Merge branch 'for-next' of git://git.infradead.org/users/eparis/notify
[firefly-linux-kernel-4.4.55.git] / drivers / cpufreq / cpufreq_ondemand.c
1 /*
2  *  drivers/cpufreq/cpufreq_ondemand.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/cpufreq.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/kobject.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/percpu-defs.h>
23 #include <linux/sysfs.h>
24 #include <linux/tick.h>
25 #include <linux/types.h>
26
27 #include "cpufreq_governor.h"
28
29 /* On-demand governor macors */
30 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL         (10)
31 #define DEF_FREQUENCY_UP_THRESHOLD              (80)
32 #define DEF_SAMPLING_DOWN_FACTOR                (1)
33 #define MAX_SAMPLING_DOWN_FACTOR                (100000)
34 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL       (3)
35 #define MICRO_FREQUENCY_UP_THRESHOLD            (95)
36 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE         (10000)
37 #define MIN_FREQUENCY_UP_THRESHOLD              (11)
38 #define MAX_FREQUENCY_UP_THRESHOLD              (100)
39
40 static struct dbs_data od_dbs_data;
41 static DEFINE_PER_CPU(struct od_cpu_dbs_info_s, od_cpu_dbs_info);
42
43 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
44 static struct cpufreq_governor cpufreq_gov_ondemand;
45 #endif
46
47 static struct od_dbs_tuners od_tuners = {
48         .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
49         .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
50         .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
51         .ignore_nice = 0,
52         .powersave_bias = 0,
53 };
54
55 static void ondemand_powersave_bias_init_cpu(int cpu)
56 {
57         struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
58
59         dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
60         dbs_info->freq_lo = 0;
61 }
62
63 /*
64  * Not all CPUs want IO time to be accounted as busy; this depends on how
65  * efficient idling at a higher frequency/voltage is.
66  * Pavel Machek says this is not so for various generations of AMD and old
67  * Intel systems.
68  * Mike Chan (androidlcom) calis this is also not true for ARM.
69  * Because of this, whitelist specific known (series) of CPUs by default, and
70  * leave all others up to the user.
71  */
72 static int should_io_be_busy(void)
73 {
74 #if defined(CONFIG_X86)
75         /*
76          * For Intel, Core 2 (model 15) andl later have an efficient idle.
77          */
78         if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
79                         boot_cpu_data.x86 == 6 &&
80                         boot_cpu_data.x86_model >= 15)
81                 return 1;
82 #endif
83         return 0;
84 }
85
86 /*
87  * Find right freq to be set now with powersave_bias on.
88  * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
89  * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
90  */
91 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
92                 unsigned int freq_next, unsigned int relation)
93 {
94         unsigned int freq_req, freq_reduc, freq_avg;
95         unsigned int freq_hi, freq_lo;
96         unsigned int index = 0;
97         unsigned int jiffies_total, jiffies_hi, jiffies_lo;
98         struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
99                                                    policy->cpu);
100
101         if (!dbs_info->freq_table) {
102                 dbs_info->freq_lo = 0;
103                 dbs_info->freq_lo_jiffies = 0;
104                 return freq_next;
105         }
106
107         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
108                         relation, &index);
109         freq_req = dbs_info->freq_table[index].frequency;
110         freq_reduc = freq_req * od_tuners.powersave_bias / 1000;
111         freq_avg = freq_req - freq_reduc;
112
113         /* Find freq bounds for freq_avg in freq_table */
114         index = 0;
115         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
116                         CPUFREQ_RELATION_H, &index);
117         freq_lo = dbs_info->freq_table[index].frequency;
118         index = 0;
119         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
120                         CPUFREQ_RELATION_L, &index);
121         freq_hi = dbs_info->freq_table[index].frequency;
122
123         /* Find out how long we have to be in hi and lo freqs */
124         if (freq_hi == freq_lo) {
125                 dbs_info->freq_lo = 0;
126                 dbs_info->freq_lo_jiffies = 0;
127                 return freq_lo;
128         }
129         jiffies_total = usecs_to_jiffies(od_tuners.sampling_rate);
130         jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
131         jiffies_hi += ((freq_hi - freq_lo) / 2);
132         jiffies_hi /= (freq_hi - freq_lo);
133         jiffies_lo = jiffies_total - jiffies_hi;
134         dbs_info->freq_lo = freq_lo;
135         dbs_info->freq_lo_jiffies = jiffies_lo;
136         dbs_info->freq_hi_jiffies = jiffies_hi;
137         return freq_hi;
138 }
139
140 static void ondemand_powersave_bias_init(void)
141 {
142         int i;
143         for_each_online_cpu(i) {
144                 ondemand_powersave_bias_init_cpu(i);
145         }
146 }
147
148 static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
149 {
150         if (od_tuners.powersave_bias)
151                 freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
152         else if (p->cur == p->max)
153                 return;
154
155         __cpufreq_driver_target(p, freq, od_tuners.powersave_bias ?
156                         CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
157 }
158
159 /*
160  * Every sampling_rate, we check, if current idle time is less than 20%
161  * (default), then we try to increase frequency Every sampling_rate, we look for
162  * a the lowest frequency which can sustain the load while keeping idle time
163  * over 30%. If such a frequency exist, we try to decrease to this frequency.
164  *
165  * Any frequency increase takes it to the maximum frequency. Frequency reduction
166  * happens at minimum steps of 5% (default) of current frequency
167  */
168 static void od_check_cpu(int cpu, unsigned int load_freq)
169 {
170         struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
171         struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
172
173         dbs_info->freq_lo = 0;
174
175         /* Check for frequency increase */
176         if (load_freq > od_tuners.up_threshold * policy->cur) {
177                 /* If switching to max speed, apply sampling_down_factor */
178                 if (policy->cur < policy->max)
179                         dbs_info->rate_mult =
180                                 od_tuners.sampling_down_factor;
181                 dbs_freq_increase(policy, policy->max);
182                 return;
183         }
184
185         /* Check for frequency decrease */
186         /* if we cannot reduce the frequency anymore, break out early */
187         if (policy->cur == policy->min)
188                 return;
189
190         /*
191          * The optimal frequency is the frequency that is the lowest that can
192          * support the current CPU usage without triggering the up policy. To be
193          * safe, we focus 10 points under the threshold.
194          */
195         if (load_freq < (od_tuners.up_threshold - od_tuners.down_differential) *
196                         policy->cur) {
197                 unsigned int freq_next;
198                 freq_next = load_freq / (od_tuners.up_threshold -
199                                 od_tuners.down_differential);
200
201                 /* No longer fully busy, reset rate_mult */
202                 dbs_info->rate_mult = 1;
203
204                 if (freq_next < policy->min)
205                         freq_next = policy->min;
206
207                 if (!od_tuners.powersave_bias) {
208                         __cpufreq_driver_target(policy, freq_next,
209                                         CPUFREQ_RELATION_L);
210                 } else {
211                         int freq = powersave_bias_target(policy, freq_next,
212                                         CPUFREQ_RELATION_L);
213                         __cpufreq_driver_target(policy, freq,
214                                         CPUFREQ_RELATION_L);
215                 }
216         }
217 }
218
219 static void od_dbs_timer(struct work_struct *work)
220 {
221         struct od_cpu_dbs_info_s *dbs_info =
222                 container_of(work, struct od_cpu_dbs_info_s, cdbs.work.work);
223         unsigned int cpu = dbs_info->cdbs.cpu;
224         int delay, sample_type = dbs_info->sample_type;
225
226         mutex_lock(&dbs_info->cdbs.timer_mutex);
227
228         /* Common NORMAL_SAMPLE setup */
229         dbs_info->sample_type = OD_NORMAL_SAMPLE;
230         if (sample_type == OD_SUB_SAMPLE) {
231                 delay = dbs_info->freq_lo_jiffies;
232                 __cpufreq_driver_target(dbs_info->cdbs.cur_policy,
233                         dbs_info->freq_lo, CPUFREQ_RELATION_H);
234         } else {
235                 dbs_check_cpu(&od_dbs_data, cpu);
236                 if (dbs_info->freq_lo) {
237                         /* Setup timer for SUB_SAMPLE */
238                         dbs_info->sample_type = OD_SUB_SAMPLE;
239                         delay = dbs_info->freq_hi_jiffies;
240                 } else {
241                         delay = delay_for_sampling_rate(od_tuners.sampling_rate
242                                                 * dbs_info->rate_mult);
243                 }
244         }
245
246         schedule_delayed_work_on(cpu, &dbs_info->cdbs.work, delay);
247         mutex_unlock(&dbs_info->cdbs.timer_mutex);
248 }
249
250 /************************** sysfs interface ************************/
251
252 static ssize_t show_sampling_rate_min(struct kobject *kobj,
253                                       struct attribute *attr, char *buf)
254 {
255         return sprintf(buf, "%u\n", od_dbs_data.min_sampling_rate);
256 }
257
258 /**
259  * update_sampling_rate - update sampling rate effective immediately if needed.
260  * @new_rate: new sampling rate
261  *
262  * If new rate is smaller than the old, simply updaing
263  * dbs_tuners_int.sampling_rate might not be appropriate. For example, if the
264  * original sampling_rate was 1 second and the requested new sampling rate is 10
265  * ms because the user needs immediate reaction from ondemand governor, but not
266  * sure if higher frequency will be required or not, then, the governor may
267  * change the sampling rate too late; up to 1 second later. Thus, if we are
268  * reducing the sampling rate, we need to make the new value effective
269  * immediately.
270  */
271 static void update_sampling_rate(unsigned int new_rate)
272 {
273         int cpu;
274
275         od_tuners.sampling_rate = new_rate = max(new_rate,
276                         od_dbs_data.min_sampling_rate);
277
278         for_each_online_cpu(cpu) {
279                 struct cpufreq_policy *policy;
280                 struct od_cpu_dbs_info_s *dbs_info;
281                 unsigned long next_sampling, appointed_at;
282
283                 policy = cpufreq_cpu_get(cpu);
284                 if (!policy)
285                         continue;
286                 if (policy->governor != &cpufreq_gov_ondemand) {
287                         cpufreq_cpu_put(policy);
288                         continue;
289                 }
290                 dbs_info = &per_cpu(od_cpu_dbs_info, policy->cpu);
291                 cpufreq_cpu_put(policy);
292
293                 mutex_lock(&dbs_info->cdbs.timer_mutex);
294
295                 if (!delayed_work_pending(&dbs_info->cdbs.work)) {
296                         mutex_unlock(&dbs_info->cdbs.timer_mutex);
297                         continue;
298                 }
299
300                 next_sampling = jiffies + usecs_to_jiffies(new_rate);
301                 appointed_at = dbs_info->cdbs.work.timer.expires;
302
303                 if (time_before(next_sampling, appointed_at)) {
304
305                         mutex_unlock(&dbs_info->cdbs.timer_mutex);
306                         cancel_delayed_work_sync(&dbs_info->cdbs.work);
307                         mutex_lock(&dbs_info->cdbs.timer_mutex);
308
309                         schedule_delayed_work_on(dbs_info->cdbs.cpu,
310                                         &dbs_info->cdbs.work,
311                                         usecs_to_jiffies(new_rate));
312
313                 }
314                 mutex_unlock(&dbs_info->cdbs.timer_mutex);
315         }
316 }
317
318 static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
319                                    const char *buf, size_t count)
320 {
321         unsigned int input;
322         int ret;
323         ret = sscanf(buf, "%u", &input);
324         if (ret != 1)
325                 return -EINVAL;
326         update_sampling_rate(input);
327         return count;
328 }
329
330 static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
331                                    const char *buf, size_t count)
332 {
333         unsigned int input;
334         int ret;
335
336         ret = sscanf(buf, "%u", &input);
337         if (ret != 1)
338                 return -EINVAL;
339         od_tuners.io_is_busy = !!input;
340         return count;
341 }
342
343 static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
344                                   const char *buf, size_t count)
345 {
346         unsigned int input;
347         int ret;
348         ret = sscanf(buf, "%u", &input);
349
350         if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
351                         input < MIN_FREQUENCY_UP_THRESHOLD) {
352                 return -EINVAL;
353         }
354         od_tuners.up_threshold = input;
355         return count;
356 }
357
358 static ssize_t store_sampling_down_factor(struct kobject *a,
359                         struct attribute *b, const char *buf, size_t count)
360 {
361         unsigned int input, j;
362         int ret;
363         ret = sscanf(buf, "%u", &input);
364
365         if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
366                 return -EINVAL;
367         od_tuners.sampling_down_factor = input;
368
369         /* Reset down sampling multiplier in case it was active */
370         for_each_online_cpu(j) {
371                 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
372                                 j);
373                 dbs_info->rate_mult = 1;
374         }
375         return count;
376 }
377
378 static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
379                                       const char *buf, size_t count)
380 {
381         unsigned int input;
382         int ret;
383
384         unsigned int j;
385
386         ret = sscanf(buf, "%u", &input);
387         if (ret != 1)
388                 return -EINVAL;
389
390         if (input > 1)
391                 input = 1;
392
393         if (input == od_tuners.ignore_nice) { /* nothing to do */
394                 return count;
395         }
396         od_tuners.ignore_nice = input;
397
398         /* we need to re-evaluate prev_cpu_idle */
399         for_each_online_cpu(j) {
400                 struct od_cpu_dbs_info_s *dbs_info;
401                 dbs_info = &per_cpu(od_cpu_dbs_info, j);
402                 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
403                                                 &dbs_info->cdbs.prev_cpu_wall);
404                 if (od_tuners.ignore_nice)
405                         dbs_info->cdbs.prev_cpu_nice =
406                                 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
407
408         }
409         return count;
410 }
411
412 static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
413                                     const char *buf, size_t count)
414 {
415         unsigned int input;
416         int ret;
417         ret = sscanf(buf, "%u", &input);
418
419         if (ret != 1)
420                 return -EINVAL;
421
422         if (input > 1000)
423                 input = 1000;
424
425         od_tuners.powersave_bias = input;
426         ondemand_powersave_bias_init();
427         return count;
428 }
429
430 show_one(od, sampling_rate, sampling_rate);
431 show_one(od, io_is_busy, io_is_busy);
432 show_one(od, up_threshold, up_threshold);
433 show_one(od, sampling_down_factor, sampling_down_factor);
434 show_one(od, ignore_nice_load, ignore_nice);
435 show_one(od, powersave_bias, powersave_bias);
436
437 define_one_global_rw(sampling_rate);
438 define_one_global_rw(io_is_busy);
439 define_one_global_rw(up_threshold);
440 define_one_global_rw(sampling_down_factor);
441 define_one_global_rw(ignore_nice_load);
442 define_one_global_rw(powersave_bias);
443 define_one_global_ro(sampling_rate_min);
444
445 static struct attribute *dbs_attributes[] = {
446         &sampling_rate_min.attr,
447         &sampling_rate.attr,
448         &up_threshold.attr,
449         &sampling_down_factor.attr,
450         &ignore_nice_load.attr,
451         &powersave_bias.attr,
452         &io_is_busy.attr,
453         NULL
454 };
455
456 static struct attribute_group od_attr_group = {
457         .attrs = dbs_attributes,
458         .name = "ondemand",
459 };
460
461 /************************** sysfs end ************************/
462
463 define_get_cpu_dbs_routines(od_cpu_dbs_info);
464
465 static struct od_ops od_ops = {
466         .io_busy = should_io_be_busy,
467         .powersave_bias_init_cpu = ondemand_powersave_bias_init_cpu,
468         .powersave_bias_target = powersave_bias_target,
469         .freq_increase = dbs_freq_increase,
470 };
471
472 static struct dbs_data od_dbs_data = {
473         .governor = GOV_ONDEMAND,
474         .attr_group = &od_attr_group,
475         .tuners = &od_tuners,
476         .get_cpu_cdbs = get_cpu_cdbs,
477         .get_cpu_dbs_info_s = get_cpu_dbs_info_s,
478         .gov_dbs_timer = od_dbs_timer,
479         .gov_check_cpu = od_check_cpu,
480         .gov_ops = &od_ops,
481 };
482
483 static int od_cpufreq_governor_dbs(struct cpufreq_policy *policy,
484                 unsigned int event)
485 {
486         return cpufreq_governor_dbs(&od_dbs_data, policy, event);
487 }
488
489 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
490 static
491 #endif
492 struct cpufreq_governor cpufreq_gov_ondemand = {
493         .name                   = "ondemand",
494         .governor               = od_cpufreq_governor_dbs,
495         .max_transition_latency = TRANSITION_LATENCY_LIMIT,
496         .owner                  = THIS_MODULE,
497 };
498
499 static int __init cpufreq_gov_dbs_init(void)
500 {
501         u64 idle_time;
502         int cpu = get_cpu();
503
504         mutex_init(&od_dbs_data.mutex);
505         idle_time = get_cpu_idle_time_us(cpu, NULL);
506         put_cpu();
507         if (idle_time != -1ULL) {
508                 /* Idle micro accounting is supported. Use finer thresholds */
509                 od_tuners.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
510                 od_tuners.down_differential = MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
511                 /*
512                  * In nohz/micro accounting case we set the minimum frequency
513                  * not depending on HZ, but fixed (very low). The deferred
514                  * timer might skip some samples if idle/sleeping as needed.
515                 */
516                 od_dbs_data.min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
517         } else {
518                 /* For correct statistics, we need 10 ticks for each measure */
519                 od_dbs_data.min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
520                         jiffies_to_usecs(10);
521         }
522
523         return cpufreq_register_governor(&cpufreq_gov_ondemand);
524 }
525
526 static void __exit cpufreq_gov_dbs_exit(void)
527 {
528         cpufreq_unregister_governor(&cpufreq_gov_ondemand);
529 }
530
531 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
532 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
533 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
534         "Low Latency Frequency Transition capable processors");
535 MODULE_LICENSE("GPL");
536
537 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
538 fs_initcall(cpufreq_gov_dbs_init);
539 #else
540 module_init(cpufreq_gov_dbs_init);
541 #endif
542 module_exit(cpufreq_gov_dbs_exit);