Merge remote-tracking branch 'kernel-2.6.32/develop' into develop-2.6.36
[firefly-linux-kernel-4.4.55.git] / drivers / cpufreq / cpufreq_ondemand.c
1 /*
2  *  drivers/cpufreq/cpufreq_ondemand.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21 #include <linux/hrtimer.h>
22 #include <linux/tick.h>
23 #include <linux/ktime.h>
24 #include <linux/sched.h>
25
26 /*
27  * dbs is used in this file as a shortform for demandbased switching
28  * It helps to keep variable names smaller, simpler
29  */
30
31 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL         (10)
32 #define DEF_FREQUENCY_UP_THRESHOLD              (80)
33 #ifdef CONFIG_ARCH_RK29
34 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL       (10)
35 #define MICRO_FREQUENCY_UP_THRESHOLD            (80)
36 #else
37 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL       (3)
38 #define MICRO_FREQUENCY_UP_THRESHOLD            (95)
39 #endif
40 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE         (10000)
41 #define MIN_FREQUENCY_UP_THRESHOLD              (11)
42 #define MAX_FREQUENCY_UP_THRESHOLD              (100)
43
44 /*
45  * The polling frequency of this governor depends on the capability of
46  * the processor. Default polling frequency is 1000 times the transition
47  * latency of the processor. The governor will work on any processor with
48  * transition latency <= 10mS, using appropriate sampling
49  * rate.
50  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
51  * this governor will not work.
52  * All times here are in uS.
53  */
54 #define MIN_SAMPLING_RATE_RATIO                 (2)
55
56 static unsigned int min_sampling_rate;
57
58 #define LATENCY_MULTIPLIER                      (1000)
59 #define MIN_LATENCY_MULTIPLIER                  (100)
60 #define TRANSITION_LATENCY_LIMIT                (10 * 1000 * 1000)
61
62 static void do_dbs_timer(struct work_struct *work);
63 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
64                                 unsigned int event);
65
66 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
67 static
68 #endif
69 struct cpufreq_governor cpufreq_gov_ondemand = {
70        .name                   = "ondemand",
71        .governor               = cpufreq_governor_dbs,
72        .max_transition_latency = TRANSITION_LATENCY_LIMIT,
73        .owner                  = THIS_MODULE,
74 };
75
76 /* Sampling types */
77 enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
78
79 struct cpu_dbs_info_s {
80         cputime64_t prev_cpu_idle;
81         cputime64_t prev_cpu_iowait;
82         cputime64_t prev_cpu_wall;
83         cputime64_t prev_cpu_nice;
84         struct cpufreq_policy *cur_policy;
85         struct delayed_work work;
86         struct cpufreq_frequency_table *freq_table;
87         unsigned int freq_lo;
88         unsigned int freq_lo_jiffies;
89         unsigned int freq_hi_jiffies;
90         int cpu;
91         unsigned int sample_type:1;
92         /*
93          * percpu mutex that serializes governor limit change with
94          * do_dbs_timer invocation. We do not want do_dbs_timer to run
95          * when user is changing the governor or limits.
96          */
97         struct mutex timer_mutex;
98 };
99 static DEFINE_PER_CPU(struct cpu_dbs_info_s, od_cpu_dbs_info);
100
101 static unsigned int dbs_enable; /* number of CPUs using this policy */
102
103 /*
104  * dbs_mutex protects data in dbs_tuners_ins from concurrent changes on
105  * different CPUs. It protects dbs_enable in governor start/stop.
106  */
107 static DEFINE_MUTEX(dbs_mutex);
108
109 static struct workqueue_struct  *kondemand_wq;
110
111 static struct dbs_tuners {
112         unsigned int sampling_rate;
113         unsigned int up_threshold;
114         unsigned int down_differential;
115         unsigned int ignore_nice;
116         unsigned int powersave_bias;
117         unsigned int io_is_busy;
118 } dbs_tuners_ins = {
119         .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
120         .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
121         .ignore_nice = 0,
122         .powersave_bias = 0,
123 };
124
125 static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
126                                                         cputime64_t *wall)
127 {
128         cputime64_t idle_time;
129         cputime64_t cur_wall_time;
130         cputime64_t busy_time;
131
132         cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
133         busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
134                         kstat_cpu(cpu).cpustat.system);
135
136         busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
137         busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
138         busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
139         busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
140
141         idle_time = cputime64_sub(cur_wall_time, busy_time);
142         if (wall)
143                 *wall = (cputime64_t)jiffies_to_usecs(cur_wall_time);
144
145         return (cputime64_t)jiffies_to_usecs(idle_time);
146 }
147
148 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
149 {
150         u64 idle_time = get_cpu_idle_time_us(cpu, wall);
151
152         if (idle_time == -1ULL)
153                 return get_cpu_idle_time_jiffy(cpu, wall);
154
155         return idle_time;
156 }
157
158 static inline cputime64_t get_cpu_iowait_time(unsigned int cpu, cputime64_t *wall)
159 {
160         u64 iowait_time = get_cpu_iowait_time_us(cpu, wall);
161
162         if (iowait_time == -1ULL)
163                 return 0;
164
165         return iowait_time;
166 }
167
168 /*
169  * Find right freq to be set now with powersave_bias on.
170  * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
171  * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
172  */
173 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
174                                           unsigned int freq_next,
175                                           unsigned int relation)
176 {
177         unsigned int freq_req, freq_reduc, freq_avg;
178         unsigned int freq_hi, freq_lo;
179         unsigned int index = 0;
180         unsigned int jiffies_total, jiffies_hi, jiffies_lo;
181         struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
182                                                    policy->cpu);
183
184         if (!dbs_info->freq_table) {
185                 dbs_info->freq_lo = 0;
186                 dbs_info->freq_lo_jiffies = 0;
187                 return freq_next;
188         }
189
190         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
191                         relation, &index);
192         freq_req = dbs_info->freq_table[index].frequency;
193         freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
194         freq_avg = freq_req - freq_reduc;
195
196         /* Find freq bounds for freq_avg in freq_table */
197         index = 0;
198         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
199                         CPUFREQ_RELATION_H, &index);
200         freq_lo = dbs_info->freq_table[index].frequency;
201         index = 0;
202         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
203                         CPUFREQ_RELATION_L, &index);
204         freq_hi = dbs_info->freq_table[index].frequency;
205
206         /* Find out how long we have to be in hi and lo freqs */
207         if (freq_hi == freq_lo) {
208                 dbs_info->freq_lo = 0;
209                 dbs_info->freq_lo_jiffies = 0;
210                 return freq_lo;
211         }
212         jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
213         jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
214         jiffies_hi += ((freq_hi - freq_lo) / 2);
215         jiffies_hi /= (freq_hi - freq_lo);
216         jiffies_lo = jiffies_total - jiffies_hi;
217         dbs_info->freq_lo = freq_lo;
218         dbs_info->freq_lo_jiffies = jiffies_lo;
219         dbs_info->freq_hi_jiffies = jiffies_hi;
220         return freq_hi;
221 }
222
223 static void ondemand_powersave_bias_init_cpu(int cpu)
224 {
225         struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
226         dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
227         dbs_info->freq_lo = 0;
228 }
229
230 static void ondemand_powersave_bias_init(void)
231 {
232         int i;
233         for_each_online_cpu(i) {
234                 ondemand_powersave_bias_init_cpu(i);
235         }
236 }
237
238 /************************** sysfs interface ************************/
239
240 static ssize_t show_sampling_rate_max(struct kobject *kobj,
241                                       struct attribute *attr, char *buf)
242 {
243         printk_once(KERN_INFO "CPUFREQ: ondemand sampling_rate_max "
244                "sysfs file is deprecated - used by: %s\n", current->comm);
245         return sprintf(buf, "%u\n", -1U);
246 }
247
248 static ssize_t show_sampling_rate_min(struct kobject *kobj,
249                                       struct attribute *attr, char *buf)
250 {
251         return sprintf(buf, "%u\n", min_sampling_rate);
252 }
253
254 define_one_global_ro(sampling_rate_max);
255 define_one_global_ro(sampling_rate_min);
256
257 /* cpufreq_ondemand Governor Tunables */
258 #define show_one(file_name, object)                                     \
259 static ssize_t show_##file_name                                         \
260 (struct kobject *kobj, struct attribute *attr, char *buf)              \
261 {                                                                       \
262         return sprintf(buf, "%u\n", dbs_tuners_ins.object);             \
263 }
264 show_one(sampling_rate, sampling_rate);
265 show_one(io_is_busy, io_is_busy);
266 show_one(up_threshold, up_threshold);
267 show_one(ignore_nice_load, ignore_nice);
268 show_one(powersave_bias, powersave_bias);
269
270 /*** delete after deprecation time ***/
271
272 #define DEPRECATION_MSG(file_name)                                      \
273         printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs "       \
274                     "interface is deprecated - " #file_name "\n");
275
276 #define show_one_old(file_name)                                         \
277 static ssize_t show_##file_name##_old                                   \
278 (struct cpufreq_policy *unused, char *buf)                              \
279 {                                                                       \
280         printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs "       \
281                     "interface is deprecated - " #file_name "\n");      \
282         return show_##file_name(NULL, NULL, buf);                       \
283 }
284 show_one_old(sampling_rate);
285 show_one_old(up_threshold);
286 show_one_old(ignore_nice_load);
287 show_one_old(powersave_bias);
288 show_one_old(sampling_rate_min);
289 show_one_old(sampling_rate_max);
290
291 cpufreq_freq_attr_ro_old(sampling_rate_min);
292 cpufreq_freq_attr_ro_old(sampling_rate_max);
293
294 /*** delete after deprecation time ***/
295
296 static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
297                                    const char *buf, size_t count)
298 {
299         unsigned int input;
300         int ret;
301         ret = sscanf(buf, "%u", &input);
302         if (ret != 1)
303                 return -EINVAL;
304
305         mutex_lock(&dbs_mutex);
306         dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
307         mutex_unlock(&dbs_mutex);
308
309         return count;
310 }
311
312 static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
313                                    const char *buf, size_t count)
314 {
315         unsigned int input;
316         int ret;
317
318         ret = sscanf(buf, "%u", &input);
319         if (ret != 1)
320                 return -EINVAL;
321
322         mutex_lock(&dbs_mutex);
323         dbs_tuners_ins.io_is_busy = !!input;
324         mutex_unlock(&dbs_mutex);
325
326         return count;
327 }
328
329 static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
330                                   const char *buf, size_t count)
331 {
332         unsigned int input;
333         int ret;
334         ret = sscanf(buf, "%u", &input);
335
336         if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
337                         input < MIN_FREQUENCY_UP_THRESHOLD) {
338                 return -EINVAL;
339         }
340
341         mutex_lock(&dbs_mutex);
342         dbs_tuners_ins.up_threshold = input;
343         mutex_unlock(&dbs_mutex);
344
345         return count;
346 }
347
348 static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
349                                       const char *buf, size_t count)
350 {
351         unsigned int input;
352         int ret;
353
354         unsigned int j;
355
356         ret = sscanf(buf, "%u", &input);
357         if (ret != 1)
358                 return -EINVAL;
359
360         if (input > 1)
361                 input = 1;
362
363         mutex_lock(&dbs_mutex);
364         if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
365                 mutex_unlock(&dbs_mutex);
366                 return count;
367         }
368         dbs_tuners_ins.ignore_nice = input;
369
370         /* we need to re-evaluate prev_cpu_idle */
371         for_each_online_cpu(j) {
372                 struct cpu_dbs_info_s *dbs_info;
373                 dbs_info = &per_cpu(od_cpu_dbs_info, j);
374                 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
375                                                 &dbs_info->prev_cpu_wall);
376                 if (dbs_tuners_ins.ignore_nice)
377                         dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
378
379         }
380         mutex_unlock(&dbs_mutex);
381
382         return count;
383 }
384
385 static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
386                                     const char *buf, size_t count)
387 {
388         unsigned int input;
389         int ret;
390         ret = sscanf(buf, "%u", &input);
391
392         if (ret != 1)
393                 return -EINVAL;
394
395         if (input > 1000)
396                 input = 1000;
397
398         mutex_lock(&dbs_mutex);
399         dbs_tuners_ins.powersave_bias = input;
400         ondemand_powersave_bias_init();
401         mutex_unlock(&dbs_mutex);
402
403         return count;
404 }
405
406 define_one_global_rw(sampling_rate);
407 define_one_global_rw(io_is_busy);
408 define_one_global_rw(up_threshold);
409 define_one_global_rw(ignore_nice_load);
410 define_one_global_rw(powersave_bias);
411
412 static struct attribute *dbs_attributes[] = {
413         &sampling_rate_max.attr,
414         &sampling_rate_min.attr,
415         &sampling_rate.attr,
416         &up_threshold.attr,
417         &ignore_nice_load.attr,
418         &powersave_bias.attr,
419         &io_is_busy.attr,
420         NULL
421 };
422
423 static struct attribute_group dbs_attr_group = {
424         .attrs = dbs_attributes,
425         .name = "ondemand",
426 };
427
428 /*** delete after deprecation time ***/
429
430 #define write_one_old(file_name)                                        \
431 static ssize_t store_##file_name##_old                                  \
432 (struct cpufreq_policy *unused, const char *buf, size_t count)          \
433 {                                                                       \
434        printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs "        \
435                    "interface is deprecated - " #file_name "\n");       \
436        return store_##file_name(NULL, NULL, buf, count);                \
437 }
438 write_one_old(sampling_rate);
439 write_one_old(up_threshold);
440 write_one_old(ignore_nice_load);
441 write_one_old(powersave_bias);
442
443 cpufreq_freq_attr_rw_old(sampling_rate);
444 cpufreq_freq_attr_rw_old(up_threshold);
445 cpufreq_freq_attr_rw_old(ignore_nice_load);
446 cpufreq_freq_attr_rw_old(powersave_bias);
447
448 static struct attribute *dbs_attributes_old[] = {
449        &sampling_rate_max_old.attr,
450        &sampling_rate_min_old.attr,
451        &sampling_rate_old.attr,
452        &up_threshold_old.attr,
453        &ignore_nice_load_old.attr,
454        &powersave_bias_old.attr,
455        NULL
456 };
457
458 static struct attribute_group dbs_attr_group_old = {
459        .attrs = dbs_attributes_old,
460        .name = "ondemand",
461 };
462
463 /*** delete after deprecation time ***/
464
465 /************************** sysfs end ************************/
466
467 static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
468 {
469         if (dbs_tuners_ins.powersave_bias)
470                 freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
471         else if (p->cur == p->max)
472                 return;
473
474         __cpufreq_driver_target(p, freq, dbs_tuners_ins.powersave_bias ?
475                         CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
476 }
477
478 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
479 {
480         unsigned int max_load_freq;
481
482         struct cpufreq_policy *policy;
483         unsigned int j;
484
485         this_dbs_info->freq_lo = 0;
486         policy = this_dbs_info->cur_policy;
487
488         /*
489          * Every sampling_rate, we check, if current idle time is less
490          * than 20% (default), then we try to increase frequency
491          * Every sampling_rate, we look for a the lowest
492          * frequency which can sustain the load while keeping idle time over
493          * 30%. If such a frequency exist, we try to decrease to this frequency.
494          *
495          * Any frequency increase takes it to the maximum frequency.
496          * Frequency reduction happens at minimum steps of
497          * 5% (default) of current frequency
498          */
499
500         /* Get Absolute Load - in terms of freq */
501         max_load_freq = 0;
502
503         for_each_cpu(j, policy->cpus) {
504                 struct cpu_dbs_info_s *j_dbs_info;
505                 cputime64_t cur_wall_time, cur_idle_time, cur_iowait_time;
506                 unsigned int idle_time, wall_time, iowait_time;
507                 unsigned int load, load_freq;
508                 int freq_avg;
509
510                 j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
511
512                 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
513                 cur_iowait_time = get_cpu_iowait_time(j, &cur_wall_time);
514
515                 wall_time = (unsigned int) cputime64_sub(cur_wall_time,
516                                 j_dbs_info->prev_cpu_wall);
517                 j_dbs_info->prev_cpu_wall = cur_wall_time;
518
519                 idle_time = (unsigned int) cputime64_sub(cur_idle_time,
520                                 j_dbs_info->prev_cpu_idle);
521                 j_dbs_info->prev_cpu_idle = cur_idle_time;
522
523                 iowait_time = (unsigned int) cputime64_sub(cur_iowait_time,
524                                 j_dbs_info->prev_cpu_iowait);
525                 j_dbs_info->prev_cpu_iowait = cur_iowait_time;
526
527                 if (dbs_tuners_ins.ignore_nice) {
528                         cputime64_t cur_nice;
529                         unsigned long cur_nice_jiffies;
530
531                         cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
532                                          j_dbs_info->prev_cpu_nice);
533                         /*
534                          * Assumption: nice time between sampling periods will
535                          * be less than 2^32 jiffies for 32 bit sys
536                          */
537                         cur_nice_jiffies = (unsigned long)
538                                         cputime64_to_jiffies64(cur_nice);
539
540                         j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
541                         idle_time += jiffies_to_usecs(cur_nice_jiffies);
542                 }
543
544                 /*
545                  * For the purpose of ondemand, waiting for disk IO is an
546                  * indication that you're performance critical, and not that
547                  * the system is actually idle. So subtract the iowait time
548                  * from the cpu idle time.
549                  */
550
551                 if (dbs_tuners_ins.io_is_busy && idle_time >= iowait_time)
552                         idle_time -= iowait_time;
553
554                 if (unlikely(!wall_time || wall_time < idle_time))
555                         continue;
556
557                 load = 100 * (wall_time - idle_time) / wall_time;
558
559                 freq_avg = __cpufreq_driver_getavg(policy, j);
560                 if (freq_avg <= 0)
561                         freq_avg = policy->cur;
562
563                 load_freq = load * freq_avg;
564                 if (load_freq > max_load_freq)
565                         max_load_freq = load_freq;
566         }
567
568         /* Check for frequency increase */
569         if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
570                 dbs_freq_increase(policy, policy->max);
571                 return;
572         }
573
574         /* Check for frequency decrease */
575         /* if we cannot reduce the frequency anymore, break out early */
576         if (policy->cur == policy->min)
577                 return;
578
579         /*
580          * The optimal frequency is the frequency that is the lowest that
581          * can support the current CPU usage without triggering the up
582          * policy. To be safe, we focus 10 points under the threshold.
583          */
584         if (max_load_freq <
585             (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
586              policy->cur) {
587                 unsigned int freq_next;
588                 freq_next = max_load_freq /
589                                 (dbs_tuners_ins.up_threshold -
590                                  dbs_tuners_ins.down_differential);
591
592                 if (freq_next < policy->min)
593                         freq_next = policy->min;
594
595                 if (!dbs_tuners_ins.powersave_bias) {
596                         __cpufreq_driver_target(policy, freq_next,
597                                         CPUFREQ_RELATION_L);
598                 } else {
599                         int freq = powersave_bias_target(policy, freq_next,
600                                         CPUFREQ_RELATION_L);
601                         __cpufreq_driver_target(policy, freq,
602                                 CPUFREQ_RELATION_L);
603                 }
604         }
605 }
606
607 static void do_dbs_timer(struct work_struct *work)
608 {
609         struct cpu_dbs_info_s *dbs_info =
610                 container_of(work, struct cpu_dbs_info_s, work.work);
611         unsigned int cpu = dbs_info->cpu;
612         int sample_type = dbs_info->sample_type;
613
614         /* We want all CPUs to do sampling nearly on same jiffy */
615         int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
616
617         if (num_online_cpus() > 1)
618                 delay -= jiffies % delay;
619
620         mutex_lock(&dbs_info->timer_mutex);
621
622         /* Common NORMAL_SAMPLE setup */
623         dbs_info->sample_type = DBS_NORMAL_SAMPLE;
624         if (!dbs_tuners_ins.powersave_bias ||
625             sample_type == DBS_NORMAL_SAMPLE) {
626                 dbs_check_cpu(dbs_info);
627                 if (dbs_info->freq_lo) {
628                         /* Setup timer for SUB_SAMPLE */
629                         dbs_info->sample_type = DBS_SUB_SAMPLE;
630                         delay = dbs_info->freq_hi_jiffies;
631                 }
632         } else {
633                 __cpufreq_driver_target(dbs_info->cur_policy,
634                         dbs_info->freq_lo, CPUFREQ_RELATION_H);
635         }
636         queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
637         mutex_unlock(&dbs_info->timer_mutex);
638 }
639
640 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
641 {
642         /* We want all CPUs to do sampling nearly on same jiffy */
643         int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
644
645         if (num_online_cpus() > 1)
646                 delay -= jiffies % delay;
647
648         dbs_info->sample_type = DBS_NORMAL_SAMPLE;
649         INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
650         queue_delayed_work_on(dbs_info->cpu, kondemand_wq, &dbs_info->work,
651                 delay);
652 }
653
654 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
655 {
656         cancel_delayed_work_sync(&dbs_info->work);
657 }
658
659 /*
660  * Not all CPUs want IO time to be accounted as busy; this dependson how
661  * efficient idling at a higher frequency/voltage is.
662  * Pavel Machek says this is not so for various generations of AMD and old
663  * Intel systems.
664  * Mike Chan (androidlcom) calis this is also not true for ARM.
665  * Because of this, whitelist specific known (series) of CPUs by default, and
666  * leave all others up to the user.
667  */
668 static int should_io_be_busy(void)
669 {
670 #if defined(CONFIG_X86)
671         /*
672          * For Intel, Core 2 (model 15) andl later have an efficient idle.
673          */
674         if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
675             boot_cpu_data.x86 == 6 &&
676             boot_cpu_data.x86_model >= 15)
677                 return 1;
678 #endif
679         return 0;
680 }
681
682 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
683                                    unsigned int event)
684 {
685         unsigned int cpu = policy->cpu;
686         struct cpu_dbs_info_s *this_dbs_info;
687         unsigned int j;
688         int rc;
689
690         this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
691
692         switch (event) {
693         case CPUFREQ_GOV_START:
694                 if ((!cpu_online(cpu)) || (!policy->cur))
695                         return -EINVAL;
696
697                 mutex_lock(&dbs_mutex);
698
699                 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group_old);
700                 if (rc) {
701                         mutex_unlock(&dbs_mutex);
702                         return rc;
703                 }
704
705                 dbs_enable++;
706                 for_each_cpu(j, policy->cpus) {
707                         struct cpu_dbs_info_s *j_dbs_info;
708                         j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
709                         j_dbs_info->cur_policy = policy;
710
711                         j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
712                                                 &j_dbs_info->prev_cpu_wall);
713                         if (dbs_tuners_ins.ignore_nice) {
714                                 j_dbs_info->prev_cpu_nice =
715                                                 kstat_cpu(j).cpustat.nice;
716                         }
717                 }
718                 this_dbs_info->cpu = cpu;
719                 ondemand_powersave_bias_init_cpu(cpu);
720                 /*
721                  * Start the timerschedule work, when this governor
722                  * is used for first time
723                  */
724                 if (dbs_enable == 1) {
725                         unsigned int latency;
726
727                         rc = sysfs_create_group(cpufreq_global_kobject,
728                                                 &dbs_attr_group);
729                         if (rc) {
730                                 mutex_unlock(&dbs_mutex);
731                                 return rc;
732                         }
733
734                         /* policy latency is in nS. Convert it to uS first */
735                         latency = policy->cpuinfo.transition_latency / 1000;
736                         if (latency == 0)
737                                 latency = 1;
738                         /* Bring kernel and HW constraints together */
739                         min_sampling_rate = max(min_sampling_rate,
740                                         MIN_LATENCY_MULTIPLIER * latency);
741                         dbs_tuners_ins.sampling_rate =
742                                 max(min_sampling_rate,
743                                     latency * LATENCY_MULTIPLIER);
744                         dbs_tuners_ins.io_is_busy = should_io_be_busy();
745                 }
746                 mutex_unlock(&dbs_mutex);
747
748                 mutex_init(&this_dbs_info->timer_mutex);
749                 dbs_timer_init(this_dbs_info);
750                 break;
751
752         case CPUFREQ_GOV_STOP:
753                 dbs_timer_exit(this_dbs_info);
754
755                 mutex_lock(&dbs_mutex);
756                 sysfs_remove_group(&policy->kobj, &dbs_attr_group_old);
757                 mutex_destroy(&this_dbs_info->timer_mutex);
758                 dbs_enable--;
759                 mutex_unlock(&dbs_mutex);
760                 if (!dbs_enable)
761                         sysfs_remove_group(cpufreq_global_kobject,
762                                            &dbs_attr_group);
763
764                 break;
765
766         case CPUFREQ_GOV_LIMITS:
767                 mutex_lock(&this_dbs_info->timer_mutex);
768                 if (policy->max < this_dbs_info->cur_policy->cur)
769                         __cpufreq_driver_target(this_dbs_info->cur_policy,
770                                 policy->max, CPUFREQ_RELATION_H);
771                 else if (policy->min > this_dbs_info->cur_policy->cur)
772                         __cpufreq_driver_target(this_dbs_info->cur_policy,
773                                 policy->min, CPUFREQ_RELATION_L);
774                 mutex_unlock(&this_dbs_info->timer_mutex);
775                 break;
776         }
777         return 0;
778 }
779
780 static int __init cpufreq_gov_dbs_init(void)
781 {
782         int err;
783         cputime64_t wall;
784         u64 idle_time;
785         int cpu = get_cpu();
786
787         idle_time = get_cpu_idle_time_us(cpu, &wall);
788         put_cpu();
789         if (idle_time != -1ULL) {
790                 /* Idle micro accounting is supported. Use finer thresholds */
791                 dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
792                 dbs_tuners_ins.down_differential =
793                                         MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
794                 /*
795                  * In no_hz/micro accounting case we set the minimum frequency
796                  * not depending on HZ, but fixed (very low). The deferred
797                  * timer might skip some samples if idle/sleeping as needed.
798                 */
799                 min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
800         } else {
801                 /* For correct statistics, we need 10 ticks for each measure */
802                 min_sampling_rate =
803                         MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
804         }
805
806         kondemand_wq = create_workqueue("kondemand");
807         if (!kondemand_wq) {
808                 printk(KERN_ERR "Creation of kondemand failed\n");
809                 return -EFAULT;
810         }
811         err = cpufreq_register_governor(&cpufreq_gov_ondemand);
812         if (err)
813                 destroy_workqueue(kondemand_wq);
814
815         return err;
816 }
817
818 static void __exit cpufreq_gov_dbs_exit(void)
819 {
820         cpufreq_unregister_governor(&cpufreq_gov_ondemand);
821         destroy_workqueue(kondemand_wq);
822 }
823
824
825 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
826 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
827 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
828         "Low Latency Frequency Transition capable processors");
829 MODULE_LICENSE("GPL");
830
831 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
832 fs_initcall(cpufreq_gov_dbs_init);
833 #else
834 module_init(cpufreq_gov_dbs_init);
835 #endif
836 module_exit(cpufreq_gov_dbs_exit);