5ae84ffeafb36b0f0d82b25fe4239ab1b6ba2c12
[firefly-linux-kernel-4.4.55.git] / drivers / cpufreq / cpufreq_ondemand.c
1 /*
2  *  drivers/cpufreq/cpufreq_ondemand.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/cpufreq.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/kobject.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/percpu-defs.h>
23 #include <linux/sysfs.h>
24 #include <linux/tick.h>
25 #include <linux/types.h>
26
27 #include "cpufreq_governor.h"
28
29 /* On-demand governor macors */
30 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL         (10)
31 #define DEF_FREQUENCY_UP_THRESHOLD              (80)
32 #define DEF_SAMPLING_DOWN_FACTOR                (1)
33 #define MAX_SAMPLING_DOWN_FACTOR                (100000)
34 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL       (3)
35 #define MICRO_FREQUENCY_UP_THRESHOLD            (95)
36 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE         (10000)
37 #define MIN_FREQUENCY_UP_THRESHOLD              (11)
38 #define MAX_FREQUENCY_UP_THRESHOLD              (100)
39
40 static struct dbs_data od_dbs_data;
41 static DEFINE_PER_CPU(struct od_cpu_dbs_info_s, od_cpu_dbs_info);
42
43 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
44 static struct cpufreq_governor cpufreq_gov_ondemand;
45 #endif
46
47 static struct od_dbs_tuners od_tuners = {
48         .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
49         .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
50         .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
51         .ignore_nice = 0,
52         .powersave_bias = 0,
53 };
54
55 static void ondemand_powersave_bias_init_cpu(int cpu)
56 {
57         struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
58
59         dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
60         dbs_info->freq_lo = 0;
61 }
62
63 /*
64  * Not all CPUs want IO time to be accounted as busy; this depends on how
65  * efficient idling at a higher frequency/voltage is.
66  * Pavel Machek says this is not so for various generations of AMD and old
67  * Intel systems.
68  * Mike Chan (androidlcom) calis this is also not true for ARM.
69  * Because of this, whitelist specific known (series) of CPUs by default, and
70  * leave all others up to the user.
71  */
72 static int should_io_be_busy(void)
73 {
74 #if defined(CONFIG_X86)
75         /*
76          * For Intel, Core 2 (model 15) andl later have an efficient idle.
77          */
78         if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
79                         boot_cpu_data.x86 == 6 &&
80                         boot_cpu_data.x86_model >= 15)
81                 return 1;
82 #endif
83         return 0;
84 }
85
86 /*
87  * Find right freq to be set now with powersave_bias on.
88  * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
89  * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
90  */
91 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
92                 unsigned int freq_next, unsigned int relation)
93 {
94         unsigned int freq_req, freq_reduc, freq_avg;
95         unsigned int freq_hi, freq_lo;
96         unsigned int index = 0;
97         unsigned int jiffies_total, jiffies_hi, jiffies_lo;
98         struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
99                                                    policy->cpu);
100
101         if (!dbs_info->freq_table) {
102                 dbs_info->freq_lo = 0;
103                 dbs_info->freq_lo_jiffies = 0;
104                 return freq_next;
105         }
106
107         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
108                         relation, &index);
109         freq_req = dbs_info->freq_table[index].frequency;
110         freq_reduc = freq_req * od_tuners.powersave_bias / 1000;
111         freq_avg = freq_req - freq_reduc;
112
113         /* Find freq bounds for freq_avg in freq_table */
114         index = 0;
115         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
116                         CPUFREQ_RELATION_H, &index);
117         freq_lo = dbs_info->freq_table[index].frequency;
118         index = 0;
119         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
120                         CPUFREQ_RELATION_L, &index);
121         freq_hi = dbs_info->freq_table[index].frequency;
122
123         /* Find out how long we have to be in hi and lo freqs */
124         if (freq_hi == freq_lo) {
125                 dbs_info->freq_lo = 0;
126                 dbs_info->freq_lo_jiffies = 0;
127                 return freq_lo;
128         }
129         jiffies_total = usecs_to_jiffies(od_tuners.sampling_rate);
130         jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
131         jiffies_hi += ((freq_hi - freq_lo) / 2);
132         jiffies_hi /= (freq_hi - freq_lo);
133         jiffies_lo = jiffies_total - jiffies_hi;
134         dbs_info->freq_lo = freq_lo;
135         dbs_info->freq_lo_jiffies = jiffies_lo;
136         dbs_info->freq_hi_jiffies = jiffies_hi;
137         return freq_hi;
138 }
139
140 static void ondemand_powersave_bias_init(void)
141 {
142         int i;
143         for_each_online_cpu(i) {
144                 ondemand_powersave_bias_init_cpu(i);
145         }
146 }
147
148 static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
149 {
150         if (od_tuners.powersave_bias)
151                 freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
152         else if (p->cur == p->max)
153                 return;
154
155         __cpufreq_driver_target(p, freq, od_tuners.powersave_bias ?
156                         CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
157 }
158
159 /*
160  * Every sampling_rate, we check, if current idle time is less than 20%
161  * (default), then we try to increase frequency Every sampling_rate, we look for
162  * a the lowest frequency which can sustain the load while keeping idle time
163  * over 30%. If such a frequency exist, we try to decrease to this frequency.
164  *
165  * Any frequency increase takes it to the maximum frequency. Frequency reduction
166  * happens at minimum steps of 5% (default) of current frequency
167  */
168 static void od_check_cpu(int cpu, unsigned int load_freq)
169 {
170         struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
171         struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
172
173         dbs_info->freq_lo = 0;
174
175         /* Check for frequency increase */
176         if (load_freq > od_tuners.up_threshold * policy->cur) {
177                 /* If switching to max speed, apply sampling_down_factor */
178                 if (policy->cur < policy->max)
179                         dbs_info->rate_mult =
180                                 od_tuners.sampling_down_factor;
181                 dbs_freq_increase(policy, policy->max);
182                 return;
183         }
184
185         /* Check for frequency decrease */
186         /* if we cannot reduce the frequency anymore, break out early */
187         if (policy->cur == policy->min)
188                 return;
189
190         /*
191          * The optimal frequency is the frequency that is the lowest that can
192          * support the current CPU usage without triggering the up policy. To be
193          * safe, we focus 10 points under the threshold.
194          */
195         if (load_freq < (od_tuners.up_threshold - od_tuners.down_differential) *
196                         policy->cur) {
197                 unsigned int freq_next;
198                 freq_next = load_freq / (od_tuners.up_threshold -
199                                 od_tuners.down_differential);
200
201                 /* No longer fully busy, reset rate_mult */
202                 dbs_info->rate_mult = 1;
203
204                 if (freq_next < policy->min)
205                         freq_next = policy->min;
206
207                 if (!od_tuners.powersave_bias) {
208                         __cpufreq_driver_target(policy, freq_next,
209                                         CPUFREQ_RELATION_L);
210                 } else {
211                         int freq = powersave_bias_target(policy, freq_next,
212                                         CPUFREQ_RELATION_L);
213                         __cpufreq_driver_target(policy, freq,
214                                         CPUFREQ_RELATION_L);
215                 }
216         }
217 }
218
219 static void od_timer_update(struct od_cpu_dbs_info_s *dbs_info, bool sample,
220                             struct delayed_work *dw)
221 {
222         unsigned int cpu = dbs_info->cdbs.cpu;
223         int delay, sample_type = dbs_info->sample_type;
224
225         /* Common NORMAL_SAMPLE setup */
226         dbs_info->sample_type = OD_NORMAL_SAMPLE;
227         if (sample_type == OD_SUB_SAMPLE) {
228                 delay = dbs_info->freq_lo_jiffies;
229                 if (sample)
230                         __cpufreq_driver_target(dbs_info->cdbs.cur_policy,
231                                                 dbs_info->freq_lo,
232                                                 CPUFREQ_RELATION_H);
233         } else {
234                 if (sample)
235                         dbs_check_cpu(&od_dbs_data, cpu);
236                 if (dbs_info->freq_lo) {
237                         /* Setup timer for SUB_SAMPLE */
238                         dbs_info->sample_type = OD_SUB_SAMPLE;
239                         delay = dbs_info->freq_hi_jiffies;
240                 } else {
241                         delay = delay_for_sampling_rate(od_tuners.sampling_rate
242                                                 * dbs_info->rate_mult);
243                 }
244         }
245
246         schedule_delayed_work_on(smp_processor_id(), dw, delay);
247 }
248
249 static void od_timer_coordinated(struct od_cpu_dbs_info_s *dbs_info_local,
250                                  struct delayed_work *dw)
251 {
252         struct od_cpu_dbs_info_s *dbs_info;
253         ktime_t time_now;
254         s64 delta_us;
255         bool sample = true;
256
257         /* use leader CPU's dbs_info */
258         dbs_info = &per_cpu(od_cpu_dbs_info, dbs_info_local->cdbs.cpu);
259         mutex_lock(&dbs_info->cdbs.timer_mutex);
260
261         time_now = ktime_get();
262         delta_us = ktime_us_delta(time_now, dbs_info->cdbs.time_stamp);
263
264         /* Do nothing if we recently have sampled */
265         if (delta_us < (s64)(od_tuners.sampling_rate / 2))
266                 sample = false;
267         else
268                 dbs_info->cdbs.time_stamp = time_now;
269
270         od_timer_update(dbs_info, sample, dw);
271         mutex_unlock(&dbs_info->cdbs.timer_mutex);
272 }
273
274 static void od_dbs_timer(struct work_struct *work)
275 {
276         struct delayed_work *dw = to_delayed_work(work);
277         struct od_cpu_dbs_info_s *dbs_info =
278                 container_of(work, struct od_cpu_dbs_info_s, cdbs.work.work);
279
280         if (policy_is_shared(dbs_info->cdbs.cur_policy)) {
281                 od_timer_coordinated(dbs_info, dw);
282         } else {
283                 mutex_lock(&dbs_info->cdbs.timer_mutex);
284                 od_timer_update(dbs_info, true, dw);
285                 mutex_unlock(&dbs_info->cdbs.timer_mutex);
286         }
287 }
288
289 /************************** sysfs interface ************************/
290
291 static ssize_t show_sampling_rate_min(struct kobject *kobj,
292                                       struct attribute *attr, char *buf)
293 {
294         return sprintf(buf, "%u\n", od_dbs_data.min_sampling_rate);
295 }
296
297 /**
298  * update_sampling_rate - update sampling rate effective immediately if needed.
299  * @new_rate: new sampling rate
300  *
301  * If new rate is smaller than the old, simply updaing
302  * dbs_tuners_int.sampling_rate might not be appropriate. For example, if the
303  * original sampling_rate was 1 second and the requested new sampling rate is 10
304  * ms because the user needs immediate reaction from ondemand governor, but not
305  * sure if higher frequency will be required or not, then, the governor may
306  * change the sampling rate too late; up to 1 second later. Thus, if we are
307  * reducing the sampling rate, we need to make the new value effective
308  * immediately.
309  */
310 static void update_sampling_rate(unsigned int new_rate)
311 {
312         int cpu;
313
314         od_tuners.sampling_rate = new_rate = max(new_rate,
315                         od_dbs_data.min_sampling_rate);
316
317         for_each_online_cpu(cpu) {
318                 struct cpufreq_policy *policy;
319                 struct od_cpu_dbs_info_s *dbs_info;
320                 unsigned long next_sampling, appointed_at;
321
322                 policy = cpufreq_cpu_get(cpu);
323                 if (!policy)
324                         continue;
325                 if (policy->governor != &cpufreq_gov_ondemand) {
326                         cpufreq_cpu_put(policy);
327                         continue;
328                 }
329                 dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
330                 cpufreq_cpu_put(policy);
331
332                 mutex_lock(&dbs_info->cdbs.timer_mutex);
333
334                 if (!delayed_work_pending(&dbs_info->cdbs.work)) {
335                         mutex_unlock(&dbs_info->cdbs.timer_mutex);
336                         continue;
337                 }
338
339                 next_sampling = jiffies + usecs_to_jiffies(new_rate);
340                 appointed_at = dbs_info->cdbs.work.timer.expires;
341
342                 if (time_before(next_sampling, appointed_at)) {
343
344                         mutex_unlock(&dbs_info->cdbs.timer_mutex);
345                         cancel_delayed_work_sync(&dbs_info->cdbs.work);
346                         mutex_lock(&dbs_info->cdbs.timer_mutex);
347
348                         schedule_delayed_work_on(cpu, &dbs_info->cdbs.work,
349                                         usecs_to_jiffies(new_rate));
350
351                 }
352                 mutex_unlock(&dbs_info->cdbs.timer_mutex);
353         }
354 }
355
356 static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
357                                    const char *buf, size_t count)
358 {
359         unsigned int input;
360         int ret;
361         ret = sscanf(buf, "%u", &input);
362         if (ret != 1)
363                 return -EINVAL;
364         update_sampling_rate(input);
365         return count;
366 }
367
368 static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
369                                    const char *buf, size_t count)
370 {
371         unsigned int input;
372         int ret;
373
374         ret = sscanf(buf, "%u", &input);
375         if (ret != 1)
376                 return -EINVAL;
377         od_tuners.io_is_busy = !!input;
378         return count;
379 }
380
381 static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
382                                   const char *buf, size_t count)
383 {
384         unsigned int input;
385         int ret;
386         ret = sscanf(buf, "%u", &input);
387
388         if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
389                         input < MIN_FREQUENCY_UP_THRESHOLD) {
390                 return -EINVAL;
391         }
392         od_tuners.up_threshold = input;
393         return count;
394 }
395
396 static ssize_t store_sampling_down_factor(struct kobject *a,
397                         struct attribute *b, const char *buf, size_t count)
398 {
399         unsigned int input, j;
400         int ret;
401         ret = sscanf(buf, "%u", &input);
402
403         if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
404                 return -EINVAL;
405         od_tuners.sampling_down_factor = input;
406
407         /* Reset down sampling multiplier in case it was active */
408         for_each_online_cpu(j) {
409                 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
410                                 j);
411                 dbs_info->rate_mult = 1;
412         }
413         return count;
414 }
415
416 static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
417                                       const char *buf, size_t count)
418 {
419         unsigned int input;
420         int ret;
421
422         unsigned int j;
423
424         ret = sscanf(buf, "%u", &input);
425         if (ret != 1)
426                 return -EINVAL;
427
428         if (input > 1)
429                 input = 1;
430
431         if (input == od_tuners.ignore_nice) { /* nothing to do */
432                 return count;
433         }
434         od_tuners.ignore_nice = input;
435
436         /* we need to re-evaluate prev_cpu_idle */
437         for_each_online_cpu(j) {
438                 struct od_cpu_dbs_info_s *dbs_info;
439                 dbs_info = &per_cpu(od_cpu_dbs_info, j);
440                 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
441                                                 &dbs_info->cdbs.prev_cpu_wall);
442                 if (od_tuners.ignore_nice)
443                         dbs_info->cdbs.prev_cpu_nice =
444                                 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
445
446         }
447         return count;
448 }
449
450 static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
451                                     const char *buf, size_t count)
452 {
453         unsigned int input;
454         int ret;
455         ret = sscanf(buf, "%u", &input);
456
457         if (ret != 1)
458                 return -EINVAL;
459
460         if (input > 1000)
461                 input = 1000;
462
463         od_tuners.powersave_bias = input;
464         ondemand_powersave_bias_init();
465         return count;
466 }
467
468 show_one(od, sampling_rate, sampling_rate);
469 show_one(od, io_is_busy, io_is_busy);
470 show_one(od, up_threshold, up_threshold);
471 show_one(od, sampling_down_factor, sampling_down_factor);
472 show_one(od, ignore_nice_load, ignore_nice);
473 show_one(od, powersave_bias, powersave_bias);
474
475 define_one_global_rw(sampling_rate);
476 define_one_global_rw(io_is_busy);
477 define_one_global_rw(up_threshold);
478 define_one_global_rw(sampling_down_factor);
479 define_one_global_rw(ignore_nice_load);
480 define_one_global_rw(powersave_bias);
481 define_one_global_ro(sampling_rate_min);
482
483 static struct attribute *dbs_attributes[] = {
484         &sampling_rate_min.attr,
485         &sampling_rate.attr,
486         &up_threshold.attr,
487         &sampling_down_factor.attr,
488         &ignore_nice_load.attr,
489         &powersave_bias.attr,
490         &io_is_busy.attr,
491         NULL
492 };
493
494 static struct attribute_group od_attr_group = {
495         .attrs = dbs_attributes,
496         .name = "ondemand",
497 };
498
499 /************************** sysfs end ************************/
500
501 define_get_cpu_dbs_routines(od_cpu_dbs_info);
502
503 static struct od_ops od_ops = {
504         .io_busy = should_io_be_busy,
505         .powersave_bias_init_cpu = ondemand_powersave_bias_init_cpu,
506         .powersave_bias_target = powersave_bias_target,
507         .freq_increase = dbs_freq_increase,
508 };
509
510 static struct dbs_data od_dbs_data = {
511         .governor = GOV_ONDEMAND,
512         .attr_group = &od_attr_group,
513         .tuners = &od_tuners,
514         .get_cpu_cdbs = get_cpu_cdbs,
515         .get_cpu_dbs_info_s = get_cpu_dbs_info_s,
516         .gov_dbs_timer = od_dbs_timer,
517         .gov_check_cpu = od_check_cpu,
518         .gov_ops = &od_ops,
519 };
520
521 static int od_cpufreq_governor_dbs(struct cpufreq_policy *policy,
522                 unsigned int event)
523 {
524         return cpufreq_governor_dbs(&od_dbs_data, policy, event);
525 }
526
527 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
528 static
529 #endif
530 struct cpufreq_governor cpufreq_gov_ondemand = {
531         .name                   = "ondemand",
532         .governor               = od_cpufreq_governor_dbs,
533         .max_transition_latency = TRANSITION_LATENCY_LIMIT,
534         .owner                  = THIS_MODULE,
535 };
536
537 static int __init cpufreq_gov_dbs_init(void)
538 {
539         u64 idle_time;
540         int cpu = get_cpu();
541
542         mutex_init(&od_dbs_data.mutex);
543         idle_time = get_cpu_idle_time_us(cpu, NULL);
544         put_cpu();
545         if (idle_time != -1ULL) {
546                 /* Idle micro accounting is supported. Use finer thresholds */
547                 od_tuners.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
548                 od_tuners.down_differential = MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
549                 /*
550                  * In nohz/micro accounting case we set the minimum frequency
551                  * not depending on HZ, but fixed (very low). The deferred
552                  * timer might skip some samples if idle/sleeping as needed.
553                 */
554                 od_dbs_data.min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
555         } else {
556                 /* For correct statistics, we need 10 ticks for each measure */
557                 od_dbs_data.min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
558                         jiffies_to_usecs(10);
559         }
560
561         return cpufreq_register_governor(&cpufreq_gov_ondemand);
562 }
563
564 static void __exit cpufreq_gov_dbs_exit(void)
565 {
566         cpufreq_unregister_governor(&cpufreq_gov_ondemand);
567 }
568
569 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
570 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
571 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
572         "Low Latency Frequency Transition capable processors");
573 MODULE_LICENSE("GPL");
574
575 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
576 fs_initcall(cpufreq_gov_dbs_init);
577 #else
578 module_init(cpufreq_gov_dbs_init);
579 #endif
580 module_exit(cpufreq_gov_dbs_exit);