cpufreq: cpu0: Move per-cluster initialization code to ->init()
[firefly-linux-kernel-4.4.55.git] / drivers / cpufreq / cpufreq-cpu0.c
1 /*
2  * Copyright (C) 2012 Freescale Semiconductor, Inc.
3  *
4  * Copyright (C) 2014 Linaro.
5  * Viresh Kumar <viresh.kumar@linaro.org>
6  *
7  * The OPP code in function cpu0_set_target() is reused from
8  * drivers/cpufreq/omap-cpufreq.c
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  */
14
15 #define pr_fmt(fmt)     KBUILD_MODNAME ": " fmt
16
17 #include <linux/clk.h>
18 #include <linux/cpu.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/cpufreq.h>
21 #include <linux/cpumask.h>
22 #include <linux/err.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/pm_opp.h>
26 #include <linux/platform_device.h>
27 #include <linux/regulator/consumer.h>
28 #include <linux/slab.h>
29 #include <linux/thermal.h>
30
31 struct private_data {
32         struct device *cpu_dev;
33         struct regulator *cpu_reg;
34         struct thermal_cooling_device *cdev;
35         unsigned int voltage_tolerance; /* in percentage */
36 };
37
38 static int cpu0_set_target(struct cpufreq_policy *policy, unsigned int index)
39 {
40         struct dev_pm_opp *opp;
41         struct cpufreq_frequency_table *freq_table = policy->freq_table;
42         struct clk *cpu_clk = policy->clk;
43         struct private_data *priv = policy->driver_data;
44         struct device *cpu_dev = priv->cpu_dev;
45         struct regulator *cpu_reg = priv->cpu_reg;
46         unsigned long volt = 0, volt_old = 0, tol = 0;
47         unsigned int old_freq, new_freq;
48         long freq_Hz, freq_exact;
49         int ret;
50
51         freq_Hz = clk_round_rate(cpu_clk, freq_table[index].frequency * 1000);
52         if (freq_Hz <= 0)
53                 freq_Hz = freq_table[index].frequency * 1000;
54
55         freq_exact = freq_Hz;
56         new_freq = freq_Hz / 1000;
57         old_freq = clk_get_rate(cpu_clk) / 1000;
58
59         if (!IS_ERR(cpu_reg)) {
60                 rcu_read_lock();
61                 opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_Hz);
62                 if (IS_ERR(opp)) {
63                         rcu_read_unlock();
64                         dev_err(cpu_dev, "failed to find OPP for %ld\n",
65                                 freq_Hz);
66                         return PTR_ERR(opp);
67                 }
68                 volt = dev_pm_opp_get_voltage(opp);
69                 rcu_read_unlock();
70                 tol = volt * priv->voltage_tolerance / 100;
71                 volt_old = regulator_get_voltage(cpu_reg);
72         }
73
74         dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
75                 old_freq / 1000, volt_old ? volt_old / 1000 : -1,
76                 new_freq / 1000, volt ? volt / 1000 : -1);
77
78         /* scaling up?  scale voltage before frequency */
79         if (!IS_ERR(cpu_reg) && new_freq > old_freq) {
80                 ret = regulator_set_voltage_tol(cpu_reg, volt, tol);
81                 if (ret) {
82                         dev_err(cpu_dev, "failed to scale voltage up: %d\n",
83                                 ret);
84                         return ret;
85                 }
86         }
87
88         ret = clk_set_rate(cpu_clk, freq_exact);
89         if (ret) {
90                 dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
91                 if (!IS_ERR(cpu_reg))
92                         regulator_set_voltage_tol(cpu_reg, volt_old, tol);
93                 return ret;
94         }
95
96         /* scaling down?  scale voltage after frequency */
97         if (!IS_ERR(cpu_reg) && new_freq < old_freq) {
98                 ret = regulator_set_voltage_tol(cpu_reg, volt, tol);
99                 if (ret) {
100                         dev_err(cpu_dev, "failed to scale voltage down: %d\n",
101                                 ret);
102                         clk_set_rate(cpu_clk, old_freq * 1000);
103                 }
104         }
105
106         return ret;
107 }
108
109 static int allocate_resources(struct device **cdev,
110                               struct regulator **creg, struct clk **cclk)
111 {
112         struct device *cpu_dev;
113         struct regulator *cpu_reg;
114         struct clk *cpu_clk;
115         int ret = 0;
116
117         cpu_dev = get_cpu_device(0);
118         if (!cpu_dev) {
119                 pr_err("failed to get cpu0 device\n");
120                 return -ENODEV;
121         }
122
123         cpu_reg = regulator_get_optional(cpu_dev, "cpu0");
124         if (IS_ERR(cpu_reg)) {
125                 /*
126                  * If cpu0 regulator supply node is present, but regulator is
127                  * not yet registered, we should try defering probe.
128                  */
129                 if (PTR_ERR(cpu_reg) == -EPROBE_DEFER) {
130                         dev_dbg(cpu_dev, "cpu0 regulator not ready, retry\n");
131                         return -EPROBE_DEFER;
132                 }
133                 dev_warn(cpu_dev, "failed to get cpu0 regulator: %ld\n",
134                          PTR_ERR(cpu_reg));
135         }
136
137         cpu_clk = clk_get(cpu_dev, NULL);
138         if (IS_ERR(cpu_clk)) {
139                 /* put regulator */
140                 if (!IS_ERR(cpu_reg))
141                         regulator_put(cpu_reg);
142
143                 ret = PTR_ERR(cpu_clk);
144
145                 /*
146                  * If cpu's clk node is present, but clock is not yet
147                  * registered, we should try defering probe.
148                  */
149                 if (ret == -EPROBE_DEFER)
150                         dev_dbg(cpu_dev, "cpu0 clock not ready, retry\n");
151                 else
152                         dev_err(cpu_dev, "failed to get cpu0 clock: %d\n", ret);
153         } else {
154                 *cdev = cpu_dev;
155                 *creg = cpu_reg;
156                 *cclk = cpu_clk;
157         }
158
159         return ret;
160 }
161
162 static int cpu0_cpufreq_init(struct cpufreq_policy *policy)
163 {
164         struct cpufreq_frequency_table *freq_table;
165         struct thermal_cooling_device *cdev;
166         struct device_node *np;
167         struct private_data *priv;
168         struct device *cpu_dev;
169         struct regulator *cpu_reg;
170         struct clk *cpu_clk;
171         unsigned int transition_latency;
172         int ret;
173
174         /* We only support cpu0 currently */
175         ret = allocate_resources(&cpu_dev, &cpu_reg, &cpu_clk);
176         if (ret) {
177                 pr_err("%s: Failed to allocate resources\n: %d", __func__, ret);
178                 return ret;
179         }
180
181         np = of_node_get(cpu_dev->of_node);
182         if (!np) {
183                 dev_err(cpu_dev, "failed to find cpu%d node\n", policy->cpu);
184                 ret = -ENOENT;
185                 goto out_put_reg_clk;
186         }
187
188         /* OPPs might be populated at runtime, don't check for error here */
189         of_init_opp_table(cpu_dev);
190
191         ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
192         if (ret) {
193                 dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
194                 goto out_put_node;
195         }
196
197         priv = kzalloc(sizeof(*priv), GFP_KERNEL);
198         if (!priv) {
199                 ret = -ENOMEM;
200                 goto out_free_table;
201         }
202
203         of_property_read_u32(np, "voltage-tolerance", &priv->voltage_tolerance);
204
205         if (of_property_read_u32(np, "clock-latency", &transition_latency))
206                 transition_latency = CPUFREQ_ETERNAL;
207
208         if (!IS_ERR(cpu_reg)) {
209                 struct dev_pm_opp *opp;
210                 unsigned long min_uV, max_uV;
211                 int i;
212
213                 /*
214                  * OPP is maintained in order of increasing frequency, and
215                  * freq_table initialised from OPP is therefore sorted in the
216                  * same order.
217                  */
218                 for (i = 0; freq_table[i].frequency != CPUFREQ_TABLE_END; i++)
219                         ;
220                 rcu_read_lock();
221                 opp = dev_pm_opp_find_freq_exact(cpu_dev,
222                                 freq_table[0].frequency * 1000, true);
223                 min_uV = dev_pm_opp_get_voltage(opp);
224                 opp = dev_pm_opp_find_freq_exact(cpu_dev,
225                                 freq_table[i-1].frequency * 1000, true);
226                 max_uV = dev_pm_opp_get_voltage(opp);
227                 rcu_read_unlock();
228                 ret = regulator_set_voltage_time(cpu_reg, min_uV, max_uV);
229                 if (ret > 0)
230                         transition_latency += ret * 1000;
231         }
232
233         /*
234          * For now, just loading the cooling device;
235          * thermal DT code takes care of matching them.
236          */
237         if (of_find_property(np, "#cooling-cells", NULL)) {
238                 cdev = of_cpufreq_cooling_register(np, cpu_present_mask);
239                 if (IS_ERR(cdev))
240                         dev_err(cpu_dev,
241                                 "running cpufreq without cooling device: %ld\n",
242                                 PTR_ERR(cdev));
243                 else
244                         priv->cdev = cdev;
245         }
246         of_node_put(np);
247
248         priv->cpu_dev = cpu_dev;
249         priv->cpu_reg = cpu_reg;
250         policy->driver_data = priv;
251
252         policy->clk = cpu_clk;
253         ret = cpufreq_generic_init(policy, freq_table, transition_latency);
254         if (ret)
255                 goto out_cooling_unregister;
256
257         return 0;
258
259 out_cooling_unregister:
260         cpufreq_cooling_unregister(priv->cdev);
261         kfree(priv);
262 out_free_table:
263         dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
264 out_put_node:
265         of_node_put(np);
266 out_put_reg_clk:
267         clk_put(cpu_clk);
268         if (!IS_ERR(cpu_reg))
269                 regulator_put(cpu_reg);
270
271         return ret;
272 }
273
274 static int cpu0_cpufreq_exit(struct cpufreq_policy *policy)
275 {
276         struct private_data *priv = policy->driver_data;
277
278         cpufreq_cooling_unregister(priv->cdev);
279         dev_pm_opp_free_cpufreq_table(priv->cpu_dev, &policy->freq_table);
280         clk_put(policy->clk);
281         if (!IS_ERR(priv->cpu_reg))
282                 regulator_put(priv->cpu_reg);
283         kfree(priv);
284
285         return 0;
286 }
287
288 static struct cpufreq_driver cpu0_cpufreq_driver = {
289         .flags = CPUFREQ_STICKY | CPUFREQ_NEED_INITIAL_FREQ_CHECK,
290         .verify = cpufreq_generic_frequency_table_verify,
291         .target_index = cpu0_set_target,
292         .get = cpufreq_generic_get,
293         .init = cpu0_cpufreq_init,
294         .exit = cpu0_cpufreq_exit,
295         .name = "generic_cpu0",
296         .attr = cpufreq_generic_attr,
297 };
298
299 static int cpu0_cpufreq_probe(struct platform_device *pdev)
300 {
301         struct device *cpu_dev;
302         struct regulator *cpu_reg;
303         struct clk *cpu_clk;
304         int ret;
305
306         /*
307          * All per-cluster (CPUs sharing clock/voltages) initialization is done
308          * from ->init(). In probe(), we just need to make sure that clk and
309          * regulators are available. Else defer probe and retry.
310          *
311          * FIXME: Is checking this only for CPU0 sufficient ?
312          */
313         ret = allocate_resources(&cpu_dev, &cpu_reg, &cpu_clk);
314         if (ret)
315                 return ret;
316
317         clk_put(cpu_clk);
318         if (!IS_ERR(cpu_reg))
319                 regulator_put(cpu_reg);
320
321         ret = cpufreq_register_driver(&cpu0_cpufreq_driver);
322         if (ret)
323                 dev_err(cpu_dev, "failed register driver: %d\n", ret);
324
325         return ret;
326 }
327
328 static int cpu0_cpufreq_remove(struct platform_device *pdev)
329 {
330         cpufreq_unregister_driver(&cpu0_cpufreq_driver);
331         return 0;
332 }
333
334 static struct platform_driver cpu0_cpufreq_platdrv = {
335         .driver = {
336                 .name   = "cpufreq-cpu0",
337                 .owner  = THIS_MODULE,
338         },
339         .probe          = cpu0_cpufreq_probe,
340         .remove         = cpu0_cpufreq_remove,
341 };
342 module_platform_driver(cpu0_cpufreq_platdrv);
343
344 MODULE_AUTHOR("Viresh Kumar <viresh.kumar@linaro.org>");
345 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
346 MODULE_DESCRIPTION("Generic CPU0 cpufreq driver");
347 MODULE_LICENSE("GPL");