intel_pstate: Set turbo VID for BayTrail
[firefly-linux-kernel-4.4.55.git] / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <trace/events/power.h>
30
31 #include <asm/div64.h>
32 #include <asm/msr.h>
33 #include <asm/cpu_device_id.h>
34
35 #define SAMPLE_COUNT            3
36
37 #define BYT_RATIOS              0x66a
38 #define BYT_VIDS                0x66b
39 #define BYT_TURBO_RATIOS        0x66c
40 #define BYT_TURBO_VIDS          0x66d
41
42
43 #define FRAC_BITS 6
44 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
45 #define fp_toint(X) ((X) >> FRAC_BITS)
46 #define FP_ROUNDUP(X) ((X) += 1 << FRAC_BITS)
47
48 static inline int32_t mul_fp(int32_t x, int32_t y)
49 {
50         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
51 }
52
53 static inline int32_t div_fp(int32_t x, int32_t y)
54 {
55         return div_s64((int64_t)x << FRAC_BITS, (int64_t)y);
56 }
57
58 struct sample {
59         int32_t core_pct_busy;
60         u64 aperf;
61         u64 mperf;
62         unsigned long long tsc;
63         int freq;
64 };
65
66 struct pstate_data {
67         int     current_pstate;
68         int     min_pstate;
69         int     max_pstate;
70         int     turbo_pstate;
71 };
72
73 struct vid_data {
74         int min;
75         int max;
76         int turbo;
77         int32_t ratio;
78 };
79
80 struct _pid {
81         int setpoint;
82         int32_t integral;
83         int32_t p_gain;
84         int32_t i_gain;
85         int32_t d_gain;
86         int deadband;
87         int32_t last_err;
88 };
89
90 struct cpudata {
91         int cpu;
92
93         char name[64];
94
95         struct timer_list timer;
96
97         struct pstate_data pstate;
98         struct vid_data vid;
99         struct _pid pid;
100
101         u64     prev_aperf;
102         u64     prev_mperf;
103         unsigned long long prev_tsc;
104         struct sample sample;
105 };
106
107 static struct cpudata **all_cpu_data;
108 struct pstate_adjust_policy {
109         int sample_rate_ms;
110         int deadband;
111         int setpoint;
112         int p_gain_pct;
113         int d_gain_pct;
114         int i_gain_pct;
115 };
116
117 struct pstate_funcs {
118         int (*get_max)(void);
119         int (*get_min)(void);
120         int (*get_turbo)(void);
121         void (*set)(struct cpudata*, int pstate);
122         void (*get_vid)(struct cpudata *);
123 };
124
125 struct cpu_defaults {
126         struct pstate_adjust_policy pid_policy;
127         struct pstate_funcs funcs;
128 };
129
130 static struct pstate_adjust_policy pid_params;
131 static struct pstate_funcs pstate_funcs;
132
133 struct perf_limits {
134         int no_turbo;
135         int max_perf_pct;
136         int min_perf_pct;
137         int32_t max_perf;
138         int32_t min_perf;
139         int max_policy_pct;
140         int max_sysfs_pct;
141 };
142
143 static struct perf_limits limits = {
144         .no_turbo = 0,
145         .max_perf_pct = 100,
146         .max_perf = int_tofp(1),
147         .min_perf_pct = 0,
148         .min_perf = 0,
149         .max_policy_pct = 100,
150         .max_sysfs_pct = 100,
151 };
152
153 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
154                         int deadband, int integral) {
155         pid->setpoint = setpoint;
156         pid->deadband  = deadband;
157         pid->integral  = int_tofp(integral);
158         pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
159 }
160
161 static inline void pid_p_gain_set(struct _pid *pid, int percent)
162 {
163         pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
164 }
165
166 static inline void pid_i_gain_set(struct _pid *pid, int percent)
167 {
168         pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
169 }
170
171 static inline void pid_d_gain_set(struct _pid *pid, int percent)
172 {
173
174         pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
175 }
176
177 static signed int pid_calc(struct _pid *pid, int32_t busy)
178 {
179         signed int result;
180         int32_t pterm, dterm, fp_error;
181         int32_t integral_limit;
182
183         fp_error = int_tofp(pid->setpoint) - busy;
184
185         if (abs(fp_error) <= int_tofp(pid->deadband))
186                 return 0;
187
188         pterm = mul_fp(pid->p_gain, fp_error);
189
190         pid->integral += fp_error;
191
192         /* limit the integral term */
193         integral_limit = int_tofp(30);
194         if (pid->integral > integral_limit)
195                 pid->integral = integral_limit;
196         if (pid->integral < -integral_limit)
197                 pid->integral = -integral_limit;
198
199         dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
200         pid->last_err = fp_error;
201
202         result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
203
204         return (signed int)fp_toint(result);
205 }
206
207 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
208 {
209         pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
210         pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
211         pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
212
213         pid_reset(&cpu->pid,
214                 pid_params.setpoint,
215                 100,
216                 pid_params.deadband,
217                 0);
218 }
219
220 static inline void intel_pstate_reset_all_pid(void)
221 {
222         unsigned int cpu;
223         for_each_online_cpu(cpu) {
224                 if (all_cpu_data[cpu])
225                         intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
226         }
227 }
228
229 /************************** debugfs begin ************************/
230 static int pid_param_set(void *data, u64 val)
231 {
232         *(u32 *)data = val;
233         intel_pstate_reset_all_pid();
234         return 0;
235 }
236 static int pid_param_get(void *data, u64 *val)
237 {
238         *val = *(u32 *)data;
239         return 0;
240 }
241 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get,
242                         pid_param_set, "%llu\n");
243
244 struct pid_param {
245         char *name;
246         void *value;
247 };
248
249 static struct pid_param pid_files[] = {
250         {"sample_rate_ms", &pid_params.sample_rate_ms},
251         {"d_gain_pct", &pid_params.d_gain_pct},
252         {"i_gain_pct", &pid_params.i_gain_pct},
253         {"deadband", &pid_params.deadband},
254         {"setpoint", &pid_params.setpoint},
255         {"p_gain_pct", &pid_params.p_gain_pct},
256         {NULL, NULL}
257 };
258
259 static struct dentry *debugfs_parent;
260 static void intel_pstate_debug_expose_params(void)
261 {
262         int i = 0;
263
264         debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
265         if (IS_ERR_OR_NULL(debugfs_parent))
266                 return;
267         while (pid_files[i].name) {
268                 debugfs_create_file(pid_files[i].name, 0660,
269                                 debugfs_parent, pid_files[i].value,
270                                 &fops_pid_param);
271                 i++;
272         }
273 }
274
275 /************************** debugfs end ************************/
276
277 /************************** sysfs begin ************************/
278 #define show_one(file_name, object)                                     \
279         static ssize_t show_##file_name                                 \
280         (struct kobject *kobj, struct attribute *attr, char *buf)       \
281         {                                                               \
282                 return sprintf(buf, "%u\n", limits.object);             \
283         }
284
285 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
286                                 const char *buf, size_t count)
287 {
288         unsigned int input;
289         int ret;
290         ret = sscanf(buf, "%u", &input);
291         if (ret != 1)
292                 return -EINVAL;
293         limits.no_turbo = clamp_t(int, input, 0 , 1);
294
295         return count;
296 }
297
298 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
299                                 const char *buf, size_t count)
300 {
301         unsigned int input;
302         int ret;
303         ret = sscanf(buf, "%u", &input);
304         if (ret != 1)
305                 return -EINVAL;
306
307         limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
308         limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
309         limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
310         return count;
311 }
312
313 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
314                                 const char *buf, size_t count)
315 {
316         unsigned int input;
317         int ret;
318         ret = sscanf(buf, "%u", &input);
319         if (ret != 1)
320                 return -EINVAL;
321         limits.min_perf_pct = clamp_t(int, input, 0 , 100);
322         limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
323
324         return count;
325 }
326
327 show_one(no_turbo, no_turbo);
328 show_one(max_perf_pct, max_perf_pct);
329 show_one(min_perf_pct, min_perf_pct);
330
331 define_one_global_rw(no_turbo);
332 define_one_global_rw(max_perf_pct);
333 define_one_global_rw(min_perf_pct);
334
335 static struct attribute *intel_pstate_attributes[] = {
336         &no_turbo.attr,
337         &max_perf_pct.attr,
338         &min_perf_pct.attr,
339         NULL
340 };
341
342 static struct attribute_group intel_pstate_attr_group = {
343         .attrs = intel_pstate_attributes,
344 };
345 static struct kobject *intel_pstate_kobject;
346
347 static void intel_pstate_sysfs_expose_params(void)
348 {
349         int rc;
350
351         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
352                                                 &cpu_subsys.dev_root->kobj);
353         BUG_ON(!intel_pstate_kobject);
354         rc = sysfs_create_group(intel_pstate_kobject,
355                                 &intel_pstate_attr_group);
356         BUG_ON(rc);
357 }
358
359 /************************** sysfs end ************************/
360 static int byt_get_min_pstate(void)
361 {
362         u64 value;
363         rdmsrl(BYT_RATIOS, value);
364         return (value >> 8) & 0x3F;
365 }
366
367 static int byt_get_max_pstate(void)
368 {
369         u64 value;
370         rdmsrl(BYT_RATIOS, value);
371         return (value >> 16) & 0x3F;
372 }
373
374 static int byt_get_turbo_pstate(void)
375 {
376         u64 value;
377         rdmsrl(BYT_TURBO_RATIOS, value);
378         return value & 0x3F;
379 }
380
381 static void byt_set_pstate(struct cpudata *cpudata, int pstate)
382 {
383         u64 val;
384         int32_t vid_fp;
385         u32 vid;
386
387         val = pstate << 8;
388         if (limits.no_turbo)
389                 val |= (u64)1 << 32;
390
391         vid_fp = cpudata->vid.min + mul_fp(
392                 int_tofp(pstate - cpudata->pstate.min_pstate),
393                 cpudata->vid.ratio);
394
395         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
396         vid = fp_toint(vid_fp);
397
398         if (pstate > cpudata->pstate.max_pstate)
399                 vid = cpudata->vid.turbo;
400
401         val |= vid;
402
403         wrmsrl(MSR_IA32_PERF_CTL, val);
404 }
405
406 static void byt_get_vid(struct cpudata *cpudata)
407 {
408         u64 value;
409
410
411         rdmsrl(BYT_VIDS, value);
412         cpudata->vid.min = int_tofp((value >> 8) & 0x3f);
413         cpudata->vid.max = int_tofp((value >> 16) & 0x3f);
414         cpudata->vid.ratio = div_fp(
415                 cpudata->vid.max - cpudata->vid.min,
416                 int_tofp(cpudata->pstate.max_pstate -
417                         cpudata->pstate.min_pstate));
418
419         rdmsrl(BYT_TURBO_VIDS, value);
420         cpudata->vid.turbo = value & 0x7f;
421 }
422
423
424 static int core_get_min_pstate(void)
425 {
426         u64 value;
427         rdmsrl(MSR_PLATFORM_INFO, value);
428         return (value >> 40) & 0xFF;
429 }
430
431 static int core_get_max_pstate(void)
432 {
433         u64 value;
434         rdmsrl(MSR_PLATFORM_INFO, value);
435         return (value >> 8) & 0xFF;
436 }
437
438 static int core_get_turbo_pstate(void)
439 {
440         u64 value;
441         int nont, ret;
442         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
443         nont = core_get_max_pstate();
444         ret = ((value) & 255);
445         if (ret <= nont)
446                 ret = nont;
447         return ret;
448 }
449
450 static void core_set_pstate(struct cpudata *cpudata, int pstate)
451 {
452         u64 val;
453
454         val = pstate << 8;
455         if (limits.no_turbo)
456                 val |= (u64)1 << 32;
457
458         wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
459 }
460
461 static struct cpu_defaults core_params = {
462         .pid_policy = {
463                 .sample_rate_ms = 10,
464                 .deadband = 0,
465                 .setpoint = 97,
466                 .p_gain_pct = 20,
467                 .d_gain_pct = 0,
468                 .i_gain_pct = 0,
469         },
470         .funcs = {
471                 .get_max = core_get_max_pstate,
472                 .get_min = core_get_min_pstate,
473                 .get_turbo = core_get_turbo_pstate,
474                 .set = core_set_pstate,
475         },
476 };
477
478 static struct cpu_defaults byt_params = {
479         .pid_policy = {
480                 .sample_rate_ms = 10,
481                 .deadband = 0,
482                 .setpoint = 97,
483                 .p_gain_pct = 14,
484                 .d_gain_pct = 0,
485                 .i_gain_pct = 4,
486         },
487         .funcs = {
488                 .get_max = byt_get_max_pstate,
489                 .get_min = byt_get_min_pstate,
490                 .get_turbo = byt_get_turbo_pstate,
491                 .set = byt_set_pstate,
492                 .get_vid = byt_get_vid,
493         },
494 };
495
496
497 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
498 {
499         int max_perf = cpu->pstate.turbo_pstate;
500         int max_perf_adj;
501         int min_perf;
502         if (limits.no_turbo)
503                 max_perf = cpu->pstate.max_pstate;
504
505         max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
506         *max = clamp_t(int, max_perf_adj,
507                         cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
508
509         min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
510         *min = clamp_t(int, min_perf,
511                         cpu->pstate.min_pstate, max_perf);
512 }
513
514 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
515 {
516         int max_perf, min_perf;
517
518         intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
519
520         pstate = clamp_t(int, pstate, min_perf, max_perf);
521
522         if (pstate == cpu->pstate.current_pstate)
523                 return;
524
525         trace_cpu_frequency(pstate * 100000, cpu->cpu);
526
527         cpu->pstate.current_pstate = pstate;
528
529         pstate_funcs.set(cpu, pstate);
530 }
531
532 static inline void intel_pstate_pstate_increase(struct cpudata *cpu, int steps)
533 {
534         int target;
535         target = cpu->pstate.current_pstate + steps;
536
537         intel_pstate_set_pstate(cpu, target);
538 }
539
540 static inline void intel_pstate_pstate_decrease(struct cpudata *cpu, int steps)
541 {
542         int target;
543         target = cpu->pstate.current_pstate - steps;
544         intel_pstate_set_pstate(cpu, target);
545 }
546
547 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
548 {
549         sprintf(cpu->name, "Intel 2nd generation core");
550
551         cpu->pstate.min_pstate = pstate_funcs.get_min();
552         cpu->pstate.max_pstate = pstate_funcs.get_max();
553         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
554
555         if (pstate_funcs.get_vid)
556                 pstate_funcs.get_vid(cpu);
557
558         /*
559          * goto max pstate so we don't slow up boot if we are built-in if we are
560          * a module we will take care of it during normal operation
561          */
562         intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);
563 }
564
565 static inline void intel_pstate_calc_busy(struct cpudata *cpu,
566                                         struct sample *sample)
567 {
568         int32_t core_pct;
569         int32_t c0_pct;
570
571         core_pct = div_fp(int_tofp((sample->aperf)),
572                         int_tofp((sample->mperf)));
573         core_pct = mul_fp(core_pct, int_tofp(100));
574         FP_ROUNDUP(core_pct);
575
576         c0_pct = div_fp(int_tofp(sample->mperf), int_tofp(sample->tsc));
577
578         sample->freq = fp_toint(
579                 mul_fp(int_tofp(cpu->pstate.max_pstate * 1000), core_pct));
580
581         sample->core_pct_busy = mul_fp(core_pct, c0_pct);
582 }
583
584 static inline void intel_pstate_sample(struct cpudata *cpu)
585 {
586         u64 aperf, mperf;
587         unsigned long long tsc;
588
589         rdmsrl(MSR_IA32_APERF, aperf);
590         rdmsrl(MSR_IA32_MPERF, mperf);
591         tsc = native_read_tsc();
592
593         aperf = aperf >> FRAC_BITS;
594         mperf = mperf >> FRAC_BITS;
595         tsc = tsc >> FRAC_BITS;
596
597         cpu->sample.aperf = aperf;
598         cpu->sample.mperf = mperf;
599         cpu->sample.tsc = tsc;
600         cpu->sample.aperf -= cpu->prev_aperf;
601         cpu->sample.mperf -= cpu->prev_mperf;
602         cpu->sample.tsc -= cpu->prev_tsc;
603
604         intel_pstate_calc_busy(cpu, &cpu->sample);
605
606         cpu->prev_aperf = aperf;
607         cpu->prev_mperf = mperf;
608         cpu->prev_tsc = tsc;
609 }
610
611 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
612 {
613         int sample_time, delay;
614
615         sample_time = pid_params.sample_rate_ms;
616         delay = msecs_to_jiffies(sample_time);
617         mod_timer_pinned(&cpu->timer, jiffies + delay);
618 }
619
620 static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
621 {
622         int32_t core_busy, max_pstate, current_pstate;
623
624         core_busy = cpu->sample.core_pct_busy;
625         max_pstate = int_tofp(cpu->pstate.max_pstate);
626         current_pstate = int_tofp(cpu->pstate.current_pstate);
627         core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
628         return FP_ROUNDUP(core_busy);
629 }
630
631 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
632 {
633         int32_t busy_scaled;
634         struct _pid *pid;
635         signed int ctl = 0;
636         int steps;
637
638         pid = &cpu->pid;
639         busy_scaled = intel_pstate_get_scaled_busy(cpu);
640
641         ctl = pid_calc(pid, busy_scaled);
642
643         steps = abs(ctl);
644
645         if (ctl < 0)
646                 intel_pstate_pstate_increase(cpu, steps);
647         else
648                 intel_pstate_pstate_decrease(cpu, steps);
649 }
650
651 static void intel_pstate_timer_func(unsigned long __data)
652 {
653         struct cpudata *cpu = (struct cpudata *) __data;
654         struct sample *sample;
655
656         intel_pstate_sample(cpu);
657
658         sample = &cpu->sample;
659
660         intel_pstate_adjust_busy_pstate(cpu);
661
662         trace_pstate_sample(fp_toint(sample->core_pct_busy),
663                         fp_toint(intel_pstate_get_scaled_busy(cpu)),
664                         cpu->pstate.current_pstate,
665                         sample->mperf,
666                         sample->aperf,
667                         sample->freq);
668
669         intel_pstate_set_sample_time(cpu);
670 }
671
672 #define ICPU(model, policy) \
673         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
674                         (unsigned long)&policy }
675
676 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
677         ICPU(0x2a, core_params),
678         ICPU(0x2d, core_params),
679         ICPU(0x37, byt_params),
680         ICPU(0x3a, core_params),
681         ICPU(0x3c, core_params),
682         ICPU(0x3e, core_params),
683         ICPU(0x3f, core_params),
684         ICPU(0x45, core_params),
685         ICPU(0x46, core_params),
686         {}
687 };
688 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
689
690 static int intel_pstate_init_cpu(unsigned int cpunum)
691 {
692
693         const struct x86_cpu_id *id;
694         struct cpudata *cpu;
695
696         id = x86_match_cpu(intel_pstate_cpu_ids);
697         if (!id)
698                 return -ENODEV;
699
700         all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata), GFP_KERNEL);
701         if (!all_cpu_data[cpunum])
702                 return -ENOMEM;
703
704         cpu = all_cpu_data[cpunum];
705
706         intel_pstate_get_cpu_pstates(cpu);
707         if (!cpu->pstate.current_pstate) {
708                 all_cpu_data[cpunum] = NULL;
709                 kfree(cpu);
710                 return -ENODATA;
711         }
712
713         cpu->cpu = cpunum;
714
715         init_timer_deferrable(&cpu->timer);
716         cpu->timer.function = intel_pstate_timer_func;
717         cpu->timer.data =
718                 (unsigned long)cpu;
719         cpu->timer.expires = jiffies + HZ/100;
720         intel_pstate_busy_pid_reset(cpu);
721         intel_pstate_sample(cpu);
722         intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);
723
724         add_timer_on(&cpu->timer, cpunum);
725
726         pr_info("Intel pstate controlling: cpu %d\n", cpunum);
727
728         return 0;
729 }
730
731 static unsigned int intel_pstate_get(unsigned int cpu_num)
732 {
733         struct sample *sample;
734         struct cpudata *cpu;
735
736         cpu = all_cpu_data[cpu_num];
737         if (!cpu)
738                 return 0;
739         sample = &cpu->sample;
740         return sample->freq;
741 }
742
743 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
744 {
745         struct cpudata *cpu;
746
747         cpu = all_cpu_data[policy->cpu];
748
749         if (!policy->cpuinfo.max_freq)
750                 return -ENODEV;
751
752         if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
753                 limits.min_perf_pct = 100;
754                 limits.min_perf = int_tofp(1);
755                 limits.max_perf_pct = 100;
756                 limits.max_perf = int_tofp(1);
757                 limits.no_turbo = 0;
758                 return 0;
759         }
760         limits.min_perf_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
761         limits.min_perf_pct = clamp_t(int, limits.min_perf_pct, 0 , 100);
762         limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
763
764         limits.max_policy_pct = policy->max * 100 / policy->cpuinfo.max_freq;
765         limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
766         limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
767         limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
768
769         return 0;
770 }
771
772 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
773 {
774         cpufreq_verify_within_cpu_limits(policy);
775
776         if ((policy->policy != CPUFREQ_POLICY_POWERSAVE) &&
777                 (policy->policy != CPUFREQ_POLICY_PERFORMANCE))
778                 return -EINVAL;
779
780         return 0;
781 }
782
783 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
784 {
785         int cpu_num = policy->cpu;
786         struct cpudata *cpu = all_cpu_data[cpu_num];
787
788         pr_info("intel_pstate CPU %d exiting\n", cpu_num);
789
790         del_timer_sync(&all_cpu_data[cpu_num]->timer);
791         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
792         kfree(all_cpu_data[cpu_num]);
793         all_cpu_data[cpu_num] = NULL;
794 }
795
796 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
797 {
798         struct cpudata *cpu;
799         int rc;
800
801         rc = intel_pstate_init_cpu(policy->cpu);
802         if (rc)
803                 return rc;
804
805         cpu = all_cpu_data[policy->cpu];
806
807         if (!limits.no_turbo &&
808                 limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
809                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
810         else
811                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
812
813         policy->min = cpu->pstate.min_pstate * 100000;
814         policy->max = cpu->pstate.turbo_pstate * 100000;
815
816         /* cpuinfo and default policy values */
817         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * 100000;
818         policy->cpuinfo.max_freq = cpu->pstate.turbo_pstate * 100000;
819         policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
820         cpumask_set_cpu(policy->cpu, policy->cpus);
821
822         return 0;
823 }
824
825 static struct cpufreq_driver intel_pstate_driver = {
826         .flags          = CPUFREQ_CONST_LOOPS,
827         .verify         = intel_pstate_verify_policy,
828         .setpolicy      = intel_pstate_set_policy,
829         .get            = intel_pstate_get,
830         .init           = intel_pstate_cpu_init,
831         .stop_cpu       = intel_pstate_stop_cpu,
832         .name           = "intel_pstate",
833 };
834
835 static int __initdata no_load;
836
837 static int intel_pstate_msrs_not_valid(void)
838 {
839         /* Check that all the msr's we are using are valid. */
840         u64 aperf, mperf, tmp;
841
842         rdmsrl(MSR_IA32_APERF, aperf);
843         rdmsrl(MSR_IA32_MPERF, mperf);
844
845         if (!pstate_funcs.get_max() ||
846                 !pstate_funcs.get_min() ||
847                 !pstate_funcs.get_turbo())
848                 return -ENODEV;
849
850         rdmsrl(MSR_IA32_APERF, tmp);
851         if (!(tmp - aperf))
852                 return -ENODEV;
853
854         rdmsrl(MSR_IA32_MPERF, tmp);
855         if (!(tmp - mperf))
856                 return -ENODEV;
857
858         return 0;
859 }
860
861 static void copy_pid_params(struct pstate_adjust_policy *policy)
862 {
863         pid_params.sample_rate_ms = policy->sample_rate_ms;
864         pid_params.p_gain_pct = policy->p_gain_pct;
865         pid_params.i_gain_pct = policy->i_gain_pct;
866         pid_params.d_gain_pct = policy->d_gain_pct;
867         pid_params.deadband = policy->deadband;
868         pid_params.setpoint = policy->setpoint;
869 }
870
871 static void copy_cpu_funcs(struct pstate_funcs *funcs)
872 {
873         pstate_funcs.get_max   = funcs->get_max;
874         pstate_funcs.get_min   = funcs->get_min;
875         pstate_funcs.get_turbo = funcs->get_turbo;
876         pstate_funcs.set       = funcs->set;
877         pstate_funcs.get_vid   = funcs->get_vid;
878 }
879
880 #if IS_ENABLED(CONFIG_ACPI)
881 #include <acpi/processor.h>
882
883 static bool intel_pstate_no_acpi_pss(void)
884 {
885         int i;
886
887         for_each_possible_cpu(i) {
888                 acpi_status status;
889                 union acpi_object *pss;
890                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
891                 struct acpi_processor *pr = per_cpu(processors, i);
892
893                 if (!pr)
894                         continue;
895
896                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
897                 if (ACPI_FAILURE(status))
898                         continue;
899
900                 pss = buffer.pointer;
901                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
902                         kfree(pss);
903                         return false;
904                 }
905
906                 kfree(pss);
907         }
908
909         return true;
910 }
911
912 struct hw_vendor_info {
913         u16  valid;
914         char oem_id[ACPI_OEM_ID_SIZE];
915         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
916 };
917
918 /* Hardware vendor-specific info that has its own power management modes */
919 static struct hw_vendor_info vendor_info[] = {
920         {1, "HP    ", "ProLiant"},
921         {0, "", ""},
922 };
923
924 static bool intel_pstate_platform_pwr_mgmt_exists(void)
925 {
926         struct acpi_table_header hdr;
927         struct hw_vendor_info *v_info;
928
929         if (acpi_disabled
930             || ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
931                 return false;
932
933         for (v_info = vendor_info; v_info->valid; v_info++) {
934                 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE)
935                     && !strncmp(hdr.oem_table_id, v_info->oem_table_id, ACPI_OEM_TABLE_ID_SIZE)
936                     && intel_pstate_no_acpi_pss())
937                         return true;
938         }
939
940         return false;
941 }
942 #else /* CONFIG_ACPI not enabled */
943 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
944 #endif /* CONFIG_ACPI */
945
946 static int __init intel_pstate_init(void)
947 {
948         int cpu, rc = 0;
949         const struct x86_cpu_id *id;
950         struct cpu_defaults *cpu_info;
951
952         if (no_load)
953                 return -ENODEV;
954
955         id = x86_match_cpu(intel_pstate_cpu_ids);
956         if (!id)
957                 return -ENODEV;
958
959         /*
960          * The Intel pstate driver will be ignored if the platform
961          * firmware has its own power management modes.
962          */
963         if (intel_pstate_platform_pwr_mgmt_exists())
964                 return -ENODEV;
965
966         cpu_info = (struct cpu_defaults *)id->driver_data;
967
968         copy_pid_params(&cpu_info->pid_policy);
969         copy_cpu_funcs(&cpu_info->funcs);
970
971         if (intel_pstate_msrs_not_valid())
972                 return -ENODEV;
973
974         pr_info("Intel P-state driver initializing.\n");
975
976         all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
977         if (!all_cpu_data)
978                 return -ENOMEM;
979
980         rc = cpufreq_register_driver(&intel_pstate_driver);
981         if (rc)
982                 goto out;
983
984         intel_pstate_debug_expose_params();
985         intel_pstate_sysfs_expose_params();
986
987         return rc;
988 out:
989         get_online_cpus();
990         for_each_online_cpu(cpu) {
991                 if (all_cpu_data[cpu]) {
992                         del_timer_sync(&all_cpu_data[cpu]->timer);
993                         kfree(all_cpu_data[cpu]);
994                 }
995         }
996
997         put_online_cpus();
998         vfree(all_cpu_data);
999         return -ENODEV;
1000 }
1001 device_initcall(intel_pstate_init);
1002
1003 static int __init intel_pstate_setup(char *str)
1004 {
1005         if (!str)
1006                 return -EINVAL;
1007
1008         if (!strcmp(str, "disable"))
1009                 no_load = 1;
1010         return 0;
1011 }
1012 early_param("intel_pstate", intel_pstate_setup);
1013
1014 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1015 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1016 MODULE_LICENSE("GPL");