2 * AMD Cryptographic Coprocessor (CCP) SHA crypto API support
4 * Copyright (C) 2013 Advanced Micro Devices, Inc.
6 * Author: Tom Lendacky <thomas.lendacky@amd.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/delay.h>
16 #include <linux/scatterlist.h>
17 #include <linux/crypto.h>
18 #include <crypto/algapi.h>
19 #include <crypto/hash.h>
20 #include <crypto/internal/hash.h>
21 #include <crypto/sha.h>
22 #include <crypto/scatterwalk.h>
24 #include "ccp-crypto.h"
26 static int ccp_sha_complete(struct crypto_async_request *async_req, int ret)
28 struct ahash_request *req = ahash_request_cast(async_req);
29 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
30 struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
31 unsigned int digest_size = crypto_ahash_digestsize(tfm);
37 /* Save remaining data to buffer */
38 unsigned int offset = rctx->nbytes - rctx->hash_rem;
40 scatterwalk_map_and_copy(rctx->buf, rctx->src,
41 offset, rctx->hash_rem, 0);
42 rctx->buf_count = rctx->hash_rem;
47 /* Update result area if supplied */
49 memcpy(req->result, rctx->ctx, digest_size);
52 sg_free_table(&rctx->data_sg);
57 static int ccp_do_sha_update(struct ahash_request *req, unsigned int nbytes,
60 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
61 struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
62 struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
63 struct scatterlist *sg;
64 unsigned int block_size =
65 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
66 unsigned int sg_count;
71 len = (u64)rctx->buf_count + (u64)nbytes;
73 if (!final && (len <= block_size)) {
74 scatterwalk_map_and_copy(rctx->buf + rctx->buf_count, req->src,
76 rctx->buf_count += nbytes;
82 rctx->nbytes = nbytes;
85 rctx->hash_rem = final ? 0 : len & (block_size - 1);
86 rctx->hash_cnt = len - rctx->hash_rem;
87 if (!final && !rctx->hash_rem) {
88 /* CCP can't do zero length final, so keep some data around */
89 rctx->hash_cnt -= block_size;
90 rctx->hash_rem = block_size;
93 /* Initialize the context scatterlist */
94 sg_init_one(&rctx->ctx_sg, rctx->ctx, sizeof(rctx->ctx));
97 if (rctx->buf_count && nbytes) {
98 /* Build the data scatterlist table - allocate enough entries
99 * for both data pieces (buffer and input data)
101 gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
102 GFP_KERNEL : GFP_ATOMIC;
103 sg_count = sg_nents(req->src) + 1;
104 ret = sg_alloc_table(&rctx->data_sg, sg_count, gfp);
108 sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
109 sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->buf_sg);
110 sg = ccp_crypto_sg_table_add(&rctx->data_sg, req->src);
113 sg = rctx->data_sg.sgl;
114 } else if (rctx->buf_count) {
115 sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
122 rctx->msg_bits += (rctx->hash_cnt << 3); /* Total in bits */
124 memset(&rctx->cmd, 0, sizeof(rctx->cmd));
125 INIT_LIST_HEAD(&rctx->cmd.entry);
126 rctx->cmd.engine = CCP_ENGINE_SHA;
127 rctx->cmd.u.sha.type = rctx->type;
128 rctx->cmd.u.sha.ctx = &rctx->ctx_sg;
129 rctx->cmd.u.sha.ctx_len = sizeof(rctx->ctx);
130 rctx->cmd.u.sha.src = sg;
131 rctx->cmd.u.sha.src_len = rctx->hash_cnt;
132 rctx->cmd.u.sha.opad = ctx->u.sha.key_len ?
133 &ctx->u.sha.opad_sg : NULL;
134 rctx->cmd.u.sha.opad_len = ctx->u.sha.key_len ?
135 ctx->u.sha.opad_count : 0;
136 rctx->cmd.u.sha.first = rctx->first;
137 rctx->cmd.u.sha.final = rctx->final;
138 rctx->cmd.u.sha.msg_bits = rctx->msg_bits;
142 ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd);
147 static int ccp_sha_init(struct ahash_request *req)
149 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
150 struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
151 struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
152 struct ccp_crypto_ahash_alg *alg =
153 ccp_crypto_ahash_alg(crypto_ahash_tfm(tfm));
154 unsigned int block_size =
155 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
157 memset(rctx, 0, sizeof(*rctx));
159 rctx->type = alg->type;
162 if (ctx->u.sha.key_len) {
163 /* Buffer the HMAC key for first update */
164 memcpy(rctx->buf, ctx->u.sha.ipad, block_size);
165 rctx->buf_count = block_size;
171 static int ccp_sha_update(struct ahash_request *req)
173 return ccp_do_sha_update(req, req->nbytes, 0);
176 static int ccp_sha_final(struct ahash_request *req)
178 return ccp_do_sha_update(req, 0, 1);
181 static int ccp_sha_finup(struct ahash_request *req)
183 return ccp_do_sha_update(req, req->nbytes, 1);
186 static int ccp_sha_digest(struct ahash_request *req)
190 ret = ccp_sha_init(req);
194 return ccp_sha_finup(req);
197 static int ccp_sha_setkey(struct crypto_ahash *tfm, const u8 *key,
198 unsigned int key_len)
200 struct ccp_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
201 struct crypto_shash *shash = ctx->u.sha.hmac_tfm;
203 SHASH_DESC_ON_STACK(sdesc, shash);
205 unsigned int block_size = crypto_shash_blocksize(shash);
206 unsigned int digest_size = crypto_shash_digestsize(shash);
209 /* Set to zero until complete */
210 ctx->u.sha.key_len = 0;
212 /* Clear key area to provide zero padding for keys smaller
213 * than the block size
215 memset(ctx->u.sha.key, 0, sizeof(ctx->u.sha.key));
217 if (key_len > block_size) {
218 /* Must hash the input key */
220 sdesc->flags = crypto_ahash_get_flags(tfm) &
221 CRYPTO_TFM_REQ_MAY_SLEEP;
223 ret = crypto_shash_digest(sdesc, key, key_len,
226 crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
230 key_len = digest_size;
232 memcpy(ctx->u.sha.key, key, key_len);
235 for (i = 0; i < block_size; i++) {
236 ctx->u.sha.ipad[i] = ctx->u.sha.key[i] ^ 0x36;
237 ctx->u.sha.opad[i] = ctx->u.sha.key[i] ^ 0x5c;
240 sg_init_one(&ctx->u.sha.opad_sg, ctx->u.sha.opad, block_size);
241 ctx->u.sha.opad_count = block_size;
243 ctx->u.sha.key_len = key_len;
248 static int ccp_sha_cra_init(struct crypto_tfm *tfm)
250 struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
251 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
253 ctx->complete = ccp_sha_complete;
254 ctx->u.sha.key_len = 0;
256 crypto_ahash_set_reqsize(ahash, sizeof(struct ccp_sha_req_ctx));
261 static void ccp_sha_cra_exit(struct crypto_tfm *tfm)
265 static int ccp_hmac_sha_cra_init(struct crypto_tfm *tfm)
267 struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
268 struct ccp_crypto_ahash_alg *alg = ccp_crypto_ahash_alg(tfm);
269 struct crypto_shash *hmac_tfm;
271 hmac_tfm = crypto_alloc_shash(alg->child_alg, 0, 0);
272 if (IS_ERR(hmac_tfm)) {
273 pr_warn("could not load driver %s need for HMAC support\n",
275 return PTR_ERR(hmac_tfm);
278 ctx->u.sha.hmac_tfm = hmac_tfm;
280 return ccp_sha_cra_init(tfm);
283 static void ccp_hmac_sha_cra_exit(struct crypto_tfm *tfm)
285 struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
287 if (ctx->u.sha.hmac_tfm)
288 crypto_free_shash(ctx->u.sha.hmac_tfm);
290 ccp_sha_cra_exit(tfm);
295 const char *drv_name;
296 enum ccp_sha_type type;
301 static struct ccp_sha_def sha_algs[] = {
304 .drv_name = "sha1-ccp",
305 .type = CCP_SHA_TYPE_1,
306 .digest_size = SHA1_DIGEST_SIZE,
307 .block_size = SHA1_BLOCK_SIZE,
311 .drv_name = "sha224-ccp",
312 .type = CCP_SHA_TYPE_224,
313 .digest_size = SHA224_DIGEST_SIZE,
314 .block_size = SHA224_BLOCK_SIZE,
318 .drv_name = "sha256-ccp",
319 .type = CCP_SHA_TYPE_256,
320 .digest_size = SHA256_DIGEST_SIZE,
321 .block_size = SHA256_BLOCK_SIZE,
325 static int ccp_register_hmac_alg(struct list_head *head,
326 const struct ccp_sha_def *def,
327 const struct ccp_crypto_ahash_alg *base_alg)
329 struct ccp_crypto_ahash_alg *ccp_alg;
330 struct ahash_alg *alg;
331 struct hash_alg_common *halg;
332 struct crypto_alg *base;
335 ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
339 /* Copy the base algorithm and only change what's necessary */
340 *ccp_alg = *base_alg;
341 INIT_LIST_HEAD(&ccp_alg->entry);
343 strncpy(ccp_alg->child_alg, def->name, CRYPTO_MAX_ALG_NAME);
346 alg->setkey = ccp_sha_setkey;
351 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", def->name);
352 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s",
354 base->cra_init = ccp_hmac_sha_cra_init;
355 base->cra_exit = ccp_hmac_sha_cra_exit;
357 ret = crypto_register_ahash(alg);
359 pr_err("%s ahash algorithm registration error (%d)\n",
360 base->cra_name, ret);
365 list_add(&ccp_alg->entry, head);
370 static int ccp_register_sha_alg(struct list_head *head,
371 const struct ccp_sha_def *def)
373 struct ccp_crypto_ahash_alg *ccp_alg;
374 struct ahash_alg *alg;
375 struct hash_alg_common *halg;
376 struct crypto_alg *base;
379 ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
383 INIT_LIST_HEAD(&ccp_alg->entry);
385 ccp_alg->type = def->type;
388 alg->init = ccp_sha_init;
389 alg->update = ccp_sha_update;
390 alg->final = ccp_sha_final;
391 alg->finup = ccp_sha_finup;
392 alg->digest = ccp_sha_digest;
395 halg->digestsize = def->digest_size;
398 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
399 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
401 base->cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC |
402 CRYPTO_ALG_KERN_DRIVER_ONLY |
403 CRYPTO_ALG_NEED_FALLBACK;
404 base->cra_blocksize = def->block_size;
405 base->cra_ctxsize = sizeof(struct ccp_ctx);
406 base->cra_priority = CCP_CRA_PRIORITY;
407 base->cra_type = &crypto_ahash_type;
408 base->cra_init = ccp_sha_cra_init;
409 base->cra_exit = ccp_sha_cra_exit;
410 base->cra_module = THIS_MODULE;
412 ret = crypto_register_ahash(alg);
414 pr_err("%s ahash algorithm registration error (%d)\n",
415 base->cra_name, ret);
420 list_add(&ccp_alg->entry, head);
422 ret = ccp_register_hmac_alg(head, def, ccp_alg);
427 int ccp_register_sha_algs(struct list_head *head)
431 for (i = 0; i < ARRAY_SIZE(sha_algs); i++) {
432 ret = ccp_register_sha_alg(head, &sha_algs[i]);