Merge branch 'mnt_devname' of git://git.kernel.org/pub/scm/linux/kernel/git/viro...
[firefly-linux-kernel-4.4.55.git] / drivers / cpufreq / cpufreq_ondemand.c
1 /*
2  *  drivers/cpufreq/cpufreq_ondemand.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21 #include <linux/hrtimer.h>
22 #include <linux/tick.h>
23 #include <linux/ktime.h>
24 #include <linux/sched.h>
25
26 /*
27  * dbs is used in this file as a shortform for demandbased switching
28  * It helps to keep variable names smaller, simpler
29  */
30
31 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL         (10)
32 #define DEF_FREQUENCY_UP_THRESHOLD              (80)
33 #define DEF_SAMPLING_DOWN_FACTOR                (1)
34 #define MAX_SAMPLING_DOWN_FACTOR                (100000)
35 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL       (3)
36 #define MICRO_FREQUENCY_UP_THRESHOLD            (95)
37 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE         (10000)
38 #define MIN_FREQUENCY_UP_THRESHOLD              (11)
39 #define MAX_FREQUENCY_UP_THRESHOLD              (100)
40
41 /*
42  * The polling frequency of this governor depends on the capability of
43  * the processor. Default polling frequency is 1000 times the transition
44  * latency of the processor. The governor will work on any processor with
45  * transition latency <= 10mS, using appropriate sampling
46  * rate.
47  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
48  * this governor will not work.
49  * All times here are in uS.
50  */
51 #define MIN_SAMPLING_RATE_RATIO                 (2)
52
53 static unsigned int min_sampling_rate;
54
55 #define LATENCY_MULTIPLIER                      (1000)
56 #define MIN_LATENCY_MULTIPLIER                  (100)
57 #define TRANSITION_LATENCY_LIMIT                (10 * 1000 * 1000)
58
59 static void do_dbs_timer(struct work_struct *work);
60 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
61                                 unsigned int event);
62
63 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
64 static
65 #endif
66 struct cpufreq_governor cpufreq_gov_ondemand = {
67        .name                   = "ondemand",
68        .governor               = cpufreq_governor_dbs,
69        .max_transition_latency = TRANSITION_LATENCY_LIMIT,
70        .owner                  = THIS_MODULE,
71 };
72
73 /* Sampling types */
74 enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
75
76 struct cpu_dbs_info_s {
77         cputime64_t prev_cpu_idle;
78         cputime64_t prev_cpu_iowait;
79         cputime64_t prev_cpu_wall;
80         cputime64_t prev_cpu_nice;
81         struct cpufreq_policy *cur_policy;
82         struct delayed_work work;
83         struct cpufreq_frequency_table *freq_table;
84         unsigned int freq_lo;
85         unsigned int freq_lo_jiffies;
86         unsigned int freq_hi_jiffies;
87         unsigned int rate_mult;
88         int cpu;
89         unsigned int sample_type:1;
90         /*
91          * percpu mutex that serializes governor limit change with
92          * do_dbs_timer invocation. We do not want do_dbs_timer to run
93          * when user is changing the governor or limits.
94          */
95         struct mutex timer_mutex;
96 };
97 static DEFINE_PER_CPU(struct cpu_dbs_info_s, od_cpu_dbs_info);
98
99 static unsigned int dbs_enable; /* number of CPUs using this policy */
100
101 /*
102  * dbs_mutex protects data in dbs_tuners_ins from concurrent changes on
103  * different CPUs. It protects dbs_enable in governor start/stop.
104  */
105 static DEFINE_MUTEX(dbs_mutex);
106
107 static struct dbs_tuners {
108         unsigned int sampling_rate;
109         unsigned int up_threshold;
110         unsigned int down_differential;
111         unsigned int ignore_nice;
112         unsigned int sampling_down_factor;
113         unsigned int powersave_bias;
114         unsigned int io_is_busy;
115 } dbs_tuners_ins = {
116         .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
117         .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
118         .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
119         .ignore_nice = 0,
120         .powersave_bias = 0,
121 };
122
123 static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
124                                                         cputime64_t *wall)
125 {
126         cputime64_t idle_time;
127         cputime64_t cur_wall_time;
128         cputime64_t busy_time;
129
130         cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
131         busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
132                         kstat_cpu(cpu).cpustat.system);
133
134         busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
135         busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
136         busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
137         busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
138
139         idle_time = cputime64_sub(cur_wall_time, busy_time);
140         if (wall)
141                 *wall = (cputime64_t)jiffies_to_usecs(cur_wall_time);
142
143         return (cputime64_t)jiffies_to_usecs(idle_time);
144 }
145
146 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
147 {
148         u64 idle_time = get_cpu_idle_time_us(cpu, wall);
149
150         if (idle_time == -1ULL)
151                 return get_cpu_idle_time_jiffy(cpu, wall);
152
153         return idle_time;
154 }
155
156 static inline cputime64_t get_cpu_iowait_time(unsigned int cpu, cputime64_t *wall)
157 {
158         u64 iowait_time = get_cpu_iowait_time_us(cpu, wall);
159
160         if (iowait_time == -1ULL)
161                 return 0;
162
163         return iowait_time;
164 }
165
166 /*
167  * Find right freq to be set now with powersave_bias on.
168  * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
169  * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
170  */
171 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
172                                           unsigned int freq_next,
173                                           unsigned int relation)
174 {
175         unsigned int freq_req, freq_reduc, freq_avg;
176         unsigned int freq_hi, freq_lo;
177         unsigned int index = 0;
178         unsigned int jiffies_total, jiffies_hi, jiffies_lo;
179         struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
180                                                    policy->cpu);
181
182         if (!dbs_info->freq_table) {
183                 dbs_info->freq_lo = 0;
184                 dbs_info->freq_lo_jiffies = 0;
185                 return freq_next;
186         }
187
188         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
189                         relation, &index);
190         freq_req = dbs_info->freq_table[index].frequency;
191         freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
192         freq_avg = freq_req - freq_reduc;
193
194         /* Find freq bounds for freq_avg in freq_table */
195         index = 0;
196         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
197                         CPUFREQ_RELATION_H, &index);
198         freq_lo = dbs_info->freq_table[index].frequency;
199         index = 0;
200         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
201                         CPUFREQ_RELATION_L, &index);
202         freq_hi = dbs_info->freq_table[index].frequency;
203
204         /* Find out how long we have to be in hi and lo freqs */
205         if (freq_hi == freq_lo) {
206                 dbs_info->freq_lo = 0;
207                 dbs_info->freq_lo_jiffies = 0;
208                 return freq_lo;
209         }
210         jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
211         jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
212         jiffies_hi += ((freq_hi - freq_lo) / 2);
213         jiffies_hi /= (freq_hi - freq_lo);
214         jiffies_lo = jiffies_total - jiffies_hi;
215         dbs_info->freq_lo = freq_lo;
216         dbs_info->freq_lo_jiffies = jiffies_lo;
217         dbs_info->freq_hi_jiffies = jiffies_hi;
218         return freq_hi;
219 }
220
221 static void ondemand_powersave_bias_init_cpu(int cpu)
222 {
223         struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
224         dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
225         dbs_info->freq_lo = 0;
226 }
227
228 static void ondemand_powersave_bias_init(void)
229 {
230         int i;
231         for_each_online_cpu(i) {
232                 ondemand_powersave_bias_init_cpu(i);
233         }
234 }
235
236 /************************** sysfs interface ************************/
237
238 static ssize_t show_sampling_rate_max(struct kobject *kobj,
239                                       struct attribute *attr, char *buf)
240 {
241         printk_once(KERN_INFO "CPUFREQ: ondemand sampling_rate_max "
242                "sysfs file is deprecated - used by: %s\n", current->comm);
243         return sprintf(buf, "%u\n", -1U);
244 }
245
246 static ssize_t show_sampling_rate_min(struct kobject *kobj,
247                                       struct attribute *attr, char *buf)
248 {
249         return sprintf(buf, "%u\n", min_sampling_rate);
250 }
251
252 define_one_global_ro(sampling_rate_max);
253 define_one_global_ro(sampling_rate_min);
254
255 /* cpufreq_ondemand Governor Tunables */
256 #define show_one(file_name, object)                                     \
257 static ssize_t show_##file_name                                         \
258 (struct kobject *kobj, struct attribute *attr, char *buf)              \
259 {                                                                       \
260         return sprintf(buf, "%u\n", dbs_tuners_ins.object);             \
261 }
262 show_one(sampling_rate, sampling_rate);
263 show_one(io_is_busy, io_is_busy);
264 show_one(up_threshold, up_threshold);
265 show_one(sampling_down_factor, sampling_down_factor);
266 show_one(ignore_nice_load, ignore_nice);
267 show_one(powersave_bias, powersave_bias);
268
269 /*** delete after deprecation time ***/
270
271 #define DEPRECATION_MSG(file_name)                                      \
272         printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs "       \
273                     "interface is deprecated - " #file_name "\n");
274
275 #define show_one_old(file_name)                                         \
276 static ssize_t show_##file_name##_old                                   \
277 (struct cpufreq_policy *unused, char *buf)                              \
278 {                                                                       \
279         printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs "       \
280                     "interface is deprecated - " #file_name "\n");      \
281         return show_##file_name(NULL, NULL, buf);                       \
282 }
283 show_one_old(sampling_rate);
284 show_one_old(up_threshold);
285 show_one_old(ignore_nice_load);
286 show_one_old(powersave_bias);
287 show_one_old(sampling_rate_min);
288 show_one_old(sampling_rate_max);
289
290 cpufreq_freq_attr_ro_old(sampling_rate_min);
291 cpufreq_freq_attr_ro_old(sampling_rate_max);
292
293 /*** delete after deprecation time ***/
294
295 static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
296                                    const char *buf, size_t count)
297 {
298         unsigned int input;
299         int ret;
300         ret = sscanf(buf, "%u", &input);
301         if (ret != 1)
302                 return -EINVAL;
303
304         mutex_lock(&dbs_mutex);
305         dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
306         mutex_unlock(&dbs_mutex);
307
308         return count;
309 }
310
311 static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
312                                    const char *buf, size_t count)
313 {
314         unsigned int input;
315         int ret;
316
317         ret = sscanf(buf, "%u", &input);
318         if (ret != 1)
319                 return -EINVAL;
320
321         mutex_lock(&dbs_mutex);
322         dbs_tuners_ins.io_is_busy = !!input;
323         mutex_unlock(&dbs_mutex);
324
325         return count;
326 }
327
328 static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
329                                   const char *buf, size_t count)
330 {
331         unsigned int input;
332         int ret;
333         ret = sscanf(buf, "%u", &input);
334
335         if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
336                         input < MIN_FREQUENCY_UP_THRESHOLD) {
337                 return -EINVAL;
338         }
339
340         mutex_lock(&dbs_mutex);
341         dbs_tuners_ins.up_threshold = input;
342         mutex_unlock(&dbs_mutex);
343
344         return count;
345 }
346
347 static ssize_t store_sampling_down_factor(struct kobject *a,
348                         struct attribute *b, const char *buf, size_t count)
349 {
350         unsigned int input, j;
351         int ret;
352         ret = sscanf(buf, "%u", &input);
353
354         if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
355                 return -EINVAL;
356         mutex_lock(&dbs_mutex);
357         dbs_tuners_ins.sampling_down_factor = input;
358
359         /* Reset down sampling multiplier in case it was active */
360         for_each_online_cpu(j) {
361                 struct cpu_dbs_info_s *dbs_info;
362                 dbs_info = &per_cpu(od_cpu_dbs_info, j);
363                 dbs_info->rate_mult = 1;
364         }
365         mutex_unlock(&dbs_mutex);
366
367         return count;
368 }
369
370 static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
371                                       const char *buf, size_t count)
372 {
373         unsigned int input;
374         int ret;
375
376         unsigned int j;
377
378         ret = sscanf(buf, "%u", &input);
379         if (ret != 1)
380                 return -EINVAL;
381
382         if (input > 1)
383                 input = 1;
384
385         mutex_lock(&dbs_mutex);
386         if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
387                 mutex_unlock(&dbs_mutex);
388                 return count;
389         }
390         dbs_tuners_ins.ignore_nice = input;
391
392         /* we need to re-evaluate prev_cpu_idle */
393         for_each_online_cpu(j) {
394                 struct cpu_dbs_info_s *dbs_info;
395                 dbs_info = &per_cpu(od_cpu_dbs_info, j);
396                 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
397                                                 &dbs_info->prev_cpu_wall);
398                 if (dbs_tuners_ins.ignore_nice)
399                         dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
400
401         }
402         mutex_unlock(&dbs_mutex);
403
404         return count;
405 }
406
407 static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
408                                     const char *buf, size_t count)
409 {
410         unsigned int input;
411         int ret;
412         ret = sscanf(buf, "%u", &input);
413
414         if (ret != 1)
415                 return -EINVAL;
416
417         if (input > 1000)
418                 input = 1000;
419
420         mutex_lock(&dbs_mutex);
421         dbs_tuners_ins.powersave_bias = input;
422         ondemand_powersave_bias_init();
423         mutex_unlock(&dbs_mutex);
424
425         return count;
426 }
427
428 define_one_global_rw(sampling_rate);
429 define_one_global_rw(io_is_busy);
430 define_one_global_rw(up_threshold);
431 define_one_global_rw(sampling_down_factor);
432 define_one_global_rw(ignore_nice_load);
433 define_one_global_rw(powersave_bias);
434
435 static struct attribute *dbs_attributes[] = {
436         &sampling_rate_max.attr,
437         &sampling_rate_min.attr,
438         &sampling_rate.attr,
439         &up_threshold.attr,
440         &sampling_down_factor.attr,
441         &ignore_nice_load.attr,
442         &powersave_bias.attr,
443         &io_is_busy.attr,
444         NULL
445 };
446
447 static struct attribute_group dbs_attr_group = {
448         .attrs = dbs_attributes,
449         .name = "ondemand",
450 };
451
452 /*** delete after deprecation time ***/
453
454 #define write_one_old(file_name)                                        \
455 static ssize_t store_##file_name##_old                                  \
456 (struct cpufreq_policy *unused, const char *buf, size_t count)          \
457 {                                                                       \
458        printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs "        \
459                    "interface is deprecated - " #file_name "\n");       \
460        return store_##file_name(NULL, NULL, buf, count);                \
461 }
462 write_one_old(sampling_rate);
463 write_one_old(up_threshold);
464 write_one_old(ignore_nice_load);
465 write_one_old(powersave_bias);
466
467 cpufreq_freq_attr_rw_old(sampling_rate);
468 cpufreq_freq_attr_rw_old(up_threshold);
469 cpufreq_freq_attr_rw_old(ignore_nice_load);
470 cpufreq_freq_attr_rw_old(powersave_bias);
471
472 static struct attribute *dbs_attributes_old[] = {
473        &sampling_rate_max_old.attr,
474        &sampling_rate_min_old.attr,
475        &sampling_rate_old.attr,
476        &up_threshold_old.attr,
477        &ignore_nice_load_old.attr,
478        &powersave_bias_old.attr,
479        NULL
480 };
481
482 static struct attribute_group dbs_attr_group_old = {
483        .attrs = dbs_attributes_old,
484        .name = "ondemand",
485 };
486
487 /*** delete after deprecation time ***/
488
489 /************************** sysfs end ************************/
490
491 static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
492 {
493         if (dbs_tuners_ins.powersave_bias)
494                 freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
495         else if (p->cur == p->max)
496                 return;
497
498         __cpufreq_driver_target(p, freq, dbs_tuners_ins.powersave_bias ?
499                         CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
500 }
501
502 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
503 {
504         unsigned int max_load_freq;
505
506         struct cpufreq_policy *policy;
507         unsigned int j;
508
509         this_dbs_info->freq_lo = 0;
510         policy = this_dbs_info->cur_policy;
511
512         /*
513          * Every sampling_rate, we check, if current idle time is less
514          * than 20% (default), then we try to increase frequency
515          * Every sampling_rate, we look for a the lowest
516          * frequency which can sustain the load while keeping idle time over
517          * 30%. If such a frequency exist, we try to decrease to this frequency.
518          *
519          * Any frequency increase takes it to the maximum frequency.
520          * Frequency reduction happens at minimum steps of
521          * 5% (default) of current frequency
522          */
523
524         /* Get Absolute Load - in terms of freq */
525         max_load_freq = 0;
526
527         for_each_cpu(j, policy->cpus) {
528                 struct cpu_dbs_info_s *j_dbs_info;
529                 cputime64_t cur_wall_time, cur_idle_time, cur_iowait_time;
530                 unsigned int idle_time, wall_time, iowait_time;
531                 unsigned int load, load_freq;
532                 int freq_avg;
533
534                 j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
535
536                 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
537                 cur_iowait_time = get_cpu_iowait_time(j, &cur_wall_time);
538
539                 wall_time = (unsigned int) cputime64_sub(cur_wall_time,
540                                 j_dbs_info->prev_cpu_wall);
541                 j_dbs_info->prev_cpu_wall = cur_wall_time;
542
543                 idle_time = (unsigned int) cputime64_sub(cur_idle_time,
544                                 j_dbs_info->prev_cpu_idle);
545                 j_dbs_info->prev_cpu_idle = cur_idle_time;
546
547                 iowait_time = (unsigned int) cputime64_sub(cur_iowait_time,
548                                 j_dbs_info->prev_cpu_iowait);
549                 j_dbs_info->prev_cpu_iowait = cur_iowait_time;
550
551                 if (dbs_tuners_ins.ignore_nice) {
552                         cputime64_t cur_nice;
553                         unsigned long cur_nice_jiffies;
554
555                         cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
556                                          j_dbs_info->prev_cpu_nice);
557                         /*
558                          * Assumption: nice time between sampling periods will
559                          * be less than 2^32 jiffies for 32 bit sys
560                          */
561                         cur_nice_jiffies = (unsigned long)
562                                         cputime64_to_jiffies64(cur_nice);
563
564                         j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
565                         idle_time += jiffies_to_usecs(cur_nice_jiffies);
566                 }
567
568                 /*
569                  * For the purpose of ondemand, waiting for disk IO is an
570                  * indication that you're performance critical, and not that
571                  * the system is actually idle. So subtract the iowait time
572                  * from the cpu idle time.
573                  */
574
575                 if (dbs_tuners_ins.io_is_busy && idle_time >= iowait_time)
576                         idle_time -= iowait_time;
577
578                 if (unlikely(!wall_time || wall_time < idle_time))
579                         continue;
580
581                 load = 100 * (wall_time - idle_time) / wall_time;
582
583                 freq_avg = __cpufreq_driver_getavg(policy, j);
584                 if (freq_avg <= 0)
585                         freq_avg = policy->cur;
586
587                 load_freq = load * freq_avg;
588                 if (load_freq > max_load_freq)
589                         max_load_freq = load_freq;
590         }
591
592         /* Check for frequency increase */
593         if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
594                 /* If switching to max speed, apply sampling_down_factor */
595                 if (policy->cur < policy->max)
596                         this_dbs_info->rate_mult =
597                                 dbs_tuners_ins.sampling_down_factor;
598                 dbs_freq_increase(policy, policy->max);
599                 return;
600         }
601
602         /* Check for frequency decrease */
603         /* if we cannot reduce the frequency anymore, break out early */
604         if (policy->cur == policy->min)
605                 return;
606
607         /*
608          * The optimal frequency is the frequency that is the lowest that
609          * can support the current CPU usage without triggering the up
610          * policy. To be safe, we focus 10 points under the threshold.
611          */
612         if (max_load_freq <
613             (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
614              policy->cur) {
615                 unsigned int freq_next;
616                 freq_next = max_load_freq /
617                                 (dbs_tuners_ins.up_threshold -
618                                  dbs_tuners_ins.down_differential);
619
620                 /* No longer fully busy, reset rate_mult */
621                 this_dbs_info->rate_mult = 1;
622
623                 if (freq_next < policy->min)
624                         freq_next = policy->min;
625
626                 if (!dbs_tuners_ins.powersave_bias) {
627                         __cpufreq_driver_target(policy, freq_next,
628                                         CPUFREQ_RELATION_L);
629                 } else {
630                         int freq = powersave_bias_target(policy, freq_next,
631                                         CPUFREQ_RELATION_L);
632                         __cpufreq_driver_target(policy, freq,
633                                 CPUFREQ_RELATION_L);
634                 }
635         }
636 }
637
638 static void do_dbs_timer(struct work_struct *work)
639 {
640         struct cpu_dbs_info_s *dbs_info =
641                 container_of(work, struct cpu_dbs_info_s, work.work);
642         unsigned int cpu = dbs_info->cpu;
643         int sample_type = dbs_info->sample_type;
644
645         /* We want all CPUs to do sampling nearly on same jiffy */
646         int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate
647                 * dbs_info->rate_mult);
648
649         if (num_online_cpus() > 1)
650                 delay -= jiffies % delay;
651
652         mutex_lock(&dbs_info->timer_mutex);
653
654         /* Common NORMAL_SAMPLE setup */
655         dbs_info->sample_type = DBS_NORMAL_SAMPLE;
656         if (!dbs_tuners_ins.powersave_bias ||
657             sample_type == DBS_NORMAL_SAMPLE) {
658                 dbs_check_cpu(dbs_info);
659                 if (dbs_info->freq_lo) {
660                         /* Setup timer for SUB_SAMPLE */
661                         dbs_info->sample_type = DBS_SUB_SAMPLE;
662                         delay = dbs_info->freq_hi_jiffies;
663                 }
664         } else {
665                 __cpufreq_driver_target(dbs_info->cur_policy,
666                         dbs_info->freq_lo, CPUFREQ_RELATION_H);
667         }
668         schedule_delayed_work_on(cpu, &dbs_info->work, delay);
669         mutex_unlock(&dbs_info->timer_mutex);
670 }
671
672 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
673 {
674         /* We want all CPUs to do sampling nearly on same jiffy */
675         int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
676
677         if (num_online_cpus() > 1)
678                 delay -= jiffies % delay;
679
680         dbs_info->sample_type = DBS_NORMAL_SAMPLE;
681         INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
682         schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
683 }
684
685 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
686 {
687         cancel_delayed_work_sync(&dbs_info->work);
688 }
689
690 /*
691  * Not all CPUs want IO time to be accounted as busy; this dependson how
692  * efficient idling at a higher frequency/voltage is.
693  * Pavel Machek says this is not so for various generations of AMD and old
694  * Intel systems.
695  * Mike Chan (androidlcom) calis this is also not true for ARM.
696  * Because of this, whitelist specific known (series) of CPUs by default, and
697  * leave all others up to the user.
698  */
699 static int should_io_be_busy(void)
700 {
701 #if defined(CONFIG_X86)
702         /*
703          * For Intel, Core 2 (model 15) andl later have an efficient idle.
704          */
705         if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
706             boot_cpu_data.x86 == 6 &&
707             boot_cpu_data.x86_model >= 15)
708                 return 1;
709 #endif
710         return 0;
711 }
712
713 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
714                                    unsigned int event)
715 {
716         unsigned int cpu = policy->cpu;
717         struct cpu_dbs_info_s *this_dbs_info;
718         unsigned int j;
719         int rc;
720
721         this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
722
723         switch (event) {
724         case CPUFREQ_GOV_START:
725                 if ((!cpu_online(cpu)) || (!policy->cur))
726                         return -EINVAL;
727
728                 mutex_lock(&dbs_mutex);
729
730                 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group_old);
731                 if (rc) {
732                         mutex_unlock(&dbs_mutex);
733                         return rc;
734                 }
735
736                 dbs_enable++;
737                 for_each_cpu(j, policy->cpus) {
738                         struct cpu_dbs_info_s *j_dbs_info;
739                         j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
740                         j_dbs_info->cur_policy = policy;
741
742                         j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
743                                                 &j_dbs_info->prev_cpu_wall);
744                         if (dbs_tuners_ins.ignore_nice) {
745                                 j_dbs_info->prev_cpu_nice =
746                                                 kstat_cpu(j).cpustat.nice;
747                         }
748                 }
749                 this_dbs_info->cpu = cpu;
750                 this_dbs_info->rate_mult = 1;
751                 ondemand_powersave_bias_init_cpu(cpu);
752                 /*
753                  * Start the timerschedule work, when this governor
754                  * is used for first time
755                  */
756                 if (dbs_enable == 1) {
757                         unsigned int latency;
758
759                         rc = sysfs_create_group(cpufreq_global_kobject,
760                                                 &dbs_attr_group);
761                         if (rc) {
762                                 mutex_unlock(&dbs_mutex);
763                                 return rc;
764                         }
765
766                         /* policy latency is in nS. Convert it to uS first */
767                         latency = policy->cpuinfo.transition_latency / 1000;
768                         if (latency == 0)
769                                 latency = 1;
770                         /* Bring kernel and HW constraints together */
771                         min_sampling_rate = max(min_sampling_rate,
772                                         MIN_LATENCY_MULTIPLIER * latency);
773                         dbs_tuners_ins.sampling_rate =
774                                 max(min_sampling_rate,
775                                     latency * LATENCY_MULTIPLIER);
776                         dbs_tuners_ins.io_is_busy = should_io_be_busy();
777                 }
778                 mutex_unlock(&dbs_mutex);
779
780                 mutex_init(&this_dbs_info->timer_mutex);
781                 dbs_timer_init(this_dbs_info);
782                 break;
783
784         case CPUFREQ_GOV_STOP:
785                 dbs_timer_exit(this_dbs_info);
786
787                 mutex_lock(&dbs_mutex);
788                 sysfs_remove_group(&policy->kobj, &dbs_attr_group_old);
789                 mutex_destroy(&this_dbs_info->timer_mutex);
790                 dbs_enable--;
791                 mutex_unlock(&dbs_mutex);
792                 if (!dbs_enable)
793                         sysfs_remove_group(cpufreq_global_kobject,
794                                            &dbs_attr_group);
795
796                 break;
797
798         case CPUFREQ_GOV_LIMITS:
799                 mutex_lock(&this_dbs_info->timer_mutex);
800                 if (policy->max < this_dbs_info->cur_policy->cur)
801                         __cpufreq_driver_target(this_dbs_info->cur_policy,
802                                 policy->max, CPUFREQ_RELATION_H);
803                 else if (policy->min > this_dbs_info->cur_policy->cur)
804                         __cpufreq_driver_target(this_dbs_info->cur_policy,
805                                 policy->min, CPUFREQ_RELATION_L);
806                 mutex_unlock(&this_dbs_info->timer_mutex);
807                 break;
808         }
809         return 0;
810 }
811
812 static int __init cpufreq_gov_dbs_init(void)
813 {
814         cputime64_t wall;
815         u64 idle_time;
816         int cpu = get_cpu();
817
818         idle_time = get_cpu_idle_time_us(cpu, &wall);
819         put_cpu();
820         if (idle_time != -1ULL) {
821                 /* Idle micro accounting is supported. Use finer thresholds */
822                 dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
823                 dbs_tuners_ins.down_differential =
824                                         MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
825                 /*
826                  * In no_hz/micro accounting case we set the minimum frequency
827                  * not depending on HZ, but fixed (very low). The deferred
828                  * timer might skip some samples if idle/sleeping as needed.
829                 */
830                 min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
831         } else {
832                 /* For correct statistics, we need 10 ticks for each measure */
833                 min_sampling_rate =
834                         MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
835         }
836
837         return cpufreq_register_governor(&cpufreq_gov_ondemand);
838 }
839
840 static void __exit cpufreq_gov_dbs_exit(void)
841 {
842         cpufreq_unregister_governor(&cpufreq_gov_ondemand);
843 }
844
845
846 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
847 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
848 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
849         "Low Latency Frequency Transition capable processors");
850 MODULE_LICENSE("GPL");
851
852 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
853 fs_initcall(cpufreq_gov_dbs_init);
854 #else
855 module_init(cpufreq_gov_dbs_init);
856 #endif
857 module_exit(cpufreq_gov_dbs_exit);