Merge branch 'kconfig-text' into release
[firefly-linux-kernel-4.4.55.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/init.h>
65 #include <linux/dmi.h>
66 #include <linux/string.h>
67 #include <linux/ctype.h>
68 #include <linux/pnp.h>
69
70 #ifdef CONFIG_PPC_OF
71 #include <linux/of_device.h>
72 #include <linux/of_platform.h>
73 #endif
74
75 #define PFX "ipmi_si: "
76
77 /* Measure times between events in the driver. */
78 #undef DEBUG_TIMING
79
80 /* Call every 10 ms. */
81 #define SI_TIMEOUT_TIME_USEC    10000
82 #define SI_USEC_PER_JIFFY       (1000000/HZ)
83 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
84 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
85                                       short timeout */
86
87 enum si_intf_state {
88         SI_NORMAL,
89         SI_GETTING_FLAGS,
90         SI_GETTING_EVENTS,
91         SI_CLEARING_FLAGS,
92         SI_CLEARING_FLAGS_THEN_SET_IRQ,
93         SI_GETTING_MESSAGES,
94         SI_ENABLE_INTERRUPTS1,
95         SI_ENABLE_INTERRUPTS2,
96         SI_DISABLE_INTERRUPTS1,
97         SI_DISABLE_INTERRUPTS2
98         /* FIXME - add watchdog stuff. */
99 };
100
101 /* Some BT-specific defines we need here. */
102 #define IPMI_BT_INTMASK_REG             2
103 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
104 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
105
106 enum si_type {
107     SI_KCS, SI_SMIC, SI_BT
108 };
109 static char *si_to_str[] = { "kcs", "smic", "bt" };
110
111 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
112                                         "ACPI", "SMBIOS", "PCI",
113                                         "device-tree", "default" };
114
115 #define DEVICE_NAME "ipmi_si"
116
117 static struct platform_driver ipmi_driver = {
118         .driver = {
119                 .name = DEVICE_NAME,
120                 .bus = &platform_bus_type
121         }
122 };
123
124
125 /*
126  * Indexes into stats[] in smi_info below.
127  */
128 enum si_stat_indexes {
129         /*
130          * Number of times the driver requested a timer while an operation
131          * was in progress.
132          */
133         SI_STAT_short_timeouts = 0,
134
135         /*
136          * Number of times the driver requested a timer while nothing was in
137          * progress.
138          */
139         SI_STAT_long_timeouts,
140
141         /* Number of times the interface was idle while being polled. */
142         SI_STAT_idles,
143
144         /* Number of interrupts the driver handled. */
145         SI_STAT_interrupts,
146
147         /* Number of time the driver got an ATTN from the hardware. */
148         SI_STAT_attentions,
149
150         /* Number of times the driver requested flags from the hardware. */
151         SI_STAT_flag_fetches,
152
153         /* Number of times the hardware didn't follow the state machine. */
154         SI_STAT_hosed_count,
155
156         /* Number of completed messages. */
157         SI_STAT_complete_transactions,
158
159         /* Number of IPMI events received from the hardware. */
160         SI_STAT_events,
161
162         /* Number of watchdog pretimeouts. */
163         SI_STAT_watchdog_pretimeouts,
164
165         /* Number of asyncronous messages received. */
166         SI_STAT_incoming_messages,
167
168
169         /* This *must* remain last, add new values above this. */
170         SI_NUM_STATS
171 };
172
173 struct smi_info {
174         int                    intf_num;
175         ipmi_smi_t             intf;
176         struct si_sm_data      *si_sm;
177         struct si_sm_handlers  *handlers;
178         enum si_type           si_type;
179         spinlock_t             si_lock;
180         spinlock_t             msg_lock;
181         struct list_head       xmit_msgs;
182         struct list_head       hp_xmit_msgs;
183         struct ipmi_smi_msg    *curr_msg;
184         enum si_intf_state     si_state;
185
186         /*
187          * Used to handle the various types of I/O that can occur with
188          * IPMI
189          */
190         struct si_sm_io io;
191         int (*io_setup)(struct smi_info *info);
192         void (*io_cleanup)(struct smi_info *info);
193         int (*irq_setup)(struct smi_info *info);
194         void (*irq_cleanup)(struct smi_info *info);
195         unsigned int io_size;
196         enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
197         void (*addr_source_cleanup)(struct smi_info *info);
198         void *addr_source_data;
199
200         /*
201          * Per-OEM handler, called from handle_flags().  Returns 1
202          * when handle_flags() needs to be re-run or 0 indicating it
203          * set si_state itself.
204          */
205         int (*oem_data_avail_handler)(struct smi_info *smi_info);
206
207         /*
208          * Flags from the last GET_MSG_FLAGS command, used when an ATTN
209          * is set to hold the flags until we are done handling everything
210          * from the flags.
211          */
212 #define RECEIVE_MSG_AVAIL       0x01
213 #define EVENT_MSG_BUFFER_FULL   0x02
214 #define WDT_PRE_TIMEOUT_INT     0x08
215 #define OEM0_DATA_AVAIL     0x20
216 #define OEM1_DATA_AVAIL     0x40
217 #define OEM2_DATA_AVAIL     0x80
218 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
219                              OEM1_DATA_AVAIL | \
220                              OEM2_DATA_AVAIL)
221         unsigned char       msg_flags;
222
223         /* Does the BMC have an event buffer? */
224         char                has_event_buffer;
225
226         /*
227          * If set to true, this will request events the next time the
228          * state machine is idle.
229          */
230         atomic_t            req_events;
231
232         /*
233          * If true, run the state machine to completion on every send
234          * call.  Generally used after a panic to make sure stuff goes
235          * out.
236          */
237         int                 run_to_completion;
238
239         /* The I/O port of an SI interface. */
240         int                 port;
241
242         /*
243          * The space between start addresses of the two ports.  For
244          * instance, if the first port is 0xca2 and the spacing is 4, then
245          * the second port is 0xca6.
246          */
247         unsigned int        spacing;
248
249         /* zero if no irq; */
250         int                 irq;
251
252         /* The timer for this si. */
253         struct timer_list   si_timer;
254
255         /* The time (in jiffies) the last timeout occurred at. */
256         unsigned long       last_timeout_jiffies;
257
258         /* Used to gracefully stop the timer without race conditions. */
259         atomic_t            stop_operation;
260
261         /*
262          * The driver will disable interrupts when it gets into a
263          * situation where it cannot handle messages due to lack of
264          * memory.  Once that situation clears up, it will re-enable
265          * interrupts.
266          */
267         int interrupt_disabled;
268
269         /* From the get device id response... */
270         struct ipmi_device_id device_id;
271
272         /* Driver model stuff. */
273         struct device *dev;
274         struct platform_device *pdev;
275
276         /*
277          * True if we allocated the device, false if it came from
278          * someplace else (like PCI).
279          */
280         int dev_registered;
281
282         /* Slave address, could be reported from DMI. */
283         unsigned char slave_addr;
284
285         /* Counters and things for the proc filesystem. */
286         atomic_t stats[SI_NUM_STATS];
287
288         struct task_struct *thread;
289
290         struct list_head link;
291         union ipmi_smi_info_union addr_info;
292 };
293
294 #define smi_inc_stat(smi, stat) \
295         atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
296 #define smi_get_stat(smi, stat) \
297         ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
298
299 #define SI_MAX_PARMS 4
300
301 static int force_kipmid[SI_MAX_PARMS];
302 static int num_force_kipmid;
303 #ifdef CONFIG_PCI
304 static int pci_registered;
305 #endif
306 #ifdef CONFIG_ACPI
307 static int pnp_registered;
308 #endif
309 #ifdef CONFIG_PPC_OF
310 static int of_registered;
311 #endif
312
313 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
314 static int num_max_busy_us;
315
316 static int unload_when_empty = 1;
317
318 static int add_smi(struct smi_info *smi);
319 static int try_smi_init(struct smi_info *smi);
320 static void cleanup_one_si(struct smi_info *to_clean);
321
322 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
323 static int register_xaction_notifier(struct notifier_block *nb)
324 {
325         return atomic_notifier_chain_register(&xaction_notifier_list, nb);
326 }
327
328 static void deliver_recv_msg(struct smi_info *smi_info,
329                              struct ipmi_smi_msg *msg)
330 {
331         /* Deliver the message to the upper layer with the lock
332            released. */
333
334         if (smi_info->run_to_completion) {
335                 ipmi_smi_msg_received(smi_info->intf, msg);
336         } else {
337                 spin_unlock(&(smi_info->si_lock));
338                 ipmi_smi_msg_received(smi_info->intf, msg);
339                 spin_lock(&(smi_info->si_lock));
340         }
341 }
342
343 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
344 {
345         struct ipmi_smi_msg *msg = smi_info->curr_msg;
346
347         if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
348                 cCode = IPMI_ERR_UNSPECIFIED;
349         /* else use it as is */
350
351         /* Make it a reponse */
352         msg->rsp[0] = msg->data[0] | 4;
353         msg->rsp[1] = msg->data[1];
354         msg->rsp[2] = cCode;
355         msg->rsp_size = 3;
356
357         smi_info->curr_msg = NULL;
358         deliver_recv_msg(smi_info, msg);
359 }
360
361 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
362 {
363         int              rv;
364         struct list_head *entry = NULL;
365 #ifdef DEBUG_TIMING
366         struct timeval t;
367 #endif
368
369         /*
370          * No need to save flags, we aleady have interrupts off and we
371          * already hold the SMI lock.
372          */
373         if (!smi_info->run_to_completion)
374                 spin_lock(&(smi_info->msg_lock));
375
376         /* Pick the high priority queue first. */
377         if (!list_empty(&(smi_info->hp_xmit_msgs))) {
378                 entry = smi_info->hp_xmit_msgs.next;
379         } else if (!list_empty(&(smi_info->xmit_msgs))) {
380                 entry = smi_info->xmit_msgs.next;
381         }
382
383         if (!entry) {
384                 smi_info->curr_msg = NULL;
385                 rv = SI_SM_IDLE;
386         } else {
387                 int err;
388
389                 list_del(entry);
390                 smi_info->curr_msg = list_entry(entry,
391                                                 struct ipmi_smi_msg,
392                                                 link);
393 #ifdef DEBUG_TIMING
394                 do_gettimeofday(&t);
395                 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
396 #endif
397                 err = atomic_notifier_call_chain(&xaction_notifier_list,
398                                 0, smi_info);
399                 if (err & NOTIFY_STOP_MASK) {
400                         rv = SI_SM_CALL_WITHOUT_DELAY;
401                         goto out;
402                 }
403                 err = smi_info->handlers->start_transaction(
404                         smi_info->si_sm,
405                         smi_info->curr_msg->data,
406                         smi_info->curr_msg->data_size);
407                 if (err)
408                         return_hosed_msg(smi_info, err);
409
410                 rv = SI_SM_CALL_WITHOUT_DELAY;
411         }
412  out:
413         if (!smi_info->run_to_completion)
414                 spin_unlock(&(smi_info->msg_lock));
415
416         return rv;
417 }
418
419 static void start_enable_irq(struct smi_info *smi_info)
420 {
421         unsigned char msg[2];
422
423         /*
424          * If we are enabling interrupts, we have to tell the
425          * BMC to use them.
426          */
427         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
428         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
429
430         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
431         smi_info->si_state = SI_ENABLE_INTERRUPTS1;
432 }
433
434 static void start_disable_irq(struct smi_info *smi_info)
435 {
436         unsigned char msg[2];
437
438         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
439         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
440
441         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
442         smi_info->si_state = SI_DISABLE_INTERRUPTS1;
443 }
444
445 static void start_clear_flags(struct smi_info *smi_info)
446 {
447         unsigned char msg[3];
448
449         /* Make sure the watchdog pre-timeout flag is not set at startup. */
450         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
451         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
452         msg[2] = WDT_PRE_TIMEOUT_INT;
453
454         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
455         smi_info->si_state = SI_CLEARING_FLAGS;
456 }
457
458 /*
459  * When we have a situtaion where we run out of memory and cannot
460  * allocate messages, we just leave them in the BMC and run the system
461  * polled until we can allocate some memory.  Once we have some
462  * memory, we will re-enable the interrupt.
463  */
464 static inline void disable_si_irq(struct smi_info *smi_info)
465 {
466         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
467                 start_disable_irq(smi_info);
468                 smi_info->interrupt_disabled = 1;
469                 if (!atomic_read(&smi_info->stop_operation))
470                         mod_timer(&smi_info->si_timer,
471                                   jiffies + SI_TIMEOUT_JIFFIES);
472         }
473 }
474
475 static inline void enable_si_irq(struct smi_info *smi_info)
476 {
477         if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
478                 start_enable_irq(smi_info);
479                 smi_info->interrupt_disabled = 0;
480         }
481 }
482
483 static void handle_flags(struct smi_info *smi_info)
484 {
485  retry:
486         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
487                 /* Watchdog pre-timeout */
488                 smi_inc_stat(smi_info, watchdog_pretimeouts);
489
490                 start_clear_flags(smi_info);
491                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
492                 spin_unlock(&(smi_info->si_lock));
493                 ipmi_smi_watchdog_pretimeout(smi_info->intf);
494                 spin_lock(&(smi_info->si_lock));
495         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
496                 /* Messages available. */
497                 smi_info->curr_msg = ipmi_alloc_smi_msg();
498                 if (!smi_info->curr_msg) {
499                         disable_si_irq(smi_info);
500                         smi_info->si_state = SI_NORMAL;
501                         return;
502                 }
503                 enable_si_irq(smi_info);
504
505                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
506                 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
507                 smi_info->curr_msg->data_size = 2;
508
509                 smi_info->handlers->start_transaction(
510                         smi_info->si_sm,
511                         smi_info->curr_msg->data,
512                         smi_info->curr_msg->data_size);
513                 smi_info->si_state = SI_GETTING_MESSAGES;
514         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
515                 /* Events available. */
516                 smi_info->curr_msg = ipmi_alloc_smi_msg();
517                 if (!smi_info->curr_msg) {
518                         disable_si_irq(smi_info);
519                         smi_info->si_state = SI_NORMAL;
520                         return;
521                 }
522                 enable_si_irq(smi_info);
523
524                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
525                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
526                 smi_info->curr_msg->data_size = 2;
527
528                 smi_info->handlers->start_transaction(
529                         smi_info->si_sm,
530                         smi_info->curr_msg->data,
531                         smi_info->curr_msg->data_size);
532                 smi_info->si_state = SI_GETTING_EVENTS;
533         } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
534                    smi_info->oem_data_avail_handler) {
535                 if (smi_info->oem_data_avail_handler(smi_info))
536                         goto retry;
537         } else
538                 smi_info->si_state = SI_NORMAL;
539 }
540
541 static void handle_transaction_done(struct smi_info *smi_info)
542 {
543         struct ipmi_smi_msg *msg;
544 #ifdef DEBUG_TIMING
545         struct timeval t;
546
547         do_gettimeofday(&t);
548         printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
549 #endif
550         switch (smi_info->si_state) {
551         case SI_NORMAL:
552                 if (!smi_info->curr_msg)
553                         break;
554
555                 smi_info->curr_msg->rsp_size
556                         = smi_info->handlers->get_result(
557                                 smi_info->si_sm,
558                                 smi_info->curr_msg->rsp,
559                                 IPMI_MAX_MSG_LENGTH);
560
561                 /*
562                  * Do this here becase deliver_recv_msg() releases the
563                  * lock, and a new message can be put in during the
564                  * time the lock is released.
565                  */
566                 msg = smi_info->curr_msg;
567                 smi_info->curr_msg = NULL;
568                 deliver_recv_msg(smi_info, msg);
569                 break;
570
571         case SI_GETTING_FLAGS:
572         {
573                 unsigned char msg[4];
574                 unsigned int  len;
575
576                 /* We got the flags from the SMI, now handle them. */
577                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
578                 if (msg[2] != 0) {
579                         /* Error fetching flags, just give up for now. */
580                         smi_info->si_state = SI_NORMAL;
581                 } else if (len < 4) {
582                         /*
583                          * Hmm, no flags.  That's technically illegal, but
584                          * don't use uninitialized data.
585                          */
586                         smi_info->si_state = SI_NORMAL;
587                 } else {
588                         smi_info->msg_flags = msg[3];
589                         handle_flags(smi_info);
590                 }
591                 break;
592         }
593
594         case SI_CLEARING_FLAGS:
595         case SI_CLEARING_FLAGS_THEN_SET_IRQ:
596         {
597                 unsigned char msg[3];
598
599                 /* We cleared the flags. */
600                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
601                 if (msg[2] != 0) {
602                         /* Error clearing flags */
603                         dev_warn(smi_info->dev,
604                                  "Error clearing flags: %2.2x\n", msg[2]);
605                 }
606                 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
607                         start_enable_irq(smi_info);
608                 else
609                         smi_info->si_state = SI_NORMAL;
610                 break;
611         }
612
613         case SI_GETTING_EVENTS:
614         {
615                 smi_info->curr_msg->rsp_size
616                         = smi_info->handlers->get_result(
617                                 smi_info->si_sm,
618                                 smi_info->curr_msg->rsp,
619                                 IPMI_MAX_MSG_LENGTH);
620
621                 /*
622                  * Do this here becase deliver_recv_msg() releases the
623                  * lock, and a new message can be put in during the
624                  * time the lock is released.
625                  */
626                 msg = smi_info->curr_msg;
627                 smi_info->curr_msg = NULL;
628                 if (msg->rsp[2] != 0) {
629                         /* Error getting event, probably done. */
630                         msg->done(msg);
631
632                         /* Take off the event flag. */
633                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
634                         handle_flags(smi_info);
635                 } else {
636                         smi_inc_stat(smi_info, events);
637
638                         /*
639                          * Do this before we deliver the message
640                          * because delivering the message releases the
641                          * lock and something else can mess with the
642                          * state.
643                          */
644                         handle_flags(smi_info);
645
646                         deliver_recv_msg(smi_info, msg);
647                 }
648                 break;
649         }
650
651         case SI_GETTING_MESSAGES:
652         {
653                 smi_info->curr_msg->rsp_size
654                         = smi_info->handlers->get_result(
655                                 smi_info->si_sm,
656                                 smi_info->curr_msg->rsp,
657                                 IPMI_MAX_MSG_LENGTH);
658
659                 /*
660                  * Do this here becase deliver_recv_msg() releases the
661                  * lock, and a new message can be put in during the
662                  * time the lock is released.
663                  */
664                 msg = smi_info->curr_msg;
665                 smi_info->curr_msg = NULL;
666                 if (msg->rsp[2] != 0) {
667                         /* Error getting event, probably done. */
668                         msg->done(msg);
669
670                         /* Take off the msg flag. */
671                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
672                         handle_flags(smi_info);
673                 } else {
674                         smi_inc_stat(smi_info, incoming_messages);
675
676                         /*
677                          * Do this before we deliver the message
678                          * because delivering the message releases the
679                          * lock and something else can mess with the
680                          * state.
681                          */
682                         handle_flags(smi_info);
683
684                         deliver_recv_msg(smi_info, msg);
685                 }
686                 break;
687         }
688
689         case SI_ENABLE_INTERRUPTS1:
690         {
691                 unsigned char msg[4];
692
693                 /* We got the flags from the SMI, now handle them. */
694                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
695                 if (msg[2] != 0) {
696                         dev_warn(smi_info->dev, "Could not enable interrupts"
697                                  ", failed get, using polled mode.\n");
698                         smi_info->si_state = SI_NORMAL;
699                 } else {
700                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
701                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
702                         msg[2] = (msg[3] |
703                                   IPMI_BMC_RCV_MSG_INTR |
704                                   IPMI_BMC_EVT_MSG_INTR);
705                         smi_info->handlers->start_transaction(
706                                 smi_info->si_sm, msg, 3);
707                         smi_info->si_state = SI_ENABLE_INTERRUPTS2;
708                 }
709                 break;
710         }
711
712         case SI_ENABLE_INTERRUPTS2:
713         {
714                 unsigned char msg[4];
715
716                 /* We got the flags from the SMI, now handle them. */
717                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
718                 if (msg[2] != 0)
719                         dev_warn(smi_info->dev, "Could not enable interrupts"
720                                  ", failed set, using polled mode.\n");
721                 else
722                         smi_info->interrupt_disabled = 0;
723                 smi_info->si_state = SI_NORMAL;
724                 break;
725         }
726
727         case SI_DISABLE_INTERRUPTS1:
728         {
729                 unsigned char msg[4];
730
731                 /* We got the flags from the SMI, now handle them. */
732                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
733                 if (msg[2] != 0) {
734                         dev_warn(smi_info->dev, "Could not disable interrupts"
735                                  ", failed get.\n");
736                         smi_info->si_state = SI_NORMAL;
737                 } else {
738                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
739                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
740                         msg[2] = (msg[3] &
741                                   ~(IPMI_BMC_RCV_MSG_INTR |
742                                     IPMI_BMC_EVT_MSG_INTR));
743                         smi_info->handlers->start_transaction(
744                                 smi_info->si_sm, msg, 3);
745                         smi_info->si_state = SI_DISABLE_INTERRUPTS2;
746                 }
747                 break;
748         }
749
750         case SI_DISABLE_INTERRUPTS2:
751         {
752                 unsigned char msg[4];
753
754                 /* We got the flags from the SMI, now handle them. */
755                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
756                 if (msg[2] != 0) {
757                         dev_warn(smi_info->dev, "Could not disable interrupts"
758                                  ", failed set.\n");
759                 }
760                 smi_info->si_state = SI_NORMAL;
761                 break;
762         }
763         }
764 }
765
766 /*
767  * Called on timeouts and events.  Timeouts should pass the elapsed
768  * time, interrupts should pass in zero.  Must be called with
769  * si_lock held and interrupts disabled.
770  */
771 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
772                                            int time)
773 {
774         enum si_sm_result si_sm_result;
775
776  restart:
777         /*
778          * There used to be a loop here that waited a little while
779          * (around 25us) before giving up.  That turned out to be
780          * pointless, the minimum delays I was seeing were in the 300us
781          * range, which is far too long to wait in an interrupt.  So
782          * we just run until the state machine tells us something
783          * happened or it needs a delay.
784          */
785         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
786         time = 0;
787         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
788                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
789
790         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
791                 smi_inc_stat(smi_info, complete_transactions);
792
793                 handle_transaction_done(smi_info);
794                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
795         } else if (si_sm_result == SI_SM_HOSED) {
796                 smi_inc_stat(smi_info, hosed_count);
797
798                 /*
799                  * Do the before return_hosed_msg, because that
800                  * releases the lock.
801                  */
802                 smi_info->si_state = SI_NORMAL;
803                 if (smi_info->curr_msg != NULL) {
804                         /*
805                          * If we were handling a user message, format
806                          * a response to send to the upper layer to
807                          * tell it about the error.
808                          */
809                         return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
810                 }
811                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
812         }
813
814         /*
815          * We prefer handling attn over new messages.  But don't do
816          * this if there is not yet an upper layer to handle anything.
817          */
818         if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
819                 unsigned char msg[2];
820
821                 smi_inc_stat(smi_info, attentions);
822
823                 /*
824                  * Got a attn, send down a get message flags to see
825                  * what's causing it.  It would be better to handle
826                  * this in the upper layer, but due to the way
827                  * interrupts work with the SMI, that's not really
828                  * possible.
829                  */
830                 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
831                 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
832
833                 smi_info->handlers->start_transaction(
834                         smi_info->si_sm, msg, 2);
835                 smi_info->si_state = SI_GETTING_FLAGS;
836                 goto restart;
837         }
838
839         /* If we are currently idle, try to start the next message. */
840         if (si_sm_result == SI_SM_IDLE) {
841                 smi_inc_stat(smi_info, idles);
842
843                 si_sm_result = start_next_msg(smi_info);
844                 if (si_sm_result != SI_SM_IDLE)
845                         goto restart;
846         }
847
848         if ((si_sm_result == SI_SM_IDLE)
849             && (atomic_read(&smi_info->req_events))) {
850                 /*
851                  * We are idle and the upper layer requested that I fetch
852                  * events, so do so.
853                  */
854                 atomic_set(&smi_info->req_events, 0);
855
856                 smi_info->curr_msg = ipmi_alloc_smi_msg();
857                 if (!smi_info->curr_msg)
858                         goto out;
859
860                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
861                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
862                 smi_info->curr_msg->data_size = 2;
863
864                 smi_info->handlers->start_transaction(
865                         smi_info->si_sm,
866                         smi_info->curr_msg->data,
867                         smi_info->curr_msg->data_size);
868                 smi_info->si_state = SI_GETTING_EVENTS;
869                 goto restart;
870         }
871  out:
872         return si_sm_result;
873 }
874
875 static void sender(void                *send_info,
876                    struct ipmi_smi_msg *msg,
877                    int                 priority)
878 {
879         struct smi_info   *smi_info = send_info;
880         enum si_sm_result result;
881         unsigned long     flags;
882 #ifdef DEBUG_TIMING
883         struct timeval    t;
884 #endif
885
886         if (atomic_read(&smi_info->stop_operation)) {
887                 msg->rsp[0] = msg->data[0] | 4;
888                 msg->rsp[1] = msg->data[1];
889                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
890                 msg->rsp_size = 3;
891                 deliver_recv_msg(smi_info, msg);
892                 return;
893         }
894
895 #ifdef DEBUG_TIMING
896         do_gettimeofday(&t);
897         printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
898 #endif
899
900         mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
901
902         if (smi_info->thread)
903                 wake_up_process(smi_info->thread);
904
905         if (smi_info->run_to_completion) {
906                 /*
907                  * If we are running to completion, then throw it in
908                  * the list and run transactions until everything is
909                  * clear.  Priority doesn't matter here.
910                  */
911
912                 /*
913                  * Run to completion means we are single-threaded, no
914                  * need for locks.
915                  */
916                 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
917
918                 result = smi_event_handler(smi_info, 0);
919                 while (result != SI_SM_IDLE) {
920                         udelay(SI_SHORT_TIMEOUT_USEC);
921                         result = smi_event_handler(smi_info,
922                                                    SI_SHORT_TIMEOUT_USEC);
923                 }
924                 return;
925         }
926
927         spin_lock_irqsave(&smi_info->msg_lock, flags);
928         if (priority > 0)
929                 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
930         else
931                 list_add_tail(&msg->link, &smi_info->xmit_msgs);
932         spin_unlock_irqrestore(&smi_info->msg_lock, flags);
933
934         spin_lock_irqsave(&smi_info->si_lock, flags);
935         if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
936                 start_next_msg(smi_info);
937         spin_unlock_irqrestore(&smi_info->si_lock, flags);
938 }
939
940 static void set_run_to_completion(void *send_info, int i_run_to_completion)
941 {
942         struct smi_info   *smi_info = send_info;
943         enum si_sm_result result;
944
945         smi_info->run_to_completion = i_run_to_completion;
946         if (i_run_to_completion) {
947                 result = smi_event_handler(smi_info, 0);
948                 while (result != SI_SM_IDLE) {
949                         udelay(SI_SHORT_TIMEOUT_USEC);
950                         result = smi_event_handler(smi_info,
951                                                    SI_SHORT_TIMEOUT_USEC);
952                 }
953         }
954 }
955
956 /*
957  * Use -1 in the nsec value of the busy waiting timespec to tell that
958  * we are spinning in kipmid looking for something and not delaying
959  * between checks
960  */
961 static inline void ipmi_si_set_not_busy(struct timespec *ts)
962 {
963         ts->tv_nsec = -1;
964 }
965 static inline int ipmi_si_is_busy(struct timespec *ts)
966 {
967         return ts->tv_nsec != -1;
968 }
969
970 static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
971                                  const struct smi_info *smi_info,
972                                  struct timespec *busy_until)
973 {
974         unsigned int max_busy_us = 0;
975
976         if (smi_info->intf_num < num_max_busy_us)
977                 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
978         if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
979                 ipmi_si_set_not_busy(busy_until);
980         else if (!ipmi_si_is_busy(busy_until)) {
981                 getnstimeofday(busy_until);
982                 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
983         } else {
984                 struct timespec now;
985                 getnstimeofday(&now);
986                 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
987                         ipmi_si_set_not_busy(busy_until);
988                         return 0;
989                 }
990         }
991         return 1;
992 }
993
994
995 /*
996  * A busy-waiting loop for speeding up IPMI operation.
997  *
998  * Lousy hardware makes this hard.  This is only enabled for systems
999  * that are not BT and do not have interrupts.  It starts spinning
1000  * when an operation is complete or until max_busy tells it to stop
1001  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1002  * Documentation/IPMI.txt for details.
1003  */
1004 static int ipmi_thread(void *data)
1005 {
1006         struct smi_info *smi_info = data;
1007         unsigned long flags;
1008         enum si_sm_result smi_result;
1009         struct timespec busy_until;
1010
1011         ipmi_si_set_not_busy(&busy_until);
1012         set_user_nice(current, 19);
1013         while (!kthread_should_stop()) {
1014                 int busy_wait;
1015
1016                 spin_lock_irqsave(&(smi_info->si_lock), flags);
1017                 smi_result = smi_event_handler(smi_info, 0);
1018                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1019                 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1020                                                   &busy_until);
1021                 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1022                         ; /* do nothing */
1023                 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1024                         schedule();
1025                 else if (smi_result == SI_SM_IDLE)
1026                         schedule_timeout_interruptible(100);
1027                 else
1028                         schedule_timeout_interruptible(1);
1029         }
1030         return 0;
1031 }
1032
1033
1034 static void poll(void *send_info)
1035 {
1036         struct smi_info *smi_info = send_info;
1037         unsigned long flags;
1038
1039         /*
1040          * Make sure there is some delay in the poll loop so we can
1041          * drive time forward and timeout things.
1042          */
1043         udelay(10);
1044         spin_lock_irqsave(&smi_info->si_lock, flags);
1045         smi_event_handler(smi_info, 10);
1046         spin_unlock_irqrestore(&smi_info->si_lock, flags);
1047 }
1048
1049 static void request_events(void *send_info)
1050 {
1051         struct smi_info *smi_info = send_info;
1052
1053         if (atomic_read(&smi_info->stop_operation) ||
1054                                 !smi_info->has_event_buffer)
1055                 return;
1056
1057         atomic_set(&smi_info->req_events, 1);
1058 }
1059
1060 static int initialized;
1061
1062 static void smi_timeout(unsigned long data)
1063 {
1064         struct smi_info   *smi_info = (struct smi_info *) data;
1065         enum si_sm_result smi_result;
1066         unsigned long     flags;
1067         unsigned long     jiffies_now;
1068         long              time_diff;
1069         long              timeout;
1070 #ifdef DEBUG_TIMING
1071         struct timeval    t;
1072 #endif
1073
1074         spin_lock_irqsave(&(smi_info->si_lock), flags);
1075 #ifdef DEBUG_TIMING
1076         do_gettimeofday(&t);
1077         printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1078 #endif
1079         jiffies_now = jiffies;
1080         time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1081                      * SI_USEC_PER_JIFFY);
1082         smi_result = smi_event_handler(smi_info, time_diff);
1083
1084         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1085
1086         smi_info->last_timeout_jiffies = jiffies_now;
1087
1088         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1089                 /* Running with interrupts, only do long timeouts. */
1090                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1091                 smi_inc_stat(smi_info, long_timeouts);
1092                 goto do_mod_timer;
1093         }
1094
1095         /*
1096          * If the state machine asks for a short delay, then shorten
1097          * the timer timeout.
1098          */
1099         if (smi_result == SI_SM_CALL_WITH_DELAY) {
1100                 smi_inc_stat(smi_info, short_timeouts);
1101                 timeout = jiffies + 1;
1102         } else {
1103                 smi_inc_stat(smi_info, long_timeouts);
1104                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1105         }
1106
1107  do_mod_timer:
1108         if (smi_result != SI_SM_IDLE)
1109                 mod_timer(&(smi_info->si_timer), timeout);
1110 }
1111
1112 static irqreturn_t si_irq_handler(int irq, void *data)
1113 {
1114         struct smi_info *smi_info = data;
1115         unsigned long   flags;
1116 #ifdef DEBUG_TIMING
1117         struct timeval  t;
1118 #endif
1119
1120         spin_lock_irqsave(&(smi_info->si_lock), flags);
1121
1122         smi_inc_stat(smi_info, interrupts);
1123
1124 #ifdef DEBUG_TIMING
1125         do_gettimeofday(&t);
1126         printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1127 #endif
1128         smi_event_handler(smi_info, 0);
1129         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1130         return IRQ_HANDLED;
1131 }
1132
1133 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1134 {
1135         struct smi_info *smi_info = data;
1136         /* We need to clear the IRQ flag for the BT interface. */
1137         smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1138                              IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1139                              | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1140         return si_irq_handler(irq, data);
1141 }
1142
1143 static int smi_start_processing(void       *send_info,
1144                                 ipmi_smi_t intf)
1145 {
1146         struct smi_info *new_smi = send_info;
1147         int             enable = 0;
1148
1149         new_smi->intf = intf;
1150
1151         /* Try to claim any interrupts. */
1152         if (new_smi->irq_setup)
1153                 new_smi->irq_setup(new_smi);
1154
1155         /* Set up the timer that drives the interface. */
1156         setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1157         new_smi->last_timeout_jiffies = jiffies;
1158         mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1159
1160         /*
1161          * Check if the user forcefully enabled the daemon.
1162          */
1163         if (new_smi->intf_num < num_force_kipmid)
1164                 enable = force_kipmid[new_smi->intf_num];
1165         /*
1166          * The BT interface is efficient enough to not need a thread,
1167          * and there is no need for a thread if we have interrupts.
1168          */
1169         else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1170                 enable = 1;
1171
1172         if (enable) {
1173                 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1174                                               "kipmi%d", new_smi->intf_num);
1175                 if (IS_ERR(new_smi->thread)) {
1176                         dev_notice(new_smi->dev, "Could not start"
1177                                    " kernel thread due to error %ld, only using"
1178                                    " timers to drive the interface\n",
1179                                    PTR_ERR(new_smi->thread));
1180                         new_smi->thread = NULL;
1181                 }
1182         }
1183
1184         return 0;
1185 }
1186
1187 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1188 {
1189         struct smi_info *smi = send_info;
1190
1191         data->addr_src = smi->addr_source;
1192         data->dev = smi->dev;
1193         data->addr_info = smi->addr_info;
1194         get_device(smi->dev);
1195
1196         return 0;
1197 }
1198
1199 static void set_maintenance_mode(void *send_info, int enable)
1200 {
1201         struct smi_info   *smi_info = send_info;
1202
1203         if (!enable)
1204                 atomic_set(&smi_info->req_events, 0);
1205 }
1206
1207 static struct ipmi_smi_handlers handlers = {
1208         .owner                  = THIS_MODULE,
1209         .start_processing       = smi_start_processing,
1210         .get_smi_info           = get_smi_info,
1211         .sender                 = sender,
1212         .request_events         = request_events,
1213         .set_maintenance_mode   = set_maintenance_mode,
1214         .set_run_to_completion  = set_run_to_completion,
1215         .poll                   = poll,
1216 };
1217
1218 /*
1219  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1220  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1221  */
1222
1223 static LIST_HEAD(smi_infos);
1224 static DEFINE_MUTEX(smi_infos_lock);
1225 static int smi_num; /* Used to sequence the SMIs */
1226
1227 #define DEFAULT_REGSPACING      1
1228 #define DEFAULT_REGSIZE         1
1229
1230 static int           si_trydefaults = 1;
1231 static char          *si_type[SI_MAX_PARMS];
1232 #define MAX_SI_TYPE_STR 30
1233 static char          si_type_str[MAX_SI_TYPE_STR];
1234 static unsigned long addrs[SI_MAX_PARMS];
1235 static unsigned int num_addrs;
1236 static unsigned int  ports[SI_MAX_PARMS];
1237 static unsigned int num_ports;
1238 static int           irqs[SI_MAX_PARMS];
1239 static unsigned int num_irqs;
1240 static int           regspacings[SI_MAX_PARMS];
1241 static unsigned int num_regspacings;
1242 static int           regsizes[SI_MAX_PARMS];
1243 static unsigned int num_regsizes;
1244 static int           regshifts[SI_MAX_PARMS];
1245 static unsigned int num_regshifts;
1246 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1247 static unsigned int num_slave_addrs;
1248
1249 #define IPMI_IO_ADDR_SPACE  0
1250 #define IPMI_MEM_ADDR_SPACE 1
1251 static char *addr_space_to_str[] = { "i/o", "mem" };
1252
1253 static int hotmod_handler(const char *val, struct kernel_param *kp);
1254
1255 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1256 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1257                  " Documentation/IPMI.txt in the kernel sources for the"
1258                  " gory details.");
1259
1260 module_param_named(trydefaults, si_trydefaults, bool, 0);
1261 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1262                  " default scan of the KCS and SMIC interface at the standard"
1263                  " address");
1264 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1265 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1266                  " interface separated by commas.  The types are 'kcs',"
1267                  " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1268                  " the first interface to kcs and the second to bt");
1269 module_param_array(addrs, ulong, &num_addrs, 0);
1270 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1271                  " addresses separated by commas.  Only use if an interface"
1272                  " is in memory.  Otherwise, set it to zero or leave"
1273                  " it blank.");
1274 module_param_array(ports, uint, &num_ports, 0);
1275 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1276                  " addresses separated by commas.  Only use if an interface"
1277                  " is a port.  Otherwise, set it to zero or leave"
1278                  " it blank.");
1279 module_param_array(irqs, int, &num_irqs, 0);
1280 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1281                  " addresses separated by commas.  Only use if an interface"
1282                  " has an interrupt.  Otherwise, set it to zero or leave"
1283                  " it blank.");
1284 module_param_array(regspacings, int, &num_regspacings, 0);
1285 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1286                  " and each successive register used by the interface.  For"
1287                  " instance, if the start address is 0xca2 and the spacing"
1288                  " is 2, then the second address is at 0xca4.  Defaults"
1289                  " to 1.");
1290 module_param_array(regsizes, int, &num_regsizes, 0);
1291 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1292                  " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1293                  " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1294                  " the 8-bit IPMI register has to be read from a larger"
1295                  " register.");
1296 module_param_array(regshifts, int, &num_regshifts, 0);
1297 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1298                  " IPMI register, in bits.  For instance, if the data"
1299                  " is read from a 32-bit word and the IPMI data is in"
1300                  " bit 8-15, then the shift would be 8");
1301 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1302 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1303                  " the controller.  Normally this is 0x20, but can be"
1304                  " overridden by this parm.  This is an array indexed"
1305                  " by interface number.");
1306 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1307 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1308                  " disabled(0).  Normally the IPMI driver auto-detects"
1309                  " this, but the value may be overridden by this parm.");
1310 module_param(unload_when_empty, int, 0);
1311 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1312                  " specified or found, default is 1.  Setting to 0"
1313                  " is useful for hot add of devices using hotmod.");
1314 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1315 MODULE_PARM_DESC(kipmid_max_busy_us,
1316                  "Max time (in microseconds) to busy-wait for IPMI data before"
1317                  " sleeping. 0 (default) means to wait forever. Set to 100-500"
1318                  " if kipmid is using up a lot of CPU time.");
1319
1320
1321 static void std_irq_cleanup(struct smi_info *info)
1322 {
1323         if (info->si_type == SI_BT)
1324                 /* Disable the interrupt in the BT interface. */
1325                 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1326         free_irq(info->irq, info);
1327 }
1328
1329 static int std_irq_setup(struct smi_info *info)
1330 {
1331         int rv;
1332
1333         if (!info->irq)
1334                 return 0;
1335
1336         if (info->si_type == SI_BT) {
1337                 rv = request_irq(info->irq,
1338                                  si_bt_irq_handler,
1339                                  IRQF_SHARED | IRQF_DISABLED,
1340                                  DEVICE_NAME,
1341                                  info);
1342                 if (!rv)
1343                         /* Enable the interrupt in the BT interface. */
1344                         info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1345                                          IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1346         } else
1347                 rv = request_irq(info->irq,
1348                                  si_irq_handler,
1349                                  IRQF_SHARED | IRQF_DISABLED,
1350                                  DEVICE_NAME,
1351                                  info);
1352         if (rv) {
1353                 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1354                          " running polled\n",
1355                          DEVICE_NAME, info->irq);
1356                 info->irq = 0;
1357         } else {
1358                 info->irq_cleanup = std_irq_cleanup;
1359                 dev_info(info->dev, "Using irq %d\n", info->irq);
1360         }
1361
1362         return rv;
1363 }
1364
1365 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1366 {
1367         unsigned int addr = io->addr_data;
1368
1369         return inb(addr + (offset * io->regspacing));
1370 }
1371
1372 static void port_outb(struct si_sm_io *io, unsigned int offset,
1373                       unsigned char b)
1374 {
1375         unsigned int addr = io->addr_data;
1376
1377         outb(b, addr + (offset * io->regspacing));
1378 }
1379
1380 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1381 {
1382         unsigned int addr = io->addr_data;
1383
1384         return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1385 }
1386
1387 static void port_outw(struct si_sm_io *io, unsigned int offset,
1388                       unsigned char b)
1389 {
1390         unsigned int addr = io->addr_data;
1391
1392         outw(b << io->regshift, addr + (offset * io->regspacing));
1393 }
1394
1395 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1396 {
1397         unsigned int addr = io->addr_data;
1398
1399         return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1400 }
1401
1402 static void port_outl(struct si_sm_io *io, unsigned int offset,
1403                       unsigned char b)
1404 {
1405         unsigned int addr = io->addr_data;
1406
1407         outl(b << io->regshift, addr+(offset * io->regspacing));
1408 }
1409
1410 static void port_cleanup(struct smi_info *info)
1411 {
1412         unsigned int addr = info->io.addr_data;
1413         int          idx;
1414
1415         if (addr) {
1416                 for (idx = 0; idx < info->io_size; idx++)
1417                         release_region(addr + idx * info->io.regspacing,
1418                                        info->io.regsize);
1419         }
1420 }
1421
1422 static int port_setup(struct smi_info *info)
1423 {
1424         unsigned int addr = info->io.addr_data;
1425         int          idx;
1426
1427         if (!addr)
1428                 return -ENODEV;
1429
1430         info->io_cleanup = port_cleanup;
1431
1432         /*
1433          * Figure out the actual inb/inw/inl/etc routine to use based
1434          * upon the register size.
1435          */
1436         switch (info->io.regsize) {
1437         case 1:
1438                 info->io.inputb = port_inb;
1439                 info->io.outputb = port_outb;
1440                 break;
1441         case 2:
1442                 info->io.inputb = port_inw;
1443                 info->io.outputb = port_outw;
1444                 break;
1445         case 4:
1446                 info->io.inputb = port_inl;
1447                 info->io.outputb = port_outl;
1448                 break;
1449         default:
1450                 dev_warn(info->dev, "Invalid register size: %d\n",
1451                          info->io.regsize);
1452                 return -EINVAL;
1453         }
1454
1455         /*
1456          * Some BIOSes reserve disjoint I/O regions in their ACPI
1457          * tables.  This causes problems when trying to register the
1458          * entire I/O region.  Therefore we must register each I/O
1459          * port separately.
1460          */
1461         for (idx = 0; idx < info->io_size; idx++) {
1462                 if (request_region(addr + idx * info->io.regspacing,
1463                                    info->io.regsize, DEVICE_NAME) == NULL) {
1464                         /* Undo allocations */
1465                         while (idx--) {
1466                                 release_region(addr + idx * info->io.regspacing,
1467                                                info->io.regsize);
1468                         }
1469                         return -EIO;
1470                 }
1471         }
1472         return 0;
1473 }
1474
1475 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1476 {
1477         return readb((io->addr)+(offset * io->regspacing));
1478 }
1479
1480 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1481                      unsigned char b)
1482 {
1483         writeb(b, (io->addr)+(offset * io->regspacing));
1484 }
1485
1486 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1487 {
1488         return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1489                 & 0xff;
1490 }
1491
1492 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1493                      unsigned char b)
1494 {
1495         writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1496 }
1497
1498 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1499 {
1500         return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1501                 & 0xff;
1502 }
1503
1504 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1505                      unsigned char b)
1506 {
1507         writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1508 }
1509
1510 #ifdef readq
1511 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1512 {
1513         return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1514                 & 0xff;
1515 }
1516
1517 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1518                      unsigned char b)
1519 {
1520         writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1521 }
1522 #endif
1523
1524 static void mem_cleanup(struct smi_info *info)
1525 {
1526         unsigned long addr = info->io.addr_data;
1527         int           mapsize;
1528
1529         if (info->io.addr) {
1530                 iounmap(info->io.addr);
1531
1532                 mapsize = ((info->io_size * info->io.regspacing)
1533                            - (info->io.regspacing - info->io.regsize));
1534
1535                 release_mem_region(addr, mapsize);
1536         }
1537 }
1538
1539 static int mem_setup(struct smi_info *info)
1540 {
1541         unsigned long addr = info->io.addr_data;
1542         int           mapsize;
1543
1544         if (!addr)
1545                 return -ENODEV;
1546
1547         info->io_cleanup = mem_cleanup;
1548
1549         /*
1550          * Figure out the actual readb/readw/readl/etc routine to use based
1551          * upon the register size.
1552          */
1553         switch (info->io.regsize) {
1554         case 1:
1555                 info->io.inputb = intf_mem_inb;
1556                 info->io.outputb = intf_mem_outb;
1557                 break;
1558         case 2:
1559                 info->io.inputb = intf_mem_inw;
1560                 info->io.outputb = intf_mem_outw;
1561                 break;
1562         case 4:
1563                 info->io.inputb = intf_mem_inl;
1564                 info->io.outputb = intf_mem_outl;
1565                 break;
1566 #ifdef readq
1567         case 8:
1568                 info->io.inputb = mem_inq;
1569                 info->io.outputb = mem_outq;
1570                 break;
1571 #endif
1572         default:
1573                 dev_warn(info->dev, "Invalid register size: %d\n",
1574                          info->io.regsize);
1575                 return -EINVAL;
1576         }
1577
1578         /*
1579          * Calculate the total amount of memory to claim.  This is an
1580          * unusual looking calculation, but it avoids claiming any
1581          * more memory than it has to.  It will claim everything
1582          * between the first address to the end of the last full
1583          * register.
1584          */
1585         mapsize = ((info->io_size * info->io.regspacing)
1586                    - (info->io.regspacing - info->io.regsize));
1587
1588         if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1589                 return -EIO;
1590
1591         info->io.addr = ioremap(addr, mapsize);
1592         if (info->io.addr == NULL) {
1593                 release_mem_region(addr, mapsize);
1594                 return -EIO;
1595         }
1596         return 0;
1597 }
1598
1599 /*
1600  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1601  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1602  * Options are:
1603  *   rsp=<regspacing>
1604  *   rsi=<regsize>
1605  *   rsh=<regshift>
1606  *   irq=<irq>
1607  *   ipmb=<ipmb addr>
1608  */
1609 enum hotmod_op { HM_ADD, HM_REMOVE };
1610 struct hotmod_vals {
1611         char *name;
1612         int  val;
1613 };
1614 static struct hotmod_vals hotmod_ops[] = {
1615         { "add",        HM_ADD },
1616         { "remove",     HM_REMOVE },
1617         { NULL }
1618 };
1619 static struct hotmod_vals hotmod_si[] = {
1620         { "kcs",        SI_KCS },
1621         { "smic",       SI_SMIC },
1622         { "bt",         SI_BT },
1623         { NULL }
1624 };
1625 static struct hotmod_vals hotmod_as[] = {
1626         { "mem",        IPMI_MEM_ADDR_SPACE },
1627         { "i/o",        IPMI_IO_ADDR_SPACE },
1628         { NULL }
1629 };
1630
1631 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1632 {
1633         char *s;
1634         int  i;
1635
1636         s = strchr(*curr, ',');
1637         if (!s) {
1638                 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1639                 return -EINVAL;
1640         }
1641         *s = '\0';
1642         s++;
1643         for (i = 0; hotmod_ops[i].name; i++) {
1644                 if (strcmp(*curr, v[i].name) == 0) {
1645                         *val = v[i].val;
1646                         *curr = s;
1647                         return 0;
1648                 }
1649         }
1650
1651         printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1652         return -EINVAL;
1653 }
1654
1655 static int check_hotmod_int_op(const char *curr, const char *option,
1656                                const char *name, int *val)
1657 {
1658         char *n;
1659
1660         if (strcmp(curr, name) == 0) {
1661                 if (!option) {
1662                         printk(KERN_WARNING PFX
1663                                "No option given for '%s'\n",
1664                                curr);
1665                         return -EINVAL;
1666                 }
1667                 *val = simple_strtoul(option, &n, 0);
1668                 if ((*n != '\0') || (*option == '\0')) {
1669                         printk(KERN_WARNING PFX
1670                                "Bad option given for '%s'\n",
1671                                curr);
1672                         return -EINVAL;
1673                 }
1674                 return 1;
1675         }
1676         return 0;
1677 }
1678
1679 static struct smi_info *smi_info_alloc(void)
1680 {
1681         struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1682
1683         if (info) {
1684                 spin_lock_init(&info->si_lock);
1685                 spin_lock_init(&info->msg_lock);
1686         }
1687         return info;
1688 }
1689
1690 static int hotmod_handler(const char *val, struct kernel_param *kp)
1691 {
1692         char *str = kstrdup(val, GFP_KERNEL);
1693         int  rv;
1694         char *next, *curr, *s, *n, *o;
1695         enum hotmod_op op;
1696         enum si_type si_type;
1697         int  addr_space;
1698         unsigned long addr;
1699         int regspacing;
1700         int regsize;
1701         int regshift;
1702         int irq;
1703         int ipmb;
1704         int ival;
1705         int len;
1706         struct smi_info *info;
1707
1708         if (!str)
1709                 return -ENOMEM;
1710
1711         /* Kill any trailing spaces, as we can get a "\n" from echo. */
1712         len = strlen(str);
1713         ival = len - 1;
1714         while ((ival >= 0) && isspace(str[ival])) {
1715                 str[ival] = '\0';
1716                 ival--;
1717         }
1718
1719         for (curr = str; curr; curr = next) {
1720                 regspacing = 1;
1721                 regsize = 1;
1722                 regshift = 0;
1723                 irq = 0;
1724                 ipmb = 0; /* Choose the default if not specified */
1725
1726                 next = strchr(curr, ':');
1727                 if (next) {
1728                         *next = '\0';
1729                         next++;
1730                 }
1731
1732                 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1733                 if (rv)
1734                         break;
1735                 op = ival;
1736
1737                 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1738                 if (rv)
1739                         break;
1740                 si_type = ival;
1741
1742                 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1743                 if (rv)
1744                         break;
1745
1746                 s = strchr(curr, ',');
1747                 if (s) {
1748                         *s = '\0';
1749                         s++;
1750                 }
1751                 addr = simple_strtoul(curr, &n, 0);
1752                 if ((*n != '\0') || (*curr == '\0')) {
1753                         printk(KERN_WARNING PFX "Invalid hotmod address"
1754                                " '%s'\n", curr);
1755                         break;
1756                 }
1757
1758                 while (s) {
1759                         curr = s;
1760                         s = strchr(curr, ',');
1761                         if (s) {
1762                                 *s = '\0';
1763                                 s++;
1764                         }
1765                         o = strchr(curr, '=');
1766                         if (o) {
1767                                 *o = '\0';
1768                                 o++;
1769                         }
1770                         rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1771                         if (rv < 0)
1772                                 goto out;
1773                         else if (rv)
1774                                 continue;
1775                         rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1776                         if (rv < 0)
1777                                 goto out;
1778                         else if (rv)
1779                                 continue;
1780                         rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1781                         if (rv < 0)
1782                                 goto out;
1783                         else if (rv)
1784                                 continue;
1785                         rv = check_hotmod_int_op(curr, o, "irq", &irq);
1786                         if (rv < 0)
1787                                 goto out;
1788                         else if (rv)
1789                                 continue;
1790                         rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1791                         if (rv < 0)
1792                                 goto out;
1793                         else if (rv)
1794                                 continue;
1795
1796                         rv = -EINVAL;
1797                         printk(KERN_WARNING PFX
1798                                "Invalid hotmod option '%s'\n",
1799                                curr);
1800                         goto out;
1801                 }
1802
1803                 if (op == HM_ADD) {
1804                         info = smi_info_alloc();
1805                         if (!info) {
1806                                 rv = -ENOMEM;
1807                                 goto out;
1808                         }
1809
1810                         info->addr_source = SI_HOTMOD;
1811                         info->si_type = si_type;
1812                         info->io.addr_data = addr;
1813                         info->io.addr_type = addr_space;
1814                         if (addr_space == IPMI_MEM_ADDR_SPACE)
1815                                 info->io_setup = mem_setup;
1816                         else
1817                                 info->io_setup = port_setup;
1818
1819                         info->io.addr = NULL;
1820                         info->io.regspacing = regspacing;
1821                         if (!info->io.regspacing)
1822                                 info->io.regspacing = DEFAULT_REGSPACING;
1823                         info->io.regsize = regsize;
1824                         if (!info->io.regsize)
1825                                 info->io.regsize = DEFAULT_REGSPACING;
1826                         info->io.regshift = regshift;
1827                         info->irq = irq;
1828                         if (info->irq)
1829                                 info->irq_setup = std_irq_setup;
1830                         info->slave_addr = ipmb;
1831
1832                         if (!add_smi(info)) {
1833                                 if (try_smi_init(info))
1834                                         cleanup_one_si(info);
1835                         } else {
1836                                 kfree(info);
1837                         }
1838                 } else {
1839                         /* remove */
1840                         struct smi_info *e, *tmp_e;
1841
1842                         mutex_lock(&smi_infos_lock);
1843                         list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1844                                 if (e->io.addr_type != addr_space)
1845                                         continue;
1846                                 if (e->si_type != si_type)
1847                                         continue;
1848                                 if (e->io.addr_data == addr)
1849                                         cleanup_one_si(e);
1850                         }
1851                         mutex_unlock(&smi_infos_lock);
1852                 }
1853         }
1854         rv = len;
1855  out:
1856         kfree(str);
1857         return rv;
1858 }
1859
1860 static void __devinit hardcode_find_bmc(void)
1861 {
1862         int             i;
1863         struct smi_info *info;
1864
1865         for (i = 0; i < SI_MAX_PARMS; i++) {
1866                 if (!ports[i] && !addrs[i])
1867                         continue;
1868
1869                 info = smi_info_alloc();
1870                 if (!info)
1871                         return;
1872
1873                 info->addr_source = SI_HARDCODED;
1874                 printk(KERN_INFO PFX "probing via hardcoded address\n");
1875
1876                 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1877                         info->si_type = SI_KCS;
1878                 } else if (strcmp(si_type[i], "smic") == 0) {
1879                         info->si_type = SI_SMIC;
1880                 } else if (strcmp(si_type[i], "bt") == 0) {
1881                         info->si_type = SI_BT;
1882                 } else {
1883                         printk(KERN_WARNING PFX "Interface type specified "
1884                                "for interface %d, was invalid: %s\n",
1885                                i, si_type[i]);
1886                         kfree(info);
1887                         continue;
1888                 }
1889
1890                 if (ports[i]) {
1891                         /* An I/O port */
1892                         info->io_setup = port_setup;
1893                         info->io.addr_data = ports[i];
1894                         info->io.addr_type = IPMI_IO_ADDR_SPACE;
1895                 } else if (addrs[i]) {
1896                         /* A memory port */
1897                         info->io_setup = mem_setup;
1898                         info->io.addr_data = addrs[i];
1899                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1900                 } else {
1901                         printk(KERN_WARNING PFX "Interface type specified "
1902                                "for interface %d, but port and address were "
1903                                "not set or set to zero.\n", i);
1904                         kfree(info);
1905                         continue;
1906                 }
1907
1908                 info->io.addr = NULL;
1909                 info->io.regspacing = regspacings[i];
1910                 if (!info->io.regspacing)
1911                         info->io.regspacing = DEFAULT_REGSPACING;
1912                 info->io.regsize = regsizes[i];
1913                 if (!info->io.regsize)
1914                         info->io.regsize = DEFAULT_REGSPACING;
1915                 info->io.regshift = regshifts[i];
1916                 info->irq = irqs[i];
1917                 if (info->irq)
1918                         info->irq_setup = std_irq_setup;
1919                 info->slave_addr = slave_addrs[i];
1920
1921                 if (!add_smi(info)) {
1922                         if (try_smi_init(info))
1923                                 cleanup_one_si(info);
1924                 } else {
1925                         kfree(info);
1926                 }
1927         }
1928 }
1929
1930 #ifdef CONFIG_ACPI
1931
1932 #include <linux/acpi.h>
1933
1934 /*
1935  * Once we get an ACPI failure, we don't try any more, because we go
1936  * through the tables sequentially.  Once we don't find a table, there
1937  * are no more.
1938  */
1939 static int acpi_failure;
1940
1941 /* For GPE-type interrupts. */
1942 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
1943         u32 gpe_number, void *context)
1944 {
1945         struct smi_info *smi_info = context;
1946         unsigned long   flags;
1947 #ifdef DEBUG_TIMING
1948         struct timeval t;
1949 #endif
1950
1951         spin_lock_irqsave(&(smi_info->si_lock), flags);
1952
1953         smi_inc_stat(smi_info, interrupts);
1954
1955 #ifdef DEBUG_TIMING
1956         do_gettimeofday(&t);
1957         printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1958 #endif
1959         smi_event_handler(smi_info, 0);
1960         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1961
1962         return ACPI_INTERRUPT_HANDLED;
1963 }
1964
1965 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1966 {
1967         if (!info->irq)
1968                 return;
1969
1970         acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1971 }
1972
1973 static int acpi_gpe_irq_setup(struct smi_info *info)
1974 {
1975         acpi_status status;
1976
1977         if (!info->irq)
1978                 return 0;
1979
1980         /* FIXME - is level triggered right? */
1981         status = acpi_install_gpe_handler(NULL,
1982                                           info->irq,
1983                                           ACPI_GPE_LEVEL_TRIGGERED,
1984                                           &ipmi_acpi_gpe,
1985                                           info);
1986         if (status != AE_OK) {
1987                 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
1988                          " running polled\n", DEVICE_NAME, info->irq);
1989                 info->irq = 0;
1990                 return -EINVAL;
1991         } else {
1992                 info->irq_cleanup = acpi_gpe_irq_cleanup;
1993                 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
1994                 return 0;
1995         }
1996 }
1997
1998 /*
1999  * Defined at
2000  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2001  */
2002 struct SPMITable {
2003         s8      Signature[4];
2004         u32     Length;
2005         u8      Revision;
2006         u8      Checksum;
2007         s8      OEMID[6];
2008         s8      OEMTableID[8];
2009         s8      OEMRevision[4];
2010         s8      CreatorID[4];
2011         s8      CreatorRevision[4];
2012         u8      InterfaceType;
2013         u8      IPMIlegacy;
2014         s16     SpecificationRevision;
2015
2016         /*
2017          * Bit 0 - SCI interrupt supported
2018          * Bit 1 - I/O APIC/SAPIC
2019          */
2020         u8      InterruptType;
2021
2022         /*
2023          * If bit 0 of InterruptType is set, then this is the SCI
2024          * interrupt in the GPEx_STS register.
2025          */
2026         u8      GPE;
2027
2028         s16     Reserved;
2029
2030         /*
2031          * If bit 1 of InterruptType is set, then this is the I/O
2032          * APIC/SAPIC interrupt.
2033          */
2034         u32     GlobalSystemInterrupt;
2035
2036         /* The actual register address. */
2037         struct acpi_generic_address addr;
2038
2039         u8      UID[4];
2040
2041         s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2042 };
2043
2044 static int __devinit try_init_spmi(struct SPMITable *spmi)
2045 {
2046         struct smi_info  *info;
2047
2048         if (spmi->IPMIlegacy != 1) {
2049                 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2050                 return -ENODEV;
2051         }
2052
2053         info = smi_info_alloc();
2054         if (!info) {
2055                 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2056                 return -ENOMEM;
2057         }
2058
2059         info->addr_source = SI_SPMI;
2060         printk(KERN_INFO PFX "probing via SPMI\n");
2061
2062         /* Figure out the interface type. */
2063         switch (spmi->InterfaceType) {
2064         case 1: /* KCS */
2065                 info->si_type = SI_KCS;
2066                 break;
2067         case 2: /* SMIC */
2068                 info->si_type = SI_SMIC;
2069                 break;
2070         case 3: /* BT */
2071                 info->si_type = SI_BT;
2072                 break;
2073         default:
2074                 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2075                        spmi->InterfaceType);
2076                 kfree(info);
2077                 return -EIO;
2078         }
2079
2080         if (spmi->InterruptType & 1) {
2081                 /* We've got a GPE interrupt. */
2082                 info->irq = spmi->GPE;
2083                 info->irq_setup = acpi_gpe_irq_setup;
2084         } else if (spmi->InterruptType & 2) {
2085                 /* We've got an APIC/SAPIC interrupt. */
2086                 info->irq = spmi->GlobalSystemInterrupt;
2087                 info->irq_setup = std_irq_setup;
2088         } else {
2089                 /* Use the default interrupt setting. */
2090                 info->irq = 0;
2091                 info->irq_setup = NULL;
2092         }
2093
2094         if (spmi->addr.bit_width) {
2095                 /* A (hopefully) properly formed register bit width. */
2096                 info->io.regspacing = spmi->addr.bit_width / 8;
2097         } else {
2098                 info->io.regspacing = DEFAULT_REGSPACING;
2099         }
2100         info->io.regsize = info->io.regspacing;
2101         info->io.regshift = spmi->addr.bit_offset;
2102
2103         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2104                 info->io_setup = mem_setup;
2105                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2106         } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2107                 info->io_setup = port_setup;
2108                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2109         } else {
2110                 kfree(info);
2111                 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2112                 return -EIO;
2113         }
2114         info->io.addr_data = spmi->addr.address;
2115
2116         pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2117                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2118                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2119                  info->irq);
2120
2121         if (add_smi(info))
2122                 kfree(info);
2123
2124         return 0;
2125 }
2126
2127 static void __devinit spmi_find_bmc(void)
2128 {
2129         acpi_status      status;
2130         struct SPMITable *spmi;
2131         int              i;
2132
2133         if (acpi_disabled)
2134                 return;
2135
2136         if (acpi_failure)
2137                 return;
2138
2139         for (i = 0; ; i++) {
2140                 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2141                                         (struct acpi_table_header **)&spmi);
2142                 if (status != AE_OK)
2143                         return;
2144
2145                 try_init_spmi(spmi);
2146         }
2147 }
2148
2149 static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
2150                                     const struct pnp_device_id *dev_id)
2151 {
2152         struct acpi_device *acpi_dev;
2153         struct smi_info *info;
2154         struct resource *res, *res_second;
2155         acpi_handle handle;
2156         acpi_status status;
2157         unsigned long long tmp;
2158
2159         acpi_dev = pnp_acpi_device(dev);
2160         if (!acpi_dev)
2161                 return -ENODEV;
2162
2163         info = smi_info_alloc();
2164         if (!info)
2165                 return -ENOMEM;
2166
2167         info->addr_source = SI_ACPI;
2168         printk(KERN_INFO PFX "probing via ACPI\n");
2169
2170         handle = acpi_dev->handle;
2171         info->addr_info.acpi_info.acpi_handle = handle;
2172
2173         /* _IFT tells us the interface type: KCS, BT, etc */
2174         status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2175         if (ACPI_FAILURE(status))
2176                 goto err_free;
2177
2178         switch (tmp) {
2179         case 1:
2180                 info->si_type = SI_KCS;
2181                 break;
2182         case 2:
2183                 info->si_type = SI_SMIC;
2184                 break;
2185         case 3:
2186                 info->si_type = SI_BT;
2187                 break;
2188         default:
2189                 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2190                 goto err_free;
2191         }
2192
2193         res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2194         if (res) {
2195                 info->io_setup = port_setup;
2196                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2197         } else {
2198                 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2199                 if (res) {
2200                         info->io_setup = mem_setup;
2201                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2202                 }
2203         }
2204         if (!res) {
2205                 dev_err(&dev->dev, "no I/O or memory address\n");
2206                 goto err_free;
2207         }
2208         info->io.addr_data = res->start;
2209
2210         info->io.regspacing = DEFAULT_REGSPACING;
2211         res_second = pnp_get_resource(dev,
2212                                (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2213                                         IORESOURCE_IO : IORESOURCE_MEM,
2214                                1);
2215         if (res_second) {
2216                 if (res_second->start > info->io.addr_data)
2217                         info->io.regspacing = res_second->start - info->io.addr_data;
2218         }
2219         info->io.regsize = DEFAULT_REGSPACING;
2220         info->io.regshift = 0;
2221
2222         /* If _GPE exists, use it; otherwise use standard interrupts */
2223         status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2224         if (ACPI_SUCCESS(status)) {
2225                 info->irq = tmp;
2226                 info->irq_setup = acpi_gpe_irq_setup;
2227         } else if (pnp_irq_valid(dev, 0)) {
2228                 info->irq = pnp_irq(dev, 0);
2229                 info->irq_setup = std_irq_setup;
2230         }
2231
2232         info->dev = &dev->dev;
2233         pnp_set_drvdata(dev, info);
2234
2235         dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2236                  res, info->io.regsize, info->io.regspacing,
2237                  info->irq);
2238
2239         if (add_smi(info))
2240                 goto err_free;
2241
2242         return 0;
2243
2244 err_free:
2245         kfree(info);
2246         return -EINVAL;
2247 }
2248
2249 static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
2250 {
2251         struct smi_info *info = pnp_get_drvdata(dev);
2252
2253         cleanup_one_si(info);
2254 }
2255
2256 static const struct pnp_device_id pnp_dev_table[] = {
2257         {"IPI0001", 0},
2258         {"", 0},
2259 };
2260
2261 static struct pnp_driver ipmi_pnp_driver = {
2262         .name           = DEVICE_NAME,
2263         .probe          = ipmi_pnp_probe,
2264         .remove         = __devexit_p(ipmi_pnp_remove),
2265         .id_table       = pnp_dev_table,
2266 };
2267 #endif
2268
2269 #ifdef CONFIG_DMI
2270 struct dmi_ipmi_data {
2271         u8              type;
2272         u8              addr_space;
2273         unsigned long   base_addr;
2274         u8              irq;
2275         u8              offset;
2276         u8              slave_addr;
2277 };
2278
2279 static int __devinit decode_dmi(const struct dmi_header *dm,
2280                                 struct dmi_ipmi_data *dmi)
2281 {
2282         const u8        *data = (const u8 *)dm;
2283         unsigned long   base_addr;
2284         u8              reg_spacing;
2285         u8              len = dm->length;
2286
2287         dmi->type = data[4];
2288
2289         memcpy(&base_addr, data+8, sizeof(unsigned long));
2290         if (len >= 0x11) {
2291                 if (base_addr & 1) {
2292                         /* I/O */
2293                         base_addr &= 0xFFFE;
2294                         dmi->addr_space = IPMI_IO_ADDR_SPACE;
2295                 } else
2296                         /* Memory */
2297                         dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2298
2299                 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2300                    is odd. */
2301                 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2302
2303                 dmi->irq = data[0x11];
2304
2305                 /* The top two bits of byte 0x10 hold the register spacing. */
2306                 reg_spacing = (data[0x10] & 0xC0) >> 6;
2307                 switch (reg_spacing) {
2308                 case 0x00: /* Byte boundaries */
2309                     dmi->offset = 1;
2310                     break;
2311                 case 0x01: /* 32-bit boundaries */
2312                     dmi->offset = 4;
2313                     break;
2314                 case 0x02: /* 16-byte boundaries */
2315                     dmi->offset = 16;
2316                     break;
2317                 default:
2318                     /* Some other interface, just ignore it. */
2319                     return -EIO;
2320                 }
2321         } else {
2322                 /* Old DMI spec. */
2323                 /*
2324                  * Note that technically, the lower bit of the base
2325                  * address should be 1 if the address is I/O and 0 if
2326                  * the address is in memory.  So many systems get that
2327                  * wrong (and all that I have seen are I/O) so we just
2328                  * ignore that bit and assume I/O.  Systems that use
2329                  * memory should use the newer spec, anyway.
2330                  */
2331                 dmi->base_addr = base_addr & 0xfffe;
2332                 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2333                 dmi->offset = 1;
2334         }
2335
2336         dmi->slave_addr = data[6];
2337
2338         return 0;
2339 }
2340
2341 static void __devinit try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2342 {
2343         struct smi_info *info;
2344
2345         info = smi_info_alloc();
2346         if (!info) {
2347                 printk(KERN_ERR PFX "Could not allocate SI data\n");
2348                 return;
2349         }
2350
2351         info->addr_source = SI_SMBIOS;
2352         printk(KERN_INFO PFX "probing via SMBIOS\n");
2353
2354         switch (ipmi_data->type) {
2355         case 0x01: /* KCS */
2356                 info->si_type = SI_KCS;
2357                 break;
2358         case 0x02: /* SMIC */
2359                 info->si_type = SI_SMIC;
2360                 break;
2361         case 0x03: /* BT */
2362                 info->si_type = SI_BT;
2363                 break;
2364         default:
2365                 kfree(info);
2366                 return;
2367         }
2368
2369         switch (ipmi_data->addr_space) {
2370         case IPMI_MEM_ADDR_SPACE:
2371                 info->io_setup = mem_setup;
2372                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2373                 break;
2374
2375         case IPMI_IO_ADDR_SPACE:
2376                 info->io_setup = port_setup;
2377                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2378                 break;
2379
2380         default:
2381                 kfree(info);
2382                 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2383                        ipmi_data->addr_space);
2384                 return;
2385         }
2386         info->io.addr_data = ipmi_data->base_addr;
2387
2388         info->io.regspacing = ipmi_data->offset;
2389         if (!info->io.regspacing)
2390                 info->io.regspacing = DEFAULT_REGSPACING;
2391         info->io.regsize = DEFAULT_REGSPACING;
2392         info->io.regshift = 0;
2393
2394         info->slave_addr = ipmi_data->slave_addr;
2395
2396         info->irq = ipmi_data->irq;
2397         if (info->irq)
2398                 info->irq_setup = std_irq_setup;
2399
2400         pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2401                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2402                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2403                  info->irq);
2404
2405         if (add_smi(info))
2406                 kfree(info);
2407 }
2408
2409 static void __devinit dmi_find_bmc(void)
2410 {
2411         const struct dmi_device *dev = NULL;
2412         struct dmi_ipmi_data data;
2413         int                  rv;
2414
2415         while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2416                 memset(&data, 0, sizeof(data));
2417                 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2418                                 &data);
2419                 if (!rv)
2420                         try_init_dmi(&data);
2421         }
2422 }
2423 #endif /* CONFIG_DMI */
2424
2425 #ifdef CONFIG_PCI
2426
2427 #define PCI_ERMC_CLASSCODE              0x0C0700
2428 #define PCI_ERMC_CLASSCODE_MASK         0xffffff00
2429 #define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
2430 #define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
2431 #define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
2432 #define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
2433
2434 #define PCI_HP_VENDOR_ID    0x103C
2435 #define PCI_MMC_DEVICE_ID   0x121A
2436 #define PCI_MMC_ADDR_CW     0x10
2437
2438 static void ipmi_pci_cleanup(struct smi_info *info)
2439 {
2440         struct pci_dev *pdev = info->addr_source_data;
2441
2442         pci_disable_device(pdev);
2443 }
2444
2445 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2446                                     const struct pci_device_id *ent)
2447 {
2448         int rv;
2449         int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2450         struct smi_info *info;
2451
2452         info = smi_info_alloc();
2453         if (!info)
2454                 return -ENOMEM;
2455
2456         info->addr_source = SI_PCI;
2457         dev_info(&pdev->dev, "probing via PCI");
2458
2459         switch (class_type) {
2460         case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2461                 info->si_type = SI_SMIC;
2462                 break;
2463
2464         case PCI_ERMC_CLASSCODE_TYPE_KCS:
2465                 info->si_type = SI_KCS;
2466                 break;
2467
2468         case PCI_ERMC_CLASSCODE_TYPE_BT:
2469                 info->si_type = SI_BT;
2470                 break;
2471
2472         default:
2473                 kfree(info);
2474                 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2475                 return -ENOMEM;
2476         }
2477
2478         rv = pci_enable_device(pdev);
2479         if (rv) {
2480                 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2481                 kfree(info);
2482                 return rv;
2483         }
2484
2485         info->addr_source_cleanup = ipmi_pci_cleanup;
2486         info->addr_source_data = pdev;
2487
2488         if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2489                 info->io_setup = port_setup;
2490                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2491         } else {
2492                 info->io_setup = mem_setup;
2493                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2494         }
2495         info->io.addr_data = pci_resource_start(pdev, 0);
2496
2497         info->io.regspacing = DEFAULT_REGSPACING;
2498         info->io.regsize = DEFAULT_REGSPACING;
2499         info->io.regshift = 0;
2500
2501         info->irq = pdev->irq;
2502         if (info->irq)
2503                 info->irq_setup = std_irq_setup;
2504
2505         info->dev = &pdev->dev;
2506         pci_set_drvdata(pdev, info);
2507
2508         dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2509                 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2510                 info->irq);
2511
2512         if (add_smi(info))
2513                 kfree(info);
2514
2515         return 0;
2516 }
2517
2518 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2519 {
2520         struct smi_info *info = pci_get_drvdata(pdev);
2521         cleanup_one_si(info);
2522 }
2523
2524 #ifdef CONFIG_PM
2525 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2526 {
2527         return 0;
2528 }
2529
2530 static int ipmi_pci_resume(struct pci_dev *pdev)
2531 {
2532         return 0;
2533 }
2534 #endif
2535
2536 static struct pci_device_id ipmi_pci_devices[] = {
2537         { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2538         { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2539         { 0, }
2540 };
2541 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2542
2543 static struct pci_driver ipmi_pci_driver = {
2544         .name =         DEVICE_NAME,
2545         .id_table =     ipmi_pci_devices,
2546         .probe =        ipmi_pci_probe,
2547         .remove =       __devexit_p(ipmi_pci_remove),
2548 #ifdef CONFIG_PM
2549         .suspend =      ipmi_pci_suspend,
2550         .resume =       ipmi_pci_resume,
2551 #endif
2552 };
2553 #endif /* CONFIG_PCI */
2554
2555
2556 #ifdef CONFIG_PPC_OF
2557 static int __devinit ipmi_of_probe(struct platform_device *dev,
2558                          const struct of_device_id *match)
2559 {
2560         struct smi_info *info;
2561         struct resource resource;
2562         const int *regsize, *regspacing, *regshift;
2563         struct device_node *np = dev->dev.of_node;
2564         int ret;
2565         int proplen;
2566
2567         dev_info(&dev->dev, "probing via device tree\n");
2568
2569         ret = of_address_to_resource(np, 0, &resource);
2570         if (ret) {
2571                 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2572                 return ret;
2573         }
2574
2575         regsize = of_get_property(np, "reg-size", &proplen);
2576         if (regsize && proplen != 4) {
2577                 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2578                 return -EINVAL;
2579         }
2580
2581         regspacing = of_get_property(np, "reg-spacing", &proplen);
2582         if (regspacing && proplen != 4) {
2583                 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2584                 return -EINVAL;
2585         }
2586
2587         regshift = of_get_property(np, "reg-shift", &proplen);
2588         if (regshift && proplen != 4) {
2589                 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2590                 return -EINVAL;
2591         }
2592
2593         info = smi_info_alloc();
2594
2595         if (!info) {
2596                 dev_err(&dev->dev,
2597                         "could not allocate memory for OF probe\n");
2598                 return -ENOMEM;
2599         }
2600
2601         info->si_type           = (enum si_type) match->data;
2602         info->addr_source       = SI_DEVICETREE;
2603         info->irq_setup         = std_irq_setup;
2604
2605         if (resource.flags & IORESOURCE_IO) {
2606                 info->io_setup          = port_setup;
2607                 info->io.addr_type      = IPMI_IO_ADDR_SPACE;
2608         } else {
2609                 info->io_setup          = mem_setup;
2610                 info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2611         }
2612
2613         info->io.addr_data      = resource.start;
2614
2615         info->io.regsize        = regsize ? *regsize : DEFAULT_REGSIZE;
2616         info->io.regspacing     = regspacing ? *regspacing : DEFAULT_REGSPACING;
2617         info->io.regshift       = regshift ? *regshift : 0;
2618
2619         info->irq               = irq_of_parse_and_map(dev->dev.of_node, 0);
2620         info->dev               = &dev->dev;
2621
2622         dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2623                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2624                 info->irq);
2625
2626         dev_set_drvdata(&dev->dev, info);
2627
2628         if (add_smi(info)) {
2629                 kfree(info);
2630                 return -EBUSY;
2631         }
2632
2633         return 0;
2634 }
2635
2636 static int __devexit ipmi_of_remove(struct platform_device *dev)
2637 {
2638         cleanup_one_si(dev_get_drvdata(&dev->dev));
2639         return 0;
2640 }
2641
2642 static struct of_device_id ipmi_match[] =
2643 {
2644         { .type = "ipmi", .compatible = "ipmi-kcs",
2645           .data = (void *)(unsigned long) SI_KCS },
2646         { .type = "ipmi", .compatible = "ipmi-smic",
2647           .data = (void *)(unsigned long) SI_SMIC },
2648         { .type = "ipmi", .compatible = "ipmi-bt",
2649           .data = (void *)(unsigned long) SI_BT },
2650         {},
2651 };
2652
2653 static struct of_platform_driver ipmi_of_platform_driver = {
2654         .driver = {
2655                 .name = "ipmi",
2656                 .owner = THIS_MODULE,
2657                 .of_match_table = ipmi_match,
2658         },
2659         .probe          = ipmi_of_probe,
2660         .remove         = __devexit_p(ipmi_of_remove),
2661 };
2662 #endif /* CONFIG_PPC_OF */
2663
2664 static int wait_for_msg_done(struct smi_info *smi_info)
2665 {
2666         enum si_sm_result     smi_result;
2667
2668         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2669         for (;;) {
2670                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2671                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2672                         schedule_timeout_uninterruptible(1);
2673                         smi_result = smi_info->handlers->event(
2674                                 smi_info->si_sm, 100);
2675                 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2676                         smi_result = smi_info->handlers->event(
2677                                 smi_info->si_sm, 0);
2678                 } else
2679                         break;
2680         }
2681         if (smi_result == SI_SM_HOSED)
2682                 /*
2683                  * We couldn't get the state machine to run, so whatever's at
2684                  * the port is probably not an IPMI SMI interface.
2685                  */
2686                 return -ENODEV;
2687
2688         return 0;
2689 }
2690
2691 static int try_get_dev_id(struct smi_info *smi_info)
2692 {
2693         unsigned char         msg[2];
2694         unsigned char         *resp;
2695         unsigned long         resp_len;
2696         int                   rv = 0;
2697
2698         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2699         if (!resp)
2700                 return -ENOMEM;
2701
2702         /*
2703          * Do a Get Device ID command, since it comes back with some
2704          * useful info.
2705          */
2706         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2707         msg[1] = IPMI_GET_DEVICE_ID_CMD;
2708         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2709
2710         rv = wait_for_msg_done(smi_info);
2711         if (rv)
2712                 goto out;
2713
2714         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2715                                                   resp, IPMI_MAX_MSG_LENGTH);
2716
2717         /* Check and record info from the get device id, in case we need it. */
2718         rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2719
2720  out:
2721         kfree(resp);
2722         return rv;
2723 }
2724
2725 static int try_enable_event_buffer(struct smi_info *smi_info)
2726 {
2727         unsigned char         msg[3];
2728         unsigned char         *resp;
2729         unsigned long         resp_len;
2730         int                   rv = 0;
2731
2732         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2733         if (!resp)
2734                 return -ENOMEM;
2735
2736         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2737         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2738         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2739
2740         rv = wait_for_msg_done(smi_info);
2741         if (rv) {
2742                 printk(KERN_WARNING PFX "Error getting response from get"
2743                        " global enables command, the event buffer is not"
2744                        " enabled.\n");
2745                 goto out;
2746         }
2747
2748         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2749                                                   resp, IPMI_MAX_MSG_LENGTH);
2750
2751         if (resp_len < 4 ||
2752                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2753                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2754                         resp[2] != 0) {
2755                 printk(KERN_WARNING PFX "Invalid return from get global"
2756                        " enables command, cannot enable the event buffer.\n");
2757                 rv = -EINVAL;
2758                 goto out;
2759         }
2760
2761         if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2762                 /* buffer is already enabled, nothing to do. */
2763                 goto out;
2764
2765         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2766         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2767         msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2768         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2769
2770         rv = wait_for_msg_done(smi_info);
2771         if (rv) {
2772                 printk(KERN_WARNING PFX "Error getting response from set"
2773                        " global, enables command, the event buffer is not"
2774                        " enabled.\n");
2775                 goto out;
2776         }
2777
2778         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2779                                                   resp, IPMI_MAX_MSG_LENGTH);
2780
2781         if (resp_len < 3 ||
2782                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2783                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2784                 printk(KERN_WARNING PFX "Invalid return from get global,"
2785                        "enables command, not enable the event buffer.\n");
2786                 rv = -EINVAL;
2787                 goto out;
2788         }
2789
2790         if (resp[2] != 0)
2791                 /*
2792                  * An error when setting the event buffer bit means
2793                  * that the event buffer is not supported.
2794                  */
2795                 rv = -ENOENT;
2796  out:
2797         kfree(resp);
2798         return rv;
2799 }
2800
2801 static int type_file_read_proc(char *page, char **start, off_t off,
2802                                int count, int *eof, void *data)
2803 {
2804         struct smi_info *smi = data;
2805
2806         return sprintf(page, "%s\n", si_to_str[smi->si_type]);
2807 }
2808
2809 static int stat_file_read_proc(char *page, char **start, off_t off,
2810                                int count, int *eof, void *data)
2811 {
2812         char            *out = (char *) page;
2813         struct smi_info *smi = data;
2814
2815         out += sprintf(out, "interrupts_enabled:    %d\n",
2816                        smi->irq && !smi->interrupt_disabled);
2817         out += sprintf(out, "short_timeouts:        %u\n",
2818                        smi_get_stat(smi, short_timeouts));
2819         out += sprintf(out, "long_timeouts:         %u\n",
2820                        smi_get_stat(smi, long_timeouts));
2821         out += sprintf(out, "idles:                 %u\n",
2822                        smi_get_stat(smi, idles));
2823         out += sprintf(out, "interrupts:            %u\n",
2824                        smi_get_stat(smi, interrupts));
2825         out += sprintf(out, "attentions:            %u\n",
2826                        smi_get_stat(smi, attentions));
2827         out += sprintf(out, "flag_fetches:          %u\n",
2828                        smi_get_stat(smi, flag_fetches));
2829         out += sprintf(out, "hosed_count:           %u\n",
2830                        smi_get_stat(smi, hosed_count));
2831         out += sprintf(out, "complete_transactions: %u\n",
2832                        smi_get_stat(smi, complete_transactions));
2833         out += sprintf(out, "events:                %u\n",
2834                        smi_get_stat(smi, events));
2835         out += sprintf(out, "watchdog_pretimeouts:  %u\n",
2836                        smi_get_stat(smi, watchdog_pretimeouts));
2837         out += sprintf(out, "incoming_messages:     %u\n",
2838                        smi_get_stat(smi, incoming_messages));
2839
2840         return out - page;
2841 }
2842
2843 static int param_read_proc(char *page, char **start, off_t off,
2844                            int count, int *eof, void *data)
2845 {
2846         struct smi_info *smi = data;
2847
2848         return sprintf(page,
2849                        "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2850                        si_to_str[smi->si_type],
2851                        addr_space_to_str[smi->io.addr_type],
2852                        smi->io.addr_data,
2853                        smi->io.regspacing,
2854                        smi->io.regsize,
2855                        smi->io.regshift,
2856                        smi->irq,
2857                        smi->slave_addr);
2858 }
2859
2860 /*
2861  * oem_data_avail_to_receive_msg_avail
2862  * @info - smi_info structure with msg_flags set
2863  *
2864  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2865  * Returns 1 indicating need to re-run handle_flags().
2866  */
2867 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2868 {
2869         smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2870                                RECEIVE_MSG_AVAIL);
2871         return 1;
2872 }
2873
2874 /*
2875  * setup_dell_poweredge_oem_data_handler
2876  * @info - smi_info.device_id must be populated
2877  *
2878  * Systems that match, but have firmware version < 1.40 may assert
2879  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2880  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
2881  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2882  * as RECEIVE_MSG_AVAIL instead.
2883  *
2884  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2885  * assert the OEM[012] bits, and if it did, the driver would have to
2886  * change to handle that properly, we don't actually check for the
2887  * firmware version.
2888  * Device ID = 0x20                BMC on PowerEdge 8G servers
2889  * Device Revision = 0x80
2890  * Firmware Revision1 = 0x01       BMC version 1.40
2891  * Firmware Revision2 = 0x40       BCD encoded
2892  * IPMI Version = 0x51             IPMI 1.5
2893  * Manufacturer ID = A2 02 00      Dell IANA
2894  *
2895  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2896  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2897  *
2898  */
2899 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
2900 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2901 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2902 #define DELL_IANA_MFR_ID 0x0002a2
2903 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2904 {
2905         struct ipmi_device_id *id = &smi_info->device_id;
2906         if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2907                 if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
2908                     id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2909                     id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2910                         smi_info->oem_data_avail_handler =
2911                                 oem_data_avail_to_receive_msg_avail;
2912                 } else if (ipmi_version_major(id) < 1 ||
2913                            (ipmi_version_major(id) == 1 &&
2914                             ipmi_version_minor(id) < 5)) {
2915                         smi_info->oem_data_avail_handler =
2916                                 oem_data_avail_to_receive_msg_avail;
2917                 }
2918         }
2919 }
2920
2921 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2922 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2923 {
2924         struct ipmi_smi_msg *msg = smi_info->curr_msg;
2925
2926         /* Make it a reponse */
2927         msg->rsp[0] = msg->data[0] | 4;
2928         msg->rsp[1] = msg->data[1];
2929         msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2930         msg->rsp_size = 3;
2931         smi_info->curr_msg = NULL;
2932         deliver_recv_msg(smi_info, msg);
2933 }
2934
2935 /*
2936  * dell_poweredge_bt_xaction_handler
2937  * @info - smi_info.device_id must be populated
2938  *
2939  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2940  * not respond to a Get SDR command if the length of the data
2941  * requested is exactly 0x3A, which leads to command timeouts and no
2942  * data returned.  This intercepts such commands, and causes userspace
2943  * callers to try again with a different-sized buffer, which succeeds.
2944  */
2945
2946 #define STORAGE_NETFN 0x0A
2947 #define STORAGE_CMD_GET_SDR 0x23
2948 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2949                                              unsigned long unused,
2950                                              void *in)
2951 {
2952         struct smi_info *smi_info = in;
2953         unsigned char *data = smi_info->curr_msg->data;
2954         unsigned int size   = smi_info->curr_msg->data_size;
2955         if (size >= 8 &&
2956             (data[0]>>2) == STORAGE_NETFN &&
2957             data[1] == STORAGE_CMD_GET_SDR &&
2958             data[7] == 0x3A) {
2959                 return_hosed_msg_badsize(smi_info);
2960                 return NOTIFY_STOP;
2961         }
2962         return NOTIFY_DONE;
2963 }
2964
2965 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2966         .notifier_call  = dell_poweredge_bt_xaction_handler,
2967 };
2968
2969 /*
2970  * setup_dell_poweredge_bt_xaction_handler
2971  * @info - smi_info.device_id must be filled in already
2972  *
2973  * Fills in smi_info.device_id.start_transaction_pre_hook
2974  * when we know what function to use there.
2975  */
2976 static void
2977 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2978 {
2979         struct ipmi_device_id *id = &smi_info->device_id;
2980         if (id->manufacturer_id == DELL_IANA_MFR_ID &&
2981             smi_info->si_type == SI_BT)
2982                 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2983 }
2984
2985 /*
2986  * setup_oem_data_handler
2987  * @info - smi_info.device_id must be filled in already
2988  *
2989  * Fills in smi_info.device_id.oem_data_available_handler
2990  * when we know what function to use there.
2991  */
2992
2993 static void setup_oem_data_handler(struct smi_info *smi_info)
2994 {
2995         setup_dell_poweredge_oem_data_handler(smi_info);
2996 }
2997
2998 static void setup_xaction_handlers(struct smi_info *smi_info)
2999 {
3000         setup_dell_poweredge_bt_xaction_handler(smi_info);
3001 }
3002
3003 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3004 {
3005         if (smi_info->intf) {
3006                 /*
3007                  * The timer and thread are only running if the
3008                  * interface has been started up and registered.
3009                  */
3010                 if (smi_info->thread != NULL)
3011                         kthread_stop(smi_info->thread);
3012                 del_timer_sync(&smi_info->si_timer);
3013         }
3014 }
3015
3016 static __devinitdata struct ipmi_default_vals
3017 {
3018         int type;
3019         int port;
3020 } ipmi_defaults[] =
3021 {
3022         { .type = SI_KCS, .port = 0xca2 },
3023         { .type = SI_SMIC, .port = 0xca9 },
3024         { .type = SI_BT, .port = 0xe4 },
3025         { .port = 0 }
3026 };
3027
3028 static void __devinit default_find_bmc(void)
3029 {
3030         struct smi_info *info;
3031         int             i;
3032
3033         for (i = 0; ; i++) {
3034                 if (!ipmi_defaults[i].port)
3035                         break;
3036 #ifdef CONFIG_PPC
3037                 if (check_legacy_ioport(ipmi_defaults[i].port))
3038                         continue;
3039 #endif
3040                 info = smi_info_alloc();
3041                 if (!info)
3042                         return;
3043
3044                 info->addr_source = SI_DEFAULT;
3045
3046                 info->si_type = ipmi_defaults[i].type;
3047                 info->io_setup = port_setup;
3048                 info->io.addr_data = ipmi_defaults[i].port;
3049                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3050
3051                 info->io.addr = NULL;
3052                 info->io.regspacing = DEFAULT_REGSPACING;
3053                 info->io.regsize = DEFAULT_REGSPACING;
3054                 info->io.regshift = 0;
3055
3056                 if (add_smi(info) == 0) {
3057                         if ((try_smi_init(info)) == 0) {
3058                                 /* Found one... */
3059                                 printk(KERN_INFO PFX "Found default %s"
3060                                 " state machine at %s address 0x%lx\n",
3061                                 si_to_str[info->si_type],
3062                                 addr_space_to_str[info->io.addr_type],
3063                                 info->io.addr_data);
3064                         } else
3065                                 cleanup_one_si(info);
3066                 } else {
3067                         kfree(info);
3068                 }
3069         }
3070 }
3071
3072 static int is_new_interface(struct smi_info *info)
3073 {
3074         struct smi_info *e;
3075
3076         list_for_each_entry(e, &smi_infos, link) {
3077                 if (e->io.addr_type != info->io.addr_type)
3078                         continue;
3079                 if (e->io.addr_data == info->io.addr_data)
3080                         return 0;
3081         }
3082
3083         return 1;
3084 }
3085
3086 static int add_smi(struct smi_info *new_smi)
3087 {
3088         int rv = 0;
3089
3090         printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3091                         ipmi_addr_src_to_str[new_smi->addr_source],
3092                         si_to_str[new_smi->si_type]);
3093         mutex_lock(&smi_infos_lock);
3094         if (!is_new_interface(new_smi)) {
3095                 printk(KERN_CONT " duplicate interface\n");
3096                 rv = -EBUSY;
3097                 goto out_err;
3098         }
3099
3100         printk(KERN_CONT "\n");
3101
3102         /* So we know not to free it unless we have allocated one. */
3103         new_smi->intf = NULL;
3104         new_smi->si_sm = NULL;
3105         new_smi->handlers = NULL;
3106
3107         list_add_tail(&new_smi->link, &smi_infos);
3108
3109 out_err:
3110         mutex_unlock(&smi_infos_lock);
3111         return rv;
3112 }
3113
3114 static int try_smi_init(struct smi_info *new_smi)
3115 {
3116         int rv = 0;
3117         int i;
3118
3119         printk(KERN_INFO PFX "Trying %s-specified %s state"
3120                " machine at %s address 0x%lx, slave address 0x%x,"
3121                " irq %d\n",
3122                ipmi_addr_src_to_str[new_smi->addr_source],
3123                si_to_str[new_smi->si_type],
3124                addr_space_to_str[new_smi->io.addr_type],
3125                new_smi->io.addr_data,
3126                new_smi->slave_addr, new_smi->irq);
3127
3128         switch (new_smi->si_type) {
3129         case SI_KCS:
3130                 new_smi->handlers = &kcs_smi_handlers;
3131                 break;
3132
3133         case SI_SMIC:
3134                 new_smi->handlers = &smic_smi_handlers;
3135                 break;
3136
3137         case SI_BT:
3138                 new_smi->handlers = &bt_smi_handlers;
3139                 break;
3140
3141         default:
3142                 /* No support for anything else yet. */
3143                 rv = -EIO;
3144                 goto out_err;
3145         }
3146
3147         /* Allocate the state machine's data and initialize it. */
3148         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3149         if (!new_smi->si_sm) {
3150                 printk(KERN_ERR PFX
3151                        "Could not allocate state machine memory\n");
3152                 rv = -ENOMEM;
3153                 goto out_err;
3154         }
3155         new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3156                                                         &new_smi->io);
3157
3158         /* Now that we know the I/O size, we can set up the I/O. */
3159         rv = new_smi->io_setup(new_smi);
3160         if (rv) {
3161                 printk(KERN_ERR PFX "Could not set up I/O space\n");
3162                 goto out_err;
3163         }
3164
3165         /* Do low-level detection first. */
3166         if (new_smi->handlers->detect(new_smi->si_sm)) {
3167                 if (new_smi->addr_source)
3168                         printk(KERN_INFO PFX "Interface detection failed\n");
3169                 rv = -ENODEV;
3170                 goto out_err;
3171         }
3172
3173         /*
3174          * Attempt a get device id command.  If it fails, we probably
3175          * don't have a BMC here.
3176          */
3177         rv = try_get_dev_id(new_smi);
3178         if (rv) {
3179                 if (new_smi->addr_source)
3180                         printk(KERN_INFO PFX "There appears to be no BMC"
3181                                " at this location\n");
3182                 goto out_err;
3183         }
3184
3185         setup_oem_data_handler(new_smi);
3186         setup_xaction_handlers(new_smi);
3187
3188         INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3189         INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3190         new_smi->curr_msg = NULL;
3191         atomic_set(&new_smi->req_events, 0);
3192         new_smi->run_to_completion = 0;
3193         for (i = 0; i < SI_NUM_STATS; i++)
3194                 atomic_set(&new_smi->stats[i], 0);
3195
3196         new_smi->interrupt_disabled = 1;
3197         atomic_set(&new_smi->stop_operation, 0);
3198         new_smi->intf_num = smi_num;
3199         smi_num++;
3200
3201         rv = try_enable_event_buffer(new_smi);
3202         if (rv == 0)
3203                 new_smi->has_event_buffer = 1;
3204
3205         /*
3206          * Start clearing the flags before we enable interrupts or the
3207          * timer to avoid racing with the timer.
3208          */
3209         start_clear_flags(new_smi);
3210         /* IRQ is defined to be set when non-zero. */
3211         if (new_smi->irq)
3212                 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3213
3214         if (!new_smi->dev) {
3215                 /*
3216                  * If we don't already have a device from something
3217                  * else (like PCI), then register a new one.
3218                  */
3219                 new_smi->pdev = platform_device_alloc("ipmi_si",
3220                                                       new_smi->intf_num);
3221                 if (!new_smi->pdev) {
3222                         printk(KERN_ERR PFX
3223                                "Unable to allocate platform device\n");
3224                         goto out_err;
3225                 }
3226                 new_smi->dev = &new_smi->pdev->dev;
3227                 new_smi->dev->driver = &ipmi_driver.driver;
3228
3229                 rv = platform_device_add(new_smi->pdev);
3230                 if (rv) {
3231                         printk(KERN_ERR PFX
3232                                "Unable to register system interface device:"
3233                                " %d\n",
3234                                rv);
3235                         goto out_err;
3236                 }
3237                 new_smi->dev_registered = 1;
3238         }
3239
3240         rv = ipmi_register_smi(&handlers,
3241                                new_smi,
3242                                &new_smi->device_id,
3243                                new_smi->dev,
3244                                "bmc",
3245                                new_smi->slave_addr);
3246         if (rv) {
3247                 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3248                         rv);
3249                 goto out_err_stop_timer;
3250         }
3251
3252         rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3253                                      type_file_read_proc,
3254                                      new_smi);
3255         if (rv) {
3256                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3257                 goto out_err_stop_timer;
3258         }
3259
3260         rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3261                                      stat_file_read_proc,
3262                                      new_smi);
3263         if (rv) {
3264                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3265                 goto out_err_stop_timer;
3266         }
3267
3268         rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3269                                      param_read_proc,
3270                                      new_smi);
3271         if (rv) {
3272                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3273                 goto out_err_stop_timer;
3274         }
3275
3276         dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3277                  si_to_str[new_smi->si_type]);
3278
3279         return 0;
3280
3281  out_err_stop_timer:
3282         atomic_inc(&new_smi->stop_operation);
3283         wait_for_timer_and_thread(new_smi);
3284
3285  out_err:
3286         new_smi->interrupt_disabled = 1;
3287
3288         if (new_smi->intf) {
3289                 ipmi_unregister_smi(new_smi->intf);
3290                 new_smi->intf = NULL;
3291         }
3292
3293         if (new_smi->irq_cleanup) {
3294                 new_smi->irq_cleanup(new_smi);
3295                 new_smi->irq_cleanup = NULL;
3296         }
3297
3298         /*
3299          * Wait until we know that we are out of any interrupt
3300          * handlers might have been running before we freed the
3301          * interrupt.
3302          */
3303         synchronize_sched();
3304
3305         if (new_smi->si_sm) {
3306                 if (new_smi->handlers)
3307                         new_smi->handlers->cleanup(new_smi->si_sm);
3308                 kfree(new_smi->si_sm);
3309                 new_smi->si_sm = NULL;
3310         }
3311         if (new_smi->addr_source_cleanup) {
3312                 new_smi->addr_source_cleanup(new_smi);
3313                 new_smi->addr_source_cleanup = NULL;
3314         }
3315         if (new_smi->io_cleanup) {
3316                 new_smi->io_cleanup(new_smi);
3317                 new_smi->io_cleanup = NULL;
3318         }
3319
3320         if (new_smi->dev_registered) {
3321                 platform_device_unregister(new_smi->pdev);
3322                 new_smi->dev_registered = 0;
3323         }
3324
3325         return rv;
3326 }
3327
3328 static int __devinit init_ipmi_si(void)
3329 {
3330         int  i;
3331         char *str;
3332         int  rv;
3333         struct smi_info *e;
3334         enum ipmi_addr_src type = SI_INVALID;
3335
3336         if (initialized)
3337                 return 0;
3338         initialized = 1;
3339
3340         /* Register the device drivers. */
3341         rv = driver_register(&ipmi_driver.driver);
3342         if (rv) {
3343                 printk(KERN_ERR PFX "Unable to register driver: %d\n", rv);
3344                 return rv;
3345         }
3346
3347
3348         /* Parse out the si_type string into its components. */
3349         str = si_type_str;
3350         if (*str != '\0') {
3351                 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3352                         si_type[i] = str;
3353                         str = strchr(str, ',');
3354                         if (str) {
3355                                 *str = '\0';
3356                                 str++;
3357                         } else {
3358                                 break;
3359                         }
3360                 }
3361         }
3362
3363         printk(KERN_INFO "IPMI System Interface driver.\n");
3364
3365         hardcode_find_bmc();
3366
3367         /* If the user gave us a device, they presumably want us to use it */
3368         mutex_lock(&smi_infos_lock);
3369         if (!list_empty(&smi_infos)) {
3370                 mutex_unlock(&smi_infos_lock);
3371                 return 0;
3372         }
3373         mutex_unlock(&smi_infos_lock);
3374
3375 #ifdef CONFIG_PCI
3376         rv = pci_register_driver(&ipmi_pci_driver);
3377         if (rv)
3378                 printk(KERN_ERR PFX "Unable to register PCI driver: %d\n", rv);
3379         else
3380                 pci_registered = 1;
3381 #endif
3382
3383 #ifdef CONFIG_ACPI
3384         pnp_register_driver(&ipmi_pnp_driver);
3385         pnp_registered = 1;
3386 #endif
3387
3388 #ifdef CONFIG_DMI
3389         dmi_find_bmc();
3390 #endif
3391
3392 #ifdef CONFIG_ACPI
3393         spmi_find_bmc();
3394 #endif
3395
3396 #ifdef CONFIG_PPC_OF
3397         of_register_platform_driver(&ipmi_of_platform_driver);
3398         of_registered = 1;
3399 #endif
3400
3401         /* We prefer devices with interrupts, but in the case of a machine
3402            with multiple BMCs we assume that there will be several instances
3403            of a given type so if we succeed in registering a type then also
3404            try to register everything else of the same type */
3405
3406         mutex_lock(&smi_infos_lock);
3407         list_for_each_entry(e, &smi_infos, link) {
3408                 /* Try to register a device if it has an IRQ and we either
3409                    haven't successfully registered a device yet or this
3410                    device has the same type as one we successfully registered */
3411                 if (e->irq && (!type || e->addr_source == type)) {
3412                         if (!try_smi_init(e)) {
3413                                 type = e->addr_source;
3414                         }
3415                 }
3416         }
3417
3418         /* type will only have been set if we successfully registered an si */
3419         if (type) {
3420                 mutex_unlock(&smi_infos_lock);
3421                 return 0;
3422         }
3423
3424         /* Fall back to the preferred device */
3425
3426         list_for_each_entry(e, &smi_infos, link) {
3427                 if (!e->irq && (!type || e->addr_source == type)) {
3428                         if (!try_smi_init(e)) {
3429                                 type = e->addr_source;
3430                         }
3431                 }
3432         }
3433         mutex_unlock(&smi_infos_lock);
3434
3435         if (type)
3436                 return 0;
3437
3438         if (si_trydefaults) {
3439                 mutex_lock(&smi_infos_lock);
3440                 if (list_empty(&smi_infos)) {
3441                         /* No BMC was found, try defaults. */
3442                         mutex_unlock(&smi_infos_lock);
3443                         default_find_bmc();
3444                 } else
3445                         mutex_unlock(&smi_infos_lock);
3446         }
3447
3448         mutex_lock(&smi_infos_lock);
3449         if (unload_when_empty && list_empty(&smi_infos)) {
3450                 mutex_unlock(&smi_infos_lock);
3451 #ifdef CONFIG_PCI
3452                 if (pci_registered)
3453                         pci_unregister_driver(&ipmi_pci_driver);
3454 #endif
3455
3456 #ifdef CONFIG_PPC_OF
3457                 if (of_registered)
3458                         of_unregister_platform_driver(&ipmi_of_platform_driver);
3459 #endif
3460                 driver_unregister(&ipmi_driver.driver);
3461                 printk(KERN_WARNING PFX
3462                        "Unable to find any System Interface(s)\n");
3463                 return -ENODEV;
3464         } else {
3465                 mutex_unlock(&smi_infos_lock);
3466                 return 0;
3467         }
3468 }
3469 module_init(init_ipmi_si);
3470
3471 static void cleanup_one_si(struct smi_info *to_clean)
3472 {
3473         int           rv = 0;
3474         unsigned long flags;
3475
3476         if (!to_clean)
3477                 return;
3478
3479         list_del(&to_clean->link);
3480
3481         /* Tell the driver that we are shutting down. */
3482         atomic_inc(&to_clean->stop_operation);
3483
3484         /*
3485          * Make sure the timer and thread are stopped and will not run
3486          * again.
3487          */
3488         wait_for_timer_and_thread(to_clean);
3489
3490         /*
3491          * Timeouts are stopped, now make sure the interrupts are off
3492          * for the device.  A little tricky with locks to make sure
3493          * there are no races.
3494          */
3495         spin_lock_irqsave(&to_clean->si_lock, flags);
3496         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3497                 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3498                 poll(to_clean);
3499                 schedule_timeout_uninterruptible(1);
3500                 spin_lock_irqsave(&to_clean->si_lock, flags);
3501         }
3502         disable_si_irq(to_clean);
3503         spin_unlock_irqrestore(&to_clean->si_lock, flags);
3504         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3505                 poll(to_clean);
3506                 schedule_timeout_uninterruptible(1);
3507         }
3508
3509         /* Clean up interrupts and make sure that everything is done. */
3510         if (to_clean->irq_cleanup)
3511                 to_clean->irq_cleanup(to_clean);
3512         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3513                 poll(to_clean);
3514                 schedule_timeout_uninterruptible(1);
3515         }
3516
3517         if (to_clean->intf)
3518                 rv = ipmi_unregister_smi(to_clean->intf);
3519
3520         if (rv) {
3521                 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
3522                        rv);
3523         }
3524
3525         if (to_clean->handlers)
3526                 to_clean->handlers->cleanup(to_clean->si_sm);
3527
3528         kfree(to_clean->si_sm);
3529
3530         if (to_clean->addr_source_cleanup)
3531                 to_clean->addr_source_cleanup(to_clean);
3532         if (to_clean->io_cleanup)
3533                 to_clean->io_cleanup(to_clean);
3534
3535         if (to_clean->dev_registered)
3536                 platform_device_unregister(to_clean->pdev);
3537
3538         kfree(to_clean);
3539 }
3540
3541 static void __exit cleanup_ipmi_si(void)
3542 {
3543         struct smi_info *e, *tmp_e;
3544
3545         if (!initialized)
3546                 return;
3547
3548 #ifdef CONFIG_PCI
3549         if (pci_registered)
3550                 pci_unregister_driver(&ipmi_pci_driver);
3551 #endif
3552 #ifdef CONFIG_ACPI
3553         if (pnp_registered)
3554                 pnp_unregister_driver(&ipmi_pnp_driver);
3555 #endif
3556
3557 #ifdef CONFIG_PPC_OF
3558         if (of_registered)
3559                 of_unregister_platform_driver(&ipmi_of_platform_driver);
3560 #endif
3561
3562         mutex_lock(&smi_infos_lock);
3563         list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3564                 cleanup_one_si(e);
3565         mutex_unlock(&smi_infos_lock);
3566
3567         driver_unregister(&ipmi_driver.driver);
3568 }
3569 module_exit(cleanup_ipmi_si);
3570
3571 MODULE_LICENSE("GPL");
3572 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3573 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3574                    " system interfaces.");