a4af9c3f309ec9e82cd46de290759ace57afc046
[firefly-linux-kernel-4.4.55.git] / drivers / cpufreq / cpufreq_conservative.c
1 /*
2  *  drivers/cpufreq/cpufreq_conservative.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *            (C)  2009 Alexander Clouter <alex@digriz.org.uk>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13
14 #include <linux/cpufreq.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/kobject.h>
19 #include <linux/module.h>
20 #include <linux/mutex.h>
21 #include <linux/notifier.h>
22 #include <linux/percpu-defs.h>
23 #include <linux/slab.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26
27 #include "cpufreq_governor.h"
28
29 /* Conservative governor macros */
30 #define DEF_FREQUENCY_UP_THRESHOLD              (80)
31 #define DEF_FREQUENCY_DOWN_THRESHOLD            (20)
32 #define DEF_SAMPLING_DOWN_FACTOR                (1)
33 #define MAX_SAMPLING_DOWN_FACTOR                (10)
34
35 static DEFINE_PER_CPU(struct cs_cpu_dbs_info_s, cs_cpu_dbs_info);
36
37 /*
38  * Every sampling_rate, we check, if current idle time is less than 20%
39  * (default), then we try to increase frequency Every sampling_rate *
40  * sampling_down_factor, we check, if current idle time is more than 80%, then
41  * we try to decrease frequency
42  *
43  * Any frequency increase takes it to the maximum frequency. Frequency reduction
44  * happens at minimum steps of 5% (default) of maximum frequency
45  */
46 static void cs_check_cpu(int cpu, unsigned int load)
47 {
48         struct cs_cpu_dbs_info_s *dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
49         struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
50         struct dbs_data *dbs_data = policy->governor_data;
51         struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
52         unsigned int freq_target;
53
54         /*
55          * break out if we 'cannot' reduce the speed as the user might
56          * want freq_step to be zero
57          */
58         if (cs_tuners->freq_step == 0)
59                 return;
60
61         /* Check for frequency increase */
62         if (load > cs_tuners->up_threshold) {
63                 dbs_info->down_skip = 0;
64
65                 /* if we are already at full speed then break out early */
66                 if (dbs_info->requested_freq == policy->max)
67                         return;
68
69                 freq_target = (cs_tuners->freq_step * policy->max) / 100;
70
71                 /* max freq cannot be less than 100. But who knows.... */
72                 if (unlikely(freq_target == 0))
73                         freq_target = 5;
74
75                 dbs_info->requested_freq += freq_target;
76                 if (dbs_info->requested_freq > policy->max)
77                         dbs_info->requested_freq = policy->max;
78
79                 __cpufreq_driver_target(policy, dbs_info->requested_freq,
80                         CPUFREQ_RELATION_H);
81                 return;
82         }
83
84         /*
85          * The optimal frequency is the frequency that is the lowest that can
86          * support the current CPU usage without triggering the up policy. To be
87          * safe, we focus 10 points under the threshold.
88          */
89         if (load < (cs_tuners->down_threshold - 10)) {
90                 /*
91                  * if we cannot reduce the frequency anymore, break out early
92                  */
93                 if (policy->cur == policy->min)
94                         return;
95
96                 freq_target = (cs_tuners->freq_step * policy->max) / 100;
97
98                 dbs_info->requested_freq -= freq_target;
99                 if (dbs_info->requested_freq < policy->min)
100                         dbs_info->requested_freq = policy->min;
101
102                 __cpufreq_driver_target(policy, dbs_info->requested_freq,
103                                 CPUFREQ_RELATION_L);
104                 return;
105         }
106 }
107
108 static void cs_dbs_timer(struct work_struct *work)
109 {
110         struct cs_cpu_dbs_info_s *dbs_info = container_of(work,
111                         struct cs_cpu_dbs_info_s, cdbs.work.work);
112         unsigned int cpu = dbs_info->cdbs.cur_policy->cpu;
113         struct cs_cpu_dbs_info_s *core_dbs_info = &per_cpu(cs_cpu_dbs_info,
114                         cpu);
115         struct dbs_data *dbs_data = dbs_info->cdbs.cur_policy->governor_data;
116         struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
117         int delay = delay_for_sampling_rate(cs_tuners->sampling_rate);
118         bool modify_all = true;
119
120         mutex_lock(&core_dbs_info->cdbs.timer_mutex);
121         if (!need_load_eval(&core_dbs_info->cdbs, cs_tuners->sampling_rate))
122                 modify_all = false;
123         else
124                 dbs_check_cpu(dbs_data, cpu);
125
126         gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy, delay, modify_all);
127         mutex_unlock(&core_dbs_info->cdbs.timer_mutex);
128 }
129
130 static int dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
131                 void *data)
132 {
133         struct cpufreq_freqs *freq = data;
134         struct cs_cpu_dbs_info_s *dbs_info =
135                                         &per_cpu(cs_cpu_dbs_info, freq->cpu);
136         struct cpufreq_policy *policy;
137
138         if (!dbs_info->enable)
139                 return 0;
140
141         policy = dbs_info->cdbs.cur_policy;
142
143         /*
144          * we only care if our internally tracked freq moves outside the 'valid'
145          * ranges of frequency available to us otherwise we do not change it
146         */
147         if (dbs_info->requested_freq > policy->max
148                         || dbs_info->requested_freq < policy->min)
149                 dbs_info->requested_freq = freq->new;
150
151         return 0;
152 }
153
154 /************************** sysfs interface ************************/
155 static struct common_dbs_data cs_dbs_cdata;
156
157 static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
158                 const char *buf, size_t count)
159 {
160         struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
161         unsigned int input;
162         int ret;
163         ret = sscanf(buf, "%u", &input);
164
165         if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
166                 return -EINVAL;
167
168         cs_tuners->sampling_down_factor = input;
169         return count;
170 }
171
172 static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
173                 size_t count)
174 {
175         struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
176         unsigned int input;
177         int ret;
178         ret = sscanf(buf, "%u", &input);
179
180         if (ret != 1)
181                 return -EINVAL;
182
183         cs_tuners->sampling_rate = max(input, dbs_data->min_sampling_rate);
184         return count;
185 }
186
187 static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
188                 size_t count)
189 {
190         struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
191         unsigned int input;
192         int ret;
193         ret = sscanf(buf, "%u", &input);
194
195         if (ret != 1 || input > 100 || input <= cs_tuners->down_threshold)
196                 return -EINVAL;
197
198         cs_tuners->up_threshold = input;
199         return count;
200 }
201
202 static ssize_t store_down_threshold(struct dbs_data *dbs_data, const char *buf,
203                 size_t count)
204 {
205         struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
206         unsigned int input;
207         int ret;
208         ret = sscanf(buf, "%u", &input);
209
210         /* cannot be lower than 11 otherwise freq will not fall */
211         if (ret != 1 || input < 11 || input > 100 ||
212                         input >= cs_tuners->up_threshold)
213                 return -EINVAL;
214
215         cs_tuners->down_threshold = input;
216         return count;
217 }
218
219 static ssize_t store_ignore_nice(struct dbs_data *dbs_data, const char *buf,
220                 size_t count)
221 {
222         struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
223         unsigned int input, j;
224         int ret;
225
226         ret = sscanf(buf, "%u", &input);
227         if (ret != 1)
228                 return -EINVAL;
229
230         if (input > 1)
231                 input = 1;
232
233         if (input == cs_tuners->ignore_nice) /* nothing to do */
234                 return count;
235
236         cs_tuners->ignore_nice = input;
237
238         /* we need to re-evaluate prev_cpu_idle */
239         for_each_online_cpu(j) {
240                 struct cs_cpu_dbs_info_s *dbs_info;
241                 dbs_info = &per_cpu(cs_cpu_dbs_info, j);
242                 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
243                                                 &dbs_info->cdbs.prev_cpu_wall);
244                 if (cs_tuners->ignore_nice)
245                         dbs_info->cdbs.prev_cpu_nice =
246                                 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
247         }
248         return count;
249 }
250
251 static ssize_t store_freq_step(struct dbs_data *dbs_data, const char *buf,
252                 size_t count)
253 {
254         struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
255         unsigned int input;
256         int ret;
257         ret = sscanf(buf, "%u", &input);
258
259         if (ret != 1)
260                 return -EINVAL;
261
262         if (input > 100)
263                 input = 100;
264
265         /*
266          * no need to test here if freq_step is zero as the user might actually
267          * want this, they would be crazy though :)
268          */
269         cs_tuners->freq_step = input;
270         return count;
271 }
272
273 show_store_one(cs, sampling_rate);
274 show_store_one(cs, sampling_down_factor);
275 show_store_one(cs, up_threshold);
276 show_store_one(cs, down_threshold);
277 show_store_one(cs, ignore_nice);
278 show_store_one(cs, freq_step);
279 declare_show_sampling_rate_min(cs);
280
281 gov_sys_pol_attr_rw(sampling_rate);
282 gov_sys_pol_attr_rw(sampling_down_factor);
283 gov_sys_pol_attr_rw(up_threshold);
284 gov_sys_pol_attr_rw(down_threshold);
285 gov_sys_pol_attr_rw(ignore_nice);
286 gov_sys_pol_attr_rw(freq_step);
287 gov_sys_pol_attr_ro(sampling_rate_min);
288
289 static struct attribute *dbs_attributes_gov_sys[] = {
290         &sampling_rate_min_gov_sys.attr,
291         &sampling_rate_gov_sys.attr,
292         &sampling_down_factor_gov_sys.attr,
293         &up_threshold_gov_sys.attr,
294         &down_threshold_gov_sys.attr,
295         &ignore_nice_gov_sys.attr,
296         &freq_step_gov_sys.attr,
297         NULL
298 };
299
300 static struct attribute_group cs_attr_group_gov_sys = {
301         .attrs = dbs_attributes_gov_sys,
302         .name = "conservative",
303 };
304
305 static struct attribute *dbs_attributes_gov_pol[] = {
306         &sampling_rate_min_gov_pol.attr,
307         &sampling_rate_gov_pol.attr,
308         &sampling_down_factor_gov_pol.attr,
309         &up_threshold_gov_pol.attr,
310         &down_threshold_gov_pol.attr,
311         &ignore_nice_gov_pol.attr,
312         &freq_step_gov_pol.attr,
313         NULL
314 };
315
316 static struct attribute_group cs_attr_group_gov_pol = {
317         .attrs = dbs_attributes_gov_pol,
318         .name = "conservative",
319 };
320
321 /************************** sysfs end ************************/
322
323 static int cs_init(struct dbs_data *dbs_data)
324 {
325         struct cs_dbs_tuners *tuners;
326
327         tuners = kzalloc(sizeof(struct cs_dbs_tuners), GFP_KERNEL);
328         if (!tuners) {
329                 pr_err("%s: kzalloc failed\n", __func__);
330                 return -ENOMEM;
331         }
332
333         tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
334         tuners->down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD;
335         tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
336         tuners->ignore_nice = 0;
337         tuners->freq_step = 5;
338
339         dbs_data->tuners = tuners;
340         dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
341                 jiffies_to_usecs(10);
342         mutex_init(&dbs_data->mutex);
343         return 0;
344 }
345
346 static void cs_exit(struct dbs_data *dbs_data)
347 {
348         kfree(dbs_data->tuners);
349 }
350
351 define_get_cpu_dbs_routines(cs_cpu_dbs_info);
352
353 static struct notifier_block cs_cpufreq_notifier_block = {
354         .notifier_call = dbs_cpufreq_notifier,
355 };
356
357 static struct cs_ops cs_ops = {
358         .notifier_block = &cs_cpufreq_notifier_block,
359 };
360
361 static struct common_dbs_data cs_dbs_cdata = {
362         .governor = GOV_CONSERVATIVE,
363         .attr_group_gov_sys = &cs_attr_group_gov_sys,
364         .attr_group_gov_pol = &cs_attr_group_gov_pol,
365         .get_cpu_cdbs = get_cpu_cdbs,
366         .get_cpu_dbs_info_s = get_cpu_dbs_info_s,
367         .gov_dbs_timer = cs_dbs_timer,
368         .gov_check_cpu = cs_check_cpu,
369         .gov_ops = &cs_ops,
370         .init = cs_init,
371         .exit = cs_exit,
372 };
373
374 static int cs_cpufreq_governor_dbs(struct cpufreq_policy *policy,
375                                    unsigned int event)
376 {
377         return cpufreq_governor_dbs(policy, &cs_dbs_cdata, event);
378 }
379
380 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
381 static
382 #endif
383 struct cpufreq_governor cpufreq_gov_conservative = {
384         .name                   = "conservative",
385         .governor               = cs_cpufreq_governor_dbs,
386         .max_transition_latency = TRANSITION_LATENCY_LIMIT,
387         .owner                  = THIS_MODULE,
388 };
389
390 static int __init cpufreq_gov_dbs_init(void)
391 {
392         return cpufreq_register_governor(&cpufreq_gov_conservative);
393 }
394
395 static void __exit cpufreq_gov_dbs_exit(void)
396 {
397         cpufreq_unregister_governor(&cpufreq_gov_conservative);
398 }
399
400 MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
401 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
402                 "Low Latency Frequency Transition capable processors "
403                 "optimised for use in a battery environment");
404 MODULE_LICENSE("GPL");
405
406 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
407 fs_initcall(cpufreq_gov_dbs_init);
408 #else
409 module_init(cpufreq_gov_dbs_init);
410 #endif
411 module_exit(cpufreq_gov_dbs_exit);