ipmi: split device discovery and registration
[firefly-linux-kernel-4.4.55.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi_smi.h>
61 #include <asm/io.h>
62 #include "ipmi_si_sm.h"
63 #include <linux/init.h>
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/pnp.h>
68
69 #ifdef CONFIG_PPC_OF
70 #include <linux/of_device.h>
71 #include <linux/of_platform.h>
72 #endif
73
74 #define PFX "ipmi_si: "
75
76 /* Measure times between events in the driver. */
77 #undef DEBUG_TIMING
78
79 /* Call every 10 ms. */
80 #define SI_TIMEOUT_TIME_USEC    10000
81 #define SI_USEC_PER_JIFFY       (1000000/HZ)
82 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
83 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
84                                       short timeout */
85
86 enum si_intf_state {
87         SI_NORMAL,
88         SI_GETTING_FLAGS,
89         SI_GETTING_EVENTS,
90         SI_CLEARING_FLAGS,
91         SI_CLEARING_FLAGS_THEN_SET_IRQ,
92         SI_GETTING_MESSAGES,
93         SI_ENABLE_INTERRUPTS1,
94         SI_ENABLE_INTERRUPTS2,
95         SI_DISABLE_INTERRUPTS1,
96         SI_DISABLE_INTERRUPTS2
97         /* FIXME - add watchdog stuff. */
98 };
99
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG             2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
104
105 enum si_type {
106     SI_KCS, SI_SMIC, SI_BT
107 };
108 static char *si_to_str[] = { "kcs", "smic", "bt" };
109
110 enum ipmi_addr_src {
111         SI_INVALID = 0, SI_HOTMOD, SI_HARDCODED, SI_SPMI, SI_ACPI, SI_SMBIOS,
112         SI_PCI, SI_DEVICETREE, SI_DEFAULT
113 };
114 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
115                                         "ACPI", "SMBIOS", "PCI",
116                                         "device-tree", "default" };
117
118 #define DEVICE_NAME "ipmi_si"
119
120 static struct platform_driver ipmi_driver = {
121         .driver = {
122                 .name = DEVICE_NAME,
123                 .bus = &platform_bus_type
124         }
125 };
126
127
128 /*
129  * Indexes into stats[] in smi_info below.
130  */
131 enum si_stat_indexes {
132         /*
133          * Number of times the driver requested a timer while an operation
134          * was in progress.
135          */
136         SI_STAT_short_timeouts = 0,
137
138         /*
139          * Number of times the driver requested a timer while nothing was in
140          * progress.
141          */
142         SI_STAT_long_timeouts,
143
144         /* Number of times the interface was idle while being polled. */
145         SI_STAT_idles,
146
147         /* Number of interrupts the driver handled. */
148         SI_STAT_interrupts,
149
150         /* Number of time the driver got an ATTN from the hardware. */
151         SI_STAT_attentions,
152
153         /* Number of times the driver requested flags from the hardware. */
154         SI_STAT_flag_fetches,
155
156         /* Number of times the hardware didn't follow the state machine. */
157         SI_STAT_hosed_count,
158
159         /* Number of completed messages. */
160         SI_STAT_complete_transactions,
161
162         /* Number of IPMI events received from the hardware. */
163         SI_STAT_events,
164
165         /* Number of watchdog pretimeouts. */
166         SI_STAT_watchdog_pretimeouts,
167
168         /* Number of asyncronous messages received. */
169         SI_STAT_incoming_messages,
170
171
172         /* This *must* remain last, add new values above this. */
173         SI_NUM_STATS
174 };
175
176 struct smi_info {
177         int                    intf_num;
178         ipmi_smi_t             intf;
179         struct si_sm_data      *si_sm;
180         struct si_sm_handlers  *handlers;
181         enum si_type           si_type;
182         spinlock_t             si_lock;
183         spinlock_t             msg_lock;
184         struct list_head       xmit_msgs;
185         struct list_head       hp_xmit_msgs;
186         struct ipmi_smi_msg    *curr_msg;
187         enum si_intf_state     si_state;
188
189         /*
190          * Used to handle the various types of I/O that can occur with
191          * IPMI
192          */
193         struct si_sm_io io;
194         int (*io_setup)(struct smi_info *info);
195         void (*io_cleanup)(struct smi_info *info);
196         int (*irq_setup)(struct smi_info *info);
197         void (*irq_cleanup)(struct smi_info *info);
198         unsigned int io_size;
199         enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
200         void (*addr_source_cleanup)(struct smi_info *info);
201         void *addr_source_data;
202
203         /*
204          * Per-OEM handler, called from handle_flags().  Returns 1
205          * when handle_flags() needs to be re-run or 0 indicating it
206          * set si_state itself.
207          */
208         int (*oem_data_avail_handler)(struct smi_info *smi_info);
209
210         /*
211          * Flags from the last GET_MSG_FLAGS command, used when an ATTN
212          * is set to hold the flags until we are done handling everything
213          * from the flags.
214          */
215 #define RECEIVE_MSG_AVAIL       0x01
216 #define EVENT_MSG_BUFFER_FULL   0x02
217 #define WDT_PRE_TIMEOUT_INT     0x08
218 #define OEM0_DATA_AVAIL     0x20
219 #define OEM1_DATA_AVAIL     0x40
220 #define OEM2_DATA_AVAIL     0x80
221 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
222                              OEM1_DATA_AVAIL | \
223                              OEM2_DATA_AVAIL)
224         unsigned char       msg_flags;
225
226         /* Does the BMC have an event buffer? */
227         char                has_event_buffer;
228
229         /*
230          * If set to true, this will request events the next time the
231          * state machine is idle.
232          */
233         atomic_t            req_events;
234
235         /*
236          * If true, run the state machine to completion on every send
237          * call.  Generally used after a panic to make sure stuff goes
238          * out.
239          */
240         int                 run_to_completion;
241
242         /* The I/O port of an SI interface. */
243         int                 port;
244
245         /*
246          * The space between start addresses of the two ports.  For
247          * instance, if the first port is 0xca2 and the spacing is 4, then
248          * the second port is 0xca6.
249          */
250         unsigned int        spacing;
251
252         /* zero if no irq; */
253         int                 irq;
254
255         /* The timer for this si. */
256         struct timer_list   si_timer;
257
258         /* The time (in jiffies) the last timeout occurred at. */
259         unsigned long       last_timeout_jiffies;
260
261         /* Used to gracefully stop the timer without race conditions. */
262         atomic_t            stop_operation;
263
264         /*
265          * The driver will disable interrupts when it gets into a
266          * situation where it cannot handle messages due to lack of
267          * memory.  Once that situation clears up, it will re-enable
268          * interrupts.
269          */
270         int interrupt_disabled;
271
272         /* From the get device id response... */
273         struct ipmi_device_id device_id;
274
275         /* Driver model stuff. */
276         struct device *dev;
277         struct platform_device *pdev;
278
279         /*
280          * True if we allocated the device, false if it came from
281          * someplace else (like PCI).
282          */
283         int dev_registered;
284
285         /* Slave address, could be reported from DMI. */
286         unsigned char slave_addr;
287
288         /* Counters and things for the proc filesystem. */
289         atomic_t stats[SI_NUM_STATS];
290
291         struct task_struct *thread;
292
293         struct list_head link;
294 };
295
296 #define smi_inc_stat(smi, stat) \
297         atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
298 #define smi_get_stat(smi, stat) \
299         ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
300
301 #define SI_MAX_PARMS 4
302
303 static int force_kipmid[SI_MAX_PARMS];
304 static int num_force_kipmid;
305
306 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
307 static int num_max_busy_us;
308
309 static int unload_when_empty = 1;
310
311 static int add_smi(struct smi_info *smi);
312 static int try_smi_init(struct smi_info *smi);
313 static void cleanup_one_si(struct smi_info *to_clean);
314
315 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
316 static int register_xaction_notifier(struct notifier_block *nb)
317 {
318         return atomic_notifier_chain_register(&xaction_notifier_list, nb);
319 }
320
321 static void deliver_recv_msg(struct smi_info *smi_info,
322                              struct ipmi_smi_msg *msg)
323 {
324         /* Deliver the message to the upper layer with the lock
325            released. */
326         spin_unlock(&(smi_info->si_lock));
327         ipmi_smi_msg_received(smi_info->intf, msg);
328         spin_lock(&(smi_info->si_lock));
329 }
330
331 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
332 {
333         struct ipmi_smi_msg *msg = smi_info->curr_msg;
334
335         if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
336                 cCode = IPMI_ERR_UNSPECIFIED;
337         /* else use it as is */
338
339         /* Make it a reponse */
340         msg->rsp[0] = msg->data[0] | 4;
341         msg->rsp[1] = msg->data[1];
342         msg->rsp[2] = cCode;
343         msg->rsp_size = 3;
344
345         smi_info->curr_msg = NULL;
346         deliver_recv_msg(smi_info, msg);
347 }
348
349 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
350 {
351         int              rv;
352         struct list_head *entry = NULL;
353 #ifdef DEBUG_TIMING
354         struct timeval t;
355 #endif
356
357         /*
358          * No need to save flags, we aleady have interrupts off and we
359          * already hold the SMI lock.
360          */
361         if (!smi_info->run_to_completion)
362                 spin_lock(&(smi_info->msg_lock));
363
364         /* Pick the high priority queue first. */
365         if (!list_empty(&(smi_info->hp_xmit_msgs))) {
366                 entry = smi_info->hp_xmit_msgs.next;
367         } else if (!list_empty(&(smi_info->xmit_msgs))) {
368                 entry = smi_info->xmit_msgs.next;
369         }
370
371         if (!entry) {
372                 smi_info->curr_msg = NULL;
373                 rv = SI_SM_IDLE;
374         } else {
375                 int err;
376
377                 list_del(entry);
378                 smi_info->curr_msg = list_entry(entry,
379                                                 struct ipmi_smi_msg,
380                                                 link);
381 #ifdef DEBUG_TIMING
382                 do_gettimeofday(&t);
383                 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
384 #endif
385                 err = atomic_notifier_call_chain(&xaction_notifier_list,
386                                 0, smi_info);
387                 if (err & NOTIFY_STOP_MASK) {
388                         rv = SI_SM_CALL_WITHOUT_DELAY;
389                         goto out;
390                 }
391                 err = smi_info->handlers->start_transaction(
392                         smi_info->si_sm,
393                         smi_info->curr_msg->data,
394                         smi_info->curr_msg->data_size);
395                 if (err)
396                         return_hosed_msg(smi_info, err);
397
398                 rv = SI_SM_CALL_WITHOUT_DELAY;
399         }
400  out:
401         if (!smi_info->run_to_completion)
402                 spin_unlock(&(smi_info->msg_lock));
403
404         return rv;
405 }
406
407 static void start_enable_irq(struct smi_info *smi_info)
408 {
409         unsigned char msg[2];
410
411         /*
412          * If we are enabling interrupts, we have to tell the
413          * BMC to use them.
414          */
415         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
416         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
417
418         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
419         smi_info->si_state = SI_ENABLE_INTERRUPTS1;
420 }
421
422 static void start_disable_irq(struct smi_info *smi_info)
423 {
424         unsigned char msg[2];
425
426         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
427         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
428
429         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
430         smi_info->si_state = SI_DISABLE_INTERRUPTS1;
431 }
432
433 static void start_clear_flags(struct smi_info *smi_info)
434 {
435         unsigned char msg[3];
436
437         /* Make sure the watchdog pre-timeout flag is not set at startup. */
438         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
439         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
440         msg[2] = WDT_PRE_TIMEOUT_INT;
441
442         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
443         smi_info->si_state = SI_CLEARING_FLAGS;
444 }
445
446 /*
447  * When we have a situtaion where we run out of memory and cannot
448  * allocate messages, we just leave them in the BMC and run the system
449  * polled until we can allocate some memory.  Once we have some
450  * memory, we will re-enable the interrupt.
451  */
452 static inline void disable_si_irq(struct smi_info *smi_info)
453 {
454         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
455                 start_disable_irq(smi_info);
456                 smi_info->interrupt_disabled = 1;
457         }
458 }
459
460 static inline void enable_si_irq(struct smi_info *smi_info)
461 {
462         if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
463                 start_enable_irq(smi_info);
464                 smi_info->interrupt_disabled = 0;
465         }
466 }
467
468 static void handle_flags(struct smi_info *smi_info)
469 {
470  retry:
471         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
472                 /* Watchdog pre-timeout */
473                 smi_inc_stat(smi_info, watchdog_pretimeouts);
474
475                 start_clear_flags(smi_info);
476                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
477                 spin_unlock(&(smi_info->si_lock));
478                 ipmi_smi_watchdog_pretimeout(smi_info->intf);
479                 spin_lock(&(smi_info->si_lock));
480         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
481                 /* Messages available. */
482                 smi_info->curr_msg = ipmi_alloc_smi_msg();
483                 if (!smi_info->curr_msg) {
484                         disable_si_irq(smi_info);
485                         smi_info->si_state = SI_NORMAL;
486                         return;
487                 }
488                 enable_si_irq(smi_info);
489
490                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
491                 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
492                 smi_info->curr_msg->data_size = 2;
493
494                 smi_info->handlers->start_transaction(
495                         smi_info->si_sm,
496                         smi_info->curr_msg->data,
497                         smi_info->curr_msg->data_size);
498                 smi_info->si_state = SI_GETTING_MESSAGES;
499         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
500                 /* Events available. */
501                 smi_info->curr_msg = ipmi_alloc_smi_msg();
502                 if (!smi_info->curr_msg) {
503                         disable_si_irq(smi_info);
504                         smi_info->si_state = SI_NORMAL;
505                         return;
506                 }
507                 enable_si_irq(smi_info);
508
509                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
510                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
511                 smi_info->curr_msg->data_size = 2;
512
513                 smi_info->handlers->start_transaction(
514                         smi_info->si_sm,
515                         smi_info->curr_msg->data,
516                         smi_info->curr_msg->data_size);
517                 smi_info->si_state = SI_GETTING_EVENTS;
518         } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
519                    smi_info->oem_data_avail_handler) {
520                 if (smi_info->oem_data_avail_handler(smi_info))
521                         goto retry;
522         } else
523                 smi_info->si_state = SI_NORMAL;
524 }
525
526 static void handle_transaction_done(struct smi_info *smi_info)
527 {
528         struct ipmi_smi_msg *msg;
529 #ifdef DEBUG_TIMING
530         struct timeval t;
531
532         do_gettimeofday(&t);
533         printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
534 #endif
535         switch (smi_info->si_state) {
536         case SI_NORMAL:
537                 if (!smi_info->curr_msg)
538                         break;
539
540                 smi_info->curr_msg->rsp_size
541                         = smi_info->handlers->get_result(
542                                 smi_info->si_sm,
543                                 smi_info->curr_msg->rsp,
544                                 IPMI_MAX_MSG_LENGTH);
545
546                 /*
547                  * Do this here becase deliver_recv_msg() releases the
548                  * lock, and a new message can be put in during the
549                  * time the lock is released.
550                  */
551                 msg = smi_info->curr_msg;
552                 smi_info->curr_msg = NULL;
553                 deliver_recv_msg(smi_info, msg);
554                 break;
555
556         case SI_GETTING_FLAGS:
557         {
558                 unsigned char msg[4];
559                 unsigned int  len;
560
561                 /* We got the flags from the SMI, now handle them. */
562                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
563                 if (msg[2] != 0) {
564                         /* Error fetching flags, just give up for now. */
565                         smi_info->si_state = SI_NORMAL;
566                 } else if (len < 4) {
567                         /*
568                          * Hmm, no flags.  That's technically illegal, but
569                          * don't use uninitialized data.
570                          */
571                         smi_info->si_state = SI_NORMAL;
572                 } else {
573                         smi_info->msg_flags = msg[3];
574                         handle_flags(smi_info);
575                 }
576                 break;
577         }
578
579         case SI_CLEARING_FLAGS:
580         case SI_CLEARING_FLAGS_THEN_SET_IRQ:
581         {
582                 unsigned char msg[3];
583
584                 /* We cleared the flags. */
585                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
586                 if (msg[2] != 0) {
587                         /* Error clearing flags */
588                         printk(KERN_WARNING
589                                "ipmi_si: Error clearing flags: %2.2x\n",
590                                msg[2]);
591                 }
592                 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
593                         start_enable_irq(smi_info);
594                 else
595                         smi_info->si_state = SI_NORMAL;
596                 break;
597         }
598
599         case SI_GETTING_EVENTS:
600         {
601                 smi_info->curr_msg->rsp_size
602                         = smi_info->handlers->get_result(
603                                 smi_info->si_sm,
604                                 smi_info->curr_msg->rsp,
605                                 IPMI_MAX_MSG_LENGTH);
606
607                 /*
608                  * Do this here becase deliver_recv_msg() releases the
609                  * lock, and a new message can be put in during the
610                  * time the lock is released.
611                  */
612                 msg = smi_info->curr_msg;
613                 smi_info->curr_msg = NULL;
614                 if (msg->rsp[2] != 0) {
615                         /* Error getting event, probably done. */
616                         msg->done(msg);
617
618                         /* Take off the event flag. */
619                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
620                         handle_flags(smi_info);
621                 } else {
622                         smi_inc_stat(smi_info, events);
623
624                         /*
625                          * Do this before we deliver the message
626                          * because delivering the message releases the
627                          * lock and something else can mess with the
628                          * state.
629                          */
630                         handle_flags(smi_info);
631
632                         deliver_recv_msg(smi_info, msg);
633                 }
634                 break;
635         }
636
637         case SI_GETTING_MESSAGES:
638         {
639                 smi_info->curr_msg->rsp_size
640                         = smi_info->handlers->get_result(
641                                 smi_info->si_sm,
642                                 smi_info->curr_msg->rsp,
643                                 IPMI_MAX_MSG_LENGTH);
644
645                 /*
646                  * Do this here becase deliver_recv_msg() releases the
647                  * lock, and a new message can be put in during the
648                  * time the lock is released.
649                  */
650                 msg = smi_info->curr_msg;
651                 smi_info->curr_msg = NULL;
652                 if (msg->rsp[2] != 0) {
653                         /* Error getting event, probably done. */
654                         msg->done(msg);
655
656                         /* Take off the msg flag. */
657                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
658                         handle_flags(smi_info);
659                 } else {
660                         smi_inc_stat(smi_info, incoming_messages);
661
662                         /*
663                          * Do this before we deliver the message
664                          * because delivering the message releases the
665                          * lock and something else can mess with the
666                          * state.
667                          */
668                         handle_flags(smi_info);
669
670                         deliver_recv_msg(smi_info, msg);
671                 }
672                 break;
673         }
674
675         case SI_ENABLE_INTERRUPTS1:
676         {
677                 unsigned char msg[4];
678
679                 /* We got the flags from the SMI, now handle them. */
680                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
681                 if (msg[2] != 0) {
682                         printk(KERN_WARNING
683                                "ipmi_si: Could not enable interrupts"
684                                ", failed get, using polled mode.\n");
685                         smi_info->si_state = SI_NORMAL;
686                 } else {
687                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
688                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
689                         msg[2] = (msg[3] |
690                                   IPMI_BMC_RCV_MSG_INTR |
691                                   IPMI_BMC_EVT_MSG_INTR);
692                         smi_info->handlers->start_transaction(
693                                 smi_info->si_sm, msg, 3);
694                         smi_info->si_state = SI_ENABLE_INTERRUPTS2;
695                 }
696                 break;
697         }
698
699         case SI_ENABLE_INTERRUPTS2:
700         {
701                 unsigned char msg[4];
702
703                 /* We got the flags from the SMI, now handle them. */
704                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
705                 if (msg[2] != 0) {
706                         printk(KERN_WARNING
707                                "ipmi_si: Could not enable interrupts"
708                                ", failed set, using polled mode.\n");
709                 }
710                 smi_info->si_state = SI_NORMAL;
711                 break;
712         }
713
714         case SI_DISABLE_INTERRUPTS1:
715         {
716                 unsigned char msg[4];
717
718                 /* We got the flags from the SMI, now handle them. */
719                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
720                 if (msg[2] != 0) {
721                         printk(KERN_WARNING
722                                "ipmi_si: Could not disable interrupts"
723                                ", failed get.\n");
724                         smi_info->si_state = SI_NORMAL;
725                 } else {
726                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
727                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
728                         msg[2] = (msg[3] &
729                                   ~(IPMI_BMC_RCV_MSG_INTR |
730                                     IPMI_BMC_EVT_MSG_INTR));
731                         smi_info->handlers->start_transaction(
732                                 smi_info->si_sm, msg, 3);
733                         smi_info->si_state = SI_DISABLE_INTERRUPTS2;
734                 }
735                 break;
736         }
737
738         case SI_DISABLE_INTERRUPTS2:
739         {
740                 unsigned char msg[4];
741
742                 /* We got the flags from the SMI, now handle them. */
743                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
744                 if (msg[2] != 0) {
745                         printk(KERN_WARNING
746                                "ipmi_si: Could not disable interrupts"
747                                ", failed set.\n");
748                 }
749                 smi_info->si_state = SI_NORMAL;
750                 break;
751         }
752         }
753 }
754
755 /*
756  * Called on timeouts and events.  Timeouts should pass the elapsed
757  * time, interrupts should pass in zero.  Must be called with
758  * si_lock held and interrupts disabled.
759  */
760 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
761                                            int time)
762 {
763         enum si_sm_result si_sm_result;
764
765  restart:
766         /*
767          * There used to be a loop here that waited a little while
768          * (around 25us) before giving up.  That turned out to be
769          * pointless, the minimum delays I was seeing were in the 300us
770          * range, which is far too long to wait in an interrupt.  So
771          * we just run until the state machine tells us something
772          * happened or it needs a delay.
773          */
774         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
775         time = 0;
776         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
777                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
778
779         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
780                 smi_inc_stat(smi_info, complete_transactions);
781
782                 handle_transaction_done(smi_info);
783                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
784         } else if (si_sm_result == SI_SM_HOSED) {
785                 smi_inc_stat(smi_info, hosed_count);
786
787                 /*
788                  * Do the before return_hosed_msg, because that
789                  * releases the lock.
790                  */
791                 smi_info->si_state = SI_NORMAL;
792                 if (smi_info->curr_msg != NULL) {
793                         /*
794                          * If we were handling a user message, format
795                          * a response to send to the upper layer to
796                          * tell it about the error.
797                          */
798                         return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
799                 }
800                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
801         }
802
803         /*
804          * We prefer handling attn over new messages.  But don't do
805          * this if there is not yet an upper layer to handle anything.
806          */
807         if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
808                 unsigned char msg[2];
809
810                 smi_inc_stat(smi_info, attentions);
811
812                 /*
813                  * Got a attn, send down a get message flags to see
814                  * what's causing it.  It would be better to handle
815                  * this in the upper layer, but due to the way
816                  * interrupts work with the SMI, that's not really
817                  * possible.
818                  */
819                 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
820                 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
821
822                 smi_info->handlers->start_transaction(
823                         smi_info->si_sm, msg, 2);
824                 smi_info->si_state = SI_GETTING_FLAGS;
825                 goto restart;
826         }
827
828         /* If we are currently idle, try to start the next message. */
829         if (si_sm_result == SI_SM_IDLE) {
830                 smi_inc_stat(smi_info, idles);
831
832                 si_sm_result = start_next_msg(smi_info);
833                 if (si_sm_result != SI_SM_IDLE)
834                         goto restart;
835         }
836
837         if ((si_sm_result == SI_SM_IDLE)
838             && (atomic_read(&smi_info->req_events))) {
839                 /*
840                  * We are idle and the upper layer requested that I fetch
841                  * events, so do so.
842                  */
843                 atomic_set(&smi_info->req_events, 0);
844
845                 smi_info->curr_msg = ipmi_alloc_smi_msg();
846                 if (!smi_info->curr_msg)
847                         goto out;
848
849                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
850                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
851                 smi_info->curr_msg->data_size = 2;
852
853                 smi_info->handlers->start_transaction(
854                         smi_info->si_sm,
855                         smi_info->curr_msg->data,
856                         smi_info->curr_msg->data_size);
857                 smi_info->si_state = SI_GETTING_EVENTS;
858                 goto restart;
859         }
860  out:
861         return si_sm_result;
862 }
863
864 static void sender(void                *send_info,
865                    struct ipmi_smi_msg *msg,
866                    int                 priority)
867 {
868         struct smi_info   *smi_info = send_info;
869         enum si_sm_result result;
870         unsigned long     flags;
871 #ifdef DEBUG_TIMING
872         struct timeval    t;
873 #endif
874
875         if (atomic_read(&smi_info->stop_operation)) {
876                 msg->rsp[0] = msg->data[0] | 4;
877                 msg->rsp[1] = msg->data[1];
878                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
879                 msg->rsp_size = 3;
880                 deliver_recv_msg(smi_info, msg);
881                 return;
882         }
883
884 #ifdef DEBUG_TIMING
885         do_gettimeofday(&t);
886         printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
887 #endif
888
889         if (smi_info->run_to_completion) {
890                 /*
891                  * If we are running to completion, then throw it in
892                  * the list and run transactions until everything is
893                  * clear.  Priority doesn't matter here.
894                  */
895
896                 /*
897                  * Run to completion means we are single-threaded, no
898                  * need for locks.
899                  */
900                 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
901
902                 result = smi_event_handler(smi_info, 0);
903                 while (result != SI_SM_IDLE) {
904                         udelay(SI_SHORT_TIMEOUT_USEC);
905                         result = smi_event_handler(smi_info,
906                                                    SI_SHORT_TIMEOUT_USEC);
907                 }
908                 return;
909         }
910
911         spin_lock_irqsave(&smi_info->msg_lock, flags);
912         if (priority > 0)
913                 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
914         else
915                 list_add_tail(&msg->link, &smi_info->xmit_msgs);
916         spin_unlock_irqrestore(&smi_info->msg_lock, flags);
917
918         spin_lock_irqsave(&smi_info->si_lock, flags);
919         if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
920                 start_next_msg(smi_info);
921         spin_unlock_irqrestore(&smi_info->si_lock, flags);
922 }
923
924 static void set_run_to_completion(void *send_info, int i_run_to_completion)
925 {
926         struct smi_info   *smi_info = send_info;
927         enum si_sm_result result;
928
929         smi_info->run_to_completion = i_run_to_completion;
930         if (i_run_to_completion) {
931                 result = smi_event_handler(smi_info, 0);
932                 while (result != SI_SM_IDLE) {
933                         udelay(SI_SHORT_TIMEOUT_USEC);
934                         result = smi_event_handler(smi_info,
935                                                    SI_SHORT_TIMEOUT_USEC);
936                 }
937         }
938 }
939
940 /*
941  * Use -1 in the nsec value of the busy waiting timespec to tell that
942  * we are spinning in kipmid looking for something and not delaying
943  * between checks
944  */
945 static inline void ipmi_si_set_not_busy(struct timespec *ts)
946 {
947         ts->tv_nsec = -1;
948 }
949 static inline int ipmi_si_is_busy(struct timespec *ts)
950 {
951         return ts->tv_nsec != -1;
952 }
953
954 static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
955                                  const struct smi_info *smi_info,
956                                  struct timespec *busy_until)
957 {
958         unsigned int max_busy_us = 0;
959
960         if (smi_info->intf_num < num_max_busy_us)
961                 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
962         if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
963                 ipmi_si_set_not_busy(busy_until);
964         else if (!ipmi_si_is_busy(busy_until)) {
965                 getnstimeofday(busy_until);
966                 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
967         } else {
968                 struct timespec now;
969                 getnstimeofday(&now);
970                 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
971                         ipmi_si_set_not_busy(busy_until);
972                         return 0;
973                 }
974         }
975         return 1;
976 }
977
978
979 /*
980  * A busy-waiting loop for speeding up IPMI operation.
981  *
982  * Lousy hardware makes this hard.  This is only enabled for systems
983  * that are not BT and do not have interrupts.  It starts spinning
984  * when an operation is complete or until max_busy tells it to stop
985  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
986  * Documentation/IPMI.txt for details.
987  */
988 static int ipmi_thread(void *data)
989 {
990         struct smi_info *smi_info = data;
991         unsigned long flags;
992         enum si_sm_result smi_result;
993         struct timespec busy_until;
994
995         ipmi_si_set_not_busy(&busy_until);
996         set_user_nice(current, 19);
997         while (!kthread_should_stop()) {
998                 int busy_wait;
999
1000                 spin_lock_irqsave(&(smi_info->si_lock), flags);
1001                 smi_result = smi_event_handler(smi_info, 0);
1002                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1003                 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1004                                                   &busy_until);
1005                 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1006                         ; /* do nothing */
1007                 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1008                         schedule();
1009                 else
1010                         schedule_timeout_interruptible(0);
1011         }
1012         return 0;
1013 }
1014
1015
1016 static void poll(void *send_info)
1017 {
1018         struct smi_info *smi_info = send_info;
1019         unsigned long flags;
1020
1021         /*
1022          * Make sure there is some delay in the poll loop so we can
1023          * drive time forward and timeout things.
1024          */
1025         udelay(10);
1026         spin_lock_irqsave(&smi_info->si_lock, flags);
1027         smi_event_handler(smi_info, 10);
1028         spin_unlock_irqrestore(&smi_info->si_lock, flags);
1029 }
1030
1031 static void request_events(void *send_info)
1032 {
1033         struct smi_info *smi_info = send_info;
1034
1035         if (atomic_read(&smi_info->stop_operation) ||
1036                                 !smi_info->has_event_buffer)
1037                 return;
1038
1039         atomic_set(&smi_info->req_events, 1);
1040 }
1041
1042 static int initialized;
1043
1044 static void smi_timeout(unsigned long data)
1045 {
1046         struct smi_info   *smi_info = (struct smi_info *) data;
1047         enum si_sm_result smi_result;
1048         unsigned long     flags;
1049         unsigned long     jiffies_now;
1050         long              time_diff;
1051 #ifdef DEBUG_TIMING
1052         struct timeval    t;
1053 #endif
1054
1055         spin_lock_irqsave(&(smi_info->si_lock), flags);
1056 #ifdef DEBUG_TIMING
1057         do_gettimeofday(&t);
1058         printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1059 #endif
1060         jiffies_now = jiffies;
1061         time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1062                      * SI_USEC_PER_JIFFY);
1063         smi_result = smi_event_handler(smi_info, time_diff);
1064
1065         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1066
1067         smi_info->last_timeout_jiffies = jiffies_now;
1068
1069         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1070                 /* Running with interrupts, only do long timeouts. */
1071                 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
1072                 smi_inc_stat(smi_info, long_timeouts);
1073                 goto do_add_timer;
1074         }
1075
1076         /*
1077          * If the state machine asks for a short delay, then shorten
1078          * the timer timeout.
1079          */
1080         if (smi_result == SI_SM_CALL_WITH_DELAY) {
1081                 smi_inc_stat(smi_info, short_timeouts);
1082                 smi_info->si_timer.expires = jiffies + 1;
1083         } else {
1084                 smi_inc_stat(smi_info, long_timeouts);
1085                 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
1086         }
1087
1088  do_add_timer:
1089         add_timer(&(smi_info->si_timer));
1090 }
1091
1092 static irqreturn_t si_irq_handler(int irq, void *data)
1093 {
1094         struct smi_info *smi_info = data;
1095         unsigned long   flags;
1096 #ifdef DEBUG_TIMING
1097         struct timeval  t;
1098 #endif
1099
1100         spin_lock_irqsave(&(smi_info->si_lock), flags);
1101
1102         smi_inc_stat(smi_info, interrupts);
1103
1104 #ifdef DEBUG_TIMING
1105         do_gettimeofday(&t);
1106         printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1107 #endif
1108         smi_event_handler(smi_info, 0);
1109         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1110         return IRQ_HANDLED;
1111 }
1112
1113 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1114 {
1115         struct smi_info *smi_info = data;
1116         /* We need to clear the IRQ flag for the BT interface. */
1117         smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1118                              IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1119                              | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1120         return si_irq_handler(irq, data);
1121 }
1122
1123 static int smi_start_processing(void       *send_info,
1124                                 ipmi_smi_t intf)
1125 {
1126         struct smi_info *new_smi = send_info;
1127         int             enable = 0;
1128
1129         new_smi->intf = intf;
1130
1131         /* Try to claim any interrupts. */
1132         if (new_smi->irq_setup)
1133                 new_smi->irq_setup(new_smi);
1134
1135         /* Set up the timer that drives the interface. */
1136         setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1137         new_smi->last_timeout_jiffies = jiffies;
1138         mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1139
1140         /*
1141          * Check if the user forcefully enabled the daemon.
1142          */
1143         if (new_smi->intf_num < num_force_kipmid)
1144                 enable = force_kipmid[new_smi->intf_num];
1145         /*
1146          * The BT interface is efficient enough to not need a thread,
1147          * and there is no need for a thread if we have interrupts.
1148          */
1149         else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1150                 enable = 1;
1151
1152         if (enable) {
1153                 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1154                                               "kipmi%d", new_smi->intf_num);
1155                 if (IS_ERR(new_smi->thread)) {
1156                         printk(KERN_NOTICE "ipmi_si_intf: Could not start"
1157                                " kernel thread due to error %ld, only using"
1158                                " timers to drive the interface\n",
1159                                PTR_ERR(new_smi->thread));
1160                         new_smi->thread = NULL;
1161                 }
1162         }
1163
1164         return 0;
1165 }
1166
1167 static void set_maintenance_mode(void *send_info, int enable)
1168 {
1169         struct smi_info   *smi_info = send_info;
1170
1171         if (!enable)
1172                 atomic_set(&smi_info->req_events, 0);
1173 }
1174
1175 static struct ipmi_smi_handlers handlers = {
1176         .owner                  = THIS_MODULE,
1177         .start_processing       = smi_start_processing,
1178         .sender                 = sender,
1179         .request_events         = request_events,
1180         .set_maintenance_mode   = set_maintenance_mode,
1181         .set_run_to_completion  = set_run_to_completion,
1182         .poll                   = poll,
1183 };
1184
1185 /*
1186  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1187  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1188  */
1189
1190 static LIST_HEAD(smi_infos);
1191 static DEFINE_MUTEX(smi_infos_lock);
1192 static int smi_num; /* Used to sequence the SMIs */
1193
1194 #define DEFAULT_REGSPACING      1
1195 #define DEFAULT_REGSIZE         1
1196
1197 static int           si_trydefaults = 1;
1198 static char          *si_type[SI_MAX_PARMS];
1199 #define MAX_SI_TYPE_STR 30
1200 static char          si_type_str[MAX_SI_TYPE_STR];
1201 static unsigned long addrs[SI_MAX_PARMS];
1202 static unsigned int num_addrs;
1203 static unsigned int  ports[SI_MAX_PARMS];
1204 static unsigned int num_ports;
1205 static int           irqs[SI_MAX_PARMS];
1206 static unsigned int num_irqs;
1207 static int           regspacings[SI_MAX_PARMS];
1208 static unsigned int num_regspacings;
1209 static int           regsizes[SI_MAX_PARMS];
1210 static unsigned int num_regsizes;
1211 static int           regshifts[SI_MAX_PARMS];
1212 static unsigned int num_regshifts;
1213 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1214 static unsigned int num_slave_addrs;
1215
1216 #define IPMI_IO_ADDR_SPACE  0
1217 #define IPMI_MEM_ADDR_SPACE 1
1218 static char *addr_space_to_str[] = { "i/o", "mem" };
1219
1220 static int hotmod_handler(const char *val, struct kernel_param *kp);
1221
1222 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1223 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1224                  " Documentation/IPMI.txt in the kernel sources for the"
1225                  " gory details.");
1226
1227 module_param_named(trydefaults, si_trydefaults, bool, 0);
1228 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1229                  " default scan of the KCS and SMIC interface at the standard"
1230                  " address");
1231 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1232 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1233                  " interface separated by commas.  The types are 'kcs',"
1234                  " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1235                  " the first interface to kcs and the second to bt");
1236 module_param_array(addrs, ulong, &num_addrs, 0);
1237 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1238                  " addresses separated by commas.  Only use if an interface"
1239                  " is in memory.  Otherwise, set it to zero or leave"
1240                  " it blank.");
1241 module_param_array(ports, uint, &num_ports, 0);
1242 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1243                  " addresses separated by commas.  Only use if an interface"
1244                  " is a port.  Otherwise, set it to zero or leave"
1245                  " it blank.");
1246 module_param_array(irqs, int, &num_irqs, 0);
1247 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1248                  " addresses separated by commas.  Only use if an interface"
1249                  " has an interrupt.  Otherwise, set it to zero or leave"
1250                  " it blank.");
1251 module_param_array(regspacings, int, &num_regspacings, 0);
1252 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1253                  " and each successive register used by the interface.  For"
1254                  " instance, if the start address is 0xca2 and the spacing"
1255                  " is 2, then the second address is at 0xca4.  Defaults"
1256                  " to 1.");
1257 module_param_array(regsizes, int, &num_regsizes, 0);
1258 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1259                  " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1260                  " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1261                  " the 8-bit IPMI register has to be read from a larger"
1262                  " register.");
1263 module_param_array(regshifts, int, &num_regshifts, 0);
1264 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1265                  " IPMI register, in bits.  For instance, if the data"
1266                  " is read from a 32-bit word and the IPMI data is in"
1267                  " bit 8-15, then the shift would be 8");
1268 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1269 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1270                  " the controller.  Normally this is 0x20, but can be"
1271                  " overridden by this parm.  This is an array indexed"
1272                  " by interface number.");
1273 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1274 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1275                  " disabled(0).  Normally the IPMI driver auto-detects"
1276                  " this, but the value may be overridden by this parm.");
1277 module_param(unload_when_empty, int, 0);
1278 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1279                  " specified or found, default is 1.  Setting to 0"
1280                  " is useful for hot add of devices using hotmod.");
1281 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1282 MODULE_PARM_DESC(kipmid_max_busy_us,
1283                  "Max time (in microseconds) to busy-wait for IPMI data before"
1284                  " sleeping. 0 (default) means to wait forever. Set to 100-500"
1285                  " if kipmid is using up a lot of CPU time.");
1286
1287
1288 static void std_irq_cleanup(struct smi_info *info)
1289 {
1290         if (info->si_type == SI_BT)
1291                 /* Disable the interrupt in the BT interface. */
1292                 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1293         free_irq(info->irq, info);
1294 }
1295
1296 static int std_irq_setup(struct smi_info *info)
1297 {
1298         int rv;
1299
1300         if (!info->irq)
1301                 return 0;
1302
1303         if (info->si_type == SI_BT) {
1304                 rv = request_irq(info->irq,
1305                                  si_bt_irq_handler,
1306                                  IRQF_SHARED | IRQF_DISABLED,
1307                                  DEVICE_NAME,
1308                                  info);
1309                 if (!rv)
1310                         /* Enable the interrupt in the BT interface. */
1311                         info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1312                                          IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1313         } else
1314                 rv = request_irq(info->irq,
1315                                  si_irq_handler,
1316                                  IRQF_SHARED | IRQF_DISABLED,
1317                                  DEVICE_NAME,
1318                                  info);
1319         if (rv) {
1320                 printk(KERN_WARNING
1321                        "ipmi_si: %s unable to claim interrupt %d,"
1322                        " running polled\n",
1323                        DEVICE_NAME, info->irq);
1324                 info->irq = 0;
1325         } else {
1326                 info->irq_cleanup = std_irq_cleanup;
1327                 printk("  Using irq %d\n", info->irq);
1328         }
1329
1330         return rv;
1331 }
1332
1333 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1334 {
1335         unsigned int addr = io->addr_data;
1336
1337         return inb(addr + (offset * io->regspacing));
1338 }
1339
1340 static void port_outb(struct si_sm_io *io, unsigned int offset,
1341                       unsigned char b)
1342 {
1343         unsigned int addr = io->addr_data;
1344
1345         outb(b, addr + (offset * io->regspacing));
1346 }
1347
1348 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1349 {
1350         unsigned int addr = io->addr_data;
1351
1352         return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1353 }
1354
1355 static void port_outw(struct si_sm_io *io, unsigned int offset,
1356                       unsigned char b)
1357 {
1358         unsigned int addr = io->addr_data;
1359
1360         outw(b << io->regshift, addr + (offset * io->regspacing));
1361 }
1362
1363 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1364 {
1365         unsigned int addr = io->addr_data;
1366
1367         return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1368 }
1369
1370 static void port_outl(struct si_sm_io *io, unsigned int offset,
1371                       unsigned char b)
1372 {
1373         unsigned int addr = io->addr_data;
1374
1375         outl(b << io->regshift, addr+(offset * io->regspacing));
1376 }
1377
1378 static void port_cleanup(struct smi_info *info)
1379 {
1380         unsigned int addr = info->io.addr_data;
1381         int          idx;
1382
1383         if (addr) {
1384                 for (idx = 0; idx < info->io_size; idx++)
1385                         release_region(addr + idx * info->io.regspacing,
1386                                        info->io.regsize);
1387         }
1388 }
1389
1390 static int port_setup(struct smi_info *info)
1391 {
1392         unsigned int addr = info->io.addr_data;
1393         int          idx;
1394
1395         if (!addr)
1396                 return -ENODEV;
1397
1398         info->io_cleanup = port_cleanup;
1399
1400         /*
1401          * Figure out the actual inb/inw/inl/etc routine to use based
1402          * upon the register size.
1403          */
1404         switch (info->io.regsize) {
1405         case 1:
1406                 info->io.inputb = port_inb;
1407                 info->io.outputb = port_outb;
1408                 break;
1409         case 2:
1410                 info->io.inputb = port_inw;
1411                 info->io.outputb = port_outw;
1412                 break;
1413         case 4:
1414                 info->io.inputb = port_inl;
1415                 info->io.outputb = port_outl;
1416                 break;
1417         default:
1418                 printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
1419                        info->io.regsize);
1420                 return -EINVAL;
1421         }
1422
1423         /*
1424          * Some BIOSes reserve disjoint I/O regions in their ACPI
1425          * tables.  This causes problems when trying to register the
1426          * entire I/O region.  Therefore we must register each I/O
1427          * port separately.
1428          */
1429         for (idx = 0; idx < info->io_size; idx++) {
1430                 if (request_region(addr + idx * info->io.regspacing,
1431                                    info->io.regsize, DEVICE_NAME) == NULL) {
1432                         /* Undo allocations */
1433                         while (idx--) {
1434                                 release_region(addr + idx * info->io.regspacing,
1435                                                info->io.regsize);
1436                         }
1437                         return -EIO;
1438                 }
1439         }
1440         return 0;
1441 }
1442
1443 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1444 {
1445         return readb((io->addr)+(offset * io->regspacing));
1446 }
1447
1448 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1449                      unsigned char b)
1450 {
1451         writeb(b, (io->addr)+(offset * io->regspacing));
1452 }
1453
1454 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1455 {
1456         return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1457                 & 0xff;
1458 }
1459
1460 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1461                      unsigned char b)
1462 {
1463         writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1464 }
1465
1466 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1467 {
1468         return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1469                 & 0xff;
1470 }
1471
1472 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1473                      unsigned char b)
1474 {
1475         writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1476 }
1477
1478 #ifdef readq
1479 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1480 {
1481         return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1482                 & 0xff;
1483 }
1484
1485 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1486                      unsigned char b)
1487 {
1488         writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1489 }
1490 #endif
1491
1492 static void mem_cleanup(struct smi_info *info)
1493 {
1494         unsigned long addr = info->io.addr_data;
1495         int           mapsize;
1496
1497         if (info->io.addr) {
1498                 iounmap(info->io.addr);
1499
1500                 mapsize = ((info->io_size * info->io.regspacing)
1501                            - (info->io.regspacing - info->io.regsize));
1502
1503                 release_mem_region(addr, mapsize);
1504         }
1505 }
1506
1507 static int mem_setup(struct smi_info *info)
1508 {
1509         unsigned long addr = info->io.addr_data;
1510         int           mapsize;
1511
1512         if (!addr)
1513                 return -ENODEV;
1514
1515         info->io_cleanup = mem_cleanup;
1516
1517         /*
1518          * Figure out the actual readb/readw/readl/etc routine to use based
1519          * upon the register size.
1520          */
1521         switch (info->io.regsize) {
1522         case 1:
1523                 info->io.inputb = intf_mem_inb;
1524                 info->io.outputb = intf_mem_outb;
1525                 break;
1526         case 2:
1527                 info->io.inputb = intf_mem_inw;
1528                 info->io.outputb = intf_mem_outw;
1529                 break;
1530         case 4:
1531                 info->io.inputb = intf_mem_inl;
1532                 info->io.outputb = intf_mem_outl;
1533                 break;
1534 #ifdef readq
1535         case 8:
1536                 info->io.inputb = mem_inq;
1537                 info->io.outputb = mem_outq;
1538                 break;
1539 #endif
1540         default:
1541                 printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
1542                        info->io.regsize);
1543                 return -EINVAL;
1544         }
1545
1546         /*
1547          * Calculate the total amount of memory to claim.  This is an
1548          * unusual looking calculation, but it avoids claiming any
1549          * more memory than it has to.  It will claim everything
1550          * between the first address to the end of the last full
1551          * register.
1552          */
1553         mapsize = ((info->io_size * info->io.regspacing)
1554                    - (info->io.regspacing - info->io.regsize));
1555
1556         if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1557                 return -EIO;
1558
1559         info->io.addr = ioremap(addr, mapsize);
1560         if (info->io.addr == NULL) {
1561                 release_mem_region(addr, mapsize);
1562                 return -EIO;
1563         }
1564         return 0;
1565 }
1566
1567 /*
1568  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1569  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1570  * Options are:
1571  *   rsp=<regspacing>
1572  *   rsi=<regsize>
1573  *   rsh=<regshift>
1574  *   irq=<irq>
1575  *   ipmb=<ipmb addr>
1576  */
1577 enum hotmod_op { HM_ADD, HM_REMOVE };
1578 struct hotmod_vals {
1579         char *name;
1580         int  val;
1581 };
1582 static struct hotmod_vals hotmod_ops[] = {
1583         { "add",        HM_ADD },
1584         { "remove",     HM_REMOVE },
1585         { NULL }
1586 };
1587 static struct hotmod_vals hotmod_si[] = {
1588         { "kcs",        SI_KCS },
1589         { "smic",       SI_SMIC },
1590         { "bt",         SI_BT },
1591         { NULL }
1592 };
1593 static struct hotmod_vals hotmod_as[] = {
1594         { "mem",        IPMI_MEM_ADDR_SPACE },
1595         { "i/o",        IPMI_IO_ADDR_SPACE },
1596         { NULL }
1597 };
1598
1599 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1600 {
1601         char *s;
1602         int  i;
1603
1604         s = strchr(*curr, ',');
1605         if (!s) {
1606                 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1607                 return -EINVAL;
1608         }
1609         *s = '\0';
1610         s++;
1611         for (i = 0; hotmod_ops[i].name; i++) {
1612                 if (strcmp(*curr, v[i].name) == 0) {
1613                         *val = v[i].val;
1614                         *curr = s;
1615                         return 0;
1616                 }
1617         }
1618
1619         printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1620         return -EINVAL;
1621 }
1622
1623 static int check_hotmod_int_op(const char *curr, const char *option,
1624                                const char *name, int *val)
1625 {
1626         char *n;
1627
1628         if (strcmp(curr, name) == 0) {
1629                 if (!option) {
1630                         printk(KERN_WARNING PFX
1631                                "No option given for '%s'\n",
1632                                curr);
1633                         return -EINVAL;
1634                 }
1635                 *val = simple_strtoul(option, &n, 0);
1636                 if ((*n != '\0') || (*option == '\0')) {
1637                         printk(KERN_WARNING PFX
1638                                "Bad option given for '%s'\n",
1639                                curr);
1640                         return -EINVAL;
1641                 }
1642                 return 1;
1643         }
1644         return 0;
1645 }
1646
1647 static int hotmod_handler(const char *val, struct kernel_param *kp)
1648 {
1649         char *str = kstrdup(val, GFP_KERNEL);
1650         int  rv;
1651         char *next, *curr, *s, *n, *o;
1652         enum hotmod_op op;
1653         enum si_type si_type;
1654         int  addr_space;
1655         unsigned long addr;
1656         int regspacing;
1657         int regsize;
1658         int regshift;
1659         int irq;
1660         int ipmb;
1661         int ival;
1662         int len;
1663         struct smi_info *info;
1664
1665         if (!str)
1666                 return -ENOMEM;
1667
1668         /* Kill any trailing spaces, as we can get a "\n" from echo. */
1669         len = strlen(str);
1670         ival = len - 1;
1671         while ((ival >= 0) && isspace(str[ival])) {
1672                 str[ival] = '\0';
1673                 ival--;
1674         }
1675
1676         for (curr = str; curr; curr = next) {
1677                 regspacing = 1;
1678                 regsize = 1;
1679                 regshift = 0;
1680                 irq = 0;
1681                 ipmb = 0; /* Choose the default if not specified */
1682
1683                 next = strchr(curr, ':');
1684                 if (next) {
1685                         *next = '\0';
1686                         next++;
1687                 }
1688
1689                 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1690                 if (rv)
1691                         break;
1692                 op = ival;
1693
1694                 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1695                 if (rv)
1696                         break;
1697                 si_type = ival;
1698
1699                 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1700                 if (rv)
1701                         break;
1702
1703                 s = strchr(curr, ',');
1704                 if (s) {
1705                         *s = '\0';
1706                         s++;
1707                 }
1708                 addr = simple_strtoul(curr, &n, 0);
1709                 if ((*n != '\0') || (*curr == '\0')) {
1710                         printk(KERN_WARNING PFX "Invalid hotmod address"
1711                                " '%s'\n", curr);
1712                         break;
1713                 }
1714
1715                 while (s) {
1716                         curr = s;
1717                         s = strchr(curr, ',');
1718                         if (s) {
1719                                 *s = '\0';
1720                                 s++;
1721                         }
1722                         o = strchr(curr, '=');
1723                         if (o) {
1724                                 *o = '\0';
1725                                 o++;
1726                         }
1727                         rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1728                         if (rv < 0)
1729                                 goto out;
1730                         else if (rv)
1731                                 continue;
1732                         rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1733                         if (rv < 0)
1734                                 goto out;
1735                         else if (rv)
1736                                 continue;
1737                         rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1738                         if (rv < 0)
1739                                 goto out;
1740                         else if (rv)
1741                                 continue;
1742                         rv = check_hotmod_int_op(curr, o, "irq", &irq);
1743                         if (rv < 0)
1744                                 goto out;
1745                         else if (rv)
1746                                 continue;
1747                         rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1748                         if (rv < 0)
1749                                 goto out;
1750                         else if (rv)
1751                                 continue;
1752
1753                         rv = -EINVAL;
1754                         printk(KERN_WARNING PFX
1755                                "Invalid hotmod option '%s'\n",
1756                                curr);
1757                         goto out;
1758                 }
1759
1760                 if (op == HM_ADD) {
1761                         info = kzalloc(sizeof(*info), GFP_KERNEL);
1762                         if (!info) {
1763                                 rv = -ENOMEM;
1764                                 goto out;
1765                         }
1766
1767                         info->addr_source = SI_HOTMOD;
1768                         info->si_type = si_type;
1769                         info->io.addr_data = addr;
1770                         info->io.addr_type = addr_space;
1771                         if (addr_space == IPMI_MEM_ADDR_SPACE)
1772                                 info->io_setup = mem_setup;
1773                         else
1774                                 info->io_setup = port_setup;
1775
1776                         info->io.addr = NULL;
1777                         info->io.regspacing = regspacing;
1778                         if (!info->io.regspacing)
1779                                 info->io.regspacing = DEFAULT_REGSPACING;
1780                         info->io.regsize = regsize;
1781                         if (!info->io.regsize)
1782                                 info->io.regsize = DEFAULT_REGSPACING;
1783                         info->io.regshift = regshift;
1784                         info->irq = irq;
1785                         if (info->irq)
1786                                 info->irq_setup = std_irq_setup;
1787                         info->slave_addr = ipmb;
1788
1789                         if (!add_smi(info))
1790                                 if (try_smi_init(info))
1791                                         cleanup_one_si(info);
1792                 } else {
1793                         /* remove */
1794                         struct smi_info *e, *tmp_e;
1795
1796                         mutex_lock(&smi_infos_lock);
1797                         list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1798                                 if (e->io.addr_type != addr_space)
1799                                         continue;
1800                                 if (e->si_type != si_type)
1801                                         continue;
1802                                 if (e->io.addr_data == addr)
1803                                         cleanup_one_si(e);
1804                         }
1805                         mutex_unlock(&smi_infos_lock);
1806                 }
1807         }
1808         rv = len;
1809  out:
1810         kfree(str);
1811         return rv;
1812 }
1813
1814 static __devinit void hardcode_find_bmc(void)
1815 {
1816         int             i;
1817         struct smi_info *info;
1818
1819         for (i = 0; i < SI_MAX_PARMS; i++) {
1820                 if (!ports[i] && !addrs[i])
1821                         continue;
1822
1823                 info = kzalloc(sizeof(*info), GFP_KERNEL);
1824                 if (!info)
1825                         return;
1826
1827                 info->addr_source = SI_HARDCODED;
1828
1829                 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1830                         info->si_type = SI_KCS;
1831                 } else if (strcmp(si_type[i], "smic") == 0) {
1832                         info->si_type = SI_SMIC;
1833                 } else if (strcmp(si_type[i], "bt") == 0) {
1834                         info->si_type = SI_BT;
1835                 } else {
1836                         printk(KERN_WARNING
1837                                "ipmi_si: Interface type specified "
1838                                "for interface %d, was invalid: %s\n",
1839                                i, si_type[i]);
1840                         kfree(info);
1841                         continue;
1842                 }
1843
1844                 if (ports[i]) {
1845                         /* An I/O port */
1846                         info->io_setup = port_setup;
1847                         info->io.addr_data = ports[i];
1848                         info->io.addr_type = IPMI_IO_ADDR_SPACE;
1849                 } else if (addrs[i]) {
1850                         /* A memory port */
1851                         info->io_setup = mem_setup;
1852                         info->io.addr_data = addrs[i];
1853                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1854                 } else {
1855                         printk(KERN_WARNING
1856                                "ipmi_si: Interface type specified "
1857                                "for interface %d, "
1858                                "but port and address were not set or "
1859                                "set to zero.\n", i);
1860                         kfree(info);
1861                         continue;
1862                 }
1863
1864                 info->io.addr = NULL;
1865                 info->io.regspacing = regspacings[i];
1866                 if (!info->io.regspacing)
1867                         info->io.regspacing = DEFAULT_REGSPACING;
1868                 info->io.regsize = regsizes[i];
1869                 if (!info->io.regsize)
1870                         info->io.regsize = DEFAULT_REGSPACING;
1871                 info->io.regshift = regshifts[i];
1872                 info->irq = irqs[i];
1873                 if (info->irq)
1874                         info->irq_setup = std_irq_setup;
1875                 info->slave_addr = slave_addrs[i];
1876
1877                 if (!add_smi(info))
1878                         if (try_smi_init(info))
1879                                 cleanup_one_si(info);
1880         }
1881 }
1882
1883 #ifdef CONFIG_ACPI
1884
1885 #include <linux/acpi.h>
1886
1887 /*
1888  * Once we get an ACPI failure, we don't try any more, because we go
1889  * through the tables sequentially.  Once we don't find a table, there
1890  * are no more.
1891  */
1892 static int acpi_failure;
1893
1894 /* For GPE-type interrupts. */
1895 static u32 ipmi_acpi_gpe(void *context)
1896 {
1897         struct smi_info *smi_info = context;
1898         unsigned long   flags;
1899 #ifdef DEBUG_TIMING
1900         struct timeval t;
1901 #endif
1902
1903         spin_lock_irqsave(&(smi_info->si_lock), flags);
1904
1905         smi_inc_stat(smi_info, interrupts);
1906
1907 #ifdef DEBUG_TIMING
1908         do_gettimeofday(&t);
1909         printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1910 #endif
1911         smi_event_handler(smi_info, 0);
1912         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1913
1914         return ACPI_INTERRUPT_HANDLED;
1915 }
1916
1917 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1918 {
1919         if (!info->irq)
1920                 return;
1921
1922         acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1923 }
1924
1925 static int acpi_gpe_irq_setup(struct smi_info *info)
1926 {
1927         acpi_status status;
1928
1929         if (!info->irq)
1930                 return 0;
1931
1932         /* FIXME - is level triggered right? */
1933         status = acpi_install_gpe_handler(NULL,
1934                                           info->irq,
1935                                           ACPI_GPE_LEVEL_TRIGGERED,
1936                                           &ipmi_acpi_gpe,
1937                                           info);
1938         if (status != AE_OK) {
1939                 printk(KERN_WARNING
1940                        "ipmi_si: %s unable to claim ACPI GPE %d,"
1941                        " running polled\n",
1942                        DEVICE_NAME, info->irq);
1943                 info->irq = 0;
1944                 return -EINVAL;
1945         } else {
1946                 info->irq_cleanup = acpi_gpe_irq_cleanup;
1947                 printk("  Using ACPI GPE %d\n", info->irq);
1948                 return 0;
1949         }
1950 }
1951
1952 /*
1953  * Defined at
1954  * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/
1955  * Docs/TechPapers/IA64/hpspmi.pdf
1956  */
1957 struct SPMITable {
1958         s8      Signature[4];
1959         u32     Length;
1960         u8      Revision;
1961         u8      Checksum;
1962         s8      OEMID[6];
1963         s8      OEMTableID[8];
1964         s8      OEMRevision[4];
1965         s8      CreatorID[4];
1966         s8      CreatorRevision[4];
1967         u8      InterfaceType;
1968         u8      IPMIlegacy;
1969         s16     SpecificationRevision;
1970
1971         /*
1972          * Bit 0 - SCI interrupt supported
1973          * Bit 1 - I/O APIC/SAPIC
1974          */
1975         u8      InterruptType;
1976
1977         /*
1978          * If bit 0 of InterruptType is set, then this is the SCI
1979          * interrupt in the GPEx_STS register.
1980          */
1981         u8      GPE;
1982
1983         s16     Reserved;
1984
1985         /*
1986          * If bit 1 of InterruptType is set, then this is the I/O
1987          * APIC/SAPIC interrupt.
1988          */
1989         u32     GlobalSystemInterrupt;
1990
1991         /* The actual register address. */
1992         struct acpi_generic_address addr;
1993
1994         u8      UID[4];
1995
1996         s8      spmi_id[1]; /* A '\0' terminated array starts here. */
1997 };
1998
1999 static __devinit int try_init_spmi(struct SPMITable *spmi)
2000 {
2001         struct smi_info  *info;
2002         u8               addr_space;
2003
2004         if (spmi->IPMIlegacy != 1) {
2005             printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2006             return -ENODEV;
2007         }
2008
2009         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
2010                 addr_space = IPMI_MEM_ADDR_SPACE;
2011         else
2012                 addr_space = IPMI_IO_ADDR_SPACE;
2013
2014         info = kzalloc(sizeof(*info), GFP_KERNEL);
2015         if (!info) {
2016                 printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n");
2017                 return -ENOMEM;
2018         }
2019
2020         info->addr_source = SI_SPMI;
2021
2022         /* Figure out the interface type. */
2023         switch (spmi->InterfaceType) {
2024         case 1: /* KCS */
2025                 info->si_type = SI_KCS;
2026                 break;
2027         case 2: /* SMIC */
2028                 info->si_type = SI_SMIC;
2029                 break;
2030         case 3: /* BT */
2031                 info->si_type = SI_BT;
2032                 break;
2033         default:
2034                 printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n",
2035                         spmi->InterfaceType);
2036                 kfree(info);
2037                 return -EIO;
2038         }
2039
2040         if (spmi->InterruptType & 1) {
2041                 /* We've got a GPE interrupt. */
2042                 info->irq = spmi->GPE;
2043                 info->irq_setup = acpi_gpe_irq_setup;
2044         } else if (spmi->InterruptType & 2) {
2045                 /* We've got an APIC/SAPIC interrupt. */
2046                 info->irq = spmi->GlobalSystemInterrupt;
2047                 info->irq_setup = std_irq_setup;
2048         } else {
2049                 /* Use the default interrupt setting. */
2050                 info->irq = 0;
2051                 info->irq_setup = NULL;
2052         }
2053
2054         if (spmi->addr.bit_width) {
2055                 /* A (hopefully) properly formed register bit width. */
2056                 info->io.regspacing = spmi->addr.bit_width / 8;
2057         } else {
2058                 info->io.regspacing = DEFAULT_REGSPACING;
2059         }
2060         info->io.regsize = info->io.regspacing;
2061         info->io.regshift = spmi->addr.bit_offset;
2062
2063         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2064                 info->io_setup = mem_setup;
2065                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2066         } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2067                 info->io_setup = port_setup;
2068                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2069         } else {
2070                 kfree(info);
2071                 printk(KERN_WARNING
2072                        "ipmi_si: Unknown ACPI I/O Address type\n");
2073                 return -EIO;
2074         }
2075         info->io.addr_data = spmi->addr.address;
2076
2077         add_smi(info);
2078
2079         return 0;
2080 }
2081
2082 static __devinit void spmi_find_bmc(void)
2083 {
2084         acpi_status      status;
2085         struct SPMITable *spmi;
2086         int              i;
2087
2088         if (acpi_disabled)
2089                 return;
2090
2091         if (acpi_failure)
2092                 return;
2093
2094         for (i = 0; ; i++) {
2095                 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2096                                         (struct acpi_table_header **)&spmi);
2097                 if (status != AE_OK)
2098                         return;
2099
2100                 try_init_spmi(spmi);
2101         }
2102 }
2103
2104 static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
2105                                     const struct pnp_device_id *dev_id)
2106 {
2107         struct acpi_device *acpi_dev;
2108         struct smi_info *info;
2109         acpi_handle handle;
2110         acpi_status status;
2111         unsigned long long tmp;
2112
2113         acpi_dev = pnp_acpi_device(dev);
2114         if (!acpi_dev)
2115                 return -ENODEV;
2116
2117         info = kzalloc(sizeof(*info), GFP_KERNEL);
2118         if (!info)
2119                 return -ENOMEM;
2120
2121         info->addr_source = SI_ACPI;
2122
2123         handle = acpi_dev->handle;
2124
2125         /* _IFT tells us the interface type: KCS, BT, etc */
2126         status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2127         if (ACPI_FAILURE(status))
2128                 goto err_free;
2129
2130         switch (tmp) {
2131         case 1:
2132                 info->si_type = SI_KCS;
2133                 break;
2134         case 2:
2135                 info->si_type = SI_SMIC;
2136                 break;
2137         case 3:
2138                 info->si_type = SI_BT;
2139                 break;
2140         default:
2141                 dev_info(&dev->dev, "unknown interface type %lld\n", tmp);
2142                 goto err_free;
2143         }
2144
2145         if (pnp_port_valid(dev, 0)) {
2146                 info->io_setup = port_setup;
2147                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2148                 info->io.addr_data = pnp_port_start(dev, 0);
2149         } else if (pnp_mem_valid(dev, 0)) {
2150                 info->io_setup = mem_setup;
2151                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2152                 info->io.addr_data = pnp_mem_start(dev, 0);
2153         } else {
2154                 dev_err(&dev->dev, "no I/O or memory address\n");
2155                 goto err_free;
2156         }
2157
2158         info->io.regspacing = DEFAULT_REGSPACING;
2159         info->io.regsize = DEFAULT_REGSPACING;
2160         info->io.regshift = 0;
2161
2162         /* If _GPE exists, use it; otherwise use standard interrupts */
2163         status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2164         if (ACPI_SUCCESS(status)) {
2165                 info->irq = tmp;
2166                 info->irq_setup = acpi_gpe_irq_setup;
2167         } else if (pnp_irq_valid(dev, 0)) {
2168                 info->irq = pnp_irq(dev, 0);
2169                 info->irq_setup = std_irq_setup;
2170         }
2171
2172         info->dev = &acpi_dev->dev;
2173         pnp_set_drvdata(dev, info);
2174
2175         return add_smi(info);
2176
2177 err_free:
2178         kfree(info);
2179         return -EINVAL;
2180 }
2181
2182 static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
2183 {
2184         struct smi_info *info = pnp_get_drvdata(dev);
2185
2186         cleanup_one_si(info);
2187 }
2188
2189 static const struct pnp_device_id pnp_dev_table[] = {
2190         {"IPI0001", 0},
2191         {"", 0},
2192 };
2193
2194 static struct pnp_driver ipmi_pnp_driver = {
2195         .name           = DEVICE_NAME,
2196         .probe          = ipmi_pnp_probe,
2197         .remove         = __devexit_p(ipmi_pnp_remove),
2198         .id_table       = pnp_dev_table,
2199 };
2200 #endif
2201
2202 #ifdef CONFIG_DMI
2203 struct dmi_ipmi_data {
2204         u8              type;
2205         u8              addr_space;
2206         unsigned long   base_addr;
2207         u8              irq;
2208         u8              offset;
2209         u8              slave_addr;
2210 };
2211
2212 static int __devinit decode_dmi(const struct dmi_header *dm,
2213                                 struct dmi_ipmi_data *dmi)
2214 {
2215         const u8        *data = (const u8 *)dm;
2216         unsigned long   base_addr;
2217         u8              reg_spacing;
2218         u8              len = dm->length;
2219
2220         dmi->type = data[4];
2221
2222         memcpy(&base_addr, data+8, sizeof(unsigned long));
2223         if (len >= 0x11) {
2224                 if (base_addr & 1) {
2225                         /* I/O */
2226                         base_addr &= 0xFFFE;
2227                         dmi->addr_space = IPMI_IO_ADDR_SPACE;
2228                 } else
2229                         /* Memory */
2230                         dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2231
2232                 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2233                    is odd. */
2234                 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2235
2236                 dmi->irq = data[0x11];
2237
2238                 /* The top two bits of byte 0x10 hold the register spacing. */
2239                 reg_spacing = (data[0x10] & 0xC0) >> 6;
2240                 switch (reg_spacing) {
2241                 case 0x00: /* Byte boundaries */
2242                     dmi->offset = 1;
2243                     break;
2244                 case 0x01: /* 32-bit boundaries */
2245                     dmi->offset = 4;
2246                     break;
2247                 case 0x02: /* 16-byte boundaries */
2248                     dmi->offset = 16;
2249                     break;
2250                 default:
2251                     /* Some other interface, just ignore it. */
2252                     return -EIO;
2253                 }
2254         } else {
2255                 /* Old DMI spec. */
2256                 /*
2257                  * Note that technically, the lower bit of the base
2258                  * address should be 1 if the address is I/O and 0 if
2259                  * the address is in memory.  So many systems get that
2260                  * wrong (and all that I have seen are I/O) so we just
2261                  * ignore that bit and assume I/O.  Systems that use
2262                  * memory should use the newer spec, anyway.
2263                  */
2264                 dmi->base_addr = base_addr & 0xfffe;
2265                 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2266                 dmi->offset = 1;
2267         }
2268
2269         dmi->slave_addr = data[6];
2270
2271         return 0;
2272 }
2273
2274 static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2275 {
2276         struct smi_info *info;
2277
2278         info = kzalloc(sizeof(*info), GFP_KERNEL);
2279         if (!info) {
2280                 printk(KERN_ERR
2281                        "ipmi_si: Could not allocate SI data\n");
2282                 return;
2283         }
2284
2285         info->addr_source = SI_SMBIOS;
2286
2287         switch (ipmi_data->type) {
2288         case 0x01: /* KCS */
2289                 info->si_type = SI_KCS;
2290                 break;
2291         case 0x02: /* SMIC */
2292                 info->si_type = SI_SMIC;
2293                 break;
2294         case 0x03: /* BT */
2295                 info->si_type = SI_BT;
2296                 break;
2297         default:
2298                 kfree(info);
2299                 return;
2300         }
2301
2302         switch (ipmi_data->addr_space) {
2303         case IPMI_MEM_ADDR_SPACE:
2304                 info->io_setup = mem_setup;
2305                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2306                 break;
2307
2308         case IPMI_IO_ADDR_SPACE:
2309                 info->io_setup = port_setup;
2310                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2311                 break;
2312
2313         default:
2314                 kfree(info);
2315                 printk(KERN_WARNING
2316                        "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n",
2317                        ipmi_data->addr_space);
2318                 return;
2319         }
2320         info->io.addr_data = ipmi_data->base_addr;
2321
2322         info->io.regspacing = ipmi_data->offset;
2323         if (!info->io.regspacing)
2324                 info->io.regspacing = DEFAULT_REGSPACING;
2325         info->io.regsize = DEFAULT_REGSPACING;
2326         info->io.regshift = 0;
2327
2328         info->slave_addr = ipmi_data->slave_addr;
2329
2330         info->irq = ipmi_data->irq;
2331         if (info->irq)
2332                 info->irq_setup = std_irq_setup;
2333
2334         add_smi(info);
2335 }
2336
2337 static void __devinit dmi_find_bmc(void)
2338 {
2339         const struct dmi_device *dev = NULL;
2340         struct dmi_ipmi_data data;
2341         int                  rv;
2342
2343         while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2344                 memset(&data, 0, sizeof(data));
2345                 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2346                                 &data);
2347                 if (!rv)
2348                         try_init_dmi(&data);
2349         }
2350 }
2351 #endif /* CONFIG_DMI */
2352
2353 #ifdef CONFIG_PCI
2354
2355 #define PCI_ERMC_CLASSCODE              0x0C0700
2356 #define PCI_ERMC_CLASSCODE_MASK         0xffffff00
2357 #define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
2358 #define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
2359 #define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
2360 #define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
2361
2362 #define PCI_HP_VENDOR_ID    0x103C
2363 #define PCI_MMC_DEVICE_ID   0x121A
2364 #define PCI_MMC_ADDR_CW     0x10
2365
2366 static void ipmi_pci_cleanup(struct smi_info *info)
2367 {
2368         struct pci_dev *pdev = info->addr_source_data;
2369
2370         pci_disable_device(pdev);
2371 }
2372
2373 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2374                                     const struct pci_device_id *ent)
2375 {
2376         int rv;
2377         int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2378         struct smi_info *info;
2379
2380         info = kzalloc(sizeof(*info), GFP_KERNEL);
2381         if (!info)
2382                 return -ENOMEM;
2383
2384         info->addr_source = SI_PCI;
2385
2386         switch (class_type) {
2387         case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2388                 info->si_type = SI_SMIC;
2389                 break;
2390
2391         case PCI_ERMC_CLASSCODE_TYPE_KCS:
2392                 info->si_type = SI_KCS;
2393                 break;
2394
2395         case PCI_ERMC_CLASSCODE_TYPE_BT:
2396                 info->si_type = SI_BT;
2397                 break;
2398
2399         default:
2400                 kfree(info);
2401                 printk(KERN_INFO "ipmi_si: %s: Unknown IPMI type: %d\n",
2402                        pci_name(pdev), class_type);
2403                 return -ENOMEM;
2404         }
2405
2406         rv = pci_enable_device(pdev);
2407         if (rv) {
2408                 printk(KERN_ERR "ipmi_si: %s: couldn't enable PCI device\n",
2409                        pci_name(pdev));
2410                 kfree(info);
2411                 return rv;
2412         }
2413
2414         info->addr_source_cleanup = ipmi_pci_cleanup;
2415         info->addr_source_data = pdev;
2416
2417         if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2418                 info->io_setup = port_setup;
2419                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2420         } else {
2421                 info->io_setup = mem_setup;
2422                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2423         }
2424         info->io.addr_data = pci_resource_start(pdev, 0);
2425
2426         info->io.regspacing = DEFAULT_REGSPACING;
2427         info->io.regsize = DEFAULT_REGSPACING;
2428         info->io.regshift = 0;
2429
2430         info->irq = pdev->irq;
2431         if (info->irq)
2432                 info->irq_setup = std_irq_setup;
2433
2434         info->dev = &pdev->dev;
2435         pci_set_drvdata(pdev, info);
2436
2437         return add_smi(info);
2438 }
2439
2440 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2441 {
2442         struct smi_info *info = pci_get_drvdata(pdev);
2443         cleanup_one_si(info);
2444 }
2445
2446 #ifdef CONFIG_PM
2447 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2448 {
2449         return 0;
2450 }
2451
2452 static int ipmi_pci_resume(struct pci_dev *pdev)
2453 {
2454         return 0;
2455 }
2456 #endif
2457
2458 static struct pci_device_id ipmi_pci_devices[] = {
2459         { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2460         { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2461         { 0, }
2462 };
2463 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2464
2465 static struct pci_driver ipmi_pci_driver = {
2466         .name =         DEVICE_NAME,
2467         .id_table =     ipmi_pci_devices,
2468         .probe =        ipmi_pci_probe,
2469         .remove =       __devexit_p(ipmi_pci_remove),
2470 #ifdef CONFIG_PM
2471         .suspend =      ipmi_pci_suspend,
2472         .resume =       ipmi_pci_resume,
2473 #endif
2474 };
2475 #endif /* CONFIG_PCI */
2476
2477
2478 #ifdef CONFIG_PPC_OF
2479 static int __devinit ipmi_of_probe(struct of_device *dev,
2480                          const struct of_device_id *match)
2481 {
2482         struct smi_info *info;
2483         struct resource resource;
2484         const int *regsize, *regspacing, *regshift;
2485         struct device_node *np = dev->dev.of_node;
2486         int ret;
2487         int proplen;
2488
2489         dev_info(&dev->dev, PFX "probing via device tree\n");
2490
2491         ret = of_address_to_resource(np, 0, &resource);
2492         if (ret) {
2493                 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2494                 return ret;
2495         }
2496
2497         regsize = of_get_property(np, "reg-size", &proplen);
2498         if (regsize && proplen != 4) {
2499                 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2500                 return -EINVAL;
2501         }
2502
2503         regspacing = of_get_property(np, "reg-spacing", &proplen);
2504         if (regspacing && proplen != 4) {
2505                 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2506                 return -EINVAL;
2507         }
2508
2509         regshift = of_get_property(np, "reg-shift", &proplen);
2510         if (regshift && proplen != 4) {
2511                 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2512                 return -EINVAL;
2513         }
2514
2515         info = kzalloc(sizeof(*info), GFP_KERNEL);
2516
2517         if (!info) {
2518                 dev_err(&dev->dev,
2519                         PFX "could not allocate memory for OF probe\n");
2520                 return -ENOMEM;
2521         }
2522
2523         info->si_type           = (enum si_type) match->data;
2524         info->addr_source       = SI_DEVICETREE;
2525         info->irq_setup         = std_irq_setup;
2526
2527         if (resource.flags & IORESOURCE_IO) {
2528                 info->io_setup          = port_setup;
2529                 info->io.addr_type      = IPMI_IO_ADDR_SPACE;
2530         } else {
2531                 info->io_setup          = mem_setup;
2532                 info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2533         }
2534
2535         info->io.addr_data      = resource.start;
2536
2537         info->io.regsize        = regsize ? *regsize : DEFAULT_REGSIZE;
2538         info->io.regspacing     = regspacing ? *regspacing : DEFAULT_REGSPACING;
2539         info->io.regshift       = regshift ? *regshift : 0;
2540
2541         info->irq               = irq_of_parse_and_map(dev->dev.of_node, 0);
2542         info->dev               = &dev->dev;
2543
2544         dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %x\n",
2545                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2546                 info->irq);
2547
2548         dev_set_drvdata(&dev->dev, info);
2549
2550         return add_smi(info);
2551 }
2552
2553 static int __devexit ipmi_of_remove(struct of_device *dev)
2554 {
2555         cleanup_one_si(dev_get_drvdata(&dev->dev));
2556         return 0;
2557 }
2558
2559 static struct of_device_id ipmi_match[] =
2560 {
2561         { .type = "ipmi", .compatible = "ipmi-kcs",
2562           .data = (void *)(unsigned long) SI_KCS },
2563         { .type = "ipmi", .compatible = "ipmi-smic",
2564           .data = (void *)(unsigned long) SI_SMIC },
2565         { .type = "ipmi", .compatible = "ipmi-bt",
2566           .data = (void *)(unsigned long) SI_BT },
2567         {},
2568 };
2569
2570 static struct of_platform_driver ipmi_of_platform_driver = {
2571         .driver = {
2572                 .name = "ipmi",
2573                 .owner = THIS_MODULE,
2574                 .of_match_table = ipmi_match,
2575         },
2576         .probe          = ipmi_of_probe,
2577         .remove         = __devexit_p(ipmi_of_remove),
2578 };
2579 #endif /* CONFIG_PPC_OF */
2580
2581 static int wait_for_msg_done(struct smi_info *smi_info)
2582 {
2583         enum si_sm_result     smi_result;
2584
2585         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2586         for (;;) {
2587                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2588                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2589                         schedule_timeout_uninterruptible(1);
2590                         smi_result = smi_info->handlers->event(
2591                                 smi_info->si_sm, 100);
2592                 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2593                         smi_result = smi_info->handlers->event(
2594                                 smi_info->si_sm, 0);
2595                 } else
2596                         break;
2597         }
2598         if (smi_result == SI_SM_HOSED)
2599                 /*
2600                  * We couldn't get the state machine to run, so whatever's at
2601                  * the port is probably not an IPMI SMI interface.
2602                  */
2603                 return -ENODEV;
2604
2605         return 0;
2606 }
2607
2608 static int try_get_dev_id(struct smi_info *smi_info)
2609 {
2610         unsigned char         msg[2];
2611         unsigned char         *resp;
2612         unsigned long         resp_len;
2613         int                   rv = 0;
2614
2615         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2616         if (!resp)
2617                 return -ENOMEM;
2618
2619         /*
2620          * Do a Get Device ID command, since it comes back with some
2621          * useful info.
2622          */
2623         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2624         msg[1] = IPMI_GET_DEVICE_ID_CMD;
2625         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2626
2627         rv = wait_for_msg_done(smi_info);
2628         if (rv)
2629                 goto out;
2630
2631         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2632                                                   resp, IPMI_MAX_MSG_LENGTH);
2633
2634         /* Check and record info from the get device id, in case we need it. */
2635         rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2636
2637  out:
2638         kfree(resp);
2639         return rv;
2640 }
2641
2642 static int try_enable_event_buffer(struct smi_info *smi_info)
2643 {
2644         unsigned char         msg[3];
2645         unsigned char         *resp;
2646         unsigned long         resp_len;
2647         int                   rv = 0;
2648
2649         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2650         if (!resp)
2651                 return -ENOMEM;
2652
2653         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2654         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2655         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2656
2657         rv = wait_for_msg_done(smi_info);
2658         if (rv) {
2659                 printk(KERN_WARNING
2660                        "ipmi_si: Error getting response from get global,"
2661                        " enables command, the event buffer is not"
2662                        " enabled.\n");
2663                 goto out;
2664         }
2665
2666         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2667                                                   resp, IPMI_MAX_MSG_LENGTH);
2668
2669         if (resp_len < 4 ||
2670                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2671                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2672                         resp[2] != 0) {
2673                 printk(KERN_WARNING
2674                        "ipmi_si: Invalid return from get global"
2675                        " enables command, cannot enable the event"
2676                        " buffer.\n");
2677                 rv = -EINVAL;
2678                 goto out;
2679         }
2680
2681         if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2682                 /* buffer is already enabled, nothing to do. */
2683                 goto out;
2684
2685         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2686         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2687         msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2688         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2689
2690         rv = wait_for_msg_done(smi_info);
2691         if (rv) {
2692                 printk(KERN_WARNING
2693                        "ipmi_si: Error getting response from set global,"
2694                        " enables command, the event buffer is not"
2695                        " enabled.\n");
2696                 goto out;
2697         }
2698
2699         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2700                                                   resp, IPMI_MAX_MSG_LENGTH);
2701
2702         if (resp_len < 3 ||
2703                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2704                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2705                 printk(KERN_WARNING
2706                        "ipmi_si: Invalid return from get global,"
2707                        "enables command, not enable the event"
2708                        " buffer.\n");
2709                 rv = -EINVAL;
2710                 goto out;
2711         }
2712
2713         if (resp[2] != 0)
2714                 /*
2715                  * An error when setting the event buffer bit means
2716                  * that the event buffer is not supported.
2717                  */
2718                 rv = -ENOENT;
2719  out:
2720         kfree(resp);
2721         return rv;
2722 }
2723
2724 static int type_file_read_proc(char *page, char **start, off_t off,
2725                                int count, int *eof, void *data)
2726 {
2727         struct smi_info *smi = data;
2728
2729         return sprintf(page, "%s\n", si_to_str[smi->si_type]);
2730 }
2731
2732 static int stat_file_read_proc(char *page, char **start, off_t off,
2733                                int count, int *eof, void *data)
2734 {
2735         char            *out = (char *) page;
2736         struct smi_info *smi = data;
2737
2738         out += sprintf(out, "interrupts_enabled:    %d\n",
2739                        smi->irq && !smi->interrupt_disabled);
2740         out += sprintf(out, "short_timeouts:        %u\n",
2741                        smi_get_stat(smi, short_timeouts));
2742         out += sprintf(out, "long_timeouts:         %u\n",
2743                        smi_get_stat(smi, long_timeouts));
2744         out += sprintf(out, "idles:                 %u\n",
2745                        smi_get_stat(smi, idles));
2746         out += sprintf(out, "interrupts:            %u\n",
2747                        smi_get_stat(smi, interrupts));
2748         out += sprintf(out, "attentions:            %u\n",
2749                        smi_get_stat(smi, attentions));
2750         out += sprintf(out, "flag_fetches:          %u\n",
2751                        smi_get_stat(smi, flag_fetches));
2752         out += sprintf(out, "hosed_count:           %u\n",
2753                        smi_get_stat(smi, hosed_count));
2754         out += sprintf(out, "complete_transactions: %u\n",
2755                        smi_get_stat(smi, complete_transactions));
2756         out += sprintf(out, "events:                %u\n",
2757                        smi_get_stat(smi, events));
2758         out += sprintf(out, "watchdog_pretimeouts:  %u\n",
2759                        smi_get_stat(smi, watchdog_pretimeouts));
2760         out += sprintf(out, "incoming_messages:     %u\n",
2761                        smi_get_stat(smi, incoming_messages));
2762
2763         return out - page;
2764 }
2765
2766 static int param_read_proc(char *page, char **start, off_t off,
2767                            int count, int *eof, void *data)
2768 {
2769         struct smi_info *smi = data;
2770
2771         return sprintf(page,
2772                        "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2773                        si_to_str[smi->si_type],
2774                        addr_space_to_str[smi->io.addr_type],
2775                        smi->io.addr_data,
2776                        smi->io.regspacing,
2777                        smi->io.regsize,
2778                        smi->io.regshift,
2779                        smi->irq,
2780                        smi->slave_addr);
2781 }
2782
2783 /*
2784  * oem_data_avail_to_receive_msg_avail
2785  * @info - smi_info structure with msg_flags set
2786  *
2787  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2788  * Returns 1 indicating need to re-run handle_flags().
2789  */
2790 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2791 {
2792         smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2793                                RECEIVE_MSG_AVAIL);
2794         return 1;
2795 }
2796
2797 /*
2798  * setup_dell_poweredge_oem_data_handler
2799  * @info - smi_info.device_id must be populated
2800  *
2801  * Systems that match, but have firmware version < 1.40 may assert
2802  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2803  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
2804  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2805  * as RECEIVE_MSG_AVAIL instead.
2806  *
2807  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2808  * assert the OEM[012] bits, and if it did, the driver would have to
2809  * change to handle that properly, we don't actually check for the
2810  * firmware version.
2811  * Device ID = 0x20                BMC on PowerEdge 8G servers
2812  * Device Revision = 0x80
2813  * Firmware Revision1 = 0x01       BMC version 1.40
2814  * Firmware Revision2 = 0x40       BCD encoded
2815  * IPMI Version = 0x51             IPMI 1.5
2816  * Manufacturer ID = A2 02 00      Dell IANA
2817  *
2818  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2819  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2820  *
2821  */
2822 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
2823 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2824 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2825 #define DELL_IANA_MFR_ID 0x0002a2
2826 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2827 {
2828         struct ipmi_device_id *id = &smi_info->device_id;
2829         if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2830                 if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
2831                     id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2832                     id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2833                         smi_info->oem_data_avail_handler =
2834                                 oem_data_avail_to_receive_msg_avail;
2835                 } else if (ipmi_version_major(id) < 1 ||
2836                            (ipmi_version_major(id) == 1 &&
2837                             ipmi_version_minor(id) < 5)) {
2838                         smi_info->oem_data_avail_handler =
2839                                 oem_data_avail_to_receive_msg_avail;
2840                 }
2841         }
2842 }
2843
2844 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2845 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2846 {
2847         struct ipmi_smi_msg *msg = smi_info->curr_msg;
2848
2849         /* Make it a reponse */
2850         msg->rsp[0] = msg->data[0] | 4;
2851         msg->rsp[1] = msg->data[1];
2852         msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2853         msg->rsp_size = 3;
2854         smi_info->curr_msg = NULL;
2855         deliver_recv_msg(smi_info, msg);
2856 }
2857
2858 /*
2859  * dell_poweredge_bt_xaction_handler
2860  * @info - smi_info.device_id must be populated
2861  *
2862  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2863  * not respond to a Get SDR command if the length of the data
2864  * requested is exactly 0x3A, which leads to command timeouts and no
2865  * data returned.  This intercepts such commands, and causes userspace
2866  * callers to try again with a different-sized buffer, which succeeds.
2867  */
2868
2869 #define STORAGE_NETFN 0x0A
2870 #define STORAGE_CMD_GET_SDR 0x23
2871 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2872                                              unsigned long unused,
2873                                              void *in)
2874 {
2875         struct smi_info *smi_info = in;
2876         unsigned char *data = smi_info->curr_msg->data;
2877         unsigned int size   = smi_info->curr_msg->data_size;
2878         if (size >= 8 &&
2879             (data[0]>>2) == STORAGE_NETFN &&
2880             data[1] == STORAGE_CMD_GET_SDR &&
2881             data[7] == 0x3A) {
2882                 return_hosed_msg_badsize(smi_info);
2883                 return NOTIFY_STOP;
2884         }
2885         return NOTIFY_DONE;
2886 }
2887
2888 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2889         .notifier_call  = dell_poweredge_bt_xaction_handler,
2890 };
2891
2892 /*
2893  * setup_dell_poweredge_bt_xaction_handler
2894  * @info - smi_info.device_id must be filled in already
2895  *
2896  * Fills in smi_info.device_id.start_transaction_pre_hook
2897  * when we know what function to use there.
2898  */
2899 static void
2900 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2901 {
2902         struct ipmi_device_id *id = &smi_info->device_id;
2903         if (id->manufacturer_id == DELL_IANA_MFR_ID &&
2904             smi_info->si_type == SI_BT)
2905                 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2906 }
2907
2908 /*
2909  * setup_oem_data_handler
2910  * @info - smi_info.device_id must be filled in already
2911  *
2912  * Fills in smi_info.device_id.oem_data_available_handler
2913  * when we know what function to use there.
2914  */
2915
2916 static void setup_oem_data_handler(struct smi_info *smi_info)
2917 {
2918         setup_dell_poweredge_oem_data_handler(smi_info);
2919 }
2920
2921 static void setup_xaction_handlers(struct smi_info *smi_info)
2922 {
2923         setup_dell_poweredge_bt_xaction_handler(smi_info);
2924 }
2925
2926 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2927 {
2928         if (smi_info->intf) {
2929                 /*
2930                  * The timer and thread are only running if the
2931                  * interface has been started up and registered.
2932                  */
2933                 if (smi_info->thread != NULL)
2934                         kthread_stop(smi_info->thread);
2935                 del_timer_sync(&smi_info->si_timer);
2936         }
2937 }
2938
2939 static __devinitdata struct ipmi_default_vals
2940 {
2941         int type;
2942         int port;
2943 } ipmi_defaults[] =
2944 {
2945         { .type = SI_KCS, .port = 0xca2 },
2946         { .type = SI_SMIC, .port = 0xca9 },
2947         { .type = SI_BT, .port = 0xe4 },
2948         { .port = 0 }
2949 };
2950
2951 static __devinit void default_find_bmc(void)
2952 {
2953         struct smi_info *info;
2954         int             i;
2955
2956         for (i = 0; ; i++) {
2957                 if (!ipmi_defaults[i].port)
2958                         break;
2959 #ifdef CONFIG_PPC
2960                 if (check_legacy_ioport(ipmi_defaults[i].port))
2961                         continue;
2962 #endif
2963                 info = kzalloc(sizeof(*info), GFP_KERNEL);
2964                 if (!info)
2965                         return;
2966
2967                 info->addr_source = SI_DEFAULT;
2968
2969                 info->si_type = ipmi_defaults[i].type;
2970                 info->io_setup = port_setup;
2971                 info->io.addr_data = ipmi_defaults[i].port;
2972                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2973
2974                 info->io.addr = NULL;
2975                 info->io.regspacing = DEFAULT_REGSPACING;
2976                 info->io.regsize = DEFAULT_REGSPACING;
2977                 info->io.regshift = 0;
2978
2979                 if (add_smi(info) == 0) {
2980                         if ((try_smi_init(info)) == 0) {
2981                                 /* Found one... */
2982                                 printk(KERN_INFO "ipmi_si: Found default %s"
2983                                 " state machine at %s address 0x%lx\n",
2984                                 si_to_str[info->si_type],
2985                                 addr_space_to_str[info->io.addr_type],
2986                                 info->io.addr_data);
2987                         } else
2988                                 cleanup_one_si(info);
2989                 }
2990         }
2991 }
2992
2993 static int is_new_interface(struct smi_info *info)
2994 {
2995         struct smi_info *e;
2996
2997         list_for_each_entry(e, &smi_infos, link) {
2998                 if (e->io.addr_type != info->io.addr_type)
2999                         continue;
3000                 if (e->io.addr_data == info->io.addr_data)
3001                         return 0;
3002         }
3003
3004         return 1;
3005 }
3006
3007 static int add_smi(struct smi_info *new_smi)
3008 {
3009         int rv = 0;
3010
3011         printk(KERN_INFO "ipmi_si: Adding %s-specified %s state machine",
3012                         ipmi_addr_src_to_str[new_smi->addr_source],
3013                         si_to_str[new_smi->si_type]);
3014         mutex_lock(&smi_infos_lock);
3015         if (!is_new_interface(new_smi)) {
3016                 printk(KERN_CONT ": duplicate interface\n");
3017                 rv = -EBUSY;
3018                 goto out_err;
3019         }
3020
3021         printk(KERN_CONT "\n");
3022
3023         /* So we know not to free it unless we have allocated one. */
3024         new_smi->intf = NULL;
3025         new_smi->si_sm = NULL;
3026         new_smi->handlers = NULL;
3027
3028         list_add_tail(&new_smi->link, &smi_infos);
3029
3030 out_err:
3031         mutex_unlock(&smi_infos_lock);
3032         return rv;
3033 }
3034
3035 static int try_smi_init(struct smi_info *new_smi)
3036 {
3037         int rv = 0;
3038         int i;
3039
3040         printk(KERN_INFO "ipmi_si: Trying %s-specified %s state"
3041                " machine at %s address 0x%lx, slave address 0x%x,"
3042                " irq %d\n",
3043                ipmi_addr_src_to_str[new_smi->addr_source],
3044                si_to_str[new_smi->si_type],
3045                addr_space_to_str[new_smi->io.addr_type],
3046                new_smi->io.addr_data,
3047                new_smi->slave_addr, new_smi->irq);
3048
3049         switch (new_smi->si_type) {
3050         case SI_KCS:
3051                 new_smi->handlers = &kcs_smi_handlers;
3052                 break;
3053
3054         case SI_SMIC:
3055                 new_smi->handlers = &smic_smi_handlers;
3056                 break;
3057
3058         case SI_BT:
3059                 new_smi->handlers = &bt_smi_handlers;
3060                 break;
3061
3062         default:
3063                 /* No support for anything else yet. */
3064                 rv = -EIO;
3065                 goto out_err;
3066         }
3067
3068         /* Allocate the state machine's data and initialize it. */
3069         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3070         if (!new_smi->si_sm) {
3071                 printk(KERN_ERR "Could not allocate state machine memory\n");
3072                 rv = -ENOMEM;
3073                 goto out_err;
3074         }
3075         new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3076                                                         &new_smi->io);
3077
3078         /* Now that we know the I/O size, we can set up the I/O. */
3079         rv = new_smi->io_setup(new_smi);
3080         if (rv) {
3081                 printk(KERN_ERR "Could not set up I/O space\n");
3082                 goto out_err;
3083         }
3084
3085         spin_lock_init(&(new_smi->si_lock));
3086         spin_lock_init(&(new_smi->msg_lock));
3087
3088         /* Do low-level detection first. */
3089         if (new_smi->handlers->detect(new_smi->si_sm)) {
3090                 if (new_smi->addr_source)
3091                         printk(KERN_INFO "ipmi_si: Interface detection"
3092                                " failed\n");
3093                 rv = -ENODEV;
3094                 goto out_err;
3095         }
3096
3097         /*
3098          * Attempt a get device id command.  If it fails, we probably
3099          * don't have a BMC here.
3100          */
3101         rv = try_get_dev_id(new_smi);
3102         if (rv) {
3103                 if (new_smi->addr_source)
3104                         printk(KERN_INFO "ipmi_si: There appears to be no BMC"
3105                                " at this location\n");
3106                 goto out_err;
3107         }
3108
3109         setup_oem_data_handler(new_smi);
3110         setup_xaction_handlers(new_smi);
3111
3112         INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3113         INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3114         new_smi->curr_msg = NULL;
3115         atomic_set(&new_smi->req_events, 0);
3116         new_smi->run_to_completion = 0;
3117         for (i = 0; i < SI_NUM_STATS; i++)
3118                 atomic_set(&new_smi->stats[i], 0);
3119
3120         new_smi->interrupt_disabled = 0;
3121         atomic_set(&new_smi->stop_operation, 0);
3122         new_smi->intf_num = smi_num;
3123         smi_num++;
3124
3125         rv = try_enable_event_buffer(new_smi);
3126         if (rv == 0)
3127                 new_smi->has_event_buffer = 1;
3128
3129         /*
3130          * Start clearing the flags before we enable interrupts or the
3131          * timer to avoid racing with the timer.
3132          */
3133         start_clear_flags(new_smi);
3134         /* IRQ is defined to be set when non-zero. */
3135         if (new_smi->irq)
3136                 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3137
3138         if (!new_smi->dev) {
3139                 /*
3140                  * If we don't already have a device from something
3141                  * else (like PCI), then register a new one.
3142                  */
3143                 new_smi->pdev = platform_device_alloc("ipmi_si",
3144                                                       new_smi->intf_num);
3145                 if (!new_smi->pdev) {
3146                         printk(KERN_ERR
3147                                "ipmi_si_intf:"
3148                                " Unable to allocate platform device\n");
3149                         goto out_err;
3150                 }
3151                 new_smi->dev = &new_smi->pdev->dev;
3152                 new_smi->dev->driver = &ipmi_driver.driver;
3153
3154                 rv = platform_device_add(new_smi->pdev);
3155                 if (rv) {
3156                         printk(KERN_ERR
3157                                "ipmi_si_intf:"
3158                                " Unable to register system interface device:"
3159                                " %d\n",
3160                                rv);
3161                         goto out_err;
3162                 }
3163                 new_smi->dev_registered = 1;
3164         }
3165
3166         rv = ipmi_register_smi(&handlers,
3167                                new_smi,
3168                                &new_smi->device_id,
3169                                new_smi->dev,
3170                                "bmc",
3171                                new_smi->slave_addr);
3172         if (rv) {
3173                 printk(KERN_ERR
3174                        "ipmi_si: Unable to register device: error %d\n",
3175                        rv);
3176                 goto out_err_stop_timer;
3177         }
3178
3179         rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3180                                      type_file_read_proc,
3181                                      new_smi);
3182         if (rv) {
3183                 printk(KERN_ERR
3184                        "ipmi_si: Unable to create proc entry: %d\n",
3185                        rv);
3186                 goto out_err_stop_timer;
3187         }
3188
3189         rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3190                                      stat_file_read_proc,
3191                                      new_smi);
3192         if (rv) {
3193                 printk(KERN_ERR
3194                        "ipmi_si: Unable to create proc entry: %d\n",
3195                        rv);
3196                 goto out_err_stop_timer;
3197         }
3198
3199         rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3200                                      param_read_proc,
3201                                      new_smi);
3202         if (rv) {
3203                 printk(KERN_ERR
3204                        "ipmi_si: Unable to create proc entry: %d\n",
3205                        rv);
3206                 goto out_err_stop_timer;
3207         }
3208
3209         printk(KERN_INFO "IPMI %s interface initialized\n",
3210                si_to_str[new_smi->si_type]);
3211
3212         return 0;
3213
3214  out_err_stop_timer:
3215         atomic_inc(&new_smi->stop_operation);
3216         wait_for_timer_and_thread(new_smi);
3217
3218  out_err:
3219         new_smi->interrupt_disabled = 1;
3220
3221         if (new_smi->intf) {
3222                 ipmi_unregister_smi(new_smi->intf);
3223                 new_smi->intf = NULL;
3224         }
3225
3226         if (new_smi->irq_cleanup) {
3227                 new_smi->irq_cleanup(new_smi);
3228                 new_smi->irq_cleanup = NULL;
3229         }
3230
3231         /*
3232          * Wait until we know that we are out of any interrupt
3233          * handlers might have been running before we freed the
3234          * interrupt.
3235          */
3236         synchronize_sched();
3237
3238         if (new_smi->si_sm) {
3239                 if (new_smi->handlers)
3240                         new_smi->handlers->cleanup(new_smi->si_sm);
3241                 kfree(new_smi->si_sm);
3242                 new_smi->si_sm = NULL;
3243         }
3244         if (new_smi->addr_source_cleanup) {
3245                 new_smi->addr_source_cleanup(new_smi);
3246                 new_smi->addr_source_cleanup = NULL;
3247         }
3248         if (new_smi->io_cleanup) {
3249                 new_smi->io_cleanup(new_smi);
3250                 new_smi->io_cleanup = NULL;
3251         }
3252
3253         if (new_smi->dev_registered) {
3254                 platform_device_unregister(new_smi->pdev);
3255                 new_smi->dev_registered = 0;
3256         }
3257
3258         return rv;
3259 }
3260
3261 static __devinit int init_ipmi_si(void)
3262 {
3263         int  i;
3264         char *str;
3265         int  rv;
3266         struct smi_info *e;
3267
3268         if (initialized)
3269                 return 0;
3270         initialized = 1;
3271
3272         /* Register the device drivers. */
3273         rv = driver_register(&ipmi_driver.driver);
3274         if (rv) {
3275                 printk(KERN_ERR
3276                        "init_ipmi_si: Unable to register driver: %d\n",
3277                        rv);
3278                 return rv;
3279         }
3280
3281
3282         /* Parse out the si_type string into its components. */
3283         str = si_type_str;
3284         if (*str != '\0') {
3285                 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3286                         si_type[i] = str;
3287                         str = strchr(str, ',');
3288                         if (str) {
3289                                 *str = '\0';
3290                                 str++;
3291                         } else {
3292                                 break;
3293                         }
3294                 }
3295         }
3296
3297         printk(KERN_INFO "IPMI System Interface driver.\n");
3298
3299         hardcode_find_bmc();
3300
3301 #ifdef CONFIG_DMI
3302         dmi_find_bmc();
3303 #endif
3304
3305 #ifdef CONFIG_ACPI
3306         spmi_find_bmc();
3307 #endif
3308 #ifdef CONFIG_ACPI
3309         pnp_register_driver(&ipmi_pnp_driver);
3310 #endif
3311
3312 #ifdef CONFIG_PCI
3313         rv = pci_register_driver(&ipmi_pci_driver);
3314         if (rv)
3315                 printk(KERN_ERR
3316                        "init_ipmi_si: Unable to register PCI driver: %d\n",
3317                        rv);
3318 #endif
3319
3320 #ifdef CONFIG_PPC_OF
3321         of_register_platform_driver(&ipmi_of_platform_driver);
3322 #endif
3323
3324         mutex_lock(&smi_infos_lock);
3325         list_for_each_entry(e, &smi_infos, link) {
3326                 if (!e->si_sm)
3327                         try_smi_init(e);
3328         }
3329         mutex_unlock(&smi_infos_lock);
3330
3331         if (si_trydefaults) {
3332                 mutex_lock(&smi_infos_lock);
3333                 if (list_empty(&smi_infos)) {
3334                         /* No BMC was found, try defaults. */
3335                         mutex_unlock(&smi_infos_lock);
3336                         default_find_bmc();
3337                 } else
3338                         mutex_unlock(&smi_infos_lock);
3339         }
3340
3341         mutex_lock(&smi_infos_lock);
3342         if (unload_when_empty && list_empty(&smi_infos)) {
3343                 mutex_unlock(&smi_infos_lock);
3344 #ifdef CONFIG_PCI
3345                 pci_unregister_driver(&ipmi_pci_driver);
3346 #endif
3347
3348 #ifdef CONFIG_PPC_OF
3349                 of_unregister_platform_driver(&ipmi_of_platform_driver);
3350 #endif
3351                 driver_unregister(&ipmi_driver.driver);
3352                 printk(KERN_WARNING
3353                        "ipmi_si: Unable to find any System Interface(s)\n");
3354                 return -ENODEV;
3355         } else {
3356                 mutex_unlock(&smi_infos_lock);
3357                 return 0;
3358         }
3359 }
3360 module_init(init_ipmi_si);
3361
3362 static void cleanup_one_si(struct smi_info *to_clean)
3363 {
3364         int           rv = 0;
3365         unsigned long flags;
3366
3367         if (!to_clean)
3368                 return;
3369
3370         list_del(&to_clean->link);
3371
3372         /* Tell the driver that we are shutting down. */
3373         atomic_inc(&to_clean->stop_operation);
3374
3375         /*
3376          * Make sure the timer and thread are stopped and will not run
3377          * again.
3378          */
3379         wait_for_timer_and_thread(to_clean);
3380
3381         /*
3382          * Timeouts are stopped, now make sure the interrupts are off
3383          * for the device.  A little tricky with locks to make sure
3384          * there are no races.
3385          */
3386         spin_lock_irqsave(&to_clean->si_lock, flags);
3387         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3388                 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3389                 poll(to_clean);
3390                 schedule_timeout_uninterruptible(1);
3391                 spin_lock_irqsave(&to_clean->si_lock, flags);
3392         }
3393         disable_si_irq(to_clean);
3394         spin_unlock_irqrestore(&to_clean->si_lock, flags);
3395         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3396                 poll(to_clean);
3397                 schedule_timeout_uninterruptible(1);
3398         }
3399
3400         /* Clean up interrupts and make sure that everything is done. */
3401         if (to_clean->irq_cleanup)
3402                 to_clean->irq_cleanup(to_clean);
3403         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3404                 poll(to_clean);
3405                 schedule_timeout_uninterruptible(1);
3406         }
3407
3408         if (to_clean->intf)
3409                 rv = ipmi_unregister_smi(to_clean->intf);
3410
3411         if (rv) {
3412                 printk(KERN_ERR
3413                        "ipmi_si: Unable to unregister device: errno=%d\n",
3414                        rv);
3415         }
3416
3417         if (to_clean->handlers)
3418                 to_clean->handlers->cleanup(to_clean->si_sm);
3419
3420         kfree(to_clean->si_sm);
3421
3422         if (to_clean->addr_source_cleanup)
3423                 to_clean->addr_source_cleanup(to_clean);
3424         if (to_clean->io_cleanup)
3425                 to_clean->io_cleanup(to_clean);
3426
3427         if (to_clean->dev_registered)
3428                 platform_device_unregister(to_clean->pdev);
3429
3430         kfree(to_clean);
3431 }
3432
3433 static __exit void cleanup_ipmi_si(void)
3434 {
3435         struct smi_info *e, *tmp_e;
3436
3437         if (!initialized)
3438                 return;
3439
3440 #ifdef CONFIG_PCI
3441         pci_unregister_driver(&ipmi_pci_driver);
3442 #endif
3443 #ifdef CONFIG_ACPI
3444         pnp_unregister_driver(&ipmi_pnp_driver);
3445 #endif
3446
3447 #ifdef CONFIG_PPC_OF
3448         of_unregister_platform_driver(&ipmi_of_platform_driver);
3449 #endif
3450
3451         mutex_lock(&smi_infos_lock);
3452         list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3453                 cleanup_one_si(e);
3454         mutex_unlock(&smi_infos_lock);
3455
3456         driver_unregister(&ipmi_driver.driver);
3457 }
3458 module_exit(cleanup_ipmi_si);
3459
3460 MODULE_LICENSE("GPL");
3461 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3462 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3463                    " system interfaces.");