Merge branch 'omap-for-v3.17/dt' into omap-for-v3.18/dt
[firefly-linux-kernel-4.4.55.git] / drivers / cpufreq / arm_big_little.c
1 /*
2  * ARM big.LITTLE Platforms CPUFreq support
3  *
4  * Copyright (C) 2013 ARM Ltd.
5  * Sudeep KarkadaNagesha <sudeep.karkadanagesha@arm.com>
6  *
7  * Copyright (C) 2013 Linaro.
8  * Viresh Kumar <viresh.kumar@linaro.org>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
15  * kind, whether express or implied; without even the implied warranty
16  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17  * GNU General Public License for more details.
18  */
19
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/clk.h>
23 #include <linux/cpu.h>
24 #include <linux/cpufreq.h>
25 #include <linux/cpumask.h>
26 #include <linux/export.h>
27 #include <linux/module.h>
28 #include <linux/mutex.h>
29 #include <linux/of_platform.h>
30 #include <linux/pm_opp.h>
31 #include <linux/slab.h>
32 #include <linux/topology.h>
33 #include <linux/types.h>
34 #include <asm/bL_switcher.h>
35
36 #include "arm_big_little.h"
37
38 /* Currently we support only two clusters */
39 #define A15_CLUSTER     0
40 #define A7_CLUSTER      1
41 #define MAX_CLUSTERS    2
42
43 #ifdef CONFIG_BL_SWITCHER
44 static bool bL_switching_enabled;
45 #define is_bL_switching_enabled()       bL_switching_enabled
46 #define set_switching_enabled(x)        (bL_switching_enabled = (x))
47 #else
48 #define is_bL_switching_enabled()       false
49 #define set_switching_enabled(x)        do { } while (0)
50 #endif
51
52 #define ACTUAL_FREQ(cluster, freq)  ((cluster == A7_CLUSTER) ? freq << 1 : freq)
53 #define VIRT_FREQ(cluster, freq)    ((cluster == A7_CLUSTER) ? freq >> 1 : freq)
54
55 static struct cpufreq_arm_bL_ops *arm_bL_ops;
56 static struct clk *clk[MAX_CLUSTERS];
57 static struct cpufreq_frequency_table *freq_table[MAX_CLUSTERS + 1];
58 static atomic_t cluster_usage[MAX_CLUSTERS + 1];
59
60 static unsigned int clk_big_min;        /* (Big) clock frequencies */
61 static unsigned int clk_little_max;     /* Maximum clock frequency (Little) */
62
63 static DEFINE_PER_CPU(unsigned int, physical_cluster);
64 static DEFINE_PER_CPU(unsigned int, cpu_last_req_freq);
65
66 static struct mutex cluster_lock[MAX_CLUSTERS];
67
68 static inline int raw_cpu_to_cluster(int cpu)
69 {
70         return topology_physical_package_id(cpu);
71 }
72
73 static inline int cpu_to_cluster(int cpu)
74 {
75         return is_bL_switching_enabled() ?
76                 MAX_CLUSTERS : raw_cpu_to_cluster(cpu);
77 }
78
79 static unsigned int find_cluster_maxfreq(int cluster)
80 {
81         int j;
82         u32 max_freq = 0, cpu_freq;
83
84         for_each_online_cpu(j) {
85                 cpu_freq = per_cpu(cpu_last_req_freq, j);
86
87                 if ((cluster == per_cpu(physical_cluster, j)) &&
88                                 (max_freq < cpu_freq))
89                         max_freq = cpu_freq;
90         }
91
92         pr_debug("%s: cluster: %d, max freq: %d\n", __func__, cluster,
93                         max_freq);
94
95         return max_freq;
96 }
97
98 static unsigned int clk_get_cpu_rate(unsigned int cpu)
99 {
100         u32 cur_cluster = per_cpu(physical_cluster, cpu);
101         u32 rate = clk_get_rate(clk[cur_cluster]) / 1000;
102
103         /* For switcher we use virtual A7 clock rates */
104         if (is_bL_switching_enabled())
105                 rate = VIRT_FREQ(cur_cluster, rate);
106
107         pr_debug("%s: cpu: %d, cluster: %d, freq: %u\n", __func__, cpu,
108                         cur_cluster, rate);
109
110         return rate;
111 }
112
113 static unsigned int bL_cpufreq_get_rate(unsigned int cpu)
114 {
115         if (is_bL_switching_enabled()) {
116                 pr_debug("%s: freq: %d\n", __func__, per_cpu(cpu_last_req_freq,
117                                         cpu));
118
119                 return per_cpu(cpu_last_req_freq, cpu);
120         } else {
121                 return clk_get_cpu_rate(cpu);
122         }
123 }
124
125 static unsigned int
126 bL_cpufreq_set_rate(u32 cpu, u32 old_cluster, u32 new_cluster, u32 rate)
127 {
128         u32 new_rate, prev_rate;
129         int ret;
130         bool bLs = is_bL_switching_enabled();
131
132         mutex_lock(&cluster_lock[new_cluster]);
133
134         if (bLs) {
135                 prev_rate = per_cpu(cpu_last_req_freq, cpu);
136                 per_cpu(cpu_last_req_freq, cpu) = rate;
137                 per_cpu(physical_cluster, cpu) = new_cluster;
138
139                 new_rate = find_cluster_maxfreq(new_cluster);
140                 new_rate = ACTUAL_FREQ(new_cluster, new_rate);
141         } else {
142                 new_rate = rate;
143         }
144
145         pr_debug("%s: cpu: %d, old cluster: %d, new cluster: %d, freq: %d\n",
146                         __func__, cpu, old_cluster, new_cluster, new_rate);
147
148         ret = clk_set_rate(clk[new_cluster], new_rate * 1000);
149         if (WARN_ON(ret)) {
150                 pr_err("clk_set_rate failed: %d, new cluster: %d\n", ret,
151                                 new_cluster);
152                 if (bLs) {
153                         per_cpu(cpu_last_req_freq, cpu) = prev_rate;
154                         per_cpu(physical_cluster, cpu) = old_cluster;
155                 }
156
157                 mutex_unlock(&cluster_lock[new_cluster]);
158
159                 return ret;
160         }
161
162         mutex_unlock(&cluster_lock[new_cluster]);
163
164         /* Recalc freq for old cluster when switching clusters */
165         if (old_cluster != new_cluster) {
166                 pr_debug("%s: cpu: %d, old cluster: %d, new cluster: %d\n",
167                                 __func__, cpu, old_cluster, new_cluster);
168
169                 /* Switch cluster */
170                 bL_switch_request(cpu, new_cluster);
171
172                 mutex_lock(&cluster_lock[old_cluster]);
173
174                 /* Set freq of old cluster if there are cpus left on it */
175                 new_rate = find_cluster_maxfreq(old_cluster);
176                 new_rate = ACTUAL_FREQ(old_cluster, new_rate);
177
178                 if (new_rate) {
179                         pr_debug("%s: Updating rate of old cluster: %d, to freq: %d\n",
180                                         __func__, old_cluster, new_rate);
181
182                         if (clk_set_rate(clk[old_cluster], new_rate * 1000))
183                                 pr_err("%s: clk_set_rate failed: %d, old cluster: %d\n",
184                                                 __func__, ret, old_cluster);
185                 }
186                 mutex_unlock(&cluster_lock[old_cluster]);
187         }
188
189         return 0;
190 }
191
192 /* Set clock frequency */
193 static int bL_cpufreq_set_target(struct cpufreq_policy *policy,
194                 unsigned int index)
195 {
196         u32 cpu = policy->cpu, cur_cluster, new_cluster, actual_cluster;
197         unsigned int freqs_new;
198
199         cur_cluster = cpu_to_cluster(cpu);
200         new_cluster = actual_cluster = per_cpu(physical_cluster, cpu);
201
202         freqs_new = freq_table[cur_cluster][index].frequency;
203
204         if (is_bL_switching_enabled()) {
205                 if ((actual_cluster == A15_CLUSTER) &&
206                                 (freqs_new < clk_big_min)) {
207                         new_cluster = A7_CLUSTER;
208                 } else if ((actual_cluster == A7_CLUSTER) &&
209                                 (freqs_new > clk_little_max)) {
210                         new_cluster = A15_CLUSTER;
211                 }
212         }
213
214         return bL_cpufreq_set_rate(cpu, actual_cluster, new_cluster, freqs_new);
215 }
216
217 static inline u32 get_table_count(struct cpufreq_frequency_table *table)
218 {
219         int count;
220
221         for (count = 0; table[count].frequency != CPUFREQ_TABLE_END; count++)
222                 ;
223
224         return count;
225 }
226
227 /* get the minimum frequency in the cpufreq_frequency_table */
228 static inline u32 get_table_min(struct cpufreq_frequency_table *table)
229 {
230         struct cpufreq_frequency_table *pos;
231         uint32_t min_freq = ~0;
232         cpufreq_for_each_entry(pos, table)
233                 if (pos->frequency < min_freq)
234                         min_freq = pos->frequency;
235         return min_freq;
236 }
237
238 /* get the maximum frequency in the cpufreq_frequency_table */
239 static inline u32 get_table_max(struct cpufreq_frequency_table *table)
240 {
241         struct cpufreq_frequency_table *pos;
242         uint32_t max_freq = 0;
243         cpufreq_for_each_entry(pos, table)
244                 if (pos->frequency > max_freq)
245                         max_freq = pos->frequency;
246         return max_freq;
247 }
248
249 static int merge_cluster_tables(void)
250 {
251         int i, j, k = 0, count = 1;
252         struct cpufreq_frequency_table *table;
253
254         for (i = 0; i < MAX_CLUSTERS; i++)
255                 count += get_table_count(freq_table[i]);
256
257         table = kzalloc(sizeof(*table) * count, GFP_KERNEL);
258         if (!table)
259                 return -ENOMEM;
260
261         freq_table[MAX_CLUSTERS] = table;
262
263         /* Add in reverse order to get freqs in increasing order */
264         for (i = MAX_CLUSTERS - 1; i >= 0; i--) {
265                 for (j = 0; freq_table[i][j].frequency != CPUFREQ_TABLE_END;
266                                 j++) {
267                         table[k].frequency = VIRT_FREQ(i,
268                                         freq_table[i][j].frequency);
269                         pr_debug("%s: index: %d, freq: %d\n", __func__, k,
270                                         table[k].frequency);
271                         k++;
272                 }
273         }
274
275         table[k].driver_data = k;
276         table[k].frequency = CPUFREQ_TABLE_END;
277
278         pr_debug("%s: End, table: %p, count: %d\n", __func__, table, k);
279
280         return 0;
281 }
282
283 static void _put_cluster_clk_and_freq_table(struct device *cpu_dev)
284 {
285         u32 cluster = raw_cpu_to_cluster(cpu_dev->id);
286
287         if (!freq_table[cluster])
288                 return;
289
290         clk_put(clk[cluster]);
291         dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table[cluster]);
292         dev_dbg(cpu_dev, "%s: cluster: %d\n", __func__, cluster);
293 }
294
295 static void put_cluster_clk_and_freq_table(struct device *cpu_dev)
296 {
297         u32 cluster = cpu_to_cluster(cpu_dev->id);
298         int i;
299
300         if (atomic_dec_return(&cluster_usage[cluster]))
301                 return;
302
303         if (cluster < MAX_CLUSTERS)
304                 return _put_cluster_clk_and_freq_table(cpu_dev);
305
306         for_each_present_cpu(i) {
307                 struct device *cdev = get_cpu_device(i);
308                 if (!cdev) {
309                         pr_err("%s: failed to get cpu%d device\n", __func__, i);
310                         return;
311                 }
312
313                 _put_cluster_clk_and_freq_table(cdev);
314         }
315
316         /* free virtual table */
317         kfree(freq_table[cluster]);
318 }
319
320 static int _get_cluster_clk_and_freq_table(struct device *cpu_dev)
321 {
322         u32 cluster = raw_cpu_to_cluster(cpu_dev->id);
323         char name[14] = "cpu-cluster.";
324         int ret;
325
326         if (freq_table[cluster])
327                 return 0;
328
329         ret = arm_bL_ops->init_opp_table(cpu_dev);
330         if (ret) {
331                 dev_err(cpu_dev, "%s: init_opp_table failed, cpu: %d, err: %d\n",
332                                 __func__, cpu_dev->id, ret);
333                 goto out;
334         }
335
336         ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table[cluster]);
337         if (ret) {
338                 dev_err(cpu_dev, "%s: failed to init cpufreq table, cpu: %d, err: %d\n",
339                                 __func__, cpu_dev->id, ret);
340                 goto out;
341         }
342
343         name[12] = cluster + '0';
344         clk[cluster] = clk_get(cpu_dev, name);
345         if (!IS_ERR(clk[cluster])) {
346                 dev_dbg(cpu_dev, "%s: clk: %p & freq table: %p, cluster: %d\n",
347                                 __func__, clk[cluster], freq_table[cluster],
348                                 cluster);
349                 return 0;
350         }
351
352         dev_err(cpu_dev, "%s: Failed to get clk for cpu: %d, cluster: %d\n",
353                         __func__, cpu_dev->id, cluster);
354         ret = PTR_ERR(clk[cluster]);
355         dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table[cluster]);
356
357 out:
358         dev_err(cpu_dev, "%s: Failed to get data for cluster: %d\n", __func__,
359                         cluster);
360         return ret;
361 }
362
363 static int get_cluster_clk_and_freq_table(struct device *cpu_dev)
364 {
365         u32 cluster = cpu_to_cluster(cpu_dev->id);
366         int i, ret;
367
368         if (atomic_inc_return(&cluster_usage[cluster]) != 1)
369                 return 0;
370
371         if (cluster < MAX_CLUSTERS) {
372                 ret = _get_cluster_clk_and_freq_table(cpu_dev);
373                 if (ret)
374                         atomic_dec(&cluster_usage[cluster]);
375                 return ret;
376         }
377
378         /*
379          * Get data for all clusters and fill virtual cluster with a merge of
380          * both
381          */
382         for_each_present_cpu(i) {
383                 struct device *cdev = get_cpu_device(i);
384                 if (!cdev) {
385                         pr_err("%s: failed to get cpu%d device\n", __func__, i);
386                         return -ENODEV;
387                 }
388
389                 ret = _get_cluster_clk_and_freq_table(cdev);
390                 if (ret)
391                         goto put_clusters;
392         }
393
394         ret = merge_cluster_tables();
395         if (ret)
396                 goto put_clusters;
397
398         /* Assuming 2 cluster, set clk_big_min and clk_little_max */
399         clk_big_min = get_table_min(freq_table[0]);
400         clk_little_max = VIRT_FREQ(1, get_table_max(freq_table[1]));
401
402         pr_debug("%s: cluster: %d, clk_big_min: %d, clk_little_max: %d\n",
403                         __func__, cluster, clk_big_min, clk_little_max);
404
405         return 0;
406
407 put_clusters:
408         for_each_present_cpu(i) {
409                 struct device *cdev = get_cpu_device(i);
410                 if (!cdev) {
411                         pr_err("%s: failed to get cpu%d device\n", __func__, i);
412                         return -ENODEV;
413                 }
414
415                 _put_cluster_clk_and_freq_table(cdev);
416         }
417
418         atomic_dec(&cluster_usage[cluster]);
419
420         return ret;
421 }
422
423 /* Per-CPU initialization */
424 static int bL_cpufreq_init(struct cpufreq_policy *policy)
425 {
426         u32 cur_cluster = cpu_to_cluster(policy->cpu);
427         struct device *cpu_dev;
428         int ret;
429
430         cpu_dev = get_cpu_device(policy->cpu);
431         if (!cpu_dev) {
432                 pr_err("%s: failed to get cpu%d device\n", __func__,
433                                 policy->cpu);
434                 return -ENODEV;
435         }
436
437         ret = get_cluster_clk_and_freq_table(cpu_dev);
438         if (ret)
439                 return ret;
440
441         ret = cpufreq_table_validate_and_show(policy, freq_table[cur_cluster]);
442         if (ret) {
443                 dev_err(cpu_dev, "CPU %d, cluster: %d invalid freq table\n",
444                                 policy->cpu, cur_cluster);
445                 put_cluster_clk_and_freq_table(cpu_dev);
446                 return ret;
447         }
448
449         if (cur_cluster < MAX_CLUSTERS) {
450                 int cpu;
451
452                 cpumask_copy(policy->cpus, topology_core_cpumask(policy->cpu));
453
454                 for_each_cpu(cpu, policy->cpus)
455                         per_cpu(physical_cluster, cpu) = cur_cluster;
456         } else {
457                 /* Assumption: during init, we are always running on A15 */
458                 per_cpu(physical_cluster, policy->cpu) = A15_CLUSTER;
459         }
460
461         if (arm_bL_ops->get_transition_latency)
462                 policy->cpuinfo.transition_latency =
463                         arm_bL_ops->get_transition_latency(cpu_dev);
464         else
465                 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
466
467         if (is_bL_switching_enabled())
468                 per_cpu(cpu_last_req_freq, policy->cpu) = clk_get_cpu_rate(policy->cpu);
469
470         dev_info(cpu_dev, "%s: CPU %d initialized\n", __func__, policy->cpu);
471         return 0;
472 }
473
474 static int bL_cpufreq_exit(struct cpufreq_policy *policy)
475 {
476         struct device *cpu_dev;
477
478         cpu_dev = get_cpu_device(policy->cpu);
479         if (!cpu_dev) {
480                 pr_err("%s: failed to get cpu%d device\n", __func__,
481                                 policy->cpu);
482                 return -ENODEV;
483         }
484
485         put_cluster_clk_and_freq_table(cpu_dev);
486         dev_dbg(cpu_dev, "%s: Exited, cpu: %d\n", __func__, policy->cpu);
487
488         return 0;
489 }
490
491 static struct cpufreq_driver bL_cpufreq_driver = {
492         .name                   = "arm-big-little",
493         .flags                  = CPUFREQ_STICKY |
494                                         CPUFREQ_HAVE_GOVERNOR_PER_POLICY |
495                                         CPUFREQ_NEED_INITIAL_FREQ_CHECK,
496         .verify                 = cpufreq_generic_frequency_table_verify,
497         .target_index           = bL_cpufreq_set_target,
498         .get                    = bL_cpufreq_get_rate,
499         .init                   = bL_cpufreq_init,
500         .exit                   = bL_cpufreq_exit,
501         .attr                   = cpufreq_generic_attr,
502 };
503
504 static int bL_cpufreq_switcher_notifier(struct notifier_block *nfb,
505                                         unsigned long action, void *_arg)
506 {
507         pr_debug("%s: action: %ld\n", __func__, action);
508
509         switch (action) {
510         case BL_NOTIFY_PRE_ENABLE:
511         case BL_NOTIFY_PRE_DISABLE:
512                 cpufreq_unregister_driver(&bL_cpufreq_driver);
513                 break;
514
515         case BL_NOTIFY_POST_ENABLE:
516                 set_switching_enabled(true);
517                 cpufreq_register_driver(&bL_cpufreq_driver);
518                 break;
519
520         case BL_NOTIFY_POST_DISABLE:
521                 set_switching_enabled(false);
522                 cpufreq_register_driver(&bL_cpufreq_driver);
523                 break;
524
525         default:
526                 return NOTIFY_DONE;
527         }
528
529         return NOTIFY_OK;
530 }
531
532 static struct notifier_block bL_switcher_notifier = {
533         .notifier_call = bL_cpufreq_switcher_notifier,
534 };
535
536 int bL_cpufreq_register(struct cpufreq_arm_bL_ops *ops)
537 {
538         int ret, i;
539
540         if (arm_bL_ops) {
541                 pr_debug("%s: Already registered: %s, exiting\n", __func__,
542                                 arm_bL_ops->name);
543                 return -EBUSY;
544         }
545
546         if (!ops || !strlen(ops->name) || !ops->init_opp_table) {
547                 pr_err("%s: Invalid arm_bL_ops, exiting\n", __func__);
548                 return -ENODEV;
549         }
550
551         arm_bL_ops = ops;
552
553         ret = bL_switcher_get_enabled();
554         set_switching_enabled(ret);
555
556         for (i = 0; i < MAX_CLUSTERS; i++)
557                 mutex_init(&cluster_lock[i]);
558
559         ret = cpufreq_register_driver(&bL_cpufreq_driver);
560         if (ret) {
561                 pr_info("%s: Failed registering platform driver: %s, err: %d\n",
562                                 __func__, ops->name, ret);
563                 arm_bL_ops = NULL;
564         } else {
565                 ret = bL_switcher_register_notifier(&bL_switcher_notifier);
566                 if (ret) {
567                         cpufreq_unregister_driver(&bL_cpufreq_driver);
568                         arm_bL_ops = NULL;
569                 } else {
570                         pr_info("%s: Registered platform driver: %s\n",
571                                         __func__, ops->name);
572                 }
573         }
574
575         bL_switcher_put_enabled();
576         return ret;
577 }
578 EXPORT_SYMBOL_GPL(bL_cpufreq_register);
579
580 void bL_cpufreq_unregister(struct cpufreq_arm_bL_ops *ops)
581 {
582         if (arm_bL_ops != ops) {
583                 pr_err("%s: Registered with: %s, can't unregister, exiting\n",
584                                 __func__, arm_bL_ops->name);
585                 return;
586         }
587
588         bL_switcher_get_enabled();
589         bL_switcher_unregister_notifier(&bL_switcher_notifier);
590         cpufreq_unregister_driver(&bL_cpufreq_driver);
591         bL_switcher_put_enabled();
592         pr_info("%s: Un-registered platform driver: %s\n", __func__,
593                         arm_bL_ops->name);
594         arm_bL_ops = NULL;
595 }
596 EXPORT_SYMBOL_GPL(bL_cpufreq_unregister);
597
598 MODULE_AUTHOR("Viresh Kumar <viresh.kumar@linaro.org>");
599 MODULE_DESCRIPTION("Generic ARM big LITTLE cpufreq driver");
600 MODULE_LICENSE("GPL v2");