cpufreq: interactive: set at least hispeed when above hispeed load
[firefly-linux-kernel-4.4.55.git] / drivers / cpufreq / cpufreq_interactive.c
1 /*
2  * drivers/cpufreq/cpufreq_interactive.c
3  *
4  * Copyright (C) 2010 Google, Inc.
5  *
6  * This software is licensed under the terms of the GNU General Public
7  * License version 2, as published by the Free Software Foundation, and
8  * may be copied, distributed, and modified under those terms.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * Author: Mike Chan (mike@android.com)
16  *
17  */
18
19 #include <linux/cpu.h>
20 #include <linux/cpumask.h>
21 #include <linux/cpufreq.h>
22 #include <linux/module.h>
23 #include <linux/mutex.h>
24 #include <linux/sched.h>
25 #include <linux/sched/rt.h>
26 #include <linux/tick.h>
27 #include <linux/time.h>
28 #include <linux/timer.h>
29 #include <linux/workqueue.h>
30 #include <linux/kthread.h>
31 #include <linux/mutex.h>
32
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/cpufreq_interactive.h>
35
36 #include <asm/cputime.h>
37
38 static atomic_t active_count = ATOMIC_INIT(0);
39
40 struct cpufreq_interactive_cpuinfo {
41         struct timer_list cpu_timer;
42         int timer_idlecancel;
43         u64 time_in_idle;
44         u64 idle_exit_time;
45         u64 timer_run_time;
46         int idling;
47         u64 freq_change_time;
48         u64 freq_change_time_in_idle;
49         struct cpufreq_policy *policy;
50         struct cpufreq_frequency_table *freq_table;
51         unsigned int target_freq;
52         int governor_enabled;
53 };
54
55 static DEFINE_PER_CPU(struct cpufreq_interactive_cpuinfo, cpuinfo);
56
57 /* Workqueues handle frequency scaling */
58 static struct task_struct *up_task;
59 static struct workqueue_struct *down_wq;
60 static struct work_struct freq_scale_down_work;
61 static cpumask_t up_cpumask;
62 static spinlock_t up_cpumask_lock;
63 static cpumask_t down_cpumask;
64 static spinlock_t down_cpumask_lock;
65 static struct mutex set_speed_lock;
66
67 /* Hi speed to bump to from lo speed when load burst (default max) */
68 static u64 hispeed_freq;
69
70 /* Go to hi speed when CPU load at or above this value. */
71 #define DEFAULT_GO_HISPEED_LOAD 95
72 static unsigned long go_hispeed_load;
73
74 /*
75  * The minimum amount of time to spend at a frequency before we can ramp down.
76  */
77 #define DEFAULT_MIN_SAMPLE_TIME 20 * USEC_PER_MSEC
78 static unsigned long min_sample_time;
79
80 /*
81  * The sample rate of the timer used to increase frequency
82  */
83 #define DEFAULT_TIMER_RATE 20 * USEC_PER_MSEC
84 static unsigned long timer_rate;
85
86 static int cpufreq_governor_interactive(struct cpufreq_policy *policy,
87                 unsigned int event);
88
89 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_INTERACTIVE
90 static
91 #endif
92 struct cpufreq_governor cpufreq_gov_interactive = {
93         .name = "interactive",
94         .governor = cpufreq_governor_interactive,
95         .max_transition_latency = 10000000,
96         .owner = THIS_MODULE,
97 };
98
99 static void cpufreq_interactive_timer(unsigned long data)
100 {
101         unsigned int delta_idle;
102         unsigned int delta_time;
103         int cpu_load;
104         int load_since_change;
105         u64 time_in_idle;
106         u64 idle_exit_time;
107         struct cpufreq_interactive_cpuinfo *pcpu =
108                 &per_cpu(cpuinfo, data);
109         u64 now_idle;
110         unsigned int new_freq;
111         unsigned int index;
112         unsigned long flags;
113
114         smp_rmb();
115
116         if (!pcpu->governor_enabled)
117                 goto exit;
118
119         /*
120          * Once pcpu->timer_run_time is updated to >= pcpu->idle_exit_time,
121          * this lets idle exit know the current idle time sample has
122          * been processed, and idle exit can generate a new sample and
123          * re-arm the timer.  This prevents a concurrent idle
124          * exit on that CPU from writing a new set of info at the same time
125          * the timer function runs (the timer function can't use that info
126          * until more time passes).
127          */
128         time_in_idle = pcpu->time_in_idle;
129         idle_exit_time = pcpu->idle_exit_time;
130         now_idle = get_cpu_idle_time_us(data, &pcpu->timer_run_time);
131         smp_wmb();
132
133         /* If we raced with cancelling a timer, skip. */
134         if (!idle_exit_time)
135                 goto exit;
136
137         delta_idle = (unsigned int)(now_idle - time_in_idle);
138         delta_time = (unsigned int)(pcpu->timer_run_time - idle_exit_time);
139
140         /*
141          * If timer ran less than 1ms after short-term sample started, retry.
142          */
143         if (delta_time < 1000)
144                 goto rearm;
145
146         if (delta_idle > delta_time)
147                 cpu_load = 0;
148         else
149                 cpu_load = 100 * (delta_time - delta_idle) / delta_time;
150
151         delta_idle = (unsigned int)(now_idle - pcpu->freq_change_time_in_idle);
152         delta_time = (unsigned int)(pcpu->timer_run_time - pcpu->freq_change_time);
153
154         if ((delta_time == 0) || (delta_idle > delta_time))
155                 load_since_change = 0;
156         else
157                 load_since_change =
158                         100 * (delta_time - delta_idle) / delta_time;
159
160         /*
161          * Choose greater of short-term load (since last idle timer
162          * started or timer function re-armed itself) or long-term load
163          * (since last frequency change).
164          */
165         if (load_since_change > cpu_load)
166                 cpu_load = load_since_change;
167
168         if (cpu_load >= go_hispeed_load) {
169                 if (pcpu->policy->cur == pcpu->policy->min) {
170                         new_freq = hispeed_freq;
171                 } else {
172                         new_freq = pcpu->policy->max * cpu_load / 100;
173
174                         if (new_freq < hispeed_freq)
175                                 new_freq = hispeed_freq;
176                 }
177         } else {
178                 new_freq = pcpu->policy->max * cpu_load / 100;
179         }
180
181         if (cpufreq_frequency_table_target(pcpu->policy, pcpu->freq_table,
182                                            new_freq, CPUFREQ_RELATION_H,
183                                            &index)) {
184                 pr_warn_once("timer %d: cpufreq_frequency_table_target error\n",
185                              (int) data);
186                 goto rearm;
187         }
188
189         new_freq = pcpu->freq_table[index].frequency;
190
191         if (pcpu->target_freq == new_freq)
192         {
193                 trace_cpufreq_interactive_already(data, cpu_load,
194                                                   pcpu->target_freq, new_freq);
195                 goto rearm_if_notmax;
196         }
197
198         /*
199          * Do not scale down unless we have been at this frequency for the
200          * minimum sample time.
201          */
202         if (new_freq < pcpu->target_freq) {
203                 if (pcpu->timer_run_time - pcpu->freq_change_time
204                     < min_sample_time) {
205                         trace_cpufreq_interactive_notyet(data, cpu_load,
206                                          pcpu->target_freq, new_freq);
207                         goto rearm;
208                 }
209         }
210
211         trace_cpufreq_interactive_target(data, cpu_load, pcpu->target_freq,
212                                          new_freq);
213
214         if (new_freq < pcpu->target_freq) {
215                 pcpu->target_freq = new_freq;
216                 spin_lock_irqsave(&down_cpumask_lock, flags);
217                 cpumask_set_cpu(data, &down_cpumask);
218                 spin_unlock_irqrestore(&down_cpumask_lock, flags);
219                 queue_work(down_wq, &freq_scale_down_work);
220         } else {
221                 pcpu->target_freq = new_freq;
222                 spin_lock_irqsave(&up_cpumask_lock, flags);
223                 cpumask_set_cpu(data, &up_cpumask);
224                 spin_unlock_irqrestore(&up_cpumask_lock, flags);
225                 wake_up_process(up_task);
226         }
227
228 rearm_if_notmax:
229         /*
230          * Already set max speed and don't see a need to change that,
231          * wait until next idle to re-evaluate, don't need timer.
232          */
233         if (pcpu->target_freq == pcpu->policy->max)
234                 goto exit;
235
236 rearm:
237         if (!timer_pending(&pcpu->cpu_timer)) {
238                 /*
239                  * If already at min: if that CPU is idle, don't set timer.
240                  * Else cancel the timer if that CPU goes idle.  We don't
241                  * need to re-evaluate speed until the next idle exit.
242                  */
243                 if (pcpu->target_freq == pcpu->policy->min) {
244                         smp_rmb();
245
246                         if (pcpu->idling)
247                                 goto exit;
248
249                         pcpu->timer_idlecancel = 1;
250                 }
251
252                 pcpu->time_in_idle = get_cpu_idle_time_us(
253                         data, &pcpu->idle_exit_time);
254                 mod_timer(&pcpu->cpu_timer,
255                           jiffies + usecs_to_jiffies(timer_rate));
256         }
257
258 exit:
259         return;
260 }
261
262 static void cpufreq_interactive_idle_start(void)
263 {
264         struct cpufreq_interactive_cpuinfo *pcpu =
265                 &per_cpu(cpuinfo, smp_processor_id());
266         int pending;
267
268         if (!pcpu->governor_enabled)
269                 return;
270
271         pcpu->idling = 1;
272         smp_wmb();
273         pending = timer_pending(&pcpu->cpu_timer);
274
275         if (pcpu->target_freq != pcpu->policy->min) {
276 #ifdef CONFIG_SMP
277                 /*
278                  * Entering idle while not at lowest speed.  On some
279                  * platforms this can hold the other CPU(s) at that speed
280                  * even though the CPU is idle. Set a timer to re-evaluate
281                  * speed so this idle CPU doesn't hold the other CPUs above
282                  * min indefinitely.  This should probably be a quirk of
283                  * the CPUFreq driver.
284                  */
285                 if (!pending) {
286                         pcpu->time_in_idle = get_cpu_idle_time_us(
287                                 smp_processor_id(), &pcpu->idle_exit_time);
288                         pcpu->timer_idlecancel = 0;
289                         mod_timer(&pcpu->cpu_timer,
290                                   jiffies + usecs_to_jiffies(timer_rate));
291                 }
292 #endif
293         } else {
294                 /*
295                  * If at min speed and entering idle after load has
296                  * already been evaluated, and a timer has been set just in
297                  * case the CPU suddenly goes busy, cancel that timer.  The
298                  * CPU didn't go busy; we'll recheck things upon idle exit.
299                  */
300                 if (pending && pcpu->timer_idlecancel) {
301                         del_timer(&pcpu->cpu_timer);
302                         /*
303                          * Ensure last timer run time is after current idle
304                          * sample start time, so next idle exit will always
305                          * start a new idle sampling period.
306                          */
307                         pcpu->idle_exit_time = 0;
308                         pcpu->timer_idlecancel = 0;
309                 }
310         }
311
312 }
313
314 static void cpufreq_interactive_idle_end(void)
315 {
316         struct cpufreq_interactive_cpuinfo *pcpu =
317                 &per_cpu(cpuinfo, smp_processor_id());
318
319         pcpu->idling = 0;
320         smp_wmb();
321
322         /*
323          * Arm the timer for 1-2 ticks later if not already, and if the timer
324          * function has already processed the previous load sampling
325          * interval.  (If the timer is not pending but has not processed
326          * the previous interval, it is probably racing with us on another
327          * CPU.  Let it compute load based on the previous sample and then
328          * re-arm the timer for another interval when it's done, rather
329          * than updating the interval start time to be "now", which doesn't
330          * give the timer function enough time to make a decision on this
331          * run.)
332          */
333         if (timer_pending(&pcpu->cpu_timer) == 0 &&
334             pcpu->timer_run_time >= pcpu->idle_exit_time &&
335             pcpu->governor_enabled) {
336                 pcpu->time_in_idle =
337                         get_cpu_idle_time_us(smp_processor_id(),
338                                              &pcpu->idle_exit_time);
339                 pcpu->timer_idlecancel = 0;
340                 mod_timer(&pcpu->cpu_timer,
341                           jiffies + usecs_to_jiffies(timer_rate));
342         }
343
344 }
345
346 static int cpufreq_interactive_up_task(void *data)
347 {
348         unsigned int cpu;
349         cpumask_t tmp_mask;
350         unsigned long flags;
351         struct cpufreq_interactive_cpuinfo *pcpu;
352
353         while (1) {
354                 set_current_state(TASK_INTERRUPTIBLE);
355                 spin_lock_irqsave(&up_cpumask_lock, flags);
356
357                 if (cpumask_empty(&up_cpumask)) {
358                         spin_unlock_irqrestore(&up_cpumask_lock, flags);
359                         schedule();
360
361                         if (kthread_should_stop())
362                                 break;
363
364                         spin_lock_irqsave(&up_cpumask_lock, flags);
365                 }
366
367                 set_current_state(TASK_RUNNING);
368                 tmp_mask = up_cpumask;
369                 cpumask_clear(&up_cpumask);
370                 spin_unlock_irqrestore(&up_cpumask_lock, flags);
371
372                 for_each_cpu(cpu, &tmp_mask) {
373                         unsigned int j;
374                         unsigned int max_freq = 0;
375
376                         pcpu = &per_cpu(cpuinfo, cpu);
377                         smp_rmb();
378
379                         if (!pcpu->governor_enabled)
380                                 continue;
381
382                         mutex_lock(&set_speed_lock);
383
384                         for_each_cpu(j, pcpu->policy->cpus) {
385                                 struct cpufreq_interactive_cpuinfo *pjcpu =
386                                         &per_cpu(cpuinfo, j);
387
388                                 if (pjcpu->target_freq > max_freq)
389                                         max_freq = pjcpu->target_freq;
390                         }
391
392                         if (max_freq != pcpu->policy->cur)
393                                 __cpufreq_driver_target(pcpu->policy,
394                                                         max_freq,
395                                                         CPUFREQ_RELATION_H);
396                         mutex_unlock(&set_speed_lock);
397
398                         pcpu->freq_change_time_in_idle =
399                                 get_cpu_idle_time_us(cpu,
400                                                      &pcpu->freq_change_time);
401                         trace_cpufreq_interactive_up(cpu, pcpu->target_freq,
402                                                      pcpu->policy->cur);
403                 }
404         }
405
406         return 0;
407 }
408
409 static void cpufreq_interactive_freq_down(struct work_struct *work)
410 {
411         unsigned int cpu;
412         cpumask_t tmp_mask;
413         unsigned long flags;
414         struct cpufreq_interactive_cpuinfo *pcpu;
415
416         spin_lock_irqsave(&down_cpumask_lock, flags);
417         tmp_mask = down_cpumask;
418         cpumask_clear(&down_cpumask);
419         spin_unlock_irqrestore(&down_cpumask_lock, flags);
420
421         for_each_cpu(cpu, &tmp_mask) {
422                 unsigned int j;
423                 unsigned int max_freq = 0;
424
425                 pcpu = &per_cpu(cpuinfo, cpu);
426                 smp_rmb();
427
428                 if (!pcpu->governor_enabled)
429                         continue;
430
431                 mutex_lock(&set_speed_lock);
432
433                 for_each_cpu(j, pcpu->policy->cpus) {
434                         struct cpufreq_interactive_cpuinfo *pjcpu =
435                                 &per_cpu(cpuinfo, j);
436
437                         if (pjcpu->target_freq > max_freq)
438                                 max_freq = pjcpu->target_freq;
439                 }
440
441                 if (max_freq != pcpu->policy->cur)
442                         __cpufreq_driver_target(pcpu->policy, max_freq,
443                                                 CPUFREQ_RELATION_H);
444
445                 mutex_unlock(&set_speed_lock);
446                 pcpu->freq_change_time_in_idle =
447                         get_cpu_idle_time_us(cpu,
448                                              &pcpu->freq_change_time);
449                 trace_cpufreq_interactive_down(cpu, pcpu->target_freq,
450                                                pcpu->policy->cur);
451         }
452 }
453
454 static ssize_t show_hispeed_freq(struct kobject *kobj,
455                                  struct attribute *attr, char *buf)
456 {
457         return sprintf(buf, "%llu\n", hispeed_freq);
458 }
459
460 static ssize_t store_hispeed_freq(struct kobject *kobj,
461                                   struct attribute *attr, const char *buf,
462                                   size_t count)
463 {
464         int ret;
465         u64 val;
466
467         ret = strict_strtoull(buf, 0, &val);
468         if (ret < 0)
469                 return ret;
470         hispeed_freq = val;
471         return count;
472 }
473
474 static struct global_attr hispeed_freq_attr = __ATTR(hispeed_freq, 0644,
475                 show_hispeed_freq, store_hispeed_freq);
476
477
478 static ssize_t show_go_hispeed_load(struct kobject *kobj,
479                                      struct attribute *attr, char *buf)
480 {
481         return sprintf(buf, "%lu\n", go_hispeed_load);
482 }
483
484 static ssize_t store_go_hispeed_load(struct kobject *kobj,
485                         struct attribute *attr, const char *buf, size_t count)
486 {
487         int ret;
488         unsigned long val;
489
490         ret = strict_strtoul(buf, 0, &val);
491         if (ret < 0)
492                 return ret;
493         go_hispeed_load = val;
494         return count;
495 }
496
497 static struct global_attr go_hispeed_load_attr = __ATTR(go_hispeed_load, 0644,
498                 show_go_hispeed_load, store_go_hispeed_load);
499
500 static ssize_t show_min_sample_time(struct kobject *kobj,
501                                 struct attribute *attr, char *buf)
502 {
503         return sprintf(buf, "%lu\n", min_sample_time);
504 }
505
506 static ssize_t store_min_sample_time(struct kobject *kobj,
507                         struct attribute *attr, const char *buf, size_t count)
508 {
509         int ret;
510         unsigned long val;
511
512         ret = strict_strtoul(buf, 0, &val);
513         if (ret < 0)
514                 return ret;
515         min_sample_time = val;
516         return count;
517 }
518
519 static struct global_attr min_sample_time_attr = __ATTR(min_sample_time, 0644,
520                 show_min_sample_time, store_min_sample_time);
521
522 static ssize_t show_timer_rate(struct kobject *kobj,
523                         struct attribute *attr, char *buf)
524 {
525         return sprintf(buf, "%lu\n", timer_rate);
526 }
527
528 static ssize_t store_timer_rate(struct kobject *kobj,
529                         struct attribute *attr, const char *buf, size_t count)
530 {
531         int ret;
532         unsigned long val;
533
534         ret = strict_strtoul(buf, 0, &val);
535         if (ret < 0)
536                 return ret;
537         timer_rate = val;
538         return count;
539 }
540
541 static struct global_attr timer_rate_attr = __ATTR(timer_rate, 0644,
542                 show_timer_rate, store_timer_rate);
543
544 static struct attribute *interactive_attributes[] = {
545         &hispeed_freq_attr.attr,
546         &go_hispeed_load_attr.attr,
547         &min_sample_time_attr.attr,
548         &timer_rate_attr.attr,
549         NULL,
550 };
551
552 static struct attribute_group interactive_attr_group = {
553         .attrs = interactive_attributes,
554         .name = "interactive",
555 };
556
557 static int cpufreq_governor_interactive(struct cpufreq_policy *policy,
558                 unsigned int event)
559 {
560         int rc;
561         unsigned int j;
562         struct cpufreq_interactive_cpuinfo *pcpu;
563         struct cpufreq_frequency_table *freq_table;
564
565         switch (event) {
566         case CPUFREQ_GOV_START:
567                 if (!cpu_online(policy->cpu))
568                         return -EINVAL;
569
570                 freq_table =
571                         cpufreq_frequency_get_table(policy->cpu);
572
573                 for_each_cpu(j, policy->cpus) {
574                         pcpu = &per_cpu(cpuinfo, j);
575                         pcpu->policy = policy;
576                         pcpu->target_freq = policy->cur;
577                         pcpu->freq_table = freq_table;
578                         pcpu->freq_change_time_in_idle =
579                                 get_cpu_idle_time_us(j,
580                                              &pcpu->freq_change_time);
581                         pcpu->governor_enabled = 1;
582                         smp_wmb();
583                 }
584
585                 if (!hispeed_freq)
586                         hispeed_freq = policy->max;
587
588                 /*
589                  * Do not register the idle hook and create sysfs
590                  * entries if we have already done so.
591                  */
592                 if (atomic_inc_return(&active_count) > 1)
593                         return 0;
594
595                 rc = sysfs_create_group(cpufreq_global_kobject,
596                                 &interactive_attr_group);
597                 if (rc)
598                         return rc;
599
600                 break;
601
602         case CPUFREQ_GOV_STOP:
603                 for_each_cpu(j, policy->cpus) {
604                         pcpu = &per_cpu(cpuinfo, j);
605                         pcpu->governor_enabled = 0;
606                         smp_wmb();
607                         del_timer_sync(&pcpu->cpu_timer);
608
609                         /*
610                          * Reset idle exit time since we may cancel the timer
611                          * before it can run after the last idle exit time,
612                          * to avoid tripping the check in idle exit for a timer
613                          * that is trying to run.
614                          */
615                         pcpu->idle_exit_time = 0;
616                 }
617
618                 flush_work(&freq_scale_down_work);
619                 if (atomic_dec_return(&active_count) > 0)
620                         return 0;
621
622                 sysfs_remove_group(cpufreq_global_kobject,
623                                 &interactive_attr_group);
624
625                 break;
626
627         case CPUFREQ_GOV_LIMITS:
628                 if (policy->max < policy->cur)
629                         __cpufreq_driver_target(policy,
630                                         policy->max, CPUFREQ_RELATION_H);
631                 else if (policy->min > policy->cur)
632                         __cpufreq_driver_target(policy,
633                                         policy->min, CPUFREQ_RELATION_L);
634                 break;
635         }
636         return 0;
637 }
638
639 static int cpufreq_interactive_idle_notifier(struct notifier_block *nb,
640                                              unsigned long val,
641                                              void *data)
642 {
643         switch (val) {
644         case IDLE_START:
645                 cpufreq_interactive_idle_start();
646                 break;
647         case IDLE_END:
648                 cpufreq_interactive_idle_end();
649                 break;
650         }
651
652         return 0;
653 }
654
655 static struct notifier_block cpufreq_interactive_idle_nb = {
656         .notifier_call = cpufreq_interactive_idle_notifier,
657 };
658
659 static int __init cpufreq_interactive_init(void)
660 {
661         unsigned int i;
662         struct cpufreq_interactive_cpuinfo *pcpu;
663         struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 };
664
665         go_hispeed_load = DEFAULT_GO_HISPEED_LOAD;
666         min_sample_time = DEFAULT_MIN_SAMPLE_TIME;
667         timer_rate = DEFAULT_TIMER_RATE;
668
669         /* Initalize per-cpu timers */
670         for_each_possible_cpu(i) {
671                 pcpu = &per_cpu(cpuinfo, i);
672                 init_timer(&pcpu->cpu_timer);
673                 pcpu->cpu_timer.function = cpufreq_interactive_timer;
674                 pcpu->cpu_timer.data = i;
675         }
676
677         up_task = kthread_create(cpufreq_interactive_up_task, NULL,
678                                  "kinteractiveup");
679         if (IS_ERR(up_task))
680                 return PTR_ERR(up_task);
681
682         sched_setscheduler_nocheck(up_task, SCHED_FIFO, &param);
683         get_task_struct(up_task);
684
685         /* No rescuer thread, bind to CPU queuing the work for possibly
686            warm cache (probably doesn't matter much). */
687         down_wq = alloc_workqueue("knteractive_down", 0, 1);
688
689         if (!down_wq)
690                 goto err_freeuptask;
691
692         INIT_WORK(&freq_scale_down_work,
693                   cpufreq_interactive_freq_down);
694
695         spin_lock_init(&up_cpumask_lock);
696         spin_lock_init(&down_cpumask_lock);
697         mutex_init(&set_speed_lock);
698
699         idle_notifier_register(&cpufreq_interactive_idle_nb);
700
701         return cpufreq_register_governor(&cpufreq_gov_interactive);
702
703 err_freeuptask:
704         put_task_struct(up_task);
705         return -ENOMEM;
706 }
707
708 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_INTERACTIVE
709 fs_initcall(cpufreq_interactive_init);
710 #else
711 module_init(cpufreq_interactive_init);
712 #endif
713
714 static void __exit cpufreq_interactive_exit(void)
715 {
716         cpufreq_unregister_governor(&cpufreq_gov_interactive);
717         kthread_stop(up_task);
718         put_task_struct(up_task);
719         destroy_workqueue(down_wq);
720 }
721
722 module_exit(cpufreq_interactive_exit);
723
724 MODULE_AUTHOR("Mike Chan <mike@android.com>");
725 MODULE_DESCRIPTION("'cpufreq_interactive' - A cpufreq governor for "
726         "Latency sensitive workloads");
727 MODULE_LICENSE("GPL");