Merge tag 'stable/for-linus-3.16-rc1-tag' of git://git.kernel.org/pub/scm/linux/kerne...
[firefly-linux-kernel-4.4.55.git] / drivers / clk / sunxi / clk-sunxi.c
1 /*
2  * Copyright 2013 Emilio López
3  *
4  * Emilio López <emilio@elopez.com.ar>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  */
16
17 #include <linux/clk-provider.h>
18 #include <linux/clkdev.h>
19 #include <linux/of.h>
20 #include <linux/of_address.h>
21 #include <linux/reset-controller.h>
22
23 #include "clk-factors.h"
24
25 static DEFINE_SPINLOCK(clk_lock);
26
27 /* Maximum number of parents our clocks have */
28 #define SUNXI_MAX_PARENTS       5
29
30 /**
31  * sun4i_get_pll1_factors() - calculates n, k, m, p factors for PLL1
32  * PLL1 rate is calculated as follows
33  * rate = (parent_rate * n * (k + 1) >> p) / (m + 1);
34  * parent_rate is always 24Mhz
35  */
36
37 static void sun4i_get_pll1_factors(u32 *freq, u32 parent_rate,
38                                    u8 *n, u8 *k, u8 *m, u8 *p)
39 {
40         u8 div;
41
42         /* Normalize value to a 6M multiple */
43         div = *freq / 6000000;
44         *freq = 6000000 * div;
45
46         /* we were called to round the frequency, we can now return */
47         if (n == NULL)
48                 return;
49
50         /* m is always zero for pll1 */
51         *m = 0;
52
53         /* k is 1 only on these cases */
54         if (*freq >= 768000000 || *freq == 42000000 || *freq == 54000000)
55                 *k = 1;
56         else
57                 *k = 0;
58
59         /* p will be 3 for divs under 10 */
60         if (div < 10)
61                 *p = 3;
62
63         /* p will be 2 for divs between 10 - 20 and odd divs under 32 */
64         else if (div < 20 || (div < 32 && (div & 1)))
65                 *p = 2;
66
67         /* p will be 1 for even divs under 32, divs under 40 and odd pairs
68          * of divs between 40-62 */
69         else if (div < 40 || (div < 64 && (div & 2)))
70                 *p = 1;
71
72         /* any other entries have p = 0 */
73         else
74                 *p = 0;
75
76         /* calculate a suitable n based on k and p */
77         div <<= *p;
78         div /= (*k + 1);
79         *n = div / 4;
80 }
81
82 /**
83  * sun6i_a31_get_pll1_factors() - calculates n, k and m factors for PLL1
84  * PLL1 rate is calculated as follows
85  * rate = parent_rate * (n + 1) * (k + 1) / (m + 1);
86  * parent_rate should always be 24MHz
87  */
88 static void sun6i_a31_get_pll1_factors(u32 *freq, u32 parent_rate,
89                                        u8 *n, u8 *k, u8 *m, u8 *p)
90 {
91         /*
92          * We can operate only on MHz, this will make our life easier
93          * later.
94          */
95         u32 freq_mhz = *freq / 1000000;
96         u32 parent_freq_mhz = parent_rate / 1000000;
97
98         /*
99          * Round down the frequency to the closest multiple of either
100          * 6 or 16
101          */
102         u32 round_freq_6 = round_down(freq_mhz, 6);
103         u32 round_freq_16 = round_down(freq_mhz, 16);
104
105         if (round_freq_6 > round_freq_16)
106                 freq_mhz = round_freq_6;
107         else
108                 freq_mhz = round_freq_16;
109
110         *freq = freq_mhz * 1000000;
111
112         /*
113          * If the factors pointer are null, we were just called to
114          * round down the frequency.
115          * Exit.
116          */
117         if (n == NULL)
118                 return;
119
120         /* If the frequency is a multiple of 32 MHz, k is always 3 */
121         if (!(freq_mhz % 32))
122                 *k = 3;
123         /* If the frequency is a multiple of 9 MHz, k is always 2 */
124         else if (!(freq_mhz % 9))
125                 *k = 2;
126         /* If the frequency is a multiple of 8 MHz, k is always 1 */
127         else if (!(freq_mhz % 8))
128                 *k = 1;
129         /* Otherwise, we don't use the k factor */
130         else
131                 *k = 0;
132
133         /*
134          * If the frequency is a multiple of 2 but not a multiple of
135          * 3, m is 3. This is the first time we use 6 here, yet we
136          * will use it on several other places.
137          * We use this number because it's the lowest frequency we can
138          * generate (with n = 0, k = 0, m = 3), so every other frequency
139          * somehow relates to this frequency.
140          */
141         if ((freq_mhz % 6) == 2 || (freq_mhz % 6) == 4)
142                 *m = 2;
143         /*
144          * If the frequency is a multiple of 6MHz, but the factor is
145          * odd, m will be 3
146          */
147         else if ((freq_mhz / 6) & 1)
148                 *m = 3;
149         /* Otherwise, we end up with m = 1 */
150         else
151                 *m = 1;
152
153         /* Calculate n thanks to the above factors we already got */
154         *n = freq_mhz * (*m + 1) / ((*k + 1) * parent_freq_mhz) - 1;
155
156         /*
157          * If n end up being outbound, and that we can still decrease
158          * m, do it.
159          */
160         if ((*n + 1) > 31 && (*m + 1) > 1) {
161                 *n = (*n + 1) / 2 - 1;
162                 *m = (*m + 1) / 2 - 1;
163         }
164 }
165
166 /**
167  * sun4i_get_pll5_factors() - calculates n, k factors for PLL5
168  * PLL5 rate is calculated as follows
169  * rate = parent_rate * n * (k + 1)
170  * parent_rate is always 24Mhz
171  */
172
173 static void sun4i_get_pll5_factors(u32 *freq, u32 parent_rate,
174                                    u8 *n, u8 *k, u8 *m, u8 *p)
175 {
176         u8 div;
177
178         /* Normalize value to a parent_rate multiple (24M) */
179         div = *freq / parent_rate;
180         *freq = parent_rate * div;
181
182         /* we were called to round the frequency, we can now return */
183         if (n == NULL)
184                 return;
185
186         if (div < 31)
187                 *k = 0;
188         else if (div / 2 < 31)
189                 *k = 1;
190         else if (div / 3 < 31)
191                 *k = 2;
192         else
193                 *k = 3;
194
195         *n = DIV_ROUND_UP(div, (*k+1));
196 }
197
198 /**
199  * sun6i_a31_get_pll6_factors() - calculates n, k factors for A31 PLL6
200  * PLL6 rate is calculated as follows
201  * rate = parent_rate * n * (k + 1) / 2
202  * parent_rate is always 24Mhz
203  */
204
205 static void sun6i_a31_get_pll6_factors(u32 *freq, u32 parent_rate,
206                                        u8 *n, u8 *k, u8 *m, u8 *p)
207 {
208         u8 div;
209
210         /*
211          * We always have 24MHz / 2, so we can just say that our
212          * parent clock is 12MHz.
213          */
214         parent_rate = parent_rate / 2;
215
216         /* Normalize value to a parent_rate multiple (24M / 2) */
217         div = *freq / parent_rate;
218         *freq = parent_rate * div;
219
220         /* we were called to round the frequency, we can now return */
221         if (n == NULL)
222                 return;
223
224         *k = div / 32;
225         if (*k > 3)
226                 *k = 3;
227
228         *n = DIV_ROUND_UP(div, (*k+1));
229 }
230
231 /**
232  * sun4i_get_apb1_factors() - calculates m, p factors for APB1
233  * APB1 rate is calculated as follows
234  * rate = (parent_rate >> p) / (m + 1);
235  */
236
237 static void sun4i_get_apb1_factors(u32 *freq, u32 parent_rate,
238                                    u8 *n, u8 *k, u8 *m, u8 *p)
239 {
240         u8 calcm, calcp;
241
242         if (parent_rate < *freq)
243                 *freq = parent_rate;
244
245         parent_rate = DIV_ROUND_UP(parent_rate, *freq);
246
247         /* Invalid rate! */
248         if (parent_rate > 32)
249                 return;
250
251         if (parent_rate <= 4)
252                 calcp = 0;
253         else if (parent_rate <= 8)
254                 calcp = 1;
255         else if (parent_rate <= 16)
256                 calcp = 2;
257         else
258                 calcp = 3;
259
260         calcm = (parent_rate >> calcp) - 1;
261
262         *freq = (parent_rate >> calcp) / (calcm + 1);
263
264         /* we were called to round the frequency, we can now return */
265         if (n == NULL)
266                 return;
267
268         *m = calcm;
269         *p = calcp;
270 }
271
272
273
274 /**
275  * sun4i_get_mod0_factors() - calculates m, n factors for MOD0-style clocks
276  * MOD0 rate is calculated as follows
277  * rate = (parent_rate >> p) / (m + 1);
278  */
279
280 static void sun4i_get_mod0_factors(u32 *freq, u32 parent_rate,
281                                    u8 *n, u8 *k, u8 *m, u8 *p)
282 {
283         u8 div, calcm, calcp;
284
285         /* These clocks can only divide, so we will never be able to achieve
286          * frequencies higher than the parent frequency */
287         if (*freq > parent_rate)
288                 *freq = parent_rate;
289
290         div = DIV_ROUND_UP(parent_rate, *freq);
291
292         if (div < 16)
293                 calcp = 0;
294         else if (div / 2 < 16)
295                 calcp = 1;
296         else if (div / 4 < 16)
297                 calcp = 2;
298         else
299                 calcp = 3;
300
301         calcm = DIV_ROUND_UP(div, 1 << calcp);
302
303         *freq = (parent_rate >> calcp) / calcm;
304
305         /* we were called to round the frequency, we can now return */
306         if (n == NULL)
307                 return;
308
309         *m = calcm - 1;
310         *p = calcp;
311 }
312
313
314
315 /**
316  * sun7i_a20_get_out_factors() - calculates m, p factors for CLK_OUT_A/B
317  * CLK_OUT rate is calculated as follows
318  * rate = (parent_rate >> p) / (m + 1);
319  */
320
321 static void sun7i_a20_get_out_factors(u32 *freq, u32 parent_rate,
322                                       u8 *n, u8 *k, u8 *m, u8 *p)
323 {
324         u8 div, calcm, calcp;
325
326         /* These clocks can only divide, so we will never be able to achieve
327          * frequencies higher than the parent frequency */
328         if (*freq > parent_rate)
329                 *freq = parent_rate;
330
331         div = DIV_ROUND_UP(parent_rate, *freq);
332
333         if (div < 32)
334                 calcp = 0;
335         else if (div / 2 < 32)
336                 calcp = 1;
337         else if (div / 4 < 32)
338                 calcp = 2;
339         else
340                 calcp = 3;
341
342         calcm = DIV_ROUND_UP(div, 1 << calcp);
343
344         *freq = (parent_rate >> calcp) / calcm;
345
346         /* we were called to round the frequency, we can now return */
347         if (n == NULL)
348                 return;
349
350         *m = calcm - 1;
351         *p = calcp;
352 }
353
354 /**
355  * clk_sunxi_mmc_phase_control() - configures MMC clock phase control
356  */
357
358 void clk_sunxi_mmc_phase_control(struct clk *clk, u8 sample, u8 output)
359 {
360         #define to_clk_composite(_hw) container_of(_hw, struct clk_composite, hw)
361         #define to_clk_factors(_hw) container_of(_hw, struct clk_factors, hw)
362
363         struct clk_hw *hw = __clk_get_hw(clk);
364         struct clk_composite *composite = to_clk_composite(hw);
365         struct clk_hw *rate_hw = composite->rate_hw;
366         struct clk_factors *factors = to_clk_factors(rate_hw);
367         unsigned long flags = 0;
368         u32 reg;
369
370         if (factors->lock)
371                 spin_lock_irqsave(factors->lock, flags);
372
373         reg = readl(factors->reg);
374
375         /* set sample clock phase control */
376         reg &= ~(0x7 << 20);
377         reg |= ((sample & 0x7) << 20);
378
379         /* set output clock phase control */
380         reg &= ~(0x7 << 8);
381         reg |= ((output & 0x7) << 8);
382
383         writel(reg, factors->reg);
384
385         if (factors->lock)
386                 spin_unlock_irqrestore(factors->lock, flags);
387 }
388 EXPORT_SYMBOL(clk_sunxi_mmc_phase_control);
389
390
391 /**
392  * sunxi_factors_clk_setup() - Setup function for factor clocks
393  */
394
395 #define SUNXI_FACTORS_MUX_MASK 0x3
396
397 struct factors_data {
398         int enable;
399         int mux;
400         struct clk_factors_config *table;
401         void (*getter) (u32 *rate, u32 parent_rate, u8 *n, u8 *k, u8 *m, u8 *p);
402         const char *name;
403 };
404
405 static struct clk_factors_config sun4i_pll1_config = {
406         .nshift = 8,
407         .nwidth = 5,
408         .kshift = 4,
409         .kwidth = 2,
410         .mshift = 0,
411         .mwidth = 2,
412         .pshift = 16,
413         .pwidth = 2,
414 };
415
416 static struct clk_factors_config sun6i_a31_pll1_config = {
417         .nshift = 8,
418         .nwidth = 5,
419         .kshift = 4,
420         .kwidth = 2,
421         .mshift = 0,
422         .mwidth = 2,
423 };
424
425 static struct clk_factors_config sun4i_pll5_config = {
426         .nshift = 8,
427         .nwidth = 5,
428         .kshift = 4,
429         .kwidth = 2,
430 };
431
432 static struct clk_factors_config sun6i_a31_pll6_config = {
433         .nshift = 8,
434         .nwidth = 5,
435         .kshift = 4,
436         .kwidth = 2,
437 };
438
439 static struct clk_factors_config sun4i_apb1_config = {
440         .mshift = 0,
441         .mwidth = 5,
442         .pshift = 16,
443         .pwidth = 2,
444 };
445
446 /* user manual says "n" but it's really "p" */
447 static struct clk_factors_config sun4i_mod0_config = {
448         .mshift = 0,
449         .mwidth = 4,
450         .pshift = 16,
451         .pwidth = 2,
452 };
453
454 /* user manual says "n" but it's really "p" */
455 static struct clk_factors_config sun7i_a20_out_config = {
456         .mshift = 8,
457         .mwidth = 5,
458         .pshift = 20,
459         .pwidth = 2,
460 };
461
462 static const struct factors_data sun4i_pll1_data __initconst = {
463         .enable = 31,
464         .table = &sun4i_pll1_config,
465         .getter = sun4i_get_pll1_factors,
466 };
467
468 static const struct factors_data sun6i_a31_pll1_data __initconst = {
469         .enable = 31,
470         .table = &sun6i_a31_pll1_config,
471         .getter = sun6i_a31_get_pll1_factors,
472 };
473
474 static const struct factors_data sun7i_a20_pll4_data __initconst = {
475         .enable = 31,
476         .table = &sun4i_pll5_config,
477         .getter = sun4i_get_pll5_factors,
478 };
479
480 static const struct factors_data sun4i_pll5_data __initconst = {
481         .enable = 31,
482         .table = &sun4i_pll5_config,
483         .getter = sun4i_get_pll5_factors,
484         .name = "pll5",
485 };
486
487 static const struct factors_data sun4i_pll6_data __initconst = {
488         .enable = 31,
489         .table = &sun4i_pll5_config,
490         .getter = sun4i_get_pll5_factors,
491         .name = "pll6",
492 };
493
494 static const struct factors_data sun6i_a31_pll6_data __initconst = {
495         .enable = 31,
496         .table = &sun6i_a31_pll6_config,
497         .getter = sun6i_a31_get_pll6_factors,
498 };
499
500 static const struct factors_data sun4i_apb1_data __initconst = {
501         .table = &sun4i_apb1_config,
502         .getter = sun4i_get_apb1_factors,
503 };
504
505 static const struct factors_data sun4i_mod0_data __initconst = {
506         .enable = 31,
507         .mux = 24,
508         .table = &sun4i_mod0_config,
509         .getter = sun4i_get_mod0_factors,
510 };
511
512 static const struct factors_data sun7i_a20_out_data __initconst = {
513         .enable = 31,
514         .mux = 24,
515         .table = &sun7i_a20_out_config,
516         .getter = sun7i_a20_get_out_factors,
517 };
518
519 static struct clk * __init sunxi_factors_clk_setup(struct device_node *node,
520                                                 const struct factors_data *data)
521 {
522         struct clk *clk;
523         struct clk_factors *factors;
524         struct clk_gate *gate = NULL;
525         struct clk_mux *mux = NULL;
526         struct clk_hw *gate_hw = NULL;
527         struct clk_hw *mux_hw = NULL;
528         const char *clk_name = node->name;
529         const char *parents[SUNXI_MAX_PARENTS];
530         void *reg;
531         int i = 0;
532
533         reg = of_iomap(node, 0);
534
535         /* if we have a mux, we will have >1 parents */
536         while (i < SUNXI_MAX_PARENTS &&
537                (parents[i] = of_clk_get_parent_name(node, i)) != NULL)
538                 i++;
539
540         /*
541          * some factor clocks, such as pll5 and pll6, may have multiple
542          * outputs, and have their name designated in factors_data
543          */
544         if (data->name)
545                 clk_name = data->name;
546         else
547                 of_property_read_string(node, "clock-output-names", &clk_name);
548
549         factors = kzalloc(sizeof(struct clk_factors), GFP_KERNEL);
550         if (!factors)
551                 return NULL;
552
553         /* Add a gate if this factor clock can be gated */
554         if (data->enable) {
555                 gate = kzalloc(sizeof(struct clk_gate), GFP_KERNEL);
556                 if (!gate) {
557                         kfree(factors);
558                         return NULL;
559                 }
560
561                 /* set up gate properties */
562                 gate->reg = reg;
563                 gate->bit_idx = data->enable;
564                 gate->lock = &clk_lock;
565                 gate_hw = &gate->hw;
566         }
567
568         /* Add a mux if this factor clock can be muxed */
569         if (data->mux) {
570                 mux = kzalloc(sizeof(struct clk_mux), GFP_KERNEL);
571                 if (!mux) {
572                         kfree(factors);
573                         kfree(gate);
574                         return NULL;
575                 }
576
577                 /* set up gate properties */
578                 mux->reg = reg;
579                 mux->shift = data->mux;
580                 mux->mask = SUNXI_FACTORS_MUX_MASK;
581                 mux->lock = &clk_lock;
582                 mux_hw = &mux->hw;
583         }
584
585         /* set up factors properties */
586         factors->reg = reg;
587         factors->config = data->table;
588         factors->get_factors = data->getter;
589         factors->lock = &clk_lock;
590
591         clk = clk_register_composite(NULL, clk_name,
592                         parents, i,
593                         mux_hw, &clk_mux_ops,
594                         &factors->hw, &clk_factors_ops,
595                         gate_hw, &clk_gate_ops, 0);
596
597         if (!IS_ERR(clk)) {
598                 of_clk_add_provider(node, of_clk_src_simple_get, clk);
599                 clk_register_clkdev(clk, clk_name, NULL);
600         }
601
602         return clk;
603 }
604
605
606
607 /**
608  * sunxi_mux_clk_setup() - Setup function for muxes
609  */
610
611 #define SUNXI_MUX_GATE_WIDTH    2
612
613 struct mux_data {
614         u8 shift;
615 };
616
617 static const struct mux_data sun4i_cpu_mux_data __initconst = {
618         .shift = 16,
619 };
620
621 static const struct mux_data sun6i_a31_ahb1_mux_data __initconst = {
622         .shift = 12,
623 };
624
625 static const struct mux_data sun4i_apb1_mux_data __initconst = {
626         .shift = 24,
627 };
628
629 static void __init sunxi_mux_clk_setup(struct device_node *node,
630                                        struct mux_data *data)
631 {
632         struct clk *clk;
633         const char *clk_name = node->name;
634         const char *parents[SUNXI_MAX_PARENTS];
635         void *reg;
636         int i = 0;
637
638         reg = of_iomap(node, 0);
639
640         while (i < SUNXI_MAX_PARENTS &&
641                (parents[i] = of_clk_get_parent_name(node, i)) != NULL)
642                 i++;
643
644         of_property_read_string(node, "clock-output-names", &clk_name);
645
646         clk = clk_register_mux(NULL, clk_name, parents, i,
647                                CLK_SET_RATE_NO_REPARENT, reg,
648                                data->shift, SUNXI_MUX_GATE_WIDTH,
649                                0, &clk_lock);
650
651         if (clk) {
652                 of_clk_add_provider(node, of_clk_src_simple_get, clk);
653                 clk_register_clkdev(clk, clk_name, NULL);
654         }
655 }
656
657
658
659 /**
660  * sunxi_divider_clk_setup() - Setup function for simple divider clocks
661  */
662
663 struct div_data {
664         u8      shift;
665         u8      pow;
666         u8      width;
667 };
668
669 static const struct div_data sun4i_axi_data __initconst = {
670         .shift  = 0,
671         .pow    = 0,
672         .width  = 2,
673 };
674
675 static const struct div_data sun4i_ahb_data __initconst = {
676         .shift  = 4,
677         .pow    = 1,
678         .width  = 2,
679 };
680
681 static const struct div_data sun4i_apb0_data __initconst = {
682         .shift  = 8,
683         .pow    = 1,
684         .width  = 2,
685 };
686
687 static const struct div_data sun6i_a31_apb2_div_data __initconst = {
688         .shift  = 0,
689         .pow    = 0,
690         .width  = 4,
691 };
692
693 static void __init sunxi_divider_clk_setup(struct device_node *node,
694                                            struct div_data *data)
695 {
696         struct clk *clk;
697         const char *clk_name = node->name;
698         const char *clk_parent;
699         void *reg;
700
701         reg = of_iomap(node, 0);
702
703         clk_parent = of_clk_get_parent_name(node, 0);
704
705         of_property_read_string(node, "clock-output-names", &clk_name);
706
707         clk = clk_register_divider(NULL, clk_name, clk_parent, 0,
708                                    reg, data->shift, data->width,
709                                    data->pow ? CLK_DIVIDER_POWER_OF_TWO : 0,
710                                    &clk_lock);
711         if (clk) {
712                 of_clk_add_provider(node, of_clk_src_simple_get, clk);
713                 clk_register_clkdev(clk, clk_name, NULL);
714         }
715 }
716
717
718
719 /**
720  * sunxi_gates_reset... - reset bits in leaf gate clk registers handling
721  */
722
723 struct gates_reset_data {
724         void __iomem                    *reg;
725         spinlock_t                      *lock;
726         struct reset_controller_dev     rcdev;
727 };
728
729 static int sunxi_gates_reset_assert(struct reset_controller_dev *rcdev,
730                               unsigned long id)
731 {
732         struct gates_reset_data *data = container_of(rcdev,
733                                                      struct gates_reset_data,
734                                                      rcdev);
735         unsigned long flags;
736         u32 reg;
737
738         spin_lock_irqsave(data->lock, flags);
739
740         reg = readl(data->reg);
741         writel(reg & ~BIT(id), data->reg);
742
743         spin_unlock_irqrestore(data->lock, flags);
744
745         return 0;
746 }
747
748 static int sunxi_gates_reset_deassert(struct reset_controller_dev *rcdev,
749                                 unsigned long id)
750 {
751         struct gates_reset_data *data = container_of(rcdev,
752                                                      struct gates_reset_data,
753                                                      rcdev);
754         unsigned long flags;
755         u32 reg;
756
757         spin_lock_irqsave(data->lock, flags);
758
759         reg = readl(data->reg);
760         writel(reg | BIT(id), data->reg);
761
762         spin_unlock_irqrestore(data->lock, flags);
763
764         return 0;
765 }
766
767 static struct reset_control_ops sunxi_gates_reset_ops = {
768         .assert         = sunxi_gates_reset_assert,
769         .deassert       = sunxi_gates_reset_deassert,
770 };
771
772 /**
773  * sunxi_gates_clk_setup() - Setup function for leaf gates on clocks
774  */
775
776 #define SUNXI_GATES_MAX_SIZE    64
777
778 struct gates_data {
779         DECLARE_BITMAP(mask, SUNXI_GATES_MAX_SIZE);
780         u32 reset_mask;
781 };
782
783 static const struct gates_data sun4i_axi_gates_data __initconst = {
784         .mask = {1},
785 };
786
787 static const struct gates_data sun4i_ahb_gates_data __initconst = {
788         .mask = {0x7F77FFF, 0x14FB3F},
789 };
790
791 static const struct gates_data sun5i_a10s_ahb_gates_data __initconst = {
792         .mask = {0x147667e7, 0x185915},
793 };
794
795 static const struct gates_data sun5i_a13_ahb_gates_data __initconst = {
796         .mask = {0x107067e7, 0x185111},
797 };
798
799 static const struct gates_data sun6i_a31_ahb1_gates_data __initconst = {
800         .mask = {0xEDFE7F62, 0x794F931},
801 };
802
803 static const struct gates_data sun7i_a20_ahb_gates_data __initconst = {
804         .mask = { 0x12f77fff, 0x16ff3f },
805 };
806
807 static const struct gates_data sun4i_apb0_gates_data __initconst = {
808         .mask = {0x4EF},
809 };
810
811 static const struct gates_data sun5i_a10s_apb0_gates_data __initconst = {
812         .mask = {0x469},
813 };
814
815 static const struct gates_data sun5i_a13_apb0_gates_data __initconst = {
816         .mask = {0x61},
817 };
818
819 static const struct gates_data sun7i_a20_apb0_gates_data __initconst = {
820         .mask = { 0x4ff },
821 };
822
823 static const struct gates_data sun4i_apb1_gates_data __initconst = {
824         .mask = {0xFF00F7},
825 };
826
827 static const struct gates_data sun5i_a10s_apb1_gates_data __initconst = {
828         .mask = {0xf0007},
829 };
830
831 static const struct gates_data sun5i_a13_apb1_gates_data __initconst = {
832         .mask = {0xa0007},
833 };
834
835 static const struct gates_data sun6i_a31_apb1_gates_data __initconst = {
836         .mask = {0x3031},
837 };
838
839 static const struct gates_data sun6i_a31_apb2_gates_data __initconst = {
840         .mask = {0x3F000F},
841 };
842
843 static const struct gates_data sun7i_a20_apb1_gates_data __initconst = {
844         .mask = { 0xff80ff },
845 };
846
847 static const struct gates_data sun4i_a10_usb_gates_data __initconst = {
848         .mask = {0x1C0},
849         .reset_mask = 0x07,
850 };
851
852 static const struct gates_data sun5i_a13_usb_gates_data __initconst = {
853         .mask = {0x140},
854         .reset_mask = 0x03,
855 };
856
857 static const struct gates_data sun6i_a31_usb_gates_data __initconst = {
858         .mask = { BIT(18) | BIT(17) | BIT(16) | BIT(10) | BIT(9) | BIT(8) },
859         .reset_mask = BIT(2) | BIT(1) | BIT(0),
860 };
861
862 static void __init sunxi_gates_clk_setup(struct device_node *node,
863                                          struct gates_data *data)
864 {
865         struct clk_onecell_data *clk_data;
866         struct gates_reset_data *reset_data;
867         const char *clk_parent;
868         const char *clk_name;
869         void *reg;
870         int qty;
871         int i = 0;
872         int j = 0;
873         int ignore;
874
875         reg = of_iomap(node, 0);
876
877         clk_parent = of_clk_get_parent_name(node, 0);
878
879         /* Worst-case size approximation and memory allocation */
880         qty = find_last_bit(data->mask, SUNXI_GATES_MAX_SIZE);
881         clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
882         if (!clk_data)
883                 return;
884         clk_data->clks = kzalloc((qty+1) * sizeof(struct clk *), GFP_KERNEL);
885         if (!clk_data->clks) {
886                 kfree(clk_data);
887                 return;
888         }
889
890         for_each_set_bit(i, data->mask, SUNXI_GATES_MAX_SIZE) {
891                 of_property_read_string_index(node, "clock-output-names",
892                                               j, &clk_name);
893
894                 /* No driver claims this clock, but it should remain gated */
895                 ignore = !strcmp("ahb_sdram", clk_name) ? CLK_IGNORE_UNUSED : 0;
896
897                 clk_data->clks[i] = clk_register_gate(NULL, clk_name,
898                                                       clk_parent, ignore,
899                                                       reg + 4 * (i/32), i % 32,
900                                                       0, &clk_lock);
901                 WARN_ON(IS_ERR(clk_data->clks[i]));
902
903                 j++;
904         }
905
906         /* Adjust to the real max */
907         clk_data->clk_num = i;
908
909         of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);
910
911         /* Register a reset controler for gates with reset bits */
912         if (data->reset_mask == 0)
913                 return;
914
915         reset_data = kzalloc(sizeof(*reset_data), GFP_KERNEL);
916         if (!reset_data)
917                 return;
918
919         reset_data->reg = reg;
920         reset_data->lock = &clk_lock;
921         reset_data->rcdev.nr_resets = __fls(data->reset_mask) + 1;
922         reset_data->rcdev.ops = &sunxi_gates_reset_ops;
923         reset_data->rcdev.of_node = node;
924         reset_controller_register(&reset_data->rcdev);
925 }
926
927
928
929 /**
930  * sunxi_divs_clk_setup() helper data
931  */
932
933 #define SUNXI_DIVS_MAX_QTY      2
934 #define SUNXI_DIVISOR_WIDTH     2
935
936 struct divs_data {
937         const struct factors_data *factors; /* data for the factor clock */
938         struct {
939                 u8 fixed; /* is it a fixed divisor? if not... */
940                 struct clk_div_table *table; /* is it a table based divisor? */
941                 u8 shift; /* otherwise it's a normal divisor with this shift */
942                 u8 pow;   /* is it power-of-two based? */
943                 u8 gate;  /* is it independently gateable? */
944         } div[SUNXI_DIVS_MAX_QTY];
945 };
946
947 static struct clk_div_table pll6_sata_tbl[] = {
948         { .val = 0, .div = 6, },
949         { .val = 1, .div = 12, },
950         { .val = 2, .div = 18, },
951         { .val = 3, .div = 24, },
952         { } /* sentinel */
953 };
954
955 static const struct divs_data pll5_divs_data __initconst = {
956         .factors = &sun4i_pll5_data,
957         .div = {
958                 { .shift = 0, .pow = 0, }, /* M, DDR */
959                 { .shift = 16, .pow = 1, }, /* P, other */
960         }
961 };
962
963 static const struct divs_data pll6_divs_data __initconst = {
964         .factors = &sun4i_pll6_data,
965         .div = {
966                 { .shift = 0, .table = pll6_sata_tbl, .gate = 14 }, /* M, SATA */
967                 { .fixed = 2 }, /* P, other */
968         }
969 };
970
971 /**
972  * sunxi_divs_clk_setup() - Setup function for leaf divisors on clocks
973  *
974  * These clocks look something like this
975  *            ________________________
976  *           |         ___divisor 1---|----> to consumer
977  * parent >--|  pll___/___divisor 2---|----> to consumer
978  *           |        \_______________|____> to consumer
979  *           |________________________|
980  */
981
982 static void __init sunxi_divs_clk_setup(struct device_node *node,
983                                         struct divs_data *data)
984 {
985         struct clk_onecell_data *clk_data;
986         const char *parent;
987         const char *clk_name;
988         struct clk **clks, *pclk;
989         struct clk_hw *gate_hw, *rate_hw;
990         const struct clk_ops *rate_ops;
991         struct clk_gate *gate = NULL;
992         struct clk_fixed_factor *fix_factor;
993         struct clk_divider *divider;
994         void *reg;
995         int i = 0;
996         int flags, clkflags;
997
998         /* Set up factor clock that we will be dividing */
999         pclk = sunxi_factors_clk_setup(node, data->factors);
1000         parent = __clk_get_name(pclk);
1001
1002         reg = of_iomap(node, 0);
1003
1004         clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
1005         if (!clk_data)
1006                 return;
1007
1008         clks = kzalloc((SUNXI_DIVS_MAX_QTY+1) * sizeof(*clks), GFP_KERNEL);
1009         if (!clks)
1010                 goto free_clkdata;
1011
1012         clk_data->clks = clks;
1013
1014         /* It's not a good idea to have automatic reparenting changing
1015          * our RAM clock! */
1016         clkflags = !strcmp("pll5", parent) ? 0 : CLK_SET_RATE_PARENT;
1017
1018         for (i = 0; i < SUNXI_DIVS_MAX_QTY; i++) {
1019                 if (of_property_read_string_index(node, "clock-output-names",
1020                                                   i, &clk_name) != 0)
1021                         break;
1022
1023                 gate_hw = NULL;
1024                 rate_hw = NULL;
1025                 rate_ops = NULL;
1026
1027                 /* If this leaf clock can be gated, create a gate */
1028                 if (data->div[i].gate) {
1029                         gate = kzalloc(sizeof(*gate), GFP_KERNEL);
1030                         if (!gate)
1031                                 goto free_clks;
1032
1033                         gate->reg = reg;
1034                         gate->bit_idx = data->div[i].gate;
1035                         gate->lock = &clk_lock;
1036
1037                         gate_hw = &gate->hw;
1038                 }
1039
1040                 /* Leaves can be fixed or configurable divisors */
1041                 if (data->div[i].fixed) {
1042                         fix_factor = kzalloc(sizeof(*fix_factor), GFP_KERNEL);
1043                         if (!fix_factor)
1044                                 goto free_gate;
1045
1046                         fix_factor->mult = 1;
1047                         fix_factor->div = data->div[i].fixed;
1048
1049                         rate_hw = &fix_factor->hw;
1050                         rate_ops = &clk_fixed_factor_ops;
1051                 } else {
1052                         divider = kzalloc(sizeof(*divider), GFP_KERNEL);
1053                         if (!divider)
1054                                 goto free_gate;
1055
1056                         flags = data->div[i].pow ? CLK_DIVIDER_POWER_OF_TWO : 0;
1057
1058                         divider->reg = reg;
1059                         divider->shift = data->div[i].shift;
1060                         divider->width = SUNXI_DIVISOR_WIDTH;
1061                         divider->flags = flags;
1062                         divider->lock = &clk_lock;
1063                         divider->table = data->div[i].table;
1064
1065                         rate_hw = &divider->hw;
1066                         rate_ops = &clk_divider_ops;
1067                 }
1068
1069                 /* Wrap the (potential) gate and the divisor on a composite
1070                  * clock to unify them */
1071                 clks[i] = clk_register_composite(NULL, clk_name, &parent, 1,
1072                                                  NULL, NULL,
1073                                                  rate_hw, rate_ops,
1074                                                  gate_hw, &clk_gate_ops,
1075                                                  clkflags);
1076
1077                 WARN_ON(IS_ERR(clk_data->clks[i]));
1078                 clk_register_clkdev(clks[i], clk_name, NULL);
1079         }
1080
1081         /* The last clock available on the getter is the parent */
1082         clks[i++] = pclk;
1083
1084         /* Adjust to the real max */
1085         clk_data->clk_num = i;
1086
1087         of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);
1088
1089         return;
1090
1091 free_gate:
1092         kfree(gate);
1093 free_clks:
1094         kfree(clks);
1095 free_clkdata:
1096         kfree(clk_data);
1097 }
1098
1099
1100
1101 /* Matches for factors clocks */
1102 static const struct of_device_id clk_factors_match[] __initconst = {
1103         {.compatible = "allwinner,sun4i-a10-pll1-clk", .data = &sun4i_pll1_data,},
1104         {.compatible = "allwinner,sun6i-a31-pll1-clk", .data = &sun6i_a31_pll1_data,},
1105         {.compatible = "allwinner,sun7i-a20-pll4-clk", .data = &sun7i_a20_pll4_data,},
1106         {.compatible = "allwinner,sun6i-a31-pll6-clk", .data = &sun6i_a31_pll6_data,},
1107         {.compatible = "allwinner,sun4i-a10-apb1-clk", .data = &sun4i_apb1_data,},
1108         {.compatible = "allwinner,sun4i-a10-mod0-clk", .data = &sun4i_mod0_data,},
1109         {.compatible = "allwinner,sun7i-a20-out-clk", .data = &sun7i_a20_out_data,},
1110         {}
1111 };
1112
1113 /* Matches for divider clocks */
1114 static const struct of_device_id clk_div_match[] __initconst = {
1115         {.compatible = "allwinner,sun4i-a10-axi-clk", .data = &sun4i_axi_data,},
1116         {.compatible = "allwinner,sun4i-a10-ahb-clk", .data = &sun4i_ahb_data,},
1117         {.compatible = "allwinner,sun4i-a10-apb0-clk", .data = &sun4i_apb0_data,},
1118         {.compatible = "allwinner,sun6i-a31-apb2-div-clk", .data = &sun6i_a31_apb2_div_data,},
1119         {}
1120 };
1121
1122 /* Matches for divided outputs */
1123 static const struct of_device_id clk_divs_match[] __initconst = {
1124         {.compatible = "allwinner,sun4i-a10-pll5-clk", .data = &pll5_divs_data,},
1125         {.compatible = "allwinner,sun4i-a10-pll6-clk", .data = &pll6_divs_data,},
1126         {}
1127 };
1128
1129 /* Matches for mux clocks */
1130 static const struct of_device_id clk_mux_match[] __initconst = {
1131         {.compatible = "allwinner,sun4i-a10-cpu-clk", .data = &sun4i_cpu_mux_data,},
1132         {.compatible = "allwinner,sun4i-a10-apb1-mux-clk", .data = &sun4i_apb1_mux_data,},
1133         {.compatible = "allwinner,sun6i-a31-ahb1-mux-clk", .data = &sun6i_a31_ahb1_mux_data,},
1134         {}
1135 };
1136
1137 /* Matches for gate clocks */
1138 static const struct of_device_id clk_gates_match[] __initconst = {
1139         {.compatible = "allwinner,sun4i-a10-axi-gates-clk", .data = &sun4i_axi_gates_data,},
1140         {.compatible = "allwinner,sun4i-a10-ahb-gates-clk", .data = &sun4i_ahb_gates_data,},
1141         {.compatible = "allwinner,sun5i-a10s-ahb-gates-clk", .data = &sun5i_a10s_ahb_gates_data,},
1142         {.compatible = "allwinner,sun5i-a13-ahb-gates-clk", .data = &sun5i_a13_ahb_gates_data,},
1143         {.compatible = "allwinner,sun6i-a31-ahb1-gates-clk", .data = &sun6i_a31_ahb1_gates_data,},
1144         {.compatible = "allwinner,sun7i-a20-ahb-gates-clk", .data = &sun7i_a20_ahb_gates_data,},
1145         {.compatible = "allwinner,sun4i-a10-apb0-gates-clk", .data = &sun4i_apb0_gates_data,},
1146         {.compatible = "allwinner,sun5i-a10s-apb0-gates-clk", .data = &sun5i_a10s_apb0_gates_data,},
1147         {.compatible = "allwinner,sun5i-a13-apb0-gates-clk", .data = &sun5i_a13_apb0_gates_data,},
1148         {.compatible = "allwinner,sun7i-a20-apb0-gates-clk", .data = &sun7i_a20_apb0_gates_data,},
1149         {.compatible = "allwinner,sun4i-a10-apb1-gates-clk", .data = &sun4i_apb1_gates_data,},
1150         {.compatible = "allwinner,sun5i-a10s-apb1-gates-clk", .data = &sun5i_a10s_apb1_gates_data,},
1151         {.compatible = "allwinner,sun5i-a13-apb1-gates-clk", .data = &sun5i_a13_apb1_gates_data,},
1152         {.compatible = "allwinner,sun6i-a31-apb1-gates-clk", .data = &sun6i_a31_apb1_gates_data,},
1153         {.compatible = "allwinner,sun7i-a20-apb1-gates-clk", .data = &sun7i_a20_apb1_gates_data,},
1154         {.compatible = "allwinner,sun6i-a31-apb2-gates-clk", .data = &sun6i_a31_apb2_gates_data,},
1155         {.compatible = "allwinner,sun4i-a10-usb-clk", .data = &sun4i_a10_usb_gates_data,},
1156         {.compatible = "allwinner,sun5i-a13-usb-clk", .data = &sun5i_a13_usb_gates_data,},
1157         {.compatible = "allwinner,sun6i-a31-usb-clk", .data = &sun6i_a31_usb_gates_data,},
1158         {}
1159 };
1160
1161 static void __init of_sunxi_table_clock_setup(const struct of_device_id *clk_match,
1162                                               void *function)
1163 {
1164         struct device_node *np;
1165         const struct div_data *data;
1166         const struct of_device_id *match;
1167         void (*setup_function)(struct device_node *, const void *) = function;
1168
1169         for_each_matching_node_and_match(np, clk_match, &match) {
1170                 data = match->data;
1171                 setup_function(np, data);
1172         }
1173 }
1174
1175 static void __init sunxi_init_clocks(const char *clocks[], int nclocks)
1176 {
1177         unsigned int i;
1178
1179         /* Register factor clocks */
1180         of_sunxi_table_clock_setup(clk_factors_match, sunxi_factors_clk_setup);
1181
1182         /* Register divider clocks */
1183         of_sunxi_table_clock_setup(clk_div_match, sunxi_divider_clk_setup);
1184
1185         /* Register divided output clocks */
1186         of_sunxi_table_clock_setup(clk_divs_match, sunxi_divs_clk_setup);
1187
1188         /* Register mux clocks */
1189         of_sunxi_table_clock_setup(clk_mux_match, sunxi_mux_clk_setup);
1190
1191         /* Register gate clocks */
1192         of_sunxi_table_clock_setup(clk_gates_match, sunxi_gates_clk_setup);
1193
1194         /* Protect the clocks that needs to stay on */
1195         for (i = 0; i < nclocks; i++) {
1196                 struct clk *clk = clk_get(NULL, clocks[i]);
1197
1198                 if (!IS_ERR(clk))
1199                         clk_prepare_enable(clk);
1200         }
1201 }
1202
1203 static const char *sun4i_a10_critical_clocks[] __initdata = {
1204         "pll5_ddr",
1205 };
1206
1207 static void __init sun4i_a10_init_clocks(struct device_node *node)
1208 {
1209         sunxi_init_clocks(sun4i_a10_critical_clocks,
1210                           ARRAY_SIZE(sun4i_a10_critical_clocks));
1211 }
1212 CLK_OF_DECLARE(sun4i_a10_clk_init, "allwinner,sun4i-a10", sun4i_a10_init_clocks);
1213
1214 static const char *sun5i_critical_clocks[] __initdata = {
1215         "mbus",
1216         "pll5_ddr",
1217 };
1218
1219 static void __init sun5i_init_clocks(struct device_node *node)
1220 {
1221         sunxi_init_clocks(sun5i_critical_clocks,
1222                           ARRAY_SIZE(sun5i_critical_clocks));
1223 }
1224 CLK_OF_DECLARE(sun5i_a10s_clk_init, "allwinner,sun5i-a10s", sun5i_init_clocks);
1225 CLK_OF_DECLARE(sun5i_a13_clk_init, "allwinner,sun5i-a13", sun5i_init_clocks);
1226 CLK_OF_DECLARE(sun7i_a20_clk_init, "allwinner,sun7i-a20", sun5i_init_clocks);
1227
1228 static const char *sun6i_critical_clocks[] __initdata = {
1229         "cpu",
1230         "ahb1_sdram",
1231 };
1232
1233 static void __init sun6i_init_clocks(struct device_node *node)
1234 {
1235         sunxi_init_clocks(sun6i_critical_clocks,
1236                           ARRAY_SIZE(sun6i_critical_clocks));
1237 }
1238 CLK_OF_DECLARE(sun6i_a31_clk_init, "allwinner,sun6i-a31", sun6i_init_clocks);