2 * random.c -- A strong random number generator
4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
43 * (now, with legal B.S. out of the way.....)
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
98 * Exported interfaces ---- output
99 * ===============================
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
104 * void get_random_bytes(void *buf, int nbytes);
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
122 * Exported interfaces ---- input
123 * ==============================
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
128 * void add_device_randomness(const void *buf, unsigned int size);
129 * void add_input_randomness(unsigned int type, unsigned int code,
130 * unsigned int value);
131 * void add_interrupt_randomness(int irq, int irq_flags);
132 * void add_disk_randomness(struct gendisk *disk);
134 * add_device_randomness() is for adding data to the random pool that
135 * is likely to differ between two devices (or possibly even per boot).
136 * This would be things like MAC addresses or serial numbers, or the
137 * read-out of the RTC. This does *not* add any actual entropy to the
138 * pool, but it initializes the pool to different values for devices
139 * that might otherwise be identical and have very little entropy
140 * available to them (particularly common in the embedded world).
142 * add_input_randomness() uses the input layer interrupt timing, as well as
143 * the event type information from the hardware.
145 * add_interrupt_randomness() uses the interrupt timing as random
146 * inputs to the entropy pool. Using the cycle counters and the irq source
147 * as inputs, it feeds the randomness roughly once a second.
149 * add_disk_randomness() uses what amounts to the seek time of block
150 * layer request events, on a per-disk_devt basis, as input to the
151 * entropy pool. Note that high-speed solid state drives with very low
152 * seek times do not make for good sources of entropy, as their seek
153 * times are usually fairly consistent.
155 * All of these routines try to estimate how many bits of randomness a
156 * particular randomness source. They do this by keeping track of the
157 * first and second order deltas of the event timings.
159 * Ensuring unpredictability at system startup
160 * ============================================
162 * When any operating system starts up, it will go through a sequence
163 * of actions that are fairly predictable by an adversary, especially
164 * if the start-up does not involve interaction with a human operator.
165 * This reduces the actual number of bits of unpredictability in the
166 * entropy pool below the value in entropy_count. In order to
167 * counteract this effect, it helps to carry information in the
168 * entropy pool across shut-downs and start-ups. To do this, put the
169 * following lines an appropriate script which is run during the boot
172 * echo "Initializing random number generator..."
173 * random_seed=/var/run/random-seed
174 * # Carry a random seed from start-up to start-up
175 * # Load and then save the whole entropy pool
176 * if [ -f $random_seed ]; then
177 * cat $random_seed >/dev/urandom
181 * chmod 600 $random_seed
182 * dd if=/dev/urandom of=$random_seed count=1 bs=512
184 * and the following lines in an appropriate script which is run as
185 * the system is shutdown:
187 * # Carry a random seed from shut-down to start-up
188 * # Save the whole entropy pool
189 * echo "Saving random seed..."
190 * random_seed=/var/run/random-seed
192 * chmod 600 $random_seed
193 * dd if=/dev/urandom of=$random_seed count=1 bs=512
195 * For example, on most modern systems using the System V init
196 * scripts, such code fragments would be found in
197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
200 * Effectively, these commands cause the contents of the entropy pool
201 * to be saved at shut-down time and reloaded into the entropy pool at
202 * start-up. (The 'dd' in the addition to the bootup script is to
203 * make sure that /etc/random-seed is different for every start-up,
204 * even if the system crashes without executing rc.0.) Even with
205 * complete knowledge of the start-up activities, predicting the state
206 * of the entropy pool requires knowledge of the previous history of
209 * Configuring the /dev/random driver under Linux
210 * ==============================================
212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
213 * the /dev/mem major number (#1). So if your system does not have
214 * /dev/random and /dev/urandom created already, they can be created
215 * by using the commands:
217 * mknod /dev/random c 1 8
218 * mknod /dev/urandom c 1 9
223 * Ideas for constructing this random number generator were derived
224 * from Pretty Good Privacy's random number generator, and from private
225 * discussions with Phil Karn. Colin Plumb provided a faster random
226 * number generator, which speed up the mixing function of the entropy
227 * pool, taken from PGPfone. Dale Worley has also contributed many
228 * useful ideas and suggestions to improve this driver.
230 * Any flaws in the design are solely my responsibility, and should
231 * not be attributed to the Phil, Colin, or any of authors of PGP.
233 * Further background information on this topic may be obtained from
234 * RFC 1750, "Randomness Recommendations for Security", by Donald
235 * Eastlake, Steve Crocker, and Jeff Schiller.
238 #include <linux/utsname.h>
239 #include <linux/module.h>
240 #include <linux/kernel.h>
241 #include <linux/major.h>
242 #include <linux/string.h>
243 #include <linux/fcntl.h>
244 #include <linux/slab.h>
245 #include <linux/random.h>
246 #include <linux/poll.h>
247 #include <linux/init.h>
248 #include <linux/fs.h>
249 #include <linux/genhd.h>
250 #include <linux/interrupt.h>
251 #include <linux/mm.h>
252 #include <linux/spinlock.h>
253 #include <linux/percpu.h>
254 #include <linux/cryptohash.h>
255 #include <linux/fips.h>
256 #include <linux/ptrace.h>
257 #include <linux/kmemcheck.h>
258 #include <linux/workqueue.h>
259 #include <linux/irq.h>
261 #include <asm/processor.h>
262 #include <asm/uaccess.h>
264 #include <asm/irq_regs.h>
267 #define CREATE_TRACE_POINTS
268 #include <trace/events/random.h>
271 * Configuration information
273 #define INPUT_POOL_SHIFT 12
274 #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
275 #define OUTPUT_POOL_SHIFT 10
276 #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
277 #define SEC_XFER_SIZE 512
278 #define EXTRACT_SIZE 10
280 #define DEBUG_RANDOM_BOOT 0
282 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
285 * To allow fractional bits to be tracked, the entropy_count field is
286 * denominated in units of 1/8th bits.
288 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
289 * credit_entropy_bits() needs to be 64 bits wide.
291 #define ENTROPY_SHIFT 3
292 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
295 * The minimum number of bits of entropy before we wake up a read on
296 * /dev/random. Should be enough to do a significant reseed.
298 static int random_read_wakeup_thresh = 64;
301 * If the entropy count falls under this number of bits, then we
302 * should wake up processes which are selecting or polling on write
303 * access to /dev/random.
305 static int random_write_wakeup_thresh = 28 * OUTPUT_POOL_WORDS;
308 * The minimum number of seconds between urandom pool resending. We
309 * do this to limit the amount of entropy that can be drained from the
310 * input pool even if there are heavy demands on /dev/urandom.
312 static int random_min_urandom_seed = 60;
315 * Originally, we used a primitive polynomial of degree .poolwords
316 * over GF(2). The taps for various sizes are defined below. They
317 * were chosen to be evenly spaced except for the last tap, which is 1
318 * to get the twisting happening as fast as possible.
320 * For the purposes of better mixing, we use the CRC-32 polynomial as
321 * well to make a (modified) twisted Generalized Feedback Shift
322 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
323 * generators. ACM Transactions on Modeling and Computer Simulation
324 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
325 * GFSR generators II. ACM Transactions on Mdeling and Computer
326 * Simulation 4:254-266)
328 * Thanks to Colin Plumb for suggesting this.
330 * The mixing operation is much less sensitive than the output hash,
331 * where we use SHA-1. All that we want of mixing operation is that
332 * it be a good non-cryptographic hash; i.e. it not produce collisions
333 * when fed "random" data of the sort we expect to see. As long as
334 * the pool state differs for different inputs, we have preserved the
335 * input entropy and done a good job. The fact that an intelligent
336 * attacker can construct inputs that will produce controlled
337 * alterations to the pool's state is not important because we don't
338 * consider such inputs to contribute any randomness. The only
339 * property we need with respect to them is that the attacker can't
340 * increase his/her knowledge of the pool's state. Since all
341 * additions are reversible (knowing the final state and the input,
342 * you can reconstruct the initial state), if an attacker has any
343 * uncertainty about the initial state, he/she can only shuffle that
344 * uncertainty about, but never cause any collisions (which would
345 * decrease the uncertainty).
347 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
348 * Videau in their paper, "The Linux Pseudorandom Number Generator
349 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
350 * paper, they point out that we are not using a true Twisted GFSR,
351 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
352 * is, with only three taps, instead of the six that we are using).
353 * As a result, the resulting polynomial is neither primitive nor
354 * irreducible, and hence does not have a maximal period over
355 * GF(2**32). They suggest a slight change to the generator
356 * polynomial which improves the resulting TGFSR polynomial to be
357 * irreducible, which we have made here.
359 static struct poolinfo {
360 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
361 #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
362 int tap1, tap2, tap3, tap4, tap5;
363 } poolinfo_table[] = {
364 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
365 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
366 { S(128), 104, 76, 51, 25, 1 },
367 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
368 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
369 { S(32), 26, 19, 14, 7, 1 },
371 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
372 { S(2048), 1638, 1231, 819, 411, 1 },
374 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
375 { S(1024), 817, 615, 412, 204, 1 },
377 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
378 { S(1024), 819, 616, 410, 207, 2 },
380 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
381 { S(512), 411, 308, 208, 104, 1 },
383 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
384 { S(512), 409, 307, 206, 102, 2 },
385 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
386 { S(512), 409, 309, 205, 103, 2 },
388 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
389 { S(256), 205, 155, 101, 52, 1 },
391 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
392 { S(128), 103, 78, 51, 27, 2 },
394 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
395 { S(64), 52, 39, 26, 14, 1 },
400 * Static global variables
402 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
403 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
404 static struct fasync_struct *fasync;
406 /**********************************************************************
408 * OS independent entropy store. Here are the functions which handle
409 * storing entropy in an entropy pool.
411 **********************************************************************/
413 struct entropy_store;
414 struct entropy_store {
415 /* read-only data: */
416 const struct poolinfo *poolinfo;
419 struct entropy_store *pull;
420 struct work_struct push_work;
422 /* read-write data: */
423 unsigned long last_pulled;
425 unsigned short add_ptr;
426 unsigned short input_rotate;
429 unsigned int initialized:1;
430 unsigned int limit:1;
431 unsigned int last_data_init:1;
432 __u8 last_data[EXTRACT_SIZE];
435 static void push_to_pool(struct work_struct *work);
436 static __u32 input_pool_data[INPUT_POOL_WORDS];
437 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
438 static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
440 static struct entropy_store input_pool = {
441 .poolinfo = &poolinfo_table[0],
444 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
445 .pool = input_pool_data
448 static struct entropy_store blocking_pool = {
449 .poolinfo = &poolinfo_table[1],
453 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
454 .pool = blocking_pool_data,
455 .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
459 static struct entropy_store nonblocking_pool = {
460 .poolinfo = &poolinfo_table[1],
461 .name = "nonblocking",
463 .lock = __SPIN_LOCK_UNLOCKED(nonblocking_pool.lock),
464 .pool = nonblocking_pool_data,
465 .push_work = __WORK_INITIALIZER(nonblocking_pool.push_work,
469 static __u32 const twist_table[8] = {
470 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
471 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
474 * This function adds bytes into the entropy "pool". It does not
475 * update the entropy estimate. The caller should call
476 * credit_entropy_bits if this is appropriate.
478 * The pool is stirred with a primitive polynomial of the appropriate
479 * degree, and then twisted. We twist by three bits at a time because
480 * it's cheap to do so and helps slightly in the expected case where
481 * the entropy is concentrated in the low-order bits.
483 static void _mix_pool_bytes(struct entropy_store *r, const void *in,
484 int nbytes, __u8 out[64])
486 unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
488 int wordmask = r->poolinfo->poolwords - 1;
489 const char *bytes = in;
492 tap1 = r->poolinfo->tap1;
493 tap2 = r->poolinfo->tap2;
494 tap3 = r->poolinfo->tap3;
495 tap4 = r->poolinfo->tap4;
496 tap5 = r->poolinfo->tap5;
499 input_rotate = ACCESS_ONCE(r->input_rotate);
500 i = ACCESS_ONCE(r->add_ptr);
502 /* mix one byte at a time to simplify size handling and churn faster */
504 w = rol32(*bytes++, input_rotate);
505 i = (i - 1) & wordmask;
507 /* XOR in the various taps */
509 w ^= r->pool[(i + tap1) & wordmask];
510 w ^= r->pool[(i + tap2) & wordmask];
511 w ^= r->pool[(i + tap3) & wordmask];
512 w ^= r->pool[(i + tap4) & wordmask];
513 w ^= r->pool[(i + tap5) & wordmask];
515 /* Mix the result back in with a twist */
516 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
519 * Normally, we add 7 bits of rotation to the pool.
520 * At the beginning of the pool, add an extra 7 bits
521 * rotation, so that successive passes spread the
522 * input bits across the pool evenly.
524 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
527 ACCESS_ONCE(r->input_rotate) = input_rotate;
528 ACCESS_ONCE(r->add_ptr) = i;
532 for (j = 0; j < 16; j++)
533 ((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
536 static void __mix_pool_bytes(struct entropy_store *r, const void *in,
537 int nbytes, __u8 out[64])
539 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
540 _mix_pool_bytes(r, in, nbytes, out);
543 static void mix_pool_bytes(struct entropy_store *r, const void *in,
544 int nbytes, __u8 out[64])
548 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
549 spin_lock_irqsave(&r->lock, flags);
550 _mix_pool_bytes(r, in, nbytes, out);
551 spin_unlock_irqrestore(&r->lock, flags);
557 unsigned short count;
558 unsigned char rotate;
559 unsigned char last_timer_intr;
563 * This is a fast mixing routine used by the interrupt randomness
564 * collector. It's hardcoded for an 128 bit pool and assumes that any
565 * locks that might be needed are taken by the caller.
567 static void fast_mix(struct fast_pool *f, __u32 input[4])
570 unsigned input_rotate = f->rotate;
572 w = rol32(input[0], input_rotate) ^ f->pool[0] ^ f->pool[3];
573 f->pool[0] = (w >> 3) ^ twist_table[w & 7];
574 input_rotate = (input_rotate + 14) & 31;
575 w = rol32(input[1], input_rotate) ^ f->pool[1] ^ f->pool[0];
576 f->pool[1] = (w >> 3) ^ twist_table[w & 7];
577 input_rotate = (input_rotate + 7) & 31;
578 w = rol32(input[2], input_rotate) ^ f->pool[2] ^ f->pool[1];
579 f->pool[2] = (w >> 3) ^ twist_table[w & 7];
580 input_rotate = (input_rotate + 7) & 31;
581 w = rol32(input[3], input_rotate) ^ f->pool[3] ^ f->pool[2];
582 f->pool[3] = (w >> 3) ^ twist_table[w & 7];
583 input_rotate = (input_rotate + 7) & 31;
585 f->rotate = input_rotate;
590 * Credit (or debit) the entropy store with n bits of entropy.
591 * Use credit_entropy_bits_safe() if the value comes from userspace
592 * or otherwise should be checked for extreme values.
594 static void credit_entropy_bits(struct entropy_store *r, int nbits)
596 int entropy_count, orig;
597 const int pool_size = r->poolinfo->poolfracbits;
598 int nfrac = nbits << ENTROPY_SHIFT;
604 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
607 entropy_count += nfrac;
610 * Credit: we have to account for the possibility of
611 * overwriting already present entropy. Even in the
612 * ideal case of pure Shannon entropy, new contributions
613 * approach the full value asymptotically:
615 * entropy <- entropy + (pool_size - entropy) *
616 * (1 - exp(-add_entropy/pool_size))
618 * For add_entropy <= pool_size/2 then
619 * (1 - exp(-add_entropy/pool_size)) >=
620 * (add_entropy/pool_size)*0.7869...
621 * so we can approximate the exponential with
622 * 3/4*add_entropy/pool_size and still be on the
623 * safe side by adding at most pool_size/2 at a time.
625 * The use of pool_size-2 in the while statement is to
626 * prevent rounding artifacts from making the loop
627 * arbitrarily long; this limits the loop to log2(pool_size)*2
628 * turns no matter how large nbits is.
631 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
632 /* The +2 corresponds to the /4 in the denominator */
635 unsigned int anfrac = min(pnfrac, pool_size/2);
637 ((pool_size - entropy_count)*anfrac*3) >> s;
639 entropy_count += add;
641 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
644 if (entropy_count < 0) {
645 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
646 r->name, entropy_count);
649 } else if (entropy_count > pool_size)
650 entropy_count = pool_size;
651 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
654 r->entropy_total += nbits;
655 if (!r->initialized && r->entropy_total > 128) {
657 r->entropy_total = 0;
658 if (r == &nonblocking_pool) {
659 prandom_reseed_late();
660 pr_notice("random: %s pool is initialized\n", r->name);
664 trace_credit_entropy_bits(r->name, nbits,
665 entropy_count >> ENTROPY_SHIFT,
666 r->entropy_total, _RET_IP_);
668 if (r == &input_pool) {
669 int entropy_bytes = entropy_count >> ENTROPY_SHIFT;
671 /* should we wake readers? */
672 if (entropy_bytes >= random_read_wakeup_thresh) {
673 wake_up_interruptible(&random_read_wait);
674 kill_fasync(&fasync, SIGIO, POLL_IN);
676 /* If the input pool is getting full, send some
677 * entropy to the two output pools, flipping back and
678 * forth between them, until the output pools are 75%
681 if (entropy_bytes > random_write_wakeup_thresh &&
683 r->entropy_total >= 2*random_read_wakeup_thresh) {
684 static struct entropy_store *last = &blocking_pool;
685 struct entropy_store *other = &blocking_pool;
687 if (last == &blocking_pool)
688 other = &nonblocking_pool;
689 if (other->entropy_count <=
690 3 * other->poolinfo->poolfracbits / 4)
692 if (last->entropy_count <=
693 3 * last->poolinfo->poolfracbits / 4) {
694 schedule_work(&last->push_work);
695 r->entropy_total = 0;
701 static void credit_entropy_bits_safe(struct entropy_store *r, int nbits)
703 const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
705 /* Cap the value to avoid overflows */
706 nbits = min(nbits, nbits_max);
707 nbits = max(nbits, -nbits_max);
709 credit_entropy_bits(r, nbits);
712 /*********************************************************************
714 * Entropy input management
716 *********************************************************************/
718 /* There is one of these per entropy source */
719 struct timer_rand_state {
721 long last_delta, last_delta2;
722 unsigned dont_count_entropy:1;
725 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
728 * Add device- or boot-specific data to the input and nonblocking
729 * pools to help initialize them to unique values.
731 * None of this adds any entropy, it is meant to avoid the
732 * problem of the nonblocking pool having similar initial state
733 * across largely identical devices.
735 void add_device_randomness(const void *buf, unsigned int size)
737 unsigned long time = random_get_entropy() ^ jiffies;
740 trace_add_device_randomness(size, _RET_IP_);
741 spin_lock_irqsave(&input_pool.lock, flags);
742 _mix_pool_bytes(&input_pool, buf, size, NULL);
743 _mix_pool_bytes(&input_pool, &time, sizeof(time), NULL);
744 spin_unlock_irqrestore(&input_pool.lock, flags);
746 spin_lock_irqsave(&nonblocking_pool.lock, flags);
747 _mix_pool_bytes(&nonblocking_pool, buf, size, NULL);
748 _mix_pool_bytes(&nonblocking_pool, &time, sizeof(time), NULL);
749 spin_unlock_irqrestore(&nonblocking_pool.lock, flags);
751 EXPORT_SYMBOL(add_device_randomness);
753 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
756 * This function adds entropy to the entropy "pool" by using timing
757 * delays. It uses the timer_rand_state structure to make an estimate
758 * of how many bits of entropy this call has added to the pool.
760 * The number "num" is also added to the pool - it should somehow describe
761 * the type of event which just happened. This is currently 0-255 for
762 * keyboard scan codes, and 256 upwards for interrupts.
765 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
767 struct entropy_store *r;
773 long delta, delta2, delta3;
777 sample.jiffies = jiffies;
778 sample.cycles = random_get_entropy();
780 r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
781 mix_pool_bytes(r, &sample, sizeof(sample), NULL);
784 * Calculate number of bits of randomness we probably added.
785 * We take into account the first, second and third-order deltas
786 * in order to make our estimate.
789 if (!state->dont_count_entropy) {
790 delta = sample.jiffies - state->last_time;
791 state->last_time = sample.jiffies;
793 delta2 = delta - state->last_delta;
794 state->last_delta = delta;
796 delta3 = delta2 - state->last_delta2;
797 state->last_delta2 = delta2;
811 * delta is now minimum absolute delta.
812 * Round down by 1 bit on general principles,
813 * and limit entropy entimate to 12 bits.
815 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
820 void add_input_randomness(unsigned int type, unsigned int code,
823 static unsigned char last_value;
825 /* ignore autorepeat and the like */
826 if (value == last_value)
830 add_timer_randomness(&input_timer_state,
831 (type << 4) ^ code ^ (code >> 4) ^ value);
832 trace_add_input_randomness(ENTROPY_BITS(&input_pool));
834 EXPORT_SYMBOL_GPL(add_input_randomness);
836 static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
838 void add_interrupt_randomness(int irq, int irq_flags)
840 struct entropy_store *r;
841 struct fast_pool *fast_pool = &__get_cpu_var(irq_randomness);
842 struct pt_regs *regs = get_irq_regs();
843 unsigned long now = jiffies;
844 cycles_t cycles = random_get_entropy();
845 __u32 input[4], c_high, j_high;
848 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
849 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
850 input[0] = cycles ^ j_high ^ irq;
851 input[1] = now ^ c_high;
852 ip = regs ? instruction_pointer(regs) : _RET_IP_;
856 fast_mix(fast_pool, input);
858 if ((fast_pool->count & 63) && !time_after(now, fast_pool->last + HZ))
861 fast_pool->last = now;
863 r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
864 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool), NULL);
866 * If we don't have a valid cycle counter, and we see
867 * back-to-back timer interrupts, then skip giving credit for
871 if (irq_flags & __IRQF_TIMER) {
872 if (fast_pool->last_timer_intr)
874 fast_pool->last_timer_intr = 1;
876 fast_pool->last_timer_intr = 0;
878 credit_entropy_bits(r, 1);
882 void add_disk_randomness(struct gendisk *disk)
884 if (!disk || !disk->random)
886 /* first major is 1, so we get >= 0x200 here */
887 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
888 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
892 /*********************************************************************
894 * Entropy extraction routines
896 *********************************************************************/
898 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
899 size_t nbytes, int min, int rsvd);
902 * This utility inline function is responsible for transferring entropy
903 * from the primary pool to the secondary extraction pool. We make
904 * sure we pull enough for a 'catastrophic reseed'.
906 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
907 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
909 if (r->limit == 0 && random_min_urandom_seed) {
910 unsigned long now = jiffies;
913 r->last_pulled + random_min_urandom_seed * HZ))
915 r->last_pulled = now;
918 r->entropy_count < (nbytes << (ENTROPY_SHIFT + 3)) &&
919 r->entropy_count < r->poolinfo->poolfracbits)
920 _xfer_secondary_pool(r, nbytes);
923 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
925 __u32 tmp[OUTPUT_POOL_WORDS];
927 /* For /dev/random's pool, always leave two wakeup worth's BITS */
928 int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
931 /* pull at least as many as BYTES as wakeup BITS */
932 bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
933 /* but never more than the buffer size */
934 bytes = min_t(int, bytes, sizeof(tmp));
936 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
937 ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
938 bytes = extract_entropy(r->pull, tmp, bytes,
939 random_read_wakeup_thresh / 8, rsvd);
940 mix_pool_bytes(r, tmp, bytes, NULL);
941 credit_entropy_bits(r, bytes*8);
945 * Used as a workqueue function so that when the input pool is getting
946 * full, we can "spill over" some entropy to the output pools. That
947 * way the output pools can store some of the excess entropy instead
948 * of letting it go to waste.
950 static void push_to_pool(struct work_struct *work)
952 struct entropy_store *r = container_of(work, struct entropy_store,
955 _xfer_secondary_pool(r, random_read_wakeup_thresh/8);
956 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
957 r->pull->entropy_count >> ENTROPY_SHIFT);
961 * These functions extracts randomness from the "entropy pool", and
962 * returns it in a buffer.
964 * The min parameter specifies the minimum amount we can pull before
965 * failing to avoid races that defeat catastrophic reseeding while the
966 * reserved parameter indicates how much entropy we must leave in the
967 * pool after each pull to avoid starving other readers.
969 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
972 static size_t account(struct entropy_store *r, size_t nbytes, int min,
976 int wakeup_write = 0;
978 int entropy_count, orig;
981 /* Hold lock while accounting */
982 spin_lock_irqsave(&r->lock, flags);
984 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
986 /* Can we pull enough? */
988 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
989 have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
991 if (have_bytes < min + reserved) {
994 /* If limited, never pull more than available */
995 if (r->limit && ibytes + reserved >= have_bytes)
996 ibytes = have_bytes - reserved;
998 if (have_bytes >= ibytes + reserved)
999 entropy_count -= ibytes << (ENTROPY_SHIFT + 3);
1001 entropy_count = reserved << (ENTROPY_SHIFT + 3);
1003 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1006 if ((r->entropy_count >> ENTROPY_SHIFT)
1007 < random_write_wakeup_thresh)
1010 spin_unlock_irqrestore(&r->lock, flags);
1012 trace_debit_entropy(r->name, 8 * ibytes);
1014 wake_up_interruptible(&random_write_wait);
1015 kill_fasync(&fasync, SIGIO, POLL_OUT);
1021 static void extract_buf(struct entropy_store *r, __u8 *out)
1026 unsigned long l[LONGS(20)];
1028 __u32 workspace[SHA_WORKSPACE_WORDS];
1030 unsigned long flags;
1032 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1034 spin_lock_irqsave(&r->lock, flags);
1035 for (i = 0; i < r->poolinfo->poolwords; i += 16)
1036 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1039 * If we have a architectural hardware random number
1040 * generator, mix that in, too.
1042 for (i = 0; i < LONGS(20); i++) {
1044 if (!arch_get_random_long(&v))
1050 * We mix the hash back into the pool to prevent backtracking
1051 * attacks (where the attacker knows the state of the pool
1052 * plus the current outputs, and attempts to find previous
1053 * ouputs), unless the hash function can be inverted. By
1054 * mixing at least a SHA1 worth of hash data back, we make
1055 * brute-forcing the feedback as hard as brute-forcing the
1058 __mix_pool_bytes(r, hash.w, sizeof(hash.w), extract);
1059 spin_unlock_irqrestore(&r->lock, flags);
1062 * To avoid duplicates, we atomically extract a portion of the
1063 * pool while mixing, and hash one final time.
1065 sha_transform(hash.w, extract, workspace);
1066 memset(extract, 0, sizeof(extract));
1067 memset(workspace, 0, sizeof(workspace));
1070 * In case the hash function has some recognizable output
1071 * pattern, we fold it in half. Thus, we always feed back
1072 * twice as much data as we output.
1074 hash.w[0] ^= hash.w[3];
1075 hash.w[1] ^= hash.w[4];
1076 hash.w[2] ^= rol32(hash.w[2], 16);
1078 memcpy(out, &hash, EXTRACT_SIZE);
1079 memset(&hash, 0, sizeof(hash));
1082 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1083 size_t nbytes, int min, int reserved)
1086 __u8 tmp[EXTRACT_SIZE];
1087 unsigned long flags;
1089 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1091 spin_lock_irqsave(&r->lock, flags);
1092 if (!r->last_data_init) {
1093 r->last_data_init = 1;
1094 spin_unlock_irqrestore(&r->lock, flags);
1095 trace_extract_entropy(r->name, EXTRACT_SIZE,
1096 ENTROPY_BITS(r), _RET_IP_);
1097 xfer_secondary_pool(r, EXTRACT_SIZE);
1098 extract_buf(r, tmp);
1099 spin_lock_irqsave(&r->lock, flags);
1100 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1102 spin_unlock_irqrestore(&r->lock, flags);
1105 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1106 xfer_secondary_pool(r, nbytes);
1107 nbytes = account(r, nbytes, min, reserved);
1110 extract_buf(r, tmp);
1113 spin_lock_irqsave(&r->lock, flags);
1114 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1115 panic("Hardware RNG duplicated output!\n");
1116 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1117 spin_unlock_irqrestore(&r->lock, flags);
1119 i = min_t(int, nbytes, EXTRACT_SIZE);
1120 memcpy(buf, tmp, i);
1126 /* Wipe data just returned from memory */
1127 memset(tmp, 0, sizeof(tmp));
1132 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1136 __u8 tmp[EXTRACT_SIZE];
1138 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1139 xfer_secondary_pool(r, nbytes);
1140 nbytes = account(r, nbytes, 0, 0);
1143 if (need_resched()) {
1144 if (signal_pending(current)) {
1152 extract_buf(r, tmp);
1153 i = min_t(int, nbytes, EXTRACT_SIZE);
1154 if (copy_to_user(buf, tmp, i)) {
1164 /* Wipe data just returned from memory */
1165 memset(tmp, 0, sizeof(tmp));
1171 * This function is the exported kernel interface. It returns some
1172 * number of good random numbers, suitable for key generation, seeding
1173 * TCP sequence numbers, etc. It does not use the hw random number
1174 * generator, if available; use get_random_bytes_arch() for that.
1176 void get_random_bytes(void *buf, int nbytes)
1178 #if DEBUG_RANDOM_BOOT > 0
1179 if (unlikely(nonblocking_pool.initialized == 0))
1180 printk(KERN_NOTICE "random: %pF get_random_bytes called "
1181 "with %d bits of entropy available\n",
1183 nonblocking_pool.entropy_total);
1185 trace_get_random_bytes(nbytes, _RET_IP_);
1186 extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
1188 EXPORT_SYMBOL(get_random_bytes);
1191 * This function will use the architecture-specific hardware random
1192 * number generator if it is available. The arch-specific hw RNG will
1193 * almost certainly be faster than what we can do in software, but it
1194 * is impossible to verify that it is implemented securely (as
1195 * opposed, to, say, the AES encryption of a sequence number using a
1196 * key known by the NSA). So it's useful if we need the speed, but
1197 * only if we're willing to trust the hardware manufacturer not to
1198 * have put in a back door.
1200 void get_random_bytes_arch(void *buf, int nbytes)
1204 trace_get_random_bytes_arch(nbytes, _RET_IP_);
1207 int chunk = min(nbytes, (int)sizeof(unsigned long));
1209 if (!arch_get_random_long(&v))
1212 memcpy(p, &v, chunk);
1218 extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
1220 EXPORT_SYMBOL(get_random_bytes_arch);
1224 * init_std_data - initialize pool with system data
1226 * @r: pool to initialize
1228 * This function clears the pool's entropy count and mixes some system
1229 * data into the pool to prepare it for use. The pool is not cleared
1230 * as that can only decrease the entropy in the pool.
1232 static void init_std_data(struct entropy_store *r)
1235 ktime_t now = ktime_get_real();
1238 r->last_pulled = jiffies;
1239 mix_pool_bytes(r, &now, sizeof(now), NULL);
1240 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1241 if (!arch_get_random_long(&rv))
1242 rv = random_get_entropy();
1243 mix_pool_bytes(r, &rv, sizeof(rv), NULL);
1245 mix_pool_bytes(r, utsname(), sizeof(*(utsname())), NULL);
1249 * Note that setup_arch() may call add_device_randomness()
1250 * long before we get here. This allows seeding of the pools
1251 * with some platform dependent data very early in the boot
1252 * process. But it limits our options here. We must use
1253 * statically allocated structures that already have all
1254 * initializations complete at compile time. We should also
1255 * take care not to overwrite the precious per platform data
1258 static int rand_initialize(void)
1260 init_std_data(&input_pool);
1261 init_std_data(&blocking_pool);
1262 init_std_data(&nonblocking_pool);
1265 early_initcall(rand_initialize);
1268 void rand_initialize_disk(struct gendisk *disk)
1270 struct timer_rand_state *state;
1273 * If kzalloc returns null, we just won't use that entropy
1276 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1278 state->last_time = INITIAL_JIFFIES;
1279 disk->random = state;
1285 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1287 ssize_t n, retval = 0, count = 0;
1292 while (nbytes > 0) {
1294 if (n > SEC_XFER_SIZE)
1297 n = extract_entropy_user(&blocking_pool, buf, n);
1304 trace_random_read(n*8, (nbytes-n)*8,
1305 ENTROPY_BITS(&blocking_pool),
1306 ENTROPY_BITS(&input_pool));
1309 if (file->f_flags & O_NONBLOCK) {
1314 wait_event_interruptible(random_read_wait,
1315 ENTROPY_BITS(&input_pool) >=
1316 random_read_wakeup_thresh);
1318 if (signal_pending(current)) {
1319 retval = -ERESTARTSYS;
1329 break; /* This break makes the device work */
1330 /* like a named pipe */
1333 return (count ? count : retval);
1337 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1341 if (unlikely(nonblocking_pool.initialized == 0))
1342 printk_once(KERN_NOTICE "random: %s urandom read "
1343 "with %d bits of entropy available\n",
1344 current->comm, nonblocking_pool.entropy_total);
1346 ret = extract_entropy_user(&nonblocking_pool, buf, nbytes);
1348 trace_urandom_read(8 * nbytes, ENTROPY_BITS(&nonblocking_pool),
1349 ENTROPY_BITS(&input_pool));
1354 random_poll(struct file *file, poll_table * wait)
1358 poll_wait(file, &random_read_wait, wait);
1359 poll_wait(file, &random_write_wait, wait);
1361 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_thresh)
1362 mask |= POLLIN | POLLRDNORM;
1363 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_thresh)
1364 mask |= POLLOUT | POLLWRNORM;
1369 write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1373 const char __user *p = buffer;
1376 bytes = min(count, sizeof(buf));
1377 if (copy_from_user(&buf, p, bytes))
1383 mix_pool_bytes(r, buf, bytes, NULL);
1390 static ssize_t random_write(struct file *file, const char __user *buffer,
1391 size_t count, loff_t *ppos)
1395 ret = write_pool(&blocking_pool, buffer, count);
1398 ret = write_pool(&nonblocking_pool, buffer, count);
1402 return (ssize_t)count;
1405 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1407 int size, ent_count;
1408 int __user *p = (int __user *)arg;
1413 /* inherently racy, no point locking */
1414 ent_count = ENTROPY_BITS(&input_pool);
1415 if (put_user(ent_count, p))
1418 case RNDADDTOENTCNT:
1419 if (!capable(CAP_SYS_ADMIN))
1421 if (get_user(ent_count, p))
1423 credit_entropy_bits_safe(&input_pool, ent_count);
1426 if (!capable(CAP_SYS_ADMIN))
1428 if (get_user(ent_count, p++))
1432 if (get_user(size, p++))
1434 retval = write_pool(&input_pool, (const char __user *)p,
1438 credit_entropy_bits_safe(&input_pool, ent_count);
1443 * Clear the entropy pool counters. We no longer clear
1444 * the entropy pool, as that's silly.
1446 if (!capable(CAP_SYS_ADMIN))
1448 input_pool.entropy_count = 0;
1449 nonblocking_pool.entropy_count = 0;
1450 blocking_pool.entropy_count = 0;
1457 static int random_fasync(int fd, struct file *filp, int on)
1459 return fasync_helper(fd, filp, on, &fasync);
1462 const struct file_operations random_fops = {
1463 .read = random_read,
1464 .write = random_write,
1465 .poll = random_poll,
1466 .unlocked_ioctl = random_ioctl,
1467 .fasync = random_fasync,
1468 .llseek = noop_llseek,
1471 const struct file_operations urandom_fops = {
1472 .read = urandom_read,
1473 .write = random_write,
1474 .unlocked_ioctl = random_ioctl,
1475 .fasync = random_fasync,
1476 .llseek = noop_llseek,
1479 /***************************************************************
1480 * Random UUID interface
1482 * Used here for a Boot ID, but can be useful for other kernel
1484 ***************************************************************/
1487 * Generate random UUID
1489 void generate_random_uuid(unsigned char uuid_out[16])
1491 get_random_bytes(uuid_out, 16);
1492 /* Set UUID version to 4 --- truly random generation */
1493 uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1494 /* Set the UUID variant to DCE */
1495 uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1497 EXPORT_SYMBOL(generate_random_uuid);
1499 /********************************************************************
1503 ********************************************************************/
1505 #ifdef CONFIG_SYSCTL
1507 #include <linux/sysctl.h>
1509 static int min_read_thresh = 8, min_write_thresh;
1510 static int max_read_thresh = INPUT_POOL_WORDS * 32;
1511 static int max_write_thresh = INPUT_POOL_WORDS * 32;
1512 static char sysctl_bootid[16];
1515 * These functions is used to return both the bootid UUID, and random
1516 * UUID. The difference is in whether table->data is NULL; if it is,
1517 * then a new UUID is generated and returned to the user.
1519 * If the user accesses this via the proc interface, it will be returned
1520 * as an ASCII string in the standard UUID format. If accesses via the
1521 * sysctl system call, it is returned as 16 bytes of binary data.
1523 static int proc_do_uuid(struct ctl_table *table, int write,
1524 void __user *buffer, size_t *lenp, loff_t *ppos)
1526 struct ctl_table fake_table;
1527 unsigned char buf[64], tmp_uuid[16], *uuid;
1532 generate_random_uuid(uuid);
1534 static DEFINE_SPINLOCK(bootid_spinlock);
1536 spin_lock(&bootid_spinlock);
1538 generate_random_uuid(uuid);
1539 spin_unlock(&bootid_spinlock);
1542 sprintf(buf, "%pU", uuid);
1544 fake_table.data = buf;
1545 fake_table.maxlen = sizeof(buf);
1547 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1551 * Return entropy available scaled to integral bits
1553 static int proc_do_entropy(ctl_table *table, int write,
1554 void __user *buffer, size_t *lenp, loff_t *ppos)
1556 ctl_table fake_table;
1559 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
1561 fake_table.data = &entropy_count;
1562 fake_table.maxlen = sizeof(entropy_count);
1564 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
1567 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1568 extern struct ctl_table random_table[];
1569 struct ctl_table random_table[] = {
1571 .procname = "poolsize",
1572 .data = &sysctl_poolsize,
1573 .maxlen = sizeof(int),
1575 .proc_handler = proc_dointvec,
1578 .procname = "entropy_avail",
1579 .maxlen = sizeof(int),
1581 .proc_handler = proc_do_entropy,
1582 .data = &input_pool.entropy_count,
1585 .procname = "read_wakeup_threshold",
1586 .data = &random_read_wakeup_thresh,
1587 .maxlen = sizeof(int),
1589 .proc_handler = proc_dointvec_minmax,
1590 .extra1 = &min_read_thresh,
1591 .extra2 = &max_read_thresh,
1594 .procname = "write_wakeup_threshold",
1595 .data = &random_write_wakeup_thresh,
1596 .maxlen = sizeof(int),
1598 .proc_handler = proc_dointvec_minmax,
1599 .extra1 = &min_write_thresh,
1600 .extra2 = &max_write_thresh,
1603 .procname = "urandom_min_reseed_secs",
1604 .data = &random_min_urandom_seed,
1605 .maxlen = sizeof(int),
1607 .proc_handler = proc_dointvec,
1610 .procname = "boot_id",
1611 .data = &sysctl_bootid,
1614 .proc_handler = proc_do_uuid,
1620 .proc_handler = proc_do_uuid,
1624 #endif /* CONFIG_SYSCTL */
1626 static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
1628 int random_int_secret_init(void)
1630 get_random_bytes(random_int_secret, sizeof(random_int_secret));
1635 * Get a random word for internal kernel use only. Similar to urandom but
1636 * with the goal of minimal entropy pool depletion. As a result, the random
1637 * value is not cryptographically secure but for several uses the cost of
1638 * depleting entropy is too high
1640 static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
1641 unsigned int get_random_int(void)
1646 if (arch_get_random_int(&ret))
1649 hash = get_cpu_var(get_random_int_hash);
1651 hash[0] += current->pid + jiffies + random_get_entropy();
1652 md5_transform(hash, random_int_secret);
1654 put_cpu_var(get_random_int_hash);
1658 EXPORT_SYMBOL(get_random_int);
1661 * randomize_range() returns a start address such that
1663 * [...... <range> .....]
1666 * a <range> with size "len" starting at the return value is inside in the
1667 * area defined by [start, end], but is otherwise randomized.
1670 randomize_range(unsigned long start, unsigned long end, unsigned long len)
1672 unsigned long range = end - len - start;
1674 if (end <= start + len)
1676 return PAGE_ALIGN(get_random_int() % range + start);