Merge tag 'sh-for-linus' of git://github.com/pmundt/linux-sh
[firefly-linux-kernel-4.4.55.git] / drivers / cpufreq / powernow-k8.c
1 /*
2  *   (c) 2003-2012 Advanced Micro Devices, Inc.
3  *  Your use of this code is subject to the terms and conditions of the
4  *  GNU general public license version 2. See "COPYING" or
5  *  http://www.gnu.org/licenses/gpl.html
6  *
7  *  Maintainer:
8  *  Andreas Herrmann <andreas.herrmann3@amd.com>
9  *
10  *  Based on the powernow-k7.c module written by Dave Jones.
11  *  (C) 2003 Dave Jones on behalf of SuSE Labs
12  *  (C) 2004 Dominik Brodowski <linux@brodo.de>
13  *  (C) 2004 Pavel Machek <pavel@ucw.cz>
14  *  Licensed under the terms of the GNU GPL License version 2.
15  *  Based upon datasheets & sample CPUs kindly provided by AMD.
16  *
17  *  Valuable input gratefully received from Dave Jones, Pavel Machek,
18  *  Dominik Brodowski, Jacob Shin, and others.
19  *  Originally developed by Paul Devriendt.
20  *
21  *  Processor information obtained from Chapter 9 (Power and Thermal
22  *  Management) of the "BIOS and Kernel Developer's Guide (BKDG) for
23  *  the AMD Athlon 64 and AMD Opteron Processors" and section "2.x
24  *  Power Management" in BKDGs for newer AMD CPU families.
25  *
26  *  Tables for specific CPUs can be inferred from AMD's processor
27  *  power and thermal data sheets, (e.g. 30417.pdf, 30430.pdf, 43375.pdf)
28  */
29
30 #include <linux/kernel.h>
31 #include <linux/smp.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/slab.h>
36 #include <linux/string.h>
37 #include <linux/cpumask.h>
38 #include <linux/sched.h>        /* for current / set_cpus_allowed() */
39 #include <linux/io.h>
40 #include <linux/delay.h>
41
42 #include <asm/msr.h>
43
44 #include <linux/acpi.h>
45 #include <linux/mutex.h>
46 #include <acpi/processor.h>
47
48 #define PFX "powernow-k8: "
49 #define VERSION "version 2.20.00"
50 #include "powernow-k8.h"
51 #include "mperf.h"
52
53 /* serialize freq changes  */
54 static DEFINE_MUTEX(fidvid_mutex);
55
56 static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data);
57
58 static int cpu_family = CPU_OPTERON;
59
60 /* array to map SW pstate number to acpi state */
61 static u32 ps_to_as[8];
62
63 /* core performance boost */
64 static bool cpb_capable, cpb_enabled;
65 static struct msr __percpu *msrs;
66
67 static struct cpufreq_driver cpufreq_amd64_driver;
68
69 #ifndef CONFIG_SMP
70 static inline const struct cpumask *cpu_core_mask(int cpu)
71 {
72         return cpumask_of(0);
73 }
74 #endif
75
76 /* Return a frequency in MHz, given an input fid */
77 static u32 find_freq_from_fid(u32 fid)
78 {
79         return 800 + (fid * 100);
80 }
81
82 /* Return a frequency in KHz, given an input fid */
83 static u32 find_khz_freq_from_fid(u32 fid)
84 {
85         return 1000 * find_freq_from_fid(fid);
86 }
87
88 static u32 find_khz_freq_from_pstate(struct cpufreq_frequency_table *data,
89                                      u32 pstate)
90 {
91         return data[ps_to_as[pstate]].frequency;
92 }
93
94 /* Return the vco fid for an input fid
95  *
96  * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
97  * only from corresponding high fids. This returns "high" fid corresponding to
98  * "low" one.
99  */
100 static u32 convert_fid_to_vco_fid(u32 fid)
101 {
102         if (fid < HI_FID_TABLE_BOTTOM)
103                 return 8 + (2 * fid);
104         else
105                 return fid;
106 }
107
108 /*
109  * Return 1 if the pending bit is set. Unless we just instructed the processor
110  * to transition to a new state, seeing this bit set is really bad news.
111  */
112 static int pending_bit_stuck(void)
113 {
114         u32 lo, hi;
115
116         if (cpu_family == CPU_HW_PSTATE)
117                 return 0;
118
119         rdmsr(MSR_FIDVID_STATUS, lo, hi);
120         return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
121 }
122
123 /*
124  * Update the global current fid / vid values from the status msr.
125  * Returns 1 on error.
126  */
127 static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
128 {
129         u32 lo, hi;
130         u32 i = 0;
131
132         if (cpu_family == CPU_HW_PSTATE) {
133                 rdmsr(MSR_PSTATE_STATUS, lo, hi);
134                 i = lo & HW_PSTATE_MASK;
135                 data->currpstate = i;
136
137                 /*
138                  * a workaround for family 11h erratum 311 might cause
139                  * an "out-of-range Pstate if the core is in Pstate-0
140                  */
141                 if ((boot_cpu_data.x86 == 0x11) && (i >= data->numps))
142                         data->currpstate = HW_PSTATE_0;
143
144                 return 0;
145         }
146         do {
147                 if (i++ > 10000) {
148                         pr_debug("detected change pending stuck\n");
149                         return 1;
150                 }
151                 rdmsr(MSR_FIDVID_STATUS, lo, hi);
152         } while (lo & MSR_S_LO_CHANGE_PENDING);
153
154         data->currvid = hi & MSR_S_HI_CURRENT_VID;
155         data->currfid = lo & MSR_S_LO_CURRENT_FID;
156
157         return 0;
158 }
159
160 /* the isochronous relief time */
161 static void count_off_irt(struct powernow_k8_data *data)
162 {
163         udelay((1 << data->irt) * 10);
164         return;
165 }
166
167 /* the voltage stabilization time */
168 static void count_off_vst(struct powernow_k8_data *data)
169 {
170         udelay(data->vstable * VST_UNITS_20US);
171         return;
172 }
173
174 /* need to init the control msr to a safe value (for each cpu) */
175 static void fidvid_msr_init(void)
176 {
177         u32 lo, hi;
178         u8 fid, vid;
179
180         rdmsr(MSR_FIDVID_STATUS, lo, hi);
181         vid = hi & MSR_S_HI_CURRENT_VID;
182         fid = lo & MSR_S_LO_CURRENT_FID;
183         lo = fid | (vid << MSR_C_LO_VID_SHIFT);
184         hi = MSR_C_HI_STP_GNT_BENIGN;
185         pr_debug("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
186         wrmsr(MSR_FIDVID_CTL, lo, hi);
187 }
188
189 /* write the new fid value along with the other control fields to the msr */
190 static int write_new_fid(struct powernow_k8_data *data, u32 fid)
191 {
192         u32 lo;
193         u32 savevid = data->currvid;
194         u32 i = 0;
195
196         if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
197                 printk(KERN_ERR PFX "internal error - overflow on fid write\n");
198                 return 1;
199         }
200
201         lo = fid;
202         lo |= (data->currvid << MSR_C_LO_VID_SHIFT);
203         lo |= MSR_C_LO_INIT_FID_VID;
204
205         pr_debug("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
206                 fid, lo, data->plllock * PLL_LOCK_CONVERSION);
207
208         do {
209                 wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
210                 if (i++ > 100) {
211                         printk(KERN_ERR PFX
212                                 "Hardware error - pending bit very stuck - "
213                                 "no further pstate changes possible\n");
214                         return 1;
215                 }
216         } while (query_current_values_with_pending_wait(data));
217
218         count_off_irt(data);
219
220         if (savevid != data->currvid) {
221                 printk(KERN_ERR PFX
222                         "vid change on fid trans, old 0x%x, new 0x%x\n",
223                         savevid, data->currvid);
224                 return 1;
225         }
226
227         if (fid != data->currfid) {
228                 printk(KERN_ERR PFX
229                         "fid trans failed, fid 0x%x, curr 0x%x\n", fid,
230                         data->currfid);
231                 return 1;
232         }
233
234         return 0;
235 }
236
237 /* Write a new vid to the hardware */
238 static int write_new_vid(struct powernow_k8_data *data, u32 vid)
239 {
240         u32 lo;
241         u32 savefid = data->currfid;
242         int i = 0;
243
244         if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
245                 printk(KERN_ERR PFX "internal error - overflow on vid write\n");
246                 return 1;
247         }
248
249         lo = data->currfid;
250         lo |= (vid << MSR_C_LO_VID_SHIFT);
251         lo |= MSR_C_LO_INIT_FID_VID;
252
253         pr_debug("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
254                 vid, lo, STOP_GRANT_5NS);
255
256         do {
257                 wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
258                 if (i++ > 100) {
259                         printk(KERN_ERR PFX "internal error - pending bit "
260                                         "very stuck - no further pstate "
261                                         "changes possible\n");
262                         return 1;
263                 }
264         } while (query_current_values_with_pending_wait(data));
265
266         if (savefid != data->currfid) {
267                 printk(KERN_ERR PFX "fid changed on vid trans, old "
268                         "0x%x new 0x%x\n",
269                        savefid, data->currfid);
270                 return 1;
271         }
272
273         if (vid != data->currvid) {
274                 printk(KERN_ERR PFX "vid trans failed, vid 0x%x, "
275                                 "curr 0x%x\n",
276                                 vid, data->currvid);
277                 return 1;
278         }
279
280         return 0;
281 }
282
283 /*
284  * Reduce the vid by the max of step or reqvid.
285  * Decreasing vid codes represent increasing voltages:
286  * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
287  */
288 static int decrease_vid_code_by_step(struct powernow_k8_data *data,
289                 u32 reqvid, u32 step)
290 {
291         if ((data->currvid - reqvid) > step)
292                 reqvid = data->currvid - step;
293
294         if (write_new_vid(data, reqvid))
295                 return 1;
296
297         count_off_vst(data);
298
299         return 0;
300 }
301
302 /* Change hardware pstate by single MSR write */
303 static int transition_pstate(struct powernow_k8_data *data, u32 pstate)
304 {
305         wrmsr(MSR_PSTATE_CTRL, pstate, 0);
306         data->currpstate = pstate;
307         return 0;
308 }
309
310 /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
311 static int transition_fid_vid(struct powernow_k8_data *data,
312                 u32 reqfid, u32 reqvid)
313 {
314         if (core_voltage_pre_transition(data, reqvid, reqfid))
315                 return 1;
316
317         if (core_frequency_transition(data, reqfid))
318                 return 1;
319
320         if (core_voltage_post_transition(data, reqvid))
321                 return 1;
322
323         if (query_current_values_with_pending_wait(data))
324                 return 1;
325
326         if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
327                 printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, "
328                                 "curr 0x%x 0x%x\n",
329                                 smp_processor_id(),
330                                 reqfid, reqvid, data->currfid, data->currvid);
331                 return 1;
332         }
333
334         pr_debug("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
335                 smp_processor_id(), data->currfid, data->currvid);
336
337         return 0;
338 }
339
340 /* Phase 1 - core voltage transition ... setup voltage */
341 static int core_voltage_pre_transition(struct powernow_k8_data *data,
342                 u32 reqvid, u32 reqfid)
343 {
344         u32 rvosteps = data->rvo;
345         u32 savefid = data->currfid;
346         u32 maxvid, lo, rvomult = 1;
347
348         pr_debug("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, "
349                 "reqvid 0x%x, rvo 0x%x\n",
350                 smp_processor_id(),
351                 data->currfid, data->currvid, reqvid, data->rvo);
352
353         if ((savefid < LO_FID_TABLE_TOP) && (reqfid < LO_FID_TABLE_TOP))
354                 rvomult = 2;
355         rvosteps *= rvomult;
356         rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
357         maxvid = 0x1f & (maxvid >> 16);
358         pr_debug("ph1 maxvid=0x%x\n", maxvid);
359         if (reqvid < maxvid) /* lower numbers are higher voltages */
360                 reqvid = maxvid;
361
362         while (data->currvid > reqvid) {
363                 pr_debug("ph1: curr 0x%x, req vid 0x%x\n",
364                         data->currvid, reqvid);
365                 if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
366                         return 1;
367         }
368
369         while ((rvosteps > 0) &&
370                         ((rvomult * data->rvo + data->currvid) > reqvid)) {
371                 if (data->currvid == maxvid) {
372                         rvosteps = 0;
373                 } else {
374                         pr_debug("ph1: changing vid for rvo, req 0x%x\n",
375                                 data->currvid - 1);
376                         if (decrease_vid_code_by_step(data, data->currvid-1, 1))
377                                 return 1;
378                         rvosteps--;
379                 }
380         }
381
382         if (query_current_values_with_pending_wait(data))
383                 return 1;
384
385         if (savefid != data->currfid) {
386                 printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n",
387                                 data->currfid);
388                 return 1;
389         }
390
391         pr_debug("ph1 complete, currfid 0x%x, currvid 0x%x\n",
392                 data->currfid, data->currvid);
393
394         return 0;
395 }
396
397 /* Phase 2 - core frequency transition */
398 static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
399 {
400         u32 vcoreqfid, vcocurrfid, vcofiddiff;
401         u32 fid_interval, savevid = data->currvid;
402
403         if (data->currfid == reqfid) {
404                 printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n",
405                                 data->currfid);
406                 return 0;
407         }
408
409         pr_debug("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, "
410                 "reqfid 0x%x\n",
411                 smp_processor_id(),
412                 data->currfid, data->currvid, reqfid);
413
414         vcoreqfid = convert_fid_to_vco_fid(reqfid);
415         vcocurrfid = convert_fid_to_vco_fid(data->currfid);
416         vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
417             : vcoreqfid - vcocurrfid;
418
419         if ((reqfid <= LO_FID_TABLE_TOP) && (data->currfid <= LO_FID_TABLE_TOP))
420                 vcofiddiff = 0;
421
422         while (vcofiddiff > 2) {
423                 (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
424
425                 if (reqfid > data->currfid) {
426                         if (data->currfid > LO_FID_TABLE_TOP) {
427                                 if (write_new_fid(data,
428                                                 data->currfid + fid_interval))
429                                         return 1;
430                         } else {
431                                 if (write_new_fid
432                                     (data,
433                                      2 + convert_fid_to_vco_fid(data->currfid)))
434                                         return 1;
435                         }
436                 } else {
437                         if (write_new_fid(data, data->currfid - fid_interval))
438                                 return 1;
439                 }
440
441                 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
442                 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
443                     : vcoreqfid - vcocurrfid;
444         }
445
446         if (write_new_fid(data, reqfid))
447                 return 1;
448
449         if (query_current_values_with_pending_wait(data))
450                 return 1;
451
452         if (data->currfid != reqfid) {
453                 printk(KERN_ERR PFX
454                         "ph2: mismatch, failed fid transition, "
455                         "curr 0x%x, req 0x%x\n",
456                         data->currfid, reqfid);
457                 return 1;
458         }
459
460         if (savevid != data->currvid) {
461                 printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
462                         savevid, data->currvid);
463                 return 1;
464         }
465
466         pr_debug("ph2 complete, currfid 0x%x, currvid 0x%x\n",
467                 data->currfid, data->currvid);
468
469         return 0;
470 }
471
472 /* Phase 3 - core voltage transition flow ... jump to the final vid. */
473 static int core_voltage_post_transition(struct powernow_k8_data *data,
474                 u32 reqvid)
475 {
476         u32 savefid = data->currfid;
477         u32 savereqvid = reqvid;
478
479         pr_debug("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
480                 smp_processor_id(),
481                 data->currfid, data->currvid);
482
483         if (reqvid != data->currvid) {
484                 if (write_new_vid(data, reqvid))
485                         return 1;
486
487                 if (savefid != data->currfid) {
488                         printk(KERN_ERR PFX
489                                "ph3: bad fid change, save 0x%x, curr 0x%x\n",
490                                savefid, data->currfid);
491                         return 1;
492                 }
493
494                 if (data->currvid != reqvid) {
495                         printk(KERN_ERR PFX
496                                "ph3: failed vid transition\n, "
497                                "req 0x%x, curr 0x%x",
498                                reqvid, data->currvid);
499                         return 1;
500                 }
501         }
502
503         if (query_current_values_with_pending_wait(data))
504                 return 1;
505
506         if (savereqvid != data->currvid) {
507                 pr_debug("ph3 failed, currvid 0x%x\n", data->currvid);
508                 return 1;
509         }
510
511         if (savefid != data->currfid) {
512                 pr_debug("ph3 failed, currfid changed 0x%x\n",
513                         data->currfid);
514                 return 1;
515         }
516
517         pr_debug("ph3 complete, currfid 0x%x, currvid 0x%x\n",
518                 data->currfid, data->currvid);
519
520         return 0;
521 }
522
523 static void check_supported_cpu(void *_rc)
524 {
525         u32 eax, ebx, ecx, edx;
526         int *rc = _rc;
527
528         *rc = -ENODEV;
529
530         if (__this_cpu_read(cpu_info.x86_vendor) != X86_VENDOR_AMD)
531                 return;
532
533         eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
534         if (((eax & CPUID_XFAM) != CPUID_XFAM_K8) &&
535             ((eax & CPUID_XFAM) < CPUID_XFAM_10H))
536                 return;
537
538         if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
539                 if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
540                     ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
541                         printk(KERN_INFO PFX
542                                 "Processor cpuid %x not supported\n", eax);
543                         return;
544                 }
545
546                 eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
547                 if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
548                         printk(KERN_INFO PFX
549                                "No frequency change capabilities detected\n");
550                         return;
551                 }
552
553                 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
554                 if ((edx & P_STATE_TRANSITION_CAPABLE)
555                         != P_STATE_TRANSITION_CAPABLE) {
556                         printk(KERN_INFO PFX
557                                 "Power state transitions not supported\n");
558                         return;
559                 }
560         } else { /* must be a HW Pstate capable processor */
561                 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
562                 if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE)
563                         cpu_family = CPU_HW_PSTATE;
564                 else
565                         return;
566         }
567
568         *rc = 0;
569 }
570
571 static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst,
572                 u8 maxvid)
573 {
574         unsigned int j;
575         u8 lastfid = 0xff;
576
577         for (j = 0; j < data->numps; j++) {
578                 if (pst[j].vid > LEAST_VID) {
579                         printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n",
580                                j, pst[j].vid);
581                         return -EINVAL;
582                 }
583                 if (pst[j].vid < data->rvo) {
584                         /* vid + rvo >= 0 */
585                         printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate"
586                                " %d\n", j);
587                         return -ENODEV;
588                 }
589                 if (pst[j].vid < maxvid + data->rvo) {
590                         /* vid + rvo >= maxvid */
591                         printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate"
592                                " %d\n", j);
593                         return -ENODEV;
594                 }
595                 if (pst[j].fid > MAX_FID) {
596                         printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate"
597                                " %d\n", j);
598                         return -ENODEV;
599                 }
600                 if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
601                         /* Only first fid is allowed to be in "low" range */
602                         printk(KERN_ERR FW_BUG PFX "two low fids - %d : "
603                                "0x%x\n", j, pst[j].fid);
604                         return -EINVAL;
605                 }
606                 if (pst[j].fid < lastfid)
607                         lastfid = pst[j].fid;
608         }
609         if (lastfid & 1) {
610                 printk(KERN_ERR FW_BUG PFX "lastfid invalid\n");
611                 return -EINVAL;
612         }
613         if (lastfid > LO_FID_TABLE_TOP)
614                 printk(KERN_INFO FW_BUG PFX
615                         "first fid not from lo freq table\n");
616
617         return 0;
618 }
619
620 static void invalidate_entry(struct cpufreq_frequency_table *powernow_table,
621                 unsigned int entry)
622 {
623         powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID;
624 }
625
626 static void print_basics(struct powernow_k8_data *data)
627 {
628         int j;
629         for (j = 0; j < data->numps; j++) {
630                 if (data->powernow_table[j].frequency !=
631                                 CPUFREQ_ENTRY_INVALID) {
632                         if (cpu_family == CPU_HW_PSTATE) {
633                                 printk(KERN_INFO PFX
634                                         "   %d : pstate %d (%d MHz)\n", j,
635                                         data->powernow_table[j].index,
636                                         data->powernow_table[j].frequency/1000);
637                         } else {
638                                 printk(KERN_INFO PFX
639                                         "fid 0x%x (%d MHz), vid 0x%x\n",
640                                         data->powernow_table[j].index & 0xff,
641                                         data->powernow_table[j].frequency/1000,
642                                         data->powernow_table[j].index >> 8);
643                         }
644                 }
645         }
646         if (data->batps)
647                 printk(KERN_INFO PFX "Only %d pstates on battery\n",
648                                 data->batps);
649 }
650
651 static u32 freq_from_fid_did(u32 fid, u32 did)
652 {
653         u32 mhz = 0;
654
655         if (boot_cpu_data.x86 == 0x10)
656                 mhz = (100 * (fid + 0x10)) >> did;
657         else if (boot_cpu_data.x86 == 0x11)
658                 mhz = (100 * (fid + 8)) >> did;
659         else
660                 BUG();
661
662         return mhz * 1000;
663 }
664
665 static int fill_powernow_table(struct powernow_k8_data *data,
666                 struct pst_s *pst, u8 maxvid)
667 {
668         struct cpufreq_frequency_table *powernow_table;
669         unsigned int j;
670
671         if (data->batps) {
672                 /* use ACPI support to get full speed on mains power */
673                 printk(KERN_WARNING PFX
674                         "Only %d pstates usable (use ACPI driver for full "
675                         "range\n", data->batps);
676                 data->numps = data->batps;
677         }
678
679         for (j = 1; j < data->numps; j++) {
680                 if (pst[j-1].fid >= pst[j].fid) {
681                         printk(KERN_ERR PFX "PST out of sequence\n");
682                         return -EINVAL;
683                 }
684         }
685
686         if (data->numps < 2) {
687                 printk(KERN_ERR PFX "no p states to transition\n");
688                 return -ENODEV;
689         }
690
691         if (check_pst_table(data, pst, maxvid))
692                 return -EINVAL;
693
694         powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
695                 * (data->numps + 1)), GFP_KERNEL);
696         if (!powernow_table) {
697                 printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
698                 return -ENOMEM;
699         }
700
701         for (j = 0; j < data->numps; j++) {
702                 int freq;
703                 powernow_table[j].index = pst[j].fid; /* lower 8 bits */
704                 powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
705                 freq = find_khz_freq_from_fid(pst[j].fid);
706                 powernow_table[j].frequency = freq;
707         }
708         powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
709         powernow_table[data->numps].index = 0;
710
711         if (query_current_values_with_pending_wait(data)) {
712                 kfree(powernow_table);
713                 return -EIO;
714         }
715
716         pr_debug("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
717         data->powernow_table = powernow_table;
718         if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
719                 print_basics(data);
720
721         for (j = 0; j < data->numps; j++)
722                 if ((pst[j].fid == data->currfid) &&
723                     (pst[j].vid == data->currvid))
724                         return 0;
725
726         pr_debug("currfid/vid do not match PST, ignoring\n");
727         return 0;
728 }
729
730 /* Find and validate the PSB/PST table in BIOS. */
731 static int find_psb_table(struct powernow_k8_data *data)
732 {
733         struct psb_s *psb;
734         unsigned int i;
735         u32 mvs;
736         u8 maxvid;
737         u32 cpst = 0;
738         u32 thiscpuid;
739
740         for (i = 0xc0000; i < 0xffff0; i += 0x10) {
741                 /* Scan BIOS looking for the signature. */
742                 /* It can not be at ffff0 - it is too big. */
743
744                 psb = phys_to_virt(i);
745                 if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
746                         continue;
747
748                 pr_debug("found PSB header at 0x%p\n", psb);
749
750                 pr_debug("table vers: 0x%x\n", psb->tableversion);
751                 if (psb->tableversion != PSB_VERSION_1_4) {
752                         printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n");
753                         return -ENODEV;
754                 }
755
756                 pr_debug("flags: 0x%x\n", psb->flags1);
757                 if (psb->flags1) {
758                         printk(KERN_ERR FW_BUG PFX "unknown flags\n");
759                         return -ENODEV;
760                 }
761
762                 data->vstable = psb->vstable;
763                 pr_debug("voltage stabilization time: %d(*20us)\n",
764                                 data->vstable);
765
766                 pr_debug("flags2: 0x%x\n", psb->flags2);
767                 data->rvo = psb->flags2 & 3;
768                 data->irt = ((psb->flags2) >> 2) & 3;
769                 mvs = ((psb->flags2) >> 4) & 3;
770                 data->vidmvs = 1 << mvs;
771                 data->batps = ((psb->flags2) >> 6) & 3;
772
773                 pr_debug("ramp voltage offset: %d\n", data->rvo);
774                 pr_debug("isochronous relief time: %d\n", data->irt);
775                 pr_debug("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
776
777                 pr_debug("numpst: 0x%x\n", psb->num_tables);
778                 cpst = psb->num_tables;
779                 if ((psb->cpuid == 0x00000fc0) ||
780                     (psb->cpuid == 0x00000fe0)) {
781                         thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
782                         if ((thiscpuid == 0x00000fc0) ||
783                             (thiscpuid == 0x00000fe0))
784                                 cpst = 1;
785                 }
786                 if (cpst != 1) {
787                         printk(KERN_ERR FW_BUG PFX "numpst must be 1\n");
788                         return -ENODEV;
789                 }
790
791                 data->plllock = psb->plllocktime;
792                 pr_debug("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
793                 pr_debug("maxfid: 0x%x\n", psb->maxfid);
794                 pr_debug("maxvid: 0x%x\n", psb->maxvid);
795                 maxvid = psb->maxvid;
796
797                 data->numps = psb->numps;
798                 pr_debug("numpstates: 0x%x\n", data->numps);
799                 return fill_powernow_table(data,
800                                 (struct pst_s *)(psb+1), maxvid);
801         }
802         /*
803          * If you see this message, complain to BIOS manufacturer. If
804          * he tells you "we do not support Linux" or some similar
805          * nonsense, remember that Windows 2000 uses the same legacy
806          * mechanism that the old Linux PSB driver uses. Tell them it
807          * is broken with Windows 2000.
808          *
809          * The reference to the AMD documentation is chapter 9 in the
810          * BIOS and Kernel Developer's Guide, which is available on
811          * www.amd.com
812          */
813         printk(KERN_ERR FW_BUG PFX "No PSB or ACPI _PSS objects\n");
814         printk(KERN_ERR PFX "Make sure that your BIOS is up to date"
815                 " and Cool'N'Quiet support is enabled in BIOS setup\n");
816         return -ENODEV;
817 }
818
819 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data,
820                 unsigned int index)
821 {
822         u64 control;
823
824         if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE))
825                 return;
826
827         control = data->acpi_data.states[index].control;
828         data->irt = (control >> IRT_SHIFT) & IRT_MASK;
829         data->rvo = (control >> RVO_SHIFT) & RVO_MASK;
830         data->exttype = (control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
831         data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK;
832         data->vidmvs = 1 << ((control >> MVS_SHIFT) & MVS_MASK);
833         data->vstable = (control >> VST_SHIFT) & VST_MASK;
834 }
835
836 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
837 {
838         struct cpufreq_frequency_table *powernow_table;
839         int ret_val = -ENODEV;
840         u64 control, status;
841
842         if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
843                 pr_debug("register performance failed: bad ACPI data\n");
844                 return -EIO;
845         }
846
847         /* verify the data contained in the ACPI structures */
848         if (data->acpi_data.state_count <= 1) {
849                 pr_debug("No ACPI P-States\n");
850                 goto err_out;
851         }
852
853         control = data->acpi_data.control_register.space_id;
854         status = data->acpi_data.status_register.space_id;
855
856         if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
857             (status != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
858                 pr_debug("Invalid control/status registers (%llx - %llx)\n",
859                         control, status);
860                 goto err_out;
861         }
862
863         /* fill in data->powernow_table */
864         powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
865                 * (data->acpi_data.state_count + 1)), GFP_KERNEL);
866         if (!powernow_table) {
867                 pr_debug("powernow_table memory alloc failure\n");
868                 goto err_out;
869         }
870
871         /* fill in data */
872         data->numps = data->acpi_data.state_count;
873         powernow_k8_acpi_pst_values(data, 0);
874
875         if (cpu_family == CPU_HW_PSTATE)
876                 ret_val = fill_powernow_table_pstate(data, powernow_table);
877         else
878                 ret_val = fill_powernow_table_fidvid(data, powernow_table);
879         if (ret_val)
880                 goto err_out_mem;
881
882         powernow_table[data->acpi_data.state_count].frequency =
883                 CPUFREQ_TABLE_END;
884         powernow_table[data->acpi_data.state_count].index = 0;
885         data->powernow_table = powernow_table;
886
887         if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
888                 print_basics(data);
889
890         /* notify BIOS that we exist */
891         acpi_processor_notify_smm(THIS_MODULE);
892
893         if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) {
894                 printk(KERN_ERR PFX
895                                 "unable to alloc powernow_k8_data cpumask\n");
896                 ret_val = -ENOMEM;
897                 goto err_out_mem;
898         }
899
900         return 0;
901
902 err_out_mem:
903         kfree(powernow_table);
904
905 err_out:
906         acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
907
908         /* data->acpi_data.state_count informs us at ->exit()
909          * whether ACPI was used */
910         data->acpi_data.state_count = 0;
911
912         return ret_val;
913 }
914
915 static int fill_powernow_table_pstate(struct powernow_k8_data *data,
916                 struct cpufreq_frequency_table *powernow_table)
917 {
918         int i;
919         u32 hi = 0, lo = 0;
920         rdmsr(MSR_PSTATE_CUR_LIMIT, lo, hi);
921         data->max_hw_pstate = (lo & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT;
922
923         for (i = 0; i < data->acpi_data.state_count; i++) {
924                 u32 index;
925
926                 index = data->acpi_data.states[i].control & HW_PSTATE_MASK;
927                 if (index > data->max_hw_pstate) {
928                         printk(KERN_ERR PFX "invalid pstate %d - "
929                                         "bad value %d.\n", i, index);
930                         printk(KERN_ERR PFX "Please report to BIOS "
931                                         "manufacturer\n");
932                         invalidate_entry(powernow_table, i);
933                         continue;
934                 }
935
936                 ps_to_as[index] = i;
937
938                 /* Frequency may be rounded for these */
939                 if ((boot_cpu_data.x86 == 0x10 && boot_cpu_data.x86_model < 10)
940                                  || boot_cpu_data.x86 == 0x11) {
941
942                         rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi);
943                         if (!(hi & HW_PSTATE_VALID_MASK)) {
944                                 pr_debug("invalid pstate %d, ignoring\n", index);
945                                 invalidate_entry(powernow_table, i);
946                                 continue;
947                         }
948
949                         powernow_table[i].frequency =
950                                 freq_from_fid_did(lo & 0x3f, (lo >> 6) & 7);
951                 } else
952                         powernow_table[i].frequency =
953                                 data->acpi_data.states[i].core_frequency * 1000;
954
955                 powernow_table[i].index = index;
956         }
957         return 0;
958 }
959
960 static int fill_powernow_table_fidvid(struct powernow_k8_data *data,
961                 struct cpufreq_frequency_table *powernow_table)
962 {
963         int i;
964
965         for (i = 0; i < data->acpi_data.state_count; i++) {
966                 u32 fid;
967                 u32 vid;
968                 u32 freq, index;
969                 u64 status, control;
970
971                 if (data->exttype) {
972                         status =  data->acpi_data.states[i].status;
973                         fid = status & EXT_FID_MASK;
974                         vid = (status >> VID_SHIFT) & EXT_VID_MASK;
975                 } else {
976                         control =  data->acpi_data.states[i].control;
977                         fid = control & FID_MASK;
978                         vid = (control >> VID_SHIFT) & VID_MASK;
979                 }
980
981                 pr_debug("   %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
982
983                 index = fid | (vid<<8);
984                 powernow_table[i].index = index;
985
986                 freq = find_khz_freq_from_fid(fid);
987                 powernow_table[i].frequency = freq;
988
989                 /* verify frequency is OK */
990                 if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) {
991                         pr_debug("invalid freq %u kHz, ignoring\n", freq);
992                         invalidate_entry(powernow_table, i);
993                         continue;
994                 }
995
996                 /* verify voltage is OK -
997                  * BIOSs are using "off" to indicate invalid */
998                 if (vid == VID_OFF) {
999                         pr_debug("invalid vid %u, ignoring\n", vid);
1000                         invalidate_entry(powernow_table, i);
1001                         continue;
1002                 }
1003
1004                 if (freq != (data->acpi_data.states[i].core_frequency * 1000)) {
1005                         printk(KERN_INFO PFX "invalid freq entries "
1006                                 "%u kHz vs. %u kHz\n", freq,
1007                                 (unsigned int)
1008                                 (data->acpi_data.states[i].core_frequency
1009                                  * 1000));
1010                         invalidate_entry(powernow_table, i);
1011                         continue;
1012                 }
1013         }
1014         return 0;
1015 }
1016
1017 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
1018 {
1019         if (data->acpi_data.state_count)
1020                 acpi_processor_unregister_performance(&data->acpi_data,
1021                                 data->cpu);
1022         free_cpumask_var(data->acpi_data.shared_cpu_map);
1023 }
1024
1025 static int get_transition_latency(struct powernow_k8_data *data)
1026 {
1027         int max_latency = 0;
1028         int i;
1029         for (i = 0; i < data->acpi_data.state_count; i++) {
1030                 int cur_latency = data->acpi_data.states[i].transition_latency
1031                         + data->acpi_data.states[i].bus_master_latency;
1032                 if (cur_latency > max_latency)
1033                         max_latency = cur_latency;
1034         }
1035         if (max_latency == 0) {
1036                 /*
1037                  * Fam 11h and later may return 0 as transition latency. This
1038                  * is intended and means "very fast". While cpufreq core and
1039                  * governors currently can handle that gracefully, better set it
1040                  * to 1 to avoid problems in the future.
1041                  */
1042                 if (boot_cpu_data.x86 < 0x11)
1043                         printk(KERN_ERR FW_WARN PFX "Invalid zero transition "
1044                                 "latency\n");
1045                 max_latency = 1;
1046         }
1047         /* value in usecs, needs to be in nanoseconds */
1048         return 1000 * max_latency;
1049 }
1050
1051 /* Take a frequency, and issue the fid/vid transition command */
1052 static int transition_frequency_fidvid(struct powernow_k8_data *data,
1053                 unsigned int index)
1054 {
1055         u32 fid = 0;
1056         u32 vid = 0;
1057         int res, i;
1058         struct cpufreq_freqs freqs;
1059
1060         pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index);
1061
1062         /* fid/vid correctness check for k8 */
1063         /* fid are the lower 8 bits of the index we stored into
1064          * the cpufreq frequency table in find_psb_table, vid
1065          * are the upper 8 bits.
1066          */
1067         fid = data->powernow_table[index].index & 0xFF;
1068         vid = (data->powernow_table[index].index & 0xFF00) >> 8;
1069
1070         pr_debug("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
1071
1072         if (query_current_values_with_pending_wait(data))
1073                 return 1;
1074
1075         if ((data->currvid == vid) && (data->currfid == fid)) {
1076                 pr_debug("target matches current values (fid 0x%x, vid 0x%x)\n",
1077                         fid, vid);
1078                 return 0;
1079         }
1080
1081         pr_debug("cpu %d, changing to fid 0x%x, vid 0x%x\n",
1082                 smp_processor_id(), fid, vid);
1083         freqs.old = find_khz_freq_from_fid(data->currfid);
1084         freqs.new = find_khz_freq_from_fid(fid);
1085
1086         for_each_cpu(i, data->available_cores) {
1087                 freqs.cpu = i;
1088                 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1089         }
1090
1091         res = transition_fid_vid(data, fid, vid);
1092         if (res)
1093                 return res;
1094
1095         freqs.new = find_khz_freq_from_fid(data->currfid);
1096
1097         for_each_cpu(i, data->available_cores) {
1098                 freqs.cpu = i;
1099                 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1100         }
1101         return res;
1102 }
1103
1104 /* Take a frequency, and issue the hardware pstate transition command */
1105 static int transition_frequency_pstate(struct powernow_k8_data *data,
1106                 unsigned int index)
1107 {
1108         u32 pstate = 0;
1109         int res, i;
1110         struct cpufreq_freqs freqs;
1111
1112         pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index);
1113
1114         /* get MSR index for hardware pstate transition */
1115         pstate = index & HW_PSTATE_MASK;
1116         if (pstate > data->max_hw_pstate)
1117                 return -EINVAL;
1118
1119         freqs.old = find_khz_freq_from_pstate(data->powernow_table,
1120                         data->currpstate);
1121         freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1122
1123         for_each_cpu(i, data->available_cores) {
1124                 freqs.cpu = i;
1125                 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1126         }
1127
1128         res = transition_pstate(data, pstate);
1129         freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1130
1131         for_each_cpu(i, data->available_cores) {
1132                 freqs.cpu = i;
1133                 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1134         }
1135         return res;
1136 }
1137
1138 /* Driver entry point to switch to the target frequency */
1139 static int powernowk8_target(struct cpufreq_policy *pol,
1140                 unsigned targfreq, unsigned relation)
1141 {
1142         cpumask_var_t oldmask;
1143         struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1144         u32 checkfid;
1145         u32 checkvid;
1146         unsigned int newstate;
1147         int ret = -EIO;
1148
1149         if (!data)
1150                 return -EINVAL;
1151
1152         checkfid = data->currfid;
1153         checkvid = data->currvid;
1154
1155         /* only run on specific CPU from here on. */
1156         /* This is poor form: use a workqueue or smp_call_function_single */
1157         if (!alloc_cpumask_var(&oldmask, GFP_KERNEL))
1158                 return -ENOMEM;
1159
1160         cpumask_copy(oldmask, tsk_cpus_allowed(current));
1161         set_cpus_allowed_ptr(current, cpumask_of(pol->cpu));
1162
1163         if (smp_processor_id() != pol->cpu) {
1164                 printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
1165                 goto err_out;
1166         }
1167
1168         if (pending_bit_stuck()) {
1169                 printk(KERN_ERR PFX "failing targ, change pending bit set\n");
1170                 goto err_out;
1171         }
1172
1173         pr_debug("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
1174                 pol->cpu, targfreq, pol->min, pol->max, relation);
1175
1176         if (query_current_values_with_pending_wait(data))
1177                 goto err_out;
1178
1179         if (cpu_family != CPU_HW_PSTATE) {
1180                 pr_debug("targ: curr fid 0x%x, vid 0x%x\n",
1181                 data->currfid, data->currvid);
1182
1183                 if ((checkvid != data->currvid) ||
1184                     (checkfid != data->currfid)) {
1185                         printk(KERN_INFO PFX
1186                                 "error - out of sync, fix 0x%x 0x%x, "
1187                                 "vid 0x%x 0x%x\n",
1188                                 checkfid, data->currfid,
1189                                 checkvid, data->currvid);
1190                 }
1191         }
1192
1193         if (cpufreq_frequency_table_target(pol, data->powernow_table,
1194                                 targfreq, relation, &newstate))
1195                 goto err_out;
1196
1197         mutex_lock(&fidvid_mutex);
1198
1199         powernow_k8_acpi_pst_values(data, newstate);
1200
1201         if (cpu_family == CPU_HW_PSTATE)
1202                 ret = transition_frequency_pstate(data,
1203                         data->powernow_table[newstate].index);
1204         else
1205                 ret = transition_frequency_fidvid(data, newstate);
1206         if (ret) {
1207                 printk(KERN_ERR PFX "transition frequency failed\n");
1208                 ret = 1;
1209                 mutex_unlock(&fidvid_mutex);
1210                 goto err_out;
1211         }
1212         mutex_unlock(&fidvid_mutex);
1213
1214         if (cpu_family == CPU_HW_PSTATE)
1215                 pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1216                                 data->powernow_table[newstate].index);
1217         else
1218                 pol->cur = find_khz_freq_from_fid(data->currfid);
1219         ret = 0;
1220
1221 err_out:
1222         set_cpus_allowed_ptr(current, oldmask);
1223         free_cpumask_var(oldmask);
1224         return ret;
1225 }
1226
1227 /* Driver entry point to verify the policy and range of frequencies */
1228 static int powernowk8_verify(struct cpufreq_policy *pol)
1229 {
1230         struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1231
1232         if (!data)
1233                 return -EINVAL;
1234
1235         return cpufreq_frequency_table_verify(pol, data->powernow_table);
1236 }
1237
1238 struct init_on_cpu {
1239         struct powernow_k8_data *data;
1240         int rc;
1241 };
1242
1243 static void __cpuinit powernowk8_cpu_init_on_cpu(void *_init_on_cpu)
1244 {
1245         struct init_on_cpu *init_on_cpu = _init_on_cpu;
1246
1247         if (pending_bit_stuck()) {
1248                 printk(KERN_ERR PFX "failing init, change pending bit set\n");
1249                 init_on_cpu->rc = -ENODEV;
1250                 return;
1251         }
1252
1253         if (query_current_values_with_pending_wait(init_on_cpu->data)) {
1254                 init_on_cpu->rc = -ENODEV;
1255                 return;
1256         }
1257
1258         if (cpu_family == CPU_OPTERON)
1259                 fidvid_msr_init();
1260
1261         init_on_cpu->rc = 0;
1262 }
1263
1264 /* per CPU init entry point to the driver */
1265 static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
1266 {
1267         static const char ACPI_PSS_BIOS_BUG_MSG[] =
1268                 KERN_ERR FW_BUG PFX "No compatible ACPI _PSS objects found.\n"
1269                 FW_BUG PFX "Try again with latest BIOS.\n";
1270         struct powernow_k8_data *data;
1271         struct init_on_cpu init_on_cpu;
1272         int rc;
1273         struct cpuinfo_x86 *c = &cpu_data(pol->cpu);
1274
1275         if (!cpu_online(pol->cpu))
1276                 return -ENODEV;
1277
1278         smp_call_function_single(pol->cpu, check_supported_cpu, &rc, 1);
1279         if (rc)
1280                 return -ENODEV;
1281
1282         data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
1283         if (!data) {
1284                 printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
1285                 return -ENOMEM;
1286         }
1287
1288         data->cpu = pol->cpu;
1289         data->currpstate = HW_PSTATE_INVALID;
1290
1291         if (powernow_k8_cpu_init_acpi(data)) {
1292                 /*
1293                  * Use the PSB BIOS structure. This is only available on
1294                  * an UP version, and is deprecated by AMD.
1295                  */
1296                 if (num_online_cpus() != 1) {
1297                         printk_once(ACPI_PSS_BIOS_BUG_MSG);
1298                         goto err_out;
1299                 }
1300                 if (pol->cpu != 0) {
1301                         printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for "
1302                                "CPU other than CPU0. Complain to your BIOS "
1303                                "vendor.\n");
1304                         goto err_out;
1305                 }
1306                 rc = find_psb_table(data);
1307                 if (rc)
1308                         goto err_out;
1309
1310                 /* Take a crude guess here.
1311                  * That guess was in microseconds, so multiply with 1000 */
1312                 pol->cpuinfo.transition_latency = (
1313                          ((data->rvo + 8) * data->vstable * VST_UNITS_20US) +
1314                          ((1 << data->irt) * 30)) * 1000;
1315         } else /* ACPI _PSS objects available */
1316                 pol->cpuinfo.transition_latency = get_transition_latency(data);
1317
1318         /* only run on specific CPU from here on */
1319         init_on_cpu.data = data;
1320         smp_call_function_single(data->cpu, powernowk8_cpu_init_on_cpu,
1321                                  &init_on_cpu, 1);
1322         rc = init_on_cpu.rc;
1323         if (rc != 0)
1324                 goto err_out_exit_acpi;
1325
1326         if (cpu_family == CPU_HW_PSTATE)
1327                 cpumask_copy(pol->cpus, cpumask_of(pol->cpu));
1328         else
1329                 cpumask_copy(pol->cpus, cpu_core_mask(pol->cpu));
1330         data->available_cores = pol->cpus;
1331
1332         if (cpu_family == CPU_HW_PSTATE)
1333                 pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1334                                 data->currpstate);
1335         else
1336                 pol->cur = find_khz_freq_from_fid(data->currfid);
1337         pr_debug("policy current frequency %d kHz\n", pol->cur);
1338
1339         /* min/max the cpu is capable of */
1340         if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
1341                 printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n");
1342                 powernow_k8_cpu_exit_acpi(data);
1343                 kfree(data->powernow_table);
1344                 kfree(data);
1345                 return -EINVAL;
1346         }
1347
1348         /* Check for APERF/MPERF support in hardware */
1349         if (cpu_has(c, X86_FEATURE_APERFMPERF))
1350                 cpufreq_amd64_driver.getavg = cpufreq_get_measured_perf;
1351
1352         cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
1353
1354         if (cpu_family == CPU_HW_PSTATE)
1355                 pr_debug("cpu_init done, current pstate 0x%x\n",
1356                                 data->currpstate);
1357         else
1358                 pr_debug("cpu_init done, current fid 0x%x, vid 0x%x\n",
1359                         data->currfid, data->currvid);
1360
1361         per_cpu(powernow_data, pol->cpu) = data;
1362
1363         return 0;
1364
1365 err_out_exit_acpi:
1366         powernow_k8_cpu_exit_acpi(data);
1367
1368 err_out:
1369         kfree(data);
1370         return -ENODEV;
1371 }
1372
1373 static int __devexit powernowk8_cpu_exit(struct cpufreq_policy *pol)
1374 {
1375         struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1376
1377         if (!data)
1378                 return -EINVAL;
1379
1380         powernow_k8_cpu_exit_acpi(data);
1381
1382         cpufreq_frequency_table_put_attr(pol->cpu);
1383
1384         kfree(data->powernow_table);
1385         kfree(data);
1386         per_cpu(powernow_data, pol->cpu) = NULL;
1387
1388         return 0;
1389 }
1390
1391 static void query_values_on_cpu(void *_err)
1392 {
1393         int *err = _err;
1394         struct powernow_k8_data *data = __this_cpu_read(powernow_data);
1395
1396         *err = query_current_values_with_pending_wait(data);
1397 }
1398
1399 static unsigned int powernowk8_get(unsigned int cpu)
1400 {
1401         struct powernow_k8_data *data = per_cpu(powernow_data, cpu);
1402         unsigned int khz = 0;
1403         int err;
1404
1405         if (!data)
1406                 return 0;
1407
1408         smp_call_function_single(cpu, query_values_on_cpu, &err, true);
1409         if (err)
1410                 goto out;
1411
1412         if (cpu_family == CPU_HW_PSTATE)
1413                 khz = find_khz_freq_from_pstate(data->powernow_table,
1414                                                 data->currpstate);
1415         else
1416                 khz = find_khz_freq_from_fid(data->currfid);
1417
1418
1419 out:
1420         return khz;
1421 }
1422
1423 static void _cpb_toggle_msrs(bool t)
1424 {
1425         int cpu;
1426
1427         get_online_cpus();
1428
1429         rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1430
1431         for_each_cpu(cpu, cpu_online_mask) {
1432                 struct msr *reg = per_cpu_ptr(msrs, cpu);
1433                 if (t)
1434                         reg->l &= ~BIT(25);
1435                 else
1436                         reg->l |= BIT(25);
1437         }
1438         wrmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1439
1440         put_online_cpus();
1441 }
1442
1443 /*
1444  * Switch on/off core performance boosting.
1445  *
1446  * 0=disable
1447  * 1=enable.
1448  */
1449 static void cpb_toggle(bool t)
1450 {
1451         if (!cpb_capable)
1452                 return;
1453
1454         if (t && !cpb_enabled) {
1455                 cpb_enabled = true;
1456                 _cpb_toggle_msrs(t);
1457                 printk(KERN_INFO PFX "Core Boosting enabled.\n");
1458         } else if (!t && cpb_enabled) {
1459                 cpb_enabled = false;
1460                 _cpb_toggle_msrs(t);
1461                 printk(KERN_INFO PFX "Core Boosting disabled.\n");
1462         }
1463 }
1464
1465 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
1466                                  size_t count)
1467 {
1468         int ret = -EINVAL;
1469         unsigned long val = 0;
1470
1471         ret = strict_strtoul(buf, 10, &val);
1472         if (!ret && (val == 0 || val == 1) && cpb_capable)
1473                 cpb_toggle(val);
1474         else
1475                 return -EINVAL;
1476
1477         return count;
1478 }
1479
1480 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
1481 {
1482         return sprintf(buf, "%u\n", cpb_enabled);
1483 }
1484
1485 #define define_one_rw(_name) \
1486 static struct freq_attr _name = \
1487 __ATTR(_name, 0644, show_##_name, store_##_name)
1488
1489 define_one_rw(cpb);
1490
1491 static struct freq_attr *powernow_k8_attr[] = {
1492         &cpufreq_freq_attr_scaling_available_freqs,
1493         &cpb,
1494         NULL,
1495 };
1496
1497 static struct cpufreq_driver cpufreq_amd64_driver = {
1498         .verify         = powernowk8_verify,
1499         .target         = powernowk8_target,
1500         .bios_limit     = acpi_processor_get_bios_limit,
1501         .init           = powernowk8_cpu_init,
1502         .exit           = __devexit_p(powernowk8_cpu_exit),
1503         .get            = powernowk8_get,
1504         .name           = "powernow-k8",
1505         .owner          = THIS_MODULE,
1506         .attr           = powernow_k8_attr,
1507 };
1508
1509 /*
1510  * Clear the boost-disable flag on the CPU_DOWN path so that this cpu
1511  * cannot block the remaining ones from boosting. On the CPU_UP path we
1512  * simply keep the boost-disable flag in sync with the current global
1513  * state.
1514  */
1515 static int cpb_notify(struct notifier_block *nb, unsigned long action,
1516                       void *hcpu)
1517 {
1518         unsigned cpu = (long)hcpu;
1519         u32 lo, hi;
1520
1521         switch (action) {
1522         case CPU_UP_PREPARE:
1523         case CPU_UP_PREPARE_FROZEN:
1524
1525                 if (!cpb_enabled) {
1526                         rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
1527                         lo |= BIT(25);
1528                         wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
1529                 }
1530                 break;
1531
1532         case CPU_DOWN_PREPARE:
1533         case CPU_DOWN_PREPARE_FROZEN:
1534                 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
1535                 lo &= ~BIT(25);
1536                 wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
1537                 break;
1538
1539         default:
1540                 break;
1541         }
1542
1543         return NOTIFY_OK;
1544 }
1545
1546 static struct notifier_block cpb_nb = {
1547         .notifier_call          = cpb_notify,
1548 };
1549
1550 /* driver entry point for init */
1551 static int __cpuinit powernowk8_init(void)
1552 {
1553         unsigned int i, supported_cpus = 0, cpu;
1554         int rv;
1555
1556         for_each_online_cpu(i) {
1557                 int rc;
1558                 smp_call_function_single(i, check_supported_cpu, &rc, 1);
1559                 if (rc == 0)
1560                         supported_cpus++;
1561         }
1562
1563         if (supported_cpus != num_online_cpus())
1564                 return -ENODEV;
1565
1566         printk(KERN_INFO PFX "Found %d %s (%d cpu cores) (" VERSION ")\n",
1567                 num_online_nodes(), boot_cpu_data.x86_model_id, supported_cpus);
1568
1569         if (boot_cpu_has(X86_FEATURE_CPB)) {
1570
1571                 cpb_capable = true;
1572
1573                 msrs = msrs_alloc();
1574                 if (!msrs) {
1575                         printk(KERN_ERR "%s: Error allocating msrs!\n", __func__);
1576                         return -ENOMEM;
1577                 }
1578
1579                 register_cpu_notifier(&cpb_nb);
1580
1581                 rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1582
1583                 for_each_cpu(cpu, cpu_online_mask) {
1584                         struct msr *reg = per_cpu_ptr(msrs, cpu);
1585                         cpb_enabled |= !(!!(reg->l & BIT(25)));
1586                 }
1587
1588                 printk(KERN_INFO PFX "Core Performance Boosting: %s.\n",
1589                         (cpb_enabled ? "on" : "off"));
1590         }
1591
1592         rv = cpufreq_register_driver(&cpufreq_amd64_driver);
1593         if (rv < 0 && boot_cpu_has(X86_FEATURE_CPB)) {
1594                 unregister_cpu_notifier(&cpb_nb);
1595                 msrs_free(msrs);
1596                 msrs = NULL;
1597         }
1598         return rv;
1599 }
1600
1601 /* driver entry point for term */
1602 static void __exit powernowk8_exit(void)
1603 {
1604         pr_debug("exit\n");
1605
1606         if (boot_cpu_has(X86_FEATURE_CPB)) {
1607                 msrs_free(msrs);
1608                 msrs = NULL;
1609
1610                 unregister_cpu_notifier(&cpb_nb);
1611         }
1612
1613         cpufreq_unregister_driver(&cpufreq_amd64_driver);
1614 }
1615
1616 MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and "
1617                 "Mark Langsdorf <mark.langsdorf@amd.com>");
1618 MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1619 MODULE_LICENSE("GPL");
1620
1621 late_initcall(powernowk8_init);
1622 module_exit(powernowk8_exit);