq */
329
330         u32                     image_format;   /* Either 1 or 2 */
331         struct rbd_client       *rbd_client;
332
333         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
334
335         spinlock_t              lock;           /* queue, flags, open_count */
336
337         struct rbd_image_header header;
338         unsigned long           flags;          /* possibly lock protected */
339         struct rbd_spec         *spec;
340
341         char                    *header_name;
342
343         struct ceph_file_layout layout;
344
345         struct ceph_osd_event   *watch_event;
346         struct rbd_obj_request  *watch_request;
347
348         struct rbd_spec         *parent_spec;
349         u64                     parent_overlap;
350         atomic_t                parent_ref;
351         struct rbd_device       *parent;
352
353         /* protects updating the header */
354         struct rw_semaphore     header_rwsem;
355
356         struct rbd_mapping      mapping;
357
358         struct list_head        node;
359
360         /* sysfs related */
361         struct device           dev;
362         unsigned long           open_count;     /* protected by lock */
363 };
364
365 /*
366  * Flag bits for rbd_dev->flags.  If atomicity is required,
367  * rbd_dev->lock is used to protect access.
368  *
369  * Currently, only the "removing" flag (which is coupled with the
370  * "open_count" field) requires atomic access.
371  */
372 enum rbd_dev_flags {
373         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
374         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
375 };
376
377 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
378
379 static LIST_HEAD(rbd_dev_list);    /* devices */
380 static DEFINE_SPINLOCK(rbd_dev_list_lock);
381
382 static LIST_HEAD(rbd_client_list);              /* clients */
383 static DEFINE_SPINLOCK(rbd_client_list_lock);
384
385 /* Slab caches for frequently-allocated structures */
386
387 static struct kmem_cache        *rbd_img_request_cache;
388 static struct kmem_cache        *rbd_obj_request_cache;
389 static struct kmem_cache        *rbd_segment_name_cache;
390
391 static int rbd_major;
392 static DEFINE_IDA(rbd_dev_id_ida);
393
394 /*
395  * Default to false for now, as single-major requires >= 0.75 version of
396  * userspace rbd utility.
397  */
398 static bool single_major = false;
399 module_param(single_major, bool, S_IRUGO);
400 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
401
402 static int rbd_img_request_submit(struct rbd_img_request *img_request);
403
404 static void rbd_dev_device_release(struct device *dev);
405
406 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
407                        size_t count);
408 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
409                           size_t count);
410 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
411                                     size_t count);
412 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
413                                        size_t count);
414 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
415 static void rbd_spec_put(struct rbd_spec *spec);
416
417 static int rbd_dev_id_to_minor(int dev_id)
418 {
419         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
420 }
421
422 static int minor_to_rbd_dev_id(int minor)
423 {
424         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
425 }
426
427 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
428 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
429 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
430 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
431
432 static struct attribute *rbd_bus_attrs[] = {
433         &bus_attr_add.attr,
434         &bus_attr_remove.attr,
435         &bus_attr_add_single_major.attr,
436         &bus_attr_remove_single_major.attr,
437         NULL,
438 };
439
440 static umode_t rbd_bus_is_visible(struct kobject *kobj,
441                                   struct attribute *attr, int index)
442 {
443         if (!single_major &&
444             (attr == &bus_attr_add_single_major.attr ||
445              attr == &bus_attr_remove_single_major.attr))
446                 return 0;
447
448         return attr->mode;
449 }
450
451 static const struct attribute_group rbd_bus_group = {
452         .attrs = rbd_bus_attrs,
453         .is_visible = rbd_bus_is_visible,
454 };
455 __ATTRIBUTE_GROUPS(rbd_bus);
456
457 static struct bus_type rbd_bus_type = {
458         .name           = "rbd",
459         .bus_groups     = rbd_bus_groups,
460 };
461
462 static void rbd_root_dev_release(struct device *dev)
463 {
464 }
465
466 static struct device rbd_root_dev = {
467         .init_name =    "rbd",
468         .release =      rbd_root_dev_release,
469 };
470
471 static __printf(2, 3)
472 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
473 {
474         struct va_format vaf;
475         va_list args;
476
477         va_start(args, fmt);
478         vaf.fmt = fmt;
479         vaf.va = &args;
480
481         if (!rbd_dev)
482                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
483         else if (rbd_dev->disk)
484                 printk(KERN_WARNING "%s: %s: %pV\n",
485                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
486         else if (rbd_dev->spec && rbd_dev->spec->image_name)
487                 printk(KERN_WARNING "%s: image %s: %pV\n",
488                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
489         else if (rbd_dev->spec && rbd_dev->spec->image_id)
490                 printk(KERN_WARNING "%s: id %s: %pV\n",
491                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
492         else    /* punt */
493                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
494                         RBD_DRV_NAME, rbd_dev, &vaf);
495         va_end(args);
496 }
497
498 #ifdef RBD_DEBUG
499 #define rbd_assert(expr)                                                \
500                 if (unlikely(!(expr))) {                                \
501                         printk(KERN_ERR "\nAssertion failure in %s() "  \
502                                                 "at line %d:\n\n"       \
503                                         "\trbd_assert(%s);\n\n",        \
504                                         __func__, __LINE__, #expr);     \
505                         BUG();                                          \
506                 }
507 #else /* !RBD_DEBUG */
508 #  define rbd_assert(expr)      ((void) 0)
509 #endif /* !RBD_DEBUG */
510
511 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
512 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
513 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
514
515 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
516 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
517 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
518 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
519                                         u64 snap_id);
520 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
521                                 u8 *order, u64 *snap_size);
522 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
523                 u64 *snap_features);
524 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
525
526 static int rbd_open(struct block_device *bdev, fmode_t mode)
527 {
528         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
529         bool removing = false;
530
531         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
532                 return -EROFS;
533
534         spin_lock_irq(&rbd_dev->lock);
535         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
536                 removing = true;
537         else
538                 rbd_dev->open_count++;
539         spin_unlock_irq(&rbd_dev->lock);
540         if (removing)
541                 return -ENOENT;
542
543         (void) get_device(&rbd_dev->dev);
544
545         return 0;
546 }
547
548 static void rbd_release(struct gendisk *disk, fmode_t mode)
549 {
550         struct rbd_device *rbd_dev = disk->private_data;
551         unsigned long open_count_before;
552
553         spin_lock_irq(&rbd_dev->lock);
554         open_count_before = rbd_dev->open_count--;
555         spin_unlock_irq(&rbd_dev->lock);
556         rbd_assert(open_count_before > 0);
557
558         put_device(&rbd_dev->dev);
559 }
560
561 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
562 {
563         int ret = 0;
564         int val;
565         bool ro;
566         bool ro_changed = false;
567
568         /* get_user() may sleep, so call it before taking rbd_dev->lock */
569         if (get_user(val, (int __user *)(arg)))
570                 return -EFAULT;
571
572         ro = val ? true : false;
573         /* Snapshot doesn't allow to write*/
574         if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
575                 return -EROFS;
576
577         spin_lock_irq(&rbd_dev->lock);
578         /* prevent others open this device */
579         if (rbd_dev->open_count > 1) {
580                 ret = -EBUSY;
581                 goto out;
582         }
583
584         if (rbd_dev->mapping.read_only != ro) {
585                 rbd_dev->mapping.read_only = ro;
586                 ro_changed = true;
587         }
588
589 out:
590         spin_unlock_irq(&rbd_dev->lock);
591         /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
592         if (ret == 0 && ro_changed)
593                 set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
594
595         return ret;
596 }
597
598 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
599                         unsigned int cmd, unsigned long arg)
600 {
601         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
602         int ret = 0;
603
604         switch (cmd) {
605         case BLKROSET:
606                 ret = rbd_ioctl_set_ro(rbd_dev, arg);
607                 break;
608         default:
609                 ret = -ENOTTY;
610         }
611
612         return ret;
613 }
614
615 #ifdef CONFIG_COMPAT
616 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
617                                 unsigned int cmd, unsigned long arg)
618 {
619         return rbd_ioctl(bdev, mode, cmd, arg);
620 }
621 #endif /* CONFIG_COMPAT */
622
623 static const struct block_device_operations rbd_bd_ops = {
624         .owner                  = THIS_MODULE,
625         .open                   = rbd_open,
626         .release                = rbd_release,
627         .ioctl                  = rbd_ioctl,
628 #ifdef CONFIG_COMPAT
629         .compat_ioctl           = rbd_compat_ioctl,
630 #endif
631 };
632
633 /*
634  * Initialize an rbd client instance.  Success or not, this function
635  * consumes ceph_opts.  Caller holds client_mutex.
636  */
637 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
638 {
639         struct rbd_client *rbdc;
640         int ret = -ENOMEM;
641
642         dout("%s:\n", __func__);
643         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
644         if (!rbdc)
645                 goto out_opt;
646
647         kref_init(&rbdc->kref);
648         INIT_LIST_HEAD(&rbdc->node);
649
650         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
651         if (IS_ERR(rbdc->client))
652                 goto out_rbdc;
653         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
654
655         ret = ceph_open_session(rbdc->client);
656         if (ret < 0)
657                 goto out_client;
658
659         spin_lock(&rbd_client_list_lock);
660         list_add_tail(&rbdc->node, &rbd_client_list);
661         spin_unlock(&rbd_client_list_lock);
662
663         dout("%s: rbdc %p\n", __func__, rbdc);
664
665         return rbdc;
666 out_client:
667         ceph_destroy_client(rbdc->client);
668 out_rbdc:
669         kfree(rbdc);
670 out_opt:
671         if (ceph_opts)
672                 ceph_destroy_options(ceph_opts);
673         dout("%s: error %d\n", __func__, ret);
674
675         return ERR_PTR(ret);
676 }
677
678 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
679 {
680         kref_get(&rbdc->kref);
681
682         return rbdc;
683 }
684
685 /*
686  * Find a ceph client with specific addr and configuration.  If
687  * found, bump its reference count.
688  */
689 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
690 {
691         struct rbd_client *client_node;
692         bool found = false;
693
694         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
695                 return NULL;
696
697         spin_lock(&rbd_client_list_lock);
698         list_for_each_entry(client_node, &rbd_client_list, node) {
699                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
700                         __rbd_get_client(client_node);
701
702                         found = true;
703                         break;
704                 }
705         }
706         spin_unlock(&rbd_client_list_lock);
707
708         return found ? client_node : NULL;
709 }
710
711 /*
712  * mount options
713  */
714 enum {
715         Opt_last_int,
716         /* int args above */
717         Opt_last_string,
718         /* string args above */
719         Opt_read_only,
720         Opt_read_write,
721         /* Boolean args above */
722         Opt_last_bool,
723 };
724
725 static match_table_t rbd_opts_tokens = {
726         /* int args above */
727         /* string args above */
728         {Opt_read_only, "read_only"},
729         {Opt_read_only, "ro"},          /* Alternate spelling */
730         {Opt_read_write, "read_write"},
731         {Opt_read_write, "rw"},         /* Alternate spelling */
732         /* Boolean args above */
733         {-1, NULL}
734 };
735
736 struct rbd_options {
737         bool    read_only;
738 };
739
740 #define RBD_READ_ONLY_DEFAULT   false
741
742 static int parse_rbd_opts_token(char *c, void *private)
743 {
744         struct rbd_options *rbd_opts = private;
745         substring_t argstr[MAX_OPT_ARGS];
746         int token, intval, ret;
747
748         token = match_token(c, rbd_opts_tokens, argstr);
749         if (token < 0)
750                 return -EINVAL;
751
752         if (token < Opt_last_int) {
753                 ret = match_int(&argstr[0], &intval);
754                 if (ret < 0) {
755                         pr_err("bad mount option arg (not int) "
756                                "at '%s'\n", c);
757                         return ret;
758                 }
759                 dout("got int token %d val %d\n", token, intval);
760         } else if (token > Opt_last_int && token < Opt_last_string) {
761                 dout("got string token %d val %s\n", token,
762                      argstr[0].from);
763         } else if (token > Opt_last_string && token < Opt_last_bool) {
764                 dout("got Boolean token %d\n", token);
765         } else {
766                 dout("got token %d\n", token);
767         }
768
769         switch (token) {
770         case Opt_read_only:
771                 rbd_opts->read_only = true;
772                 break;
773         case Opt_read_write:
774                 rbd_opts->read_only = false;
775                 break;
776         default:
777                 rbd_assert(false);
778                 break;
779         }
780         return 0;
781 }
782
783 /*
784  * Get a ceph client with specific addr and configuration, if one does
785  * not exist create it.  Either way, ceph_opts is consumed by this
786  * function.
787  */
788 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
789 {
790         struct rbd_client *rbdc;
791
792         mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
793         rbdc = rbd_client_find(ceph_opts);
794         if (rbdc)       /* using an existing client */
795                 ceph_destroy_options(ceph_opts);
796         else
797                 rbdc = rbd_client_create(ceph_opts);
798         mutex_unlock(&client_mutex);
799
800         return rbdc;
801 }
802
803 /*
804  * Destroy ceph client
805  *
806  * Caller must hold rbd_client_list_lock.
807  */
808 static void rbd_client_release(struct kref *kref)
809 {
810         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
811
812         dout("%s: rbdc %p\n", __func__, rbdc);
813         spin_lock(&rbd_client_list_lock);
814         list_del(&rbdc->node);
815         spin_unlock(&rbd_client_list_lock);
816
817         ceph_destroy_client(rbdc->client);
818         kfree(rbdc);
819 }
820
821 /*
822  * Drop reference to ceph client node. If it's not referenced anymore, release
823  * it.
824  */
825 static void rbd_put_client(struct rbd_client *rbdc)
826 {
827         if (rbdc)
828                 kref_put(&rbdc->kref, rbd_client_release);
829 }
830
831 static bool rbd_image_format_valid(u32 image_format)
832 {
833         return image_format == 1 || image_format == 2;
834 }
835
836 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
837 {
838         size_t size;
839         u32 snap_count;
840
841         /* The header has to start with the magic rbd header text */
842         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
843                 return false;
844
845         /* The bio layer requires at least sector-sized I/O */
846
847         if (ondisk->options.order < SECTOR_SHIFT)
848                 return false;
849
850         /* If we use u64 in a few spots we may be able to loosen this */
851
852         if (ondisk->options.order > 8 * sizeof (int) - 1)
853                 return false;
854
855         /*
856          * The size of a snapshot header has to fit in a size_t, and
857          * that limits the number of snapshots.
858          */
859         snap_count = le32_to_cpu(ondisk->snap_count);
860         size = SIZE_MAX - sizeof (struct ceph_snap_context);
861         if (snap_count > size / sizeof (__le64))
862                 return false;
863
864         /*
865          * Not only that, but the size of the entire the snapshot
866          * header must also be representable in a size_t.
867          */
868         size -= snap_count * sizeof (__le64);
869         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
870                 return false;
871
872         return true;
873 }
874
875 /*
876  * Fill an rbd image header with information from the given format 1
877  * on-disk header.
878  */
879 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
880                                  struct rbd_image_header_ondisk *ondisk)
881 {
882         struct rbd_image_header *header = &rbd_dev->header;
883         bool first_time = header->object_prefix == NULL;
884         struct ceph_snap_context *snapc;
885         char *object_prefix = NULL;
886         char *snap_names = NULL;
887         u64 *snap_sizes = NULL;
888         u32 snap_count;
889         size_t size;
890         int ret = -ENOMEM;
891         u32 i;
892
893         /* Allocate this now to avoid having to handle failure below */
894
895         if (first_time) {
896                 size_t len;
897
898                 len = strnlen(ondisk->object_prefix,
899                                 sizeof (ondisk->object_prefix));
900                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
901                 if (!object_prefix)
902                         return -ENOMEM;
903                 memcpy(object_prefix, ondisk->object_prefix, len);
904                 object_prefix[len] = '\0';
905         }
906
907         /* Allocate the snapshot context and fill it in */
908
909         snap_count = le32_to_cpu(ondisk->snap_count);
910         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
911         if (!snapc)
912                 goto out_err;
913         snapc->seq = le64_to_cpu(ondisk->snap_seq);
914         if (snap_count) {
915                 struct rbd_image_snap_ondisk *snaps;
916                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
917
918                 /* We'll keep a copy of the snapshot names... */
919
920                 if (snap_names_len > (u64)SIZE_MAX)
921                         goto out_2big;
922                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
923                 if (!snap_names)
924                         goto out_err;
925
926                 /* ...as well as the array of their sizes. */
927
928                 size = snap_count * sizeof (*header->snap_sizes);
929                 snap_sizes = kmalloc(size, GFP_KERNEL);
930                 if (!snap_sizes)
931                         goto out_err;
932
933                 /*
934                  * Copy the names, and fill in each snapshot's id
935                  * and size.
936                  *
937                  * Note that rbd_dev_v1_header_info() guarantees the
938                  * ondisk buffer we're working with has
939                  * snap_names_len bytes beyond the end of the
940                  * snapshot id array, this memcpy() is safe.
941                  */
942                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
943                 snaps = ondisk->snaps;
944                 for (i = 0; i < snap_count; i++) {
945                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
946                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
947                 }
948         }
949
950         /* We won't fail any more, fill in the header */
951
952         if (first_time) {
953                 header->object_prefix = object_prefix;
954                 header->obj_order = ondisk->options.order;
955                 header->crypt_type = ondisk->options.crypt_type;
956                 header->comp_type = ondisk->options.comp_type;
957                 /* The rest aren't used for format 1 images */
958                 header->stripe_unit = 0;
959                 header->stripe_count = 0;
960                 header->features = 0;
961         } else {
962                 ceph_put_snap_context(header->snapc);
963                 kfree(header->snap_names);
964                 kfree(header->snap_sizes);
965         }
966
967         /* The remaining fields always get updated (when we refresh) */
968
969         header->image_size = le64_to_cpu(ondisk->image_size);
970         header->snapc = snapc;
971         header->snap_names = snap_names;
972         header->snap_sizes = snap_sizes;
973
974         /* Make sure mapping size is consistent with header info */
975
976         if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
977                 if (rbd_dev->mapping.size != header->image_size)
978                         rbd_dev->mapping.size = header->image_size;
979
980         return 0;
981 out_2big:
982         ret = -EIO;
983 out_err:
984         kfree(snap_sizes);
985         kfree(snap_names);
986         ceph_put_snap_context(snapc);
987         kfree(object_prefix);
988
989         return ret;
990 }
991
992 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
993 {
994         const char *snap_name;
995
996         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
997
998         /* Skip over names until we find the one we are looking for */
999
1000         snap_name = rbd_dev->header.snap_names;
1001         while (which--)
1002                 snap_name += strlen(snap_name) + 1;
1003
1004         return kstrdup(snap_name, GFP_KERNEL);
1005 }
1006
1007 /*
1008  * Snapshot id comparison function for use with qsort()/bsearch().
1009  * Note that result is for snapshots in *descending* order.
1010  */
1011 static int snapid_compare_reverse(const void *s1, const void *s2)
1012 {
1013         u64 snap_id1 = *(u64 *)s1;
1014         u64 snap_id2 = *(u64 *)s2;
1015
1016         if (snap_id1 < snap_id2)
1017                 return 1;
1018         return snap_id1 == snap_id2 ? 0 : -1;
1019 }
1020
1021 /*
1022  * Search a snapshot context to see if the given snapshot id is
1023  * present.
1024  *
1025  * Returns the position of the snapshot id in the array if it's found,
1026  * or BAD_SNAP_INDEX otherwise.
1027  *
1028  * Note: The snapshot array is in kept sorted (by the osd) in
1029  * reverse order, highest snapshot id first.
1030  */
1031 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1032 {
1033         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1034         u64 *found;
1035
1036         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1037                                 sizeof (snap_id), snapid_compare_reverse);
1038
1039         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1040 }
1041
1042 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1043                                         u64 snap_id)
1044 {
1045         u32 which;
1046         const char *snap_name;
1047
1048         which = rbd_dev_snap_index(rbd_dev, snap_id);
1049         if (which == BAD_SNAP_INDEX)
1050                 return ERR_PTR(-ENOENT);
1051
1052         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1053         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1054 }
1055
1056 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1057 {
1058         if (snap_id == CEPH_NOSNAP)
1059                 return RBD_SNAP_HEAD_NAME;
1060
1061         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1062         if (rbd_dev->image_format == 1)
1063                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1064
1065         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1066 }
1067
1068 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1069                                 u64 *snap_size)
1070 {
1071         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1072         if (snap_id == CEPH_NOSNAP) {
1073                 *snap_size = rbd_dev->header.image_size;
1074         } else if (rbd_dev->image_format == 1) {
1075                 u32 which;
1076
1077                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1078                 if (which == BAD_SNAP_INDEX)
1079                         return -ENOENT;
1080
1081                 *snap_size = rbd_dev->header.snap_sizes[which];
1082         } else {
1083                 u64 size = 0;
1084                 int ret;
1085
1086                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1087                 if (ret)
1088                         return ret;
1089
1090                 *snap_size = size;
1091         }
1092         return 0;
1093 }
1094
1095 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1096                         u64 *snap_features)
1097 {
1098         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1099         if (snap_id == CEPH_NOSNAP) {
1100                 *snap_features = rbd_dev->header.features;
1101         } else if (rbd_dev->image_format == 1) {
1102                 *snap_features = 0;     /* No features for format 1 */
1103         } else {
1104                 u64 features = 0;
1105                 int ret;
1106
1107                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1108                 if (ret)
1109                         return ret;
1110
1111                 *snap_features = features;
1112         }
1113         return 0;
1114 }
1115
1116 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1117 {
1118         u64 snap_id = rbd_dev->spec->snap_id;
1119         u64 size = 0;
1120         u64 features = 0;
1121         int ret;
1122
1123         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1124         if (ret)
1125                 return ret;
1126         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1127         if (ret)
1128                 return ret;
1129
1130         rbd_dev->mapping.size = size;
1131         rbd_dev->mapping.features = features;
1132
1133         return 0;
1134 }
1135
1136 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1137 {
1138         rbd_dev->mapping.size = 0;
1139         rbd_dev->mapping.features = 0;
1140 }
1141
1142 static void rbd_segment_name_free(const char *name)
1143 {
1144         /* The explicit cast here is needed to drop the const qualifier */
1145
1146         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1147 }
1148
1149 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1150 {
1151         char *name;
1152         u64 segment;
1153         int ret;
1154         char *name_format;
1155
1156         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1157         if (!name)
1158                 return NULL;
1159         segment = offset >> rbd_dev->header.obj_order;
1160         name_format = "%s.%012llx";
1161         if (rbd_dev->image_format == 2)
1162                 name_format = "%s.%016llx";
1163         ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1164                         rbd_dev->header.object_prefix, segment);
1165         if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1166                 pr_err("error formatting segment name for #%llu (%d)\n",
1167                         segment, ret);
1168                 rbd_segment_name_free(name);
1169                 name = NULL;
1170         }
1171
1172         return name;
1173 }
1174
1175 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1176 {
1177         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1178
1179         return offset & (segment_size - 1);
1180 }
1181
1182 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1183                                 u64 offset, u64 length)
1184 {
1185         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1186
1187         offset &= segment_size - 1;
1188
1189         rbd_assert(length <= U64_MAX - offset);
1190         if (offset + length > segment_size)
1191                 length = segment_size - offset;
1192
1193         return length;
1194 }
1195
1196 /*
1197  * returns the size of an object in the image
1198  */
1199 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1200 {
1201         return 1 << header->obj_order;
1202 }
1203
1204 /*
1205  * bio helpers
1206  */
1207
1208 static void bio_chain_put(struct bio *chain)
1209 {
1210         struct bio *tmp;
1211
1212         while (chain) {
1213                 tmp = chain;
1214                 chain = chain->bi_next;
1215                 bio_put(tmp);
1216         }
1217 }
1218
1219 /*
1220  * zeros a bio chain, starting at specific offset
1221  */
1222 static void zero_bio_chain(struct bio *chain, int start_ofs)
1223 {
1224         struct bio_vec bv;
1225         struct bvec_iter iter;
1226         unsigned long flags;
1227         void *buf;
1228         int pos = 0;
1229
1230         while (chain) {
1231                 bio_for_each_segment(bv, chain, iter) {
1232                         if (pos + bv.bv_len > start_ofs) {
1233                                 int remainder = max(start_ofs - pos, 0);
1234                                 buf = bvec_kmap_irq(&bv, &flags);
1235                                 memset(buf + remainder, 0,
1236                                        bv.bv_len - remainder);
1237                                 flush_dcache_page(bv.bv_page);
1238                                 bvec_kunmap_irq(buf, &flags);
1239                         }
1240                         pos += bv.bv_len;
1241                 }
1242
1243                 chain = chain->bi_next;
1244         }
1245 }
1246
1247 /*
1248  * similar to zero_bio_chain(), zeros data defined by a page array,
1249  * starting at the given byte offset from the start of the array and
1250  * continuing up to the given end offset.  The pages array is
1251  * assumed to be big enough to hold all bytes up to the end.
1252  */
1253 static void zero_pages(struct page **pages, u64 offset, u64 end)
1254 {
1255         struct page **page = &pages[offset >> PAGE_SHIFT];
1256
1257         rbd_assert(end > offset);
1258         rbd_assert(end - offset <= (u64)SIZE_MAX);
1259         while (offset < end) {
1260                 size_t page_offset;
1261                 size_t length;
1262                 unsigned long flags;
1263                 void *kaddr;
1264
1265                 page_offset = offset & ~PAGE_MASK;
1266                 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1267                 local_irq_save(flags);
1268                 kaddr = kmap_atomic(*page);
1269                 memset(kaddr + page_offset, 0, length);
1270                 flush_dcache_page(*page);
1271                 kunmap_atomic(kaddr);
1272                 local_irq_restore(flags);
1273
1274                 offset += length;
1275                 page++;
1276         }
1277 }
1278
1279 /*
1280  * Clone a portion of a bio, starting at the given byte offset
1281  * and continuing for the number of bytes indicated.
1282  */
1283 static struct bio *bio_clone_range(struct bio *bio_src,
1284                                         unsigned int offset,
1285                                         unsigned int len,
1286                                         gfp_t gfpmask)
1287 {
1288         struct bio *bio;
1289
1290         bio = bio_clone(bio_src, gfpmask);
1291         if (!bio)
1292                 return NULL;    /* ENOMEM */
1293
1294         bio_advance(bio, offset);
1295         bio->bi_iter.bi_size = len;
1296
1297         return bio;
1298 }
1299
1300 /*
1301  * Clone a portion of a bio chain, starting at the given byte offset
1302  * into the first bio in the source chain and continuing for the
1303  * number of bytes indicated.  The result is another bio chain of
1304  * exactly the given length, or a null pointer on error.
1305  *
1306  * The bio_src and offset parameters are both in-out.  On entry they
1307  * refer to the first source bio and the offset into that bio where
1308  * the start of data to be cloned is located.
1309  *
1310  * On return, bio_src is updated to refer to the bio in the source
1311  * chain that contains first un-cloned byte, and *offset will
1312  * contain the offset of that byte within that bio.
1313  */
1314 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1315                                         unsigned int *offset,
1316                                         unsigned int len,
1317                                         gfp_t gfpmask)
1318 {
1319         struct bio *bi = *bio_src;
1320         unsigned int off = *offset;
1321         struct bio *chain = NULL;
1322         struct bio **end;
1323
1324         /* Build up a chain of clone bios up to the limit */
1325
1326         if (!bi || off >= bi->bi_iter.bi_size || !len)
1327                 return NULL;            /* Nothing to clone */
1328
1329         end = &chain;
1330         while (len) {
1331                 unsigned int bi_size;
1332                 struct bio *bio;
1333
1334                 if (!bi) {
1335                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1336                         goto out_err;   /* EINVAL; ran out of bio's */
1337                 }
1338                 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1339                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1340                 if (!bio)
1341                         goto out_err;   /* ENOMEM */
1342
1343                 *end = bio;
1344                 end = &bio->bi_next;
1345
1346                 off += bi_size;
1347                 if (off == bi->bi_iter.bi_size) {
1348                         bi = bi->bi_next;
1349                         off = 0;
1350                 }
1351                 len -= bi_size;
1352         }
1353         *bio_src = bi;
1354         *offset = off;
1355
1356         return chain;
1357 out_err:
1358         bio_chain_put(chain);
1359
1360         return NULL;
1361 }
1362
1363 /*
1364  * The default/initial value for all object request flags is 0.  For
1365  * each flag, once its value is set to 1 it is never reset to 0
1366  * again.
1367  */
1368 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1369 {
1370         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1371                 struct rbd_device *rbd_dev;
1372
1373                 rbd_dev = obj_request->img_request->rbd_dev;
1374                 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1375                         obj_request);
1376         }
1377 }
1378
1379 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1380 {
1381         smp_mb();
1382         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1383 }
1384
1385 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1386 {
1387         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1388                 struct rbd_device *rbd_dev = NULL;
1389
1390                 if (obj_request_img_data_test(obj_request))
1391                         rbd_dev = obj_request->img_request->rbd_dev;
1392                 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1393                         obj_request);
1394         }
1395 }
1396
1397 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1398 {
1399         smp_mb();
1400         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1401 }
1402
1403 /*
1404  * This sets the KNOWN flag after (possibly) setting the EXISTS
1405  * flag.  The latter is set based on the "exists" value provided.
1406  *
1407  * Note that for our purposes once an object exists it never goes
1408  * away again.  It's possible that the response from two existence
1409  * checks are separated by the creation of the target object, and
1410  * the first ("doesn't exist") response arrives *after* the second
1411  * ("does exist").  In that case we ignore the second one.
1412  */
1413 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1414                                 bool exists)
1415 {
1416         if (exists)
1417                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1418         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1419         smp_mb();
1420 }
1421
1422 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1423 {
1424         smp_mb();
1425         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1426 }
1427
1428 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1429 {
1430         smp_mb();
1431         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1432 }
1433
1434 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1435 {
1436         struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1437
1438         return obj_request->img_offset <
1439             round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1440 }
1441
1442 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1443 {
1444         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1445                 atomic_read(&obj_request->kref.refcount));
1446         kref_get(&obj_request->kref);
1447 }
1448
1449 static void rbd_obj_request_destroy(struct kref *kref);
1450 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1451 {
1452         rbd_assert(obj_request != NULL);
1453         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1454                 atomic_read(&obj_request->kref.refcount));
1455         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1456 }
1457
1458 static void rbd_img_request_get(struct rbd_img_request *img_request)
1459 {
1460         dout("%s: img %p (was %d)\n", __func__, img_request,
1461              atomic_read(&img_request->kref.refcount));
1462         kref_get(&img_request->kref);
1463 }
1464
1465 static bool img_request_child_test(struct rbd_img_request *img_request);
1466 static void rbd_parent_request_destroy(struct kref *kref);
1467 static void rbd_img_request_destroy(struct kref *kref);
1468 static void rbd_img_request_put(struct rbd_img_request *img_request)
1469 {
1470         rbd_assert(img_request != NULL);
1471         dout("%s: img %p (was %d)\n", __func__, img_request,
1472                 atomic_read(&img_request->kref.refcount));
1473         if (img_request_child_test(img_request))
1474                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1475         else
1476                 kref_put(&img_request->kref, rbd_img_request_destroy);
1477 }
1478
1479 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1480                                         struct rbd_obj_request *obj_request)
1481 {
1482         rbd_assert(obj_request->img_request == NULL);
1483
1484         /* Image request now owns object's original reference */
1485         obj_request->img_request = img_request;
1486         obj_request->which = img_request->obj_request_count;
1487         rbd_assert(!obj_request_img_data_test(obj_request));
1488         obj_request_img_data_set(obj_request);
1489         rbd_assert(obj_request->which != BAD_WHICH);
1490         img_request->obj_request_count++;
1491         list_add_tail(&obj_request->links, &img_request->obj_requests);
1492         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1493                 obj_request->which);
1494 }
1495
1496 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1497                                         struct rbd_obj_request *obj_request)
1498 {
1499         rbd_assert(obj_request->which != BAD_WHICH);
1500
1501         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1502                 obj_request->which);
1503         list_del(&obj_request->links);
1504         rbd_assert(img_request->obj_request_count > 0);
1505         img_request->obj_request_count--;
1506         rbd_assert(obj_request->which == img_request->obj_request_count);
1507         obj_request->which = BAD_WHICH;
1508         rbd_assert(obj_request_img_data_test(obj_request));
1509         rbd_assert(obj_request->img_request == img_request);
1510         obj_request->img_request = NULL;
1511         obj_request->callback = NULL;
1512         rbd_obj_request_put(obj_request);
1513 }
1514
1515 static bool obj_request_type_valid(enum obj_request_type type)
1516 {
1517         switch (type) {
1518         case OBJ_REQUEST_NODATA:
1519         case OBJ_REQUEST_BIO:
1520         case OBJ_REQUEST_PAGES:
1521                 return true;
1522         default:
1523                 return false;
1524         }
1525 }
1526
1527 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1528                                 struct rbd_obj_request *obj_request)
1529 {
1530         dout("%s %p\n", __func__, obj_request);
1531         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1532 }
1533
1534 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1535 {
1536         dout("%s %p\n", __func__, obj_request);
1537         ceph_osdc_cancel_request(obj_request->osd_req);
1538 }
1539
1540 /*
1541  * Wait for an object request to complete.  If interrupted, cancel the
1542  * underlying osd request.
1543  */
1544 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1545 {
1546         int ret;
1547
1548         dout("%s %p\n", __func__, obj_request);
1549
1550         ret = wait_for_completion_interruptible(&obj_request->completion);
1551         if (ret < 0) {
1552                 dout("%s %p interrupted\n", __func__, obj_request);
1553                 rbd_obj_request_end(obj_request);
1554                 return ret;
1555         }
1556
1557         dout("%s %p done\n", __func__, obj_request);
1558         return 0;
1559 }
1560
1561 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1562 {
1563
1564         dout("%s: img %p\n", __func__, img_request);
1565
1566         /*
1567          * If no error occurred, compute the aggregate transfer
1568          * count for the image request.  We could instead use
1569          * atomic64_cmpxchg() to update it as each object request
1570          * completes; not clear which way is better off hand.
1571          */
1572         if (!img_request->result) {
1573                 struct rbd_obj_request *obj_request;
1574                 u64 xferred = 0;
1575
1576                 for_each_obj_request(img_request, obj_request)
1577                         xferred += obj_request->xferred;
1578                 img_request->xferred = xferred;
1579         }
1580
1581         if (img_request->callback)
1582                 img_request->callback(img_request);
1583         else
1584                 rbd_img_request_put(img_request);
1585 }
1586
1587 /*
1588  * The default/initial value for all image request flags is 0.  Each
1589  * is conditionally set to 1 at image request initialization time
1590  * and currently never change thereafter.
1591  */
1592 static void img_request_write_set(struct rbd_img_request *img_request)
1593 {
1594         set_bit(IMG_REQ_WRITE, &img_request->flags);
1595         smp_mb();
1596 }
1597
1598 static bool img_request_write_test(struct rbd_img_request *img_request)
1599 {
1600         smp_mb();
1601         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1602 }
1603
1604 static void img_request_child_set(struct rbd_img_request *img_request)
1605 {
1606         set_bit(IMG_REQ_CHILD, &img_request->flags);
1607         smp_mb();
1608 }
1609
1610 static void img_request_child_clear(struct rbd_img_request *img_request)
1611 {
1612         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1613         smp_mb();
1614 }
1615
1616 static bool img_request_child_test(struct rbd_img_request *img_request)
1617 {
1618         smp_mb();
1619         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1620 }
1621
1622 static void img_request_layered_set(struct rbd_img_request *img_request)
1623 {
1624         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1625         smp_mb();
1626 }
1627
1628 static void img_request_layered_clear(struct rbd_img_request *img_request)
1629 {
1630         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1631         smp_mb();
1632 }
1633
1634 static bool img_request_layered_test(struct rbd_img_request *img_request)
1635 {
1636         smp_mb();
1637         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1638 }
1639
1640 static void
1641 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1642 {
1643         u64 xferred = obj_request->xferred;
1644         u64 length = obj_request->length;
1645
1646         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1647                 obj_request, obj_request->img_request, obj_request->result,
1648                 xferred, length);
1649         /*
1650          * ENOENT means a hole in the image.  We zero-fill the entire
1651          * length of the request.  A short read also implies zero-fill
1652          * to the end of the request.  An error requires the whole
1653          * length of the request to be reported finished with an error
1654          * to the block layer.  In each case we update the xferred
1655          * count to indicate the whole request was satisfied.
1656          */
1657         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1658         if (obj_request->result == -ENOENT) {
1659                 if (obj_request->type == OBJ_REQUEST_BIO)
1660                         zero_bio_chain(obj_request->bio_list, 0);
1661                 else
1662                         zero_pages(obj_request->pages, 0, length);
1663                 obj_request->result = 0;
1664         } else if (xferred < length && !obj_request->result) {
1665                 if (obj_request->type == OBJ_REQUEST_BIO)
1666                         zero_bio_chain(obj_request->bio_list, xferred);
1667                 else
1668                         zero_pages(obj_request->pages, xferred, length);
1669         }
1670         obj_request->xferred = length;
1671         obj_request_done_set(obj_request);
1672 }
1673
1674 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1675 {
1676         dout("%s: obj %p cb %p\n", __func__, obj_request,
1677                 obj_request->callback);
1678         if (obj_request->callback)
1679                 obj_request->callback(obj_request);
1680         else
1681                 complete_all(&obj_request->completion);
1682 }
1683
1684 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1685 {
1686         dout("%s: obj %p\n", __func__, obj_request);
1687         obj_request_done_set(obj_request);
1688 }
1689
1690 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1691 {
1692         struct rbd_img_request *img_request = NULL;
1693         struct rbd_device *rbd_dev = NULL;
1694         bool layered = false;
1695
1696         if (obj_request_img_data_test(obj_request)) {
1697                 img_request = obj_request->img_request;
1698                 layered = img_request && img_request_layered_test(img_request);
1699                 rbd_dev = img_request->rbd_dev;
1700         }
1701
1702         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1703                 obj_request, img_request, obj_request->result,
1704                 obj_request->xferred, obj_request->length);
1705         if (layered && obj_request->result == -ENOENT &&
1706                         obj_request->img_offset < rbd_dev->parent_overlap)
1707                 rbd_img_parent_read(obj_request);
1708         else if (img_request)
1709                 rbd_img_obj_request_read_callback(obj_request);
1710         else
1711                 obj_request_done_set(obj_request);
1712 }
1713
1714 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1715 {
1716         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1717                 obj_request->result, obj_request->length);
1718         /*
1719          * There is no such thing as a successful short write.  Set
1720          * it to our originally-requested length.
1721          */
1722         obj_request->xferred = obj_request->length;
1723         obj_request_done_set(obj_request);
1724 }
1725
1726 /*
1727  * For a simple stat call there's nothing to do.  We'll do more if
1728  * this is part of a write sequence for a layered image.
1729  */
1730 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1731 {
1732         dout("%s: obj %p\n", __func__, obj_request);
1733         obj_request_done_set(obj_request);
1734 }
1735
1736 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1737                                 struct ceph_msg *msg)
1738 {
1739         struct rbd_obj_request *obj_request = osd_req->r_priv;
1740         u16 opcode;
1741
1742         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1743         rbd_assert(osd_req == obj_request->osd_req);
1744         if (obj_request_img_data_test(obj_request)) {
1745                 rbd_assert(obj_request->img_request);
1746                 rbd_assert(obj_request->which != BAD_WHICH);
1747         } else {
1748                 rbd_assert(obj_request->which == BAD_WHICH);
1749         }
1750
1751         if (osd_req->r_result < 0)
1752                 obj_request->result = osd_req->r_result;
1753
1754         rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1755
1756         /*
1757          * We support a 64-bit length, but ultimately it has to be
1758          * passed to blk_end_request(), which takes an unsigned int.
1759          */
1760         obj_request->xferred = osd_req->r_reply_op_len[0];
1761         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1762
1763         opcode = osd_req->r_ops[0].op;
1764         switch (opcode) {
1765         case CEPH_OSD_OP_READ:
1766                 rbd_osd_read_callback(obj_request);
1767                 break;
1768         case CEPH_OSD_OP_SETALLOCHINT:
1769                 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1770                 /* fall through */
1771         case CEPH_OSD_OP_WRITE:
1772                 rbd_osd_write_callback(obj_request);
1773                 break;
1774         case CEPH_OSD_OP_STAT:
1775                 rbd_osd_stat_callback(obj_request);
1776                 break;
1777         case CEPH_OSD_OP_CALL:
1778         case CEPH_OSD_OP_NOTIFY_ACK:
1779         case CEPH_OSD_OP_WATCH:
1780                 rbd_osd_trivial_callback(obj_request);
1781                 break;
1782         default:
1783                 rbd_warn(NULL, "%s: unsupported op %hu\n",
1784                         obj_request->object_name, (unsigned short) opcode);
1785                 break;
1786         }
1787
1788         if (obj_request_done_test(obj_request))
1789                 rbd_obj_request_complete(obj_request);
1790 }
1791
1792 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1793 {
1794         struct rbd_img_request *img_request = obj_request->img_request;
1795         struct ceph_osd_request *osd_req = obj_request->osd_req;
1796         u64 snap_id;
1797
1798         rbd_assert(osd_req != NULL);
1799
1800         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1801         ceph_osdc_build_request(osd_req, obj_request->offset,
1802                         NULL, snap_id, NULL);
1803 }
1804
1805 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1806 {
1807         struct rbd_img_request *img_request = obj_request->img_request;
1808         struct ceph_osd_request *osd_req = obj_request->osd_req;
1809         struct ceph_snap_context *snapc;
1810         struct timespec mtime = CURRENT_TIME;
1811
1812         rbd_assert(osd_req != NULL);
1813
1814         snapc = img_request ? img_request->snapc : NULL;
1815         ceph_osdc_build_request(osd_req, obj_request->offset,
1816                         snapc, CEPH_NOSNAP, &mtime);
1817 }
1818
1819 /*
1820  * Create an osd request.  A read request has one osd op (read).
1821  * A write request has either one (watch) or two (hint+write) osd ops.
1822  * (All rbd data writes are prefixed with an allocation hint op, but
1823  * technically osd watch is a write request, hence this distinction.)
1824  */
1825 static struct ceph_osd_request *rbd_osd_req_create(
1826                                         struct rbd_device *rbd_dev,
1827                                         bool write_request,
1828                                         unsigned int num_ops,
1829                                         struct rbd_obj_request *obj_request)
1830 {
1831         struct ceph_snap_context *snapc = NULL;
1832         struct ceph_osd_client *osdc;
1833         struct ceph_osd_request *osd_req;
1834
1835         if (obj_request_img_data_test(obj_request)) {
1836                 struct rbd_img_request *img_request = obj_request->img_request;
1837
1838                 rbd_assert(write_request ==
1839                                 img_request_write_test(img_request));
1840                 if (write_request)
1841                         snapc = img_request->snapc;
1842         }
1843
1844         rbd_assert(num_ops == 1 || (write_request && num_ops == 2));
1845
1846         /* Allocate and initialize the request, for the num_ops ops */
1847
1848         osdc = &rbd_dev->rbd_client->client->osdc;
1849         osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1850                                           GFP_ATOMIC);
1851         if (!osd_req)
1852                 return NULL;    /* ENOMEM */
1853
1854         if (write_request)
1855                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1856         else
1857                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1858
1859         osd_req->r_callback = rbd_osd_req_callback;
1860         osd_req->r_priv = obj_request;
1861
1862         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1863         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1864
1865         return osd_req;
1866 }
1867
1868 /*
1869  * Create a copyup osd request based on the information in the
1870  * object request supplied.  A copyup request has three osd ops,
1871  * a copyup method call, a hint op, and a write op.
1872  */
1873 static struct ceph_osd_request *
1874 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1875 {
1876         struct rbd_img_request *img_request;
1877         struct ceph_snap_context *snapc;
1878         struct rbd_device *rbd_dev;
1879         struct ceph_osd_client *osdc;
1880         struct ceph_osd_request *osd_req;
1881
1882         rbd_assert(obj_request_img_data_test(obj_request));
1883         img_request = obj_request->img_request;
1884         rbd_assert(img_request);
1885         rbd_assert(img_request_write_test(img_request));
1886
1887         /* Allocate and initialize the request, for the three ops */
1888
1889         snapc = img_request->snapc;
1890         rbd_dev = img_request->rbd_dev;
1891         osdc = &rbd_dev->rbd_client->client->osdc;
1892         osd_req = ceph_osdc_alloc_request(osdc, snapc, 3, false, GFP_ATOMIC);
1893         if (!osd_req)
1894                 return NULL;    /* ENOMEM */
1895
1896         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1897         osd_req->r_callback = rbd_osd_req_callback;
1898         osd_req->r_priv = obj_request;
1899
1900         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1901         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1902
1903         return osd_req;
1904 }
1905
1906
1907 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1908 {
1909         ceph_osdc_put_request(osd_req);
1910 }
1911
1912 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1913
1914 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1915                                                 u64 offset, u64 length,
1916                                                 enum obj_request_type type)
1917 {
1918         struct rbd_obj_request *obj_request;
1919         size_t size;
1920         char *name;
1921
1922         rbd_assert(obj_request_type_valid(type));
1923
1924         size = strlen(object_name) + 1;
1925         name = kmalloc(size, GFP_KERNEL);
1926         if (!name)
1927                 return NULL;
1928
1929         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1930         if (!obj_request) {
1931                 kfree(name);
1932                 return NULL;
1933         }
1934
1935         obj_request->object_name = memcpy(name, object_name, size);
1936         obj_request->offset = offset;
1937         obj_request->length = length;
1938         obj_request->flags = 0;
1939         obj_request->which = BAD_WHICH;
1940         obj_request->type = type;
1941         INIT_LIST_HEAD(&obj_request->links);
1942         init_completion(&obj_request->completion);
1943         kref_init(&obj_request->kref);
1944
1945         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1946                 offset, length, (int)type, obj_request);
1947
1948         return obj_request;
1949 }
1950
1951 static void rbd_obj_request_destroy(struct kref *kref)
1952 {
1953         struct rbd_obj_request *obj_request;
1954
1955         obj_request = container_of(kref, struct rbd_obj_request, kref);
1956
1957         dout("%s: obj %p\n", __func__, obj_request);
1958
1959         rbd_assert(obj_request->img_request == NULL);
1960         rbd_assert(obj_request->which == BAD_WHICH);
1961
1962         if (obj_request->osd_req)
1963                 rbd_osd_req_destroy(obj_request->osd_req);
1964
1965         rbd_assert(obj_request_type_valid(obj_request->type));
1966         switch (obj_request->type) {
1967         case OBJ_REQUEST_NODATA:
1968                 break;          /* Nothing to do */
1969         case OBJ_REQUEST_BIO:
1970                 if (obj_request->bio_list)
1971                         bio_chain_put(obj_request->bio_list);
1972                 break;
1973         case OBJ_REQUEST_PAGES:
1974                 if (obj_request->pages)
1975                         ceph_release_page_vector(obj_request->pages,
1976                                                 obj_request->page_count);
1977                 break;
1978         }
1979
1980         kfree(obj_request->object_name);
1981         obj_request->object_name = NULL;
1982         kmem_cache_free(rbd_obj_request_cache, obj_request);
1983 }
1984
1985 /* It's OK to call this for a device with no parent */
1986
1987 static void rbd_spec_put(struct rbd_spec *spec);
1988 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1989 {
1990         rbd_dev_remove_parent(rbd_dev);
1991         rbd_spec_put(rbd_dev->parent_spec);
1992         rbd_dev->parent_spec = NULL;
1993         rbd_dev->parent_overlap = 0;
1994 }
1995
1996 /*
1997  * Parent image reference counting is used to determine when an
1998  * image's parent fields can be safely torn down--after there are no
1999  * more in-flight requests to the parent image.  When the last
2000  * reference is dropped, cleaning them up is safe.
2001  */
2002 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2003 {
2004         int counter;
2005
2006         if (!rbd_dev->parent_spec)
2007                 return;
2008
2009         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2010         if (counter > 0)
2011                 return;
2012
2013         /* Last reference; clean up parent data structures */
2014
2015         if (!counter)
2016                 rbd_dev_unparent(rbd_dev);
2017         else
2018                 rbd_warn(rbd_dev, "parent reference underflow\n");
2019 }
2020
2021 /*
2022  * If an image has a non-zero parent overlap, get a reference to its
2023  * parent.
2024  *
2025  * We must get the reference before checking for the overlap to
2026  * coordinate properly with zeroing the parent overlap in
2027  * rbd_dev_v2_parent_info() when an image gets flattened.  We
2028  * drop it again if there is no overlap.
2029  *
2030  * Returns true if the rbd device has a parent with a non-zero
2031  * overlap and a reference for it was successfully taken, or
2032  * false otherwise.
2033  */
2034 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2035 {
2036         int counter;
2037
2038         if (!rbd_dev->parent_spec)
2039                 return false;
2040
2041         counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2042         if (counter > 0 && rbd_dev->parent_overlap)
2043                 return true;
2044
2045         /* Image was flattened, but parent is not yet torn down */
2046
2047         if (counter < 0)
2048                 rbd_warn(rbd_dev, "parent reference overflow\n");
2049
2050         return false;
2051 }
2052
2053 /*
2054  * Caller is responsible for filling in the list of object requests
2055  * that comprises the image request, and the Linux request pointer
2056  * (if there is one).
2057  */
2058 static struct rbd_img_request *rbd_img_request_create(
2059                                         struct rbd_device *rbd_dev,
2060                                         u64 offset, u64 length,
2061                                         bool write_request)
2062 {
2063         struct rbd_img_request *img_request;
2064
2065         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
2066         if (!img_request)
2067                 return NULL;
2068
2069         if (write_request) {
2070                 down_read(&rbd_dev->header_rwsem);
2071                 ceph_get_snap_context(rbd_dev->header.snapc);
2072                 up_read(&rbd_dev->header_rwsem);
2073         }
2074
2075         img_request->rq = NULL;
2076         img_request->rbd_dev = rbd_dev;
2077         img_request->offset = offset;
2078         img_request->length = length;
2079         img_request->flags = 0;
2080         if (write_request) {
2081                 img_request_write_set(img_request);
2082                 img_request->snapc = rbd_dev->header.snapc;
2083         } else {
2084                 img_request->snap_id = rbd_dev->spec->snap_id;
2085         }
2086         if (rbd_dev_parent_get(rbd_dev))
2087                 img_request_layered_set(img_request);
2088         spin_lock_init(&img_request->completion_lock);
2089         img_request->next_completion = 0;
2090         img_request->callback = NULL;
2091         img_request->result = 0;
2092         img_request->obj_request_count = 0;
2093         INIT_LIST_HEAD(&img_request->obj_requests);
2094         kref_init(&img_request->kref);
2095
2096         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2097                 write_request ? "write" : "read", offset, length,
2098                 img_request);
2099
2100         return img_request;
2101 }
2102
2103 static void rbd_img_request_destroy(struct kref *kref)
2104 {
2105         struct rbd_img_request *img_request;
2106         struct rbd_obj_request *obj_request;
2107         struct rbd_obj_request *next_obj_request;
2108
2109         img_request = container_of(kref, struct rbd_img_request, kref);
2110
2111         dout("%s: img %p\n", __func__, img_request);
2112
2113         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2114                 rbd_img_obj_request_del(img_request, obj_request);
2115         rbd_assert(img_request->obj_request_count == 0);
2116
2117         if (img_request_layered_test(img_request)) {
2118                 img_request_layered_clear(img_request);
2119                 rbd_dev_parent_put(img_request->rbd_dev);
2120         }
2121
2122         if (img_request_write_test(img_request))
2123                 ceph_put_snap_context(img_request->snapc);
2124
2125         kmem_cache_free(rbd_img_request_cache, img_request);
2126 }
2127
2128 static struct rbd_img_request *rbd_parent_request_create(
2129                                         struct rbd_obj_request *obj_request,
2130                                         u64 img_offset, u64 length)
2131 {
2132         struct rbd_img_request *parent_request;
2133         struct rbd_device *rbd_dev;
2134
2135         rbd_assert(obj_request->img_request);
2136         rbd_dev = obj_request->img_request->rbd_dev;
2137
2138         parent_request = rbd_img_request_create(rbd_dev->parent,
2139                                                 img_offset, length, false);
2140         if (!parent_request)
2141                 return NULL;
2142
2143         img_request_child_set(parent_request);
2144         rbd_obj_request_get(obj_request);
2145         parent_request->obj_request = obj_request;
2146
2147         return parent_request;
2148 }
2149
2150 static void rbd_parent_request_destroy(struct kref *kref)
2151 {
2152         struct rbd_img_request *parent_request;
2153         struct rbd_obj_request *orig_request;
2154
2155         parent_request = container_of(kref, struct rbd_img_request, kref);
2156         orig_request = parent_request->obj_request;
2157
2158         parent_request->obj_request = NULL;
2159         rbd_obj_request_put(orig_request);
2160         img_request_child_clear(parent_request);
2161
2162         rbd_img_request_destroy(kref);
2163 }
2164
2165 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2166 {
2167         struct rbd_img_request *img_request;
2168         unsigned int xferred;
2169         int result;
2170         bool more;
2171
2172         rbd_assert(obj_request_img_data_test(obj_request));
2173         img_request = obj_request->img_request;
2174
2175         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2176         xferred = (unsigned int)obj_request->xferred;
2177         result = obj_request->result;
2178         if (result) {
2179                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2180
2181                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2182                         img_request_write_test(img_request) ? "write" : "read",
2183                         obj_request->length, obj_request->img_offset,
2184                         obj_request->offset);
2185                 rbd_warn(rbd_dev, "  result %d xferred %x\n",
2186                         result, xferred);
2187                 if (!img_request->result)
2188                         img_request->result = result;
2189         }
2190
2191         /* Image object requests don't own their page array */
2192
2193         if (obj_request->type == OBJ_REQUEST_PAGES) {
2194                 obj_request->pages = NULL;
2195                 obj_request->page_count = 0;
2196         }
2197
2198         if (img_request_child_test(img_request)) {
2199                 rbd_assert(img_request->obj_request != NULL);
2200                 more = obj_request->which < img_request->obj_request_count - 1;
2201         } else {
2202                 rbd_assert(img_request->rq != NULL);
2203                 more = blk_end_request(img_request->rq, result, xferred);
2204         }
2205
2206         return more;
2207 }
2208
2209 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2210 {
2211         struct rbd_img_request *img_request;
2212         u32 which = obj_request->which;
2213         bool more = true;
2214
2215         rbd_assert(obj_request_img_data_test(obj_request));
2216         img_request = obj_request->img_request;
2217
2218         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2219         rbd_assert(img_request != NULL);
2220         rbd_assert(img_request->obj_request_count > 0);
2221         rbd_assert(which != BAD_WHICH);
2222         rbd_assert(which < img_request->obj_request_count);
2223
2224         spin_lock_irq(&img_request->completion_lock);
2225         if (which != img_request->next_completion)
2226                 goto out;
2227
2228         for_each_obj_request_from(img_request, obj_request) {
2229                 rbd_assert(more);
2230                 rbd_assert(which < img_request->obj_request_count);
2231
2232                 if (!obj_request_done_test(obj_request))
2233                         break;
2234                 more = rbd_img_obj_end_request(obj_request);
2235                 which++;
2236         }
2237
2238         rbd_assert(more ^ (which == img_request->obj_request_count));
2239         img_request->next_completion = which;
2240 out:
2241         spin_unlock_irq(&img_request->completion_lock);
2242         rbd_img_request_put(img_request);
2243
2244         if (!more)
2245                 rbd_img_request_complete(img_request);
2246 }
2247
2248 /*
2249  * Split up an image request into one or more object requests, each
2250  * to a different object.  The "type" parameter indicates whether
2251  * "data_desc" is the pointer to the head of a list of bio
2252  * structures, or the base of a page array.  In either case this
2253  * function assumes data_desc describes memory sufficient to hold
2254  * all data described by the image request.
2255  */
2256 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2257                                         enum obj_request_type type,
2258                                         void *data_desc)
2259 {
2260         struct rbd_device *rbd_dev = img_request->rbd_dev;
2261         struct rbd_obj_request *obj_request = NULL;
2262         struct rbd_obj_request *next_obj_request;
2263         bool write_request = img_request_write_test(img_request);
2264         struct bio *bio_list = NULL;
2265         unsigned int bio_offset = 0;
2266         struct page **pages = NULL;
2267         u64 img_offset;
2268         u64 resid;
2269         u16 opcode;
2270
2271         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2272                 (int)type, data_desc);
2273
2274         opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2275         img_offset = img_request->offset;
2276         resid = img_request->length;
2277         rbd_assert(resid > 0);
2278
2279         if (type == OBJ_REQUEST_BIO) {
2280                 bio_list = data_desc;
2281                 rbd_assert(img_offset ==
2282                            bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2283         } else {
2284                 rbd_assert(type == OBJ_REQUEST_PAGES);
2285                 pages = data_desc;
2286         }
2287
2288         while (resid) {
2289                 struct ceph_osd_request *osd_req;
2290                 const char *object_name;
2291                 u64 offset;
2292                 u64 length;
2293                 unsigned int which = 0;
2294
2295                 object_name = rbd_segment_name(rbd_dev, img_offset);
2296                 if (!object_name)
2297                         goto out_unwind;
2298                 offset = rbd_segment_offset(rbd_dev, img_offset);
2299                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2300                 obj_request = rbd_obj_request_create(object_name,
2301                                                 offset, length, type);
2302                 /* object request has its own copy of the object name */
2303                 rbd_segment_name_free(object_name);
2304                 if (!obj_request)
2305                         goto out_unwind;
2306
2307                 /*
2308                  * set obj_request->img_request before creating the
2309                  * osd_request so that it gets the right snapc
2310                  */
2311                 rbd_img_obj_request_add(img_request, obj_request);
2312
2313                 if (type == OBJ_REQUEST_BIO) {
2314                         unsigned int clone_size;
2315
2316                         rbd_assert(length <= (u64)UINT_MAX);
2317                         clone_size = (unsigned int)length;
2318                         obj_request->bio_list =
2319                                         bio_chain_clone_range(&bio_list,
2320                                                                 &bio_offset,
2321                                                                 clone_size,
2322                                                                 GFP_ATOMIC);
2323                         if (!obj_request->bio_list)
2324                                 goto out_unwind;
2325                 } else {
2326                         unsigned int page_count;
2327
2328                         obj_request->pages = pages;
2329                         page_count = (u32)calc_pages_for(offset, length);
2330                         obj_request->page_count = page_count;
2331                         if ((offset + length) & ~PAGE_MASK)
2332                                 page_count--;   /* more on last page */
2333                         pages += page_count;
2334                 }
2335
2336                 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2337                                              (write_request ? 2 : 1),
2338                                              obj_request);
2339                 if (!osd_req)
2340                         goto out_unwind;
2341                 obj_request->osd_req = osd_req;
2342                 obj_request->callback = rbd_img_obj_callback;
2343                 rbd_img_request_get(img_request);
2344
2345                 if (write_request) {
2346                         osd_req_op_alloc_hint_init(osd_req, which,
2347                                              rbd_obj_bytes(&rbd_dev->header),
2348                                              rbd_obj_bytes(&rbd_dev->header));
2349                         which++;
2350                 }
2351
2352                 osd_req_op_extent_init(osd_req, which, opcode, offset, length,
2353                                        0, 0);
2354                 if (type == OBJ_REQUEST_BIO)
2355                         osd_req_op_extent_osd_data_bio(osd_req, which,
2356                                         obj_request->bio_list, length);
2357                 else
2358                         osd_req_op_extent_osd_data_pages(osd_req, which,
2359                                         obj_request->pages, length,
2360                                         offset & ~PAGE_MASK, false, false);
2361
2362                 if (write_request)
2363                         rbd_osd_req_format_write(obj_request);
2364                 else
2365                         rbd_osd_req_format_read(obj_request);
2366
2367                 obj_request->img_offset = img_offset;
2368
2369                 img_offset += length;
2370                 resid -= length;
2371         }
2372
2373         return 0;
2374
2375 out_unwind:
2376         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2377                 rbd_img_obj_request_del(img_request, obj_request);
2378
2379         return -ENOMEM;
2380 }
2381
2382 static void
2383 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2384 {
2385         struct rbd_img_request *img_request;
2386         struct rbd_device *rbd_dev;
2387         struct page **pages;
2388         u32 page_count;
2389
2390         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2391         rbd_assert(obj_request_img_data_test(obj_request));
2392         img_request = obj_request->img_request;
2393         rbd_assert(img_request);
2394
2395         rbd_dev = img_request->rbd_dev;
2396         rbd_assert(rbd_dev);
2397
2398         pages = obj_request->copyup_pages;
2399         rbd_assert(pages != NULL);
2400         obj_request->copyup_pages = NULL;
2401         page_count = obj_request->copyup_page_count;
2402         rbd_assert(page_count);
2403         obj_request->copyup_page_count = 0;
2404         ceph_release_page_vector(pages, page_count);
2405
2406         /*
2407          * We want the transfer count to reflect the size of the
2408          * original write request.  There is no such thing as a
2409          * successful short write, so if the request was successful
2410          * we can just set it to the originally-requested length.
2411          */
2412         if (!obj_request->result)
2413                 obj_request->xferred = obj_request->length;
2414
2415         /* Finish up with the normal image object callback */
2416
2417         rbd_img_obj_callback(obj_request);
2418 }
2419
2420 static void
2421 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2422 {
2423         struct rbd_obj_request *orig_request;
2424         struct ceph_osd_request *osd_req;
2425         struct ceph_osd_client *osdc;
2426         struct rbd_device *rbd_dev;
2427         struct page **pages;
2428         u32 page_count;
2429         int img_result;
2430         u64 parent_length;
2431         u64 offset;
2432         u64 length;
2433
2434         rbd_assert(img_request_child_test(img_request));
2435
2436         /* First get what we need from the image request */
2437
2438         pages = img_request->copyup_pages;
2439         rbd_assert(pages != NULL);
2440         img_request->copyup_pages = NULL;
2441         page_count = img_request->copyup_page_count;
2442         rbd_assert(page_count);
2443         img_request->copyup_page_count = 0;
2444
2445         orig_request = img_request->obj_request;
2446         rbd_assert(orig_request != NULL);
2447         rbd_assert(obj_request_type_valid(orig_request->type));
2448         img_result = img_request->result;
2449         parent_length = img_request->length;
2450         rbd_assert(parent_length == img_request->xferred);
2451         rbd_img_request_put(img_request);
2452
2453         rbd_assert(orig_request->img_request);
2454         rbd_dev = orig_request->img_request->rbd_dev;
2455         rbd_assert(rbd_dev);
2456
2457         /*
2458          * If the overlap has become 0 (most likely because the
2459          * image has been flattened) we need to free the pages
2460          * and re-submit the original write request.
2461          */
2462         if (!rbd_dev->parent_overlap) {
2463                 struct ceph_osd_client *osdc;
2464
2465                 ceph_release_page_vector(pages, page_count);
2466                 osdc = &rbd_dev->rbd_client->client->osdc;
2467                 img_result = rbd_obj_request_submit(osdc, orig_request);
2468                 if (!img_result)
2469                         return;
2470         }
2471
2472         if (img_result)
2473                 goto out_err;
2474
2475         /*
2476          * The original osd request is of no use to use any more.
2477          * We need a new one that can hold the three ops in a copyup
2478          * request.  Allocate the new copyup osd request for the
2479          * original request, and release the old one.
2480          */
2481         img_result = -ENOMEM;
2482         osd_req = rbd_osd_req_create_copyup(orig_request);
2483         if (!osd_req)
2484                 goto out_err;
2485         rbd_osd_req_destroy(orig_request->osd_req);
2486         orig_request->osd_req = osd_req;
2487         orig_request->copyup_pages = pages;
2488         orig_request->copyup_page_count = page_count;
2489
2490         /* Initialize the copyup op */
2491
2492         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2493         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2494                                                 false, false);
2495
2496         /* Then the hint op */
2497
2498         osd_req_op_alloc_hint_init(osd_req, 1, rbd_obj_bytes(&rbd_dev->header),
2499                                    rbd_obj_bytes(&rbd_dev->header));
2500
2501         /* And the original write request op */
2502
2503         offset = orig_request->offset;
2504         length = orig_request->length;
2505         osd_req_op_extent_init(osd_req, 2, CEPH_OSD_OP_WRITE,
2506                                         offset, length, 0, 0);
2507         if (orig_request->type == OBJ_REQUEST_BIO)
2508                 osd_req_op_extent_osd_data_bio(osd_req, 2,
2509                                         orig_request->bio_list, length);
2510         else
2511                 osd_req_op_extent_osd_data_pages(osd_req, 2,
2512                                         orig_request->pages, length,
2513                                         offset & ~PAGE_MASK, false, false);
2514
2515         rbd_osd_req_format_write(orig_request);
2516
2517         /* All set, send it off. */
2518
2519         orig_request->callback = rbd_img_obj_copyup_callback;
2520         osdc = &rbd_dev->rbd_client->client->osdc;
2521         img_result = rbd_obj_request_submit(osdc, orig_request);
2522         if (!img_result)
2523                 return;
2524 out_err:
2525         /* Record the error code and complete the request */
2526
2527         orig_request->result = img_result;
2528         orig_request->xferred = 0;
2529         obj_request_done_set(orig_request);
2530         rbd_obj_request_complete(orig_request);
2531 }
2532
2533 /*
2534  * Read from the parent image the range of data that covers the
2535  * entire target of the given object request.  This is used for
2536  * satisfying a layered image write request when the target of an
2537  * object request from the image request does not exist.
2538  *
2539  * A page array big enough to hold the returned data is allocated
2540  * and supplied to rbd_img_request_fill() as the "data descriptor."
2541  * When the read completes, this page array will be transferred to
2542  * the original object request for the copyup operation.
2543  *
2544  * If an error occurs, record it as the result of the original
2545  * object request and mark it done so it gets completed.
2546  */
2547 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2548 {
2549         struct rbd_img_request *img_request = NULL;
2550         struct rbd_img_request *parent_request = NULL;
2551         struct rbd_device *rbd_dev;
2552         u64 img_offset;
2553         u64 length;
2554         struct page **pages = NULL;
2555         u32 page_count;
2556         int result;
2557
2558         rbd_assert(obj_request_img_data_test(obj_request));
2559         rbd_assert(obj_request_type_valid(obj_request->type));
2560
2561         img_request = obj_request->img_request;
2562         rbd_assert(img_request != NULL);
2563         rbd_dev = img_request->rbd_dev;
2564         rbd_assert(rbd_dev->parent != NULL);
2565
2566         /*
2567          * Determine the byte range covered by the object in the
2568          * child image to which the original request was to be sent.
2569          */
2570         img_offset = obj_request->img_offset - obj_request->offset;
2571         length = (u64)1 << rbd_dev->header.obj_order;
2572
2573         /*
2574          * There is no defined parent data beyond the parent
2575          * overlap, so limit what we read at that boundary if
2576          * necessary.
2577          */
2578         if (img_offset + length > rbd_dev->parent_overlap) {
2579                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2580                 length = rbd_dev->parent_overlap - img_offset;
2581         }
2582
2583         /*
2584          * Allocate a page array big enough to receive the data read
2585          * from the parent.
2586          */
2587         page_count = (u32)calc_pages_for(0, length);
2588         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2589         if (IS_ERR(pages)) {
2590                 result = PTR_ERR(pages);
2591                 pages = NULL;
2592                 goto out_err;
2593         }
2594
2595         result = -ENOMEM;
2596         parent_request = rbd_parent_request_create(obj_request,
2597                                                 img_offset, length);
2598         if (!parent_request)
2599                 goto out_err;
2600
2601         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2602         if (result)
2603                 goto out_err;
2604         parent_request->copyup_pages = pages;
2605         parent_request->copyup_page_count = page_count;
2606
2607         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2608         result = rbd_img_request_submit(parent_request);
2609         if (!result)
2610                 return 0;
2611
2612         parent_request->copyup_pages = NULL;
2613         parent_request->copyup_page_count = 0;
2614         parent_request->obj_request = NULL;
2615         rbd_obj_request_put(obj_request);
2616 out_err:
2617         if (pages)
2618                 ceph_release_page_vector(pages, page_count);
2619         if (parent_request)
2620                 rbd_img_request_put(parent_request);
2621         obj_request->result = result;
2622         obj_request->xferred = 0;
2623         obj_request_done_set(obj_request);
2624
2625         return result;
2626 }
2627
2628 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2629 {
2630         struct rbd_obj_request *orig_request;
2631         struct rbd_device *rbd_dev;
2632         int result;
2633
2634         rbd_assert(!obj_request_img_data_test(obj_request));
2635
2636         /*
2637          * All we need from the object request is the original
2638          * request and the result of the STAT op.  Grab those, then
2639          * we're done with the request.
2640          */
2641         orig_request = obj_request->obj_request;
2642         obj_request->obj_request = NULL;
2643         rbd_obj_request_put(orig_request);
2644         rbd_assert(orig_request);
2645         rbd_assert(orig_request->img_request);
2646
2647         result = obj_request->result;
2648         obj_request->result = 0;
2649
2650         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2651                 obj_request, orig_request, result,
2652                 obj_request->xferred, obj_request->length);
2653         rbd_obj_request_put(obj_request);
2654
2655         /*
2656          * If the overlap has become 0 (most likely because the
2657          * image has been flattened) we need to free the pages
2658          * and re-submit the original write request.
2659          */
2660         rbd_dev = orig_request->img_request->rbd_dev;
2661         if (!rbd_dev->parent_overlap) {
2662                 struct ceph_osd_client *osdc;
2663
2664                 osdc = &rbd_dev->rbd_client->client->osdc;
2665                 result = rbd_obj_request_submit(osdc, orig_request);
2666                 if (!result)
2667                         return;
2668         }
2669
2670         /*
2671          * Our only purpose here is to determine whether the object
2672          * exists, and we don't want to treat the non-existence as
2673          * an error.  If something else comes back, transfer the
2674          * error to the original request and complete it now.
2675          */
2676         if (!result) {
2677                 obj_request_existence_set(orig_request, true);
2678         } else if (result == -ENOENT) {
2679                 obj_request_existence_set(orig_request, false);
2680         } else if (result) {
2681                 orig_request->result = result;
2682                 goto out;
2683         }
2684
2685         /*
2686          * Resubmit the original request now that we have recorded
2687          * whether the target object exists.
2688          */
2689         orig_request->result = rbd_img_obj_request_submit(orig_request);
2690 out:
2691         if (orig_request->result)
2692                 rbd_obj_request_complete(orig_request);
2693 }
2694
2695 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2696 {
2697         struct rbd_obj_request *stat_request;
2698         struct rbd_device *rbd_dev;
2699         struct ceph_osd_client *osdc;
2700         struct page **pages = NULL;
2701         u32 page_count;
2702         size_t size;
2703         int ret;
2704
2705         /*
2706          * The response data for a STAT call consists of:
2707          *     le64 length;
2708          *     struct {
2709          *         le32 tv_sec;
2710          *         le32 tv_nsec;
2711          *     } mtime;
2712          */
2713         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2714         page_count = (u32)calc_pages_for(0, size);
2715         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2716         if (IS_ERR(pages))
2717                 return PTR_ERR(pages);
2718
2719         ret = -ENOMEM;
2720         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2721                                                         OBJ_REQUEST_PAGES);
2722         if (!stat_request)
2723                 goto out;
2724
2725         rbd_obj_request_get(obj_request);
2726         stat_request->obj_request = obj_request;
2727         stat_request->pages = pages;
2728         stat_request->page_count = page_count;
2729
2730         rbd_assert(obj_request->img_request);
2731         rbd_dev = obj_request->img_request->rbd_dev;
2732         stat_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
2733                                                    stat_request);
2734         if (!stat_request->osd_req)
2735                 goto out;
2736         stat_request->callback = rbd_img_obj_exists_callback;
2737
2738         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2739         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2740                                         false, false);
2741         rbd_osd_req_format_read(stat_request);
2742
2743         osdc = &rbd_dev->rbd_client->client->osdc;
2744         ret = rbd_obj_request_submit(osdc, stat_request);
2745 out:
2746         if (ret)
2747                 rbd_obj_request_put(obj_request);
2748
2749         return ret;
2750 }
2751
2752 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2753 {
2754         struct rbd_img_request *img_request;
2755         struct rbd_device *rbd_dev;
2756         bool known;
2757
2758         rbd_assert(obj_request_img_data_test(obj_request));
2759
2760         img_request = obj_request->img_request;
2761         rbd_assert(img_request);
2762         rbd_dev = img_request->rbd_dev;
2763
2764         /*
2765          * Only writes to layered images need special handling.
2766          * Reads and non-layered writes are simple object requests.
2767          * Layered writes that start beyond the end of the overlap
2768          * with the parent have no parent data, so they too are
2769          * simple object requests.  Finally, if the target object is
2770          * known to already exist, its parent data has already been
2771          * copied, so a write to the object can also be handled as a
2772          * simple object request.
2773          */
2774         if (!img_request_write_test(img_request) ||
2775                 !img_request_layered_test(img_request) ||
2776                 !obj_request_overlaps_parent(obj_request) ||
2777                 ((known = obj_request_known_test(obj_request)) &&
2778                         obj_request_exists_test(obj_request))) {
2779
2780                 struct rbd_device *rbd_dev;
2781                 struct ceph_osd_client *osdc;
2782
2783                 rbd_dev = obj_request->img_request->rbd_dev;
2784                 osdc = &rbd_dev->rbd_client->client->osdc;
2785
2786                 return rbd_obj_request_submit(osdc, obj_request);
2787         }
2788
2789         /*
2790          * It's a layered write.  The target object might exist but
2791          * we may not know that yet.  If we know it doesn't exist,
2792          * start by reading the data for the full target object from
2793          * the parent so we can use it for a copyup to the target.
2794          */
2795         if (known)
2796                 return rbd_img_obj_parent_read_full(obj_request);
2797
2798         /* We don't know whether the target exists.  Go find out. */
2799
2800         return rbd_img_obj_exists_submit(obj_request);
2801 }
2802
2803 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2804 {
2805         struct rbd_obj_request *obj_request;
2806         struct rbd_obj_request *next_obj_request;
2807
2808         dout("%s: img %p\n", __func__, img_request);
2809         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2810                 int ret;
2811
2812                 ret = rbd_img_obj_request_submit(obj_request);
2813                 if (ret)
2814                         return ret;
2815         }
2816
2817         return 0;
2818 }
2819
2820 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2821 {
2822         struct rbd_obj_request *obj_request;
2823         struct rbd_device *rbd_dev;
2824         u64 obj_end;
2825         u64 img_xferred;
2826         int img_result;
2827
2828         rbd_assert(img_request_child_test(img_request));
2829
2830         /* First get what we need from the image request and release it */
2831
2832         obj_request = img_request->obj_request;
2833         img_xferred = img_request->xferred;
2834         img_result = img_request->result;
2835         rbd_img_request_put(img_request);
2836
2837         /*
2838          * If the overlap has become 0 (most likely because the
2839          * image has been flattened) we need to re-submit the
2840          * original request.
2841          */
2842         rbd_assert(obj_request);
2843         rbd_assert(obj_request->img_request);
2844         rbd_dev = obj_request->img_request->rbd_dev;
2845         if (!rbd_dev->parent_overlap) {
2846                 struct ceph_osd_client *osdc;
2847
2848                 osdc = &rbd_dev->rbd_client->client->osdc;
2849                 img_result = rbd_obj_request_submit(osdc, obj_request);
2850                 if (!img_result)
2851                         return;
2852         }
2853
2854         obj_request->result = img_result;
2855         if (obj_request->result)
2856                 goto out;
2857
2858         /*
2859          * We need to zero anything beyond the parent overlap
2860          * boundary.  Since rbd_img_obj_request_read_callback()
2861          * will zero anything beyond the end of a short read, an
2862          * easy way to do this is to pretend the data from the
2863          * parent came up short--ending at the overlap boundary.
2864          */
2865         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2866         obj_end = obj_request->img_offset + obj_request->length;
2867         if (obj_end > rbd_dev->parent_overlap) {
2868                 u64 xferred = 0;
2869
2870                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2871                         xferred = rbd_dev->parent_overlap -
2872                                         obj_request->img_offset;
2873
2874                 obj_request->xferred = min(img_xferred, xferred);
2875         } else {
2876                 obj_request->xferred = img_xferred;
2877         }
2878 out:
2879         rbd_img_obj_request_read_callback(obj_request);
2880         rbd_obj_request_complete(obj_request);
2881 }
2882
2883 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2884 {
2885         struct rbd_img_request *img_request;
2886         int result;
2887
2888         rbd_assert(obj_request_img_data_test(obj_request));
2889         rbd_assert(obj_request->img_request != NULL);
2890         rbd_assert(obj_request->result == (s32) -ENOENT);
2891         rbd_assert(obj_request_type_valid(obj_request->type));
2892
2893         /* rbd_read_finish(obj_request, obj_request->length); */
2894         img_request = rbd_parent_request_create(obj_request,
2895                                                 obj_request->img_offset,
2896                                                 obj_request->length);
2897         result = -ENOMEM;
2898         if (!img_request)
2899                 goto out_err;
2900
2901         if (obj_request->type == OBJ_REQUEST_BIO)
2902                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2903                                                 obj_request->bio_list);
2904         else
2905                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2906                                                 obj_request->pages);
2907         if (result)
2908                 goto out_err;
2909
2910         img_request->callback = rbd_img_parent_read_callback;
2911         result = rbd_img_request_submit(img_request);
2912         if (result)
2913                 goto out_err;
2914
2915         return;
2916 out_err:
2917         if (img_request)
2918                 rbd_img_request_put(img_request);
2919         obj_request->result = result;
2920         obj_request->xferred = 0;
2921         obj_request_done_set(obj_request);
2922 }
2923
2924 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
2925 {
2926         struct rbd_obj_request *obj_request;
2927         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2928         int ret;
2929
2930         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2931                                                         OBJ_REQUEST_NODATA);
2932         if (!obj_request)
2933                 return -ENOMEM;
2934
2935         ret = -ENOMEM;
2936         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
2937                                                   obj_request);
2938         if (!obj_request->osd_req)
2939                 goto out;
2940
2941         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2942                                         notify_id, 0, 0);
2943         rbd_osd_req_format_read(obj_request);
2944
2945         ret = rbd_obj_request_submit(osdc, obj_request);
2946         if (ret)
2947                 goto out;
2948         ret = rbd_obj_request_wait(obj_request);
2949 out:
2950         rbd_obj_request_put(obj_request);
2951
2952         return ret;
2953 }
2954
2955 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2956 {
2957         struct rbd_device *rbd_dev = (struct rbd_device *)data;
2958         int ret;
2959
2960         if (!rbd_dev)
2961                 return;
2962
2963         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2964                 rbd_dev->header_name, (unsigned long long)notify_id,
2965                 (unsigned int)opcode);
2966         ret = rbd_dev_refresh(rbd_dev);
2967         if (ret)
2968                 rbd_warn(rbd_dev, "header refresh error (%d)\n", ret);
2969
2970         rbd_obj_notify_ack_sync(rbd_dev, notify_id);
2971 }
2972
2973 /*
2974  * Send a (un)watch request and wait for the ack.  Return a request
2975  * with a ref held on success or error.
2976  */
2977 static struct rbd_obj_request *rbd_obj_watch_request_helper(
2978                                                 struct rbd_device *rbd_dev,
2979                                                 bool watch)
2980 {
2981         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2982         struct rbd_obj_request *obj_request;
2983         int ret;
2984
2985         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2986                                              OBJ_REQUEST_NODATA);
2987         if (!obj_request)
2988                 return ERR_PTR(-ENOMEM);
2989
2990         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, 1,
2991                                                   obj_request);
2992         if (!obj_request->osd_req) {
2993                 ret = -ENOMEM;
2994                 goto out;
2995         }
2996
2997         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2998                               rbd_dev->watch_event->cookie, 0, watch);
2999         rbd_osd_req_format_write(obj_request);
3000
3001         if (watch)
3002                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3003
3004         ret = rbd_obj_request_submit(osdc, obj_request);
3005         if (ret)
3006                 goto out;
3007
3008         ret = rbd_obj_request_wait(obj_request);
3009         if (ret)
3010                 goto out;
3011
3012         ret = obj_request->result;
3013         if (ret) {
3014                 if (watch)
3015                         rbd_obj_request_end(obj_request);
3016                 goto out;
3017         }
3018
3019         return obj_request;
3020
3021 out:
3022         rbd_obj_request_put(obj_request);
3023         return ERR_PTR(ret);
3024 }
3025
3026 /*
3027  * Initiate a watch request, synchronously.
3028  */
3029 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3030 {
3031         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3032         struct rbd_obj_request *obj_request;
3033         int ret;
3034
3035         rbd_assert(!rbd_dev->watch_event);
3036         rbd_assert(!rbd_dev->watch_request);
3037
3038         ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3039                                      &rbd_dev->watch_event);
3040         if (ret < 0)
3041                 return ret;
3042
3043         obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3044         if (IS_ERR(obj_request)) {
3045                 ceph_osdc_cancel_event(rbd_dev->watch_event);
3046                 rbd_dev->watch_event = NULL;
3047                 return PTR_ERR(obj_request);
3048         }
3049
3050         /*
3051          * A watch request is set to linger, so the underlying osd
3052          * request won't go away until we unregister it.  We retain
3053          * a pointer to the object request during that time (in
3054          * rbd_dev->watch_request), so we'll keep a reference to it.
3055          * We'll drop that reference after we've unregistered it in
3056          * rbd_dev_header_unwatch_sync().
3057          */
3058         rbd_dev->watch_request = obj_request;
3059
3060         return 0;
3061 }
3062
3063 /*
3064  * Tear down a watch request, synchronously.
3065  */
3066 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3067 {
3068         struct rbd_obj_request *obj_request;
3069
3070         rbd_assert(rbd_dev->watch_event);
3071         rbd_assert(rbd_dev->watch_request);
3072
3073         rbd_obj_request_end(rbd_dev->watch_request);
3074         rbd_obj_request_put(rbd_dev->watch_request);
3075         rbd_dev->watch_request = NULL;
3076
3077         obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3078         if (!IS_ERR(obj_request))
3079                 rbd_obj_request_put(obj_request);
3080         else
3081                 rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3082                          PTR_ERR(obj_request));
3083
3084         ceph_osdc_cancel_event(rbd_dev->watch_event);
3085         rbd_dev->watch_event = NULL;
3086 }
3087
3088 /*
3089  * Synchronous osd object method call.  Returns the number of bytes
3090  * returned in the outbound buffer, or a negative error code.
3091  */
3092 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3093                              const char *object_name,
3094                              const char *class_name,
3095                              const char *method_name,
3096                              const void *outbound,
3097                              size_t outbound_size,
3098                              void *inbound,
3099                              size_t inbound_size)
3100 {
3101         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3102         struct rbd_obj_request *obj_request;
3103         struct page **pages;
3104         u32 page_count;
3105         int ret;
3106
3107         /*
3108          * Method calls are ultimately read operations.  The result
3109          * should placed into the inbound buffer provided.  They
3110          * also supply outbound data--parameters for the object
3111          * method.  Currently if this is present it will be a
3112          * snapshot id.
3113          */
3114         page_count = (u32)calc_pages_for(0, inbound_size);
3115         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3116         if (IS_ERR(pages))
3117                 return PTR_ERR(pages);
3118
3119         ret = -ENOMEM;
3120         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3121                                                         OBJ_REQUEST_PAGES);
3122         if (!obj_request)
3123                 goto out;
3124
3125         obj_request->pages = pages;
3126         obj_request->page_count = page_count;
3127
3128         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
3129                                                   obj_request);
3130         if (!obj_request->osd_req)
3131                 goto out;
3132
3133         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3134                                         class_name, method_name);
3135         if (outbound_size) {
3136                 struct ceph_pagelist *pagelist;
3137
3138                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3139                 if (!pagelist)
3140                         goto out;
3141
3142                 ceph_pagelist_init(pagelist);
3143                 ceph_pagelist_append(pagelist, outbound, outbound_size);
3144                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3145                                                 pagelist);
3146         }
3147         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3148                                         obj_request->pages, inbound_size,
3149                                         0, false, false);
3150         rbd_osd_req_format_read(obj_request);
3151
3152         ret = rbd_obj_request_submit(osdc, obj_request);
3153         if (ret)
3154                 goto out;
3155         ret = rbd_obj_request_wait(obj_request);
3156         if (ret)
3157                 goto out;
3158
3159         ret = obj_request->result;
3160         if (ret < 0)
3161                 goto out;
3162
3163         rbd_assert(obj_request->xferred < (u64)INT_MAX);
3164         ret = (int)obj_request->xferred;
3165         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3166 out:
3167         if (obj_request)
3168                 rbd_obj_request_put(obj_request);
3169         else
3170                 ceph_release_page_vector(pages, page_count);
3171
3172         return ret;
3173 }
3174
3175 static void rbd_request_fn(struct request_queue *q)
3176                 __releases(q->queue_lock) __acquires(q->queue_lock)
3177 {
3178         struct rbd_device *rbd_dev = q->queuedata;
3179         struct request *rq;
3180         int result;
3181
3182         while ((rq = blk_fetch_request(q))) {
3183                 bool write_request = rq_data_dir(rq) == WRITE;
3184                 struct rbd_img_request *img_request;
3185                 u64 offset;
3186                 u64 length;
3187
3188                 /* Ignore any non-FS requests that filter through. */
3189
3190                 if (rq->cmd_type != REQ_TYPE_FS) {
3191                         dout("%s: non-fs request type %d\n", __func__,
3192                                 (int) rq->cmd_type);
3193                         __blk_end_request_all(rq, 0);
3194                         continue;
3195                 }
3196
3197                 /* Ignore/skip any zero-length requests */
3198
3199                 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3200                 length = (u64) blk_rq_bytes(rq);
3201
3202                 if (!length) {
3203                         dout("%s: zero-length request\n", __func__);
3204                         __blk_end_request_all(rq, 0);
3205                         continue;
3206                 }
3207
3208                 spin_unlock_irq(q->queue_lock);
3209
3210                 /* Disallow writes to a read-only device */
3211
3212                 if (write_request) {
3213                         result = -EROFS;
3214                         if (rbd_dev->mapping.read_only)
3215                                 goto end_request;
3216                         rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3217                 }
3218
3219                 /*
3220                  * Quit early if the mapped snapshot no longer
3221                  * exists.  It's still possible the snapshot will
3222                  * have disappeared by the time our request arrives
3223                  * at the osd, but there's no sense in sending it if
3224                  * we already know.
3225                  */
3226                 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3227                         dout("request for non-existent snapshot");
3228                         rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3229                         result = -ENXIO;
3230                         goto end_request;
3231                 }
3232
3233                 result = -EINVAL;
3234                 if (offset && length > U64_MAX - offset + 1) {
3235                         rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3236                                 offset, length);
3237                         goto end_request;       /* Shouldn't happen */
3238                 }
3239
3240                 result = -EIO;
3241                 if (offset + length > rbd_dev->mapping.size) {
3242                         rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3243                                 offset, length, rbd_dev->mapping.size);
3244                         goto end_request;
3245                 }
3246
3247                 result = -ENOMEM;
3248                 img_request = rbd_img_request_create(rbd_dev, offset, length,
3249                                                         write_request);
3250                 if (!img_request)
3251                         goto end_request;
3252
3253                 img_request->rq = rq;
3254
3255                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3256                                                 rq->bio);
3257                 if (!result)
3258                         result = rbd_img_request_submit(img_request);
3259                 if (result)
3260                         rbd_img_request_put(img_request);
3261 end_request:
3262                 spin_lock_irq(q->queue_lock);
3263                 if (result < 0) {
3264                         rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3265                                 write_request ? "write" : "read",
3266                                 length, offset, result);
3267
3268                         __blk_end_request_all(rq, result);
3269                 }
3270         }
3271 }
3272
3273 /*
3274  * a queue callback. Makes sure that we don't create a bio that spans across
3275  * multiple osd objects. One exception would be with a single page bios,
3276  * which we handle later at bio_chain_clone_range()
3277  */
3278 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3279                           struct bio_vec *bvec)
3280 {
3281         struct rbd_device *rbd_dev = q->queuedata;
3282         sector_t sector_offset;
3283         sector_t sectors_per_obj;
3284         sector_t obj_sector_offset;
3285         int ret;
3286
3287         /*
3288          * Find how far into its rbd object the partition-relative
3289          * bio start sector is to offset relative to the enclosing
3290          * device.
3291          */
3292         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3293         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3294         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3295
3296         /*
3297          * Compute the number of bytes from that offset to the end
3298          * of the object.  Account for what's already used by the bio.
3299          */
3300         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3301         if (ret > bmd->bi_size)
3302                 ret -= bmd->bi_size;
3303         else
3304                 ret = 0;
3305
3306         /*
3307          * Don't send back more than was asked for.  And if the bio
3308          * was empty, let the whole thing through because:  "Note
3309          * that a block device *must* allow a single page to be
3310          * added to an empty bio."
3311          */
3312         rbd_assert(bvec->bv_len <= PAGE_SIZE);
3313         if (ret > (int) bvec->bv_len || !bmd->bi_size)
3314                 ret = (int) bvec->bv_len;
3315
3316         return ret;
3317 }
3318
3319 static void rbd_free_disk(struct rbd_device *rbd_dev)
3320 {
3321         struct gendisk *disk = rbd_dev->disk;
3322
3323         if (!disk)
3324                 return;
3325
3326         rbd_dev->disk = NULL;
3327         if (disk->flags & GENHD_FL_UP) {
3328                 del_gendisk(disk);
3329                 if (disk->queue)
3330                         blk_cleanup_queue(disk->queue);
3331         }
3332         put_disk(disk);
3333 }
3334
3335 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3336                                 const char *object_name,
3337                                 u64 offset, u64 length, void *buf)
3338
3339 {
3340         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3341         struct rbd_obj_request *obj_request;
3342         struct page **pages = NULL;
3343         u32 page_count;
3344         size_t size;
3345         int ret;
3346
3347         page_count = (u32) calc_pages_for(offset, length);
3348         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3349         if (IS_ERR(pages))
3350                 ret = PTR_ERR(pages);
3351
3352         ret = -ENOMEM;
3353         obj_request = rbd_obj_request_create(object_name, offset, length,
3354                                                         OBJ_REQUEST_PAGES);
3355         if (!obj_request)
3356                 goto out;
3357
3358         obj_request->pages = pages;
3359         obj_request->page_count = page_count;
3360
3361         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
3362                                                   obj_request);
3363         if (!obj_request->osd_req)
3364                 goto out;
3365
3366         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3367                                         offset, length, 0, 0);
3368         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3369                                         obj_request->pages,
3370                                         obj_request->length,
3371                                         obj_request->offset & ~PAGE_MASK,
3372                                         false, false);
3373         rbd_osd_req_format_read(obj_request);
3374
3375         ret = rbd_obj_request_submit(osdc, obj_request);
3376         if (ret)
3377                 goto out;
3378         ret = rbd_obj_request_wait(obj_request);
3379         if (ret)
3380                 goto out;
3381
3382         ret = obj_request->result;
3383         if (ret < 0)
3384                 goto out;
3385
3386         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3387         size = (size_t) obj_request->xferred;
3388         ceph_copy_from_page_vector(pages, buf, 0, size);
3389         rbd_assert(size <= (size_t)INT_MAX);
3390         ret = (int)size;
3391 out:
3392         if (obj_request)
3393                 rbd_obj_request_put(obj_request);
3394         else
3395                 ceph_release_page_vector(pages, page_count);
3396
3397         return ret;
3398 }
3399
3400 /*
3401  * Read the complete header for the given rbd device.  On successful
3402  * return, the rbd_dev->header field will contain up-to-date
3403  * information about the image.
3404  */
3405 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3406 {
3407         struct rbd_image_header_ondisk *ondisk = NULL;
3408         u32 snap_count = 0;
3409         u64 names_size = 0;
3410         u32 want_count;
3411         int ret;
3412
3413         /*
3414          * The complete header will include an array of its 64-bit
3415          * snapshot ids, followed by the names of those snapshots as
3416          * a contiguous block of NUL-terminated strings.  Note that
3417          * the number of snapshots could change by the time we read
3418          * it in, in which case we re-read it.
3419          */
3420         do {
3421                 size_t size;
3422
3423                 kfree(ondisk);
3424
3425                 size = sizeof (*ondisk);
3426                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3427                 size += names_size;
3428                 ondisk = kmalloc(size, GFP_KERNEL);
3429                 if (!ondisk)
3430                         return -ENOMEM;
3431
3432                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3433                                        0, size, ondisk);
3434                 if (ret < 0)
3435                         goto out;
3436                 if ((size_t)ret < size) {
3437                         ret = -ENXIO;
3438                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3439                                 size, ret);
3440                         goto out;
3441                 }
3442                 if (!rbd_dev_ondisk_valid(ondisk)) {
3443                         ret = -ENXIO;
3444                         rbd_warn(rbd_dev, "invalid header");
3445                         goto out;
3446                 }
3447
3448                 names_size = le64_to_cpu(ondisk->snap_names_len);
3449                 want_count = snap_count;
3450                 snap_count = le32_to_cpu(ondisk->snap_count);
3451         } while (snap_count != want_count);
3452
3453         ret = rbd_header_from_disk(rbd_dev, ondisk);
3454 out:
3455         kfree(ondisk);
3456
3457         return ret;
3458 }
3459
3460 /*
3461  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3462  * has disappeared from the (just updated) snapshot context.
3463  */
3464 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3465 {
3466         u64 snap_id;
3467
3468         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3469                 return;
3470
3471         snap_id = rbd_dev->spec->snap_id;
3472         if (snap_id == CEPH_NOSNAP)
3473                 return;
3474
3475         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3476                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3477 }
3478
3479 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3480 {
3481         sector_t size;
3482         bool removing;
3483
3484         /*
3485          * Don't hold the lock while doing disk operations,
3486          * or lock ordering will conflict with the bdev mutex via:
3487          * rbd_add() -> blkdev_get() -> rbd_open()
3488          */
3489         spin_lock_irq(&rbd_dev->lock);
3490         removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3491         spin_unlock_irq(&rbd_dev->lock);
3492         /*
3493          * If the device is being removed, rbd_dev->disk has
3494          * been destroyed, so don't try to update its size
3495          */
3496         if (!removing) {
3497                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3498                 dout("setting size to %llu sectors", (unsigned long long)size);
3499                 set_capacity(rbd_dev->disk, size);
3500                 revalidate_disk(rbd_dev->disk);
3501         }
3502 }
3503
3504 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3505 {
3506         u64 mapping_size;
3507         int ret;
3508
3509         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3510         down_write(&rbd_dev->header_rwsem);
3511         mapping_size = rbd_dev->mapping.size;
3512         if (rbd_dev->image_format == 1)
3513                 ret = rbd_dev_v1_header_info(rbd_dev);
3514         else
3515                 ret = rbd_dev_v2_header_info(rbd_dev);
3516
3517         /* If it's a mapped snapshot, validate its EXISTS flag */
3518
3519         rbd_exists_validate(rbd_dev);
3520         up_write(&rbd_dev->header_rwsem);
3521
3522         if (mapping_size != rbd_dev->mapping.size) {
3523                 rbd_dev_update_size(rbd_dev);
3524         }
3525
3526         return ret;
3527 }
3528
3529 static int rbd_init_disk(struct rbd_device *rbd_dev)
3530 {
3531         struct gendisk *disk;
3532         struct request_queue *q;
3533         u64 segment_size;
3534
3535         /* create gendisk info */
3536         disk = alloc_disk(single_major ?
3537                           (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3538                           RBD_MINORS_PER_MAJOR);
3539         if (!disk)
3540                 return -ENOMEM;
3541
3542         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3543                  rbd_dev->dev_id);
3544         disk->major = rbd_dev->major;
3545         disk->first_minor = rbd_dev->minor;
3546         if (single_major)
3547                 disk->flags |= GENHD_FL_EXT_DEVT;
3548         disk->fops = &rbd_bd_ops;
3549         disk->private_data = rbd_dev;
3550
3551         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3552         if (!q)
3553                 goto out_disk;
3554
3555         /* We use the default size, but let's be explicit about it. */
3556         blk_queue_physical_block_size(q, SECTOR_SIZE);
3557
3558         /* set io sizes to object size */
3559         segment_size = rbd_obj_bytes(&rbd_dev->header);
3560         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3561         blk_queue_max_segment_size(q, segment_size);
3562         blk_queue_io_min(q, segment_size);
3563         blk_queue_io_opt(q, segment_size);
3564
3565         blk_queue_merge_bvec(q, rbd_merge_bvec);
3566         disk->queue = q;
3567
3568         q->queuedata = rbd_dev;
3569
3570         rbd_dev->disk = disk;
3571
3572         return 0;
3573 out_disk:
3574         put_disk(disk);
3575
3576         return -ENOMEM;
3577 }
3578
3579 /*
3580   sysfs
3581 */
3582
3583 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3584 {
3585         return container_of(dev, struct rbd_device, dev);
3586 }
3587
3588 static ssize_t rbd_size_show(struct device *dev,
3589                              struct device_attribute *attr, char *buf)
3590 {
3591         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3592
3593         return sprintf(buf, "%llu\n",
3594                 (unsigned long long)rbd_dev->mapping.size);
3595 }
3596
3597 /*
3598  * Note this shows the features for whatever's mapped, which is not
3599  * necessarily the base image.
3600  */
3601 static ssize_t rbd_features_show(struct device *dev,
3602                              struct device_attribute *attr, char *buf)
3603 {
3604         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3605
3606         return sprintf(buf, "0x%016llx\n",
3607                         (unsigned long long)rbd_dev->mapping.features);
3608 }
3609
3610 static ssize_t rbd_major_show(struct device *dev,
3611                               struct device_attribute *attr, char *buf)
3612 {
3613         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3614
3615         if (rbd_dev->major)
3616                 return sprintf(buf, "%d\n", rbd_dev->major);
3617
3618         return sprintf(buf, "(none)\n");
3619 }
3620
3621 static ssize_t rbd_minor_show(struct device *dev,
3622                               struct device_attribute *attr, char *buf)
3623 {
3624         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3625
3626         return sprintf(buf, "%d\n", rbd_dev->minor);
3627 }
3628
3629 static ssize_t rbd_client_id_show(struct device *dev,
3630                                   struct device_attribute *attr, char *buf)
3631 {
3632         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3633
3634         return sprintf(buf, "client%lld\n",
3635                         ceph_client_id(rbd_dev->rbd_client->client));
3636 }
3637
3638 static ssize_t rbd_pool_show(struct device *dev,
3639                              struct device_attribute *attr, char *buf)
3640 {
3641         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3642
3643         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3644 }
3645
3646 static ssize_t rbd_pool_id_show(struct device *dev,
3647                              struct device_attribute *attr, char *buf)
3648 {
3649         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3650
3651         return sprintf(buf, "%llu\n",
3652                         (unsigned long long) rbd_dev->spec->pool_id);
3653 }
3654
3655 static ssize_t rbd_name_show(struct device *dev,
3656                              struct device_attribute *attr, char *buf)
3657 {
3658         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3659
3660         if (rbd_dev->spec->image_name)
3661                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3662
3663         return sprintf(buf, "(unknown)\n");
3664 }
3665
3666 static ssize_t rbd_image_id_show(struct device *dev,
3667                              struct device_attribute *attr, char *buf)
3668 {
3669         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3670
3671         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3672 }
3673
3674 /*
3675  * Shows the name of the currently-mapped snapshot (or
3676  * RBD_SNAP_HEAD_NAME for the base image).
3677  */
3678 static ssize_t rbd_snap_show(struct device *dev,
3679                              struct device_attribute *attr,
3680                              char *buf)
3681 {
3682         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3683
3684         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3685 }
3686
3687 /*
3688  * For a v2 image, shows the chain of parent images, separated by empty
3689  * lines.  For v1 images or if there is no parent, shows "(no parent
3690  * image)".
3691  */
3692 static ssize_t rbd_parent_show(struct device *dev,
3693                                struct device_attribute *attr,
3694                                char *buf)
3695 {
3696         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3697         ssize_t count = 0;
3698
3699         if (!rbd_dev->parent)
3700                 return sprintf(buf, "(no parent image)\n");
3701
3702         for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3703                 struct rbd_spec *spec = rbd_dev->parent_spec;
3704
3705                 count += sprintf(&buf[count], "%s"
3706                             "pool_id %llu\npool_name %s\n"
3707                             "image_id %s\nimage_name %s\n"
3708                             "snap_id %llu\nsnap_name %s\n"
3709                             "overlap %llu\n",
3710                             !count ? "" : "\n", /* first? */
3711                             spec->pool_id, spec->pool_name,
3712                             spec->image_id, spec->image_name ?: "(unknown)",
3713                             spec->snap_id, spec->snap_name,
3714                             rbd_dev->parent_overlap);
3715         }
3716
3717         return count;
3718 }
3719
3720 static ssize_t rbd_image_refresh(struct device *dev,
3721                                  struct device_attribute *attr,
3722                                  const char *buf,
3723                                  size_t size)
3724 {
3725         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3726         int ret;
3727
3728         ret = rbd_dev_refresh(rbd_dev);
3729         if (ret)
3730                 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3731
3732         return ret < 0 ? ret : size;
3733 }
3734
3735 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3736 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3737 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3738 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3739 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3740 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3741 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3742 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3743 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3744 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3745 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3746 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3747
3748 static struct attribute *rbd_attrs[] = {
3749         &dev_attr_size.attr,
3750         &dev_attr_features.attr,
3751         &dev_attr_major.attr,
3752         &dev_attr_minor.attr,
3753         &dev_attr_client_id.attr,
3754         &dev_attr_pool.attr,
3755         &dev_attr_pool_id.attr,
3756         &dev_attr_name.attr,
3757         &dev_attr_image_id.attr,
3758         &dev_attr_current_snap.attr,
3759         &dev_attr_parent.attr,
3760         &dev_attr_refresh.attr,
3761         NULL
3762 };
3763
3764 static struct attribute_group rbd_attr_group = {
3765         .attrs = rbd_attrs,
3766 };
3767
3768 static const struct attribute_group *rbd_attr_groups[] = {
3769         &rbd_attr_group,
3770         NULL
3771 };
3772
3773 static void rbd_sysfs_dev_release(struct device *dev)
3774 {
3775 }
3776
3777 static struct device_type rbd_device_type = {
3778         .name           = "rbd",
3779         .groups         = rbd_attr_groups,
3780         .release        = rbd_sysfs_dev_release,
3781 };
3782
3783 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3784 {
3785         kref_get(&spec->kref);
3786
3787         return spec;
3788 }
3789
3790 static void rbd_spec_free(struct kref *kref);
3791 static void rbd_spec_put(struct rbd_spec *spec)
3792 {
3793         if (spec)
3794                 kref_put(&spec->kref, rbd_spec_free);
3795 }
3796
3797 static struct rbd_spec *rbd_spec_alloc(void)
3798 {
3799         struct rbd_spec *spec;
3800
3801         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3802         if (!spec)
3803                 return NULL;
3804         kref_init(&spec->kref);
3805
3806         return spec;
3807 }
3808
3809 static void rbd_spec_free(struct kref *kref)
3810 {
3811         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3812
3813         kfree(spec->pool_name);
3814         kfree(spec->image_id);
3815         kfree(spec->image_name);
3816         kfree(spec->snap_name);
3817         kfree(spec);
3818 }
3819
3820 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3821                                 struct rbd_spec *spec)
3822 {
3823         struct rbd_device *rbd_dev;
3824
3825         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3826         if (!rbd_dev)
3827                 return NULL;
3828
3829         spin_lock_init(&rbd_dev->lock);
3830         rbd_dev->flags = 0;
3831         atomic_set(&rbd_dev->parent_ref, 0);
3832         INIT_LIST_HEAD(&rbd_dev->node);
3833         init_rwsem(&rbd_dev->header_rwsem);
3834
3835         rbd_dev->spec = spec;
3836         rbd_dev->rbd_client = rbdc;
3837
3838         /* Initialize the layout used for all rbd requests */
3839
3840         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3841         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3842         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3843         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3844
3845         return rbd_dev;
3846 }
3847
3848 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3849 {
3850         rbd_put_client(rbd_dev->rbd_client);
3851         rbd_spec_put(rbd_dev->spec);
3852         kfree(rbd_dev);
3853 }
3854
3855 /*
3856  * Get the size and object order for an image snapshot, or if
3857  * snap_id is CEPH_NOSNAP, gets this information for the base
3858  * image.
3859  */
3860 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3861                                 u8 *order, u64 *snap_size)
3862 {
3863         __le64 snapid = cpu_to_le64(snap_id);
3864         int ret;
3865         struct {
3866                 u8 order;
3867                 __le64 size;
3868         } __attribute__ ((packed)) size_buf = { 0 };
3869
3870         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3871                                 "rbd", "get_size",
3872                                 &snapid, sizeof (snapid),
3873                                 &size_buf, sizeof (size_buf));
3874         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3875         if (ret < 0)
3876                 return ret;
3877         if (ret < sizeof (size_buf))
3878                 return -ERANGE;
3879
3880         if (order) {
3881                 *order = size_buf.order;
3882                 dout("  order %u", (unsigned int)*order);
3883         }
3884         *snap_size = le64_to_cpu(size_buf.size);
3885
3886         dout("  snap_id 0x%016llx snap_size = %llu\n",
3887                 (unsigned long long)snap_id,
3888                 (unsigned long long)*snap_size);
3889
3890         return 0;
3891 }
3892
3893 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3894 {
3895         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3896                                         &rbd_dev->header.obj_order,
3897                                         &rbd_dev->header.image_size);
3898 }
3899
3900 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3901 {
3902         void *reply_buf;
3903         int ret;
3904         void *p;
3905
3906         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3907         if (!reply_buf)
3908                 return -ENOMEM;
3909
3910         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3911                                 "rbd", "get_object_prefix", NULL, 0,
3912                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3913         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3914         if (ret < 0)
3915                 goto out;
3916
3917         p = reply_buf;
3918         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3919                                                 p + ret, NULL, GFP_NOIO);
3920         ret = 0;
3921
3922         if (IS_ERR(rbd_dev->header.object_prefix)) {
3923                 ret = PTR_ERR(rbd_dev->header.object_prefix);
3924                 rbd_dev->header.object_prefix = NULL;
3925         } else {
3926                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3927         }
3928 out:
3929         kfree(reply_buf);
3930
3931         return ret;
3932 }
3933
3934 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3935                 u64 *snap_features)
3936 {
3937         __le64 snapid = cpu_to_le64(snap_id);
3938         struct {
3939                 __le64 features;
3940                 __le64 incompat;
3941         } __attribute__ ((packed)) features_buf = { 0 };
3942         u64 incompat;
3943         int ret;
3944
3945         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3946                                 "rbd", "get_features",
3947                                 &snapid, sizeof (snapid),
3948                                 &features_buf, sizeof (features_buf));
3949         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3950         if (ret < 0)
3951                 return ret;
3952         if (ret < sizeof (features_buf))
3953                 return -ERANGE;
3954
3955         incompat = le64_to_cpu(features_buf.incompat);
3956         if (incompat & ~RBD_FEATURES_SUPPORTED)
3957                 return -ENXIO;
3958
3959         *snap_features = le64_to_cpu(features_buf.features);
3960
3961         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3962                 (unsigned long long)snap_id,
3963                 (unsigned long long)*snap_features,
3964                 (unsigned long long)le64_to_cpu(features_buf.incompat));
3965
3966         return 0;
3967 }
3968
3969 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3970 {
3971         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3972                                                 &rbd_dev->header.features);
3973 }
3974
3975 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3976 {
3977         struct rbd_spec *parent_spec;
3978         size_t size;
3979         void *reply_buf = NULL;
3980         __le64 snapid;
3981         void *p;
3982         void *end;
3983         u64 pool_id;
3984         char *image_id;
3985         u64 snap_id;
3986         u64 overlap;
3987         int ret;
3988
3989         parent_spec = rbd_spec_alloc();
3990         if (!parent_spec)
3991                 return -ENOMEM;
3992
3993         size = sizeof (__le64) +                                /* pool_id */
3994                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
3995                 sizeof (__le64) +                               /* snap_id */
3996                 sizeof (__le64);                                /* overlap */
3997         reply_buf = kmalloc(size, GFP_KERNEL);
3998         if (!reply_buf) {
3999                 ret = -ENOMEM;
4000                 goto out_err;
4001         }
4002
4003         snapid = cpu_to_le64(CEPH_NOSNAP);
4004         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4005                                 "rbd", "get_parent",
4006                                 &snapid, sizeof (snapid),
4007                                 reply_buf, size);
4008         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4009         if (ret < 0)
4010                 goto out_err;
4011
4012         p = reply_buf;
4013         end = reply_buf + ret;
4014         ret = -ERANGE;
4015         ceph_decode_64_safe(&p, end, pool_id, out_err);
4016         if (pool_id == CEPH_NOPOOL) {
4017                 /*
4018                  * Either the parent never existed, or we have
4019                  * record of it but the image got flattened so it no
4020                  * longer has a parent.  When the parent of a
4021                  * layered image disappears we immediately set the
4022                  * overlap to 0.  The effect of this is that all new
4023                  * requests will be treated as if the image had no
4024                  * parent.
4025                  */
4026                 if (rbd_dev->parent_overlap) {
4027                         rbd_dev->parent_overlap = 0;
4028                         smp_mb();
4029                         rbd_dev_parent_put(rbd_dev);
4030                         pr_info("%s: clone image has been flattened\n",
4031                                 rbd_dev->disk->disk_name);
4032                 }
4033
4034                 goto out;       /* No parent?  No problem. */
4035         }
4036
4037         /* The ceph file layout needs to fit pool id in 32 bits */
4038
4039         ret = -EIO;
4040         if (pool_id > (u64)U32_MAX) {
4041                 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
4042                         (unsigned long long)pool_id, U32_MAX);
4043                 goto out_err;
4044         }
4045
4046         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4047         if (IS_ERR(image_id)) {
4048                 ret = PTR_ERR(image_id);
4049                 goto out_err;
4050         }
4051         ceph_decode_64_safe(&p, end, snap_id, out_err);
4052         ceph_decode_64_safe(&p, end, overlap, out_err);
4053
4054         /*
4055          * The parent won't change (except when the clone is
4056          * flattened, already handled that).  So we only need to
4057          * record the parent spec we have not already done so.
4058          */
4059         if (!rbd_dev->parent_spec) {
4060                 parent_spec->pool_id = pool_id;
4061                 parent_spec->image_id = image_id;
4062                 parent_spec->snap_id = snap_id;
4063                 rbd_dev->parent_spec = parent_spec;
4064                 parent_spec = NULL;     /* rbd_dev now owns this */
4065         } else {
4066                 kfree(image_id);
4067         }
4068
4069         /*
4070          * We always update the parent overlap.  If it's zero we
4071          * treat it specially.
4072          */
4073         rbd_dev->parent_overlap = overlap;
4074         smp_mb();
4075         if (!overlap) {
4076
4077                 /* A null parent_spec indicates it's the initial probe */
4078
4079                 if (parent_spec) {
4080                         /*
4081                          * The overlap has become zero, so the clone
4082                          * must have been resized down to 0 at some
4083                          * point.  Treat this the same as a flatten.
4084                          */
4085                         rbd_dev_parent_put(rbd_dev);
4086                         pr_info("%s: clone image now standalone\n",
4087                                 rbd_dev->disk->disk_name);
4088                 } else {
4089                         /*
4090                          * For the initial probe, if we find the
4091                          * overlap is zero we just pretend there was
4092                          * no parent image.
4093                          */
4094                         rbd_warn(rbd_dev, "ignoring parent of "
4095                                                 "clone with overlap 0\n");
4096                 }
4097         }
4098 out:
4099         ret = 0;
4100 out_err:
4101         kfree(reply_buf);
4102         rbd_spec_put(parent_spec);
4103
4104         return ret;
4105 }
4106
4107 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4108 {
4109         struct {
4110                 __le64 stripe_unit;
4111                 __le64 stripe_count;
4112         } __attribute__ ((packed)) striping_info_buf = { 0 };
4113         size_t size = sizeof (striping_info_buf);
4114         void *p;
4115         u64 obj_size;
4116         u64 stripe_unit;
4117         u64 stripe_count;
4118         int ret;
4119
4120         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4121                                 "rbd", "get_stripe_unit_count", NULL, 0,
4122                                 (char *)&striping_info_buf, size);
4123         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4124         if (ret < 0)
4125                 return ret;
4126         if (ret < size)
4127                 return -ERANGE;
4128
4129         /*
4130          * We don't actually support the "fancy striping" feature
4131          * (STRIPINGV2) yet, but if the striping sizes are the
4132          * defaults the behavior is the same as before.  So find
4133          * out, and only fail if the image has non-default values.
4134          */
4135         ret = -EINVAL;
4136         obj_size = (u64)1 << rbd_dev->header.obj_order;
4137         p = &striping_info_buf;
4138         stripe_unit = ceph_decode_64(&p);
4139         if (stripe_unit != obj_size) {
4140                 rbd_warn(rbd_dev, "unsupported stripe unit "
4141                                 "(got %llu want %llu)",
4142                                 stripe_unit, obj_size);
4143                 return -EINVAL;
4144         }
4145         stripe_count = ceph_decode_64(&p);
4146         if (stripe_count != 1) {
4147                 rbd_warn(rbd_dev, "unsupported stripe count "
4148                                 "(got %llu want 1)", stripe_count);
4149                 return -EINVAL;
4150         }
4151         rbd_dev->header.stripe_unit = stripe_unit;
4152         rbd_dev->header.stripe_count = stripe_count;
4153
4154         return 0;
4155 }
4156
4157 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4158 {
4159         size_t image_id_size;
4160         char *image_id;
4161         void *p;
4162         void *end;
4163         size_t size;
4164         void *reply_buf = NULL;
4165         size_t len = 0;
4166         char *image_name = NULL;
4167         int ret;
4168
4169         rbd_assert(!rbd_dev->spec->image_name);
4170
4171         len = strlen(rbd_dev->spec->image_id);
4172         image_id_size = sizeof (__le32) + len;
4173         image_id = kmalloc(image_id_size, GFP_KERNEL);
4174         if (!image_id)
4175                 return NULL;
4176
4177         p = image_id;
4178         end = image_id + image_id_size;
4179         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4180
4181         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4182         reply_buf = kmalloc(size, GFP_KERNEL);
4183         if (!reply_buf)
4184                 goto out;
4185
4186         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4187                                 "rbd", "dir_get_name",
4188                                 image_id, image_id_size,
4189                                 reply_buf, size);
4190         if (ret < 0)
4191                 goto out;
4192         p = reply_buf;
4193         end = reply_buf + ret;
4194
4195         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4196         if (IS_ERR(image_name))
4197                 image_name = NULL;
4198         else
4199                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4200 out:
4201         kfree(reply_buf);
4202         kfree(image_id);
4203
4204         return image_name;
4205 }
4206
4207 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4208 {
4209         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4210         const char *snap_name;
4211         u32 which = 0;
4212
4213         /* Skip over names until we find the one we are looking for */
4214
4215         snap_name = rbd_dev->header.snap_names;
4216         while (which < snapc->num_snaps) {
4217                 if (!strcmp(name, snap_name))
4218                         return snapc->snaps[which];
4219                 snap_name += strlen(snap_name) + 1;
4220                 which++;
4221         }
4222         return CEPH_NOSNAP;
4223 }
4224
4225 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4226 {
4227         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4228         u32 which;
4229         bool found = false;
4230         u64 snap_id;
4231
4232         for (which = 0; !found && which < snapc->num_snaps; which++) {
4233                 const char *snap_name;
4234
4235                 snap_id = snapc->snaps[which];
4236                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4237                 if (IS_ERR(snap_name)) {
4238                         /* ignore no-longer existing snapshots */
4239                         if (PTR_ERR(snap_name) == -ENOENT)
4240                                 continue;
4241                         else
4242                                 break;
4243                 }
4244                 found = !strcmp(name, snap_name);
4245                 kfree(snap_name);
4246         }
4247         return found ? snap_id : CEPH_NOSNAP;
4248 }
4249
4250 /*
4251  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4252  * no snapshot by that name is found, or if an error occurs.
4253  */
4254 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4255 {
4256         if (rbd_dev->image_format == 1)
4257                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4258
4259         return rbd_v2_snap_id_by_name(rbd_dev, name);
4260 }
4261
4262 /*
4263  * When an rbd image has a parent image, it is identified by the
4264  * pool, image, and snapshot ids (not names).  This function fills
4265  * in the names for those ids.  (It's OK if we can't figure out the
4266  * name for an image id, but the pool and snapshot ids should always
4267  * exist and have names.)  All names in an rbd spec are dynamically
4268  * allocated.
4269  *
4270  * When an image being mapped (not a parent) is probed, we have the
4271  * pool name and pool id, image name and image id, and the snapshot
4272  * name.  The only thing we're missing is the snapshot id.
4273  */
4274 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4275 {
4276         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4277         struct rbd_spec *spec = rbd_dev->spec;
4278         const char *pool_name;
4279         const char *image_name;
4280         const char *snap_name;
4281         int ret;
4282
4283         /*
4284          * An image being mapped will have the pool name (etc.), but
4285          * we need to look up the snapshot id.
4286          */
4287         if (spec->pool_name) {
4288                 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4289                         u64 snap_id;
4290
4291                         snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4292                         if (snap_id == CEPH_NOSNAP)
4293                                 return -ENOENT;
4294                         spec->snap_id = snap_id;
4295                 } else {
4296                         spec->snap_id = CEPH_NOSNAP;
4297                 }
4298
4299                 return 0;
4300         }
4301
4302         /* Get the pool name; we have to make our own copy of this */
4303
4304         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4305         if (!pool_name) {
4306                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4307                 return -EIO;
4308         }
4309         pool_name = kstrdup(pool_name, GFP_KERNEL);
4310         if (!pool_name)
4311                 return -ENOMEM;
4312
4313         /* Fetch the image name; tolerate failure here */
4314
4315         image_name = rbd_dev_image_name(rbd_dev);
4316         if (!image_name)
4317                 rbd_warn(rbd_dev, "unable to get image name");
4318
4319         /* Look up the snapshot name, and make a copy */
4320
4321         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4322         if (IS_ERR(snap_name)) {
4323                 ret = PTR_ERR(snap_name);
4324                 goto out_err;
4325         }
4326
4327         spec->pool_name = pool_name;
4328         spec->image_name = image_name;
4329         spec->snap_name = snap_name;
4330
4331         return 0;
4332 out_err:
4333         kfree(image_name);
4334         kfree(pool_name);
4335
4336         return ret;
4337 }
4338
4339 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4340 {
4341         size_t size;
4342         int ret;
4343         void *reply_buf;
4344         void *p;
4345         void *end;
4346         u64 seq;
4347         u32 snap_count;
4348         struct ceph_snap_context *snapc;
4349         u32 i;
4350
4351         /*
4352          * We'll need room for the seq value (maximum snapshot id),
4353          * snapshot count, and array of that many snapshot ids.
4354          * For now we have a fixed upper limit on the number we're
4355          * prepared to receive.
4356          */
4357         size = sizeof (__le64) + sizeof (__le32) +
4358                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4359         reply_buf = kzalloc(size, GFP_KERNEL);
4360         if (!reply_buf)
4361                 return -ENOMEM;
4362
4363         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4364                                 "rbd", "get_snapcontext", NULL, 0,
4365                                 reply_buf, size);
4366         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4367         if (ret < 0)
4368                 goto out;
4369
4370         p = reply_buf;
4371         end = reply_buf + ret;
4372         ret = -ERANGE;
4373         ceph_decode_64_safe(&p, end, seq, out);
4374         ceph_decode_32_safe(&p, end, snap_count, out);
4375
4376         /*
4377          * Make sure the reported number of snapshot ids wouldn't go
4378          * beyond the end of our buffer.  But before checking that,
4379          * make sure the computed size of the snapshot context we
4380          * allocate is representable in a size_t.
4381          */
4382         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4383                                  / sizeof (u64)) {
4384                 ret = -EINVAL;
4385                 goto out;
4386         }
4387         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4388                 goto out;
4389         ret = 0;
4390
4391         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4392         if (!snapc) {
4393                 ret = -ENOMEM;
4394                 goto out;
4395         }
4396         snapc->seq = seq;
4397         for (i = 0; i < snap_count; i++)
4398                 snapc->snaps[i] = ceph_decode_64(&p);
4399
4400         ceph_put_snap_context(rbd_dev->header.snapc);
4401         rbd_dev->header.snapc = snapc;
4402
4403         dout("  snap context seq = %llu, snap_count = %u\n",
4404                 (unsigned long long)seq, (unsigned int)snap_count);
4405 out:
4406         kfree(reply_buf);
4407
4408         return ret;
4409 }
4410
4411 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4412                                         u64 snap_id)
4413 {
4414         size_t size;
4415         void *reply_buf;
4416         __le64 snapid;
4417         int ret;
4418         void *p;
4419         void *end;
4420         char *snap_name;
4421
4422         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4423         reply_buf = kmalloc(size, GFP_KERNEL);
4424         if (!reply_buf)
4425                 return ERR_PTR(-ENOMEM);
4426
4427         snapid = cpu_to_le64(snap_id);
4428         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4429                                 "rbd", "get_snapshot_name",
4430                                 &snapid, sizeof (snapid),
4431                                 reply_buf, size);
4432         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4433         if (ret < 0) {
4434                 snap_name = ERR_PTR(ret);
4435                 goto out;
4436         }
4437
4438         p = reply_buf;
4439         end = reply_buf + ret;
4440         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4441         if (IS_ERR(snap_name))
4442                 goto out;
4443
4444         dout("  snap_id 0x%016llx snap_name = %s\n",
4445                 (unsigned long long)snap_id, snap_name);
4446 out:
4447         kfree(reply_buf);
4448
4449         return snap_name;
4450 }
4451
4452 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4453 {
4454         bool first_time = rbd_dev->header.object_prefix == NULL;
4455         int ret;
4456
4457         ret = rbd_dev_v2_image_size(rbd_dev);
4458         if (ret)
4459                 return ret;
4460
4461         if (first_time) {
4462                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4463                 if (ret)
4464                         return ret;
4465         }
4466
4467         /*
4468          * If the image supports layering, get the parent info.  We
4469          * need to probe the first time regardless.  Thereafter we
4470          * only need to if there's a parent, to see if it has
4471          * disappeared due to the mapped image getting flattened.
4472          */
4473         if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4474                         (first_time || rbd_dev->parent_spec)) {
4475                 bool warn;
4476
4477                 ret = rbd_dev_v2_parent_info(rbd_dev);
4478                 if (ret)
4479                         return ret;
4480
4481                 /*
4482                  * Print a warning if this is the initial probe and
4483                  * the image has a parent.  Don't print it if the
4484                  * image now being probed is itself a parent.  We
4485                  * can tell at this point because we won't know its
4486                  * pool name yet (just its pool id).
4487                  */
4488                 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4489                 if (first_time && warn)
4490                         rbd_warn(rbd_dev, "WARNING: kernel layering "
4491                                         "is EXPERIMENTAL!");
4492         }
4493
4494         if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4495                 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4496                         rbd_dev->mapping.size = rbd_dev->header.image_size;
4497
4498         ret = rbd_dev_v2_snap_context(rbd_dev);
4499         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4500
4501         return ret;
4502 }
4503
4504 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4505 {
4506         struct device *dev;
4507         int ret;
4508
4509         dev = &rbd_dev->dev;
4510         dev->bus = &rbd_bus_type;
4511         dev->type = &rbd_device_type;
4512         dev->parent = &rbd_root_dev;
4513         dev->release = rbd_dev_device_release;
4514         dev_set_name(dev, "%d", rbd_dev->dev_id);
4515         ret = device_register(dev);
4516
4517         return ret;
4518 }
4519
4520 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4521 {
4522         device_unregister(&rbd_dev->dev);
4523 }
4524
4525 /*
4526  * Get a unique rbd identifier for the given new rbd_dev, and add
4527  * the rbd_dev to the global list.
4528  */
4529 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4530 {
4531         int new_dev_id;
4532
4533         new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4534                                     0, minor_to_rbd_dev_id(1 << MINORBITS),
4535                                     GFP_KERNEL);
4536         if (new_dev_id < 0)
4537                 return new_dev_id;
4538
4539         rbd_dev->dev_id = new_dev_id;
4540
4541         spin_lock(&rbd_dev_list_lock);
4542         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4543         spin_unlock(&rbd_dev_list_lock);
4544
4545         dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4546
4547         return 0;
4548 }
4549
4550 /*
4551  * Remove an rbd_dev from the global list, and record that its
4552  * identifier is no longer in use.
4553  */
4554 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4555 {
4556         spin_lock(&rbd_dev_list_lock);
4557         list_del_init(&rbd_dev->node);
4558         spin_unlock(&rbd_dev_list_lock);
4559
4560         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4561
4562         dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4563 }
4564
4565 /*
4566  * Skips over white space at *buf, and updates *buf to point to the
4567  * first found non-space character (if any). Returns the length of
4568  * the token (string of non-white space characters) found.  Note
4569  * that *buf must be terminated with '\0'.
4570  */
4571 static inline size_t next_token(const char **buf)
4572 {
4573         /*
4574         * These are the characters that produce nonzero for
4575         * isspace() in the "C" and "POSIX" locales.
4576         */
4577         const char *spaces = " \f\n\r\t\v";
4578
4579         *buf += strspn(*buf, spaces);   /* Find start of token */
4580
4581         return strcspn(*buf, spaces);   /* Return token length */
4582 }
4583
4584 /*
4585  * Finds the next token in *buf, and if the provided token buffer is
4586  * big enough, copies the found token into it.  The result, if
4587  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4588  * must be terminated with '\0' on entry.
4589  *
4590  * Returns the length of the token found (not including the '\0').
4591  * Return value will be 0 if no token is found, and it will be >=
4592  * token_size if the token would not fit.
4593  *
4594  * The *buf pointer will be updated to point beyond the end of the
4595  * found token.  Note that this occurs even if the token buffer is
4596  * too small to hold it.
4597  */
4598 static inline size_t copy_token(const char **buf,
4599                                 char *token,
4600                                 size_t token_size)
4601 {
4602         size_t len;
4603
4604         len = next_token(buf);
4605         if (len < token_size) {
4606                 memcpy(token, *buf, len);
4607                 *(token + len) = '\0';
4608         }
4609         *buf += len;
4610
4611         return len;
4612 }
4613
4614 /*
4615  * Finds the next token in *buf, dynamically allocates a buffer big
4616  * enough to hold a copy of it, and copies the token into the new
4617  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4618  * that a duplicate buffer is created even for a zero-length token.
4619  *
4620  * Returns a pointer to the newly-allocated duplicate, or a null
4621  * pointer if memory for the duplicate was not available.  If
4622  * the lenp argument is a non-null pointer, the length of the token
4623  * (not including the '\0') is returned in *lenp.
4624  *
4625  * If successful, the *buf pointer will be updated to point beyond
4626  * the end of the found token.
4627  *
4628  * Note: uses GFP_KERNEL for allocation.
4629  */
4630 static inline char *dup_token(const char **buf, size_t *lenp)
4631 {
4632         char *dup;
4633         size_t len;
4634
4635         len = next_token(buf);
4636         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4637         if (!dup)
4638                 return NULL;
4639         *(dup + len) = '\0';
4640         *buf += len;
4641
4642         if (lenp)
4643                 *lenp = len;
4644
4645         return dup;
4646 }
4647
4648 /*
4649  * Parse the options provided for an "rbd add" (i.e., rbd image
4650  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4651  * and the data written is passed here via a NUL-terminated buffer.
4652  * Returns 0 if successful or an error code otherwise.
4653  *
4654  * The information extracted from these options is recorded in
4655  * the other parameters which return dynamically-allocated
4656  * structures:
4657  *  ceph_opts
4658  *      The address of a pointer that will refer to a ceph options
4659  *      structure.  Caller must release the returned pointer using
4660  *      ceph_destroy_options() when it is no longer needed.
4661  *  rbd_opts
4662  *      Address of an rbd options pointer.  Fully initialized by
4663  *      this function; caller must release with kfree().
4664  *  spec
4665  *      Address of an rbd image specification pointer.  Fully
4666  *      initialized by this function based on parsed options.
4667  *      Caller must release with rbd_spec_put().
4668  *
4669  * The options passed take this form:
4670  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4671  * where:
4672  *  <mon_addrs>
4673  *      A comma-separated list of one or more monitor addresses.
4674  *      A monitor address is an ip address, optionally followed
4675  *      by a port number (separated by a colon).
4676  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4677  *  <options>
4678  *      A comma-separated list of ceph and/or rbd options.
4679  *  <pool_name>
4680  *      The name of the rados pool containing the rbd image.
4681  *  <image_name>
4682  *      The name of the image in that pool to map.
4683  *  <snap_id>
4684  *      An optional snapshot id.  If provided, the mapping will
4685  *      present data from the image at the time that snapshot was
4686  *      created.  The image head is used if no snapshot id is
4687  *      provided.  Snapshot mappings are always read-only.
4688  */
4689 static int rbd_add_parse_args(const char *buf,
4690                                 struct ceph_options **ceph_opts,
4691                                 struct rbd_options **opts,
4692                                 struct rbd_spec **rbd_spec)
4693 {
4694         size_t len;
4695         char *options;
4696         const char *mon_addrs;
4697         char *snap_name;
4698         size_t mon_addrs_size;
4699         struct rbd_spec *spec = NULL;
4700         struct rbd_options *rbd_opts = NULL;
4701         struct ceph_options *copts;
4702         int ret;
4703
4704         /* The first four tokens are required */
4705
4706         len = next_token(&buf);
4707         if (!len) {
4708                 rbd_warn(NULL, "no monitor address(es) provided");
4709                 return -EINVAL;
4710         }
4711         mon_addrs = buf;
4712         mon_addrs_size = len + 1;
4713         buf += len;
4714
4715         ret = -EINVAL;
4716         options = dup_token(&buf, NULL);
4717         if (!options)
4718                 return -ENOMEM;
4719         if (!*options) {
4720                 rbd_warn(NULL, "no options provided");
4721                 goto out_err;
4722         }
4723
4724         spec = rbd_spec_alloc();
4725         if (!spec)
4726                 goto out_mem;
4727
4728         spec->pool_name = dup_token(&buf, NULL);
4729         if (!spec->pool_name)
4730                 goto out_mem;
4731         if (!*spec->pool_name) {
4732                 rbd_warn(NULL, "no pool name provided");
4733                 goto out_err;
4734         }
4735
4736         spec->image_name = dup_token(&buf, NULL);
4737         if (!spec->image_name)
4738                 goto out_mem;
4739         if (!*spec->image_name) {
4740                 rbd_warn(NULL, "no image name provided");
4741                 goto out_err;
4742         }
4743
4744         /*
4745          * Snapshot name is optional; default is to use "-"
4746          * (indicating the head/no snapshot).
4747          */
4748         len = next_token(&buf);
4749         if (!len) {
4750                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4751                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4752         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4753                 ret = -ENAMETOOLONG;
4754                 goto out_err;
4755         }
4756         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4757         if (!snap_name)
4758                 goto out_mem;
4759         *(snap_name + len) = '\0';
4760         spec->snap_name = snap_name;
4761
4762         /* Initialize all rbd options to the defaults */
4763
4764         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4765         if (!rbd_opts)
4766                 goto out_mem;
4767
4768         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4769
4770         copts = ceph_parse_options(options, mon_addrs,
4771                                         mon_addrs + mon_addrs_size - 1,
4772                                         parse_rbd_opts_token, rbd_opts);
4773         if (IS_ERR(copts)) {
4774                 ret = PTR_ERR(copts);
4775                 goto out_err;
4776         }
4777         kfree(options);
4778
4779         *ceph_opts = copts;
4780         *opts = rbd_opts;
4781         *rbd_spec = spec;
4782
4783         return 0;
4784 out_mem:
4785         ret = -ENOMEM;
4786 out_err:
4787         kfree(rbd_opts);
4788         rbd_spec_put(spec);
4789         kfree(options);
4790
4791         return ret;
4792 }
4793
4794 /*
4795  * Return pool id (>= 0) or a negative error code.
4796  */
4797 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4798 {
4799         u64 newest_epoch;
4800         unsigned long timeout = rbdc->client->options->mount_timeout * HZ;
4801         int tries = 0;
4802         int ret;
4803
4804 again:
4805         ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4806         if (ret == -ENOENT && tries++ < 1) {
4807                 ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
4808                                                &newest_epoch);
4809                 if (ret < 0)
4810                         return ret;
4811
4812                 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
4813                         ceph_monc_request_next_osdmap(&rbdc->client->monc);
4814                         (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
4815                                                      newest_epoch, timeout);
4816                         goto again;
4817                 } else {
4818                         /* the osdmap we have is new enough */
4819                         return -ENOENT;
4820                 }
4821         }
4822
4823         return ret;
4824 }
4825
4826 /*
4827  * An rbd format 2 image has a unique identifier, distinct from the
4828  * name given to it by the user.  Internally, that identifier is
4829  * what's used to specify the names of objects related to the image.
4830  *
4831  * A special "rbd id" object is used to map an rbd image name to its
4832  * id.  If that object doesn't exist, then there is no v2 rbd image
4833  * with the supplied name.
4834  *
4835  * This function will record the given rbd_dev's image_id field if
4836  * it can be determined, and in that case will return 0.  If any
4837  * errors occur a negative errno will be returned and the rbd_dev's
4838  * image_id field will be unchanged (and should be NULL).
4839  */
4840 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4841 {
4842         int ret;
4843         size_t size;
4844         char *object_name;
4845         void *response;
4846         char *image_id;
4847
4848         /*
4849          * When probing a parent image, the image id is already
4850          * known (and the image name likely is not).  There's no
4851          * need to fetch the image id again in this case.  We
4852          * do still need to set the image format though.
4853          */
4854         if (rbd_dev->spec->image_id) {
4855                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4856
4857                 return 0;
4858         }
4859
4860         /*
4861          * First, see if the format 2 image id file exists, and if
4862          * so, get the image's persistent id from it.
4863          */
4864         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4865         object_name = kmalloc(size, GFP_NOIO);
4866         if (!object_name)
4867                 return -ENOMEM;
4868         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4869         dout("rbd id object name is %s\n", object_name);
4870
4871         /* Response will be an encoded string, which includes a length */
4872
4873         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4874         response = kzalloc(size, GFP_NOIO);
4875         if (!response) {
4876                 ret = -ENOMEM;
4877                 goto out;
4878         }
4879
4880         /* If it doesn't exist we'll assume it's a format 1 image */
4881
4882         ret = rbd_obj_method_sync(rbd_dev, object_name,
4883                                 "rbd", "get_id", NULL, 0,
4884                                 response, RBD_IMAGE_ID_LEN_MAX);
4885         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4886         if (ret == -ENOENT) {
4887                 image_id = kstrdup("", GFP_KERNEL);
4888                 ret = image_id ? 0 : -ENOMEM;
4889                 if (!ret)
4890                         rbd_dev->image_format = 1;
4891         } else if (ret > sizeof (__le32)) {
4892                 void *p = response;
4893
4894                 image_id = ceph_extract_encoded_string(&p, p + ret,
4895                                                 NULL, GFP_NOIO);
4896                 ret = PTR_ERR_OR_ZERO(image_id);
4897                 if (!ret)
4898                         rbd_dev->image_format = 2;
4899         } else {
4900                 ret = -EINVAL;
4901         }
4902
4903         if (!ret) {
4904                 rbd_dev->spec->image_id = image_id;
4905                 dout("image_id is %s\n", image_id);
4906         }
4907 out:
4908         kfree(response);
4909         kfree(object_name);
4910
4911         return ret;
4912 }
4913
4914 /*
4915  * Undo whatever state changes are made by v1 or v2 header info
4916  * call.
4917  */
4918 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4919 {
4920         struct rbd_image_header *header;
4921
4922         /* Drop parent reference unless it's already been done (or none) */
4923
4924         if (rbd_dev->parent_overlap)
4925                 rbd_dev_parent_put(rbd_dev);
4926
4927         /* Free dynamic fields from the header, then zero it out */
4928
4929         header = &rbd_dev->header;
4930         ceph_put_snap_context(header->snapc);
4931         kfree(header->snap_sizes);
4932         kfree(header->snap_names);
4933         kfree(header->object_prefix);
4934         memset(header, 0, sizeof (*header));
4935 }
4936
4937 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4938 {
4939         int ret;
4940
4941         ret = rbd_dev_v2_object_prefix(rbd_dev);
4942         if (ret)
4943                 goto out_err;
4944
4945         /*
4946          * Get the and check features for the image.  Currently the
4947          * features are assumed to never change.
4948          */
4949         ret = rbd_dev_v2_features(rbd_dev);
4950         if (ret)
4951                 goto out_err;
4952
4953         /* If the image supports fancy striping, get its parameters */
4954
4955         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4956                 ret = rbd_dev_v2_striping_info(rbd_dev);
4957                 if (ret < 0)
4958                         goto out_err;
4959         }
4960         /* No support for crypto and compression type format 2 images */
4961
4962         return 0;
4963 out_err:
4964         rbd_dev->header.features = 0;
4965         kfree(rbd_dev->header.object_prefix);
4966         rbd_dev->header.object_prefix = NULL;
4967
4968         return ret;
4969 }
4970
4971 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4972 {
4973         struct rbd_device *parent = NULL;
4974         struct rbd_spec *parent_spec;
4975         struct rbd_client *rbdc;
4976         int ret;
4977
4978         if (!rbd_dev->parent_spec)
4979                 return 0;
4980         /*
4981          * We need to pass a reference to the client and the parent
4982          * spec when creating the parent rbd_dev.  Images related by
4983          * parent/child relationships always share both.
4984          */
4985         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4986         rbdc = __rbd_get_client(rbd_dev->rbd_client);
4987
4988         ret = -ENOMEM;
4989         parent = rbd_dev_create(rbdc, parent_spec);
4990         if (!parent)
4991                 goto out_err;
4992
4993         ret = rbd_dev_image_probe(parent, false);
4994         if (ret < 0)
4995                 goto out_err;
4996         rbd_dev->parent = parent;
4997         atomic_set(&rbd_dev->parent_ref, 1);
4998
4999         return 0;
5000 out_err:
5001         if (parent) {
5002                 rbd_dev_unparent(rbd_dev);
5003                 kfree(rbd_dev->header_name);
5004                 rbd_dev_destroy(parent);
5005         } else {
5006                 rbd_put_client(rbdc);
5007                 rbd_spec_put(parent_spec);
5008         }
5009
5010         return ret;
5011 }
5012
5013 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5014 {
5015         int ret;
5016
5017         /* Get an id and fill in device name. */
5018
5019         ret = rbd_dev_id_get(rbd_dev);
5020         if (ret)
5021                 return ret;
5022
5023         BUILD_BUG_ON(DEV_NAME_LEN
5024                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5025         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5026
5027         /* Record our major and minor device numbers. */
5028
5029         if (!single_major) {
5030                 ret = register_blkdev(0, rbd_dev->name);
5031                 if (ret < 0)
5032                         goto err_out_id;
5033
5034                 rbd_dev->major = ret;
5035                 rbd_dev->minor = 0;
5036         } else {
5037                 rbd_dev->major = rbd_major;
5038                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5039         }
5040
5041         /* Set up the blkdev mapping. */
5042
5043         ret = rbd_init_disk(rbd_dev);
5044         if (ret)
5045                 goto err_out_blkdev;
5046
5047         ret = rbd_dev_mapping_set(rbd_dev);
5048         if (ret)
5049                 goto err_out_disk;
5050         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5051         set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5052
5053         ret = rbd_bus_add_dev(rbd_dev);
5054         if (ret)
5055                 goto err_out_mapping;
5056
5057         /* Everything's ready.  Announce the disk to the world. */
5058
5059         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5060         add_disk(rbd_dev->disk);
5061
5062         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5063                 (unsigned long long) rbd_dev->mapping.size);
5064
5065         return ret;
5066
5067 err_out_mapping:
5068         rbd_dev_mapping_clear(rbd_dev);
5069 err_out_disk:
5070         rbd_free_disk(rbd_dev);
5071 err_out_blkdev:
5072         if (!single_major)
5073                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5074 err_out_id:
5075         rbd_dev_id_put(rbd_dev);
5076         rbd_dev_mapping_clear(rbd_dev);
5077
5078         return ret;
5079 }
5080
5081 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5082 {
5083         struct rbd_spec *spec = rbd_dev->spec;
5084         size_t size;
5085
5086         /* Record the header object name for this rbd image. */
5087
5088         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5089
5090         if (rbd_dev->image_format == 1)
5091                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5092         else
5093                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5094
5095         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5096         if (!rbd_dev->header_name)
5097                 return -ENOMEM;
5098
5099         if (rbd_dev->image_format == 1)
5100                 sprintf(rbd_dev->header_name, "%s%s",
5101                         spec->image_name, RBD_SUFFIX);
5102         else
5103                 sprintf(rbd_dev->header_name, "%s%s",
5104                         RBD_HEADER_PREFIX, spec->image_id);
5105         return 0;
5106 }
5107
5108 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5109 {
5110         rbd_dev_unprobe(rbd_dev);
5111         kfree(rbd_dev->header_name);
5112         rbd_dev->header_name = NULL;
5113         rbd_dev->image_format = 0;
5114         kfree(rbd_dev->spec->image_id);
5115         rbd_dev->spec->image_id = NULL;
5116
5117         rbd_dev_destroy(rbd_dev);
5118 }
5119
5120 /*
5121  * Probe for the existence of the header object for the given rbd
5122  * device.  If this image is the one being mapped (i.e., not a
5123  * parent), initiate a watch on its header object before using that
5124  * object to get detailed information about the rbd image.
5125  */
5126 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
5127 {
5128         int ret;
5129
5130         /*
5131          * Get the id from the image id object.  Unless there's an
5132          * error, rbd_dev->spec->image_id will be filled in with
5133          * a dynamically-allocated string, and rbd_dev->image_format
5134          * will be set to either 1 or 2.
5135          */
5136         ret = rbd_dev_image_id(rbd_dev);
5137         if (ret)
5138                 return ret;
5139         rbd_assert(rbd_dev->spec->image_id);
5140         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5141
5142         ret = rbd_dev_header_name(rbd_dev);
5143         if (ret)
5144                 goto err_out_format;
5145
5146         if (mapping) {
5147                 ret = rbd_dev_header_watch_sync(rbd_dev);
5148                 if (ret)
5149                         goto out_header_name;
5150         }
5151
5152         if (rbd_dev->image_format == 1)
5153                 ret = rbd_dev_v1_header_info(rbd_dev);
5154         else
5155                 ret = rbd_dev_v2_header_info(rbd_dev);
5156         if (ret)
5157                 goto err_out_watch;
5158
5159         ret = rbd_dev_spec_update(rbd_dev);
5160         if (ret)
5161                 goto err_out_probe;
5162
5163         ret = rbd_dev_probe_parent(rbd_dev);
5164         if (ret)
5165                 goto err_out_probe;
5166
5167         dout("discovered format %u image, header name is %s\n",
5168                 rbd_dev->image_format, rbd_dev->header_name);
5169
5170         return 0;
5171 err_out_probe:
5172         rbd_dev_unprobe(rbd_dev);
5173 err_out_watch:
5174         if (mapping)
5175                 rbd_dev_header_unwatch_sync(rbd_dev);
5176 out_header_name:
5177         kfree(rbd_dev->header_name);
5178         rbd_dev->header_name = NULL;
5179 err_out_format:
5180         rbd_dev->image_format = 0;
5181         kfree(rbd_dev->spec->image_id);
5182         rbd_dev->spec->image_id = NULL;
5183
5184         dout("probe failed, returning %d\n", ret);
5185
5186         return ret;
5187 }
5188
5189 static ssize_t do_rbd_add(struct bus_type *bus,
5190                           const char *buf,
5191                           size_t count)
5192 {
5193         struct rbd_device *rbd_dev = NULL;
5194         struct ceph_options *ceph_opts = NULL;
5195         struct rbd_options *rbd_opts = NULL;
5196         struct rbd_spec *spec = NULL;
5197         struct rbd_client *rbdc;
5198         bool read_only;
5199         int rc = -ENOMEM;
5200
5201         if (!try_module_get(THIS_MODULE))
5202                 return -ENODEV;
5203
5204         /* parse add command */
5205         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5206         if (rc < 0)
5207                 goto err_out_module;
5208         read_only = rbd_opts->read_only;
5209         kfree(rbd_opts);
5210         rbd_opts = NULL;        /* done with this */
5211
5212         rbdc = rbd_get_client(ceph_opts);
5213         if (IS_ERR(rbdc)) {
5214                 rc = PTR_ERR(rbdc);
5215                 goto err_out_args;
5216         }
5217
5218         /* pick the pool */
5219         rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5220         if (rc < 0)
5221                 goto err_out_client;
5222         spec->pool_id = (u64)rc;
5223
5224         /* The ceph file layout needs to fit pool id in 32 bits */
5225
5226         if (spec->pool_id > (u64)U32_MAX) {
5227                 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5228                                 (unsigned long long)spec->pool_id, U32_MAX);
5229                 rc = -EIO;
5230                 goto err_out_client;
5231         }
5232
5233         rbd_dev = rbd_dev_create(rbdc, spec);
5234         if (!rbd_dev)
5235                 goto err_out_client;
5236         rbdc = NULL;            /* rbd_dev now owns this */
5237         spec = NULL;            /* rbd_dev now owns this */
5238
5239         rc = rbd_dev_image_probe(rbd_dev, true);
5240         if (rc < 0)
5241                 goto err_out_rbd_dev;
5242
5243         /* If we are mapping a snapshot it must be marked read-only */
5244
5245         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5246                 read_only = true;
5247         rbd_dev->mapping.read_only = read_only;
5248
5249         rc = rbd_dev_device_setup(rbd_dev);
5250         if (rc) {
5251                 /*
5252                  * rbd_dev_header_unwatch_sync() can't be moved into
5253                  * rbd_dev_image_release() without refactoring, see
5254                  * commit 1f3ef78861ac.
5255                  */
5256                 rbd_dev_header_unwatch_sync(rbd_dev);
5257                 rbd_dev_image_release(rbd_dev);
5258                 goto err_out_module;
5259         }
5260
5261         return count;
5262
5263 err_out_rbd_dev:
5264         rbd_dev_destroy(rbd_dev);
5265 err_out_client:
5266         rbd_put_client(rbdc);
5267 err_out_args:
5268         rbd_spec_put(spec);
5269 err_out_module:
5270         module_put(THIS_MODULE);
5271
5272         dout("Error adding device %s\n", buf);
5273
5274         return (ssize_t)rc;
5275 }
5276
5277 static ssize_t rbd_add(struct bus_type *bus,
5278                        const char *buf,
5279                        size_t count)
5280 {
5281         if (single_major)
5282                 return -EINVAL;
5283
5284         return do_rbd_add(bus, buf, count);
5285 }
5286
5287 static ssize_t rbd_add_single_major(struct bus_type *bus,
5288                                     const char *buf,
5289                                     size_t count)
5290 {
5291         return do_rbd_add(bus, buf, count);
5292 }
5293
5294 static void rbd_dev_device_release(struct device *dev)
5295 {
5296         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5297
5298         rbd_free_disk(rbd_dev);
5299         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5300         rbd_dev_mapping_clear(rbd_dev);
5301         if (!single_major)
5302                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5303         rbd_dev_id_put(rbd_dev);
5304         rbd_dev_mapping_clear(rbd_dev);
5305 }
5306
5307 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5308 {
5309         while (rbd_dev->parent) {
5310                 struct rbd_device *first = rbd_dev;
5311                 struct rbd_device *second = first->parent;
5312                 struct rbd_device *third;
5313
5314                 /*
5315                  * Follow to the parent with no grandparent and
5316                  * remove it.
5317                  */
5318                 while (second && (third = second->parent)) {
5319                         first = second;
5320                         second = third;
5321                 }
5322                 rbd_assert(second);
5323                 rbd_dev_image_release(second);
5324                 first->parent = NULL;
5325                 first->parent_overlap = 0;
5326
5327                 rbd_assert(first->parent_spec);
5328                 rbd_spec_put(first->parent_spec);
5329                 first->parent_spec = NULL;
5330         }
5331 }
5332
5333 static ssize_t do_rbd_remove(struct bus_type *bus,
5334                              const char *buf,
5335                              size_t count)
5336 {
5337         struct rbd_device *rbd_dev = NULL;
5338         struct list_head *tmp;
5339         int dev_id;
5340         unsigned long ul;
5341         bool already = false;
5342         int ret;
5343
5344         ret = kstrtoul(buf, 10, &ul);
5345         if (ret)
5346                 return ret;
5347
5348         /* convert to int; abort if we lost anything in the conversion */
5349         dev_id = (int)ul;
5350         if (dev_id != ul)
5351                 return -EINVAL;
5352
5353         ret = -ENOENT;
5354         spin_lock(&rbd_dev_list_lock);
5355         list_for_each(tmp, &rbd_dev_list) {
5356                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5357                 if (rbd_dev->dev_id == dev_id) {
5358                         ret = 0;
5359                         break;
5360                 }
5361         }
5362         if (!ret) {
5363                 spin_lock_irq(&rbd_dev->lock);
5364                 if (rbd_dev->open_count)
5365                         ret = -EBUSY;
5366                 else
5367                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5368                                                         &rbd_dev->flags);
5369                 spin_unlock_irq(&rbd_dev->lock);
5370         }
5371         spin_unlock(&rbd_dev_list_lock);
5372         if (ret < 0 || already)
5373                 return ret;
5374
5375         rbd_dev_header_unwatch_sync(rbd_dev);
5376         /*
5377          * flush remaining watch callbacks - these must be complete
5378          * before the osd_client is shutdown
5379          */
5380         dout("%s: flushing notifies", __func__);
5381         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5382
5383         /*
5384          * Don't free anything from rbd_dev->disk until after all
5385          * notifies are completely processed. Otherwise
5386          * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5387          * in a potential use after free of rbd_dev->disk or rbd_dev.
5388          */
5389         rbd_bus_del_dev(rbd_dev);
5390         rbd_dev_image_release(rbd_dev);
5391         module_put(THIS_MODULE);
5392
5393         return count;
5394 }
5395
5396 static ssize_t rbd_remove(struct bus_type *bus,
5397                           const char *buf,
5398                           size_t count)
5399 {
5400         if (single_major)
5401                 return -EINVAL;
5402
5403         return do_rbd_remove(bus, buf, count);
5404 }
5405
5406 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5407                                        const char *buf,
5408                                        size_t count)
5409 {
5410         return do_rbd_remove(bus, buf, count);
5411 }
5412
5413 /*
5414  * create control files in sysfs
5415  * /sys/bus/rbd/...
5416  */
5417 static int rbd_sysfs_init(void)
5418 {
5419         int ret;
5420
5421         ret = device_register(&rbd_root_dev);
5422         if (ret < 0)
5423                 return ret;
5424
5425         ret = bus_register(&rbd_bus_type);
5426         if (ret < 0)
5427                 device_unregister(&rbd_root_dev);
5428
5429         return ret;
5430 }
5431
5432 static void rbd_sysfs_cleanup(void)
5433 {
5434         bus_unregister(&rbd_bus_type);
5435         device_unregister(&rbd_root_dev);
5436 }
5437
5438 static int rbd_slab_init(void)
5439 {
5440         rbd_assert(!rbd_img_request_cache);
5441         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5442                                         sizeof (struct rbd_img_request),
5443                                         __alignof__(struct rbd_img_request),
5444                                         0, NULL);
5445         if (!rbd_img_request_cache)
5446                 return -ENOMEM;
5447
5448         rbd_assert(!rbd_obj_request_cache);
5449         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5450                                         sizeof (struct rbd_obj_request),
5451                                         __alignof__(struct rbd_obj_request),
5452                                         0, NULL);
5453         if (!rbd_obj_request_cache)
5454                 goto out_err;
5455
5456         rbd_assert(!rbd_segment_name_cache);
5457         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5458                                         CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5459         if (rbd_segment_name_cache)
5460                 return 0;
5461 out_err:
5462         if (rbd_obj_request_cache) {
5463                 kmem_cache_destroy(rbd_obj_request_cache);
5464                 rbd_obj_request_cache = NULL;
5465         }
5466
5467         kmem_cache_destroy(rbd_img_request_cache);
5468         rbd_img_request_cache = NULL;
5469
5470         return -ENOMEM;
5471 }
5472
5473 static void rbd_slab_exit(void)
5474 {
5475         rbd_assert(rbd_segment_name_cache);
5476         kmem_cache_destroy(rbd_segment_name_cache);
5477         rbd_segment_name_cache = NULL;
5478
5479         rbd_assert(rbd_obj_request_cache);
5480         kmem_cache_destroy(rbd_obj_request_cache);
5481         rbd_obj_request_cache = NULL;
5482
5483         rbd_assert(rbd_img_request_cache);
5484         kmem_cache_destroy(rbd_img_request_cache);
5485         rbd_img_request_cache = NULL;
5486 }
5487
5488 static int __init rbd_init(void)
5489 {
5490         int rc;
5491
5492         if (!libceph_compatible(NULL)) {
5493                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5494                 return -EINVAL;
5495         }
5496
5497         rc = rbd_slab_init();
5498         if (rc)
5499                 return rc;
5500
5501         if (single_major) {
5502                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5503                 if (rbd_major < 0) {
5504                         rc = rbd_major;
5505                         goto err_out_slab;
5506                 }
5507         }
5508
5509         rc = rbd_sysfs_init();
5510         if (rc)
5511                 goto err_out_blkdev;
5512
5513         if (single_major)
5514                 pr_info("loaded (major %d)\n", rbd_major);
5515         else
5516                 pr_info("loaded\n");
5517
5518         return 0;
5519
5520 err_out_blkdev:
5521         if (single_major)
5522                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5523 err_out_slab:
5524         rbd_slab_exit();
5525         return rc;
5526 }
5527
5528 static void __exit rbd_exit(void)
5529 {
5530         ida_destroy(&rbd_dev_id_ida);
5531         rbd_sysfs_cleanup();
5532         if (single_major)
5533                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5534         rbd_slab_exit();
5535 }
5536
5537 module_init(rbd_init);
5538 module_exit(rbd_exit);
5539
5540 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5541 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5542 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5543 /* following authorship retained from original osdblk.c */
5544 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5545
5546 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5547 MODULE_LICENSE("GPL");