zram: introduce zram->tb_lock
[firefly-linux-kernel-4.4.55.git] / drivers / block / zram / zram_drv.c
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #ifdef CONFIG_ZRAM_DEBUG
19 #define DEBUG
20 #endif
21
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/bio.h>
25 #include <linux/bitops.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>
28 #include <linux/device.h>
29 #include <linux/genhd.h>
30 #include <linux/highmem.h>
31 #include <linux/slab.h>
32 #include <linux/lzo.h>
33 #include <linux/string.h>
34 #include <linux/vmalloc.h>
35
36 #include "zram_drv.h"
37
38 /* Globals */
39 static int zram_major;
40 static struct zram *zram_devices;
41
42 /* Module params (documentation at end) */
43 static unsigned int num_devices = 1;
44
45 static inline struct zram *dev_to_zram(struct device *dev)
46 {
47         return (struct zram *)dev_to_disk(dev)->private_data;
48 }
49
50 static ssize_t disksize_show(struct device *dev,
51                 struct device_attribute *attr, char *buf)
52 {
53         struct zram *zram = dev_to_zram(dev);
54
55         return sprintf(buf, "%llu\n", zram->disksize);
56 }
57
58 static ssize_t initstate_show(struct device *dev,
59                 struct device_attribute *attr, char *buf)
60 {
61         struct zram *zram = dev_to_zram(dev);
62
63         return sprintf(buf, "%u\n", zram->init_done);
64 }
65
66 static ssize_t num_reads_show(struct device *dev,
67                 struct device_attribute *attr, char *buf)
68 {
69         struct zram *zram = dev_to_zram(dev);
70
71         return sprintf(buf, "%llu\n",
72                         (u64)atomic64_read(&zram->stats.num_reads));
73 }
74
75 static ssize_t num_writes_show(struct device *dev,
76                 struct device_attribute *attr, char *buf)
77 {
78         struct zram *zram = dev_to_zram(dev);
79
80         return sprintf(buf, "%llu\n",
81                         (u64)atomic64_read(&zram->stats.num_writes));
82 }
83
84 static ssize_t invalid_io_show(struct device *dev,
85                 struct device_attribute *attr, char *buf)
86 {
87         struct zram *zram = dev_to_zram(dev);
88
89         return sprintf(buf, "%llu\n",
90                         (u64)atomic64_read(&zram->stats.invalid_io));
91 }
92
93 static ssize_t notify_free_show(struct device *dev,
94                 struct device_attribute *attr, char *buf)
95 {
96         struct zram *zram = dev_to_zram(dev);
97
98         return sprintf(buf, "%llu\n",
99                         (u64)atomic64_read(&zram->stats.notify_free));
100 }
101
102 static ssize_t zero_pages_show(struct device *dev,
103                 struct device_attribute *attr, char *buf)
104 {
105         struct zram *zram = dev_to_zram(dev);
106
107         return sprintf(buf, "%u\n", atomic_read(&zram->stats.pages_zero));
108 }
109
110 static ssize_t orig_data_size_show(struct device *dev,
111                 struct device_attribute *attr, char *buf)
112 {
113         struct zram *zram = dev_to_zram(dev);
114
115         return sprintf(buf, "%llu\n",
116                 (u64)(atomic_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
117 }
118
119 static ssize_t compr_data_size_show(struct device *dev,
120                 struct device_attribute *attr, char *buf)
121 {
122         struct zram *zram = dev_to_zram(dev);
123
124         return sprintf(buf, "%llu\n",
125                         (u64)atomic64_read(&zram->stats.compr_size));
126 }
127
128 static ssize_t mem_used_total_show(struct device *dev,
129                 struct device_attribute *attr, char *buf)
130 {
131         u64 val = 0;
132         struct zram *zram = dev_to_zram(dev);
133         struct zram_meta *meta = zram->meta;
134
135         down_read(&zram->init_lock);
136         if (zram->init_done)
137                 val = zs_get_total_size_bytes(meta->mem_pool);
138         up_read(&zram->init_lock);
139
140         return sprintf(buf, "%llu\n", val);
141 }
142
143 /* flag operations needs meta->tb_lock */
144 static int zram_test_flag(struct zram_meta *meta, u32 index,
145                         enum zram_pageflags flag)
146 {
147         return meta->table[index].flags & BIT(flag);
148 }
149
150 static void zram_set_flag(struct zram_meta *meta, u32 index,
151                         enum zram_pageflags flag)
152 {
153         meta->table[index].flags |= BIT(flag);
154 }
155
156 static void zram_clear_flag(struct zram_meta *meta, u32 index,
157                         enum zram_pageflags flag)
158 {
159         meta->table[index].flags &= ~BIT(flag);
160 }
161
162 static inline int is_partial_io(struct bio_vec *bvec)
163 {
164         return bvec->bv_len != PAGE_SIZE;
165 }
166
167 /*
168  * Check if request is within bounds and aligned on zram logical blocks.
169  */
170 static inline int valid_io_request(struct zram *zram, struct bio *bio)
171 {
172         u64 start, end, bound;
173
174         /* unaligned request */
175         if (unlikely(bio->bi_sector & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
176                 return 0;
177         if (unlikely(bio->bi_size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
178                 return 0;
179
180         start = bio->bi_sector;
181         end = start + (bio->bi_size >> SECTOR_SHIFT);
182         bound = zram->disksize >> SECTOR_SHIFT;
183         /* out of range range */
184         if (unlikely(start >= bound || end >= bound || start > end))
185                 return 0;
186
187         /* I/O request is valid */
188         return 1;
189 }
190
191 static void zram_meta_free(struct zram_meta *meta)
192 {
193         zs_destroy_pool(meta->mem_pool);
194         kfree(meta->compress_workmem);
195         free_pages((unsigned long)meta->compress_buffer, 1);
196         vfree(meta->table);
197         kfree(meta);
198 }
199
200 static struct zram_meta *zram_meta_alloc(u64 disksize)
201 {
202         size_t num_pages;
203         struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
204         if (!meta)
205                 goto out;
206
207         meta->compress_workmem = kzalloc(LZO1X_MEM_COMPRESS, GFP_KERNEL);
208         if (!meta->compress_workmem)
209                 goto free_meta;
210
211         meta->compress_buffer =
212                 (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
213         if (!meta->compress_buffer) {
214                 pr_err("Error allocating compressor buffer space\n");
215                 goto free_workmem;
216         }
217
218         num_pages = disksize >> PAGE_SHIFT;
219         meta->table = vzalloc(num_pages * sizeof(*meta->table));
220         if (!meta->table) {
221                 pr_err("Error allocating zram address table\n");
222                 goto free_buffer;
223         }
224
225         meta->mem_pool = zs_create_pool(GFP_NOIO | __GFP_HIGHMEM);
226         if (!meta->mem_pool) {
227                 pr_err("Error creating memory pool\n");
228                 goto free_table;
229         }
230
231         rwlock_init(&meta->tb_lock);
232         return meta;
233
234 free_table:
235         vfree(meta->table);
236 free_buffer:
237         free_pages((unsigned long)meta->compress_buffer, 1);
238 free_workmem:
239         kfree(meta->compress_workmem);
240 free_meta:
241         kfree(meta);
242         meta = NULL;
243 out:
244         return meta;
245 }
246
247 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
248 {
249         if (*offset + bvec->bv_len >= PAGE_SIZE)
250                 (*index)++;
251         *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
252 }
253
254 static int page_zero_filled(void *ptr)
255 {
256         unsigned int pos;
257         unsigned long *page;
258
259         page = (unsigned long *)ptr;
260
261         for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
262                 if (page[pos])
263                         return 0;
264         }
265
266         return 1;
267 }
268
269 static void handle_zero_page(struct bio_vec *bvec)
270 {
271         struct page *page = bvec->bv_page;
272         void *user_mem;
273
274         user_mem = kmap_atomic(page);
275         if (is_partial_io(bvec))
276                 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
277         else
278                 clear_page(user_mem);
279         kunmap_atomic(user_mem);
280
281         flush_dcache_page(page);
282 }
283
284 /* NOTE: caller should hold meta->tb_lock with write-side */
285 static void zram_free_page(struct zram *zram, size_t index)
286 {
287         struct zram_meta *meta = zram->meta;
288         unsigned long handle = meta->table[index].handle;
289         u16 size = meta->table[index].size;
290
291         if (unlikely(!handle)) {
292                 /*
293                  * No memory is allocated for zero filled pages.
294                  * Simply clear zero page flag.
295                  */
296                 if (zram_test_flag(meta, index, ZRAM_ZERO)) {
297                         zram_clear_flag(meta, index, ZRAM_ZERO);
298                         atomic_dec(&zram->stats.pages_zero);
299                 }
300                 return;
301         }
302
303         if (unlikely(size > max_zpage_size))
304                 atomic_dec(&zram->stats.bad_compress);
305
306         zs_free(meta->mem_pool, handle);
307
308         if (size <= PAGE_SIZE / 2)
309                 atomic_dec(&zram->stats.good_compress);
310
311         atomic64_sub(meta->table[index].size, &zram->stats.compr_size);
312         atomic_dec(&zram->stats.pages_stored);
313
314         meta->table[index].handle = 0;
315         meta->table[index].size = 0;
316 }
317
318 static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
319 {
320         int ret = LZO_E_OK;
321         size_t clen = PAGE_SIZE;
322         unsigned char *cmem;
323         struct zram_meta *meta = zram->meta;
324         unsigned long handle;
325         u16 size;
326
327         read_lock(&meta->tb_lock);
328         handle = meta->table[index].handle;
329         size = meta->table[index].size;
330
331         if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
332                 read_unlock(&meta->tb_lock);
333                 clear_page(mem);
334                 return 0;
335         }
336
337         cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
338         if (size == PAGE_SIZE)
339                 copy_page(mem, cmem);
340         else
341                 ret = lzo1x_decompress_safe(cmem, size, mem, &clen);
342         zs_unmap_object(meta->mem_pool, handle);
343         read_unlock(&meta->tb_lock);
344
345         /* Should NEVER happen. Return bio error if it does. */
346         if (unlikely(ret != LZO_E_OK)) {
347                 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
348                 atomic64_inc(&zram->stats.failed_reads);
349                 return ret;
350         }
351
352         return 0;
353 }
354
355 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
356                           u32 index, int offset, struct bio *bio)
357 {
358         int ret;
359         struct page *page;
360         unsigned char *user_mem, *uncmem = NULL;
361         struct zram_meta *meta = zram->meta;
362         page = bvec->bv_page;
363
364         read_lock(&meta->tb_lock);
365         if (unlikely(!meta->table[index].handle) ||
366                         zram_test_flag(meta, index, ZRAM_ZERO)) {
367                 read_unlock(&meta->tb_lock);
368                 handle_zero_page(bvec);
369                 return 0;
370         }
371         read_unlock(&meta->tb_lock);
372
373         if (is_partial_io(bvec))
374                 /* Use  a temporary buffer to decompress the page */
375                 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
376
377         user_mem = kmap_atomic(page);
378         if (!is_partial_io(bvec))
379                 uncmem = user_mem;
380
381         if (!uncmem) {
382                 pr_info("Unable to allocate temp memory\n");
383                 ret = -ENOMEM;
384                 goto out_cleanup;
385         }
386
387         ret = zram_decompress_page(zram, uncmem, index);
388         /* Should NEVER happen. Return bio error if it does. */
389         if (unlikely(ret != LZO_E_OK))
390                 goto out_cleanup;
391
392         if (is_partial_io(bvec))
393                 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
394                                 bvec->bv_len);
395
396         flush_dcache_page(page);
397         ret = 0;
398 out_cleanup:
399         kunmap_atomic(user_mem);
400         if (is_partial_io(bvec))
401                 kfree(uncmem);
402         return ret;
403 }
404
405 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
406                            int offset)
407 {
408         int ret = 0;
409         size_t clen;
410         unsigned long handle;
411         struct page *page;
412         unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
413         struct zram_meta *meta = zram->meta;
414
415         page = bvec->bv_page;
416         src = meta->compress_buffer;
417
418         if (is_partial_io(bvec)) {
419                 /*
420                  * This is a partial IO. We need to read the full page
421                  * before to write the changes.
422                  */
423                 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
424                 if (!uncmem) {
425                         ret = -ENOMEM;
426                         goto out;
427                 }
428                 ret = zram_decompress_page(zram, uncmem, index);
429                 if (ret)
430                         goto out;
431         }
432
433         user_mem = kmap_atomic(page);
434
435         if (is_partial_io(bvec)) {
436                 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
437                        bvec->bv_len);
438                 kunmap_atomic(user_mem);
439                 user_mem = NULL;
440         } else {
441                 uncmem = user_mem;
442         }
443
444         if (page_zero_filled(uncmem)) {
445                 kunmap_atomic(user_mem);
446                 /* Free memory associated with this sector now. */
447                 write_lock(&zram->meta->tb_lock);
448                 zram_free_page(zram, index);
449                 zram_set_flag(meta, index, ZRAM_ZERO);
450                 write_unlock(&zram->meta->tb_lock);
451
452                 atomic_inc(&zram->stats.pages_zero);
453                 ret = 0;
454                 goto out;
455         }
456
457         ret = lzo1x_1_compress(uncmem, PAGE_SIZE, src, &clen,
458                                meta->compress_workmem);
459
460         if (!is_partial_io(bvec)) {
461                 kunmap_atomic(user_mem);
462                 user_mem = NULL;
463                 uncmem = NULL;
464         }
465
466         if (unlikely(ret != LZO_E_OK)) {
467                 pr_err("Compression failed! err=%d\n", ret);
468                 goto out;
469         }
470
471         if (unlikely(clen > max_zpage_size)) {
472                 atomic_inc(&zram->stats.bad_compress);
473                 clen = PAGE_SIZE;
474                 src = NULL;
475                 if (is_partial_io(bvec))
476                         src = uncmem;
477         }
478
479         handle = zs_malloc(meta->mem_pool, clen);
480         if (!handle) {
481                 pr_info("Error allocating memory for compressed page: %u, size=%zu\n",
482                         index, clen);
483                 ret = -ENOMEM;
484                 goto out;
485         }
486         cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
487
488         if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
489                 src = kmap_atomic(page);
490                 copy_page(cmem, src);
491                 kunmap_atomic(src);
492         } else {
493                 memcpy(cmem, src, clen);
494         }
495
496         zs_unmap_object(meta->mem_pool, handle);
497
498         /*
499          * Free memory associated with this sector
500          * before overwriting unused sectors.
501          */
502         write_lock(&zram->meta->tb_lock);
503         zram_free_page(zram, index);
504
505         meta->table[index].handle = handle;
506         meta->table[index].size = clen;
507         write_unlock(&zram->meta->tb_lock);
508
509         /* Update stats */
510         atomic64_add(clen, &zram->stats.compr_size);
511         atomic_inc(&zram->stats.pages_stored);
512         if (clen <= PAGE_SIZE / 2)
513                 atomic_inc(&zram->stats.good_compress);
514
515 out:
516         if (is_partial_io(bvec))
517                 kfree(uncmem);
518
519         if (ret)
520                 atomic64_inc(&zram->stats.failed_writes);
521         return ret;
522 }
523
524 static void handle_pending_slot_free(struct zram *zram)
525 {
526         struct zram_slot_free *free_rq;
527
528         spin_lock(&zram->slot_free_lock);
529         while (zram->slot_free_rq) {
530                 free_rq = zram->slot_free_rq;
531                 zram->slot_free_rq = free_rq->next;
532                 zram_free_page(zram, free_rq->index);
533                 kfree(free_rq);
534         }
535         spin_unlock(&zram->slot_free_lock);
536 }
537
538 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
539                         int offset, struct bio *bio, int rw)
540 {
541         int ret;
542
543         if (rw == READ) {
544                 down_read(&zram->lock);
545                 ret = zram_bvec_read(zram, bvec, index, offset, bio);
546                 up_read(&zram->lock);
547         } else {
548                 down_write(&zram->lock);
549                 handle_pending_slot_free(zram);
550                 ret = zram_bvec_write(zram, bvec, index, offset);
551                 up_write(&zram->lock);
552         }
553
554         return ret;
555 }
556
557 static void zram_reset_device(struct zram *zram, bool reset_capacity)
558 {
559         size_t index;
560         struct zram_meta *meta;
561
562         down_write(&zram->init_lock);
563         if (!zram->init_done) {
564                 up_write(&zram->init_lock);
565                 return;
566         }
567
568         flush_work(&zram->free_work);
569
570         meta = zram->meta;
571         zram->init_done = 0;
572
573         /* Free all pages that are still in this zram device */
574         for (index = 0; index < zram->disksize >> PAGE_SHIFT; index++) {
575                 unsigned long handle = meta->table[index].handle;
576                 if (!handle)
577                         continue;
578
579                 zs_free(meta->mem_pool, handle);
580         }
581
582         zram_meta_free(zram->meta);
583         zram->meta = NULL;
584         /* Reset stats */
585         memset(&zram->stats, 0, sizeof(zram->stats));
586
587         zram->disksize = 0;
588         if (reset_capacity)
589                 set_capacity(zram->disk, 0);
590         up_write(&zram->init_lock);
591 }
592
593 static void zram_init_device(struct zram *zram, struct zram_meta *meta)
594 {
595         if (zram->disksize > 2 * (totalram_pages << PAGE_SHIFT)) {
596                 pr_info(
597                 "There is little point creating a zram of greater than "
598                 "twice the size of memory since we expect a 2:1 compression "
599                 "ratio. Note that zram uses about 0.1%% of the size of "
600                 "the disk when not in use so a huge zram is "
601                 "wasteful.\n"
602                 "\tMemory Size: %lu kB\n"
603                 "\tSize you selected: %llu kB\n"
604                 "Continuing anyway ...\n",
605                 (totalram_pages << PAGE_SHIFT) >> 10, zram->disksize >> 10
606                 );
607         }
608
609         /* zram devices sort of resembles non-rotational disks */
610         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
611
612         zram->meta = meta;
613         zram->init_done = 1;
614
615         pr_debug("Initialization done!\n");
616 }
617
618 static ssize_t disksize_store(struct device *dev,
619                 struct device_attribute *attr, const char *buf, size_t len)
620 {
621         u64 disksize;
622         struct zram_meta *meta;
623         struct zram *zram = dev_to_zram(dev);
624
625         disksize = memparse(buf, NULL);
626         if (!disksize)
627                 return -EINVAL;
628
629         disksize = PAGE_ALIGN(disksize);
630         meta = zram_meta_alloc(disksize);
631         down_write(&zram->init_lock);
632         if (zram->init_done) {
633                 up_write(&zram->init_lock);
634                 zram_meta_free(meta);
635                 pr_info("Cannot change disksize for initialized device\n");
636                 return -EBUSY;
637         }
638
639         zram->disksize = disksize;
640         set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
641         zram_init_device(zram, meta);
642         up_write(&zram->init_lock);
643
644         return len;
645 }
646
647 static ssize_t reset_store(struct device *dev,
648                 struct device_attribute *attr, const char *buf, size_t len)
649 {
650         int ret;
651         unsigned short do_reset;
652         struct zram *zram;
653         struct block_device *bdev;
654
655         zram = dev_to_zram(dev);
656         bdev = bdget_disk(zram->disk, 0);
657
658         if (!bdev)
659                 return -ENOMEM;
660
661         /* Do not reset an active device! */
662         if (bdev->bd_holders) {
663                 ret = -EBUSY;
664                 goto out;
665         }
666
667         ret = kstrtou16(buf, 10, &do_reset);
668         if (ret)
669                 goto out;
670
671         if (!do_reset) {
672                 ret = -EINVAL;
673                 goto out;
674         }
675
676         /* Make sure all pending I/O is finished */
677         fsync_bdev(bdev);
678         bdput(bdev);
679
680         zram_reset_device(zram, true);
681         return len;
682
683 out:
684         bdput(bdev);
685         return ret;
686 }
687
688 static void __zram_make_request(struct zram *zram, struct bio *bio, int rw)
689 {
690         int i, offset;
691         u32 index;
692         struct bio_vec *bvec;
693
694         switch (rw) {
695         case READ:
696                 atomic64_inc(&zram->stats.num_reads);
697                 break;
698         case WRITE:
699                 atomic64_inc(&zram->stats.num_writes);
700                 break;
701         }
702
703         index = bio->bi_sector >> SECTORS_PER_PAGE_SHIFT;
704         offset = (bio->bi_sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
705
706         bio_for_each_segment(bvec, bio, i) {
707                 int max_transfer_size = PAGE_SIZE - offset;
708
709                 if (bvec->bv_len > max_transfer_size) {
710                         /*
711                          * zram_bvec_rw() can only make operation on a single
712                          * zram page. Split the bio vector.
713                          */
714                         struct bio_vec bv;
715
716                         bv.bv_page = bvec->bv_page;
717                         bv.bv_len = max_transfer_size;
718                         bv.bv_offset = bvec->bv_offset;
719
720                         if (zram_bvec_rw(zram, &bv, index, offset, bio, rw) < 0)
721                                 goto out;
722
723                         bv.bv_len = bvec->bv_len - max_transfer_size;
724                         bv.bv_offset += max_transfer_size;
725                         if (zram_bvec_rw(zram, &bv, index+1, 0, bio, rw) < 0)
726                                 goto out;
727                 } else
728                         if (zram_bvec_rw(zram, bvec, index, offset, bio, rw)
729                             < 0)
730                                 goto out;
731
732                 update_position(&index, &offset, bvec);
733         }
734
735         set_bit(BIO_UPTODATE, &bio->bi_flags);
736         bio_endio(bio, 0);
737         return;
738
739 out:
740         bio_io_error(bio);
741 }
742
743 /*
744  * Handler function for all zram I/O requests.
745  */
746 static void zram_make_request(struct request_queue *queue, struct bio *bio)
747 {
748         struct zram *zram = queue->queuedata;
749
750         down_read(&zram->init_lock);
751         if (unlikely(!zram->init_done))
752                 goto error;
753
754         if (!valid_io_request(zram, bio)) {
755                 atomic64_inc(&zram->stats.invalid_io);
756                 goto error;
757         }
758
759         __zram_make_request(zram, bio, bio_data_dir(bio));
760         up_read(&zram->init_lock);
761
762         return;
763
764 error:
765         up_read(&zram->init_lock);
766         bio_io_error(bio);
767 }
768
769 static void zram_slot_free(struct work_struct *work)
770 {
771         struct zram *zram;
772
773         zram = container_of(work, struct zram, free_work);
774         down_write(&zram->lock);
775         handle_pending_slot_free(zram);
776         up_write(&zram->lock);
777 }
778
779 static void add_slot_free(struct zram *zram, struct zram_slot_free *free_rq)
780 {
781         spin_lock(&zram->slot_free_lock);
782         free_rq->next = zram->slot_free_rq;
783         zram->slot_free_rq = free_rq;
784         spin_unlock(&zram->slot_free_lock);
785 }
786
787 static void zram_slot_free_notify(struct block_device *bdev,
788                                 unsigned long index)
789 {
790         struct zram *zram;
791         struct zram_slot_free *free_rq;
792
793         zram = bdev->bd_disk->private_data;
794         atomic64_inc(&zram->stats.notify_free);
795
796         free_rq = kmalloc(sizeof(struct zram_slot_free), GFP_ATOMIC);
797         if (!free_rq)
798                 return;
799
800         free_rq->index = index;
801         add_slot_free(zram, free_rq);
802         schedule_work(&zram->free_work);
803 }
804
805 static const struct block_device_operations zram_devops = {
806         .swap_slot_free_notify = zram_slot_free_notify,
807         .owner = THIS_MODULE
808 };
809
810 static DEVICE_ATTR(disksize, S_IRUGO | S_IWUSR,
811                 disksize_show, disksize_store);
812 static DEVICE_ATTR(initstate, S_IRUGO, initstate_show, NULL);
813 static DEVICE_ATTR(reset, S_IWUSR, NULL, reset_store);
814 static DEVICE_ATTR(num_reads, S_IRUGO, num_reads_show, NULL);
815 static DEVICE_ATTR(num_writes, S_IRUGO, num_writes_show, NULL);
816 static DEVICE_ATTR(invalid_io, S_IRUGO, invalid_io_show, NULL);
817 static DEVICE_ATTR(notify_free, S_IRUGO, notify_free_show, NULL);
818 static DEVICE_ATTR(zero_pages, S_IRUGO, zero_pages_show, NULL);
819 static DEVICE_ATTR(orig_data_size, S_IRUGO, orig_data_size_show, NULL);
820 static DEVICE_ATTR(compr_data_size, S_IRUGO, compr_data_size_show, NULL);
821 static DEVICE_ATTR(mem_used_total, S_IRUGO, mem_used_total_show, NULL);
822
823 static struct attribute *zram_disk_attrs[] = {
824         &dev_attr_disksize.attr,
825         &dev_attr_initstate.attr,
826         &dev_attr_reset.attr,
827         &dev_attr_num_reads.attr,
828         &dev_attr_num_writes.attr,
829         &dev_attr_invalid_io.attr,
830         &dev_attr_notify_free.attr,
831         &dev_attr_zero_pages.attr,
832         &dev_attr_orig_data_size.attr,
833         &dev_attr_compr_data_size.attr,
834         &dev_attr_mem_used_total.attr,
835         NULL,
836 };
837
838 static struct attribute_group zram_disk_attr_group = {
839         .attrs = zram_disk_attrs,
840 };
841
842 static int create_device(struct zram *zram, int device_id)
843 {
844         int ret = -ENOMEM;
845
846         init_rwsem(&zram->lock);
847         init_rwsem(&zram->init_lock);
848
849         INIT_WORK(&zram->free_work, zram_slot_free);
850         spin_lock_init(&zram->slot_free_lock);
851         zram->slot_free_rq = NULL;
852
853         zram->queue = blk_alloc_queue(GFP_KERNEL);
854         if (!zram->queue) {
855                 pr_err("Error allocating disk queue for device %d\n",
856                         device_id);
857                 goto out;
858         }
859
860         blk_queue_make_request(zram->queue, zram_make_request);
861         zram->queue->queuedata = zram;
862
863          /* gendisk structure */
864         zram->disk = alloc_disk(1);
865         if (!zram->disk) {
866                 pr_warn("Error allocating disk structure for device %d\n",
867                         device_id);
868                 goto out_free_queue;
869         }
870
871         zram->disk->major = zram_major;
872         zram->disk->first_minor = device_id;
873         zram->disk->fops = &zram_devops;
874         zram->disk->queue = zram->queue;
875         zram->disk->private_data = zram;
876         snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
877
878         /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
879         set_capacity(zram->disk, 0);
880
881         /*
882          * To ensure that we always get PAGE_SIZE aligned
883          * and n*PAGE_SIZED sized I/O requests.
884          */
885         blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
886         blk_queue_logical_block_size(zram->disk->queue,
887                                         ZRAM_LOGICAL_BLOCK_SIZE);
888         blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
889         blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
890
891         add_disk(zram->disk);
892
893         ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
894                                 &zram_disk_attr_group);
895         if (ret < 0) {
896                 pr_warn("Error creating sysfs group");
897                 goto out_free_disk;
898         }
899
900         zram->init_done = 0;
901         return 0;
902
903 out_free_disk:
904         del_gendisk(zram->disk);
905         put_disk(zram->disk);
906 out_free_queue:
907         blk_cleanup_queue(zram->queue);
908 out:
909         return ret;
910 }
911
912 static void destroy_device(struct zram *zram)
913 {
914         sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
915                         &zram_disk_attr_group);
916
917         del_gendisk(zram->disk);
918         put_disk(zram->disk);
919
920         blk_cleanup_queue(zram->queue);
921 }
922
923 static int __init zram_init(void)
924 {
925         int ret, dev_id;
926
927         if (num_devices > max_num_devices) {
928                 pr_warn("Invalid value for num_devices: %u\n",
929                                 num_devices);
930                 ret = -EINVAL;
931                 goto out;
932         }
933
934         zram_major = register_blkdev(0, "zram");
935         if (zram_major <= 0) {
936                 pr_warn("Unable to get major number\n");
937                 ret = -EBUSY;
938                 goto out;
939         }
940
941         /* Allocate the device array and initialize each one */
942         zram_devices = kzalloc(num_devices * sizeof(struct zram), GFP_KERNEL);
943         if (!zram_devices) {
944                 ret = -ENOMEM;
945                 goto unregister;
946         }
947
948         for (dev_id = 0; dev_id < num_devices; dev_id++) {
949                 ret = create_device(&zram_devices[dev_id], dev_id);
950                 if (ret)
951                         goto free_devices;
952         }
953
954         pr_info("Created %u device(s) ...\n", num_devices);
955
956         return 0;
957
958 free_devices:
959         while (dev_id)
960                 destroy_device(&zram_devices[--dev_id]);
961         kfree(zram_devices);
962 unregister:
963         unregister_blkdev(zram_major, "zram");
964 out:
965         return ret;
966 }
967
968 static void __exit zram_exit(void)
969 {
970         int i;
971         struct zram *zram;
972
973         for (i = 0; i < num_devices; i++) {
974                 zram = &zram_devices[i];
975
976                 destroy_device(zram);
977                 /*
978                  * Shouldn't access zram->disk after destroy_device
979                  * because destroy_device already released zram->disk.
980                  */
981                 zram_reset_device(zram, false);
982         }
983
984         unregister_blkdev(zram_major, "zram");
985
986         kfree(zram_devices);
987         pr_debug("Cleanup done!\n");
988 }
989
990 module_init(zram_init);
991 module_exit(zram_exit);
992
993 module_param(num_devices, uint, 0);
994 MODULE_PARM_DESC(num_devices, "Number of zram devices");
995
996 MODULE_LICENSE("Dual BSD/GPL");
997 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
998 MODULE_DESCRIPTION("Compressed RAM Block Device");